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ABSTRACT
A computer model has been developed to simulate water temperature, dissolved oxygen,
and fish growth in a stratified fishpond using stochastic weather variables as input. The
model consists of generated weather variables and calculated water quality and fish
growth rate. The weather variables are generated using Monte Carlo methods, and
include solar radiation, air temperature, and wind speed and direction. The water quality
parameters are state variables that include water temperature, dissolved oxygen (DO),
phytoplankton (in terms of chlorophyll a, Chla), and total ammonia nitrogen (TAN).
Water temperature and DO are predicted at three depths in the water column and the
other state variables are assumed to be uniformly distributed. Fish growth rates are
predicted under the effects of weather variables and water quality for various pond
fertilization treatments. The model has been calibrated and validated using data from the
Pond Dynamics/Aqﬁaculture Collaborative Research Program (PD/A CRSP) database.
To evaluate the model’s performance for different pond management strategies and
different locations, model simulations were compared to data collected from 36 fishponds

with 11 fertilization treatments in Thailand, Rwanda, and Honduras sites.

The comparisons of simulations and observed data indicate that the model is capable of
predicting water temperature and DO stratification and fish growth for simulations up to
six months long. The simulated results indicate that water temperature and DO are
affected by weather variables, especially solar radiation. Changes in Chla and DO are
affected by environmental conditions and fish grazing. The stochastically generated

weather variables have little influence on fish growth. Fish growth rate is affected by

it
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changes in Chla and fertilization rate because the model assumes that phytoplankton is

the preferred food for tilapia.

The current model is limited by the uncertainty of available weather data and the
corresponding limitations in the weather models. The model did not capture the Chla
dynamics for some ponds for the Thailand site. These ponds also had a high variability
in observed Chla for pond replicates, highlighting the complexity of the pond ecosystem.
The fish growth simulations represent the effects of weather variables, DO and TAN

concentrations.

v
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1. Introduction
To obtain high yields and high quality products from earthen fish ponds, water quality
and food supply must meet the requirements for the cultured species over an entire
growing season. However, it is difficult to maintain pond water quality at optimal
conditions because most pond culture systems are open to the atmosphere. Water quality
parameters are affected by climate and topography. Solar radiation, air temperature, wind
speed, and wind direction significantly affect water quality, especially water temperature
and dissolved oxygen (DO). Water temperature is a critical factor that regulates all
biological, chemical, and physical processes in a pond. The survival and growth of
cultured organisms depend on the concentration of DO. The depletion of DO may cause

stress, slow growth, and even fish death.

Most fish ponds have high phytoplankton concentrations. Changes in the weather cause
water temperature and DO to fluctuate seasonally and diurnally (Cuenco, et al., 1985c).
Although the amount of solar radiation impinging on a horizontal surface under a clear
sky can be predicted analytically for any given location, the effects of the atmosphere on
radiation are subject to seasonal, geographic, and random variable changes including
cloud cover, vapor pressure, dust, and ozone (Straskraba and Gnauck, 1985). Strong
winds, clouds, cold rain, and unseasonably cool weather may suddenly happen at a pond
site. Under such unpredictable weather conditions, low DO and low water temperature
may occur and seriously affect fish growth and survival. Predicting the effects of water

temperature and DO on fish growth under natural weather conditions will help improve
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pond management, site selection, and the assessment of risk associated with specific

management practices at a given site.

1.1. Problem Statement

Computer modeling is a useful tool for predicting water quality and fish growth in fish
ponds. Various computer models have been developed to simulate water quality for fish
ponds based on different applications (Piedrahita, 1984; Svirezhev et al., 1984; Losordo,
1988; Culberson, 1993; Nath, 1996; Jamu, 1998). The existing models include the
simulation of the whole pond ecosystems over a growing season (Piedrahita, 1984;
Svirezhev et al, 1984) and the simulation of water temperature and DO stratification for a
24 hour period (Losordo, 1988; Culberson, 1993). Nath (1996) developed a comphensive
model for assisting in pond site selection and pond management practices. The model
includes the effects of water temperature, fertilization, and food supply on fish growth
rate. Jamu (1998) developed a model to predict the effects of organic matter and nitrogen
cycling pathways in integrated aquaculture/agriculture systems on fish growth. Most of
the models mentioned were developed for well mixed ponds. None of the existing
models include the effects of stratification over long periods. It is difficult to include the
effects of local weather conditions over the long term using these models because the
models are deterministic and the effects of random natural variations cannot be included

in the simulated variables.

Water temperature and DO stratification in shallow earthen ponds often occur (Losordo,

1988). During windless days, the upper part of the water column can warm up and
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become supersaturated in DO while the bottom water remains cooler and with lower DO.
During the daytime, the upper water column may not be suttable for fish growth because
of supersaturated DO and high temperature and the bottom water may lack oxygen.
During the late night and early morning, ponds often destratify resulting in uniform DO
and temperature throughout the water column. The daily stratification pattern may be
destroyed using aerators or mixers. However, the continuous use of mechanical
equipment is not economically practical for many fish farms. In addition, operation of the
aerators based on normal daily patterns cannot guarantee the elimination of the risk of
losing a crop because the water quality can be affected by unexpected changes of some

environmental variables.

Realizing the importance of the stratification of temperature and DO in fish ponds,
Losordo (1988) developed a model for predicting the stratification of water temperature
and DO over a 24-hour period. The assumptions behind this model were that the water
was mixed in the horizontal direction and stratified in the vertical direction. The
temperature and DO values along the depth of a pond could then be predicted. In
Losordo’s model, detailed weather data were obtained for model validation and
calibration. The model is limited in its application because it requires large, complete,
and complex weather inputs. Culberson (1993) simplified Losordo’s model by reducing
the input data requirements. Simulation with Culberson’s (1993) model was still for 24-

hour periods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Existing long term (complete growing period) and short term (24 hours) models can be
used to improve the management of water quality in fish ponds. However, determining
the conditions for optimum production is still a challenge because of the randomness of
climatic and environmental conditions. For example, variations in solar radiation striking
the water surface are likely to cause changes in water temperature and photosynthesis. As
a result, water quality and fish growth cannot be determined exactly when pond

conditions are projected into the future.

Further understanding of the effects of seasonal and diurnal cycles of water temperature
and DO stratification on fish growth will improve fish pond management. Improvements
may focus on management of oxygen concentration and the efficient operation of aeration
systems, but they may also serve to determine the best season and time to stock the

animals, and other management actions.

Most current fish pond models are deterministic, both the input and state variables are
fixed. The outcomes of these models are always fixed by the given input variables.
However, the behavior of a natural ecological system is often affected by random
variables, such as weather parameters. To include the effects of random weather
variables on water quality and fish growth in a fish pond model, long term historical data
from the pond location are required. These data can be used to develop stochastic models
to simulate weather parameters that can be used as inputs for water quality models.
However, there are not enough observed weather data for most pond sites. The Pond

Dynamics/Aquaculture Collaborative Research Support Program (PD/A CRSP) has been
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conducted for over ten years to determine the effects of various factors on fish growth.
Relatively long term observations of weather, water quality, and fish growth data are
available from the PD/A CRSP database (PD/A CRSP, 2003). The program was
designed to improve the efficiency of pond aquaculture systems in developing countries.
In 1988 and 1989, the experiments were carried out to investigate the tilapia yield under
different levels of organic fertilization in fresh water fish ponds in Thailand, Rwanda, and
Honduras research sites. All fish ponds at these sites were fertilized with chicken
manure, urea, and other organic wastes (such as fresh cut grass) to achieve a given
nitrogen input rate. The fertilizers were applied on a weekly basis. Water temperature
and DO were measured at four hours intervals at three water levels (surface, middle, and
bottom water layers) one day every two weeks. Other parameters, such as chlorphyll a
(Chla), total ammonia (TAN), and fish weight were measured monthly. Weather
variables such as daily solar radiation, air temperature, and wind speed were measured
daily. In addition, hourly solar radiation were measured occasionally. Some of the hourly
water quality data were used for 24-hour simulations by Losordo (1988) and Culberson

(1993), and the data also can be used for long term simulations.

1.2. Objectives

The objective of the project was to develop a model to simulate water temperature, DO,
and fish growth in a stratified fish pond using stochastic weather input variables. The
model consists of three components: weather parameter generation, the calculation of
water quality, and the calculation of fish growth. Hourly values of solar radiation, air

temperature, wind speed, and wind direction are generated using stochastic methods. The
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water quality component includes the simulation of water temperature, DO, total
ammonia nitrogen, and phytoplankton (in terms of chlorophyll a) using deterministic
methods. The fish growth component includes the simulation of fish biomass under the
effects of water quality and food supplies using a bioenergetics model. The variations of
solar radiation, water temperature, DO, and fish growth in a stratified fish pond can be
predicted over one growing season. The model is intended to predict the ranges and
variability of water temperature, DO, and fish growth rate values under certain

management strategies for a given site.

1.3. Model Assumptions

It is practically impossible to include all variables in a computer model for an aquaculture

pond because it is a very complex ecological system. In this model, solar radiation, air

temperature, wind speed, and wind direction are considered as random variables. Water
quality state variables include temperature, DO, chlorophyll a, and total ammonia
nitrogen. The model is based on the following assumptions:

1. Temperature and DO in a pond are uniform in the horizontal direction and stratify in
the vertical direction. The water column is divided into three simulation layers in the
vertical direction. In each layer, the temperature and DO are assumed to be uniform.

2. The water depth in the pond is constant. Water loss due to evaporation is assumed to
not affect water depth significantly. The water inflow and outflow rates are always the
same to keep a constant water depth. The influent and effluent enter and leave the pond

at the surface layer.
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3. Precipitation and its effects on temperature and stratification are not included in the
model.

4. The phytoplankton concentration is calculated in terms of chlorophyll a.
Phytoplankton species differences are not considered in the model. The distribution of
phytoplankton in the water column is uniform.

5. Nitrogen is considered as a limiting nutrient for phytoplankton growth. Phosphorus is
not considered as a limiting nutrient because all ponds received chicken manure that has
a high concentration of phosphorus. The distribution of nitrogen concentration is
uniform.

6. pH and alkalinity are constant and do not affect pond conditions during the simulation

periods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Literature Review
A variety of computer models have been developed to simulate temperature, DO, and
other water quality parameters in fish ponds (Meyer, 1980; Piedrahita, 1984; Svirezhev,
et al., 1984; Losordo, 1988; Nath, 1996; Jamu, 1998, Ernst, 2000). Computer models for
freshwater ecosystems can be classified as empirical or mechanistic. Empirical models
are built based on the analysis of data and statistics. Those models have limited general
application because the equations tend to be site-specific. In contrast, mechanistic
models are based on an understanding of the theoretical relationship among the model
variables. The equations in a mechanistic model describe the detailed processes among
the system variables. Therefore, a mechanistic model can be easily adapted for different
situations. A pond system involves complex environmental, chemical, physical, and
biological relationships, and mechanistic models can only describe selected state
variables. Most parameters in a mechanistic model are estimated based on data or

adjusted by model tuning.

In general, the early efforts in pond model development were primarily empirical because
of insufficient information about the interactions taking place within a pond system
(Bolte et al., 1986). The relationships among biochemical and physical processes were
estimated using regressions, correlation, probability distributions, factor analysis, etc.
Recently developed models have been mostly mechanistic. Mass and energy balances
have been used for the simulation of DO and temperature in pond ecosystems,
respectively (Piedrahita, 1984; Svirezhev, et al., 1984; Losordo, 1988; Culberson, 1993).

The existing models can simulate either long term (several months) or short term (24
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hour) periods. The long term simulations have focused on water quality and have
included many parameters but use the assumption that the pond water is well mixed (e.g.
Piedrahita, 1984; Svirezhev, et al., 1984). Short term simulations have been used to
model water quality stratification with a focus on DO and water temperature (Losordo,

1988; Culberson, 1993).

The simulation of diurnal water quality requires detailed meteorological data. The
weather parameter values must be obtained either by observation or through simulations.
Models have been developed using deterministic and stochastic methods to generate the
weather parameter values for different applications. The techniques used in generating
weather parameter values and in modeling water temperature, DO, and fish growth are
reviewed in order to construct a water quality model for the long term simulation of

stratified fish ponds.

2.1. Weather Models

Weather variables are the main environmental factors that affect water temperature and
DO. The major variables include solar radiation, air temperature, wind speed and
direction, relative humidity, atmospheric pressure, and precipitation. These variables are
difficult to generate using deterministic methods because of their stochastic nature. An
indication of the stochastic characteristics of the variables can be obtained from the
statistical analysis of historical data. It is very difficult to construct a stochastic model
with limited data sets, such as those available for CRSP sites. Several models have been

developed to generate daily and hourly solar radiation, air temperature, wind speed, and
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wind direction for different applications (e.g. Amato et al., 1986; Graham et al., 1988;
Graham and Hollands, 1990; Gordon and Reddy, 1988a and b; Huang and Chalabi,

1995). Some of those models are described here.

2.1.1. Solar Radiation Models

Solar radiation values may be assumed to include two components: deterministic and
stochastic (Graham et al., 1988). The deterministic component represents the long term
characteristics at a given geographical location and account for factors such as seasonal
variations. Therefore, the daily extraterrestrial irradiation variation can be predicted with
mechanistic models. The stochastic component reflects the dynamic behavior of natural
phenomena during short periods of time and accounts for factors such as the effects of
clouds. The effects of clouds have been described using the clearness index (the
clearness index is defined as the ratio of the solar irradiation on a horizontal plane to the
extra-atmospheric irradiation) (Graham et al., 1988). The clearness index is a stochastic

variable that can be described with probability distributions obtained from site data.

Once a mathematical model is developed based on detailed historical data for a site, solar
radiation values can be generated for use in simulations. The essential step is to construct
a model using equations incorporating the probability characteristics of long term

historical data. Because of the lack of long historical data for many sites, much effort has

been made to develop ways of using limited data sets.
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Pioneering work in analyzing the characteristics of solar radiation was undertaken by Liu
and Jordan (1960). A large number of solar radiation data from different locations and
climate conditions were analyzed and checked for universal characteristics. Liu and
Jordan (1960) treated atmospheric transmittance as the random variable instead of solar
radiation itself. They found that for a given monthly average daily clearness index, Izt ,
there is a unique frequency distribution of the daily clearness index, K, (Cumulative
Frequency Distribution or CFD). They found that the same values of IZ‘ have similar

cumulative distribution curves. However, it is doubtful that the CFD curve is unique for

a given value of Izt especially considering site differences in latitude and elevation.

More than 20 years of daily solar radiation data for 90 locations in the U. S. and Canada
were analyzed by Bendt and co-workers (1981) confirming that the frequency
distributions of the daily clearness index were dependent on the monthly average daily
cleamness, IZ, and were almost independent of the month and location. Therefore,
although solar radiation is a random variable, the cumulative distribution curve is
deterministic. A deterministic equation was derived to generate the cumulative
distribution curves based on a maximum clearness index K, of 0.8 for a clear day and a
minimum K, of 0.05 for a heavily clouded day (Bendt et al., 1981). Saunier and co-

workers (1987) observed the monthly probability distributions of daily global irradiation
values for both temperate and tropical climates and pointed out that the CFD curves
proposed by Liu and Jordan (1960) did not suit tropical locations. They also found that
the equations provided by Bendt and his co-workers (1981) for estimating the clearness

index distribution needed to be adjusted for humid tropical climates.
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Other researchers have attempted to develop models using a few parameters and no
detailed historical data. After examining the sequences of the daily solar radiation data
from 17 stations in Italy, Amato and co-workers (1986) proposed a model to generate
daily solar radiation values using Markov processes and Fourier series. More than 20
years of daily solar radiation data from four stations in Italy were used to calibrate and
validate their models. They found that the frequency distributions of the time series
residuals, the means, and the variances were not Gaussian. However, data could be
transformed into a Gaussian distribution by the use of an error function. A first order
autoregressive model was applied to generate random numbers in a normal distribution,
and the values of mean and variance were obtained through the use of Fourier series.
Considering the sequential properties of solar radiation data, a one-day discrete time
series was used in the model. The results of the data analysis showed that the first order
autocorrelation coefficient was independent of location and the distributions of the
restdual values were independent of season. According to the authors (Amato, et al.,
1986), the model could be used to generate daily solar radiation values for any location in
Europe even when there were no directly measured data, but only monthly average
values. However, their work did not allow for any changes in the distribution. In
addition, the approach can only be applied to the locations studied because the solar

radiation values for each site were used in model development.

Graham and his co-workers (1988) proposed a stochastic model to generate daily solar

radiation values using only the monthly average daily clearness index. The model is
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based on the fundamental observation of Liu and Jordan (1960) that the monthly average
daily clearness index value, IZt , has a unique cumulative frequency distribution (CFD)
and is independent of location and month. After studying the ten-year daily solar
radiation data sets from three different locations in Canada, the authors chose a first order
autoregressive model for generating daily solar radiation values. The autocorrelation
coefficients varied with the locations and months, from 0.253 to 0.348, and an average
value of 0.29 was used for all three locations. Graham and his co-workers (1988) also
found that the annual series of residuals had a normal distribution, which was different
from the results obtained by Amato and coworkers (1986) who found that the distribution

of K, values is not Gaussian and varied monthly. The model of Graham and co-workers
(1988) can be used to generate daily solar radiation values requiring only a monthly
average value, Izt , since cumulative frequency distribution curves or functions for daily
solar radiation have been published for many locations. Therefore, the model can be
applied for any location if one has the value of IZ,. The authors suggested that the model

could be applied to all locations around the world but the model was validated only for

three locations in Canada.

There are fewer published models for generating hourly values than daily values, due in
part to the lack of suitable databases. Gordon and Reddy (1988a and b) compared the
probability distributions of daily and hourly values, and concluded that the stationary
statistics for individual hours were similar to those of daily solar radiation. Graham and
co-workers (1990) developed a stochastic model to generate hourly values, in which the

hourly values are dependent on the statistics of hourly data and the values of the daily
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clearness index. The standard deviation was strongly dependent on the daily clearness
index value but not dependent on the location. Three probability distribution functions
were developed to generate hourly values based on the atmospheric transmittance that is a
function of the daily clearness index. Knight and co-workers (1991) simplified the three

probability functions into one function.

2.1.2. Air Temperature Models

A few models have been developed to generate hourly air temperature values (Card et al.,
1976; Knight et al., 1991; Ephrath et al., 1996). The model developed by Card and co-
workers (1976) used a Fourier series equation and the monthly average daily values to
calculate the daily values. With the daily values, the hourly values could then be
calculated using a normalized diurnal profile and the daily maximum and minimum
values. The magnitude and the shape of the diurnal temperature depended on season,
cloud cover, and other factors. A daily temperature profile was assumed such that the
highest temperature was always at 3:00 p.m. and the lowest temperature was always at
6:00 am. Therefore, a sinusoid equation with a frequency of one cycle per day plus a
second harmonic was used for the daily profile year round. The diurnal profile equation
was applied by Culberson (1993) to estimate the hourly air temperature in a water quality
model for 24 hour simulations. The model developed by Card and co-worker (1976) may
not be suitable for long term water quality simulations because the effects of random

variables cannot be ignored.
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Although the effect of random components in hourly temperature simulations maybe
small for solar heating systems, Knight and co-workers (1991) constructed an air
temperature generation model using a random term. The hourly temperature was
generated from the daily values with a series of normally distributed numbers that were
transferred through a cumulative distribution function. The hourly temperature model
consisted of deterministic and random components. The deterministic component was a
cosine equation that generated the diurnal average hourly values. The random component
was a second order autoregressive model (AR2). The analysis of the autocorrelation
structure and residuals from various locations showed that the AR2 model was suitable
for the generation of hourly air temperature. The authors found that the effects of the two
autoregressive coefficients on the generation of hourly values were small, therefore the
values of the two coefficients from one location can be used for all months and locations.
The required input variables consist of monthly average daily air temperatures and the
standard deviations of the monthly average daily values. The model may be more
realistic than the model developed by Card et al (1976). The shape of the distribution is
the same for the whole month, and the values for each hour are randomly changed in a

normal distribution.

Ephrath and co-workers (1996) proposed using two equations to generate the hourly air
temperature values: a sinusoidal equation to generate the daytime values and an
exponential equation to generate nighttime values. Hourly air temperature values showed
that the air temperature profile increased faster after sunrise, reached a plateau and

maximum in the middle of day, and then decreased rapidly after sunset. The time of the
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peak value on each day depended on the day length. The diurnal curve depended on the
day length, maximum air temperature, minimum air temperature, the next day’s minimum
air temperature, and the time of sunrise and sunset. The equations were calibrated and

validated using three locations in a temperate climate (latitude from 32 °N to 52.2 °N).

