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Exploratory Analysis and Modeling of Stock Returns

Kimihiro Noguchi Alexander Aue Prabir Burman∗

Abstract

In this paper, novel joint semiparametric spline-based modeling of condi-

tional mean and volatility of financial time series is proposed and evaluated on

daily stock return data. The modeling includes functions of lagged response

variables and time as predictors. The latter can be viewed as a proxy for

omitted economic variables contributing to the underlying dynamics. The con-

ditional mean model is additive. The conditional volatility model is multiplica-

tive and linearized with a logarithmic transformation. In addition, a cube-root

power transformation is employed in order to symmetrize the lagged response

variables. Using cubic splines, the model can be written as a multiple linear

regression, thereby allowing predictions to be obtained in a simple manner. As

outliers are often present in financial data, reliable estimation of the model

parameters is achieved by trimmed least squares (TLS) estimation for which a

reasonable amount of trimming is suggested. To obtain a parsimonious spec-

ification of the model, a new model selection criterion corresponding to TLS

is derived. Moreover, the (three-parameter) generalized gamma distribution is

identified as suitable for the absolute multiplicative errors and shown to work

well for predictions and also for the calculation of quantiles, which is important

to determine the value at risk. All model choices are motivated by a detailed

analysis of IBM, HP, and SAP daily returns. The prediction performance is

compared to the classical GARCH and APGARCH models as well as to a non-

stationary time-trend volatility model. The results suggest that the proposed

model may possess a high predictive power for future conditional volatility.
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1 Introduction

Modeling the square root of the conditional expected squared fluctuation from the

conditional mean in stock returns, commonly referred to as conditional volatility,

plays an important role in risk management. To overcome the unrealistic assumption

of constant one-step-ahead conditional volatility, Engle (1982) proposed the autore-

gressive conditional heteroscedastic (ARCH) model which relates the current squared

conditional volatility to the past squared fluctuations from the conditional mean. Fur-

ther extensions of the class of ARCH models were for example suggested by Bollerslev

(1986), Nelson (1991), and Glosten, Jagannathan, and Runkle (1993), a summary of

which can be found in Aue, Berkes, and Horváth (2006).

These classical financial time series models are constructed on the assumption of

stationarity of the financial time series of interest. However, empirical evidence often

suggests the presence of nonstationarity especially if the length of the collected data is

relatively large (see Mikosch and Stărică (2004), Fryzlewicz, Sapatinas and Subba Rao

(2006), and references therein). To capture such nonstationarity, recent contributions

to the literature (Dahlhaus and Subba Rao (2006); Engle and Rangel (2008); Vogt

(2012)) proposed the inclusion of a smooth function of (rescaled) time into the model,

along with other predictors such as smooth functions of lagged response variables in

the context of conditional volatility modeling. As a consequence, the response variable

is assumed to behave in a locally stationary manner, and the function of time can be

interpreted as a proxy for economic variables not considered in the model.

In this paper, a novel robust semiparametric spline-based approach is proposed

for the joint modeling of conditional mean and volatility of the form

rt = µt + σtεt,

where rt, µt, σt, and εt denote return, conditional mean, conditional volatility, and

multiplicative error, respectively. The modeling approach aims at achieving com-
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putationally inexpensive and reliable predictions of short-run volatility and at the

same time capturing the tail behavior of the fluctuations from the conditional mean

accurately. Firstly, both conditional mean and volatility models include a smooth

function of time as a predictor in addition to functions of lagged response variables.

The implication is that both µt and σt may behave in a nonstationary manner. Each

function is modeled in a nonparametric manner by a cubic spline, which admits a

linear regression form, to make predictions computationally feasible. Secondly, sim-

ilar to Yang, Härdle, and Nielsen (1999), an additive structure is imposed on the

conditional mean and a multiplicative structure on the conditional volatility. Akin

to Nelson’s (1991) EGARCH, the conditional volatility model is linearized by taking

the natural logarithm, and thus the predictions are made based on log conditional

volatility. Thirdly, to capture the tail behavior of the fluctuations accurately, |εt|

is modeled by the (three-parameter) generalized gamma distribution, noting that a

cube-root transformation provides reasonable symmetry.

To achieve reliable predictions in the presence of outliers often contaminating fi-

nancial time series data, symmetry of the response variables and trimming of outliers

are considered. First, coefficients of the cubic splines are estimated by trimmed least

squares (TLS). A reasonable amount of trimming is suggested and a new Mallows’

Cp-type model selection criterion corresponding to TLS estimates is developed to

achieve parsimony. Second, appropriate power transformations are suggested to ap-

proximately symmetrize the distributions of lagged response variables. In particular,

a cube-root transformation is suggested for the absolute fluctuations and absolute

multiplicative error. These ideas are backed by extensive empirical observations of

financial time series from various industry sectors, and the proposed modeling ap-

proach seems to work well across a variety of financial time series encountered in

practice.

