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Abstract

In the present study we are interested in the Davey-Stewartson equations
(DSE) that model packets of surface and capillary-gravity waves. We focus on
the elliptic-elliptic case, for which it is known that DSE may develop a finite-time
singularity. We propose three systems of non-viscous regularization to the DSE
in variety of parameter regimes under which the finite blow-up of solutions
to the DSE occurs. We establish the global well-posedness of the regularized
systems for all initial data. The regularized systems, which are inspired by
the α-models of turbulence and therefore are called the α-regularized DSE, are
also viewed as unbounded, singularly perturbed DSE. Therefore, we also derive
reduced systems of ordinary differential equations for the α-regularized DSE
by using the modulation theory to investigate the mechanism with which the
proposed non-viscous regularization prevents the formation of the singularities
in the regularized DSE. This is a follow-up of the work [3, 4] on the non-viscous
α-regularization of the nonlinear Schrödinger equation.
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1 Introduction

The Davey-Stewartson equations (DSE) are given by:





ivt +∆v + β|v|2v − ρφxv = 0

φxx + νφyy = (|v|2)x
v(x, y, 0) = v0(x, y)

(1.1)

for the spacial variables (x, y) ∈ R2, and the time variable t ∈ R, with zero
boundary condition at infinity, where the complex-valued function v(x, y, t) represents
the amplitude of a wave packet, and the real-valued function φ(x, y, t) stands for
the free long wave mode. This system can be classified as the elliptic-elliptic type
for position ν, and the elliptic-hyperbolic type for negative ν. System (1.1) was first
introduced by Davey and Stewartson [9], and later by Djordjevic and Redekopp [10] to
model propagation of weakly nonlinear water waves that travels predominantly in one
direction, but in which the wave amplitude is modulated slowly in two horizontal
directions. System (1.1) is a Hamiltonian system, which has certain conserved
quantities: the L2-energy as well as the Hamiltonian H:

H(v) =

∫

R2

[
|∇v|2 − β

2
|v|4 + ρ

2

(
φ2
x + νφ2

y

)]
dxdy. (1.2)

Ghidaglia and Saut proved the local well-posedness of the DSE (1.1) with ν > 0
for the initial data v0 ∈ H1(R2) in [13]. Moreover, for β ≤ min(ρ, 0), the solution
in the elliptic-elliptic case exists globally in time, whereas for β > min(ρ, 0), it has a
finite maximum lifespan (cf. [13]). Also, the well-posedness and the scattering of a
more general and abstract class of the DSE was investigated in [11].

The ground-state solutions (also known as standing-wave solutions) of the DSE
(1.1) in the elliptic-elliptic case are solutions of the form v(x, y, t) = eiλtR(x, y) and
φ(x, y, t) = F (x, y), where R and F are real-valued functions with λ > 0. Accordingly,
the ground-state functions R and F satisfy the following coupled nonlinear elliptic
eigenvalue problem:

{
∆R− λR + βR3 − ρRFx = 0

Fxx + νFyy = (R2)x
(1.3)

where ν > 0, with zero boundary condition at infinity. The existence of ground-state
solutions was established by Cipolatti in [8]. An alternative way of characterizing
the solution of (1.3) is presented in [19] and it is shown that the solution of the
DSE (1.1) exists globally in time provided that the initial value v0 ∈ H1(R2) satisfies
‖v0‖L2(R2) < ‖R‖L2(R2) where R is the ground-state solution of (1.3). In [1], Ablowitz
et. al. explored necessary conditions for wave collapse in the DSE (1.1) by using the
global existence theory and numerical calculations of the ground-state.

The aim of our paper is to introduce three special non-viscous, Hamiltonian
regularizations to the nonlinear terms in the elliptic-elliptic DSE (1.1) in various
parameter regimes, and establish the global well-posedness of these regularized
systems. These regularizations are in the spirit of the α−models of turbulence. We will
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follow the approach in [3, 4] in which an α-regularized nonlinear Schrödinger equation
(NLS) was investigated. See also references to the α-models of turbulence in [3].

The two-dimensional cubic NLS equation is given by:

ivt +∆v + |v|2v = 0 (1.4)

with the initial condition v(x, y, 0) = v0(x, y), where v is a complex-valued function. It
is a model for the propagation of a laser beam in an optical Kerr medium, or a model
for water waves at the free surface of an ideal fluid as well as plasma waves (see, e.g.,
[17, 22] and references therein). It is well known that the 2d cubic NLS (1.4) blows
up in finite time (see, e.g., [5, 6, 7, 14, 15, 16, 22, 23] and references therein). Notice
that the 2d cubic NLS is the deep water limit of the DSE. On the other hand, the
DSE can be regarded as a perturbation of the 2d cubic NLS, and this perturbation
does not effect the blow up rate [12, 19].

In [3, 4], the following non-viscous regularized system of the cubic NLS equation
(1.4) is investigated:

{
ivt +∆v + uv = 0

u− α2∆u = |v|2 (1.5)

with the initial condition v(x, y, 0) = v0(x, y), with zero boundary condition at infinity,
where α > 0 is the regularization parameter. Notice that when α = 0, (1.5) reduces
to (1.4). It is shown in [3] that the Cauchy problem (1.5) is globally well-posed.
Moreover, by regarding system (1.5) as a perturbation of the cubic NLS equation
(1.4), and by adopting the modulation theory, different scenarios are demonstrated in
[4] of how the regularization prevents the formation of the singularities of the cubic
NLS equation.

This paper consists of five sections. Section 2 introduces notations, and
summarizes some embedding and interpolation theorems, as well as properties of
certain elementary operators. In section 3, we briefly introduce three different
non-viscous Helmholtz type of α-regularizations to the DSE in the elliptic-elliptic
case and state the global well-posedness of these α-regularized systems. In section
4, we prove the local well-posedness of these α-regularized systems by a fixed point
argument, as well as the extension to global solutions by using the conservation of the
L2-energy and the Hamiltonian. In section 5, we apply modulation theory following
ideas from [4, 12, 19, 22], to shed light on the mechanism of how these regularizations
prevent the formation of the singularities in the regularized DSE.

2 Notations and preliminaries

The following notations are used throughout the paper.

∆ = ∂xx + ∂yy, ∆ν = ∂xx + ν∂yy;

Lq = Lq(R2), ‖ · ‖q denotes Lq − norm;

Hq = Hq(R2), ‖ · ‖Hq denotes Hq − Sobolev norm;

W 2,p =W 2,p(R2), ‖ · ‖W 2,p denotes W 2,p − Sobolev norm;

Lq
tL

r
z
= Lq(I;Lr) (I = [0, T ], z = (x, y)), ‖ · ‖r,q denotes Lq

tL
r
z
− norm.
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Next, we recall some classical two-dimensional Gagliardo-Nirenberg and Sobolev
inequalities, as well as elementary interpolation estimates (see, e.g., [2]):

(1) ‖v‖q ≤ C‖v‖
2

q

2 ‖v‖
q−2

q

H1 for v ∈ H1, 0 <
q − 2

q
≤ 1 (2.1)

(2) ‖v‖q ≤ C‖v‖W 2,p for v ∈ W 2,p, 1 < p ≤ q, (2.2)

(3) ‖v‖q ≤ C‖v‖H1 for v ∈ H1, 2 ≤ q <∞, (2.3)

(4) ‖v‖q ≤ C‖v‖H2 for v ∈ H2, 2 ≤ q ≤ ∞, (2.4)

(5) ‖v‖2q ≤ C‖v‖Hk for v ∈ Hk, k = (q − 1)/q < 2, (2.5)

(6) ‖v‖Hk ≤ ‖v‖
k
2

H2‖v‖
2−k
2

2 for v ∈ H2, k < 2. (2.6)

In addition, for the elliptic Helmholtz equation ψ−α2∆ψ = Ψ, its solution will be
denoted as ψ = B(Ψ) where

B = (Id− α2∆)−1, (2.7)

where Id represents the identity operator. By Plancherel identity, for Ψ ∈ L2, one has

‖B(Ψ)‖2 ≤ ‖Ψ‖2. (2.8)

Also, for Ψ ∈ Lp, 1 < p <∞, the following regularity property of elliptic operators is
standard (see, e.g. [18, 20, 24, 25]):

‖B(Ψ)‖W 2,p ≤ Cα,p‖Ψ‖p, for 1 < p <∞, (2.9)

where Cα,p depends on α and p, and Cα,p ∼ 1/α2, as α→ 0+.
Moreover, the Poisson-like equation ∆νψ = Ψx, for ν > 0, can be solved in terms

of Ψ, and we denote by, ψx = E(Ψ), where the singular integral operator E is defined
via the Fourier transform by

Ê(f)(ξ1, ξ2) =
ξ21

ξ21 + νξ22
f̂(ξ1, ξ2). (2.10)

Once again, due to Plancherel identity, for Ψ ∈ L2, one has

‖E(Ψ)‖2 ≤ ‖Ψ‖2. (2.11)

Also, since the operator E is of order zero, then by the Calderon-Zygmund theorem
(see, e.g, [20, 21]) we have

‖E(Ψ)‖p ≤ Cp‖Ψ‖p, for 1 < p <∞, (2.12)

where Cp depends on p.
As usual, throughout the paper, the constant C may vary from line to line.