The application of Knight’s model is limited by the need to obtain the probability
distribution of the air temperature. Having the daily maximum and minimum daily

values, the models developed by Ephrath and Card are easy to implement.

2.1.3. Wind Speed and Wind Direction Models
Wind speed is a key variable for predicting heat and oxygen transfer across the air-water
interface. The wind speed is a non-stationary and non-Gaussian variable. There have

been several studies on the simulation of daily and hourly wind speed (e.g. Balousktsis, et

al., 1986; Ephrath et al., 1996; Huang and Chalabi, 1995).

A common method for the generation of wind speed values is based on the Weibull
distribution using a conditional mean and variance (Huang and Chalabi, 1995). The
seasonal and diurnal variations have to be removed using the means and standard
deviations from the daily and hourly wind speed data, respectively (Balousktsis et al.,
1986). After removing the periodicity, the frequency distribution of the measured data
could be fitted into a Weibull distribution; therefore, the first order Markov transition
matrix could be used to generate the wind speed data. The model was tested with data

from three locations in Greece with latitudes from 35 to 40 °N. The model is simple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

because the autocorrelation coefficients were found to be location independently.
Moreover, the model requires only the monthly averages and standard deviations of
measured daily values. The hourly average values can be generated using the generated
daily values and the monthly variance of observed hourly data. However, the
autoregressive-moving average (ARMA) model could not provide the accuracy of wind
speed forecast needed for a greenhouse heating control system (Huang and Chalabi,
1995). Huang and Chalabi analyzed a set of 2024 hourly wind speed data. The means
and variances of hourly wind speed indicated that an ARMA model was not suitable for
real-time forecasting. Therefore, a linear, time-varying autoregressive (AR) process was
used to simulate hourly wind speed. The difficulty of using an AR model is the
complexity of the simultaneous estimation of moving average and autoregressive
coefficients. The autoregressive coefficients were estimated from one set of observed

hourly wind speed data.

It is always important to balance the accuracy of the simulation results and the simplicity
of model implementation. Considering that only daily total, maximum, and minimum
wind speed data may be available for many cases, a simple model was developed to
derive the diumal curves from daily data (Ephrath et al., 1996). The wind speed data
from three different locations showed that the daily profile was similar. The hourly wind
speed increased from the early moming until later afternoon, and then decreased to the
minimum value in the evening. The diurnal cycle was described using two sine
equations. The shape of the sine curves varied as the wind increased and decreased. The

time of the maximum wind speed value was estimated from site data. The sunset and
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sunrise time was also used to determine the shape of the sine curves. If the maximum and
minimum values were not available, a total daily accumulated wind speed could be used
to estimate the daily maximum value. The simulations and measurements showed good

agreement (Ephrath et al., 1996).

It is difficult to determine the autoregressive coefficients with limited datasets. dos
Santos Neto and Piedrahita (1994) used a very simple equation to generate wind speed in
a preliminary water quality model. The wind speed was assumed to follow a normal
distribution and hourly wind speed values were generated using means and standard
deviations of observed historical data. There were no seasonal and diurnal patterns

included in the equation.

Wind direction affects water quality through its impact on fetch. However, there are very
few wind direction data available for fish ponds. Wind direction values were generated
for a water quality model by dos Santos Neto and Piedrahita (1994) using a skewed
normal distribution. The means and standard deviations were calculated from the few

data available.

2.2. Water Quality Models
The consequences of thermal and DO stratification in semi-intensive fish ponds have
been described by several researchers. This review focuses on fish pond water

characterization and the modeling of water temperature and DO.
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2.2.1. Characterization of Stratification

Thermal and DO stratification in lakes and reservoirs generally follows a seasonal or
annual cycle. However, stratification in shallow fish ponds often occurs in diurnal cycles.
Most fish ponds have a high density of phytoplankton and other suspended particles,
which result in high turbidity. The high turbidity reduces the light penetration into the
water column resulting in strong stratification. Because oxygen production is a function
of light intensity and temperature, a low light intensity and a low temperature will result
in a low oxygen production rate. DO concentration is determined by the net oxygen
production and oxygen consumption rates. In a pond, the oxygen production rate drops
with the increasing water column depth due to the reduced light intensity. However, the
oxygen consumption rate does not decrease as depth increases resulting in low DO in the
bottom layers of most ponds. Stratification in a one meter deep catfish pond was
measured by Losordo (1988), who found differences in the temperature and DO
exceeding 10 °C and 21 mg/L, respectively, between 5 and 80 cm below the pond surface.
Similarly, the stratification data in the PD/A CRSP database showed that the maximum
differences in temperature and DO were up to 6.0 °C and 10 mg/L per meter,
respectively. In contrast, in deep lakes and reservoirs, the temperature difference varies

from 0.2°C to 1 °C per meter (Goldman and Horne, 1983).

The maximum stratification in aquaculture ponds is often observed in the late afternoon
before sunset, and destratifcation often occurs in late evening and after midnight.
Stratification in a highly turbid fish pond often consists of high temperature combined

with supersaturated DO in the surface layer, and low temperature combined with low DO
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in the bottom layer. Under these conditions, cultured fish may limit their movements in
extreme areas and the culture volume may be effectively reduced. Recognizing the
importance of predicting stratification in fish culture ponds, Losordo (1988) developed a

model to simulate the stratification of water temperature and DO in fish ponds.

2.2.2. Water Temperature Models

Water temperature models for aquaculture ponds have been developed based on energy
balances for the water. The net heat transfer in a pond is estimated by accounting for the
heat inputs and heat outputs. The major heat source is solar radiation. The outputs
include heat loss due to evaporation, convection, and heat transfer between water layers.
Typically, one dimensional models have been used since the temperature gradient in the
horizontal direction is much less than in the vertical direction (Cathcart and Wheaton,
1987; Losordo, 1988). A one dimensional model was developed by Cathcart and
Wheaton (1987) for predicting temperature in several discrete layers in the vertical
direction. Considering the difficulty in obtaining the input weather data, the authors used
only hourly measurement of solar radiation. The model includes heat transfer between
the water layers, which was estimated using a Fickian diffusion function based on the
assumption of molecular diffusion. The light attenuation at each water layer was
estimated using an exponential equation that was a function of pond depth. The effect of
wind speed on the heat distribution was considered in the model based on the density

gradient in the water column.
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Losordo (1988) argued that it was important to include the detailed weather variables
when simulating surface water temperature. He developed a model including detailed
weather data: solar radiation, air temperature, humidity, wind speed, wind direction, and
rain fall. The weather data were sampled every minute, and recorded every 20 minutes.
The heat balance used by Losordo (1988) for the surface water was more complete than in
the model developed by Cathcart and Wheaton (1987). The effect of wind speed on
turbulent heat mixing of surface water was modeled by accounting for the wind shear
force in addition to the density gradient. In Losordo’s model, a one meter deep fish pond
was divided into five layers in the vertical direction. The simulated temperatures for the
five layers were started at a depth of 5 cm below the water surface and repeated at 20 cm
intervals. An energy balance was applied for each water layer. The input variables
included initial pond conditions and measured weather data. Since the detailed observed
data were used for model calibration, the model proved reliable in its application to
several pond locations in Northern California. However, model application is limited

because the detailed input variables are difficult to obtain for other pond sites.

Culberson (1993) modified Losordo’s model to be used for a wide range of geographical
sites, from temperate to tropical climates. In Culberson’s model, the simulation water
elements were reduced from five to three. The detail of the input variables was reduced
based on the available data from the test sites. The model was verified for several pond

locations and yielded satisfactory simulation results.
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2.2.3. Dissolved Oxygen Models

The most critical water quality parameter in fish ponds is DO. Many models have been
developed to predict DO dynamics in fish ponds (Romaire and Boyd, 1979; Meyer and
Brune, 1982; Piedrahita, 1984; Svirezhev et al, 1984; Losordo, 1988). The principle of
mass balance has been applied in these models. DO concentration is calculated from the
rates of oxygen production, consumption, and transformation. The oxygen source terms
are photosynthesis in the water column and reaeration at the water surface; the
consumption consists primarily of respiration by phytoplankton, fish, and other
organisms. The rates of oxygen production and consumption can be estimated using
either empirical or mechanistic approaches. The early published models were mostly
empirical (Romaire and Boyd, 1979), in which the oxygen production and consumption
rates were estimated using regression equations that were obtained from data. Later
models have been mostly mechanistic (Meyer and Brune, 1982; Piedrahita, 1984,
Svirezhev et al, 1984; Losordo, 1988). With a few exceptions, existing DO models are

suitable for mixed ponds and cannot be used to describe conditions in a stratified pond.

Boyd and co-workers (1978) developed a model for predicting DO in catfish ponds. In
their model, the oxygen production by photosynthesis was described as a function of solar
radiation, chlorophyll-a, and oxygen concentrations at dawn. The oxygen consumption
due to phytoplankton was estimated as a function of fish biomass, Secchi disk depth, and
oxygen concentration at dusk. The diffusion of oxygen between the water surface and the
environment was characterized as a function of wind speed and water temperature.

Chlorophyll-a concentration was obtained from the Secchi disk depth through a
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correlation equation. In the model, all functions were regression equations using data
from a catfish pond. Input values, such as solar radiation, wind speed, and water

temperature came directly from the data.

Meyer and Brune (1982) developed a model using a mechanistic approach to predict DO
in a hypothetical catfish pond. The authors intended to identify and describe some
interactions between biochemical and physical processes. Because of the limited
information available from fish culture ponds, many equations were adapted from
systems such as shallow lakes, reservoirs, eutrophic ponds, and wastewater stabilization
ponds. Oxygen production sources and sinks were described theoretically. The
constants, coefficients, and parameters in the mathematical equations were calibrated and
validated using different sets of data from previous studies. Photosynthesis was described
as a function of light attenuation, nutrient conditions, water temperature, and the
concentration of chlorophyll-a. Oxygen consumption due to respiration by phytoplankton
was modeled as a function of temperature and the initial rate of respiration of decaying
phytoplankton. The diffusion between the water surface and the air was estimated as a
function of DO concentration, water temperature, and wind velocity. Hourly solar
radiation values under a clear sky were estimated based on the geometry of the earth’s
rotation, variations in the inclination of the earth’s axis, and the elliptical rotation of the
earth around the sun. Water temperature values were given and pond water was assumed
to be completely mixed. The model was used for short term (24 hour) simulations, and

use of this model for long term simulations is limited because the dynamics of
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phytoplankton concentration, Secchi disk values, and weather input variables were not

included.

Two similar models that can be used to predict water quality and fish growth rate in fish
ponds were developed separately by Piedrahita (1984) and Svirezhev et al. (1984). There
were 22 state variables in Piedrahita’s model and 11 in Svirezhev’s model.
Phytoplankton production rate was modeled as a function of nutrient concentration, light
intensity, and temperature. Phytoplankton consumption rate was estimated by the
inclusion of the mortality of phytoplankton, grazing by fish and zooplankton, and sinking
to the sediment. Oxygen production rate was assumed to be proportional to

phytoplankton production rate and was described using a linear equation.

Another long-term model was developed by Lee and co-workers (1991a,b) for the
prediction of DO in a marine fish culture zone. The authors took into account the effects
on the accuracy of the prediction of DO of wide fluctuations in the saturation light
intensity and the ratio of carbon to chlorophyll-a. In their model, the saturation light
intensity was calculated from the previous three days’ light intensity. The ratio of carbon
to chlorophyll-a was estimated as a function of the maximum phytoplankton growth rate,
the temperature limit factor, the saturation light intensity, and the initial slope of the
phytoplankton-light intensity curve. The model was developed for a completely mixed
shallow coastal bay with weak tidal flushing. The solar radiation, water temperature,
nutrient loading, and the tidal flushing range were given values on a daily basis. The DO

prediction was described as satisfactory, but the phytoplankton concentration was not.
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A model developed by Losordo (1988) attempted to predict the stratification of
temperature and DO in fish ponds. Similar to his temperature model, oxygen
concentration was predicted in the five volume elements or water layers. The oxygen
concentration in each element was assumed to be homogeneous. Light attenuation in the
water column was described using the Lambert-Beer Law. The effects of the solar
radiation incident angle and water turbidity were taken into account in the model.
Oxygen diffusion between the elements was based on the concepts of molecular and
turbulent diffusions. The major force for turbulent transport at the water surface was
wind shear. Wind shear is calculated in Losordo’s model using an empirical equation
based on air density, coefficient of aerodynamic resistance, and wind speed. Because the
model’s approach was based on mechanistic principles, the predicted results were verified
for different locations. The simulation results were satisfactory. However, the
application of the model was limited because a large number of detailed input variables

are required, such as detailed weather data (every 20 minutes).

Considering the lack of detailed data available for most fish ponds, Culberson (1993)
modified Losordo’s model by making it more “user friendly”. The most significant
changes in the model were the reduction of the input data from 440 to 60 data points,
which substantially reduce the data requirement especially for some difficult to obtain
data. Culberson also reduced the simulated thermal elements in a water column from five
to three. The simplified model demonstrated that the mass balance approach is
appropriate and that the simulation results remain accurate after verification of the model

using three different geographical locations. However, the model cannot be used for long-
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term simulations directly because the long-term changes in variables, such as Secchi disk,
fish respiration, and weather input variables were not modeled. For a short-term
simulation, the saturating light intensity and the ratio of carbon and chlorophyll-a were

considered to be constants (Losordo, 1988).

2.3. Fish Growth Models

The relationships among fish growth, water quality, and feeding are of major concern in
predicting fish weight. It is difficult to conduct experiments to examine the effects of one
factor only because various biotic factors, such as fish size, species, and behavior
influence fish growth. Most fish growth models have been developed based on the
concept of bioenergetics (Cuenco et al., 1985¢; Liu and Chang, 1992; Bolte et al., 1994;
Nath, 1996). The basic principle of bioenergetics is that all energy intake through food
consumption is lost as waste (feces or excretion), used in metabolic processes or stored as
new body tissue (Jobling, 1994). Since food consumption is a function of fish size, the

energy balance within a fish body is usually described based on fish biomass.

Variables affecting food intake include fish size, food availability, photoperiod,
temperature, DO, and un-ionized ammonia concentrations (Cuenco et al., 1985a). Water
temperature is the factor that affects the fish growth rate the most. A sensitivity analysis
performed by Cuenco and co-workers (1985b) showed that parameters for food
consumption are more sensitive than parameters related to the metabolic terms. Liu and
Chang (1992) developed a bioenergetics model to examine the effects of pond

fertilization, stocking density, and spawning on the growth of Nile tilapia. A non-linear
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regression method was used to estimate the parameters in the growth model. The model
provided fairly accurate results of the estimated parameters from PD/A CRSP Thailand

data (Liu and Chang, 1992).

A more complete bioenergetics model was developed for Nile tilapia (Bolte et al., 1994;
Nath 1996). The model accounted for the effects of water temperature, DO, un-ionized
ammonia, photoperiod, fish size, and food availability. The model can be used to predict
fish growth under different pond management strategies. Three different food sources
(two types of phytoplankton and one of zooplankton) were included in the model. The
different types of food sources were described based on their carbon content. The
coefficients of food intake rate for each food source were determined by model
calibration. The model was used to simulate fish growth at different stocking densities
and different fertilization rates at several locations. The simulation results indicated that
the model could not describe the effects of fertilization on fish growth because the
nutrient content of food sources was not included. The authors suggested that future

work should include the effect of factors such as climate.
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3. Model Construction
The model described in this dissertation includes three parts: Weather, Water Quality, and
Fish Growth. Each part consists of several sub-models, which describe different
variables. The schematic diagram of the water quality model is shown in Figure 3.1. The
Weather Part includes solar radiation, air temperature, wind speed, and wind direction
sub-models, which are constructed using stochastic methods. The Water Quality Part
includes water temperature, DO, phytoplankton (in terms of chlorophyll a), and total
ammonia nitrogen (TAN) sub-models, which are constructed using deterministic
methods. The Fish Growth Part accounts for the effects of water quality, environmental
conditions, feed, and genetic parameters on fish growth. The model was constructed to

make maximum use of the information available from the PD/A CRSP database.

3.1. Generation of Weather Values

The weather values generation includes hourly solar radiation, air temperature, and wind
speed. Time series methods were used for generating these values. The solar radiation
model has been modified from the model developed by Graham and co-workers (1988,
1990). The air temperature model is a combination and modification of several published
methods (Card et al., 1976; Knight et al., 1991). The wind speed model was constructed
using a first order Markov process. Data to construct and test the weather models were

obtained from the PD/A CRSP database.
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three water layers are of the same depth and most of the processes shown for

the surface layer also take place in the other layers.
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3.1.1. Solar Radiation

Several researchers have found that a first order autoregression equation is suitable for
generating a series of daily solar radiation values (Liu and Jordan, 1960; Amato, et al.,
1986; Graham et al., 1988). Graham and co-workers (1988) developed a model which
requires only monthly average daily solar radiation values. The model was based on the
discovery by Liu and Jordan that the frequency distribution of cleamess index was only a
function of monthly average daily solar radiation values, and independent of location and
season. Graham’s model was intended to be used for locations for which the average
monthly daily clearness index values were known. Considering the lack of long-term
solar radiation data from fish pond sites around the world, the weather model was

developed using the approach proposed by Graham and co-workers (1988 and 1990).

The model was constructed based on the statistics of daily clearness indices. The
cumulative frequency distribution (CFD) of the daily clearness index for each month was
obtained from the PD/A CRSP database, which constitutes a data set that 1s less complete
than what is normally available from long-standing meteorological installations. Three
sites were selected from the PD/A CRSP database to examine the correlation of the CFD
and monthly average daily clearness index and to test the procedure presented below for
the generation of hourly solar radiation values. The fish pond sites are in Thailand,

Honduras, and Rwanda (Table 3-1).
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Table 3-1. Characteristics of selected sites
(PD/A CRSP, 1987)

Thailand Rwanda Honduras

(Bang Sai) (Rwasave) (El Carao)
Latitude 14°45°N 2°40°S 14°26°’N
Longitude 100°32’E 29°45°E 87°26°W
Elevation (m) 5 1700 583
Data Length (years) 6 8 6
Ave. Annual Air 28.0 21.0 253
Temperature (°C)
Ave. Annual Rainfall (mm) 1372 1200 765
Pond dimension (m) 22x10x1.0 30x20x13 50x30x0.9
(Length x Width x Depth)

The data sets used to calculate the daily clearness index probability distributions cover
periods of six years (1990 to 1995), six years (1986 to 1991), and eight years (1984 to
1991) from Thailand, Rwanda, and Honduras, respectively. However, the data sets are
not complete, with data missing from periods of up to three months. The extraterrestrial
solar radiation was calculated using the equations of Duffie and Beckman (1991), for the

calculation of X, and l_<_,.

For each month, the cleamess index values ranged from 0.10 to 0.85 and were divided
into 30 groups with intervals of 0.025 to generate the cumulative frequency distributions.
As an example, six monthly CFD curves for each location are shown in Figures 3.2 to 3.4

for the Thailand, Rwanda, and Honduras sites, respectively.
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Figure 3.1.3. Calculated monthly CFD curves from January to June
for the Honduras site

Since the monthly CFD curves were of similar shapes, a single equation form was
selected for all the CFD curves after exploratory analysis of the data (TableCurve™),
The equation was selected on the basis of the quality of fit as indicated by the correlation

coefficient (R?), and is of the form:

F(K,)=—0.01 + (3-1-1)

a
1+exp(b_K’)
c

Where a, b, and ¢ can be estimated by curve fitting (e.g. TableCurve™) for a given K.
To reduce the number of equations used while also maintaining the accuracy of the

model, it was decided to combine similar CFD curves into a single equation as long as the
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R? for the combined equation could be maintained above 0.98. As a result, there were

four groups for the Thailand site, two for the Rwanda site, and three for the Honduras site

(Table 3-2).
Table 3-2. Estimated parameters for the CFD curves
Location Months a b c

Thailand Jan. to Apr. 1.0238 0.5473 0.0476
May to Sept. 1.0264 0.4742 0.0649
Oct. 1.0322 0.5139 0.0783
Nov. & Dec. 1.0722 0.6239 0.0634

Honduras Jan. to Mar. 1.0557 0.6260 0.0888
Apr. to Oct. 1.0177 0.5301 0.0725
Nov. & Dec. 1.0260 0.4898 0.1141

Rwanda Jan, Apr., May, 1.0127 0.3387 0.0598
& Aug. to Dec.
Feb., Mar., 1.0356 0.4172 0.0730
June, & July

After the CFD curves of K; were obtained from the historical data, the procedure for the
generation of the hourly solar radiation values had two steps. The first step consisted of
generating solar radiation values for each day based on the CFD of X, for each month. In
the second step, a series of hourly values was obtained by disaggregation of the daily

value using a first order autoregressive model (AR1).

