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Harmonic Clique Dependence Model 
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Professor William Hodgkiss, Chair 

 

 The problem of separating mixed signals using multiple sensors with little to no 

information about the source signals is known as Blind Source Separation (BSS). Many 

embedded systems, such as cell phones, have an audio environment which routinely 

suffers from multiple simultaneous audio or noise sources interfering with the desired 

user. One approach for improving audio quality is to use BSS techniques such as 

Independent Vector Analysis (IVA), an extension to the more common Independent 



 
 

xi 
 

Component Analysis (ICA) approach, to remove interference or mitigate noise. 

However, these algorithms suffer from slow convergence rates, thus making it 

impractical to effectively separate sources in real time. This thesis explores Auxiliary 

Function Independent Vector Analysis (AuxIVA) with constraints on the frequency 

distribution of the audio components to improve convergence rates. AuxIVA has been 

shown to yield a faster convergence time and better results when separating audio 

sources compared to traditional IVA. By constraining input sources to be human 

speech, a harmonic frequency dependence model can be used to further improve 

convergence. We propose combining AuxIVA with a harmonic clique dependence 

model to achieve a more efficient algorithm, thus making a real time solution more 

viable. This thesis will demonstrate improved convergence rates and Signal to 

Interference Ratio (SIR) performance of the proposed technique relative to traditional 

IVA, AuxIVA, and AuxIVA with non-harmonic clique dependence.  
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Chapter I Introduction 

Blind Source Separation (BSS) is the separation of a set of source signals from a 

set of mixed signals where only the statistical structure of the signal is assumed. BSS 

relies on the assumption that the source signals are independent of one another. 

Learning algorithms take advantage of this assumption by maximizing the statistical 

independence of each source from the multivariate input signal. 

The classical example of BSS is the "cocktail party” problem where a number 

of people are talking simultaneously in a room. The earliest and most basic form of 

BSS problems started with a model of linear and instantaneous mixing of the sources. 

Independent Component Analysis (ICA) among one of the more successful approaches 

to this problem and has become widely adopted as a popular area of research [4]. BSS 

by ICA has received a lot of attention since the mid-1990s because of its potential 

applications in signal processing, such as speech recognition systems, 

telecommunications and medical signal processing. In contrast to correlation-based 

transformations, such as Principal Component Analysis (PCA), ICA decorrelates the 

signals but also reduces higher-order statistical dependencies, attempting to make the 

signals as independent as possible. Superficially, ICA is related to principal component 

analysis and factor analysis, but is a much more powerful technique capable of finding 

the underlying factors when these classic methods fail completely [9]. More recently a 

technique called Independent Vector Analysis (IVA), an extension of ICA, has been 

shown to improve the results of BSS [6]. IVA uses the same underlying assumptions of 
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the sources as ICA. However, IVA uses the entire spectrum as input to the objective 

function, creating a more efficient model. 

An implementation of real-time solution to BSS is desirable in both the 

academic community and commercial industry because it could help reduce interfering 

audio sources. This is a challenging problem because of the complexity of IVA and its 

slow time to reach convergence. The goal of this thesis is to achieve a faster rate of 

convergence (separation of acoustic signals in a minimum number of iterations) with a 

high signal-to-interference ratio (SIR). This improvement will make real-time 

embedded solution, more viable. 

A new set of update rules based on the auxiliary function technique (AuxIVA) 

is a recent (2011) improvement to IVA [13]. Since this new algorithm has already 

improved upon the traditional IVA algorithm, we will focus on optimizing AuxIVA for 

separating speech signals. Constraining the input sources to be speech allows us to use 

a harmonic dependence model to help the learning function converge faster. Since our 

goal in this thesis is to create a better model for real time separation of signals, we will 

constrain our test cases to simulate that of a small 2 microphone array (similar to 

modern cell phone architectures). A simulation test suite will be used to evaluate 

various types of speech and environments. 
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Chapter II Background 

II.1 Independent Component Analysis 

II.1.1 Overview 

Independent Component Analysis (ICA) is a statistical and computational 

technique for revealing hidden factors that underlie sets of random variables, 

measurements, or any multivariate statistical data. This technique is commonly used to 

solve the BSS problem, otherwise known as the “cocktail party” problem. The cocktail 

party represents   speakers and   microphones in a room. For simplicity we will 

define     however this is not a requirement for BSS. Acoustic sources (or 

speakers) are represented as            and microphone inputs as           . 

We assume a spatial difference between each source and each microphone, thus there 

exists a linear instantaneous mixing of the sources [17]. This mixture is represented in 

the frequency domain as: 

  ( )   ( ) ( ) (1) 

such that, 

  ( )  [  ( )   ( )]  (2) 

  ( )  [  ( )   ( )]  (3) 

 

 ( )   [

   ( )   ( )     ( )
   ( )   ( )     ( )

 
   ( )   ( )     ( )

] 

 

(4) 

where k is the frequency bin index, T is the transpose, and   is the mixing matrix.  
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The goal of ICA is to estimate   as best as possible when given only the 

observed inputs  . To do this, it is assumed that the sources are statistically 

independent of each other. ICA finds the independent components of a signal by 

maximizing the statistical independence of the estimated components. We may choose 

one of many ways to define independence, and this choice governs the form of the ICA 

algorithms. Traditionally (and for this thesis), ICA defines independence as the 

minimization of mutual information. This minimization will output a set of weight 

vectors called the unmixing matrix.  