The proposed modeling approach borrows parts of ideas from several previously

established approaches. The additive/multiplicative structure is similar to that of

Yang, Härdle, and Nielsen (1999) and Kim and Linton (2004) who generalized it

to a generalized additive structure, assuming stationarity of the process of interest.
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Their models are based on an application of local polynomial regression with marginal

integration (see Linton and Nielsen (1995) and references therein). Moreover, local

polynomial-based conditional volatility models assuming locally stationary processes

were proposed, for example, by Dahlhaus and Subba Rao (2006), and Vogt (2012).

Their approaches typically require a number of iterative procedures for making short-

run predictions, and hence are computationally expensive.

The proposed conditional volatility model is compared to GARCH-type models

and to a model similar to the one proposed in Fryzlewicz, Sapatinas and Subba Rao

(2006) in terms of its predictive performance using daily stock returns of IBM, HP,

and SAP traded at the New York Stock Exchange (NYSE). The observations span

1100 days (and hence 1099 returns) from January 16, 2004 to May 30, 2008, and were

obtained from Yahoo! Finance.

The remainder of this paper is organized as follows. The modeling strategy and

analysis of the conditional mean and conditional volatility are described in Sections 2

and Section 3. The predictive performance of the proposed model is evaluated and

compared to competitor approaches in Section 4. Some technical aspects of the

proposed prediction methodology are given in Section 5. Conclusions are offered in

Section 6.

2 Conditional mean modeling

2.1 Summary statistics for daily returns

An important yet sometimes ignored feature of financial time series analysis is the

conditional mean modeling. The conditional mean of rt is given by µt = E[rt|Ft−1],

so that

rt = µt + at,

where Ft−1 is the information set available up to time t−1 and at the residual from µt.

The time series plots of the IBM, HP, and SAP return series given in Figure 1 indicate

that each rt has approximately mean zero. All the plots show a number of outliers.
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Figure 1: Time series plots of three stock returns.

5



Statistic Skewness Excess Kurtosis

Data Original Trimmed Original Trimmed

IBM -0.58 0.00 5.98 0.09

HP -0.20 0.03 10.15 0.23

SAP 0.44 0.06 7.92 0.12

Table 1: Skewness and excess kurtosis of rt for the original and the lower and upper

1% trimmed data.

While the majority of the series tends to look stationary, there also seem to be periods

where the mean of the returns appears to have some time-varying movement. This

suggests that the inclusion of a smooth function of time may be beneficial to improve

the overall performance of conditional mean and volatility predictions.

Table 1 shows a pattern consistent with previous findings of Franke, Härdle, and

Hafner (2008): The return rt in general has skewness very close to zero and excess

kurtosis greater than zero. However, for trimmed data (both the lower and upper 1%

have been deleted), the excess kurtosis becomes very close to zero as well, implying

that high excess kurtosis in returns is mainly influenced by a number of extreme

observations.

Assuming that rt is a stationary linear process, the order of its linear dependence

can be determined from the sample ACF, PACF, and some information criterion such

as AIC (Akaike, 1974). While the stationarity assumption may not hold, for example,

when a deterministic trend exists, sample ACF and PACF are used as initial guidance

to identify orders of return autocorrelation with the lower and upper 1% of the data

trimmed for robustness. Since the analysis suggests that the majority of significant

lags is within this range, p1 = 10 lags are chosen for the full model.
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2.2 Conditional mean specification and estimation

Based on the data analysis reported in the previous section, a conditional mean model

of the form

µt = f0(t/T ) + f1(rt−1) + f2(rt−2) + · · ·+ fp1(rt−p1), t = p1 + 1, . . . , T,

is entertained. The functions f0, f1, . . . , fp1 are modeled with cubic splines, i.e.,

fi(x) = βi,0 + βi,1x+ βi,2x
2 + βi,3x

3 +

ki+3∑
j=4

βi,j max{(x− xi,j)3, 0},

where ki knots are placed at xi,4, xi,5, . . . , xi,ki+3 for i = 0, 1, . . . , p1. For identifiability,

βi,0 = 0 for i = 1, 2, . . . , p1. This leads to the linear representation

r = Xβ + a,

where r = (rp1+1, . . . , rT )′, a = (ap1+1, . . . , aT )′, and µ = Xβ is the vector repre-

sentation of the conditional mean. For the function of rescaled time f0, two knots

are placed at 1/3 and 2/3. For the functions of lagged response variables f1, . . . , fp1 ,

three knots are placed at ri,16, ri,50, and ri,84, where ri,q is defined to be the lower

qth percentile of rt−i. These percentiles are chosen to mimic knot placements at the

sample mean and sample mean plus/minus standard deviation for normal variables,

albeit in a robust way. In order to derive theoretical results, one places a dense grid

of knots in the range of the independent variables (here time and lags), and knot

selection becomes equivalent to model selection which can be performed by any avail-

able information criterion. For practical purposes, one can often (but not always)

get away with placing only a few knots, in particular if there are no sharp changes

in the variables. From visual inspections of the data, this seems to be the case here.