Step 1. Generation of Daily Clearness Index, K,

Daily solar radiation typically exhibits strong correlation between day ¢ and day ¢-/ values

(Amato et al., 1986; Graham et al, 1988) and an AR1 model may be used for the
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stochastic generation of daily values. An AR1 model can be expressed as (Box and
Jenkins, 1970):
2O =prt-D+o (3-1-2)
x, = first order autoregressive term for daily radiation
p = first order autocorrelation coefficient for K
w=normally distributed random number with a mean of zero and a variance of /-p’
t = Julian day, ranging from 1 to 365
~ Where the value of the autocorrelation coefficient can be calculated from the daily data

using (Box and Jenkins, 1970)

n~-1 1 n—1 n
thxt+1 - n—1 X 2%
p= t=1 ; t=1 t=2 ; (3_1_3)

where
x, = measured daily clearness index on day t

n = length of the data set in days

The autocorrelation coefficient is a dimensionless factor, which ranges from -1 to +1. An
autocorrelation coefficient of zero indicates that there is no correlation between

consecutive x values. The @ term represents the random day to day variation.

As shown in Figures 3-2 to 4, K is not a normally distributed variable. The AR1 model

can be applied after transforming K, into a normal variable using a Gaussian mapping
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technique (Amato et al, 1986; Graham et al., 1988). The mapping technique consists of
equating the CFD of K, to the CFD of a Gaussian variable, y(?) by transforming the CFD
function from the K, domain to the y(#) domain. The Gaussian variable y(#) can be

generated using Equation 3-1-2, and its CFD function can be calculated from (Graham, et

al., 1988):
G(x(0) = —;{1 + e;j{%)} (3-1-4)

where
G(yx)=CFD for y

erf()= error function

The CFD function of the measured K is obtained from Equation 3-1-1. Applying the
mapping technique to generate the normalized CFD function, G(¥(?)) is set equal to

F(Ky)

1 /;((t)\—l a
=1 +er, =-0.0] + — (3-1-5)
2\_ k\/})J 1+exp(b th\

c J

where
a, b, c= estimated parameters for the CFD function for daily clearness index
K, = generated daily clearness index which can be rearranged to solve for daily clearness

index, Ki,:

.

a

1
[ prt—D+o\] —Il
L(§L1+er \T)JH)'O]) J

K,=b —cln1 7 (3-1-6)
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A new series of K, values can be calculated after setting the initial ¥ value to zero.
The generated daily solar radiation can be calculated based on the definition of the

clearness index value:

0 (3-1-7)
where
H, = daily solar radiation

H, = extraterrestrial radiation (see Appendices B. Stella Equations).

Step 2. Generation of Hourly Clearness Index Values, &,
Hourly values for solar radiation were generated from the daily values determined as
indicated above. The equation for the generation of the hourly values reported by Knight

et al. (1991) was adopted:

" 105is ol o
’ 0.5(1 4 erf(%n

where K, is the hourly clearness index calculated using an expression which breaks down

k,=K ~1] (3-1-8)

the daily values according to the sunset hour angle (%;, degrees) and the hour angle (4,

degrees) (Duffie and Beckman, 1991).
K, = K, (p +qcos(h)) (3-1-9)
where

p = 0.409 + 0.5016 sin(h, — 60) (3-1-10)
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q = 0.6609 — 0.4767 sin(h, — 60) (3-1-11)

The standard deviation was estimated from (Knight et al., 1991)
| 7K "
o, =0.1557simn| —— (3-1-12)
0.933

And (i) values follow an AR1 model that can be expressed as
wli)=Qy(i—-1)+¢ (3-1-13)
where
w = first order autoregressive term for hourly radiation
@ = first order autocorrelation coefficient for k;
&= normally distributed random number with a mean of zero and a variance of I-&*
i =hour
The random numbers generated are based on ¢, calculated with a @ of 0.54 (Graham and

Hollands, 1990). The initial value of ¥ is zero.

Similar to the daily solar radiation, the hourly solar radiation will be calculated by

H,, (3-1-14)
where
Hj, = hourly solar radiation

Hj,= hourly extraterrestrial radiation

The solar radiation data in the PD/A CRSP database were measured using a photometer,

in terms of the photosynthetically active radiation (PAR, in units of moles of photon/m’
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d). Photometers only measure the number of photons at wavelengths between 420 and
750 nm. For an energy balance model, the solar radiation input needs to be described in
terms of energy (e.g. in units of MJ/m’d). Therefore, the PAR values have to be
converted to total solar energy values. The task is made difficult by the fact that
absorbance in the atmosphere is wavelength and atmospheric conditions dependent.
Therefore, a straightforward universal conversion is not possible. Piedrahita and
Teichert-Coddington (1992) developed a regression equation from side by side PAR and
total energy measurements from the Honduras site. The solar radiation can be calculated
as:

H, =6.37*(PAR —5.5958) (3-1-15)
where

H, = solar radiation, MJ/m*d

PAR = photosynthetically active radiation, PAR>0, pE/m’s.

3.1.2. Air Temperature

Similar to the solar radiation generation model, the hourly air temperature values are
generated in two steps. The first step is to generate daily values and then using the
generated daily values to generate hourly values. The means and standard deviations of
daily maximum and minimum were calculated from the PD/A CRSP data. The daily air
temperature was assumed to follow a normal distribution. Therefore, the maximum or
minimum air temperature are generated by:

T, ()=, +0,2,() (3-1-16)

Where,
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¢t = Julian day

U, = the means of daily maximum or minimum air temperature

o, = the standard deviations of daily maximum or minimum air temperature

X)) =p X (-1 +&, (3-1-17)
This equation is similar to Equation (3-1-2) except for the values which were calculated
using the air temperature data. The means and standard deviations are calculated for
each day of the year. The autocorrelation coefficient is calculated from the data for each
location. The random variable €, is normally distributed with a mean of zero and a

standard deviation of one.

Since the diurnal profiles of daily temperature for the three sites are similar to those of the
sites which Ephrath and co-workers (1996) studied, the hourly air temperature is
estimated using the two equations modified by Ephrath et al. (1996). The day-time (from

sunrise to sunset) equation is expressed as:

T,
Ty =Ty — %+
2

a ammn

(3-1-18)

T ax — Lo U At ¥
—T, ) ¥ (14 —amex_Zamin )P kgin(r ¢ M8
T, Di+2P,

amax

o.s*\/nﬁ +4%(T

and the night time (from sunset to sunrise) equation can be expressed as:

T = ]1amin _Tas *exp(—na /Ta)+(Tas —Tamin)*exp((—ta _ts)/ra) (3_1_19)
1-exp(-n,/7,)

where

T,q = the day time temperature, °C
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T'ymin = the minimum air temperature, °C

T amax = the maximum air temperature, °C

t, = current time, h

thignh = the time of sun at the highest position, h

T, = the night time temperature, °C

T = 15°C, temperature increment parameter

DI = day length, calculated, h

P.4 = delay parameter, h

T.s = temperature at sunset, °C

7, =Time coefficient, h

n, = 24— DI ; Night length, h

t, = sunset time, h

The time coefficients and T, are calibrated based on the data. Since the maximum air
temperature occurs later than the maximum solar height, the parameter P, is used to
calibrate the delay. The parameters were calibrated using the hourly air temperature data

for the Thailand site.

3.1.3. Wind Speed

As in the case of air temperature, very limited wind speed data are available for the PD/A
CRSP sites. Therefore, a very simplistic model was developed for generating wind speed
values. Wind speed is assumed to follow a normal distribution. The daily wind speed

W,p was generated by:

W, (1) = 1, +0,2,0) (3-1-20)
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where

1, = mean of daily wind speed

o,, = standard deviation of daily wind speed

X.)=p,x (t—1D+¢, - (3-1-21)
Similar to Equation 3-1-2, the random variable, y ., is a first order autoregressive term for
daily wind speed. p, is an autocorrelation coefficient of wind speed, and €, is a
normally distributed random number with a mean of zero and standard deviation of one.
The means, standard deviations, and autocorrelation coefficients were calculated from the

data.

From the data, the diurnal pattern of the wind speed shows similarities among the
different locations. To simplify the estimation process, the hourly wind speed values W},
are estimated by:

W, =W,(a,+b,exp(0.5(, -c)/d)?) (3-1-22)
where

t, = time, hr

aw, by, cw, d, are parameters that are estimated for each location using curve fitting
techniques (TableCurve™) (Table 3-3).

Table 3-3. Estimated parameters for wind speed curves

Locations a, b, Cw dy
Thailand 1.098 0.89 21.32 2.04
Honduras 0.575 0.899 9.928 3.687
Rwanda 0.377 1.471 13.047 3.160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

3.1.4. Wind Direction

There are only a few wind direction measurements available from the PD/A CRSP
database. An equation with a normal distribution was used by dos Santos Neto and
Piedrahita (1994) and was adapted in this model. The equation can be expressed as:

/s 2 N N
W = o 1+ (g —2MO) )+ 3-1-23
wd 1 80 ( wd Swd (( 6 ( wd 6 ))) ) /‘lwd ( )

Where

W..a = wind direction

owa = standard deviation of measured wind direction

&vwq = random term generated based on a normal distribution with a mean of zero and
standard deviation of one

L,¢ = mean of the historical data

swa = skewness coefficient.
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3.2. Water Quality Model

The water quality model includes the simulations of water temperature and DO. The
present model has been developed based on the structure of the model proposed by
Losordo (1988) and modified by Culberson (1993). The detailed modeling approaches
were discussed by Losordo (1988) and Culberson (1993). The model description here
intends to avoid repeating the detailed modeling approach and to emphasize the
modification of the model for long term simulations. Culberson (1993) showed that three
volume elements and one sediment element are sufficient to simulate stratification of a
one meter deep pond. The present model simulates the temperature and DO in the three
water volume elements (surface, middle, and bottom layers) and one sediment volume
element of a pond (Figure 3.2.1). The temperature and DO are calculated using the same
approaches as in Losordo’s and Culberson’s models, in which energy and mass balances
are applied on each element. The pond depth is maintained as a constant for an entire

simulation and the simulation time step is one hour.

3.2.1. Water Temperature Model

Water temperature in a fish pond is determined by the heat transfer rates into and out of
the water body (Figure 3.2.1). In general, water temperature distributions depend on the
heat and momentum transfer across the water surface and the gravitational force acting on
density differences in the water column. The heat transfer between the water surface and
the environment is affected by a number of climate factors, such as solar radiation, air
temperature, relative humidity, wind speed, and cloud cover. The net energy in the

surface, middle, and bottom layers is expressed as (Culberson, 1993):
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Surface layer:

Doy = B = Pond T Put = P =P TP £ 80y + B = P (3-2-1)
where

All of the heat flux terms are in units of kJ/m’hr.

dwurr= net energy in the surface layer

¢ = solar radiation entering the surface layer

&n 1 = solar radiation leaving the surface layer

&a: = atmospheric radiation

&5 = radiation emitted by the water

¢. = evaporative heat

@. = sensible heat transfer

¢q 1 = effective heat diffusion between the surface and middle layers
@in = heat in influent water

@ou: = heat in effluent water

Middle layer:
¢mid = ¢sn,1 - ¢sn,2 * ¢d,1 * ¢d,2 (3'2-2)

where
@mia = net heat in the middle layer

¢, 2 = solar radiation leaving the middle layer

¢q 2 = effective heat diffusion between the middle and bottom layers
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Bottom layer:

Poor = ¢:n,2 —¢sn,3 * ¢d,2 + ¢d,3 (3-2-3)
where

dvor = net heat in the bottom layer

& 3 = solar radiation leaving the bottom layer

¢u 3 = effective heat diffusion between the bottom and sediment layers

Sediments:

¢sed = ¢sn,3 * ¢d,3 - ¢gw (3-2-4)

¢ew = heat loss from the sediment to the groundwater

In the energy balance equation, the positive terms are heat sources and negative terms are
heat loss terms or sinks. Some terms may be either sources or sinks, depending on

temperature differences causing the heat transfer.

3.2.1.1. Input Heat Sources

The heat sources include the solar radiation penetrating into each water layer

(0> Bons> Ponz» Psn 5 )» the atmospheric radiation (¢.) on the surface layer, the sensible

heat transfer (¢.), and the heat in the influent water, (¢;,,) .
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3.2.1.1.1. Solar Radiation Penetration

Solar radiation is the major heat source for an aquaculture pond. The amount of short -
wave solar radiation penetrating into the surface, middle, and bottom layers is dependent
on incident radiation, water surface roughness, and water turbidity. The solar radiation

penetrating the surface ¢, can be estimated as (Losordo, 1988):

¢, =0, -0 =¢,(1-R,) (3-2-5)
where

¢ = the measured incident radiation or values generated using a stochastic model

@, = the reflected incident short-wave radiation

Rer= the adjusted reflectivity that takes into account the effect of wind speed W, at a

height Z meters above the water surface. R 1s estimated using the empirical equation
(Losordo, 1988):

R, =R,(1-0.08%,) (3-2-6)

where

R, =the reflectivity of a smooth water surface under scattered clouds estimated as a

function of solar altitude angle (Losordo, 1988),
R = 2.2(l§(2 A)™7 (3-2-7)
T
The solar altitude (A, radians) is calculated from the solar zenith angle, the latitude, the

time of day, and the Julian day. It can be expressed as (Hsieh, 1986),

A =1.57 —arcsin(sinL sin 8 + cos L cos o cosh) (3-2-8)

where
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5=é%gaﬁgm§£am+ﬂmmem (3-2-9)

L = latitude (radians)

h = hour angle (radians), which can be calculated by

h= %(i—‘l{(number of minutes from local solar noon))

The solar radiation penetrating the middle or bottom layers can be estimated using the
Lambert-Beer law (cited in Losordo, 1988):

i =0, (1- R, (A~ Be™™? (3-2-10)
where

& = the solar radiation penetrating the middle, bottom, or sediment layers, i (kJ/mZhr)

z = water depth, m

3 = the fraction of incident solar radiation absorbed at the surface. (~ 0.03, fraction)
(Losordo, 1988)

1w = the effective light extinction coefficient at time t, 1/m

i 1s affected by the light angle of incidence and the water turbidity. A common method
to estimate the light extinction coefficient is to use the empirical function based on Secchi
disk depth (SDD) (cited in Losordo, 1988).

n, =1.7/SDD (3-2-11)
SDD measures the pond turbidity, which varies substantially from time to time due to
changes in the concentration of phytoplankton, suspended organic matter, fish
movements, etc. For a short term simulation, measured SDD values may be used

(Losordo, 1988; Culberson, 1993). However, for a long term simulation, the SDD is a
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variable which has to be modeled. SDD values can be estimated using a correlation

between SDD and chlorophyll-a (Chla) (Almazan and Boyd, 1978; Lee et al., 1991b).

After analyzing several data sets from the PD/A CRSP database, a linear relationship
between chlorophyll a and overall light extinction coefficient was found (Jamu et al.,
1999). The overall light extinction coefficient is the sum of phytoplankton and non-

phytoplankton coefficients, and can be expressed as,

My =My — M. Chla (3-2-12)
where

= light extinction due to non-phytoplankton contribution, m’

1k = light extinction due to phytoplankton contribution, (m (ug/L Chla ))*

Chla = Chlorophyll a concentration, pg/L

The . and 7, can be estimated using regression equations based on the measured SDD
and Chla for a particular site. The 7, is relatively constant (Jamu et al., 1999). The 7,

is affected by clay, organic matter, and other particles in the water.

3.2.1.1.2. Atmospheric Radiation

The heat radiation from the atmosphere has been taken into account in the energy balance
(Equation 3-2-1). The atmospheric heat radiation is the sum of the long wave radiation
emitted from water vapor and other atmospheric gases. The net atmospheric radiation

equation used by Losordo (1988) is

G = (1= r)ec(T)* (3-2-13)
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where

r = the reflectance of the water surface to long wave radiation (~ 0.03, decimal fraction)
e = the average emittance of the atmosphere (dimensionless); which can be estimated as:
e=0.398x107 (T, )*'* (3-2-14)

o = Stefan-Boltzman constant, 2.04x107(kJ/m” hr K*)

T, = the absolute air temperature two meters above the water surface (K)

3.2.1.1.3. Sensible Heat Transfer

Sensible heat transfer is the heat transfer between the water surface and air through
conduction and convection. The sensible heat term can be a heat source or heat sink
depending on the temperature difference between the water surface and air. For a fish
pond, the sensible heat transfer rate is expressed as (Losordo, 1988)

¢ =1.5TW, (1, -T,.) (3-2-15)
where

W, = the wind speed at two meters above the water surface, km/hr

Turr= the water surface temperature, °C

T, = the air temperature, °C

3.2.1.1.4. Water Inflow

Energy in inflow water can be calculated by
¢in = T}n Qin C‘pw pw /A (3-2_16)

where
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T;, = water temperature of inflow water, °C
0., = inflow rate, m*/hr
¢yw = heat capacity of water, 4.1816 kJ/(°C kg)

p,, = water density, kg/m®, calculated by (Spain, 1982, cited in Culberson, 1993)

p, = ((0.99987 +(0.69% 10°) x T,,, ) -

(8.89x10°)x T +(7.4x107%)x T ) x 1000
surf surf"

(3-2-17)

A = surface area, m?
It is assumed that all influent water goes to the surface layer and all effluent water comes

from the surface layer, with no direct energy changes in the other two layers.

3.2.1.2. Heat Loss
Heat losses from the pond water include water surface radiation, evaporative heat, and
heat losses to the sediment and ground water. As indicated earlier, sensible heat may be a

sink if the surface water temperature is higher than the air temperature.

3.2.1.2.1. Water Surface Radiation

The long-wave back radiation emitted from the water surface to the atmosphere depends
on the water surface temperature and the water emissivity. The back radiation from the
water surface can be estimated by (Losordo, 1988):

s =£,0(Tx)" (3-2-18)
where

&= the emissivity of the water surface (the ratio of actual radiation to the ideal black

bOdY)’ ~0.97
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T, . = the absolute water surface temperature, K

3.2.1.2.2. Evaporative Heat

Heat loss from water evaporation is due to the heat required to evaporate water from the
pond surface. Many factors influence the evaporation rate, such as wind speed, air
temperature, surface water temperature, atmospheric pressure, vapor pressure, and

relative humidity.

Values for most of these factors cannot be obtained directly. Therefore an empirical

equation as a function of wind speed and vapor pressure was used by Losordo (1988) and

Culberson (1993),
¢e = NWZ(es —ea) (3-2-19)
where
N = empirical coefficient, 5.06 ———-—
m*km mmHg

e, = saturated vapor pressure at Tyx, mmHg
e, = vapor pressure in the overlaying air, mmHg

and e; and ¢, can be estimated as:

e, =25374exp(17.62-5271/T,,) (3-2-20)
e, = Rh25.374exp(17.62 - 5271/T,,) (3-2-21)
where

Rh = relative humidity 2.0 m above the water surface (fraction)

T.x = air temperature, K
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For those locations for which R% values are not available, a substitute equation can be
used (Culberson, 1993).

e. =610.78exp[17.2694(T, —273.16) (T, —35.86)] (3-2-22)

where

T, = dew-point temperature, K

Because the dew-point temperature Ty is not recorded in the PD/A CRSP database and is
rarely available for pond sites, the daily average dew-point temperature can be estimated
by subtracting 2 °C from the morning minimum dry-bulb temperature (Culberson, 1993).
Culberson (1993) pointed out that accuracy in the estimation of Ty 1s critical because the
heat loss due to evaporation may be as high as one third of the total energy loss from the

water column.

3.2.1.2.3. Heat Loss to the Sediment and Groundwater
The heat loss by conduction from the water column to the sediment can be simulated as a
function of thermal conductivity and the water temperature difference between the bottom

volume element and the sediment element. The equation is expressed as (Losordo,

1988):
T, -T,
Do = K oy (1) (3-2-23)
z sb
where
K ,,= thermal conductivity coefficient for the sediment, ~2.53 }I:Joc
mhr

T,

b = bottom layer temperature, °C
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T

sed

= sediment temperature, °C

Z,» = distance between the centers of the bottom and sediment elements.

The sediment element is assumed to be 20 cm deep and have the same density as water.