3 Helmholtz α-regularized Davey-Stewartson

equations

In this section, inspired by the inviscid α-regularization of the cubic NLS introduced in
[3, 4] (see also references therein), we propose three different regularizations of the DSE
(1.1) of the elliptic-elliptic type (i.e. ν > 0) in the parameter regime β > min(ρ, 0)
where the finite-time blow-up takes place [13]. We also state the global well-posedness
of these α-regularized systems.
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3.1 Case 1: ρ > 0 and β > 0

Under this scenario, by the conservation of the Hamiltonian (1.2) of DSE (1.1), we see
that the cubic nonlinearity β|v|2v in (1.1) tends to amplify the H1-norm, while the
nonlocal term −ρφxv can be viewed as a dissipation. Consequently, the finite-time
blow-up of the H1-norm of the DSE (1.1) is caused by the growth of the local term
β|v|2v, which should be regularized to guarantee global existence in H1. As a result,
we introduce the first α-regularized Davey-Stewartson equations (RDS1):





ivt +∆v + βuv − ρφxv = 0, ∆νφ = (|v|2)x,
u− α2∆u = |v|2,
v(x, y, 0) = v0(x, y),

(3.1)

where ν > 0, α > 0, ρ > 0 and β > 0. Notice that system (3.1) reduces to the DSE
(1.1) when α = 0. Formally, system (3.1) has two conserved quantities: the L2-energy
and the Hamiltonian,

H1(v) =

∫

R2

[
|∇v|2 − β

2
u|v|2 + ρ

2

(
φ2
x + νφ2

y

)]
dxdy. (3.2)

The RDS1 system (3.1) is globally well-posed in H1. In particular, we have

Theorem 3.1 Let v0 ∈ H1, then there exists a unique global solution of system RDS1
(3.1), for all t ∈ R, such that v ∈ C(R, H1) ∩ C1(R, H−1), and ∇ϕ ∈ C(R, Lp), for
p > 1. Moreover, the energy N (v) = ‖v‖22 and the Hamiltonian H1(v) are conserved
in time. In addition, the solution depends continuously on the initial data.

3.2 Case 2: ρ < β < 0

In this case, by the structure of the Hamiltonian (1.2) of DSE (1.1), we notice that the
nonlocal term −ρφxv in DSE (1.1) may amplify the H1-norm, while the nonlinearity
β|v|2v can be considered as a dissipation. Furthermore, since ρ < β < 0, the nonlocal
term overcomes the cubic nonlinearity, leading to a finite-time blow-up [13]. Therefore,
in order to obtain the global existence of solutions, the nonlocal term −ρvφx should
be smoothed. We introduce the second α-regularized Davey-Stewartson equations
(RDS2) as follows:





ivt +∆v + β|v|2v − ρϕxv = 0, ∆νψ = ux,

u− α2∆u = |v|2, ϕ− α2∆ϕ = ψ,

v(x, y, 0) = v0(x, y),

(3.3)

where ν > 0, α > 0 and 0 > β > ρ. Here the RDS2 system (3.3) reduces to the DSE
(1.1) when α = 0. Formally, system (3.3) has two conserved quantities: the L2-energy
and the Hamiltonian:

H2(v) =

∫

R2

[
|∇v|2 − β

2
|v|4 + ρ

2

(
ψ2
x + νψ2

y

)]
dxdy. (3.4)

The following result states that the RDS2 (3.3) is globally well-posed in H1.
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Theorem 3.2 Let v0 ∈ H1, then there exists a unique global solution of the system
RDS2 (3.3), for all t ∈ R, such that v ∈ C(R, H1)∩ C1(R, H−1), and ∇ϕ ∈ C(R,W 4,p)
for p > 1. Moreover, the energy N (v) = ‖v‖22 and the Hamiltonian H2(v) are
conserved in time. In addition, the solution depends continuously on the initial data.

3.3 Case 3: ρ < 0 and β > 0

Notice that each of the two nonlinear terms individually may cause the blow-up of DSE
(1.1), and thus both of them should be smoothed in order to prevent the development
of singularity. As a result, the third α-regularized Davey-Stewartson equations (RDS3)
is given by:





ivt +∆v + βuv − ρϕxv = 0, ∆νψ = ux,

u− α2∆u = |v|2, ϕ− α2∆ϕ = ψ,

v(x, y, 0) = v0(x, y),

(3.5)

where ν > 0, α > 0, ρ < 0 and β > 0. As in previous cases, the RDS3 system
(3.5) reduces to the DSE (1.1) when α = 0. Formally, system (3.5) has two conserved
quantities: the L2−energy and the Hamiltonian:

H3(v) =

∫

R2

[
|∇v|2 − β

2
u|v|2 + ρ

2

(
ψ2
x + νψ2

y

)]
dxdy. (3.6)

The following theorem states that the RDS3 (3.5) is globally well-posed in H1.

Theorem 3.3 Let v0 ∈ H1, then there exists a unique global solution of system RDS3
(3.5), for all t ∈ R, such that v ∈ C(R, H1) ∩ C1(R, H−1), and ∇ϕ ∈ C(R,W 4,p), for
p > 1. Moreover, the energy N (v) = ‖v‖22 and the Hamiltonian H3(v) are conserved
in time. In addition, the solution depends continuously on the initial data.

4 Proof of the global well-posedness of the

α-regularized Davey-Stewartson equations

This section is devoted to prove the global well-posedness of the various α-regularized
Davey-Stewartson equations proposed in section 3. The proof for all the three
regularized systems can be presented in a similar manner, so we only demonstrate
the proof for Theorem 3.3, i.e. for the system RDS3 (3.5) in the case: ρ < 0 and
β > 0. As we have discussed in section 3, under this scenario, both nonlinear terms
β|v|2v and −ρvφx in the DSE (1.1) are regularized. In the following subsections, we
shall study the local existence and uniqueness of solutions to (3.5) in H1 and H2, the
continuous dependence on initial data in H1, energy and Hamiltonian conservation, as
well as the extension to global solutions in H1. In order to make sure that the proof
can be readily adjusted to handle the systems RDS1 (3.1) and RDS2 (3.3) as well,
we intentionally avoid using the smoothing property of the α-regularization operator
in justifying the local well-posedness. The smoothing property is solely used when
studying the extension to global solutions.
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4.1 Short-time existence and uniqueness of solutions in H1

We follow the approach in [13, 16] to establish short-time existence and uniqueness of
solutions to the RDS3 system (3.5) by using a fixed-point argument. In particular, we
will prove the following theorem:

Theorem 4.1 Let v0 ∈ H1, then there exists a unique solution of the RDS3 system
(3.5) on I = [0, T ], for some T (‖v0‖H1) > 0, such that v ∈ C(I,H1)∩ C1(I,H−1), and
∇ϕ ∈ C(I,W 4,p), for p > 1. Moreover, the energy N (v) = ‖v‖22 is conserved on [0, T ].

To begin with, by using the operators B and E defined in (2.7) and (2.10),
respectively, we write the RDS3 system (3.5) as

ivt +∆v + F (v) = 0, (4.1)

where the nonlinearity

F (v) = βB(|v|2)v − ρB(E(B(|v|2)))v, (4.2)

where β > 0 and ρ < 0. Next, by Duhamel’s principle, we convert equation (4.1) into
an equivalent integral equation

v(t) = G0v0 + iG ◦ F (v) (4.3)

where G0, G are linear operators given by

(G0w)(t) = eit∆w, (Gf)(t) =

∫ t

0

ei(t−s)∆f(s) ds. (4.4)

Some well-known properties of the operators G0 and G are given in the Appendix A.
Before proving Theorem 4.1, we will study the properties of the maps F and G◦F .

Set z = (x, y) ∈ R2, and let t ∈ [0, T ]. We introduce the following function spaces:

X = L∞
t L

2
z
∩ L4

tL
4
z
and X0 = L∞

t L
2
z
∩ L∞

t L
4
z
⊂ X, (4.5)

with their relevant norms

‖v‖X = max{‖v‖2,∞, ‖v‖4,4} and ‖v‖X0
= max{‖v‖2,∞, ‖v‖4,∞}.

Also, we denote by BR(X0) the closed ball in X0, with center at 0 and radius R, i.e.,

BR(X0) = {v ∈ X0 : ‖v‖X0
≤ R}.

The following result states some properties of the nonlinear operator G ◦ F .

Proposition 4.2 Let T > 0 be given. The nonlinear operator G ◦ F : X0 → X is
bounded and locally Lipschitz continuous. Moreover, on each ball BR(X0), G ◦ F is a
contraction mapping in the metric of X, provided T is sufficiently small.
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Proof Recall from (4.2) that F (v) = βB(|v|2)v − ρB(E(B(|v|2)))v, where β > 0
and ρ < 0, and the operators B and E defined in (2.7) and (2.10), respectively. By
using Hölder’s inequality and the properties of B and E given in (2.8) and (2.11),
respectively, we have

‖F (v)‖ 4

3

≤ β‖B(|v|2)‖2‖v‖4 + |ρ|‖B(E(B(|v|2)))‖2‖v‖4
≤ β‖|v|2‖2‖v‖4 + |ρ|‖|v|2‖2‖v‖4 ≤ (β + |ρ|)‖v‖34. (4.6)

By Lemma A.1 in Appendix A, as well as inequality (4.6), we have

‖G ◦ F (v)‖X = max{‖G ◦ F (v)‖2,∞, ‖G ◦ F (v)‖4,4}
≤ γ‖F (v)‖ 4

3
, 4
3

≤ γT
3

4 (β + |ρ|)‖v‖34,∞ ≤ γT
3

4 (β + |ρ|)‖v‖3X0
. (4.7)

Consequently, the nonlinear operator G ◦ F : X0 → X is bounded.
Next, we show that G ◦ F is a continuous operator mapping from X0 into X , and

on each ball BR(X0) the operator G ◦F is a contraction mapping, with respect to the
norm of X , provided T is sufficiently small. To this end, we let v, w ∈ BR(X0), i.e.
max{‖v‖2,∞, ‖v‖4,∞, ‖w‖2,∞, ‖w‖4,∞} ≤ R. Since G is linear, we use Lemma A.1 to
obtain

‖G ◦ F (v)−G ◦ F (w)‖X = ‖G[F (v)− F (w)]‖X ≤ γ‖F (v)− F (w)‖ 4

3
, 4
3

. (4.8)