Moreover, all prediction results to be reported below appear to be influenced only

minorly by the knot placement.

Let mr be the sample median of rt, and define r̃t = rt−mr. To mitigate the effect

of outliers, the weights

wq,t =

 1, if |r̃t| < cq,

0, otherwise,
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where cq is the lower (2q − 100)th percentile of |r̃t|, are introduced. For example, for

q = 99, c99 is the lower 98th percentile of |r̃t|. The resulting weights are analogous

to deleting r̃t outside the range between the 1st and 99th percentiles, assuming that

the distribution of r̃t is symmetric around zero. To obtain robust estimates, let Wq

denote a diagonal matrix with diagonal entries (wq,p1+1, . . . , wq,T ). Then, assuming

that E[Wqa] = 0 and E[a′Wqa] <∞, the TLS estimator of β is given by

β̂ = (X ′WqX)−1X ′Wqr. (2.1)

Letting µ̂ = (µ̂p1+1, . . . , µ̂T )′, the conditional mean is estimated by µ̂ = Xβ̂. Some

theoretical properties of this estimator are are established in Section 5.

Putting such weights is not equivalent to deleting extreme observations from the

dataset because the weights are determined solely based on the response variables but

not the lagged response variables for the predictors. In other words, it is possible,

for example, that rt−1 for which wq,t−1 = 0 may serve as a predictor as long as rt has

the corresponding weight wq,t = 1. This way the model is able to adapt to unusual

predictor values and forecasting performance is improved.

2.3 Model selection

It is quite natural to suspect that many of the predictors used in the conditional mean

formulation are correlated. This could cause instability in the parameter estimation.

To obtain a more parsimonious expression, methods of nonparametric lag selection

based on cross-validation (Gao and Tong, 2004) or nonparametric final prediction

error type criteria (Tschernig and Yang, 1999) have been developed. However, as

Rech, Teräsvirta, and Tschernig (2001) pointed out, these model selection techniques

tend to be computationally expensive. Therefore, a model selection procedure based

on a Mallows’ Cp-type criterion for TLS is developed in this section which allows for

reasonable predictions of µt without adding a high computational burden.

Burman and Nolan (1995) suggested a modification of Mallows’ Cp criterion which

is applicable to various types of loss functions. In the case of TLS, assuming that r̃t

8



has a symmetric distribution around zero and β̂ ∈ Rd (so that a subset of d predictors

is chosen from the full model), the modified Mallows’ Cp-type criterion

MWq =

(
1 +

2d∑T
t=p1+1wq,t

)
T∑

t=p1+1

(rt − µ̂t)2wq,t

is obtained. Notice that the full model uses a fixed number of 10 lags, each of which

is associated with six parameters. There are another five parameters associated with

the function of time, so that the full model has 65 parameters to choose from. The

following stepwise model selection procedure may be utilized.

1. Center rt by subtracting its sample median mr, yielding r̃t = rt −mr.

2. Starting from the constant mean model, perform a forward selection repeatedly

using MWq with r̃t as the response variable, in each step including that variable

into the model which produces the greatest reduction in the MWq value. Stop

if no more such reduction occurs.

3. Once the forward selection process is complete, perform a backward deletion

repeatedly using MWq , in each step deleting that variable from the model which

produces the greatest reduction in the MWq value. Stop if no more such reduc-

tion occurs.

Regarding the choice of q, recall that Table 1 suggests q = 99 to be reasonable as

the effect of extreme observations appears to vanish by comparing the changes in

excess kurtosis. This choice is further corroborated by visual inspection of the time

series plots of µt (omitted for brevity) using various values of q. For this choice,

Table 2 displays a summary of the number of parameters selected. In all three cases,

time parameters are chosen (t/T for IBM, t/T and (t/T )2 for HP, and max{(t/T −

2/3)3, 0} for SAP), indicating a time-varying pattern in returns and the importance

of including a function of time for relatively short financial time series data for an

improved prediction performance. The application of MWq also leads to a model with

a considerably smaller number of predictors compared to the full model.
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Data Time Lags Total

IBM 1 9 10

HP 2 12 14

SAP 1 8 9

Full Model 5 60 65

Table 2: Number of parameters selected using q = 99.

3 Conditional volatility modeling

3.1 Power transformations of |at|

Modeling and predicting conditional volatility σt are of central importance to financial

time series analysts. An application is found in assessing the value-at-risk (VaR), an

extreme quantile of rt, which requires an accurate estimate of the conditional volatility

at time t and the underlying distribution of at. A standard approach for modeling σt

is to consider a multiplicative error structure

at = σtεt,

where εt are independent and identically distributed (i.i.d.) random variables with

E[εt] = 0 and E[ε2t ] = 1. Assuming that εt has a symmetric distribution, one can

focus on the magnitude of at, namely,

|at|δ = σδt |εt|δ,

for some δ > 0. Since Engle (1982), the behavior of conditional volatility has typically

been analyzed through a2t (that is, δ = 2). However, a2t tends to be highly positively

skewed, and hence, not an ideal choice for least squares estimation in a linear model.