The heat loss from the sediment to the groundwater was included in Losordo’s (1988) and
Culberson’s (1993) models. The simulation results from Culberson’s model show that
the heat loss from the sediment to the groundwater is only 2% of the total heat loss from
the fish water column in a fish pond at a Rwanda site. However, the heat sink to the

groundwater remains in the present model (Losordo, 1988).

=k (et Lo 3-2-24
Do = e(*é—) (3-2-24)

sg
where

kJ

mhr°C

k. = thermal conductivity coefficient for the earth, ~2.53 (Culberson, 1993)

T,, = groundwater temperature, °C

Z,, = depth between the sediment and ground
The distance between the sediment and the groundwater is assumed to be 5.0 meters. The

groundwater temperature is given.

3.2.1.2.4. Heat Loss from the Effluent
The heat losses due to the effluent can be estimated using a similar equation to that used

for the influent:

¢out = Tout Qout cpw pw /A (3‘2-25)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

where
T,.: = water temperature in the effluent water, which is the water surface temperature, °C

Oou = effluent flow rate, m*/hr

3.2.1.3. Heat Transfer within the Water Column

The heat transfer rate between two adjacent volume elements in the water column is
dependent on molecular diffusion, effective diffusion (turbulent diffusivity), and
convective mixing (caused by buoyant instability) (Jergensen and Gromiec, 1989). The

effective diffusion term often includes the effect of molecular diffusion.

3.2.1.3.1. Effective Diffusion

Heat transfer by diffusion was described by Losordo (1988) as:

Pai = P Cpw E. (AT 1 AZ) (3-2-26)
where

¢q.; = heat transfer rate between adjacent volume elements, kJ/hr m?

E, , = effective diffusion coefficient at depth z, m’/hr

AT/AZ = temperature gradient between the adjacent volume elements, K/m

The effective diffusion coefficient £, , can be estimated from a neutrally buoyant

diffusion coefficient, E,, (diffusion if the water column is at neutral buoyancy with no
density gradients) and a Richardson number, R, (Culberson, 1993).

E,, =E,, /(1+0.05R) (3-2-27)
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The neutrally buoyant diffusion coefficient is a function of wind shear stress, drift

velocity and a decay coefficient (Culberson, 1993).

E,, = [(22) A k" Yexp(=k " z) /3600 (3-2-28)
P,

where

z, = p,C.(W,) wind shear stress, N/m’ (3-2-29)

L, =30(=2)% drift velocity, m/s (3-2-30)

k' =6(4,,)"" decay coefficient, m™ (3-2-31)

where

Pq = air density (kg/m3)

C, = the coefficient of aerodynamic resistance, 0.001 (Losordo, 1988)

W,. = wind vector magnitude at height z = 10 meters above the water surface (m/s)
A,,s =wind shear area

The Richardson number represents the ratio of buoyancy and shear forces, and can be

calculated as (Losordo, 1988):

(avxgxzz)](é_T_

R, =[
(z,/p,) AZ

) (3-2-32)

where

a, = coefficient of water expansion which is estimated by
a, =1.5x107°(T, , —277)-2.0x107(T, , —277)*, UK (3-2-33)
g = gravitational acceleration constant, 9.8 m/s’

z = height at which the Richardson number 1s used, m
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T,.x = average temperature of the two adjacent volume elements, K

3.2.1.3.2. Convective Mixing

Convective mixing accounts for the effect of mixing due to buoyancy instability when the
density of the upper water layers is higher than that of lower layers. Since convective
mixing is much stronger than turbulent diffusion, a maximum effective diffusion

coefficient, Enay, 1s used to simulate convective mixing (Losordo, 1988).

If the temperature in a volume element is higher than in the elements above it, then
convective mixing occurs and the effective diffusion coefficient is set to Epax. The value
of Enax has to be adjusted based on the numerical stability of the model. Values between
0.018 and 21.02 m?/hr were found from Lake Ontario by Chapra and Reckow (1983).

Losordo (1988) and Culberson (1993) used 0.06 m*/hr for fish pond models.

3.2.1.4. Temperature Calculation

A detailed calculation procedure is explained by Losordo (1988). The temperature for
each volume element is calculated as

L, =T, n+AT, n (3-2-34)
where

i = the volume elements, from 1 to 3

At = simulation time step

T.:.n = temperature of water layer 7 at the previous time step, °C
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¢4

AT, S E—
(pwcpwl/i)

it=At T

At (3-2-35)

¢ = net heat flux for the volume element calculated from equations 3-2-1 through 3-2-4
V; = volume of water layer i, m’

The initial temperature for each element is given. The net heat flux, 4,, is set to zero at

the beginning of the simulation.

3.2.2. Dissolved Oxygen Model

The DO model has a structure similar to that of the temperature model. There are three
volume elements. Mass balances for each volume element are carried out in terms of
rates of oxygen input, output, production, and consumption. The input terms include
reaeration at the surface layer and diffusion between adjacent elements. The production
term is due to photosynthesis. The oxygen consumption terms include phytoplankton
respiration, fish respiration, organic oxidation, nitrification, and sediment respiration.
The present model is based on the structure of a previous model (Culberson, 1993). The
model has been modified for long term simulations. The major changes in the DO model
are: (1) the separation of the water column oxygen consumption term into terms for
organic matter oxidation and nitrification; (2) the combination of phytoplankton
consumption in the dark and light period; (3) using a dynamic carbon to chlorophyll a
ratio; and (4) including the effect of nitrogen on phytoplankton growth.

The oxygen mass balance at each volume element is shown in Figure 3.2.2. The

equations for the three volume elements can be expressed as (after Culberson, 1993):
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Surface layer:

Msurf = Mphy,l iMd,l iMd,2 _Mﬁsh _Mpr _Mnr —Mog +Min _Mout (3-2-36)
Middle layer:
Mmid = Mphy,Z iMd,Z iMd,S _Mﬁsh _Mpr _Mnr "Mog (3-2-37)

Bottom layer:

M, =M, tM,;-M,, -M, -M -M, -M, (3-2-38)

bot — M oppy3 —

where

All terms are in units of mg O,/hr.

My, Mimia . Mpor = DO change rates in the surface, middle, and bottom volume elements,
respectively

Mopy, 1, Mpny, 2, Mpy, 3= 0xygen production rate due to photosynthesis in surface, middle,
and bottom elements, respectively

M, ;= reaeration rate at the water surface

M, My ;= oxygen diffusion rate between the surface layer and middle layer, and

between the middle layer and bottom layer

M, = fish respiration rate

M, = phytoplankton respiration rate

M, = oxygen consumption rate due to nitrification

M,¢g= oxygen consumption rate due to organic matter oxidation

M;.q=DO consumption rate by the sediment

M, = oxygen transfer rate with influent water

M,,,; = oxygen transfer rate with effluent water
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Figure 3.2.2. Schematic diagram of the dissolved oxygen model
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All terms in equations 3-2-36 to 3-2-38 are explained in sections: source inputs (Mpyy, ;,
Mg 1), oxygen consumptions (Mpr, Mpsn, Mog, My, Mieq), oxygen diffusion between

adjacent elements (M, , M3 ), and oxygen in the water influent and effluent (M;,, M,,,).

3.2.2.1. Input Sources
The input sources for the whole water column including photosynthesis and surface water

reaeration are described below.

3.2.2.1.1. Photosynthesis

The oxygen production rate through photosynthesis depends on the light intensity,
temperature, nutrient concentration, and concentration of chlorophyll-a (Chla). The
photosynthetic oxygen production rate can be expressed as (Lee et al., 1991a):

M, .=P. f()f(T)f(N) ChiaV, (i=1,2,3) (3-2-39)

phyi = % max

where

Ppnax 1s the maximum oxygen production rate due to photosynthesis and can be calculated
based on the maximum phytoplankton growth rate at light saturation and the ratio of
carbon to Chlorophyll a (CChla, mg C/mg Chla) (Giovannini, 1994):

P.. =u,. . CChla (mg Oy/mg Chla /hr) (3-2-40)
where pmax 1s the maximum phytoplankton growth rate, mg O,/mg C/hr and can be
estimated using an equation developed by Giovannini (1994):

Hoax = ((107(0.0275* T, , —0.23))/12)) *2.67 (3-2-41)

where
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T, = the optimal temperature for phytoplankton growth, °C
The estimation of CChla 1s described in a latter part of this section.
f), (1), and f{N) are functions quantifying the effect on photosynthesis of light,

temperature, and nitrogen, respectively. They are described below.

The effect of light on photosynthesis is described using Steele’s equation (Steele, 1962)

)= }-I— exp(l1- IL) (unitless) (3-2-42)

where

I = light intensity, umole/mz/s

Lax = saturated light intensity, pmole/mz/s

The equation describes the effect of light intensity on photosynthetic rate. When light
intensity is equal to or larger than the saturated light intensity photo-inhibition will occur
and photosynthesis will decrease. The estimation of 1., will be described below.

The temperature effect factor can be described as (Lee et al., 1991b)

f(T)=1.066"="*" (unitless) (3-2-43)
where T, 1s the average temperature of the three layers, °C

The nitrogen limitation factor is based on the assumption that the nitrogen uptake rate by
phytoplankton is limited by the concentration of total ammonia nitrogen (TAN) and a
half-saturation constant for TAN (Thomann and Mueller, 1987 and described in Lee et
al., 1991b):

N
N)y=——4"___  (unitless 3-2-44
S(N) K, N, ( ) ( )
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where

Ky = half saturation constant for TAN, pg/L

N4m = TAN concentration, pg/L

The maximum specific growth rate, fi,q, 1s obtained empirically. The CChla ratio varies
from 12.5 to 50 (g carbon/g Chla; Reynolds, 1984) due to the effects of light intensity,
temperature, nutrients, etc. The estimation of CChla is based on the assumption that the
initial slope of the photosynthetic rate vs. light intensity curve is constant. The ratio of
carbon to Chla was found to be almost constant during 24 hours under a light intensity
between 15 and 1500 pmole photons/m2 /s (Cosper, 1982). The photosynthetic
production rate can be described in terms of carbon, based on CO; fixed in algal cells

using the stoichiometric mass equivalent of oxygen to carbon in CO; (2.67 mg O,/mg C,

Lee, et al., 1991b):

M 1y _ P DT fN)

= 3-2-45
(2.67*Chla)V, 2.67 ( )
Let
M
Phyt = P (3-2-46)
(2.67*Chla)V,

V; = water volume for layer i (m®)
For small I, the slope of the photosynthesis rate vs. light intensity curve, « is estimated

by

d(Phyt
o= (dly I (3-2-47)

where « is in units of (mg C/(mg Chla hr))/( pmole/m? s)
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Substituting Equations 3-2-45 and 3-2-46 into 3-2-47, and then rearranging,

d(Phyt) u_ CChla e
og=—="| =-T= Y (N 3-2-48
o = Y f(T)f(N) ( )
therefore
CChia = 287% Low 1 (3-2-49)

o € S(DS(N)

To simplify the equation, the effect of nitrogen was assumed to be minor, so the equation
1s reduced to:

267a I, 1
Mo € J(I)

CChla =

(3-2-50)

The ratio of carbon to Chla is directly proportional to I and is inversely proportional to
Wmax and f{T). The value of a can be obtained from local data or inferred from previous
data. In the present model, the value of « is inferred from Culberson’s model. It is
difficult to determine the saturated light intensity 7, for a long term simulation because
the light-limited photosynthetic efficiency is not constant and because of adaptation of
phytoplankton to the prevalent light regime. The photosynthetic capacity has been found
to be affected by the cell’s recent light history (Reynold, 1984). The present model takes
into account the past history of light intensity to which phytoplankton have been exposed.
L4 can be determined from the previous three days’ light intensity (Lee et al., 1991b),

I .=071 +0.21

+0.17 (3-2-51)

max, i max,i—1 max,i-2 max,i-3
where
Lax i-ty Tnax i-2, Imax i-3 are the maximum light intensities on one day, two days, and three

days before day 7, respectively. At i=1, Lyqy ;s 1S given.
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Although the effect of nitrogen on the carbon to chlorophyll a ratio was assumed to be
small, its impact on photosynthetic rate is included in the model. The input TAN sources
are fertilizers, excretion by fish, and the decay of detritus and dead phytoplankton. The
nitrogen release rate from the fertilizers and detritus is estimated based on the organic
matter decay rate. The nitrogen excreted by fish is assumed to be proportional to the total
uptake of food. The half-saturation constant, Ky is in the range of 10 to 20 ug/L (Lee et

al.,, 1991b).

Chla is a variable obtained using a mass balance (see Section Phytoplankton Model).

3.2.2.1.2. Reaeration

Water surface reaeration can be either a source or a sink depending on the DO difference
between the surface water and the air. A first order function is used to predict the
reaeration rate (Culberson, 1993):

M, =K,(C, -DO,, )*1000* 4 (3-2-52)
where

K,q = oxygen transfer coefficient, m/hr. It can be determined by (Banks and Herrera,
1977):

K,, =0.0036(8.43W,,)*° —3.67W,, +0.43(W,,)’ (3-2-53)

W,s = wind speed at two meter above the water surface, m/s

Cs = saturated DO in water at a given elevation and temperature, mg/L. It can be

calculated by (Culberson, 1993):
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C, =(14.625-0.41022T,

Ly +0.007991(T,,,)* —0.0000778(T,,,)*)
(1-0.0001E)

(3-2-54)

E = site elevation, m

DO,y = oxygen concentration for the surface layer, mg/L.

3.2.2.2. Oxygen Consumption
Oxygen consumption in the water column is due to phytoplankton respiration, fish
respiration, organic matter oxidation, nitrification, sediment respiration, and DO in the

water effluent.

3.2.2.2.1. Phytoplankton Respiration

Oxygen consumption by phytoplankton can be divided into two parts: one is the
respiration due to photosynthesis (light respiration) and the other is the respiration due to
maintenance (dark respiration) (Losordo, 1988). Because the light respiration is related to
the oxygen production rate, it can be estimated in proportion to the photosynthetic rate.
The light respiration rate has been estimated using 10% of the primary production rate
delayed by 3 hours (Culberson, 1993). This simple model provides satisfactory results.
However, Giovannini (1994) pointed out that the simple model might not be true for all
fish ponds and the use of this simple model for a long term simulation may be limited.
The phytoplankton respiration during the night time hours is included in the water

column respiration term (Losordo, 1988; Culberson, 1993).
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In the present model, the light and dark respiration during the light time hours are
simulated based on the Chla which is simulated dynamically. The respiration is

calculated based on the temperature and on the concentration of chlorophyll a:

Chla
Mpr = Kr20f(T) K (3_2_55)

e+ Chla

where

K ,, = maximum phytoplankton respiration rate at 20 °C, mg Oy/hr

K_,,, = half-saturation respiration constant, mg/m’ Chla

3.2.2.2.2. Fish Respiration

Fish respiration rate for tilapia was calculated using the regression equation developed by
Boyd (1979) for estimating channel catfish respiration. The equation has been found to
provide satisfactory estimations for tilapia (Culberson, 1993). The equation is a function
of water temperature and fish mass (Culberson, 1993).

M., =10" W, Fish,,, (3-2-56)
where

x=-0.999-9.57x10" x W, +6.0x107 xW,” +3.27x107 xT,,,
-8.7x107°xT,,” +3.0x107" xW, xT,

ave

(3-2-57)

W;= average fish mass, g/fish
Fishy,, = total number of fish

Tave = average of Tsy,p, Tnia, and Tpo, °C.
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3.2.2.2.3. Organic Matter Oxidation

Suspended organic matter consumes oxygen. The organic matter is composed of
fertilizers (chicken manure and fresh cut grass), detritus, and fish feces. Mass balances of
organic matter are described in Section 3.2.5. The oxygen consumption for all types of

organic matter due to oxidation is calculated by:
M, =F,Q OM,,,,) (3-2-58)
i=1

where

F,; =oxygen consumption due to organic matter decomposition, mg O/ mg OM
OM ecay,: = Organic matter decay rate estimated from Equation (3-2-85), mg OM/hr
m = number of organic matter sources included in the model: m=4 in the model. It

includes chicken manure, fresh cut grass, fish feces, and detritus.

3.2.2.2.4. Nitrification

Ammonia concentration represents the total ammonia nitrogen (TAN) from fertilizers and
fish wastes. Nitrification is a two step process where ammonia is oxidized to nitrite and
then to nitrate. The rate of nitrification is sensitive to pH and temperature (Boyd, 1979).
Although pH in a pond varies over time, the model uses a constant pH value because
modeling pH fluctuations was beyond the scope of this work. A simple first order
function of TAN was used for simulating nitrification rate. The equation can be
expressed as (Lee et al., 1991b):

M, =457k N, /1000 (3-2-59)

where
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4.57 = stoichiometric coefficient for oxygen consumption in nitrification, mg O,/mg N,
k. =0.1(1.08)7* (3-2-60)

k,, = nitrification rate, 1/hr

3.2.2.2.5. Sediment Respiration
Although there are many factors affecting sediment respiration, sediment respiration is
described by a simple function which includes the influence of temperature (Jamu, 1998).

The model is expressed as (Culberson, 1993):

M., =K,0""™ (3-2-61)
where

K;.q = sediment respiration rate at reference temperature, Ty, mg O/ hr

0= temperature correction factor, 1.065 (Culberson, 1993)

3.2.2.3. Oxygen Diffusion between Adjacent Elements
The process of oxygen diffusion between adjacent water layers is analogous to that for

thermal energy. Effective diffusion is calculated as (Losordo, 1988):

M, =& 4 22%000 (3-2-62)
Y/

where
E, .= effective diffusion coefficient at depth z (see Equation 3-2-27), m*/hr
ADO = oxygen concentration difference between adjacent layer, mg /L

AZ = depth difference between adjacent layers, m
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3.2.2.4. Oxygen in the Water Influent and Effluent
The oxygen input to the surface layer is calculated as
M, =0,D0,1000 (3-2-63)
where
DO;, = DO concentration in the influent water (mg/L)
The oxygen output in the effluent water can be calculated by

M, =0, DO, 1000 (3-2-64)

urf
The effluent concentration is assumed to be same as the concentration of the surface

layer, DOsyurp, Qiny, Qows, and DO, are given.

3.2.2.5. Dissolved Oxygen Calculation
Similar to the temperature model, the DO for each layer at any time is calculated by

AM .
DO;, =DO;, s + me (3-2-65)

where
DOi,t =DO in layer i at time ¢
AM,,.; = the net change of DO mass in layer i between time ¢ and ¢-At, calculated from

equations 3-2-36, 37, or 38 multiplied by 4t.
3.2.3. Phytoplankton Model

Phytoplankton concentration affects water temperature, DO, and food availability. As

described early, phytoplankton is modeled in terms of chlorophyll a (Chla). Because
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there are no data for the distributions of chlorophyll-a concentration in the water column,
the distribution of chlorophyll-a is assumed to be uniform. The production term is
estimated from the primary production rate. The consumption terms include the rates of
fish grazing, sinking to the sediment, and non-predatory mortality. The model can be
described as:

Chla,, =Chla,,,, —Chla,,,, —Chla,, 6 —Chla

prod graze

+Chla, - Chla,, (3-2-66)

sink
where

All terms are in units of mg Chla/hr.

Chlay,., = the net growth rate of chlorophyll in the water column
Chlay,.q = production rate

Chlag .= grazing by fish

Chlajeqq= non-predatory mortality rate

Chlag,= sinking to sediment

Chla;,= in the inflow water, assumed as zero

Chla,,~ in the effluent water

3.2.3.1. Chlorophyll a Production

The production rate is calculated based on the primary production rate

3
ZMphy,l

Chla,, , 6 =—-——

i F_, CChla

co2

(3-2-67)

where

M, = photosynthetic rate obtained from Equation 3-2-39, mg O,/ hr
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Fcoz = stoichiometric equivalent factor, 2.67 mg O,/mg C

CChla = ratio of carbon to Chla, from Equation 3-2-50, mg C/mg Chla

3.2.3.2. Chlorophyll a Consumption

All consumption terms are described using a first order function proportional to the
concentration of chlorophyll-a. The consumption rates are estimated from Lee et al.
(1991a). The Chla uptake rate by fish is dependent on the grazing coefficient, fish
population, and the ratio of Chla to phytoplankton dry weight. The equation can be

expressed as:

Chla, =R, _Fish  F,_,x1000 (3-2-68)

graze graze pop L cce
where

Rgraz= fish grazing coefficient that is calculated from Equation 3-3-2 (Fish growth
model), pg dry weight/(hr fish)

Fishp,p = fish population, fish

Fccenp = ratio of Chla to cell dry weight, range can be 0.005 to 0.012 pg Chla/pg dry

weight (Reynolds, 1984)

Phytoplankton death may cause significant population reduction. A variety of reasons
may cause phytoplankton death, such as inadequate light and nutrients, exposure to toxic
substances, infection by fungi, bacteria, and viruses (Boyd, 1979). To simplify the model,
a first order equation can be used (Lee et al., 1991b):

Chla,, =K, ChlaV (3-2-69)
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where

K jeaq = death rate, 1/hr

Some phytoplankton particles will sink to the sediment because their density is higher
than that of water. The settling rate is a species and site specific variable. Since no data
are available from the CRSP database on sinking rates, it was estimated using a simple
zeroth order model (Losordo, 1988).