By multiplying the unmixing matrix (output of the ICA learning algorithm) with 

the mixed input we get the estimated sources represented as           . The 

unmixing process is defined as: 

  ( )   ( ) ( ) (5) 

 

[
  ( )

 
  ( )

]   [

   ( )   ( )     ( )
   ( )   ( )     ( )

 
   ( )   ( )     ( )

] [
  ( )

 
  ( )

] 

 

(6) 

where   is the unmixing matrix and ideally  ( ) ( )    (                   ). 

The traditional approach to finding the unmixing matrix is to apply the natural gradient 

algorithm [16] (this will be explored in greater detail in the following section). Within 

the ICA framework, the learning is done over individual bins, thus no relationship 

between sequential bins is taken into account in this algorithm. It is for this reason that 

conventional ICA suffers from the “permutation problem” [3, 4]. 
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II.1.2 Permutation Problem  

ICA is effective at separating sources for each frequency bin. The permutation 

problem occurs when each unmixed source contains frequency bins which do not 

belong to it. Post processing was often used to solve the inconsistent permutation of the 

discrete Fourier transform bins after ICA has completed. Finding a solution to this 

problem has been an active area of research in recent years. A common approach to this 

problem is to solve it in the frequency domain and use all frequency components of 

each source signal together as a multivariate source. Rather than using a contrast 

function that measures the component-wise independence of each frequency bin, a 

contrast function that measures the whole independence among the multivariate sources 

can be applied (further explained in the next section). In general, ICA can be effective 

for BSS but suffers from the permutation problem and will not be studied in this thesis. 

For a more detailed discussion of ICA please refer to [4]. 

II.2 Independent Vector Analysis 

II.2.1 Overview 

Independent vector analysis (IVA) for blind source separation is a more recent 

solution to the “cocktail party” problem. This technique is an extension of ICA but uses 

the entire frequency spectrum as an input to solve the permutation problem [3, 6]. In 

IVA a measure of independence is calculated from the entire spectrogram of each input. 

IVA fundamentally solves the permutation problem by separating whole spectrograms 

instead of binwise separation, as done by ICA. The calculations use multivariate 

probability density functions (PDFs) which take signal spectra across all frequency bins 
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as arguments. IVA models each individual source as a dependent multivariate 

symmetric super-Gaussian distribution (specifically a spherical Laplacian distribution 

as shown in Figure 1). This assumption holds while maintaining the fundamental 

assumption of BSS that each source is independent from the other [17]. 

In natural gradient IVA the signal is modeled by a bin-wise instantaneous 

mixture in the Short-Time Fourier Transform (STFT) domain. For the following 

equations we will omit the time frame index but note that the expectations are taken 

over time frames. Combining Eq. 1 with Eq. 5 we have:. 

  ( )   ( ) ( )   ( ) ( ) ( )  (7) 

where   is the frequency bin index. 

In IVA unmixing is done over all frequency bins (bold is used to represent 

matrices which contain all sources and all frequency bins): 

      (8) 

 

[
  
 
  

]  [
       

 
       

] [
  

 
  

] 

 

(9) 

[
 
 
 
 
 
 
(
  ( )

 
  ( )

)

 

(
  ( )

 
 ( )

)
]
 
 
 
 
 
 

 

[
 
 
 
 
 
 (

   ( )   
   
     ( )

)  (
   ( )   

   
     ( )

)

   

(
   ( )   

   
     ( )

)  (
   ( )   

   
     ( )

)
]
 
 
 
 
 
 

[
 
 
 
 
 
 
(
  ( )

 
  ( )

)

 

(
  ( )

 
  ( )

)
]
 
 
 
 
 
 

 

 

(10) 

where N is the number of microphones (and sources) and   is the number of frequency 

bins. Eq. (10) shows the coupling of the entire spectrum to each source. 
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II.2.2 Objective function of IVA 

Similar to ICA a gradient-based algorithm is commonly used (i.e. natural 

gradient). The objective function uses multivariate activation functions derived from 

the PDFs to obtain an unmixing matrix which make the spectrograms independent. To 

find an optimal solution, the Kullback-Leibler Divergence (KLD) between  ( ) and 

   (  ) is used as a measure of independence in the whole spectrogram. The objective 

function is used to find the unmixing matrix   which makes the output vectors 

        independent and thus minimizing the KLD [6, 13]. 

   ( ) is explained as the distance between the PDFs of   and the joint PDFs 

of    assuming independence. The unmixing matrices are estimated by minimizing the 

following objective function: 

 

   ( )   ∑  [ (  )]   ∑          ( )  

 

   

 

   

 

 

(11) 

  ( )  [  ( )    ( )]  (12) 

where   ( ) is the column vector of weights for source n and H is the Hermitian 

transpose. 

    [  ( )   ( )]  (13) 

 [ ] is the expectation over time frames and  (  ) is the contrast function. The 

contrast function has the relationship  (  )        (  ) where  (  ) represents a 

multivariate PDF for each source. This implementation uses a multivariate Laplacian 

PDF which has a spherical distribution property as shown in figure 1. The spherical 

contrast function used for IVA is represented as: 
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   ‖  ‖  √∑   ( )  
 

   

 

 

(14) 

where ||.||2 denotes the   -norm of a vector.  

To minimize the objective function (Eq. 11) a learning algorithm is derived 

using a gradient decent method. The update equations for IVA result in a    that 

ultimately steer a null towards the interfering source(s) and a beam towards the source. 