Another route is to use |at| (that is, δ = 1), as Ding, Granger and Engle (1993) find

that |at| often maximizes autocorrelation (see Penzer, Wang, and Yao (2009) and

references therein). This is commonly known as the Taylor effect.
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Figure 2: Time series plots of |at| for three stocks.
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Data δ

IBM 0.31

HP 0.27

SAP 0.30

Table 3: The selected δ for which Sq is minimized for |at|δ.

For reliable parameter estimation, it is often beneficial to find a value of δ for

which the underlying distribution of |at|δ is symmetrized. This is the approach taken

in this paper and is done here using the quantile-matching technique which selects

the δ that minimizes the criterion function

Sq =
∑
i∈U

|Li −Ri|
IQR

, (3.1)

where Li and Ri are the distances of the i-th and (100−i)-th percentile from the sam-

ple median of |at|δ, respectively. The denominator IQR stands for the interquartile

range of |at|δ which is used for standardization. To cover a broad range of percentiles,

U = {1, 10, 20, 30, 40} is used. The minimum of Sq is found by a grid search, varying

δ from 0.01 to 2.00 with an increment of 0.01. It can be seen from Table 3 that,

in all cases, δ ≈ 1/3 appears to minimize Sq well. This suggests a hitherto unob-

served stylized fact of financial time series which may be coined the symmetry effect.

Subsequently, the cube-root transformation δ = 1/3 is applied in the model building

process.

3.2 Conditional volatility specification and estimation

Let εt be symmetric i.i.d. random variables such that E[εt] = 0 and E[|εt|δ] < ∞.

Utilizing the results of Section 3.1 and a log transformation, conditional volatility is

modeled by

|at|δ = σδt |εt|δ,

log σt = h0(t/T ) + h1(|at−1|δ) + · · ·+ hp2(|at−p2|δ), (3.2)

12



Data Time Lags Total

IBM 1 4 5

HP 1 5 6

SAP 0 8 8

Full Model 5 60 65

Table 4: Number of parameters selected using q = 99.

where δ = 1/3, t = p1 + p2 + 1, . . . , T . Conducting a similar analysis as in Sec-

tion 2.2 using volatilities detrended by local running medians to avoid an overshoot-

ing of the order due to potential nonstationarities, p2 = 10 is chosen. The functions

h0, h1, . . . , hp2 are modeled with cubic splines following the same knot placements as

in Section 2.2. For identifiability, similar restrictions as in the conditional mean model

in Section 2.2 are imposed for hi, i = 1, . . . , p2. Estimation is then performed by TLS

using q = 99. A smooth function of time h0 is included because Figure 2 shows some

periods with time-varying volatility, commonly known as volatility clustering.

Predictors are included into the model with the selection procedureMWq developed

in Section 2.3 based on the linear regression

log |at| = h0(t/T ) + h1(|at−1|δ) + · · ·+ hp2(|at−p2|δ) + log |εt|. (3.3)

In the first step of the model selection procedure, log |at| is centered using the sample

median, and the rest follows similarly to the conditional mean case. To achieve

the parameter estimation using TLS, define wq,a,t to be the weight corresponding

to the centered log |at| and Wq,a to be the diagonal matrix with diagonal entries

(wq,a,p1+p2+1, . . . , wq,a,T ). Also, let log |ε| = (log |εp1+p2+1|, . . . , log |εT |)′. It is then

assumed that E[Wq,a log |ε|] = 0 and E[log |ε|′Wq,a log |ε|] <∞. Table 4 displays the

number of time and lag parameters selected. Notice that time parameters play a role

in predicting conditional volatility (max{(t/T − 1/3)3, 0} for IBM and max{(t/T −

2/3)3, 0} for HP), and that the selected model is considerably more parsimonious

than the full model.
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Data δ

IBM 0.34

HP 0.29

SAP 0.31

Table 5: The selected δ for which Sq is minimized for |εt|δ.

3.3 Modeling the multiplicative error

It remains to determine an appropriate structure for the multiplicative errors in the

conditional volatility model, whose distribution plays a crucial role in quantile esti-

mation. The tail behavior of εt requires a particularly careful treatment as the VaR is

typically calculated at the lower 1st or 5th percentile level. The most popular distri-

butional assumption for εt, such as the one used in RiskMetrics
TM

(Longerstaey and

More, 1995), is the standard normal distribution. However, due to empirical evidence

of heavy-tailedness, Student’s t-distribution or the generalized error distribution have

been utilized as alternatives (see Tsay, 2010, Chapter 7).