Chla,, =K, ChlaV (3-2-70)
where

Kini = settling rate, 1/hr

The effluent water will remove chlorophyll a from the pond, which was incorporated into
the model as:

Chla,, =Q,,Chla (3-2-71)

3.2.3.3. Chlorophyll a Calculation
The Chla at time t can be calculated by

Chla, = Chla,_,, +%At (3-2-72)

3.2.4. Total Ammonia Nitrogen Model

The nitrogen model is based on a mass balance of total ammonia nitrogen (TAN) in the

water column. The nitrogen in the pond is assumed to be completely mixed. The
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nitrogen sources include applied inorganic fertilizers, mineralization of organic nitrogen,

and excretion by fish.

The mass balance can be expressed as:

Nnet=N +Nadd+Nﬁ:h+Nsed+Nin_Nphy.—Nnitr_N N (3_2'73)

orgn leach — *" out
where

All terms are in unit of mg/hr

N, = total ammonia nitrogen accumulation rate in the water column
Norgr= TAN production due to mineralization

Nuaa = TAN application rate through fertilization

Njisn = TAN excretion by fish

N;ea = TAN production by diffusion from sediments

N;, = TAN additton in the influent water

Npiy = TAN uptake by phytoplankton

N,i»= nitrification rate

Nieach = TAN leaching to lower sediment

N,,.. = TAN removed in the effluent water

Organic matter decomposition rate affects the concentration of TAN. The TAN

production due to organic mineralization is estimated by (Jamu, 1998).

N = F (Z OMdecay,i) (3-2-74)
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F, = fraction of nitrogen in organic matter, mg organic N/mg OM

The amount of ammonia nitrogen added through fertilization is estimated based on
nitrogen content of the fertilizer. For urea, the equation is expressed as:

N i = FotaU ot (3-2-75)
where

F 44 = fraction of ammonia nitrogen in the fertilizer, mg N/mg urea

U,4q = added amount of urea, mg urea/hr

TAN excretion rate by fish is estimated based on the feed intake. The equation is
expressed as:

N, =K_,. R

fish fishn L% fish (3-2-76)
where
Kjisnn = fraction of feed intake excreted as TAN, mg N/g feed

Ry = feed intake rate, g feed/hr

The nitrogen diffusion from the sediment is affected by the sediment temperature.
Ny = Ry g0 (3-2-77)
where

Ryieq = the diffusion rate from the sediment to the water column, mg N/hr (Shroeder,
1987)

0 = temperature coefficient for sediment diffusion, 1.024
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Ts.q = sediment temperature, °C

Tseare/~ sediment diffusion reference temperature, °C

The diffusion rate Ryeq 1S assumed to be a constant (Jamu, 1998). The sediment
temperature is simulated and the sediment diffusion reference temperature is a constant
but varies with location. It was assumed to be the initial water temperature in the current

model.

Leaching of TAN in the water column to the sediment depends on the concentration of
TAN in the water column and the transfer rate. The equation can be expressed as:

N,

reach = Kicaan N amV (3-2-78)

leach
where
Kieacn = TAN leaching rate calculated based on infiltration rate and the depth of the

sediment, 1/hr

The nitrification rate uses a first order equation as:

N =k, NV (3-2-79)

The rate of nitrogen uptake by phytoplankon depends on the phytoplankton growth rate.
It is expressed as

F

phyt

N, =Chla (3-2-80)

phyt prod

where
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Chlay,.q= Chla production rate (see Equation (3-2-67)), mg Chla/hr

Fpny = mg N/mg Chla

The nitrogen from the influent added in to the pond is calculated using
N;, = Oy Ny, x1000 (3-2-81)

where

Ninsiw = TAN concentration in the influent, mg/L

The nitrogen loss to the effluent is expressed as:

N, =0, N, x1000 (3-2-82)

The ammonia nitrogen in the pond at time t can be calculated by
N, /1000=N,  /1000+N,, Az (3-2-83)

3.2.5. Organic Matter Model

Three major types of organic matter are modeled: fertilizer (chicken manure and fresh
grass), detritus (dead phytoplankton), and fish feces. The organic matter distributions in
the water column are assumed to be uniform with no re-suspension from the sediment.
The decay rate varies with the chemical composition of organic matter and environmental
variables. The oxidation of each of the types of organic matter was calculated used
different oxidation rates by Jamu (1998). In the present model, the decay rate for each
organic matter was obtained based on the content and decomposition rates of

carbohydrates, protein, and cellulose. The decomposition rate for each organic matter
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type is assumed to follow a first order function with a constant decay coefficient. The
effect of water temperature on reaction rate is included in the model.

Organic matter can be estimated by

OM,,,=0OM,  —OM -OM

—OM (3-2-84)

net,i decay,i fish,i sed i
where

OM,.;; = net organic matter i accumulation rate. It can be chicken manure, cut grass, fish
feces, or detritus.

OM,, ; = organic matter i input.

OM jecay,i = decomposion rate of organic matter Z, described as

OM .., = KonronRosrson + Koy Ry + Koy R YOM (3-2-85)

decay,i carbont carbon epflep celtucellu
where
kcarbons ke, keenu = the decay rate for carbohydrate, crude protein, and cellulose,
respectively.
Recarbons Reps Reenri= the fraction of carbohydrate, crude protein, and cellulose in
organic matter i,
OM; , = organic matter i content at time ¢ (see Equation 3-2-88)
OMj; ; = organic matter grazed by fish.
OM 4 = R popiaren OM. (3-2-86)
where

Réishiaken,i 18 the fraction of fish food taken from organic matter directly

OMq,; = organic matter that sinks to the sediment
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oM_,. =k, .OM (3-2-87)

sed,i orgset,i it
korgser 18 the sink rate of organic matter. The same sink rate was used for fertilizer
and fish feces.

All terms are in units of mg OM/hr

The inputs of chicken manure and cut grass are applied as fertilizers. The detritus input is
calculated from the dead phytoplankton (see equation 3-2-69). The fish feces input is
calculated based on the efficiency of food assimilation, b (see equation 3-3-1), the amount
of food taken by fish, and the number of fish.

The organic matter content can be calculated by

OM,, =OM ,,_, +OM,, At (3-2-88)

net,i

3.3. Fish Growth Model

Fish growth rate is affected by environmental and physical factors, such as water quality,
fish stocking density, food availability, and food quality. Several researchers have
developed fish growth models using the CRSP database (Liu and Chang, 1992; Nath,
1996; Jamu and Piedrahita, 1996). The model developed by Liu and Chang (1992)
evaluated the effects of fertilization, stocking density, and spawning on tilapia growth.
Their model was modified by Nath (1996) by adding more variables, such as photoperiod,
water temperature, DO, unionized ammonia, and food supply. Jamu and Piedrahita
(1996) modified the model by including factors to account for multiple food resources
and food qualities. The current model is focused on the effects of the water quality on

fish growth over a full growing season. The variables considered to have an impact on
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fish growth include water temperature, DO, unionized ammonia, and the concentration of
three types of food sources (phytoplankton, non-phytoplankton, and supplied feed). Fish
population is estimated based on an assumption of no reproduction. The mortality rate is
estimated based on the data obtained from the PD/A CRSP database. The simulated fish

growth rate is based on the average weight of an individual fish.

The structure of the model is adapted from the one developed by Jamu and Piedrahita
(1996) and is based on bio-energetic principles. Fish growth is estimated based on the
energy difference between the inputs and outputs in a fish body. The energy input comes
from food intake; the energy outputs account for the energy consumption through food
assimilation and metabolism. The model is based on the assumption that the composition
of feed and fish are the same, and the equation is expressed as (Nath, 1996):

aw, ]
—L=b(-a)R- k7, (3-3-1)

where

W;= fish mass, g

b = average feed assimilation efficiency, unitless

a = fraction of feed assimilated which is used for feeding catabolism, 0 to 1, unitless

R = feed uptake rate, in terms of fish mass, g/hr

R =hA,n,f(Temp) f(DO)f(NH,)W" (3-3-2)
h = coefficient for food consumption, g' ™/hr
Ar=relative feeding level, O to 1, unitless

ny = feed preference factor, 0 to 1, unitless
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f{(Temp) = factor for temperature effects on feed intake, 0 to 1, unitless
f(DO) = factor for DO effects on feed intake, 0 to 1, unitless

f(NH;) = factor for unionized ammonia effects on feed intake, 0 to 1, unitless
m = exponent of anabolism, unitless

k = coefficient of catabolism, g' "/hr

n = exponent of catabolism, unitless

The parameter a represents the energy used for feeding. The parameter b accounts for the
efficiency of the nutrient digestion by fish. The parameter 4 is the coefficient of food
consumption under optimal condition (Nath, 1996). The values of these three parameters
depend on the food type and on fish species and size. The overall energy losses in the
model include fish excretion, urinary waste, heat increase, and catabolism of fasting fish.

These losses are all accounted for by the catabolism term in Equation 3-3-1.

The equations for estimating the effects of water temperature, DO, unionized ammonia,

and food availability are described below.

3.3.1. Water Temperature Effects

Water temperature affects the food intake (Brett et al., 1969). Caulton (1978) described
the relationship between temperature and feed intake for tilapias. Food intake rate
reaches the maximum value when the temperature is in an optimal range. If the

temperature is outside the optimal range, the food intake rate decreases. Food intake
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stops when the temperature is outside the limit range. The temperature factor (from 0 to

1) can be described as (Svirezhev and co-workers, 1984):

S (Temp) = exp{-~4.6[(T " TINT ooy T,: )1} o T<T,,

(3-3-3)
= exp{-4 6T T o) (T T,y f T2T,,

where

Tmin = below this temperature fish stop eating, °C

T,.ax =above this temperature fish stop eating, °C

T,pr = optimum temperature for fish taking food, °C

The values of the optimal and limit temperatures vary with species. Nath (1996)
suggested that Tpin = 15°C, Trmax=40°C, and Topir=33°C (range is 30 to 36°C) for tilapia.
The catabolism term is also affected by temperature. The effect is described as (Nath,
1996):

k=k,exp[s(T-T,)] (3-3-4)
where

kmin = coefficient of fasting catabolism at Tpyn, gl'"/hr

§ = aconstant

The knin and s can be determined through model calibration and %, = 0.025 and s=0.015
were found suitable for tilapia in the model developed by Nath (1996). The range of &
was 0.0319 to 0.0468 from an earlier published model (Liu and Chang, 1992). In early

models, fish growth was simulated on a daily basis (Nath, 1996; Liu and Chang, 1992).
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3.3.2. Dissolved Oxygen Effects

The effect of DO on fish growth is described in three stages. When DO is below the
minimum limit level, DO, fish feeding stops. When DO is above a critical level,
DO.,;, DO has no effect on feeding. When DO is between DO,,;, and DO, feeding is

affected by DO (Nath, 1996):

_ (D0-DO,,) N
1= "p0,,~10,,) (3-3-5)

if DO>DO,; then fiDO)=1.0

if DO<DO,s then f(DO)=0.0

3.3.3. Un-ionized Ammonia Effects

Un-ionized ammonia, NHj, 1s toxic to fish (Boyd, 1979). The effect of un-ionized
ammonia can be simulated using an equation similar to that for DO (Nath, 1996). When
NHj is higher than NHjpmay, then the fish stop feeding. When NHj is lower than the
critical value, NHj;, then there is no effect on feeding. When the concentration of NHj3
is higher than the critical value, NH3,i; and lower than a maximum value, NHspay, then
food intake will decrease as the concentration of NH; increases. The function can be
described as (Nath, 1996):

(NH,  —NH,)
(NH - NHJcrit)

3max

J(NH,) = (3-3-6)

where
NH; = un-ionized ammonia concentration, pg/L

ifNH3SNH3cm thenf(NH3) =1.0
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ifNH3ZNH3max thenf(NHg) =0.0

1
NH3 = W NAm (3-3-7)
where pKa is estimated by (Emerson et al, 1975)
pKa =0.09018 + _2729.92 (3-3-8)
T, +273

pH is a constant in the model.

3.3.4. Food Supply Effects

The fish growth rate is dependent on the amount of food and the quality of food available.
There are many types of food for fish but the model includes two major types of food:
artificial (or introduced in a feed or fertilizer) and natural food (produced within the
pond). The model assumes that the fish takes the most favorable food first. If the supply
is not sufficient, then the fish switches to the substitute feed source. For tilapia, the
preferred food is natural food (Jamu, 1998). If the available natural food is not sufficient
to meet the food demand, then the fish will consume artificial food. Two types of natural
food are included in the model: phytoplankton and the other organic matters (chicken
manure, fresh cut grass, and dead phytoplankton). The phytoplankton is assumed to be
preferred by tilapia over the other organic matters (Jamu, 1998).

The phytoplankton uptake coefficient can be calculated as:

Chla
- 3-3-9
oy =5 + Chla (3-3-9)

uptakeChla

where

ony= coefficient of phytoplankton uptake by fish, unitless
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Chla = concentration of Chla, ng/L
Kptakecnia = half satuation constant for phytoplankton uptake, ng/L
The organic matter uptake coefficient is calculated as (Jamu, 1998):

oM, 1V
=(1- o 3-3-10
nOrg ( nphy)K +OM /V ( )

uptakeOrg tot

where
Norg = coefficient of organic matter uptake, unitless
OM,,; = concentration of all types of organic matter, mg.

where
OM,, =Y OM,, (3-3-11)

The concentration of all types of organic matter is the sum of chicken manure, fresh cut
grass, and dead phytoplankton. Mass balances for all three types of organic matter are
described in Section 3-2-5.

K.piakeore = half saturation constant for organic matter uptake, mg/m3

Similar to the coefficient of detritus uptake, the artificial feed uptake coefficient can be
calculated as (Jamu, 1998):

Artf
+ Artf

Tarr = =Ty = Mg 77 (3-3-12)

uptakeartf
where
Nary= coefficient of artificial food uptake, unitless

Artf'= concentration of artificial food, pg/L.
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Kiptakeartt = half saturation constant for artificial food, pg/L

The feed preference factor, 1), can be calculated based on the uptake coefficients from
Equations (3-3-9 through 3-3-12)

nf = nphy + 770rg,' + ﬂarg‘ (3-‘3-13)

The relative feeding level, Aris a dimensionless parameter that represents the carrying
capacity of the pond. If the fish biomass is less than the critical standing stock, the
relative feeding level, Asis one, otherwise, the relative feeding level, Ay can be calculated
using (Bolte et al., 1994):

B CriticalStandStock
TotalFishBiomass

, (3-3-14)

The critical standing stock depends on the pond management and environmental
conditions and can be estimated using the guidelines provided by Balarin and Haller

(1982).

3.3.5. Fish Population

The fish population is estimated using a very simple logistic equation (Pearl and Reed,
1920, cited in Jamu, 1998). The assumptions of the model include no reproduction, no
harvest, and no additional stocking during the culture period. Under these assumptions,
the fish population is reduced only by mortality rate, which was estimated using the data
from the CRSP PD/A database. The equation can be expressed as (Pearl and Reed,

1920):
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d t Jrum ﬁ Sh numallowed o
where

kfnum = mortality rate, 1/hr

fishuumaiiowea = the management allowable fish population, number of fish

fishpep = the fish population, number of fish

The management allowable fish is estimated from the recorded data at fish harvest.

Fish
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4. Results: Model Calibration and Validation
The process of model development includes verification, calibration, and validation steps
(Jergensen and Gromiec, 1989). Verification consists of demonstrating the accuracy of
mathematical hypotheses and the logical interrelationship among state variables (Leohle,
1997). Calibration consists of tuning the coefficients or parameters to obtain the best
possible agreement between the simulated and observed data (Leohle, 1997). Validation
consists of further checking the model using different sets of data to demonstrate the
credibility of the model and to provide a way of determining the magnitude of expected

errors in simulations (Tanji, 1981).

The probability functions in the weather generation component have been verified by
many researchers (Liu and Jordan, 1960; Graham et al., 1988; Graham and Hollands,
1990; Knight et al., 1991). The equations describing the interrelationships among the
state variables in the water quality models have been verified by previous modelers,

especially by Losordo (1988) and Culberson (1993).

The model calibration and validation processes were carried out using data from different
treatments at three PD/A CRSP sites. The site characteristics of the three locations have
been listed in Table 3-1 (Section 3.1.1.). The experiments and treatments used for model
testing are listed in Table 4-1. The experiments were designed to compare the responses
of physical, chemical, and biological factors in fish ponds under different fertilization

regimes. At each location, there were at least three fertilization rates. Each treatment had
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three to four replications. One treatment was used for model calibration and the others

were used as model validation for each location.

Table 4-1. Selected ponds and treatments used for model calibration and validation
(PD/A CRSP, 1987, 1988, 1989)

Thailand Rwanda Honduras
(C404)* (H403)* (F3d)*
Starting Julian Day 279 125 38
Treatment 1** 100 CM+24.3UR*** 100 CM+400 500 CM
GR
Treatment 2 44 CM+10.8UR 150 CM+600 250 CM
GR
Treatment 3 200 CM+48.6UR 200 CM+800 125 CM
GR
Treatment 4 100 CM+400 1000 CM
GR +28.6 UR
Replications 4 3 3

(# of ponds)

* C404, H403, and F3d are the CRSP data file names.

** Treatments used for model calibration

*** CM is Chicken Manure, UR is Urea, GR is Grass. The numbers indicate the treatment rates in units of
kg/ha/wk

During model validation, only the changes of the values of pond inputs and initial water
quality values are allowed. Because stochastic weather variables are generated and used
in the model, the probability distributions of the simulation results were calculated and
compared to the observations for the sites. For cases in which sufficient data were not
available to obtain probability distributions, the means and standard deviations of the
simulated values were compared to the measured data. Since the Monte Carlo method
was used in the model, the simulation results were obtained after running the model 20

times for each treatment. The simulation length was one growing season (150 days).
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4.1. Solar Radiation

The solar radiation model was designed for generating the hourly solar radiation values
starting at any day of a given year (using Julian day, from 1 to 365) and can continue
generating values as long as the computer memory allows. Since solar radiation values
are inputs to the water quality model, the model was calibrated and validated independent
of the water quality model. During model calibration, the simulation time step was set to
0.25 hour. The model calibration and validation process included the calculation of
average monthly clearness indices I_{t at different locations, the comparison of the
simulated and measured daily cumulative frequency distribution (CFD) curves, the
demonstration of the effect of the autocorrelation coefficient p and the comparison of the
simulated and measured hourly solar radiation values at different locations and different

months.

Obtaining accurate average monthly clearness indices I_<, and the CFD function is crucial
for the solar radiation model development. The calculated I?, values for the three
selected PD/A CRSP sites are listed in Table 4-2. The I_<, values range from 0.356 to
0.654. The lowest value is for the Rwanda site, and the highest value is for the Honduras
site. The two highest I_<, values for the Rwanda site are close to the lowest I—<-, value for
the Thailand site. The data from the Thailand site show that the K, values are lower from

May to September than from October to April. At the Thailand site, the wet season
occurs from May to September resulting in a higher cloud cover than during October to

Aprl. The 1—5, values at the Rwanda site show less variation than for Thailand and no
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clear seasonal pattern. The highest I_(, value is in June and the lowest value is in October.
The K , values at the Honduras site are higher than for the other two sites. The Honduras

site is relatively dry and the cloud cover is lower than at the other two sites. The values

from January to March are higher than during the other months.