This is a convex optimization problem that is solved by applying the update rules based 

on the natural gradient [3,6,13]: 

  ( )    ( )   (   [  ( )  ( )]) ( ) (15) 

   ( )   [   (  )     (  )] (16) 

 
   (  )  

  (  )

   
 ( )

 

(17) 

where 
*
 is the complex conjugate,   is the step size parameter and the expectation is 

over time frames. The step size is a tuning parameter that imposes a tradeoff between 

convergence speed and stability. Researching an optimum step size for a particular data 

set can be somewhat ambiguous, so for this thesis we will not use a step size value 

greater than 0.3 to avoid the algorithm diverging. 

The phi function    is the derivative of the log of the assumed distribution. This 

function is used in the update equation to match the assumed sources to our model: 

 
  ( )    

  ( )

  
 

(18) 

where    is defined in Eq. 14. 
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Figure 1 shows the comparison of an independent Laplacian join distribution (a) 

and a dependent spherical Laplacian distribution (b). ICA assumes (a) but suffers from 

the permutation problem. IVA assumes (b) which is a Laplacian distribution with a 

spherical property. By using this new dependent model for IVA each frequency bin 

depends on the entire spectrum, thus solving the permutation problem. 

 

Figure 1. Comparison between (a) An independent Laplacian distribution and (b) 

a dependent spherical Laplacian distribution [6] 

For a more complete discussion of IVA please refer to the original IVA paper 

by Kim, Lee, Attias [6] and the extension paper by Hiroe [3]. 

II.3 Auxiliary Function IVA 

II.3.1 Overview 

The natural gradient update for IVA described above has tradeoffs between 

convergence speed and stability based on the step size value used. If a large step size is 

used the algorithm could potentially diverge. Recently, an approach was developed to 

improve convergence time and eliminate the step size variable by using the auxiliary 

function technique to form a new objective function and new update equations. This 
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technique was first applied to ICA and later adapted for IVA. Auxiliary Function IVA 

(AuxIVA) is a framework to find an efficient iterative solution for nonlinear 

optimization problems and is an extension of the expectation-maximization (EM) 

algorithm (a common algorithm used for statistical inference problems in signal 

processing) [13, 14]. 

To introduce the auxiliary function technique we look at a general optimization 

problem where we want a vector      such that            ( ) where  ( ) is 

an objective function. The Auxiliary function technique defines a new equation: 

 ( )        (    ) (19) 

where  (    ) is called the auxiliary function for function  ( ) and    is called an 

auxiliary variable. Instead of minimizing the objective function directly we minimize 

the auxiliary function  (    ) in terms of   and    alternatively. These variables are 

updated iteratively as: 

  (   )           ( ( )   ) (20) 

 (   )          (    (   )) (21) 

where   is the iteration index. This process guarantees a monotonic decrease of  ( ). To 

find an appropriate  (    ) is problem dependent. To extend IVA to use this technique 

we will use the objective function derived by Ono in [13].  

II.3.2 Objective Function 

The new objective function for AuxIVA is defined as: 



11 
 

 
 

 

 (   )  ∑   ( ( )  ( ))

 

   

 ∑ (
 

 
∑   ( )  ( )  

 ( )

 

   

          ( ) )   

 

   

 

 

 

(22) 

where   ( ) is the weighted covariance matrix at the  th frequency bin later defined in 

Eq. 24,   ( ) is the  th row of the unmixing matrix, and   is a scalar constant term. 

AuxIVA can be thought of as taking the Taylor series expansion of the original IVA 

objective function but only keeping the 2
nd

 order term for the first update step we then 

use the output from this first step to minimize the weight vectors. It is because of this 

alternation of minimizing out new objective function in terms of   and   respectively 

that we can eliminate the step size parameter and still obtain a monotonic decrease.  

The algorithm is summarized as the following alternative updates for all   

sources, which are applied in order until convergence. The axillary variable update step 

assumes the same spherical dependence   as in IVA. The weighted covariance matrices 

  ( ) are updated for all   as follows: 

 

    √∑   
 ( ) ( )  

 

   

 

(23) 

 
  ( )   [

  (  )

  
 ( )  ( )] 

(24) 

where the expectation is over time frames and   (  ) is derived from the spherical 

Laplacian source PDF we are assuming.  
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Now we minimize  (   ) in terms of  . Instead of updating all of   ( ) 

simultaneously, we update the weights from one source at a time keeping   ( ) fixed 

where    . From this we have the following equations: 

   
 ( )  ( )  ( )    (25) 

   
 ( )  ( )  ( )    (   ) (26) 

where Eq. 25 determines the scale of   ( ) and Eq. 26 determines the direction of 

  ( ). The weight vector is first updated and then normalized for all  . By combining 

Eqs. 25 and 26 we have: 

    ( ( )  ( ))
     (27) 

where    denotes the unit vector with the  th
 element unity. The last update step for a 

single iteration is to normalize by applying the following equation: 

 
  ( )   

  ( )

√  
 ( )  ( )  ( )

  
(28) 

AuxIVA avoids the step size tuning problem in conventional IVA and gives 

effective iterative update rules which can guarantee the monotonic decrease of the 

objective function at each update. Similar to IVA, this method assumes a dependent 

spherical Laplacian PDF of the sources and thus does not suffer from the permutation 

problem. Recent studies have shown that this method can improve both SIR and 

convergence time when separating audio signals at a slight cost of added complexity. 