The motivation for proposing the (three-parameter) generalized gamma distribu-

tion to fit |εt| is as follows. It is known that the cube-root transformation of a gamma

variable makes the underlying distribution roughly symmetric if the shape parame-

ter is not too small (see Krishnamoorthy, Mathew, and Mukherjee (2008) for more

discussion). Now, a preliminary study finds that the normal distribution fits ade-

quately to |εt|1/3 in the center but not in the tails. Table 5 suggests that δ ≈ 1/3 also

approximately symmetrizes the distribution of |εt|δ across different stocks, which is

consistent with the results found for |at|δ. This leads to an initial guess that a gamma

distribution may be able to approximate the distribution of |εt|. To improve the tail

behavior, the generalized gamma distribution is used to model the multiplicative

error. Its probability density function is given by

p(x;θ) =
1

Γ(`)
ca`cx`c−1 exp {−(ax)c}, x > 0, (3.4)

for θ = (a, `, c)′, where a > 0, ` > 0, c > 0, and Γ(z) =
∫∞
0
e−xxz−1dx is the Gamma

14



Data a ` c

IBM 1.19 2.02 2.49

HP 1.42 2.55 2.06

SAP 1.24 2.15 2.35

Table 6: Generalized gamma parameter estimates for the truncated |εt|1/3.

function (Lawless, 1980; Gomes, Combes, and Dussauchoy, 2008). To satisfy the

assumption E[log |εt|] = 0 and to estimate parameters in the conditional volatility

model reliably, in the following, the generalized gamma distribution is fitted to the

truncated |εt|1/3 using the corresponding weights wq,a,t = 1. Suppose further that ξ

is a random variable with probability density function (3.4), then

E[log ξ] =
ψ(`)

c
− log a,

where ψ(z) = Γ′(z)/Γ(z) is the digamma function (Lawless, 1980). Hence, the as-

sumption E[log ξ] = 0, corresponding to the mean of the truncated |εt| being equal

to zero, implies the relationship

a = exp

(
ψ(`)

c

)
(3.5)

for the generalized gamma parameters. Using c = 3 (corresponding to the cube-

root transformation assuming |εt| is gamma distributed) and the method-of-moment

estimate for ` (see pg. 958 of Gomes, Combes, and Dussauchoy, 2008) as initial esti-

mates, maximum likelihood estimates are obtained for the truncated |εt|1/3, utilizing

the constraint (3.5) for the parameter a (see Table 6).

Table 7 shows the comparisons between the percentiles of the original and trun-

cated |εt|1/3 as well as the percentiles of the fitted generalized gamma distribution.

The generalized gamma distribution approximated the distribution of both the origi-

nal and truncated |εt|1/3 well, including the upper tails. It should therefore be useful

for volatility predictions.
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Original |εt|1/3

Data 2% 10% 25% 50% 75% 90% 98%

IBM 0.37 0.61 0.82 1.05 1.24 1.43 1.69

HP 0.37 0.59 0.81 1.03 1.27 1.46 1.74

SAP 0.33 0.60 0.83 1.03 1.26 1.45 1.72

Truncated |εt|1/3

Data 2% 10% 25% 50% 75% 90% 98%

IBM 0.44 0.65 0.83 1.06 1.24 1.43 1.69

HP 0.43 0.63 0.82 1.04 1.28 1.47 1.74

SAP 0.44 0.65 0.84 1.04 1.26 1.46 1.74

Estimated Generalized Gamma Distribution

Data 2% 10% 25% 50% 75% 90% 98%

IBM 0.46 0.66 0.83 1.04 1.25 1.45 1.71

HP 0.45 0.64 0.82 1.04 1.27 1.49 1.78

SAP 0.45 0.65 0.83 1.04 1.26 1.47 1.73

Table 7: Percentile comparisons.
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4 Predictive performance

In this section, the prediction performance of the proposed conditional volatility

model is compared against three popular models, namely the GARCH(1,1) model

of Bollerslev (1986), the APGARCH(1,1) of Ding, Granger and Engle (1993), and

a simple nonstationary volatility model similar to Fryzlewicz, Sapatinas and Subba

Rao (2006) that specifies a time trend only. This type of model provides a good

benchmark as it was shown to have competitive predictive performance in the lat-

ter paper. Although it is possible to compare to GARCH(p, q) (or APGARCH(p,

q)) with higher orders, estimation procedures for these cases are not necessarily nu-

merically stable. Moreover, model selection criteria that would aid in automatically

determining a specific order (p, q) to use for the forecast are not well established. For

the evaluation, n-step-ahead predictions were computed with n varying from 1 to 5.

Letting at = σtφt where φt are i.i.d. random variables with mean 0 and variance

1, the GARCH(1,1) model imposes the structure σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1, on the

conditional volatility, where α0 > 0, α1 ≥ 0 and β1 ≥ 0. The APGARCH(1,1) model

uses the form σλt = α0 + α1(|φt−1| − γ1φt−1)
λa2t−1 + β1σ

λ
t−1, where α0 > 0, α1 ≥ 0,

β1 ≥ 0, λ > 0, and −1 < γ1 < 1. The parameters of both GARCH(1,1) and AP-

GARCH(1,1) models are obtained by quasi-maximum likelihood estimation (QMLE)

assuming standard normally distributed φt. Consistency and asymptotic normality

of the QMLE parameters are documented in Berkes, Horváth and Kokoszka (2003)

and Penzer, Wang and Yao (2009).