Table 4-2. Summary of monthly average clearness index values K , calculated from data
in the PD/A CRSP database

Months Thailand Rwanda Honduras
January 0.548 0.374 0.654
February 0.550 0.434 0.624
March 0.520 0.400 0.601
April 0.540 0.366 0.562
May 0.480 0.386 0.521
June 0.478 0.455 0.535
July 0.479 0.416 0.529
August 0.444 0.378 0.538
September 0.472 0.369 0.541
October 0.505 0.356 0.532
November 0.590 0.362 0.514
December 0.624 0.372 0.523
Average 0.519 0.389 0.556
Maximum 0.624 0.455 0.654
Minimum 0.444 0.356 0.514
Standard Deviation 0.053 0.031 0.045

Using the parameters listed in Table 3-2 (in Chapter 3.1.1), the cumulative frequency
distribution (CFD) curves are obtained after running the model 20 times for each site.
The CFD curves of K, for January, August, and December are shown in Figure 4.1.1 for
the Thailand site as an example of the month to month differences observed. Two CFD

curves for the Thailand and Honduras sites with the same I_(, (0.624) are shown in Figure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

4.1.2 1llustrating that the I_<, values alone cannot determine the CFD curves, and the CFD

must be calculated based on site data, making it location-dependent.
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Figure 4.1.1. Calculated CFD for three different months for the Thailand site
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The outputs from the model include calculated daily and hourly clearness index values
from which daily and hourly solar radiation estimates are made. The CFDs of the
generated daily clearness index values were compared to those of the measured data for
two random selected months (one for each half year) at each location. The sample
comparisons of the simulated and measured CFD for the sites in Thailand, Rwanda, and
Honduras are shown in Figures 4.1.3 to 4.1.5. For the Thailand site, the generated and
measured CFD curves have good agreement for May and October (Figures IV1.3a and
4.1.3b). The comparisons of simulated and measured CFD at the Rwanda site show the
best agreement among the three sites (Figures 4.1.4a and 4b). The differences between
the generated and measured CFDs are mainly due to curve smoothing. Figures 4.1.5a and
5b show the comparison of the generated CFD to the measured CFD for August and
February for the Honduras site. The CFD of the generated values in August is slightly
lower than that of the measured values (Figure 4.1.5a). Figure 4.1.5b shows good
agreement between the simulated and measured values. The comparisons of the
simulations and measurement suggest that Equation 3-1-6 can be used for the generation

of clearness indices.

The range of values for the lag one autocorrelation coefficient, p, reported by previous

researchers for various locations in North America is between 0.15 and 0.35 (Knight et
al., 1991). The values calculated for the Thailand, Rwanda, and Honduras sites are 0.52,
0.29, and 0.76, respectively. The value of p suggested by Graham and co-workers (1988)
was 0.29. Since Figure 4.1.5b shows a good match for the generated CFD curve for

February for the Honduras site and the Honduras site has the highest p value, the
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simulated CFD curves using p = 0.29 and p = 0.76 were compared for the Honduras site
in February (Figure 4.1.6). The similarity between the two curves suggests that the
influence of the autocorrelation coefficient on the generation of daily clearness index
values is weak. Since the difference in the p values does not appear to have a significant
effect on the generated CFD curves, and since Graham and co-workers (1988) used a
more extensive and complete data set than the one used here, their recommended value of
p© =0.29 (Graham et al., 1988) was used in the model to generate daily solar radiation

values for the three locations.

The PD/A CRSP data set includes only a few days for which solar radiation values were
recorded at intervals of less than one day: three days for Rwanda, six days for Honduras,
and 36 days for Thailand, of which 30 days is a continuous 30 day record with readings
obtained at five minute intervals. Given the limited data available on measured hourly
values from the PD/A CRSP database, no CFD of hourly clearness index curves could be
calculated. However, the data were used to test the model by comparing measured and
generated hourly solar radiation values. All comparisons gave good agreement as
illustrated in Figure 4.1.7 for the Thailand site. The comparison includes the measured
data and generated values for Julian days 280 to 287. The hourly values were obtained
from data collected at five-minute intervals in 1996. The mean, maximum, and minimum
of the generated solar radiation values were obtained after 20 runs of the model. The
Rwanda site has diurnal measured solar radiation for only three days. Figure 4.1.8 shows
the comparison of the simulated and observed hourly solar radiation values at the Rwanda

site. The measured solar radiation values are a little lower than the simulations for early
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mornings and evenings. Figure 4.1.9 shows the simulated and observed hourly solar
radiation values for the Honduras site. The simulated average values are lower than the

observations for most days except for Julian day 144.
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Figure 4.1.6. Comparison of CFD curves generated using two different p values
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4.2. Water Quality Simulation Results

The simulated state variables in the water quality model include water temperature, DO,
chlorophyll a (Chla), and total ammonia nitrogen (TAN). The simulated results, except
for TAN, are compared graphically. In order to provide information for risk assessment,
the simulated results are also presented in the format of frequency distributions.
Frequency distributions obtained from the simulations are compared to the frequency

distributions calculated from the measurements for the three sites.

The initial water quality inputs include water temperature, DO, TAN, and Chla. The
measured initial water quality data have high variations among the replicate ponds,
especially for Chla (Table 4-3). Having such a high variation among replicates, it was
decided to use initial values generated from a normal distribution using the averages and
standard deviations from all ponds at each site. The use of randomly generated initial
values allows the model to be started at anytime of the year.

Table 4-3. Initial water quality input values
(numbers in parentheses represent standard deviations)

Input Parameters Thailand Rwanda Honduras Description
Tsurf, Tmid, Tbot 253 20.8 25.4 Temperature for
cC) (x0.3) (£0.3) (£2.0) three layers*
DOsurf, DOmid, 5.2 3.7 0.8 DO for three
DObot (mg/L) (+1.3) (£2.3) (£1.1) layers*
TAN (ng/L) 57 33 20 Total ammonia

(+33.5) (+27.8) (+13.3) nitrogen
Chla (ng/L) 34 1000 150 Chlorophyll a
(£16) (£570) (£120)

* the initial values were taken when the ponds were de-stratified (at 6 am)
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The parameters and coefficients needed to run the models were determined using values
from the literatures as guidelines, or using mathematical or statistical methods. The site
specific parameters include the slope of the photosynthetic rate versus light intensity (PI)
curve, the non-phytoplankton light extinction coefficient, the chlorophyll a content, and
the water column respiration rate (see Table 4-4). The initial slopes of PI curves were
used to determine the photosynthetic efficiency for each location. The slope is regulated
mainly by the content of chlorophyll a pigment and solar radiation. Under low radiation,
the PI slope does not change rapidly as solar radiation increases even at high pigment
content, but photosynthetic efficiencies are higher than those under high light intensity
(Reynolds, 1984). Ultimately, the calibrated slopes of PI curves provide a measurement

of photosynthetic efficiency at low solar radiation.

The light extinction coefficient is one of the most important parameters for the estimation
of Chla concentration. The light extinction coefficient was calculated using non-
phytoplankton, 7, and phytoplankton, 7, light extinction coefficients (Table 4-4).

The calibrated 7, and 7, are similar to the values presented by Jamu et al. (1999). The
7w values indicated that the ponds for the Honduras site had higher background turbidity
than the other two sites. The ke Values were approximately the same for the three sites.

The calibrated 7. value does not reflect the composition of phytoplankton.
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Table 4-4. Site specific calibrated parameters for water quality models

Calibrated
Parameters range Thailand Rwanda Honduras
Slope of PI curve
mg C/(mg Chla (umol
hr/mz/s)) 0.03 to 0.08* 0.05 0.04 0.04
Phytoplankton light extinction
coefficient (m-l(mg'm_:s) '1) 0.009 to 0.015 0.013 0.013
0.02°
Non-phytoplankton hght Ranges a.re 3.57 2.89 7.67
extinction coefficient (m™) showed in (1.88 to (2.89 to (6.12 to
parentheses 5.25) 5.23) 10.84)
Water column O, respiration
Oxygen consumption in
organic matter oxidation 1.08 to
(mg0,/mgOM) 3.00° 3.00 3.00 3.00
Chla content in phytoplankton
((mg/L Chla )/ (mg/L dry
cell)) 0.005 to 0.010 0.012 0.010
0.02°
Half saturation constant for
nitrogen uptake by .
phytoplankton, K, (ug N/L) 41010 5 5 5
Sediment respiration constant, 0.005 to
(mgO,/ (m” hr)) 0.0108 0.007 0.007 0.007
a. Leeetal 1991b b. Jamu et al., 1999
c. Losordo, 1988 d. Jorgensen and Gromiec, 1989; Schroeder, 1987
¢. Reynolds, 1984 f. Lee etal., 1991b; PD/A CRSP, 1988
g. Jamu, 1998

Water column respiration rate is a site specific parameter. The water column respiration
rate excluded phytoplankton respiration and nitrification rates. The major oxygen
consumption included in this term may be by zooplankton and suspended bacteria. The
same water column respiration rates were obtained for the Thailand and Rwanda sites and

they were twice the rate for the Honduras site (Table 4-4). It is difficult to determine the
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accuracy of the values because the population of zooplankton and concentration of
suspended bacteria were not available. In addition, the respiration rate is probably not a

fixed value over a fish growing season.

The organic matter decomposition rate in water depends on bacterial populations,
nutrients, and suspended organic matter concentrations. The oxygen consumption rate by
organic decomposition depends on an oxygen consumption stoichiometric ratio.
Literature values for this parameter range from 1.08 to 3 mgO,/mg OM (Jergensen and
Gromiec, 1976; Schroeder, 1987). The calibrated parameter value was 3 mgO,/mg OM

which is similar to the value calibrated by Jamu (1998).

The phytoplankton grazed by fish were estimated based on cell dry weight. Therefore,
the chlorophyll a content had to be converted to cell dry weight. The range of average
chlorophyll a content in various freshwater phytoplankton is 0.5% to 2% of dry weight
(Reynolds, 1984). The calibrated ratio of chlorophyll a to cell dry weight was 0.01 for

the Thailand and Honduras sites and 0.012 for the Rwanda site (Table 4-4).

Phytoplankton growth depends on many factors including water temperature, nitrogen
concentration, and phytoplankton species. Nutrient uptake by phytoplankton was
regulated by a half-saturation constant K,,. The calibrated K, value was the same for the
three sites and within the reported range of 20 to 90 pg/L (Lee et al., 1991b; Jorgensen

and Gromiec, 1989).
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The calibrated value for the sediment respiration rate was 0.007 mg O,/m” hr (Table 4-4).

This value corresponds to that used by Culberson in his model (1993).

4.2.1. Thailand Site

The selected Experiment (C404, PD/A CRSP, 1987, 1988) at the Thailand site was
designed for testing the effects of different fertilization rates on fish growth and water
quality. The application rates of chicken manure were 44, 100, and 200 kg/ha/week
combined with urea application rates of 10.8, 24.3, and 48.6 kg/ha/week, respectively, to
maintain a C: N ratio of 5:1 (Table 4-1). Treatment 1 (100 kg/ha/wk CM) was used for
model calibration. Treatments 2 (44 kg/ha/wk CM) and 3 (200 kg/ha/wk CM) were used
for model validation. The simulations were started on Julian day 279 for a period of 150
days. All pond initial conditions were as listed in Table 4-3. The simulation results are
compared with the measured values from four replicate ponds (C01, C04, C05, and C10
for Treatment 1; BO1, B07, B11, and B12 for Treatment 2; and A06, A08, A09, and Al14

for Treatment 3).

Diurnal water temperature and DO measurements were collected every two weeks. The
samples were collected approximately at 600, 1000, 1400, 1600, 1800, and 2300 hours.
The simulated maximum, minimum, and average corresponding to the sampling days are

presented for comparisons with the data.
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4.2.1.1. Calibration Run (Treatment 1: 100 kg/ha/wk chicken manure and 24.3
kg/ha/wk urea)

Figures 4.2.1.1 to 4.2.1.3 show the water temperature at the three layers. The simulated
water temperatures cover most of the observed data but the average values are

higher than most of the observations at the surface and middle layers. The bottom layer
simulations have better agreement to the observations than the two upper layers. The
difference between the average simulations and measurements could be reduced by
adjusting the effective diffusion coefficient (see Equation 3-2-27), but the reduction of
the effective diffusion coefficient would result in an increase in the differences for the
DO simulations. The effective diffusion coefficients were determined to obtain the best

possible fit for both temperature and DO simulations.

50

Temperature (°C)

285 299 327 342 4 32 46
Julian Day

Figure 4.2.1.1. Temperature of the surface layer for
Treatment 1 for the Thailand site
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Figure 4.2.1.2. Temperature of middle layer for Treatment 1
for the Thailand site
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Figure 4.2.1.3. Temperature of bottom layer for Treatment 1
for the Thailand site
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Figures 4.2.1.4 to 4.2.1.6 show the simulated and measured DO for the three layers. For
the surface layer, the simulated DO values are close to the observations on the three diel
sampling days (Julian days 285, 299, and 313). During the later part of the culture season
the simulated maximum DO values are much lower than the observations. A similar
trend occurs at the middle and bottom layers. The simulated DO for the middle and
bottom layers are about 10 mg/L lower than the measurements for the three sampling
days. It is unusual to have such highly supersaturated DO at the beginning of a fish
culture season while Chla was under 100 pg/L. On the second sampling day (two weeks

later), the simulated DO are closer to the measured values for the surface layer.

It was difficult to calibrate the DO model because the simulation has good agreement for
the surface layer on the first sampling day but not for the middle and bottom layers. In
addition, the differences among DO measurements for the replicate ponds increased
substantially towards the end of the experiment. On the last sampling day, the measured
difference of DO between two replicate ponds was up to 15 mg/L. The calibrated results

indicate that the model is missing some important factors which affect DO in the ponds.

Chla is a crucial variable affecting DO concentration in ponds. Figure 4.2.1.7 shows the
simulated and measured Chla. The simulation curves show a different trend from the
measured Chla. The simulated Chla are higher than the observations in the first three

months and lower than some of the observations in the last two months. At the end of the
season, the maximum measured Chla was over 800 pg/L in Pond C10 while Chla in Pond

C01 was almost zero. The simulated Chla are close to the measured Chla in pond C05.
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Figure 4.2.1.7. Chloroohvll a for Treatment 1 for the Thailand site
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4.2.1.2. Validation Run (Treatment 2: 44 kg/ha/wk chicken manure and 10.8
kg/ha/wk urea)

Figures 4.2.1.8 to 4.2.1.10 show the comparisons of the simulated and measured water
temperature in Treatment 2 for the three layers. The simulated water temperatures cover
the observed data for all three layers but the simulated average values are higher than the
observations. Agreement between simulated and measured values improved towards the

end of the simulation period.

The comparisons of the simulated and measured DO for the three layers are shown in
Figures 4.2.1.11 to 4.2.1.13. The simulated DO are lower than the observations except
for Julian day 285 for the surface layer. For the middle and bottom layers, the
simulations are much lower than the observations. The measured DO values were
between 2.2 mg/L and 14 mg/L and the simulations are from 0 to 8 mg/L for the middle
layer. The simulated DO showed a similar pattern to that of the observations, but the

simulated range was much lower.

Figure 4.2.1.14 shows the simulated and measured Chla. Although the range of the
simulations is very wide and is similar to that of the observations, the trends of the
simulations and observations are different. The largest difference between the measured
and observed Chla is about 350 ug/L at the beginning of the simulation. The simulated
Chla increase faster than the observations at the beginning of the culture season. At the
end of the simulation, the simulations and the observations show better agreement but a

number of measured values were outside the simulated range.
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Figure 4.2.1.9. Temperature of middle layer for Treatment 2
for the Thailand site
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Figure 4.2.1.10. Temperature of bottom layer for Treatment 2
for the Thailand site
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Figure 4.2.1.11. Surface layer DO for Treatment 2
for the Thailand site

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

25
20 e BO3
4% BO07
= 15 1 A BM
<)
£ # B12
8 10 - - ax
——min
ave
285 299 327 342 4 32 46
Julian Day
Figure 4.2.1.12. Middle layer DO for Treatment 2
for the Thailand site
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Figure 4.2.1.13. Bottom layer DO for Treatment 2
for the Thailand site
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Figure 4.2.1.14. Chlorophyll a for Treatment 2 for the Thailand site

4.2.1.3. Validation Run (Treatment 3: 200 kg/ha/wk chicken manure and 48.6
kg/ha/wk urea)

Figures 4.2.1.15 to 4.2.1.17 show the water temperature for the three layers under
Treatment 3. The simulated average water temperatures are higher than the observations
for the surface layer. For the middle and bottom layers, the simulations are close to the

observations at the end of the simulation.

Figures 4.1.18 to 4.1.20 show the simulated and observed DO for the surface, middle, and
bottom layers, respectively. For the surface layer, the simulations are much better than

the simulations in Treatments 1 and 2. The simulations cover most of observations
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except for the last two sampling days. For the middle and bottom layers, many
observations were beyond the simulated ranges, especially for the second half of the

simulations.

Figure 4.2.1.21 shows that the pattern of the simulated Chla is different from that of the
observations. At the beginning, the simulated Chla is higher than measured values, but
this pattern is reversed towards the end of the simulation. As in the case of Treatments 1

and 2, there are large variations among replicates.
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Figure 4.2.1.15. Temperature of surface layer for Treatment 3
for the Thailand site
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for the Thailand site
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Figure 4.2.1.19. Middle layer DO for Treatment 3
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Figure 4.2.1.20. Bottom layer DO for Treatment 3
for the Thailand site
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Figure 4.2.1.21. Chlorophyll a for Treatment 3
for the Thailand site
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4.2.1.4. Frequency Distributions

The simulated water temperature and DO are presented as frequency distributions at
different time periods. Frequency distributions are presented between 15 and 33°C with
intervals of 2°C and DO from 0.5 to 19.5 mg/L with intervals of 1 mg/L.. Figures
4.2.1.22 to 4.2.1.27 show the frequency distributions of water temperature and DO for the
three layers. The frequencies are shown for six time periods, 6:00, 10:00, 14:00, 18:00,
and 22:00. The distributions show that the probability of having a temperature below
21°C at the surface layer is almost zero during all time periods. The highest frequency
for surface temperature over 33°C occurs at 14:00 and 18:00, while lower frequencies of
surface temperatures over 33°C are at 6:00 and 10:00. (Figure 4.2.1.22). For the middle
layer, the temperature distributions are more uniform than for the surface layer. The

temperature distribution for the bottom layer is more uniform than the middle layer’s.

The distributions show that the probability of having DO below 1.5 mg/L for the three
layers is the highest at 6:00, especially for the bottom layers (Figures 4.2.1.25 to
4.2.1.27). The frequency distributions show a probability of having DO over 19 mg/L for

the surface layer but there is zero probability for the middle and bottom layers.
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Figure 4.2.1.22. Frequency distributions for surface layer
temperature (Treatment 1, Thailand site)
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Figure 4.2.1.23. Frequency distributions for middle layer
temperature (Treatment 1, Thailand site)
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Figure 4.2.1.24. Frequency distributions for bottom layer
temperature (Treatment 1, Thailand site)
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Figure 4.2.1.25. Frequency distributions for surface layer DO
(Treatment 1, Thailand site)
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Figure 4.2.1.26. Frequency distributions for middle layer DO
(Treatment 1, Thailand site)
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Figure 4.2.1.27. Frequency distributions for bottom layer DO
(Treatment 1, Thailand site)
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4.2.2. Rwanda Site

The selected experiment (H403) from the Rwanda site was designed to determine the
effect of fertilization on water quality and fish growth. Four treatments were used for the
model calibration and validation (Table 4-2). In Treatments 1, 2, and 3, a mixture of
chicken manure and fresh cut grass was applied at the rates of 500, 750, and 1000
kg/ha/wk, respectively. The mixture ratio was 20:80 for the chicken manure and fresh
cut grass on a dry weight basis. The ponds in Treatment 4 received the same amount of
mixture as in Treatment 1 with additional urea to double the amount of total nitrogen
added with respect to Treatment 1. The model simulation starts on Julian day 125 for a
period of 150 days. The initial input values are listed in Table 4-3. The simulated water
temperature, DO, and Chla for the three layers are compared to the observations on the
diurnal sampling days (Julian day 146, 201, and 264). The frequency distributions of the

water temperature and DO at the three layers are also presented.