We decompose ‖F (v)− F (w)‖ 4

3
, 4
3

as

‖F (v)− F (w)‖ 4

3
, 4
3

≤ β(I1 + I2) + |ρ|(I3 + I4), (4.9)

and claim

I1 := ‖B(|v|2 − |w|2)v‖ 4

3
, 4
3

≤ 4R2min{T 1

2‖v − w‖4,4, T
3

4‖v − w‖4,∞}, (4.10)

I2 := ‖B(|w|2)(v − w)‖ 4

3
, 4
3

≤ R2min{T 1

2‖v − w‖4,4, T
3

4‖v − w‖4,∞}, (4.11)

I3 := ‖B(E(B(|v|2 − |w|2)))v‖ 4

3
, 4
3

≤ 4R2min{T 1

2‖v − w‖4,4, T
3

4‖v − w‖4,∞}, (4.12)

I4 := ‖B(E(B(|w|2)))(v − w)‖ 4

3
, 4
3

≤ R2min{T 1

2‖v − w‖4,4, T
3

4‖v − w‖4,∞}. (4.13)

All of the inequalities (4.10)-(4.13) can be proved in a similar manner, so we just
demonstrate the proof of (4.12). By Hölder inequality, as well as (2.8) and (2.11), we
have

I
4

3

3 ≤
∫ T

0

‖B(E(B(|v|2 − |w|2)))‖
4

3

2 ‖v‖
4

3

4 dt

≤
∫ T

0

‖|v|2 − |w|2‖
4

3

2 ‖v‖
4

3

4 dt

≤
∫ T

0

‖|v|+ |w|‖
4

3

4 ‖v − w‖
4

3

4 ‖v‖
4

3

4 dt

≤ (‖v‖4,∞ + ‖w‖4,∞)
8

3 min{T 2

3‖v − w‖
4

3

4,4, T‖v − w‖
4

3

4,∞},
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which implies (4.12) due to the fact ‖v‖4,∞ + ‖w‖4,∞ ≤ 2R.
Combining (4.9) and (4.10)-(4.13) gives us

‖F (v)− F (w)‖ 4

3
, 4
3

≤ 5(β + |ρ|)R2min{T 1

2‖v − w‖4,4, T
3

4‖v − w‖4,∞}. (4.14)

By (4.8) and (4.14) it follows that

‖G ◦ F (v)−G ◦ F (w)‖X ≤ 5γ(β + |ρ|)R2T
3

4‖v − w‖X0
, (4.15)

‖G ◦ F (v)−G ◦ F (w)‖X ≤ 5γ(β + |ρ|)R2T
1

2‖v − w‖X . (4.16)

Notice that (4.15) implies that G ◦ F : X0 → X is locally Lipschitz continuous. Also,
(4.16) shows that on each ball BR(X0), the operator G ◦ F is a contraction mapping
with respect to the metric of X , provided T < 1/(5γ(β + |ρ|)R2)2. �

Next, we introduce the following spaces:

Y = {v ∈ X : ∇v ∈ X} ⊂ L∞(I,H1), where X = L∞
t L

2
z
∩ L4

tL
4
z
,

where I = [0, T ], with the norms

‖v‖X = max{‖v‖2,∞, ‖v‖4,4} and ‖v‖Y = max{‖v‖X , ‖∇v‖X}.

Also, we set

Y ′ = {f ∈ X ′ : ∇f ∈ X ′}, where X ′ = L1
tL

2
z
+ L

4

3

t L
4

3

z , (4.17)

with the norms

‖f‖X′ = inf{‖g‖2,1 + ‖h‖ 4

3
, 4
3

: f = g + h} and ‖f‖Y ′ = max{‖f‖X′, ‖∇f‖X′}.

Recall the nonlinear operator F is defined in (4.2) by F (v) = βB(|v|2)v −
ρB(E(B(|v|2)))v, where β > 0 and ρ < 0. Then the following result holds for F .

Proposition 4.3 The nonlinear operator F : Y → Y ′ is bounded satisfying

‖F (v)‖Y ′ ≤ C(β + |ρ|)T 3

4‖v‖3Y , for v ∈ Y. (4.18)

Proof Let v ∈ Y , i.e., v ∈ X with ∇v ∈ X . We aim to show that F (v) ∈ X ′ and

∇F (v) ∈ X ′ such that max{‖F (v)‖X′, ‖∇F (v)‖X′} ≤ C(β + |ρ|)T 3

4‖v‖3Y . By virtue

of (4.6), one has F (v) ∈ L
4

3

t L
4

3

z such that

‖F (v)‖ 4

3
, 4
3

≤ T
3

4 (β + |ρ|)‖v‖34,∞ ≤ T
3

4 (β + |ρ|)‖v‖3X0
. (4.19)

Notice that Y ⊂ L∞(I,H1) ⊂ X0 = L∞
t L

2
z
∩ L∞

t L
4
z
due to the imbedding H1 →֒ L4.

Thus ‖v‖X0
≤ C‖v‖Y , and along with (4.19), we deduce

‖F (v)‖X′ ≤ ‖F (v)‖ 4

3
, 4
3

≤ T
3

4 (β + |ρ|)‖v‖3X0
≤ CT

3

4 (β + |ρ|)‖v‖3Y . (4.20)

9



Next, we show that ∇F (v) ∈ X ′. We denote τh the spatial translation by h ∈ R2,
i.e., τhv(x) = v(x + h). Note that the function spaces considered are translation
invariant in spatial variables. Denote the identity operator by Id, then applying (4.14)
gives us

‖(τh − Id)F (v)‖ 4

3
, 4
3

= ‖F (τhv)− F (v)‖ 4

3
, 4
3

≤ 5(β + |ρ|)T 1

2‖v‖2X0
‖(τh − Id)v‖4,4. (4.21)

Now, dividing (4.21) by |h|, and then taking the limit as |h| → 0 gives

‖∇F (v)‖X′ ≤ ‖∇F (v)‖ 4

3
, 4
3

≤ 5(β + |ρ|)T 1

2‖v‖2X0
‖∇v‖4,4 ≤ C(β + |ρ|)T 1

2‖v‖3Y .(4.22)

Estimate (4.18) follows from equations (4.20) and (4.22). �

In order to prove Theorem 4.1, for each v0 ∈ H1, we define operator T : Y → Y
by

T (v) = G0v0 + iG ◦ F (v).
Since v0 ∈ H1, we have G0v0 ∈ Y due to Lemma A.2. Then, we define

BR(G0v0, Y ) = {v ∈ Y : ‖v −G0v0‖Y ≤ R}. (4.23)

The following result states a contraction mapping property of T .

Lemma 4.4 Let v0 ∈ H1 and R > 0 be fixed. Then there exists T (‖v0‖H1 , R) > 0
sufficiently small so that T : BR(G0v0, Y ) → BR(G0v0, Y ) is a contraction mapping
in the metric of the space X.

Proof Let v ∈ BR(G0v0, Y ), then by Lemma A.1, Proposition 4.3 and Lemma A.2,
we deduce

‖T (v)−G0v0‖Y = ‖G ◦ F (v)‖Y ≤ γ‖F (v)‖Y ′ ≤ γC(β + |ρ|)T 3

4‖v‖3Y
≤ C(β + |ρ|)T 3

4 (‖v −G0v0‖Y + ‖G0v0‖Y )3

≤ C(β + |ρ|)T 3

4 (R + ‖G0v0‖Y )3 ≤ C(β + |ρ|)T 3

4 (R + c‖v0‖H1)3 < R,

provided T is sufficiently small, i.e., T < [RC−1(β + |ρ|)−1(R + c‖v0‖H1)−3]
4

3 . This
shows that T maps BR(G0v0, Y ) into BR(G0v0, Y ), if T is sufficiently small.

Next, we show that T : BR(G0v0, Y ) → BR(G0v0, Y ) is a contraction mapping.
Let v ∈ BR(G0v0, Y ), i.e., ‖v −G0v0‖Y ≤ R. It follows that

‖v‖X0
≤ ‖v −G0v0‖X0

+ ‖G0v0‖X0

≤ C(‖v −G0v0‖Y + ‖G0v0‖Y ) ≤ C(R + c‖v0‖H1) =: R1, (4.24)

which shows that v ∈ BR1
(X0) = {v ∈ X0 : ‖v‖X0

≤ R1}. By Proposition 4.2, G◦F is
a contraction mapping on BR1

(X0) in the metric of X provided T is sufficiently small.
Moreover, it follows that T : BR(G0v0, Y ) → BR(G0v0, Y ) is a contraction mapping
with respect to the metric of X , provided T is small enough. �
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Finally we complete the proof of Theorem 4.1 as follows.

Proof We recognize that BR(G0v0, Y ) with respect to X-metric is a complete metric
space, so by virtue of Lemma 4.4 and the Contraction Mapping Theorem, we obtain
that T has a unique fixed point v ∈ Y . Consequently, v = T (v) is the unique solution
of (4.3) in the space Y , provided T is small enough.

Next, we show that the solution v ∈ C(I,H1). Indeed, if we introduce the spaces

Ȳ = {v ∈ X̄, ∇v ∈ X̄} ⊂ C(I,H1), where X̄ = C(I, L2
z
) ∩ L4

tL
4
z
, (4.25)

then by Lemma A.2 and Proposition 4.3, we obtain that G0v0 ∈ Ȳ since v0 ∈ H1, and
G ◦ F (v) ∈ Ȳ since v ∈ Y , and it follows that v = T (v) = G0v0 + iG ◦ F (v) ∈ Ȳ ⊂
C(I,H1). By the equation (3.1) we also have vt ∈ C(I,H−1).

Moreover, we claim that ∇ϕ ∈ C(I,W 4,p) for p > 1. Indeed, since ϕx =
B(E(B(|v|2))) and v ∈ C(I,H1), we obtain that ϕx ∈ C(I,W 4,p), for p > 1, by
using (2.3), (2.9), and (2.12). A similar argument works for ϕy.