With this improvement, real-time IVA implementation is more feasible. For a more 

complete discussion of AuxIVA, please refer to the paper by Ono [13]. 
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II.4 Dependence Models Using Cliques 

IVA and AuxIVA assume a spherical dependency model over all frequency bins 

(also known as radial symmetry). By using this model each frequency bin assumes 

dependence to every other bin equally. This dependency model is equivalent to a single 

clique in an undirected graph as shown in Figure 2 (top). For this thesis we define a 

clique as a subset of frequency bins of which each bin in the set assumes dependence to 

every other bin in the set.  

The overlapping clique dependency model enables a more accurate model of 

statistical dependencies in accordance to the correlation coefficients observed in 

acoustic signals [11]. This model defines a fixed number of cliques which constitute a 

dependency graph such that neighboring frequency bins are assigned to the same clique 

while distant bins are assigned to different cliques. The permutation ambiguity is 

resolved by overlapped frequency bins between neighboring cliques. The clique sizes 

are set to be fixed with a fifty percent overlap. A recent study (2012) showed improved 

performance when for separating audio signals when compared to spherical 

dependency models in both IVA and AuxIVA [11]. Figure 2 shows the single clique 

distribution (top) as compared to the overlapping clique distribution (bottom). 
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Figure 2. Single and Chain-like Overlapping Clique Models 

AuxIVA can be modified to use this model by changing the covariance matrix 

update step to sum over each clique: 

   
 (  )

  
  

 

√∑    ( )  
   
     

  
 

√∑    ( )  
   
     

  

  
 

√∑    ( )  
   
     

 

 

 

(29) 

where the set [         ] represents the frequency bins indices for each of   cliques. 

Subscript   indicates the first bin index in the clique and subscript   indicates the last. 

Although the overlapped clique dependence exhibits improved performance for some 

acoustic sources it may not match the characteristics of speech or other real-world 

signals with a strong harmonic structure. For a more complete discussion of this 

method refer to the paper by Lee [8]. 
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II.5 Pre and Post Processing 

Pre-processing is not strictly required for IVA, however for this thesis we 

choose to pre-whiten our data to assist the learning steps and ultimately converge as 

fast as possible. Whitening removes the second order correlations to make the data 

uncorrelated while possibly leaving higher order statistics nonzero (thus not making the 

signals independent). 

After convergence we have the optimum weights for each frequency bin. 

However, each bin contains an arbitrary scaling component which needs to be adjusted 

before source reconstruction. To overcome this we will perform rescaling of the 

weights based on the minimal distortion principle [12]. For IVA this is simply stated as: 

  ( )      (   ( )) ( )  (30) 

Finally, we are ready to apply the unmixing matrix to our input data and 

produce an optimal estimation of each source. Lastly, the Inverse Short Time Fourier 

Transform (ISTFT) is performed on the frequency domain data. At this point we can 

listen to the output; if the separation worked well we hear each source individually 

instead of mixed. For comparison purposes each implementation of IVA throughout 

this thesis will perform the same pre and post-processing steps.  
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Chapter III   The Problem 

The goal of this thesis is to optimize AuxIVA with speech sources as input. 

Neither a single clique dependence model nor an overlapping clique model, as 

described in Chapter II, accurately match the structure of acoustic signals with strong 

harmonics. This thesis solves this problem by changing the objective function to use a 

harmonic dependence model as opposed to a spherical or overlapped clique model. We 

generate this model based on the fundamentals of human speech. 

III.1 Harmonics of Human Speech 

A signal has harmonic structure when a ‘fundamental’ frequency component is 

accompanied by signal components at multiples of the fundamental frequency. Human 

speech, especially during voiced periods, exhibits a harmonic structure that we will 

exploit for improved convergence. This harmonic sound is produced from the vibration 

of vocal chords combined with air flowing out of the lungs. We discuss the assumed 

harmonic structure in the following section [16]. 

III.2 Harmonic Frequency Dependence  

The overlapped clique dependence can show improvement for some acoustic 

signals but may not match the characteristics of speech or other real-world signals. 

Specifically, voiced signals and other acoustic signals with strong harmonics require a 

dependence model more complex than just neighboring frequency bins. We can create a 

new dependence model by introducing a harmonic structure. This is an advanced 

frequency dependence model for IVA and should be more effective in separating sound 
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sources that have strong harmonic structures, such as speech and music signals. This 

method has been implemented for conventional IVA (as opposed to auxiliary IVA) and 

has been shown to yield better performance than overlapped clique dependence IVA 

when the input signals primarily are speech or music [2].  

The clique structure we will analyze for this project is similar to the one 

described in [2], the only difference being that we do not have a clique that contains the 

entire spectrum. By omitting this clique we assume a stronger dependence to the 

harmonic model. The fundamental frequencies of each harmonic clique represent 

frequencies from 55 Hz to 880 Hz. The frequency is denoted by Fh and defined as 

         (   )   
 (31) 

where          and harmonic clique     varies over the range            as 

described in [2]. 