4.2.2.1. Calibration Run (Treatment 1: 100 kg/ha/wk chicken manure and 400
kg/ha/wk grass)

Figures 4.2.2.1 to 4.2.2.3 display good agreement between the simulations and
observations for the surface, middle, and bottom layers. Figures 4.2.2.4 t0 4.2.2.6
illustrate the simulated and observed DO for the three layers. The simulated DO had
good agreement with measurements for the surface layer. However, the simulated DO
were lower than the observations on Julian days 146 and 264 for the middle and bottom
layers. On Julian day 201, the simulations agreed with most of the data for the middle

and bottom layers. Figure 4.2.2.7 shows the comparison of the simulated and observed
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chlorophyll a. The simulations missed the peak values of pond C03 and D07. In general,

the model simulation is close to the measured Chla from pond C07.
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Figure 4.2.2.2. Temperature of middle layer for Treatment 1 for the Rwanda Site

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

35

33 +
3+ e CO03
O 29+
< e CO07
| s D07
2 25
i N g — Max
o 1 e ®
g 2 s U s ¢ a | —Min
5 21 —_—
T 19 + o 22 g 8 Ave

17 + \t —

15 f }

146 201 264
Julian Day

Figure 4.2.2.3. Temperature of bottom layer for Treatment 1 for the Rwanda site

14

o CO03
Q ¢ CO7
o A DO7
‘E' - Max

(o]
(o) —Min
Ave

146 201 264
Julian Day

Figure 4.2.2.4. Surface layer DO for Treatment 1 for the Rwanda site
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Figure 4.2.2.6. Bottom layer DO for Treatment 1 for the Rwanda site
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Figure 4.2.2.7. Chlorophyll a for Treatment 1 for the Rwanda site

4.2.2.2. Validation Run (Treatment 2: 150 kg/ha/wk chicken manure and 600
kg/ha/wk grass)

Treatment 2 simulations are closer to the corresponding measured values than Treatment
1. Most of the measured temperature values for the three layers are within the range of
the simulated values (Figures 4.2.2.8 to 4.2.2.10). Only a couple of data points are below

the simulated minimum values on Julian day 201 for the bottom layer.

Figures 4.2.2.11 to 4.2.2.13 show the simulated and observed DO for the three layers.

The simulated average DO values are slightly higher than the data for the surface layer.
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For the middle layer, the maximum simulated DO values are below most of the data for
pond #D11 but higher than data for the other two ponds. For the bottom layer, the
observed DO values are higher than the simulations on Julian day 146 but within the
simulation ranges on the other two days. The highest observed DO at the bottom layer

was 4.5 mg/L but the simulated maximum DO was about 2 mg/L for the bottom layer.

The simulated Chla trend also is different from the observations (Figure 4.2.2.14). The
best agreement between simulated and measured value is obtained at the end of the
simulation period, when there are only a few data points outside of the maximum range.
There were large differences between data from replicate ponds on Julian day 263, when

the values were 343 pg/L and 124 pg/L from ponds D11 and CO06, respectively.
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Figure 4.2.2.8. Temperature of surface layer for Treatment 2 for the Rwanda site
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Figure 4.2.2.10. Temperature of bottom layer for Treatment 2
for the Rwanda site
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Figure 4.2.2.11. Surface layer DO for Treatment 2 for the Rwanda site
7
6 £
AAA C06
5+ A A ¢
- A ¢ D09
> 4T A V, D11
o v A A
£ 4 j; a{f\/\‘ /\M \\ _____ " ax
QO 37 i - \/\‘
& e VN \’/\ b \ \/f 1 |—Min
'\‘:‘ ° \ / Ave
I d

Julian Day

Figure 4.2.2.12. Middle layer DO for Treatment 2 for the Rwanda site
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Figure 4.2.2.13. Bottom layer DO for Treatment 2 for the Rwanda site
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Figure 4.2.2.14. Chlorophyll a for Treatment 2 for the Rwanda site
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4.2.2.3. Validation Run (Treatment 3: 200 kg/ha/wk chicken manure and 800
kg/ha/wk grass)

The measured water temperatures are within the range of the simulated values for the
surface layer (Figure 4.2.2.15). For the middle layer, the simulated values cover most of
the data (Figure 4.2.2.16) with a few data points outside of the simulated range on Julian
day 264. For the bottom layer, on Julian day 146 and 201, the simulated values cover the
data but the data on Julian 264 are higher than the maximum simulated values (Figure

4.22.17).

Figures 4.2.2.18 to 4.2.2.20 show the simulated and observed DO for the three layers.
The simulated DO cover most of the observations for the surface layer. The simulated
DO values for the middle and bottom layers are lower than the measured data for all three
days especially for day 264 on the bottom layer. The simulations show no clear diurnal

profile for the bottom layer.

The simulated Chla concentration trend was different from the observations for the first

two months but very close to the observations at the end of the simulation period (Figure
4.2.2.21). The simulations did not catch the peak value (about 700 pg/L for Pond DO1).

Overall, the concentrations are stable.
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Figure 4.2.2.15 Temperature of surface layer for Treatment 3 for the
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Figure 4.2.2.16. Temperature of middle layer for Treatment 3 for the
Rwanda site
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Figure 4.2.2.17. Temperature of bottom layer for Treatment 3 for the
Rwanda site
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Figure 4.2.2.18. Surface layer DO for Treatment 3 for the
Rwanda site
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Figure 4.2.2.19. Middle layer DO for Treatment 3 for the Rwanda site
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Figure 4.2.2.20a. Bottom layer DO for Treatment 3 for the Rwanda site
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Figure 4.2.2.21. Chlorophyll a for Treatment 3 for the Rwanda site
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4.2.2.4. Validation Run (Treatment 4: 100 kg/ha/wk chicken manure, 400 kg/ha/wk
grass, and 28.6 kg/ha/wk urea)

Figures 4.2.2.22 to 4.2.2.24 show the simulated and observed water temperatures for the
three layers. The simulations cover the measured data for the surface layer. For the
middle and bottom layers, only a few observations are higher than the maximum

simulations on Julian day 264.

The simulated DO values on Julian day 146 cover most observations for the surface layer
even though the data for pond CO8 are much lower than for the other two ponds (Figure
4.2.2.25). For the middle and bottom layers, the simulations are lower than the
observations on Julian day 146 but cover most data for Julian day 201 and part of the data
for Julian day 264 (Figures 4.2.2.26 to 4.2.2.27). The data had high variability for the

middle and bottom layers.

The simulated Chla values were lower than the measured values for pond C05 and failed

to capture the peak value of pond D06 on Julian day 200 (Figure 4.2.2.28). The

simulation curves show much less variation than the observations.
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Figure 4.2.2.22. Temperature of surface layer for Treatment 4 for the
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Figure 4.2.2.23. Temperature of middle layer for Treatment 4 for the
Rwanda site
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Figure 4.2.2.24. Temperature of bottom layer for Treatment 4 for the
Rwanda site
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Figure 4.2.2.25. Surface layer DO for Treatment 4 for the Rwanda site
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Figure 4.2.2.26. Middle layer DO for Treatment 4 for the Rwanda site

25

20 +

15 |

DO (mglL)

146

201 264
Julian Day

e CO05
4 CO08
A D06
—— Max
— Min
Ave

Figure 4.2.2.27a. Bottom layer DO for Treatment 4 for the Rwanda site
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Figure 4.2.2.27b. Bottom layer DO for Treatment 4 for the
Rwanda site (extended y-axis scale)
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Figure 4.2.2.28. Chlorophyll a for Treatment 4 for the Rwanda
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4.2.2.5. Frequency Distributions

The frequency distributions of water temperature for the surface layer are shown in
Figure 4.2.2.29. The water temperatures between 21 and 23°C had the highest frequency
at 6:00 and 10:00. In the afternoon, the highest frequency shifted to around 25°C. The
chances of having temperature below 15°C and above 33°C are negligible. For the
middle layer, the frequency distribution curves are the same for 6:00 and 10:00 (Figure
IV2.2.30). The highest frequencies are for temperatures around 24°C. There were only

minor differences between mornings and afternoons. For the bottom layer, the frequency

distribution curves are almost the same for all times of the day (Figure 4.2.2.31).

Figure 4.2.2.32 shows the frequency distributions of DO at the surface layer. At 6:00
there is a very high probability of having a DO under 0.5 mg/L. At 10:00, the DO is most
likely to be between 3.5 and 4.5 mg/L. At 14:00, the probability of having DO below 0.5
is very small. For the middle and bottom layers, there is a high probability of having
very low DO values at all times of the day. This is particularly noticeable for the bottom
layer, which according to the simulations is not suitable for fish culture at any time of the

day.
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Figure 4.2.2.29. Frequency distributions for surface layer temperature
(Treatment 1, Rwanda)
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Figure 4.2.2.30. Frequency distributions for middle layer temperature
(Treatment 1, Rwanda)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



145

0.25
0.20 -
—e—at 6:00
.S 0.15 A —a— at 10:00
"g at 14:00
L 0.10 - at 18:00
—x— at 22:00
0.05 -
0.00

23 25 27 29 3 33 More

Temperature (°C)

Figure 4.2.2.31. Frequency distributions for bottom layer temperature
(Treatment 1, Rwanda)

0.50
0.45 -+
0.40 -
0.35 - —e—at6:00
€ 0.30 —m— at 10:00
S 0.25 3 at 14:00
E 0.20 - at 18:00
0.15 - —x—at 22:00

0.00 . , %y ey

05 25 45 65 85 105 125 145 16.5 18.5 More
DO (mg/L)

Figure 4.2.2.32. Frequency distributions for surface layer DO
(Treatment 1, Rwanda)
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Figure 4.2.2.34. Frequency distributions for bottom layer DO
(Treatment 1, Rwanda)
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4.2.3. Honduras Site

The experiment (F3d) selected for the Honduras site was designed to evaluate the effect
of chicken manure application rate on fish growth. Four fertilization rates were used for
the model calibration and validation (Table 4-2). The model calibration procedure for the
Honduras site is similar to that used for the Rwanda site, in which only specific location-
related parameters are adjusted. Treatment 1 was 500 kg/ha/week chicken manure (dry
weight). Treatments 2 to 4 were 250, 125, and 1000 kg/ha/wk chicken manure (dry
weight), respectively. Three ponds were used for each treatment. The model simulations
start on Julian day 38 and run for a period of 150 days. The initial conditions are listed in
Table 4-3. A total of 11 days of diel data including water temperature, DO, and Chla are

compared to the simulations.

4.2.3.1. Calibration Run (Treatment 1: 500 kg/ha/wk chicken manure)
Figures 4.2.3.1 to 4.2.3.3 show good agreement between simulated and measured values
for the three layers. Although there were several measured points out of the simulated

range, the model captured the temperature trend and ranges.

The measured DO values are around the average of simulated values and no data are out
of the simulation ranges for the surface layer but the differences between the simulated
maximum and minimum values are over 20 mg/L for some days (Figure 4.2.3.4). For the
middle layer, the simulated and measured DO had good agreement (Figure 4.2.3.5). For
the bottom layer, the simulated DO values are higher than the measured DO except for

Julian days 47 and 117 (Figure 4.2.3.6).
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Figure 4.2.3.7 illustrates the simulated and observed Chla. The trend of the simulation is
similar to that of the observations. Some data are within the ranges of the simulations

but most data are below the simulated minimum range.
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Figure 4.2.3.1. Temperature of surface layer for Treatment 1 for
the Honduras site
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Figure 4.2.3.2. Temperature of middle layer for Treatment 1 for the
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Figure 4.2.3.3. Temperature of bottom layer for Treatment 1 for the
Honduras site
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Figure 4.2.3.4. Surface layer DO for Treatment 1 for the Honduras site
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Figure 4.2.3.5. Middle layer DO for Treatment 1 for the Honduras site
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4.2.3.2. Validation Run (Treatment 2: 250 kg/ha/wk chicken manure)
The simulated water temperatures cover most of the measured data for the three layers
(Figures 4.2.3.8 t0 4.2.3.10). The trend of the simulations is similar to that of the

observations.

Figures 4. 2.3.11 to 4.2.3.13 display the simulated and measured DO for the three layers.
There are almost no observed data outside of the simulation ranges for the surface layer.
For the middle layer, the simulations are a little lower than the observations for some
days but the simulated ranges are close to the measured ranges. For the bottom layer, a

couple of the observed points are higher than the simulation range.

The simulated and observed Chla are shown in Figure 4.2.3.14. Although several
measured points are below the simulated minimum values, the simulated maximum
values cover most of the observations. The measured data from pond BO7 were higher

than those for the other two ponds.
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Figure 4.2.3.8. Temperature of surface layer for Treatment 2 for
the Honduras site
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Figure 4.2.3.9. Temperature of middle layer for Treatment 2 for
the Honduras site
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Figure 4.2.3.10. Temperature of Bottom layer for Treatment 2
for the Honduras site
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Figure 4.2.3.11. Surface layer DO for Treatment 2 for
the Honduras site
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Figure 4.2.3.12. Middle layer DO for Treatment 2 for
the Honduras site
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Figure 4.2.3.13. Bottom layer DO for Treatment 2 for
the Honduras site
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Figure 4.2.3.14. Chlorophyll a for Treatment 2 for the Honduras site
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4.2.2.3. Validation Run (Treatment 3: 125 kg/ha/wk chicken manure)

Figures 4.2.3.15 to 4.2.3.17 show the simulated and observed water temperatures for the
three layers. The simulated water temperature ranges cover the observations for the
surface and middle layers, but there are a few observed data beyond the simulated water

temperature range for the bottom layer.

The comparisons of DO show that the simulations are below several observations for the
surface layer (Figure 4.2.3.18). The simulated DO values for the middle layer are lower
than the observations on several days (Figure 4.2.3.19). For the bottom layer, the
simulations cover most of the observations and also have a similar trend to that of the

observations (Figure 4.2.3.20).

Figure 4.2.3.21 shows good agreement between simulations and observations. Since
there were no measured data between days one and 98, the trend of Chla is unknown
during this period but the trend of the simulations is similar to that of the observations

during the later part of the simulation period.
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Figure 4.2.3.15. Temperature of surface layer for Treatment 3
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Figure 4.2.3.16. Temperature of middle layer for Treatment 3
for the Honduras site
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Figure 4.2.3.17. Temperature of bottom layer for Treatment 3
for the Honduras site
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Figure 4.2.3.18. Surface layer DO for Treatment 3 for
the Honduras site
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Figure 4.2.3.19. Middle layer DO for Treatment 3 for
the Honduras site
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Figure 4.2.3.20. Bottom layer DO for Treatment 3 for
the Honduras site
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Figure 4.2.3.21. Chlorophyll a for Treatment 3 for
the Honduras site

4.2.3.4. Validation Run (Treatment 4: 1000 kg/ha/wk chicken manure)

Figures 4.2.3.22 to 4.2.3.24 show the simulations and observations for the three layers
under the highest fertilization rate used. Similar to the other treatments, the ranges of the
simulated values cover most of the data for the surface layer but less for the middle and

bottom layers.
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Figures 4.2.3.25 to 4.2.3.27 show the simulated and measured DO for the three layers.
The simulated average values are much higher than the data for the surface layer for most
days except for the first sampling day. For the middle layer, most of the data are around
the average values. For the bottom layer, the data are much lower than the average

simulated values for most days.

Figure 4.2.3.28 shows the simulated and observed Chla. The trend and ranges of the
simulations are similar to those of the observations. Once again, large differences among

replicate ponds were noted in the data.
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Figure 4.2.3.22. Temperature of surface layer for
Treatment 4 for the Honduras site
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Figure 4.2.3.23. Temperature of middle layer for Treatment 4 for
the Honduras site
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Figure 4.2.3.24. Temperature of bottom layer for Treatment 4 for
the Honduras site
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Figure 4.2.3.25. Surface layer DO for Treatment 4 for
the Honduras site
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Figure 4.2.3.26. Middle layer DO for Treatment 4 for
the Honduras site
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Figure 4.2.3.27. Bottom layer DO for Treatment 4 for
the Honduras site
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Figure 4.2.3.28. Chlorophyll a for Treatment 4 for the Honduras site
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4.2.3.5. Frequency Distributions

The temperature frequency distributions at different time periods are shown in Figures
4.2.3.29 to 4.2.3.31 for the three layers. For the surface layer, the highest probability of
having temperature around 25°C is at 6:00. Temperatures between 25 and 29°C occur
with high probabilities at 10:00, 18:00, and 22:00. At 14:00 and 18:00, there are high
probabilities corresponds to a temperatures above 33°C. Figure 4.2.3.30 shows the
probabilities of temperature for the middle layer. At 6:00 and 10:00, the highest
probability is to have temperature around 25°C. At 14:00 and 22:00, a temperature
around 27°C has a high probability of occurring. At 18:00, the highest probability is for
a temperature around 28°C. For the bottom layer, temperatures between 24 and 27°C
have high probability of occurring for all times (Figure 4.2.3.31). All simulated

temperatures are between 18 and 33°C for the three layers.

—e—at 6:00
—&3-— at 10:00
at 14:00

Fraction

#—- at 18:00

15 17 19 21 23 25 27 29 31 33 More

Temperature (°C)

Figure 4.2.3.29. Frequency distributions for surface layer
temperature (Treatment 1, Honduras site)
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Figure 4.2.3.30. Frequency distributions for middle layer
temperature (Treatment 1, Honduras site)
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Figure 4.2.3.31. Frequency distributions for bottom layer
temperature (Treatment 1, Honduras site)
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Figures 4.2.3.32 to 4.2.3.34 show the probabilities of simulated DO for the three layers.
DO at 0.5 mg/L has the highest probability of occurring for all three layers except during
the middle of the day. At time 10:00, 14:00, and 18:00, the probability is about 0.1 for
DO around 6.5 mg/L for the surface layer. The probabilities are about 0.08 and 0.05 for

the middle and bottom layers when DO is around 6.5 mg/L, respectively.
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Figure 4.2.3.32. Frequency distributions for surface layer
DO (Treatment 1, Honduras site)
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Figure 4.2.3.34. Frequency distributions for bottom layer
DO (Treatment 1, Honduras site)
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Data availability for the Honduras site allows the calculation of DO frequency
distributions. These are shown in Figures 4.2.3.35 t0 4.2.3.37. They are compared to the
simulated frequency distributions. For the surface layer, the probabilities of simulated
and observed DO are similar for extreme values but there are some differences for
intermediate values. Figure 4.2.3.36. to 4.2.3.37 show that the simulated DO values have

very similar probability distributions to those obtained from the data.
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Figure 4.2.3.35. The frequency distributions of the simulated and
measured surface layer DO for Treatment 1 for the Honduras site
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Figure 4.2.3.36. The frequency distributions of the simulated and
measured middle layer DO for Treatment 1 for the Honduras site
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Figure 4.2.3.37. The frequency distributions of the simulated and
measured bottom layer DO for Treatment 1 for the Honduras site
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4.2.3.6. Long Term Simulations

The long term simulations were obtained after running the model 20 times for one
growing season (3600 hours). In the previous sections, the hourly simulations are
compared to the observations for specific days. In this section, the simulated water
temperature and DO are presented for the entire simulation to demonstrate the influences
of weather and fertilization on water temperature and DO over an entire growing season.
The results present include surface, middle, and bottom layers with the maximum,

minimum, and average simulations for Treatment 1.

Figures 4.2.3.38 and 4.2.3.39 show the water temperatures for the surface layer. The
highest temperature was 45°C. The average water temperatures ranged from 21 to 34°C,
with a mean of 26°C. Figures 4.2.3.40 and 4.2.3.41 show the simulated water
temperature for the middle layer. The highest temperature is 33°C. The averages of the
simulations range from 21 to 29°C with a mean of 25°C. Figure 4.2.3.42 shows the
entire simulated water temperature for the bottom layer. The highest temperature is
32°C. The averages of simulations range from 21 to 27°C with a mean of 21°C. The

magnitude of the fluctuations was greatest for the surface layer and smallest for the

bottom layer.
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Figure 4.2.3.38. Simulated water temperatures for the surface
layer (Treatment 1, Honduras)
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Figure 4.2.3.39. Simulated water temperatures for the surface
layer for the first 600 hours (Treatment 1, Honduras)
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Figure 4.2.3.40. Simulated water temperatures for the middle
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Figure 4.2.3.41. Simulated water temperatures for the middle
layer for the first 600 hours (Treatment 1, Honduras)
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Figure 4.2.3.42. Simulated water temperatures for the bottom
layer (Treatment 1, Honduras)
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Figure 4.2.3.43. Simulated water temperatures for the bottom
layer for the first 600 hours (Treatment 1, Honduras)
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Figures 4.2.3.44 and 4.2.3.45 show the simulated DO for the surface layer. The highest
DO is 27.36 mg/L. The average DO values are between 0.08 mg/L and 16.48 mg/L, with
amean of 4.24 mg/L. In addition to the diurnal cycle, the simulations have a noticeable
fluctuation that is about seven days per cycle. The seven day cycle is due to weekly
fertilizer applications. Figures 4.2.3.46 and 4.2.3.47 show the simulated DO for the
middle layer. The highest DO is 15.95 mg/L, which is lower than the surface layer. The
average values range from 0.02 to 8.81 mg/L, with a mean value of 2.00 mg/L. The
seven day cycle is present but the ranges of the fluctuation are smaller than for the
surface layer. Figures 4.2.3.48 and 4.2.3.49 show the simulated DO for the bottom layer.
The range of the simulated DO is from zero to 13.56 mg/L. The averages of DO are from
0 to 7.51 mg/L, with a mean of 1.22 mg/L. Although the range of DO is much smaller

than for the two upper layers, the diurnal and seven day fluctuations are still noticeable.
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Figure 4.2.3.45. Simulated DO for the surface layer for the first 600
hours (Treatment 1, Honduras)
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Figure 4.2.3.46. Simulated DO for the middle layer
(Treatment 1, Honduras)
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Figure 4.2.3.47. Simulated DO for the middle layer for the first 600 hours
(Treatment 1, Honduras)
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Figure 4.2.3.48. Simulated DO for the bottom layer
(Treatment 1, Honduras)
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Figure 4.2.3.49. Simulated DO for the bottom layer for the first 600 hours
(Treatment 1, Honduras)
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4.3. Fish Growth Simulation Results

The fish growth model was calibrated using values from the same set of data used for the
water quality model calibration. The initial values for each location were the mean
values obtained from all the fish ponds (Table 4-5). The calibrated parameters in the fish
growth model are listed in Table 4-6. The variability of the fish masses under different
treatments showed the effects of water quality and food supplies on fish growth rate. The
differences between the simulated and measured fish masses at the end of the simulations
were tested for significance using the Z test (Freund, 1981).