Finally we prove the conservation of the energy N (v) = ‖v‖22. Since v ∈
C(I,H1)∩ C1(I,H−1) and ∇ϕ ∈ C(I,W 4,p) for p > 1, we can take the duality pairing
of the RDS3 (3.5) with v̄, and it follows that

i〈vt, v̄〉H−1×H1 = −‖∇v‖22 − β

∫

R2

u|v|2dxdy + ρ

∫

R2

ϕx|v|2dxdy . (4.26)

Notice that the right-hand side of (4.26) is a real number, thus we take the imaginary
part of both sides of (4.26). Then

Re 〈vt, v̄〉H−1×H1 =
1

2

d

dt
‖v‖22 = 0.

This shows that the energy ‖v‖22 is invariant in time.
�

4.2 Continuous dependence on initial data in H1

This subsection is devoted to prove that the map v0 7→ (v,∇ϕ) is continuous from H1

into C(I,H1) × C(I,W 4,p), for p > 1, for system (3.5). More precisely, we have the
following result.

Theorem 4.5 Let v ∈ C(I,H1) and ∇ϕ ∈ C(I,W 4,p), for p > 1, be the solution of
the RDS3 system (3.5) with the initial data v(0) = w ∈ H1. Let wn → w in H1 and
(vn,∇ϕn) be the solution of (3.5) with the initial value vn(0) = wn. Then (vn,∇ϕn)
is defined on I = [0, T ], for sufficiently large n. Moreover, vn → v in C(I,H1) and
∇ϕn → ∇ϕ in C(I,W 4,p), for p > 1.

Proof The proof adopts the idea in [16]. Let w ∈ H1. By Theorem 4.1, there exists
a unique solution (v,∇ϕ) of the RDS3 system (3.5), on I = [0, T ], with the initial
value v(0) = w, such that v ∈ C(I,H1) ∩ C1(I,H−1) and ∇ϕ ∈ C(I,W 4,p), for p > 1.
Let {wn} ⊂ H1 be a sequence of functions such that wn → w in H1. Then there
exists a sequence of solutions (vn,∇ϕn) to the system (3.5) on In = [0, Tn] such that
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vn(0) = wn. Notice that T and Tn depends on ‖w‖H1 and ‖wn‖H1, respectively, and
since wn → w in H1, we see that, for sufficiently large n, say n ≥ n0, one may take
Tn = T . That is, v and {vn} all define on I = [0, T ], for n ≥ n0.

Now, we show that vn → v in Y ⊂ C(I,H1). Indeed, since vn and v satisfy (4.3),
one has

vn − v = G0(wn − w) + i[G ◦ F (vn)−G ◦ F (v)]. (4.27)

Take the X−norm on both sides of (4.27) and apply Lemma A.1. We obtain

‖vn − v‖X ≤ ‖G0(wn − w)‖X + ‖G ◦ F (vn)−G ◦ F (v)‖X
≤ γ‖wn − w‖2 + ‖G ◦ F (vn)−G ◦ F (v)‖X . (4.28)

We shall estimate the second term on the right-hand side of (4.28). By the construction
of the solutions vn and v, we know that vn ∈ BR(G0wn, Y ) and v ∈ BR(G0w, Y ). Since
wn → w in H1, we see that vn ∈ B2R(G0w, Y ) for sufficiently large n. As a result, by
(4.24), there exists R1 > 0 such that vn, v ∈ BR1

(X0). Therefore, by (4.16), we have

‖G ◦ F (vn)−G ◦ F (v)‖X ≤ 5γ(β + |ρ|)R2
1T

1

2‖vn − v‖X ,

and along with (4.28), it follows that

‖vn − v‖X ≤ γ‖wn − w‖2 + 5γ(β + |ρ|)R2
1T

1

2‖vn − v‖X . (4.29)

Next we take the gradient on both sides of (4.27) and notice that G0 and G are
linear operators. One has

∇vn −∇v = G0 (∇wn −∇w) + i [G (∇F (vn)−∇F (v))] . (4.30)

By taking the X−norm on both sides of (4.30) and applying Lemma A.1, it follows
that

‖∇vn −∇v‖X ≤ ‖G0 (∇wn −∇w) ‖X + ‖G (∇F (vn)−∇F (v)) ‖X
≤ γ‖∇wn −∇w‖2 + γ‖∇F (vn)−∇F (v)‖ 4

3
, 4
3

. (4.31)

We shall estimate the second term on the right-hand side of (4.31). Notice

‖∇F (vn)−∇F (v)‖ 4

3
, 4
3

≤ β(Ĩ1 + Ĩ2) + |ρ|(Ĩ3 + Ĩ4), (4.32)

and we claim

Ĩ1 := ‖∇(B(|vn|2 − |v|2)vn)‖ 4

3
, 4
3

≤ CT
1

2R2
2‖vn − v‖Y , (4.33)

Ĩ2 := ‖∇(B(|v|2)(vn − v))‖ 4

3
, 4
3

≤ CT
1

2R2
2‖vn − v‖Y , (4.34)

Ĩ3 := ‖∇(B(E(B(|vn|2 − |v|2)))vn)‖ 4

3
, 4
3

≤ CT
1

2R2
2‖vn − v‖Y , (4.35)

Ĩ4 := ‖∇(B(E(B(|v|2)))(vn − v))‖ 4

3
, 4
3

≤ CT
1

2R2
2‖vn − v‖Y , (4.36)
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for some R2 > 0. All of the inequalities (4.33)-(4.36) can be justified similarly, so we
solely demonstrate the proof for (4.35). In fact, by using Hölder’s inequality as well
as (2.8) and (2.11), we deduce

Ĩ3 ≤ ‖B(E(B(∇|vn|2 −∇|v|2)))vn‖ 4

3
, 4
3

+ ‖B(E(B(|vn|2 − |v|2)))∇vn‖ 4

3
, 4
3

≤
(∫ T

0

‖∇|vn|2 −∇|v|2‖
4

3

2 ‖vn‖
4

3

4 dt

) 3

4

+

(∫ T

0

‖|vn|2 − |v|2‖
4

3

2 ‖∇vn‖
4

3

4 dt

) 3

4

. (4.37)

Notice that |∇|vn|2 −∇|v|2| = |∇(vnv̄n)−∇(vv̄)| ≤ 2|∇vn −∇v||vn|+ 2|vn − v||∇v|.
It follows that

‖∇|vn|2 −∇|v|2|‖2 ≤ 2‖|∇vn −∇v||vn|‖2 + 2‖|vn − v||∇v|‖2
≤ 2‖∇vn −∇v‖4‖vn‖4 + 2‖vn − v‖4‖∇v‖4, (4.38)

for all t ∈ [0, T ]. By (4.37) and (4.38), we deduce

Ĩ3 ≤ CT
1

2

[
‖∇vn −∇v‖4,4‖vn‖24,∞ + ‖vn − v‖4,∞‖∇v‖4,4‖vn‖4,∞

+ (‖vn‖4,∞ + ‖v‖4,∞) ‖vn − v‖4,∞‖∇vn‖4,4
]

≤ CT
1

2

(
‖vn‖24,∞ + ‖v‖24,∞ + ‖∇vn‖24,4 + ‖∇v‖24,4

)
(‖∇vn −∇v‖4,4 + ‖vn − v‖4,∞) .

Since vn, v ∈ B2R(G0w, Y ) for sufficiently large n, there exists R2 > 0 such that
‖vn‖4,∞, ‖v‖4,∞, ‖∇vn‖4,4, ‖∇v‖4,4 ≤ R2 for all n. Consequently,

Ĩ3 ≤ CT
1

2R2
2‖vn − v‖Y .

By virtue of (4.31)-(4.36), we obtain

‖∇vn −∇v‖X ≤ γ‖∇wn −∇w‖2 + Cγ(β + |ρ|)T 1

2R2
2‖vn − v‖Y . (4.39)

Combining (4.29) and (4.39) yields

‖vn − v‖Y ≤ γ‖wn − w‖H1 + Cγ(β + |ρ|)T 1

2 (R2
1 +R2

2)‖vn − v‖Y . (4.40)

If T ≤ T ∗, where T ∗ satisfies Cγ(β + |ρ|)(T ∗)
1

2 (R2
1 +R2

2) =
1
2
, then

‖vn − v‖Y ≤ 2γ‖wn − w‖H1.

Since wn → w in H1, we obtain vn → v in Y ⊂ C(I,H1). If T ∗ is shorter than
the life span of the solution v, the above argument can be iterated. Finally, it is
straightforward to deduce that (ϕn)x = B(E(B(|vn|2))) → ϕx = B(E(B(|v|2))) in
C(I,W 4,p) for p > 1 by using vn → v in C(I,H1). �

4.3 Short-time existence and uniqueness of solutions in H2

Let z = (x, y) and t ∈ I = [0, T ], we introduce the function spaces:

Z = {v ∈ X : vt ∈ X, ∆v ∈ L∞
t L

2
z
}, where X = L∞

t L
2
z
∩ L4

tL
4
z
, (4.41)

Z̄ = {v ∈ X̄ : vt ∈ X̄, ∆v ∈ C(I, L2)}, where X̄ = C(I, L2) ∩ L4
tL

4
z
, (4.42)

Z ′ = {f ∈ L∞
t L

2
z
: ft ∈ X ′}, where X ′ = L1

tL
2
z
+ L

4

3

t L
4

3

z , (4.43)
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with the norm

‖v‖Z = max{‖v‖X , ‖vt‖X , ‖∆v‖2,∞}, ‖f‖Z′ = max{‖f‖2,∞, ‖ft‖X′}.

Recall that ‖v‖ = max{‖v‖2,∞, ‖v‖4,4} and ‖f‖X′ = inf{‖g‖2,1+‖h‖ 4

3
, 4
3

: f = g+h}.
Also, note that v ∈ Z may also be characterized by v ∈ L∞(I,H2) and vt ∈ X [16].