 
    {           |

        

   
                   } 

(32) 

where    is the frequency of the  th
 bin and    is the  th

 local clique. Clique    

includes the frequency bins of the first eight multiples of   , i.e.    . The bandwidth 

of the  th
 multiple of   , i.e.    , is   . Every two     consecutive harmonic cliques 

overlap by approximately 50%. We again use an overlapping model for sequential 

cliques to avoid the permutation problem as described in II.1.1. Figure 3 shows a 

graphical representation of the harmonic dependency model for FFT size of 1024 and a 

sampling frequency          . This model should work well for most types of 

speech because the energy from any source should align with 1 or 2 of the cliques.  
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Figure 3. Harmonic Clique Model 

III.3 Solution 

In this thesis we extend AuxIVA to use a harmonic dependency model as the 

input to the covariance matrix update step. This should produce improved results when 

separating two human speech signals. The auxiliary function IVA algorithm can be 

adapted to use a harmonic clique dependence model (AuxIVA_harmonic). The input 

sources will be constrained to have strong harmonics such as human speech. This 

approach is expected to yield a faster convergence time and improved SIR when 

compared to traditional AuxIVA or the overlapping clique dependency model. 

The update rules proposed by [13] will be used, paired with the harmonic 

distribution proposed by [2]. We can modify AuxIVA to use the equation below for the 
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covariance matrix update step. We form our new harmonic dependent update for    by 

combining Eqs. 29 and 32: 

 

 ([  ( )     ( )])   [ ∑ √ ∑
   ( )  

(  ( )) 
    

 

   

]     

 

(33) 

where   is total number of cliques,   ( ) adjusts the variance of the variables (set to 1 

as defined in [2]) and    is the set of frequency bins that belongs to harmonic clique  .  

By using a harmonic dependence model and the adjusted objective function, we 

expect a more accurate scaling factor when the inputs are constrained to be speech (or 

any acoustic source with strong harmonics). We will compare the performance of each 

of the following 4 algorithms: 

1) Natural Gradient Independent Vector Analysis (IVA) 

2) Auxiliary Function IVA (AuxIVA) 

3) AuxIVA using the overlapped clique dependence (AuxIVA_overlap) 

4) AuxIVA using the harmonic clique dependence (AuxIVA_harmonic) 

Each algorithm will be implemented and compared to each other. Algorithms 1-3 have 

already been shown to produce increasingly better results in terms of performance and 

convergence. We expect the proposed algorithm (AuxIVA_harmonic) to produce better 

results respectively when given a constrained harmonic input. Each algorithm will be 

compared to each other in the following two ways: 

1) Signal-to-Interference Ratio (SIR) after convergence 

2) Rate of convergence – SIR as a function of number of iterations 
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Chapter IV  Experiment 

A custom simulation environment will evaluate the performance of the 

proposed algorithm. Speech and other audio samples were gathered from numerous 

online sources (primarily the open speech repository [15]). Other speech samples were 

recorded in house to be used as real world input. We collected 15 different speech 

samples (mixed male and female, Spanish and English) for use as input to the 

simulator. The samples generally are a single person talking or reading for about 7 to 

10 seconds with no more than a 1-2 second pause between sentences. Because the 

speech samples have been pulled from different sources and recorded using unknown 

microphones we first normalize them by dividing the entire sample by its maximum 

amplitude before combining them into a single 2-channel mixed signal. 

The simulator used for this experiment was derived from the Fast Image Source 

Method (Fast ISM) toolbox implemented in MATLAB [1, 10]. This toolbox uses the 

well-known image method for the purpose of simulating reverberant audio data in 

small-room acoustics. The image method simulates the impulse response between two 

points in a small rectangular room. This resulting impulse response is then convolved 

with any desired input signal (in our case a speech signal) which simulates room 

reverberation of the input. 

Some modifications were made to this toolbox to allow multiple simultaneous 

speakers. The room is modeled in 3D with dimensions 5 x 5 x 4 meters. All simulations 

performed in this thesis use this room model with the microphone array and sources at 

the same height of 1.5 meters. Many variables can be adjusted, such as position of the 
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sources and microphone array spacing, which result in different room impulse 

responses (RIRs). For better comparison results, the random seed used in the 

reverberant calculations is kept constant when re-running the test for each algorithm. A 

constant reverberation time is set to T60 = 200ms (time required for reflections to 

decay 60 dB) and can be set to zero to test the anechoic case. Reflection coefficients for 

each wall can be adjusted to test different kinds of flooring and room configurations. 

We will use a constant set of reflection coefficients which simulate a carpeted floor and 

standard material on the ceiling and walls. The coefficient values are described as the 

following: [                     ] which correspond to the y-dimension walls, x-

dimension walls, floor and ceiling, respectively.  

 A single random test will pull two arbitrary speech samples from the set and 

place them in a pseudo random location in the room. We limited the tests so that both 

sources would be the same distance away from the microphone-array (between 1 and 2 

meters) with no less than 30 degrees of separation. Figure 4 shows an example of the 

simulated room as a top down view. Source 1 (labeled S1) was randomly selected to be 

speech4.wav and placed at -30
o
 degrees relative to the microphone array. Source 2 (S2) 

was selected to be speech5.wav and set at 55
o
. In the Chapter 5 we will look at the 

results from 100 random tests where the sources are pulled from a database of 15 

different speech samples and are modeled in a similar random configuration as shown 

in Figure 4. 
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Figure 4. Simulation Environment Example Top View 
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Chapter V Results 

V.1 Performance Measurement 

Performance is measured primarily in two ways: Signal-to-Interference ratio 

improvement (SIR) and number of iterations until SIR convergence. SIR is similar to 

the signal-to-noise ratio, but in this case the interference is specific to co-channel 

interference from the other source. SIR improvement implies that we are computing the 

difference of the SIR from the mixed (input as recorded by microphone) signal to the 

original source signal (signal before mixing). To get an accurate SIR for comparison 

purposes we will use the BSS toolbox [19]. This tool box requires input (ground truth) 

sources before mixing. It takes into account the difference in signal power of each 

source and outputs measurements based on the decomposition of each estimated source 

signal into a number of contributions corresponding to the target source and interfering 

sources. For this thesis we will average the SIR for the 2 outputs together to give a 

single metric and more easily compare between algorithms. 