The simple nonstationary volatility model that specifies a time trend only is (3.2)

without any lagged response variables. That is, log σt = h0(t/T ) where h0(t/T ) is

modeled with cubic splines. Predictors are included in the model with the selection

procedure MWq and parameter estimation is done using TLS with q = 99. The mean

function is modeled as outlined in Section 2.2.

Let vT+n be the n-step-ahead prediction of the (appropriately scaled) conditional

volatility. For the GARCH(1,1) and the APGARCH(1,1) model, these predictions are

based on the conditional expectation E[|aT+n|δ|FT ] with δ = 2 and δ = λ, respectively.
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It follows then that

vT+n = (E[|aT+n|δ|FT ])1/δ.

The sample counterpart, for which the parameters are estimated by QMLE. is denoted

by v̂T+n.

The prediction procedure for the proposed model is as follows. First, assum-

ing that |εt|1/3 follows the generalized gamma distribution with parameter vector θ =

(a, `, c)′ as in Section 3.3, one calculates recursively σ̃T+i = exp{E[log σT+i|FT ]}, i =

1, . . . , n, using the regression specified by (3.2) and (3.3) with plug-in estimates

σ̃T+1, . . . , σ̃T+i−1 in case i 6= 1. It follows, in particular, that

E
[
|aT+i|1/3|FT

]
= σ̃

1/3
T+iE

[
|εt|1/3

]
=
σ̃
1/3
T+iΓ(`+ 1

c
)

aΓ(`)

for i = 1, . . . , n− 1. The n-step-ahead predictor is then given by

vT+n = σ̃T+n
(
E
[
|εt|1/3

])3
= σ̃T+n

[
Γ(`+ 1

c
)

aΓ(`)

]3
and its sample counterpart v̂T+n, for which the parameters θ = (a, `, c)′ are estimated

by maximum likelihood estimation based on the truncated |εt|1/3 (see Section 3.3)

and the coefficients of the model by TLS (see Section 2.1). Since the distribution

of |εt|1/3 is approximately symmetric, it follows that (E[|εt|1/3])3 ≈ median(|εt|). To

measure the accuracy of the n-step-ahead prediction v̂T+n, the n-step-ahead prediction

of the conditional mean is estimated first. This is given by µT+n = E[rT+n|FT ] and

its sample counterpart denoted by µ̂T+n in which the coefficients of the model are

estimated by TLS, noting that E[aT+n|FT ] = 0. Now, define the absolute prediction

error

APEn,T =
∣∣|âT+n| − v̂T+n∣∣

where âT+n = rT+n − µ̂T+n.

The prediction performance is evaluated using the sliding window approach, where

the training set of T = 1099 returns is varied 500 times. In particular, the first training

set is from Friday, April 5, 2002 to Tuesday, August 15, 2006, the second training set

is from Monday, April 8, 2002 to Wednesday, August 16, 2006, and the last (500th)

training set is from Monday, March 29, 2004 to Friday, August 8, 2008.
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It is examined how the absolute prediction errors compare locally by plotting a

smoothed version, obtained from 5-point moving averages, of the annualized APEn,T

(APEn,T multiplied by 250). The results for n = 2 are displayed in Figure 3. It can

be seen that the annualized APEn,T of the proposed model are lower than those of

the competitor models in the majority of cases.

The overall performance is evaluated by comparing the proportion of these 500

APEn,T obtained by the proposed model higher than those of the competitor models.

Two measures of proportion (Proportion 1 and Proportion 2) are reported. Propor-

tion 1 is defined as the proportion of instances for which the proposed method had a

higher absolute prediction error than the corresponding competitors. Proportion 2 is

defined as the probability that a randomly chosen absolute prediction error obtained

from the proposed method is larger than a randomly selected absolute prediction er-

ror obtained from all prediction errors (proposed and competitor methods combined).

For Proportion 2, the Munzel (1999) nonparametric paired two-sample test which also

utilizes the proportion, or equivalently for the two-sample case, the relative treatment

effect denoted by RTE, is carried out. For the Munzel test, the alternative hypoth-

esis is one-sided stating that the RTE of the proposed model is lower than that of

the competitors, or equivalently, that Proportion 2 is less than 0.5. By using this

approach, the comparisons can be made in a robust manner.

The results in Table 8 indicate that the proposed model performs favorably com-

pared to the GARCH(1,1) and APGARCH(1,1) models overall for one up to five

steps ahead predictions. This is especially the case for SAP where the APEn,T of the

proposed model is higher than the GARCH-type models only roughly 1/3 of time

when each pair is compared separately. When the proposed model is compared to the

time trend only model, interestingly, there was no significant difference for one-step

ahead predictions, but significant differences were observed for multiple-step ahead

predictions. In addition to the proportions, Table 9 reports the median of these 500

annualized APEn,T for each n, denoted by MAPEn,T . The results are in line with the

findings in Table 8.