Theorem 4.6 Let v0 ∈ H2. Then there exists a unique solution (v,∇ϕ) of the RDS3
system (3.5), with the initial value v(0) = v0, on the time interval I = [0, T ], for some
T (‖v0‖H2) > 0, such that v ∈ C(I,H2), vt ∈ C(I, L2), and ∇ϕ ∈ C(I,H6).

Proof We follow the approach in [16]. Define the closed ball BR(Z) = {v ∈ Z :
‖v‖Z ≤ R}. Let v0 ∈ H2 and define the set A as

A = {v ∈ BR(Z) : v(0) = v0}.

Also, we define the operator T : Z → Z by T (v) = G0v0+ iG ◦F (v), where the linear
operators G0 and G are defined in (4.4).

We shall show that T (A) ⊂ A provided R is large enough and T is sufficiently
small. Let v ∈ A. Applying Lemma A.3, we estimate

‖T (v)‖Z ≤ ‖G0v0‖Z + ‖G ◦ F (v)‖Z
≤ ‖G0v0‖Z + ‖G(F (v)− F (v0))‖Z + ‖G(F (v0))‖Z
≤ γ‖v0‖H2 + (2γ + 1)‖F (v)− F (v0)‖Z′ + (2γ + 1)‖F (v0)‖Z′. (4.44)

We shall evaluate the last two terms on the right-hand side of (4.44). Note that F (v0)
is independent of time, so by using (2.4), (2.8) and (2.11), we obtain

‖F (v0)‖Z′ = ‖F (v0)‖2 ≤ β‖B(|v0|2)‖2‖v0‖∞ + |ρ|‖B(E(B(|v20|)))‖2‖v0‖∞
≤ C(β + |ρ|)‖|v0|2‖2‖v0‖H2 = C(β + |ρ|)‖v0‖24‖v0‖H2 ≤ C(β + |ρ|)‖v0‖3H2. (4.45)

Next, we estimate ‖F (v)− F (v0)‖Z′. Indeed, by Lemma 3.3 in [16], we have

‖v(t)− v(s)‖2p ≤ C|t− s|θ‖v‖Z , for k =
p− 1

p
, θ = 1− k

2
. (4.46)

By using Hölder inequality, along with (2.9), (2.12) and (4.46), we evaluate

‖F (v)− F (v0)‖2
≤ β

(
‖B(|v|2 − |v0|2)‖3‖v‖6 + ‖B(|v0|2)‖3‖v − v0‖6

)

+ |ρ|
(
‖B(E(B(|v|2 − |v0|2)))‖3‖v‖6 + ‖B(E(B(|v0|2)))‖3‖v − v0‖6

)

≤ Cβ
(
‖|v|2 − |v0|2‖3‖v‖6 + ‖|v0|2‖3‖v − v0‖6

)

+ C|ρ|
(
‖|v|2 − |v0|2‖3‖v‖6 + ‖|v0|2‖3‖v − v0‖6

)

≤ Cβ
(
‖|v|+ |v0|‖6‖v − v0‖6‖v‖6 + ‖v0‖26‖v − v0‖6

)

+ C|ρ|
(
‖|v|+ |v0|‖6‖v − v0‖6‖v‖6 + ‖v0‖26‖v − v0‖6

)

≤ C(β + |ρ|)
(
‖v‖26 + ‖v0‖26

)
‖v − v0‖6

≤ C(β + |ρ|)
(
‖v‖26 + ‖v0‖26

)
t
2

3‖v‖Z , for all t ∈ [0, T ].
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It follows that

‖F (v)− F (v0)‖2,∞ ≤ C(β + |ρ|)
(
‖v‖2Z + ‖v0‖2H2

)
T

2

3‖v‖Z
≤ C(β + |ρ|)

(
R2 + ‖v0‖2H2

)
T

2

3R. (4.47)

Recall X ′ = L1
tL

2
z
+L

4

3

t L
4

3

z , with the norm ‖f‖X′ = inf{‖g‖2,1+‖h‖ 4

3
, 4
3

: f = g+h}.
Thus ‖∂t(F (v)− F (v0))‖X′ ≤ ‖∂t(F (v)− F (v0))‖ 4

3
, 4
3

= ‖∂tF (v)‖ 4

3
, 4
3

. We denote by τs
the shift of time by s ∈ R, i.e., τsv(t) = v(t+s). Also, we denote the identity operator
by Id, then by applying (4.14), we deduce

‖(τs − Id)F (v)‖ 4

3
, 4
3

= ‖F (τsv)− F (v)‖ 4

3
, 4
3

≤ 5(β + |ρ|)‖v‖2X0
T

1

2‖(τs − Id)v‖4,4.

Dividing by |s| and letting s→ 0, one has

‖∂tF (v)‖ 4

3
, 4
3

≤ 5(β + |ρ|)‖v‖2X0
T

1

2‖vt‖4,4.

This shows that

‖∂t(F (v)− F (v0))‖X′ ≤ 5(β + |ρ|)‖v‖2X0
T

1

2‖vt‖X ≤ C(β + |ρ|)T 1

2R3. (4.48)

Combining (4.47) and (4.48) yields

‖F (v)− F (v0)‖Z′ ≤ C(β + |ρ|)[
(
R2 + ‖v0‖2H2

)
T

2

3R + T
1

2R3]. (4.49)

By (4.44) , (4.45) and (4.49), we obtain

‖T (v)‖Z ≤ γ‖v0‖H2 + (2γ + 1)C(β + |ρ|)[
(
R2 + ‖v0‖2H2

)
T

2

3R + T
1

2R3 + ‖v0‖3H2].

If we let R > γ‖v0‖H2 + (2γ + 1)C(β + |ρ|)‖v0‖3H2, and choose T sufficiently small,
then the above estimate implies ‖T (v)‖Z < R. Also, notice that T (v)(0) = v0. So
T (A) ⊂ A.

Next, we let v, w ∈ A, and using Lemma A.1 and (4.14), we deduce

‖T (v)− T (w)‖X = ‖G(F (v)− F (w))‖X ≤ γ‖F (v)− F (w)‖ 4

3
, 4
3

≤ 5γ(β + |ρ|)max{‖v‖2X0
, ‖w‖2X0

}T 1

2‖v − w‖4,4 ≤ Cγ(β + |ρ|)R2T
1

2‖v − w‖X .

Consequently, T : A → A is a contraction mapping in the norm of X , provided
T is sufficiently small. It follows that T has a unique fixed point in the set A
with respect to the metric of X by virtue of the contraction mapping theorem, i.e,
there exists v ∈ A such that v = T (v) = G0v0 + iG ◦ F (v) ∈ Z̄, due to Lemma
A.3. Therefore, v ∈ C(I,H2) and vt ∈ C(I, L2). Finally, v ∈ C(I,H2) implies
|v|2 ∈ C(I,H2) since the spatial dimension is two, and thus by (2.9) and (2.11),
one has φx = B(E(B(|v2|))) ∈ C(I,H6). �
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4.4 Conservation of the Hamiltonian

Theorem 4.7 Assume the initial datum v0 ∈ H1. Let v ∈ C(I,H1)∩C1(I,H−1) with
∇φ ∈ C(I,W 4,p), p > 1, be the solution of RDS3 system (3.5). Then the Hamiltonian

H3(v) =

∫

R2

[
|∇v|2 − β

2
u|v|2 + ρ

2

(
ψ2
x + νψ2

y

)]
dxdy

is conserved in time.

Proof First, we assume v0 ∈ H2, then by Theorem 4.6, the RDS3 system (3.5) has
a unique solution v ∈ C(I,H2) with vt ∈ C(I, L2) and ∇φ ∈ C(I,H6). Therefore it is
legitimate to take the inner product of the equation (3.5) with v̄t to obtain

i

∫

R2

|vt|2dxdy −
∫

R2

∇v · ∇v̄tdxdy + β

∫

R2

uvv̄tdxdy − ρ

∫

R2

ϕxvv̄tdxdy = 0. (4.50)

Now we take the real part of each term in the above equality. Clearly,

Re

∫

R2

∇v · ∇v̄tdxdy =
1

2

d

dt

∫

R2

|∇v|2dxdy. (4.51)

Moreover, since u− α2∆u = |v|2, we see that u is real-valued, and thus

Re

∫

R2

uvv̄tdxdy =
1

2

∫

R2

u∂t(|v|2)dxdy =
1

2

∫

R2

u(ut − α2∆ut)dxdy

=
1

4

d

dt

∫

R2

(
u2 + α2|∇u|2

)
dxdy =

1

4

d

dt

∫

R2

(
u2 − α2u∆u

)
dxdy =

1

4

d

dt

∫

R2

u|v|2dxdy.
(4.52)

Recall from system (3.5) that ϕ − α2∆ϕ = ψ and ∆νψ = ux. Also, since ϕ is
real-valued, we deduce that

Re

∫

R2

ϕxvv̄tdxdy =
1

2

∫

R2

ϕx∂t(|v|2)dxdy =
1

2

∫

R2

ϕx∂t(u− α2∆u)dxdy

= −1

2

∫

R2

(ϕ− α2∆ϕ)uxtdxdy = −1

2

∫

R2

ψ∆νψtdxdy =
1

4

d

dt

∫

R2

(
ψ2
x + νψ2

y

)
dxdy.