When the algorithm is run for a large number of iterations, the weights will 

converge to their optimum values which correspond to a maximum SIR for any given 

test. We will consider the number of iterations to reach this convergence as the 

‘convergence rate.’ When comparing performance of different algorithms, we will look 

at the converged SIR as well as the convergence rate to determine the performance.  
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V.2 Experiment 1 (Anechoic) 

We conducted an experiment using the specifications listed in Table 1. This 

experiment consists of 100 tests using random input (pulled from a set of 15 speech 

samples). The two sources were placed at angles randomly chosen from the set of 

angles specified in Table 1. For each individual test all parameters are held constant for 

algorithm comparison. The output from this test shows the averaged SIR for all signals 

over all tests for each of the four algorithms as shown in Figure 5. A step size of 0.25 

was used for the IVA tuning parameter. It has been shown [13] that a step size value of 

0.3 or higher potentially can cause the IVA algorithm to diverge. IVA (red) is included 

in this experiment to show a clear improvement when using the auxiliary function 

update rules. For the overlapping clique dependence model (green) we used four 50% 

overlapped cliques as described in [8]. We see that the overlapped clique model we 

chose gave almost identical results on average when compared to traditional (one single 

spherical distribution) AuxIVA (blue) model.  

The comparison we are most interested in is the one between our proposed 

AuxIVA_harmonic model (black) and AuxIVA (blue). We see an improvement in both 

convergence rate (speed) and SIR. AuxIVA_harmonic takes 16 iterations to reach 10dB 

while AuxIVA takes 23. We will consider the number of iterations for convergence to 

be about 45 for both AuxIVA and AuxIVA_harmonic. Our results show approximately 

1 dB improvement after convergence over traditional AuxIVA. The SIR is relatively 

high in this case because we used the raw input without any added reflections. The 
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anechoic experiment is similar to a real world environment where there is little to no 

reverberation of the source signals, such as outdoors or in a very large room.  

Table 1. Parameters for 100 random tests 

Parameter Value(s) 

Short-time Fourier 

Transform 

Size: 1024 at 75% overlap 

Random Angles {-85, -60, -30, 0, 30, 60, 85} 

Speech Samples {speech1.wav,…,speech15.wav} 

Distance from array 1m – 2m 

Number of microphones 2 

Microphone spacing 9cm 

Duration of samples Approximately 7 seconds 

Reflections Turned off for Experiment 1  

Turned on for Experiment 2 

 

 

Figure 5. Averaged results from 100 random anechoic tests 
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V.3 Experiment 2 (Echoic) 

The anechoic case showed the fundamental approach of using a harmonic 

dependence model and worked as expected with better average performance. Next we 

show the results from the same random test as described in Table 1 except we turn on 

reflections to simulate a more realistic reverberant room. For each individual test 

reverberations are calculated using the same random seed number to ensure accurate 

comparisons between algorithms. The results from this test are shown in Figure 6 and 

immediately we notice all algorithms have a much lower overall SIR than in the 

anechoic case. This is partially due to the fact that our original source did not contain 

any distortion or interference. The mixed source now has reverberations and the 

resulting unmixed source still contains some of the reverberations as well. Thus, the 

estimated unmixed signal will not match up to its ground truth signal as clearly as the 

anechoic case. Therefore, we will only compare the algorithms to each other for a 

specific test (reflections on or off) and not compare the tests themselves in terms of SIR 

values. 

Figure 6 shows that natural gradient IVA (red) again has a very slow time of 

convergence, such that 100 iterations were not sufficient to see it converge when using 

a step size of 0.1. This illustrates the problem of having a slow convergence when using 

an arbitrary step size. We also note that AuxIVA_overlap has a slight performance 

increase over Aux_IVA which meets our expectations. As in the anechoic case, we are 

most interested in the performance of AuxIVA compared to AuxIVA_harmonic. 

Experiment 2 results in an improvement in both speed and SIR, but the improvement is 
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greater in terms of percentage of the anechoic test. AuxIVA_harmonic takes 30 

iterations to reach 6dB whereas AuxIVA takes 50. We see about a 1-1.5 dB increase for 

SIR overall which is a 15% improvement, where the anechoic test showed 

approximately a 10% improvement.  

 

Figure 6. Averaged results from 100 random echoic tests 

V.4 Case Study 1 - Harmonic Input 

V.4.1 Echoic Experiment 

This experiment is a single test extracted from one of the averaged test cases 

above to further analyze the input and output signals. The test setup parameters are 

shown in Table 2. The two speech samples used are speech1.wav for Source #1 (S1), a 
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man reading from a book recorded by us, and speech4.wav for Source #2 (S2), a man 

counting in Spanish found online at [15]. 