19



APEn,T Proportion Comparisons

Data Model Compared Statistic n = 1 n = 2 n = 3 n = 4 n = 5

IBM

Time Trend Only

Proportion 1 0.51 0.23 0.23 0.24 0.25

Proportion 2 0.50 0.41 0.42 0.42 0.42

p-value 0 .62 < 10−4 < 10−4 < 10−4 < 10−4

GARCH(1,1)

Proportion 1 0.43 0.44 0.43 0.44 0.44

Proportion 2 0.46 0.46 0.46 0.46 0.47

p-value < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

APGARCH(1,1)

Proportion 1 0.44 0.43 0.45 0.44 0.46

Proportion 2 0.47 0.47 0.47 0.47 0.47

p-value < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

HP

Time Trend Only

Proportion 1 0.46 0.28 0.28 0.29 0.28

Proportion 2 0.50 0.44 0.45 0.45 0.45

p-value 0 .05 < 10−4 < 10−4 < 10−4 < 10−4

GARCH(1,1)

Proportion 1 0.39 0.39 0.37 0.38 0.37

Proportion 2 0.43 0.43 0.43 0.44 0.43

p-value < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

APGARCH(1,1)

Proportion 1 0.42 0.40 0.42 0.40 0.41

Proportion 2 0.45 0.45 0.45 0.45 0.45

p-value < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

SAP

Time Trend Only

Proportion 1 0.48 0.26 0.26 0.27 0.26

Proportion 2 0.50 0.43 0.42 0.43 0.43

p-value 0 .27 < 10−4 < 10−4 < 10−4 < 10−4

GARCH(1,1)

Proportion 1 0.32 0.32 0.32 0.32 0.31

Proportion 2 0.43 0.42 0.42 0.42 0.41

p-value < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

APGARCH(1,1)

Proportion 1 0.35 0.34 0.33 0.32 0.32

Proportion 2 0.43 0.43 0.43 0.42 0.42

p-value < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

Table 8: Proportions of APEn,T by the proposed model higher than those of the time

trend only model, GARCH(1,1), and APGARCH(1,1), and the p-values obtained from

the Munzel test (Italics : non-significant, Bold: significant). For all models, the data

are detrended a priori using the conditional mean modeling approach of Section 2.
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Figure 3: Smoothed annualized APEn,T for the 2-step-ahead predictions (n = 2).

The black solid line indicates the proposed model. The green broken line indicates

the time trend only model. The blue dashed line indicates GARCH(1,1) and the red

dotted line indicates APGARCH(1,1).
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Annualized MAPEn,T

Data Model n = 1 n = 2 n = 3 n = 4 n = 5

IBM

Proposed Model 1.04 1.05 1.02 1.05 1.05

Time Trend Only 1.03 2.02 1.98 1.99 2.00

GARCH(1,1) 1.51 1.53 1.51 1.47 1.49

APGARCH(1,1) 1.42 1.36 1.38 1.40 1.42

HP

Proposed Model 1.42 1.47 1.46 1.52 1.42

Time Trend Only 1.44 2.08 2.06 2.13 2.09

GARCH(1,1) 2.32 2.38 2.39 2.43 2.44

APGARCH(1,1) 2.11 2.12 2.20 2.22 2.19

SAP

Proposed Model 1.32 1.29 1.34 1.38 1.29

Time Trend Only 1.43 2.26 2.27 2.18 2.15

GARCH(1,1) 2.36 2.44 2.38 2.41 2.39

APGARCH(1,1) 2.29 2.28 2.35 2.32 2.34

Table 9: Comparisons of annualized MAPEn,T (250MAPEn,T ). For the GARCH(1,1)

and APGARCH(1,1) models, the data are detrended a priori using the conditional

mean modeling approach of Section 2. The best ones are indicated in bold.
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5 Rates of convergence for spline-based estimators

In this section, some theoretical results on large-sample properties of the proposed

model are provided in a simplified setting. Note that mean and volatility processes

may be nonstationary and are of the form Yt = g0(t/T )+g1(Yt−1)+ · · ·+gp(Yt−p)+Zt,

where g0 is a smooth function of (rescaled) time, g1, . . . , gp smooth functions of lagged

response variables, and Zt an innovation term with mean zero and variance σ2
Z . In

the following, the case p = 1 is considered. The arbitrary p case can be treated with

similar arguments. Let

Yt = m(t) + Zt, m(t) = g0(t/T ) + g1(Xt),

with Xt = Yt−1. It is assumed that the Xt take values in a compact set, taken to be

[0, 1] without loss of generality. For identifiability, it is required that
∫ 1

0
g1(u)du = 0.

Moreover, the following smoothness conditions on g0 and g1 are needed.