(4.53)

By (4.50)-(4.53), we conclude that

d

dt

(∫

R2

|∇v|2dxdy − β

2

∫

R2

u|v|2dxdy + ρ

2

∫

R2

(
ψ2
x + νψ2

y

)
dxdy

)
= 0 ,

i.e. d
dt
H3(v) = 0. This shows H3(v) is invariant in time provided v ∈ C(I,H2) with

vt ∈ C(I, L2).
Next, we consider the general initial data: v0 ∈ H1. Take a sequence of functions

{wn} ⊂ H2 such that wn → v0 in H1. Then by Theorem 4.6, there exists a sequence
of solutions {vn} of (3.5) on In = [0, Tn], with the initial value vn(0) = wn, such
that vn ∈ C(In, H2), ∂tvn ∈ C(In, L2) and ∇ϕn ∈ C(In, H6). By the above result, we
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know that H3(vn) is conserved in time. Moreover, by Theorem 4.5, we see that, for
sufficiently large n, we have vn is defined on I = [0, T ], such that vn → v in C(I,H1),
∇ϕn → ∇ϕ in C(I,W 4,p). If follows that un → u in C(I,H3) and ∇ψn → ∇ψ in
C(I,W 2,p), for p > 1. As a result, we conclude that H3(vn) → H3(v) on [0, T ], and
thus H3(v) is conserved in time.

4.5 The extension to global solutions in H1

In the proof of the short-time existence and uniqueness theorem for the RDS3
system (3.5) in section 4.1, we have produced the estimates that are necessary for
implementing the contraction mapping argument, on the time interval [0, T ], where T
is taken to be small enough depending on the initial data. The solution of the RDS3
(3.5) established in Theorem 4.1 can be extended to a maximal interval of existence
[0, Tmax), where Tmax might be finite or infinite. In this section, we establish the global
existence of solutions to the Cauchy problem (3.5), by using the conservation of the
energy and the Hamiltonian. To do this, we focus attention on the maximal interval
of existence [0, Tmax). If Tmax = ∞, then the solutions exist globally in time. On the
other hand, if Tmax <∞, then one has

lim sup
t→T−

max

‖v(t)‖H1 = ∞, (4.54)

otherwise, one can extend the solution, beyond Tmax, which contradicts the fact that
Tmax is the maximal time of the existence. This argument is used to prove the global
existence theorem in this section, hence we assume by contradiction that Tmax < ∞
and then show that (4.54) does not hold, which implies that Tmax = ∞.

Now we present the proof for the extension to global solutions for the system
RDS3 (3.5), which completes the proof of the global well-posedness of (3.5) stated in
Theorem 3.3.

Proof Let [0, Tmax) be the maximal interval of existence of the solution established in
Theorem 4.1. We assume Tmax <∞. It has been shown that the energy N (v) = ‖v‖22,
and the Hamiltonian

H3(v) =

∫

R2

[
|∇v|2 − β

2
u|v|2 + ρ

2

(
ψ2
x + νψ2

y

)]
dxdy , (4.55)

remains constant for all t ∈ [0, Tmax). We aim to derive a uniform bound of ‖v‖H1 by
using the conservation of the energy and the Hamiltonian. Indeed, it can be readily
seen from (4.55) that

‖∇v‖22 = H3(v) +
β

2

∫

R2

u|v|2 dxdy − ρ

2

(
‖ψx‖22 + ν‖ψy‖22

)
. (4.56)

Recall that u − α∆u = |v|2, i.e., u = B(|v|2). By using (2.1), (2.4) and (2.9), we
estimate ∫

R2

u|v|2 dxdy ≤ ‖u‖L∞‖v‖22 ≤ C‖u‖H2‖v‖22 = C‖B(|v|2)‖H2‖v‖22
≤ Cα‖|v|2‖2‖v‖22 = Cα‖v‖24‖v‖22 ≤ Cα‖v‖H1‖v‖32 , (4.57)
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where Cα ∼ 1/α2, as α→ 0+.
By system (3.5) one has ∆νψ = ux, it follows that ψx = E(u) where the operator

E is defined in (2.10). Since u = B(|v|2), we obtain ψx = E(B(|v|2)). We estimate
‖ψx‖2 in the frequency space:

‖ψx‖22 = ‖E(B(|v|2))‖22 =
∫

R2

ξ41
(ξ21 + νξ22)

2

1

(1 + α2|ξ|2)2 ||̂v|
2(ξ)|2 dξ1dξ2

≤
∫

R2

1

(1 + α2|ξ|2)2 ||̂v|
2(ξ)|2 dξ1dξ2 ≤ ‖v‖42

∫

R2

1

(1 + α2|ξ|2)2 dξ1dξ2 =
C

α2
‖v‖42 ,

(4.58)

where we have used above the convolution theorem and Young inequality for

convolution to obtain ||̂v|2(ξ)| = |(v̂ · v̄)(ξ)| = |(v̂ ∗ ˆ̄v)(ξ)| ≤ ‖v‖22, for every ξ ∈ R2.
Similarly,

‖ψy‖22 ≤
C(ν)

α2
‖v‖42. (4.59)

By (4.56), (4.57), (4.58) and (4.59), one has

‖∇v(t)‖22 ≤ H3(v(t)) +
β

2
Cα‖v(t)‖H1‖v(t)‖32 +

|ρ|
α2
Cν‖v(t)‖42

≤ H3(v0) +
1

2
‖v(t)‖2H1 +

β2

8
C2

α‖v0‖62 +
|ρ|
α2
Cν‖v0‖42 ,

due to the Young inequality as well as the conservation of the energy ‖v‖2 and the
Hamiltonian H3(v). Since ‖v‖2H1 = ‖v‖22 + ‖∇v‖22, it follows that

‖∇v(t)‖22 ≤ 2H3(v0) + ‖v0‖22 +
β2

4
C2

α‖v0‖62 +
2|ρ|
α2

Cν‖v0‖42,

for all t ∈ [0, Tmax). Consequently,

lim sup
t→T−

max

‖v(t)‖H1 <∞ ,

which contradicts (4.54), and hence the solution exists globally in time. �

5 Modulation theory

Modulation theory is introduced in order to explain the role of the regularization,
through perturbation of a system that develops a singularity, in preventing singularity
formation of the original system. The intention of this theory is that the profiles of the
perturbed system’s solutions are asymptotic to some rescaled profiles of the original
system’s solutions near the singularity. By this approach, a perturbed system can be
reduced into a simpler system of ordinary differential equations that do not depend
on the spatial variables, and are easier to analyze both analytically and numerically.
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Hence, in this section, we will apply modulation theory to the RDS3 system (3.5)
by following the ideas in [12, 19, 22] (see also [3]) for the purpose of observing the
prevention mechanism of the singularities.

First, we review some main results on an asymptotic construction of blow-up
solutions for the DSE presented in [19, 22]. It is convenient to rewrite the DSE
(1.1) in the terms of the amplitude v and the longitudinal velocity u1 = φx in the form

{
ivt +∆v + β|v|2v − ρu1v = 0

∆νu1 = (|v|2)xx.
(5.1)

It is shown in [19, 22] that blow-up solutions of system (5.1) have the following
asymptotic form near the singularity:

{
v(x, y, t) ≈ 1

L(t)
ei(τ(t)−a(t) |η|

2

4
)P (|η|, b(t)) ,

u1(x, y, t) ≈ − 1
L2(t)

(−∆ν)
−1(|P |2)η1η1 ,

(5.2)

where η = (η1, η2) = ( x
L
, y

L
), τt = L−2, a = −LtL and b = a2 + aτ ≈ a2, which satisfies

bτ ∼ −e−
π√
b . Also, to leading order at the limit as τ → ∞, one has b ∼ 1

(ln τ)2
. The

steady system of (5.1) reads (see [19, 22])

{
∆P − P + b

4
|η|2P + i

√
b
(

1
p
− 1

)
P + β|P |2pP − ρPQ = 0

∆νQ = (|P |2p)η1η1
(5.3)

where p > 1. Note that in the limit, b → 0 and p → 1, as τ → ∞, and (P,Q) tends
to (S,X), a solution of

{
∆S − S + βS3 − ρSX = 0,

∆νX = (S2)η1η1 ,
(5.4)

with zero boundary conditions at infinity. It is also obtained in [19, 22] that, as b

tends to 0, one has 1− 1
p
∼ 1√

b
e
− π√

b and the scaling factor L(t) approaches zero, in the

case of self-focusing of the original system, like L(t) ∼ (t∗ − t)
1

2

(
ln ln 1

t∗−t

)− 1

2 .
Observe that the singularity in the original system (5.1) is manifested by the fact

that L(t) tends to 0, as t→ t∗. Thus, our goal is now to show how the regularization
mechanism prevents L(t) from collapsing to zero.

We adopt a similar strategy as in [19, 22]. The following arguments are formal
and have not been placed on the level of mathematical rigor. For small values of the
parameter α, the RDS3 system (3.5) can be regarded as a perturbation of the DSE
(1.1). To see this, we define

Φ = ϕx, Ψ = ψx,

for the sake of convenience. Then equation (3.5) becomes

{
ivt +∆v + βuv − ρΦv = 0, ∆νΨ = uxx,

u− α2∆u = |v|2, Φ− α2∆Φ = Ψ,
(5.5)

19



and u and Φ can be formally expanded in leading order α2 as:

u = |v|2 + α2∆u = |v|2 + α2∆(|v|2 + α2∆u) = |v|2 + α2∆|v|2 +O(α4)

Φ = Ψ + α2∆Φ = Ψ+ α2∆(Ψ + α2∆Φ) = Ψ + α2∆Ψ +O(α4).

Thus we can rewrite equation (5.5) to the leading order of α2 as
{
ivt +∆v + β|v|2v − ρΨv + α2 (βv∆|v|2 − ρv∆Ψ) = 0

∆νΨ = (|v|2)xx + α2∆(|v|2)xx.
(5.6)

The numerical simulations [19] suggest that the blow-up of the DSE (1.1) is very
similar to that of the critical NLS (1.4) and the typical scales remain comparable in
the x and y directions. Therefore we choose to use the same scaling factor L(t) in
both directions. As in [19, 22], we define

ξ1 =
x

L(t)
; ξ2 =

y

L(t)
; τ =

∫ t

0

1

L2(s)
ds;

U(ξ1, ξ2, τ) = L(t)v(x, y, t); W (ξ1, ξ2, τ) = L2(t)Ψ(x, y, t).