 

Table 2. Parameters for case study 1 

Parameter Value(s) 

Short-time Fourier Transform Size: 1024 at 75% overlap 

Speech Samples S1: speech1.wav;   S2: speech4.wav 

Angles S1: -60
o
;    S2: 30

o 

Distance from array 1.5 meters 

Number of microphones 2 

Microphone spacing 0.09 meters 

Duration of samples 7.3 seconds 

Reflections Turned On (echoic) 
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Figure 7. Case Study 1 Top View of Simulation 

To verify that the source inputs are harmonic we look at the spectrogram shown 

in Figures 8 and 9. Harmonic content of speech predominantly shows up in vowels and 

is recognized by the ladder like shape in the frequency domain during a short time 

sample. Figure 9 shows a very strong harmonic structure for speech4.wav. Figure 8 

shows harmonic content as well but is noisier; this is likely due to the recording 

environment.  
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Figure 8. Spectrogram of Source 1: speech1.wav 

 

Figure 9. Spectrogram of Source 2: speech4.wav 
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To visually analyze the output, we look at the unmixing matrix returned by 

AuxIVA_harmonic. We expect the unmixing matrix to steer a null towards the 

interfering signal and a beam towards the desired signal. Beam patterns can be 

calculated from the unmixing matrix for each source and are used to verify that the 

algorithm is working as expected. Beam patterns are calculated by taking the inner 

product of each weight vector with each direction vector from -90
o
 to 90

o
. We can do 

this for each source and expect to see a prominent null at the corresponding interfering 

source(s) [5].  

To extract Source 1 the output weight vector will steer a null towards the 

interfering source [7]. In this case Source 2 is considered the interferer for Source 1 and 

vice-versa. Figure 10 shows the beam pattern of the weight vector for Source 1. We see 

a dominant null at 30
o 

over all of the frequency bins. The algorithm nulls out the 

interfering source and has a maximum at the angle it is located at. We are only using a 

2 microphone array so the maximum is not as clear as the null. Source 2 has a very 

dominant harmonic structure and we can see that the null pattern in Figure 10 shows a 

similar looking harmonic pattern among nulls over frequency bins. Figure 11 shows a 

similar beam pattern for Source 2 with the null at -60
o 
as expected. 
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Figure 10. Beam Pattern of weights for Source 1 – Beam at -60 and null at 30
o
 

(echoic) 

 

Figure 11. Beam Pattern of weights for Source 1 – Beam at 30 and null at -60
o
 

(echoic) 
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The use of two strongly harmonic inputs in our test environment is expected to 

yield favorable results because of the harmonic dependence model. Figure 12 shows the 

results from this test up to 150 iterations for all four algorithms. As expected, AuxIVA 

has a better performance than IVA with a step size of 0.25. We also note that 

AuxIVA_overlap and AuxIVA have almost identical performance. This shows that a 

simple overlapping clique dependence model is not sufficient for improving the 

performance of separating two strongly harmonic speech signals. This is because an 

overlapped dependence assumes neighboring frequency bins are assigned to the same 

clique, while distant bins are assigned to different cliques, where our harmonic 

dependence is more flexible. As expected, AuxIVA_harmonic showed an improved 

SIR as well as a faster rate of convergence.  

 

Figure 12. Case Study 1 (echoic) SIR Results 
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V.4.2 Anechoic Experiment 

The following experiment used the same harmonic input as described above, 

however this time we examine the anechoic case. We look at this case to demonstrate 

that without reflections the signal separation performs as expected with ideal SIR and 

convergence. In a real world scenario this case can be thought of as being outside or in 

a soundproof room. Input spectrograms are the same as in Figures 8 and 9. We reiterate 

that the inputs have a strong harmonic structure and thus we expect to see improved 

performance from all algorithms yet AuxIVA_harmonic to stand out.   

The follows figures show beam patterns obtained from the output weight 

vectors from the AuxIVA_harmonic algorithm. These beam patterns noticeably differ 

from the beam patterns in the echoic case. Figure 13 shows the beam pattern for source 

1. There is a very strong null at 30 degrees where the interfering source is located and a 

beam at -60
o
. The beam is harder to see because we only are using a 2 microphone 

array. We also notice a grating lobe on the bottom left part of the plot. This grating lobe 

appears here because of the microphone spacing. The spacing for this experiment is set 

to 9 cm which is larger than the half wavelength of our input, thus causing the lobe. 

Figure 14 shows a similar but opposite pattern for Source 2. There is a prominent null 

at -60
o
 for the interfering source and a beam at 30

o
. This figure has a little more 

distortion around the null then in Figure 13 because Source 1 is a more broadband input 

in with weaker harmonics. This causes the separation SIR to be weaker for this 

particular source.  
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Figure 13. Beam Pattern of weights for Source 1 – Null at 30
o
 (anechoic) 

 

Figure 14. Beam Pattern of weights for Source 2 – Null at -60
o
 (anechoic) 
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The SIR performance for AuxIVA_harmonic in Figure 15 shows a 4dB 

improvement over AuxIVA. Time of convergence improves as well. AuxIVA does not 

converge until around 20 iterations where AuxIVA_harmonic converges more quickly 

at about 13 iterations. For this specific test, AuxIVA_overlap has acceptable 

performance but has a lower SIR (comparatively) then in the echoic case. This lack in 

performance is due to the lack of reverberation and strong harmonic structure. The 

overlapped clique dependence model assumes neighboring bins are dependent and does 

not perform as well for this type of input. We also note that after enough time, natural 

gradient IVA performs the same as AuxIVA_harmonic. However, the time for IVA to 

converge is over 100 iterations. 