Assumption 5.1. Let g0 and g1 be η times differentiable such that the ηth derivatives

of g0 and g1 satisfy

|g(η)0 (u1)− g(η)0 (u2)| ≤ K|u1 − u2|ζ , |g(η)1 (u1)− g(η)1 (u2)| ≤ K|u1 − u2|ζ

for ζ ∈ [0, 1) and K > 0. Denote ν = η + ζ.

The function of rescaled time g0 is estimated by the spline estimator β′0B0(t/T ),

where B0(u) is a vector of B-splines of degree d ≥ ν with k equispaced knots in [0, 1].

Since
∫ 1

0
g1(u)du = 0 by assumption, the spline estimator for g1 needs to integrate

to zero as well. This can be accomplished as in Burman (1991). Let therefore B1(x)

be the vector of B-splines of degree d with k knots. The dimension of B1(x) is

k + 2d. Let Ψ1 be a (k + 2d − 1) × (k + 2d) matrix whose rows are of unit length,

orthogonal to each other, and orthogonal to
∫ 1

0
B1(x)dx. If Φ1(x) = Ψ1B1(x), then by

construction
∫ 1

0
Φ1(x)dx = 0. The estimate of g1 is consequently of the form β′1Φ1(x).

Let Bt = (B′0(t/T ),Φ′1(Xt))
′ and β = (β′0, β

′
1)
′. Combining the preceding lines, the

estimate of mt = g0(t/T ) +g1(Xt) is therefore of the form β′Bt. An estimate of β can
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be obtained by minimizing the least squares criterion

1

T

T∑
t=1

(Yt − β′Bt)
2

with respect to β. With the solution

β̂ =

(
1

T

T∑
t=1

BtB
′
t

)−1
1

T

T∑
t=1

BtYt,

the estimator for mt becomes m̂t = β̂′Bt. The rate of convergence of this spline-based

estimator can be established if the following conditions are met.

Assumption 5.2. Assume that the following requirements hold.

(a) There are constants 0 < f < f such that f ≤ ft(x) ≤ f for all t and x, where

ft is the probability density function of Xt.

(b) The series (Xt) is α-mixing, that is,∣∣P (A ∩B)− P (A)P (B)
∣∣ ≤ α(s),

for all A ∈ σ(. . . , Xt−1, Xt) and B ∈ σ(Xt+s, Xt+s+1, . . .), with
∑∞

s=0 α(s) <∞.

The main result on the rate of convergence is formulated as a theorem.

Theorem 5.1. If Assumptions 5.1 and 5.2 hold and if k3/T → 0, then the spline-

based estimator m̂t satisfies

1

T

T∑
t=1

(m̂t −mt)
2 = OP

(
T−2ν/(2ν+1)

)
(T →∞).

In the proof of the theorem, given in the online supplement Noguchi, Aue and

Burman (2014), it is assumed that (i) the knots in estimating g0 and g1 are equispaced,

and (ii) the number of knots in estimating g0 and g1 are the same, namely k. As

pointed out in Stone (1985), these are simplifying assumptions that can be suitably

modified. The proofs for the general case remains the same but requires increasingly

complicated notations.

The condition k3/T → 0 can be improved further by requiring different mixing

conditions. More details on this are provided in the proof of Lemma 2 in the online
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supplement. The rate given in Theorem 5.1 is the optimal rate of convergence for es-

timating a univariate function nonparametrically, see Stone (1977). More specifically,

1

T

T∑
t=1

(m̂t −mt)
2 = OP

( k
T

)
+OP

(
k−2ν

)
,

so that the minimum is attained when k is of the order T 1/(2ν+1), which in turn implies

the statement of the theorem. SetD = T−1
∑T

t=1BtB
′
t and let β̄ = D−1T−1

∑T
t=1Btmt

and m̄t = β̄′Bt. The method of proof will depend on showing that

1

T

T∑
t=1

(m̂t − m̄t)
2 = OP

( k
T

)
and

1

T

T∑
t=1

(m̄t −mt)
2 = OP

(
k−2ν

)
.

6 Conclusions

In this paper, a new financial time series model has been proposed. Cubic splines

have been employed to model the conditional mean and conditional volatility jointly,

including time and lagged response variables as predictors. The model can be written

as a linear regression, thereby making predictions possible in a simple manner. The

(three-parameter) generalized gamma distribution has been determined as a suitable

distribution for the multiplicative error of the conditional volatility. For both the ab-

solute residual |at| and multiplicative error |εt|, it has been observed that the cube-root

transformation makes the underlying distribution symmetric. A suitable information

criterion has been suggested to perform model selection. The overall predictive per-

formance of the proposed model using three individual daily stock returns compares

favorably to time trend only, GARCH(1,1) and APGARCH(1,1) predictions.

As an extension of the model considered in this paper, one may apply the gener-

alized linear model as the generalized gamma distribution is found to be appropriate

for the multiplicative error. Further large-sample properties, such as those of the

maximum likelihood estimators of the parameters using the generalized linear model

approach, may be addressed in future work.
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