Since U and W depend on the new variables ξ1, ξ2 and τ , in what follows we denote

∇ = (∂ξ1 , ∂ξ2), ∆ = ∂ξ1ξ1 + ∂ξ2ξ2 , ∆ν = ∂ξ1ξ1 + ν∂ξ2ξ2 .

Notice that vt = ∂t

[
U(ξ1,ξ2,τ)

L(t)

]
= 1

L3 [Uτ + a(U + ξ · ∇U)] , where a = −LtL and

ξ = (ξ1, ξ2). Then equation (5.6) can be written as
{
iUτ + ia(U + ξ · ∇U) + ∆U + β|U |2U − ρWU + ǫ (βU∆|U |2 − ρU∆W ) = 0

∆νW = (|U |2)ξ1ξ1 + ǫ∆(|U |2)ξ1ξ1
where ǫ = α2

L2 . Inspired by (5.2) we set

U(ξ, τ) = ei(τ−a
|ξ|2
4

)V (ξ, τ),

and let b = aτ + a2. Therefore
{
iVτ +∆V − V + b

4
|ξ|2V + β|V |2V − ρWV + ǫ(βV∆|V |2 − ρV∆W ) = 0

∆νW = (|V |2)ξ1ξ1 + ǫ∆(|V |2)ξ1ξ1 .
(5.7)

We observe that, on one hand, equation (5.7) becomes the rescaled form of the
RDS1 system (3.1) if the terms −ǫρV∆W and ǫ∆(|V |2)ξ1ξ1 are neglected. On the
other hand, if the term ǫβV∆|V |2 is omitted from (5.7), the equation becomes the
rescaled form of the RDS2 system (3.3). Therefore, the argument in this section can
also be applied to the RDS1 and RDS2 systems in a straightforward manner.

Analogously to [19, 22], we formally modulate the degree of the nonlinearity, and
introduce the steady state system (similar to (5.3))





∆V 0 − V 0 + b
4
|ξ|2V 0 + β|V 0|2pV 0 − ρW 0V 0 + i

√
b
(

1
p
− 1

)
V 0

+ǫ(βV 0∆|V 0|2p − ρV 0∆W 0) = 0,

∆νW
0 = (|V 0|2p)ξ1ξ1 + ǫ∆(|V 0|2p)ξ1ξ1 ,

(5.8)
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with p > 1 and b > 0, where V 0(|ξ|, b(τ), ǫ(τ)) and W 0(|ξ|, b(τ), ǫ(τ)) are quasi-steady
in τ .

At this stage, we expand V 0 and W 0 with respect to small values of b and ǫ:
{
V 0 = S(|ξ|) + b(τ)G(|ξ|) + ǫ(τ)H(|ξ|) +O(b2, ǫ2)

W 0 = X(|ξ|) + b(τ)Y (|ξ|) + ǫ(τ)Z(|ξ|) +O(b2, ǫ2).
(5.9)

We consider the condition p(b(τ)) → 1+, as τ → ∞, then the equations for (S,X) are
given by

{
∆S − S + βS3 − ρSX = 0

∆νX − (S2)ξ1ξ1 = 0
(5.10)

and the equations for (G, Y ) are
{
∆G−G+ 3βGS2 − ρ(SY +GX) = −1

4
|ξ|2S

∆νY − 2(GS)ξ1ξ1 = 0
(5.11)

with zero boundary conditions at infinity.
Notice that (5.10) is a system of nonlinear PDEs, which is essentially identical to

the system (1.3), whose solutions are ground states (standing waves) of DSE, and the
existence, regularity, and asymptotics of the ground states have been studied in [8].
On the other hand, (5.11) is a system of linear equations, and due to the Fredholm
alternative, (5.11) is solvable provided the vector determined by the right-hand side
of the system is orthogonal to the kernel of the adjoint of the operator arising in the
left-hand side. In particular, the vector (−1

4
|ξ|2S, 0) needs to be orthogonal to the

solution set of the equation
{
∆G̃− G̃+ 3βG̃S2 − ρG̃X − 2SỸξ1ξ1 = 0

∆νỸ − ρSG̃ = 0.
(5.12)

By virtue of (5.10), the solution set of (5.12) is spanned by
{(

Sξ1
ρ

2
X1

)
,

(
Sξ2
ρ

2
X2

)}
(5.13)

where (X1)ξ1 = X and (X2)ξ1ξ1 = Xξ2 . As a result, the solvability condition of system
(5.11) is

∫
R2 |ξ|2SSξj dξ1dξ2 = 0, j = 1, 2, that is,

∫

R2

ξjS
2 dξ1dξ2 = 0, j = 1, 2.

This condition is satisfied since S is symmetric with respect to the variables ξ1 and
ξ2, which is confirmed by numerical simulations [19, 22].

Moreover, the equations for (H,Z) are
{
∆H −H + 3βHS2 − ρ(SZ +HX) = −βS∆(S2) + ρS∆X

∆νZ − 2(SH)ξ1ξ1 = ∆(S2)ξ1ξ1 ,
(5.14)
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with zero boundary conditions at infinity. Existence of solutions for (5.14) requires
that the right-hand side of (5.14) be orthogonal to the kernel of the adjoint of the
operator arising in the left-hand side, which is also spanned by the vectors given in
(5.13). The solvability condition of system (5.14) thus reads

∫

R2

[
−β∆(S2)∂ξj (S

2) + ρ∂ξj (S
2)∆X + ρ∆(S2)Xξj

]
dξ1dξ2 = 0,

for j = 1, 2, which can be reduced to,

∫

R2

∆(S2)∂ξj (S
2) dξ1dξ2 = 0,

which is valid since S is symmetric with respect to ξ1 and ξ2.
Next, we consider the unsteady problem (5.7). Let V = V 0+V 1 andW =W 0+W 1.

Using (5.7) and (5.8), we obtain a system for the remainder V 1 and W 1:





∆V 1 − V 1 + b
4
|ξ|2V 1 + β (|V 0 + V 1|2(V 0 + V 1)− |V 0|2pV 0)

− ρ(W 1V 0 +W 0V 1 +W 1V 1) + ǫβ[(V 0 + V 1)∆|V 0 + V 1|2 − V 0∆|V 0|2p]
− ǫρ(V 0∆W 1 + V 1∆W 0 + V 1∆W 1) = i

√
b
(

1
p
− 1

)
V 0 − i(V 0 + V 1)τ ,

∆νW
1 = (|V 0 + V 1|2 − |V 0|2p)ξ1ξ1 + ǫ∆(|V 0 + V 1|2 − |V 0|2p)ξ1ξ1.

By the mean value theorem, |V 0|2 − |V 0|2p ≈ (1 − p)|V 0|2 ln |V 0|2 due to the fact
p → 1+ as τ → ∞. Also we assume that, as τ → ∞, |V 1| ≪ |V 0| and |W 1| ≪ |W 0|.
Then using (5.9), to the lowest order, as τ → ∞, the above system reduces to





∆V 1 − V 1 + βS2(2V 1 + V̄ 1) + β(1− p)(S3 lnS2)− ρ(W 1S +XV 1)

= i
√
b
(

1
p
− 1

)
S − i(bτG+ ǫτH),

∆νW
1 = [S(V 1 + V̄ 1) + (1− p)(S2 lnS2)]ξ1ξ1 .

Substituting V 1 = V1 + iV2 yields





∆V1 − V1 + 3βS2V1 − ρ(W 1S +XV1) = β(p− 1)(S3 lnS2),

∆V2 − V2 + βS2V2 − ρXV2 =
√
b
(

1
p
− 1

)
S − (bτG+ ǫτH),

∆νW
1 − 2(SV1)ξ1ξ2 = (1− p)(S2 lnS2)ξ1ξ1 .

(5.15)

Note that (5.15)2 (the 2nd equation in (5.15)) is decoupled from (5.15)1 and (5.15)3.
Concerning the system comprised of equations (5.15)1 and (5.15)3, the existence of
solutions again requires the right-hand side of the system be orthogonal to the kernel
of the adjoint of the operator arising in the left-hand side, which is spanned by the
vectors given in (5.13). Therefore, the solvability condition of the system comprised
of equations (5.15)1 and (5.15)3 reads

1

4
β(p− 1)

∫

R2

(S4)ξj lnS
2 dξ1dξ2 +

ρ

2
(p− 1)

∫

R2

X(S2 lnS2)ξj dξ1dξ2 = 0,
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for j = 1, 2, which is satisfied provided S is symmetric and X is even in ξ1 and ξ2.
Also notice that, due to (5.10), S satisfies the left-hand side of equation (5.15)2, and
it follows that the solvability condition for (5.15)2 reads

∫

R2

[√
b

(
1

p
− 1

)
S2 − bτSG− ǫτSH

]
dξ1dξ2 = 0. (5.16)

From Appendix B, we know that

C1 =

∫

R2

SGdξ1dξ2 =
1

16

∫

R2

|ξ|2S2 dξ1dξ2 > 0

C2 =

∫

R2

SH dξ1dξ2 =
1

4

(
β − 2ρ

1 + ν

)∫

R2

|∇S2|2 dξ1dξ2 > 0 (5.17)

since ρ < 0 and β > 0. Thus (5.16) can be written as

C1bτ + C2ǫτ +
√
b

(
1− 1

p

)
‖S‖22 = 0.

Since p > 1 and b > 0, we obtain that

C1bτ + C2ǫτ < 0.