 

Figure 15. Case Study 1 (anechoic) SIR Results 



37 
 

 
 

V.5 Case Study 2 – Non-Harmonic Input 

Case Study highlights why AuxIVA_harmonic performs supirior when the 

inputs are constrained to be harmonic in nature. Now we will look at a case study when 

the inputs do not have strong harmonics. With non-harmonic acoustic inputs, we would 

not expect AuxIVA_harmonic to perform as well as it did in Case Study 1. The two 

input sources for this experiment are both music sources. Some music can have a strong 

harmonic structure such as opera. However, we chose samples that are much more 

broadband.  

Table 3. Parameters for case study 2 

Parameter Value(s) 

Short-time Fourier Transform Size: 1024 at 75% overlap 

Speech Samples S1: jazzTrio.wav;  

S2: harpsichord.wav 

Angles S1: -10
o
;    S2: 60

o 

Distance from array 1.4 meters 

Number of microphones 2 

Microphone spacing 0.09 meters 

Duration of samples 7.0 seconds 

Reflections Turned Off (anechoic) 
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Figure 16. Case Study 2 Top View of Simulation 

Table 3 shows the test parameters for Case Study 2 and Figure 16 shows the 

simulated room setup. We choose Source 1 to be a jazz trio sample and Source 2 to be a 

harpsichord. The angles and distance away from the array were chosen at random.  We 

decided to run this experiment with reflections turned off to better analyze each 

algorithm output based on the structure of their inputs without interference from 

reverberation or additive noise.  

To verify that the source inputs do not have a harmonic input we look at their 

spectrograms. Figure 17 shows the spectrogram for the jazz trio sample (Source 1).  

Each of the three instruments in this sample have some harmonic content associated 
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with them. However because they are mixed together and have a somewhat random 

pitch, the spectrogram is more broadband and does not conform to a harmonic pattern 

as a whole. Figure 18 shows the spectrogram for the harpsichord sample (Source 2). 

This figure shows an even broader spectrum with almost no distinguishable harmonic 

structure as a whole.   

 

Figure 17. Spectrogram of Source 1 jazzTrio.wav 
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Figure 18. Spectrogram of Source 2 harpsichord.wav 

When compared to the other algorithms, AuxIVA_harmonic did not perform as 

well in terms of convergence rate. Figure 19 shows the separated signals for AuxIVA 

achieved an SIR of just under 16dB. We still achieve a separation of signals and 

eventually it reaches the same SIR as AuxIVA, but it takes close to 90 iterations to 

converge. The SIR does eventually converge to the same SIR as AuxIVA. This 

illustrates the importance of matching the clique distribution to the excepted input. 

While this is an acceptable level of separation to the human ear, when compared with 

AuxIVA_overlap it is 2dB lower. We can conclude that an overlapping clique model is 

a superior model for this specific input. Additionally, we can compare this performance 

to Case Study 1. In Case Study 1 with reflections turned off and voice as input we were 

able to obtain an SIR of over 26dB which is a noticeable difference of 10dB. It is 
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intuitive that a harmonic dependence model performs better when the input sources 

have a strong harmonic structure, and this test case shows that for non-harmonic input 

we still achieve a separation but with a decrease in performance.  

 

Figure 19. Case Study 2 SIR Results 
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Chapter VI Conclusions 

VI.1 Conclusion 

The goal of this thesis was to identify an ideal solution to the Blind Source 

Separation problem that would make a real-time implementation feasible. We achieved 

this by applying a harmonic dependency model to Auxiliary Function IVA and 

constraining the input sources to be speech. We have shown that a harmonic 

dependency model increases performance when the source signals have a strong 

harmonic structure. We have also shown that Auxiliary Function IVA eliminates the 

step size parameter and converges much faster than IVA. To combine these two 

improvements we modified the objective function of AuxIVA to use a harmonic clique 

structure. This optimized algorithm converged faster and yielded a higher SIR when 

compared to traditional IVA, AuxIVA, and AuxIVA with an overlapping clique 

dependence model. The proposed method (AuxIVA_harmonic) has shown an 

improvement in convergence time (measured in number of iterations) and an 

improvement in SIR on average. AuxIVA_harmonic works well when separating 

sources that have a strong harmonic structure. However, it can result in worse 

performance when the acoustical input has a more broad (non-harmonic) structure.  

A simulation environment was developed to simulate multiple speakers in a 

small room. We confirmed that the algorithm achieved the desired source separation by 

listening to the outputs and observing the beam patterns. The beam patterns verify our 

experiment is working as expected by pointing a null at the interfering source and a 

beam towards the desired source.  
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This thesis has shown that AuxIVA has superior performance to traditional IVA 

algorithms in general by using a more complex but effective update rules. BSS using 

IVA is a popular area of research and is constantly being improved and adapted for 

specific purposes. In many cases, the performance improvement of AuxIVA can be 

applied to other IVA related areas of research. 

VI.2 Future Work 

A harmonic clique dependence model yields better performance when the input 

is constrained to speech signals. However, more research is needed to find a 

dependence model that works better for non-harmonic content or a mix of different 

types of acoustic signals. Through use of our custom test suite, various frequency 

dependence models could be developed and easily tested for different environments and 

situations. Additionally, more research and experimentation could be done to adapt to a 

changing environment such as non-stationary sources, more array elements, or more 

sources.  
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