Integrating from 0 to τ gives
C1b+ C2ǫ < C3,

for some constant C3 = (C1b+ C2ǫ)|τ=0. Recall that b = a2 + aτ , with a = −LtL and
τ =

∫ t

0
1

L2(s)
ds, thus b = −L3Ltt. Also recall that ǫ = α2

L2 . It follows that

−C1L
3Ltt + C2

α2

L2
< C3 . (5.18)

The above can be written as Ltt >
C2α

2

C1
L−5 − C3

C1
L−3, then multiply both sides by

2Lt < 0, we obtain (L2
t )t < −C2α

2

2C1
(L−4)t +

C3

C1
(L−2)t. Integrating from 0 to t gives

L2L2
t < −C2α

2

2C1

1

L2
+
C3

C1
+ C4L

2 (5.19)

where C4 = L2
t (0) +

C2α
2

2C1
L−4(0) − C3

C1
L−2(0) . Therefore the scaling factor L can not

approach zero since C1, C2, α > 0. This explains the prevention of the singularity
formation, at this leading order in the expansion.

Remark A similar procedure for handling singularities can also be applied to the
RDS1 system (3.1). When ǫρV∆W and ǫ∆(|V |2)ξ1ξ1 are neglected in (5.7), then C2

defined in (5.17) becomes C2 = β

4

∫
R2 |∇S2|2 dξ1dξ2 > 0, since β > 0. Furthermore,

for the RDS2 system (3.3), when ǫβV∆|V |2 is neglected in (5.7), we have C2 =
− ρ

2(ν+1)

∫
R2 |∇S2|2 dξ1dξ2 > 0, since ρ < 0. Therefore, these regularizations also

prevent the singularity formation of the DSE (1.1).
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Appendix A

The aim of this Appendix is to state some well-known results in the theory of
the Schrödinger equation concerning the operators G0ψ(t) = eit∆ψ and Gf(t) =∫ t

0
ei(t−s)∆f(s) ds in the 2-dimensional space (see, e.g., [13, 16, 22]):

Lemma A.1 Let r ∈ [2,∞), q ∈ (2,∞), such that 1
q
+ 1

r
= 1

2
. Then the following

estimates hold:

‖G0ψ‖Lq(R;Lr) ≤ γ‖ψ‖2, ‖G0ψ‖L∞(R;L2) ≤ γ‖ψ‖2,
‖Gf‖Lq(R;Lr) ≤ γ‖f‖L1(R;L2), ‖Gf‖Lq(R;Lr) ≤ γ‖f‖Lq′ (R;Lr′),

‖Gf‖L∞(R;L2) ≤ γ‖f‖Lq′(R;Lr′).

Here q′ and r′ are the dual pair of q and r, respectively.

Recall the spaces X ′ and Y ′ are defined in (4.17), and the spaces X̄ and Ȳ are
defined in (4.25).

Lemma A.2 G0 is bounded from L2 into X̄ and bounded from H1 into Ȳ . G is
bounded from X ′ into X̄ and bounded from Y ′ into Ȳ . The associated norms are
independent of T .

Recall the spaces Z, Z̄ and Z ′ are defined in (4.41), (4.42) and (4.43), respectively.

Lemma A.3 G0 is bounded from H2 into Z̄ and G is bounded from Z ′ into Z̄ such
that

‖G0ψ‖Z ≤ γ‖ψ‖H2

‖Gf‖Z ≤ (2γ + 1)‖f‖Z′, if T ≤ 1.

Appendix B

This appendix is aimed to prove
∫

R2

SGdξ1dξ2 =
1

16

∫

R2

|ξ|2S2 dξ1dξ2 (B.1)

∫

R2

SH dξ1dξ2 =
1

4

(
β − 2ρ

1 + ν

)∫

R2

|∇S2|2 dξ1dξ2 (B.2)

which were introduced in section 5.
The proofs for these two formulas are similar. So we only justify (B.2) in details.

Our argument follows the approach in [19].
Recall that (S,X) satisfies

{
∆S − S + βS3 − ρSX = 0

∆νX − (S2)ξ1ξ1 = 0 ,
(B.3)
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and (H,Z) satisfies

{
∆H −H + 3βHS2 − ρ(SZ +HX) = −βS∆(S2) + ρS∆X

∆νZ − 2(SH)ξ1ξ1 = ∆(S2)ξ1ξ1 .
(B.4)

Multiplying (B.3)1 by H , (B.4)1 by S, subtracting and integrating over R2, we
obtain

∫

R2

(
2βS3H − ρS2Z + βS2∆(S2)− ρS2∆X

)
dξ1dξ2 = 0 . (B.5)

Also, multiplying (B.3)1 by (ξ1, ξ2)·∇H , (B.4)1 by (ξ1, ξ2)·∇S, adding and integrating
over R2, it follows that

∫

R2

(
4SH − 2βS3H + ρSH(2X + ξ1Xξ1 + ξ2Xξ2) +

ρS2

2
(2Z + ξ1Zξ1 + ξ2Zξ2)

)
dξ1dξ2

=
1

2

∫

R2

(
[ξ1(S

2)ξ1 + ξ2(S
2)ξ2 ](−β∆(S2) + ρ∆X)

)
dξ1dξ2 . (B.6)

At this stage, let us define

(X1)ξ1ξ1 = X, (Z1)ξ1ξ1 = Z.

Multiplying (B.3)2 by (ξ1, ξ2) · ∇Z1 and integrating over R2 yield

∫

R2

(X − S2)(2Z + ξ1Zξ1 + ξ2Zξ2) dξ1dξ2

+ ν

∫

R2

X [2(Z1)ξ2ξ2 + ξ1(Z1)ξ1ξ2ξ2 + ξ2(Z1)ξ2ξ2ξ2 ] dξ1dξ2 = 0 . (B.7)

Notice that
∫

R2

νX(Z1)ξ2ξ2 dξ1dξ2 =

∫

R2

νXξ2ξ2Z1 dξ1dξ2 =

∫

R2

[(S2)ξ1ξ1 −Xξ1ξ1 ]Z1 dξ1dξ2

=

∫

R2

(S2 −X)Z dξ1dξ2 ,

which can be substitute into (B.7), and it follows that

∫

R2

(X − S2)(ξ1Zξ1 + ξ2Zξ2) dξ1dξ2 + ν

∫

R2

X [ξ1(Z1)ξ1ξ2ξ2 + ξ2(Z1)ξ2ξ2ξ2 ] dξ1dξ2 = 0 .

(B.8)

Also, multiplying (B.4)2 by (ξ1, ξ2) · ∇X1 and integrating yields

∫

R2

[Z − 2SH −∆(S2)](2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2

+ ν

∫

R2

Zξ2ξ2 [ξ1(X1)ξ1 + ξ2(X1)ξ2] dξ1dξ2 = 0 . (B.9)
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Now substituting

∫

R2

Zξ2ξ2 [ξ1(X1)ξ1 + ξ2(X1)ξ2] dξ1dξ2 = −
∫

R2

X [ξ1(Z1)ξ1ξ2ξ2 + ξ2(Z1)ξ2ξ2ξ2 ] dξ1dξ2

into (B.9) yields

∫

R2

[Z − 2SH −∆(S2)](2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2

− ν

∫

R2

X [ξ1(Z1)ξ1ξ2ξ2 + ξ2(Z1)ξ2ξ2ξ2 ] dξ1dξ2 = 0 . (B.10)

Adding (B.8) and (B.10) gives us

∫

R2

(X − S2)(ξ1Zξ1 + ξ2Zξ2) dξ1dξ2

+

∫

R2

[Z − 2SH −∆(S2)](2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2 = 0 ,

and since
∫

R2

X(ξ1Zξ1 + ξ2Zξ2) = −
∫

R2

Z(2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2 ,

we obtain that
∫

R2

S2(ξ1Zξ1 + ξ2Zξ2) dξ1dξ2 +

∫

R2

[2SH +∆(S2)](2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2 = 0 .

(B.11)

Multiplying (B.11) by ρ

2
and substituting the result into the sum of (B.5) and (B.6),

it follows that
∫

R2

(
4SH + βS2∆(S2)− 2ρS2∆X − ρ

2
(∆(S2))(ξ1Xξ1 + ξ2Xξ2)

)
dξ1dξ2

=
1

2

∫

R2

(
[ξ1(S

2)ξ1 + ξ2(S
2)ξ2 ](−β∆(S2) + ρ∆X)

)
dξ1dξ2 . (B.12)

Note that
∫

R2

[ξ1(S
2)ξ1 + ξ2(S

2)ξ2]∆(S2) dξ1dξ2

=

∫

R2

[ξ1(S
2)ξ1(S

2)ξ1ξ1 + ξ2(S
2)ξ2(S

2)ξ1ξ1 + ξ1(S
2)ξ1(S

2)ξ2ξ2 + ξ2(S
2)ξ2(S

2)ξ2ξ2 ] dξ1dξ2

=

∫

R2

[
−1

2
((S2)ξ1)

2 +
1

2
((S2)ξ1)

2 +
1

2
((S2)ξ2)

2 − 1

2
((S2)ξ2)

2

]
dξ1dξ2 = 0 .
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Consequently, (B.12) can be reduced to

4

∫

R2

SH dξ1dξ2

= β

∫

R2

|∇S2|2 dξ1dξ2 + 2ρ

∫

R2

S2∆X dξ1dξ2

+
ρ

2

∫

R2

(
∆(S2)(ξ1Xξ1 + ξ2Xξ2) + [ξ1(S

2)ξ1 + ξ2(S
2)ξ2 ]∆X

)
dξ1dξ2

= β

∫

R2

|∇S2|2 dξ1dξ2 + 2ρ

∫

R2

S2∆X dξ1dξ2 . (B.13)

Since S and X are symmetric and ∆νX = (S2)ξ1ξ1 , we obtain that (1 + ν)∆X = ∆S2

which implies that

∫

R2

S2∆X dξ1dξ2 = − 1

1 + ν

∫

R2

|∇S2|2 dξ1dξ2 . (B.14)

Substituting (B.14) into (B.13) yields

∫

R2

SH dξ1dξ2 =
1

4

(
β − 2ρ

1 + ν

)∫

R2

|∇S2|2 dξ1dξ2 .
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