Table 4-5. Initial conditions for the fish growth model

Parameters Thailand Rwanda Honduras  Description
Wt (kg) 2.6 16.0 37.0 Total fish
weight
Fishyum (# of fish) 220 380 1012 Fish population
W (g) 11.8 42.0 36.6 Average fish
weight

Table 4-6. Calibrated parameters for the fish growth model

Parameters Thailand Honduras Rwanda
Average feed assimilation 0.625 0.650 0.625
efficiency

Fraction of feed assimilation 0.25 0.25 0.25
efficiency for feeding catabolism

Food consumption efficiency (g 0.03 0.03 0.03
fish/hr)

Half-saturation factor for non- 10 60 60
phytolankton feed uptake by fish

(g/m’)

Half saturation constant for Chla 30 (W70 g) 60 60
uptake by fish (ug/L Chla) 150 (Wg270 g)

Critical standing stock (kg/ha) 2000 2000 2000
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4.3.1. Thailand Site

Figures 4.3.1.1 to 4.3.1.3 display the simulated and measured fish masses for Treatments
1, 2, and 3, respectively. Table 4-7 lists the means and standard deviations of simulated
and observed final fish masses for the three treatments. The simulated and observed

means were not significantly different for any of the three treatments (0<0.05).
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Figure 4.3.1.1. Fish masses for Treatment 1 for the Thailand site
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Figure 4.3.1.2. Fish masses for Treatment 2 for the Thailand site
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Figure 4.3.1.3. Fish masses for Treatment 3 for the Thailand site
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Table 4-7. Fish mass means for different treatments (Thailand site)
(numbers in parentheses represent the standard deviations)

Treatment Fertilizers Simulated fish ~ Measured
(kg/ha/wk) mass fish mass

(2) (®
Treatment 1 100 CM + 24.3 UR* 193 (£14) 186 (£47)
Treatment 2 44 CM + 10.8 UR 129 (£26) 158 (£43)
Treatment 3 200 CM + 48.6 UR 293 (£19) 322 (£76)

* CM is Chicken Manure, UR is Urea

4.3.2. Rwanda Site

Figures 4.3.2.1 to 4.3.2.4 show the simulated and observed fish masses for the Rwanda
site. Figure 4.3.2.1 shows good agreement between the simulations and observations
under Treatment 1. Simulated values were higher than observed values for Treatments 2
and 4. Table 4-8 shows the average and standard deviations of fish masses at the end of

the experiments. Simulated and measured means were significantly different for

Treatments 2 through 4.
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Figure 4.3.2.1. Fish masses for Treatment 1 for the Rwanda site

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



183

350
e (06
. D09
G D11
= -~ Max
=)
0 ——Min
= —Ave
<=
2
[
125 155 185 215 245 275
Julian Day
Figure 4.3.2.2. Fish masses for Treatment 2 for the Rwanda site
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Figure 4.3.2.3. Fish masses for Treatment 3 for the Rwanda site
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Figure 4.3.2.4. Fish masses for Treatment 4 for the Rwanda site

Table 4-8. Fish mass means for different treatments (Rwanda site)
(numbers in parentheses represent the standard deviations)

Treatment Treatments Simulated fish mass Measured fish mass
(kg/ha/wk) (® ®
Treatment 1 100 CM + 400 GR* 165 (£14) 173 (£15)
Treatment 2 150 CM +600 GR 234 (£53) 129 (£8)**
Treatment 3 200 CM + 800 GR 222 (£26) 164 (£23)**
Treatment 4 100 CM + 400 GR 255 (+42) 198 (£11)**
+28.6 UR

* CM is Chicken Manure, UR is Urea, GR is fresh cut grasses
** means are significantly different between simulated and measured fish masses at o =0.05 using Z test
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4.3.3. Honduras Site

The comparisons of simulated and observed fish masses under Treatments 1, 2, 3, and 4
for the Honduras site are shown in Figures 4.3.3.1 to 4.3.3.4, respectively. Figure 4.3.3.1
shows that the simulated average fish masses were lower than the observations during the
first three months of culture but the simulated harvested fish masses were higher than the
observations. Table 4-9 lists the comparison of the simulated and observed final fish
masses at the end of the culture season. There were no significant differences between

the simulated and observed fish masses for any of the treatments.
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Figure 4.3.3.1. Fish masses for Treatment 1 for the Honduras site

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



186

180
[ ]
160 - o BOS

140 ° ¢ BO07
7 A B12
Max

‘0@

~——Min
— Ao

Fish mass (g)

0 T T T ¥ T
38 68 98 128 158 188

Julian Day

Figure 4.3.3.2. Fish masses for Treatment 2 for the Honduras site
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Figure 4.3.3.3. Fish masses for Treatment 3 for the Honduras site
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Figure 4.3.3.4. Fish masses for Treatment 4 for the Honduras site

Table 4-9. Fish mass means for different treatments (Honduras site)
(numbers in parentheses represent the standard deviations)

Treatment Treatments Simulated fish mass = Measured fish mass
(kg/ha/wk) (2) (2)
Treatment 1 500 CM* 217 (£18) 203 (15)
Treatment 2 250 CM 129 (=11) 143 (£17)
Treatment 3 125 CM 100 (212) 117 (£11)
Treatment 4 1000 CM 280 (x17) 266 (£14)

* CM is Chicken manure
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5. Discussion
The simulated and observed state variables are presented in Chapter 4. The differences
between the simulated and observed values vary with state variables and locations.
Among the state variables, water temperature simulations are more accurate than DO and
Chla. Comparing the simulation results for the three locations, the model predicts more
accurately for the Honduras site than for the other two locations. Since the stochastic
method is used in the model, all simulation results are presented as ranges or probability
distributions. The most important objective for this model is to determine if the
simulation results could be used to support decision-making. Possible reasons for the

differences between the simulated and observed values are discussed in this chapter.

5.1. Solar Radiation Generation

Solar radiation is one of the major inputs for the water temperature, DO, and Chla
models. The stochastic method used in the model generates daily and hourly solar
radiation values that represent the local characteristics at a given site. The model was
tested for three tropical sites. The generated and observed values showed good agreement

for the three sites thereby indicating that the model could be used for tropical locations.

The lack of historical weather data is common for many aquaculture sites. Hence, a
major objective of the solar radiation model was to devise a method to generate solar
radiation values based on limited historical records. The proposed model estimates the
daily solar radiation based on monthly Cumulative Frequeﬁcy Distribution (CFD) from

historical data. The use of monthly CFD instead of daily solar radiation values reduced
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the effects of having few data on daily solar radiation. The ranges of simulated daily

solar radiation cover most of the measured values for all three sites. Previous studies
indicated that an average clearness index 7(_, and a CFD curve have a certain relationship
regardless of the location (Liu and Jordan, 1963). If the relationship exists, a set of solar
radiation values could be generated for a given E value from the corresponding CFD.

The present study attempts to find whether the relationship exists among the solar

radiation data from the three sites.

The three locations have different climates. Therefore, the calculated monthly average

clearness indices E are in different ranges for the three locations (Table 4-2). The

Rwanda site has the lowest range from 0.356 to 0.455, the Honduras site has the highest

range from 0.514 to 0.654, and the Thailand site overlaps the other two sites with a range

of 0.444 to 0.624. The ranges of E values and the different shapes of the CFD curves

(Figures 3.2 to 3.4) indicate that there are site differences. Compared to the curves for the

Thailand site, the curves for the Rwanda site tend toward low K; values and the curves for

the Honduras site tend toward high K, values. There was no overlap of K . for the
Rwanda and Honduras sites. The higher K , value for the Honduras site corresponds to a

hot and dry climate. The low K, . value for the Rwanda site corresponds to a low

temperature, medium precipitation, and high elevation climate. The climate for the

Thailand site is in between that of Honduras and Rwanda. Although there were months

with the same average clearness index K , for the Thailand and Honduras sites, the CFD
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curves were different for the two sites (Figure 4.1.2). There were no similar curves
between locations but the curve shapes were very similar with similar K , values for the
same location. For example, the CFD curves for May and June were almost the same and
their K , values were very close (0.480 for May and 0.478 for June) for the Thailand site
(Figure 3.1.1). Ttis difficult to draw a clear relationship between the curve shapes and
location based on the comparisons because the calculated K , values may be biased due

to the limited data availability. The curve shape is easily skewed if the data set is too
small. For example, the January CFD curve for the Honduras site has only 35 data points
(a complete data set should be 186 data points) during the six-year period, thus the curve

is not as smooth as the others. The data sets were not sufficient to arrive at a general

conclusion regarding the universality of K . and the corresponding CFD.

The daily solar radiation was generated using a first order auto-correlation equation. The
current data sets have many missing values, which might cause errors in calculating the
auto-correlation coefficient p. The calculated coefficient p for the three sites range from
0.29 to 0.76 which is beyond the range (0.14 to 0.70) of literature values reported by
Aguiar et al. (1988). Graham and co-workers (1988) indicated that a coefficient p

between 0.253 and 0.348 caused no significant differences in generating daily solar

radiation. Although the current values are beyond the range reported, the comparison of
the generated and measured CFD showed that the effects of p are small (Figure 4.1.6).
Considering that the values of p calculated using the limited solar radiation data may have

bias, p=0.29 was used in the model for the three sites. The comparison of generated and
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simulated CFD (Figures 4.1.3a to 4.1.5b) showed small differences between any two

curves.

The parameters in hourly value generation model were location independent based on
previous studies for a temperate climate (Graham and Hollands, 1990; Knight, et al.,
1991). The present model was examined using data from different climates. The
generated hourly values covered most observed data for the Thailand and Rwanda sites
(Figures 4.1.7 and 4.1.8). For the Honduras site, the generated values were lower than the
observations in general (Figure 4.1.9). The major factor affecting the hourly value

simulation is the daily clearness index K.

5.2. Water Temperature

The stratification of water temperature has been predicted well for all sites under various
treatments. Table 5-1 lists the simple statistics of the averages of measured and simulated
water temperatures under all treatments. The standard deviations of the simulations for
the surface layer are higher than for the other two layers. The observed surface water
temperature also had higher standard deviations than the other two layers for all
treatments. Average water temperatures for different water layers at a given site showed
slight differences. The differences between simulations and observations are higher for
the Thailand site than for the other two sites. For the Thailand site, the simulations are
always higher than the observations (differences are from 6 to 14%). The results show
that the simulation means are significantly different from the observations for the

Thailand site (Table 5-1). For the Rwanda site, the differences of the mean values
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between the observations and simulations are from —8 to 5%. Statistical results show no
significant differences between observation and simulation mean values for any water
layer. For the Honduras site all simulations are lower than the observations (differences
are from 0 to —-9%). The statistical analysis results showed that the differences between

the observations and simulations are significantly different only for the surface layer.

From the energy balance overestimated surface water temperatures resulted from either
overestimating heat inputs or underestimating heat losses. As described above, the
simulated solar radiation closely matches the data. Therefore, underestimation of heat
losses appears to be the main factor accounting for the high simulated water temperature.
Evaporation plays an important role in heat loss for the surface layer. The evaporation
rate is an empirical function of wind speed and vapor pressure (Equation 3-2-19). Wind
speed is generated using a stochastic method without calibration due to the lack of data.
The vapor pressure is determined using estimated relative humidity and dew-point

temperature. These parameters are not calibrated due to a lack of information.

Table 5-1 also shows that the fertilization treatments had a minor influence on the water
temperature simulations. It was expected that the temperature for the bottom layer would
be reduced at high fertilization rates due to increased turbidity caused by high
phytoplankton concentrations. However, neither measured nor simulated temperatures

showed the trends expected.
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Table 5-1. Average and standard deviations of measured and simulated water
temperatures for each treatment

Site Treatment — Measured Simulated | Differences
Water layer °O) (9] (%)
Thailand | Treatmentl-surface | 27.1 (+1.83) | 30.9 (¥2.27) 14%*
Treatment2-suface 27.0(x1.78) | 30.4(£2.31) 13%*
Treatment3-suface 27.3(+1.88) | 30.4(+2.02) 11%*
Treatment]-middle 26.5(x1.50) | 29.0(x1.24) 9%*
Treatment2-middle 26.6(x1.61) | 28.3(x1.52) 6%*
Treatment3-middle 26.7(x1.57) | 29.1(%¥1.16) 9%*
Treatment1-bottom 26.0(x1.40) | 27.5(x1.31) 6%*
Treatment2-bottom 26.1(%1.52) | 27.1(%£1.62) 4%*
Treatment3-bottom 26.2(x1.41) | 28.0(%1.17) 7%*
Rwanda | Treatmentl-surface 22.8(x2.11) | 23.1(x1.49) 1%
Treatment2-suface 22.7(¥2.21) | 23.9(£1.34) 5%
Treatment3-suface 22.8(2.12) | 23.0(x1.46) 1%
Treatment4-surface 22.6(+2.17) | 22.6(x1.37) 0%
Treatment1-middle 21.9(x1.95) | 21.8(x0.56) 0%
Treatment2-middle 21.5(3.21) | 22.3(+0.24) 4%
Treatment3-middle 21.9(+1.88) | 21.6(+0.50) -1%
Treatment4-middle 21.5(+1.82) 19.8(+0.43) -8%
Treatment1-bottom 21.2(x1.77) | 20.9(+0.58) -1%
Treatment2-bottom 20.6(+1.26) | 21.3(x0.23) 3%
Treatment3-bottom 21.1(%1.63) | 20.5(+0.21) -3%
Treatment4-bottom 20.7(x£1.67) 19.8(+0.43) -4%
Honduras | Treatmentl-surface 27.2(£2.70) | 26.3(+2.34) -3%*
Treatment2-surface 27.4(+4.80) 26.7(£5.10) -3%*
Treatment3-surface 26.8(+4.60) | 26.7(+4.88) 0%*
Treatment4-surface 27.4(+4.65) | 26.3(+4.89) -4%*
Treatment1-middle 26.6(+2.33) | 25.1(x1.41) -6%
Treatment2-middle 25.4(£3.19) | 25.2(#3.28) -1%
Treatment3-middle 25.3(£2.95) | 25.2(#3.05) 0%
Treatment4-middle 26.9(+2.42) | 24.5(#3.07) -9%
Treatment1-bottom 25.8(£2.09) | 24.3(%2.90) -6%
Treatment2-bottom 24.5(x2.83) | 24.3(£2.90) -1%
Treatment3-bottom 24.7(+2.67) 24.6(£2.75) 0%
Treatment4-bottom 24.5(£2.89) | 24.3(%2.92) -1%
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* significantly differences between the observed and simulated mean values for each treatment and for each
water layer using t-test at a=0.05.
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In general, the simulations are closer to the observations for the middle and bottom layers
than the surface layer. Solar energy penetrates from the water surface into the water
column affecting the heat balance. In the model the light extinction coefficient is a
dynamic factor that changes with simulated Chla. The light extinction coefficient, 7y is
affected by turbidity caused by phytoplankton and non-phytoplankton components. Local
measured Secchi disk visibility and Chla were used to estimate the relationship between
light extinction coefficient and Chla. The phytoplankton light extinction coefficient is
almost independent of location. The non-phytoplankton light extinction coefficient varies
with location (Table 4-4). The Honduras site had the highest value and the Rwanda site
had the lowest value, so the effect of Chla changes on the water temperature is much less
than for the Honduras site than for Rwanda site. Compared to the DO simulation (to be
discussed later), the effect of Chla on water temperature is not very strong even for the
Rwanda site, where the measured Chla concentrations had high variability in replicates

but the variability of the measured water temperature from those replicates was small.

5.3. Dissolved Oxygen and Phytoplankton

The simulated DO and Chla are strongly related to each other. Any failure of the Chla
simulation results in errors in the DO simulation. The site specific parameters (Table 4-
4) were calibrated to achieve the best overall agreement between the simulations and

observations.

It was difficult to calibrate the DO model for the Thailand site. Despite the high

variability of DO in pond replicates, the DO values are underestimated for most ponds
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receiving Treatments 1 and 2 (Figures 4.2.1.4t0 4.2.1.6 and 4.2.1.11 t0 4.2.1.13). For
Treatment 3, only the surface layer DO was close to the observations and the middle and
bottom layer’s DO were underestimated (Figures 4.2.1.18 and 4.2.1.19). The model
assumed that the Chla and nutrients are uniformly distributed and that the light extinction
coefficient, n, could limit the light penetration. The light extinction coefficient was
estimated using a linear regression equation with non-phytoplankton (7, ),
phytoplankton coefficients (7;.), and the concentrations of Chla (Equation 3-2-12).

Both 7. and n, are considered as constants. For a heavily fertilized fish pond, light
penetration could be more strongly affected by non-phytoplankton contributions than by
phytoplankton. The non-phytoplankton light extinction coefficient had wide ranges
among sites and between duplicates from the observed data. The applied fertilizers, the
color of humic substances, and the sediment re-suspension caused by wind and fish
movement could be major sources of turbidity. The high variability in 77, might in part
be due to the different fertilizer application and organic matter concentration (Teichert-
Coddington, et al., 1990). The calculated non-phytoplankton turbidity, 7, was
6.1142.18 m™ with a very low correlation coefficient R%. Therefore, the simulated DO
stratification could not be improved even with the calibration of 7. It seems
inappropriate to use a constant as a non-phytoplankton light extinction coefficient for a

long-term simulation.

The simulated Chla affects the light penetration and DO production. The differences of

simulated and observed Chla for the Thailand site indicated that the Chla model did not

predict the conditions in the ponds (Figures 4.2.1.7,4.2.1.14, and 4.2.1.21). Jamu (1998)
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suggested that the differences were partially due to zooplankton grazing. Zooplankton

grazing could have a significant effect on the Chla (Reynolds, 1984).

The major Chla consumption is by fish grazing. The selective grazing behavior of tilapia
could change the Chla concentration because the phytoplankton density, species, and
distribution changes (Dempster et al., 1995). In the model, the half-saturation Chla
uptake coefficient was calibrated (Table 4-4). For the Thailand site, the half-saturation
Chla uptake rate was calibrated using two values based on fish weight: when fish weight
is less than 70 g the uptake rate is 30 pg/L, otherwise, the Chla uptake is 150 pg/L (Table
4-6). Because the initial fish weight (only 11.8 g) for the Thailand site was much smaller
than for the other two sites (42.0g and 36.6 g for Rwanda and Honduras sites,
respectively), the use of two values improved the Chla and fish growth simulations. For
the Rwanda and Honduras sites, only one value (60 pug/L) was used for the half-saturated

Chla uptake coefficient.

A critical factor for DO and Chla simulation is the ratio of carbon to Chla (CChla).

CChla depends on the initial slope of the PI curve, maximum Chla growth rate, maximum
light intensity (/,qy), and temperature (Equation 3-2-49). The initial slope of the PI curve
is a site-specific parameter. The calibrated value for the Thailand site is slightly higher
than for the other two sites (Table 4-4). The maximum Chla growth rate is an empirical
parameter that is a function of optimum temperature. The model assumed that the
maximum Chla growth is independent of light intensity but is affected by the maximum

light intensity. The effect of maximum light intensity was estimated by taking into
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account the maximum light intensity over a running three day period. This modified Jyqx
smoothed the rapid changes in maximum light intensity that could result in sudden
changes in Chla growth (Reynolds, 1984). For a long-term simulation, the use of

modified I, is expected to be more realistic than using a constant .

The simulated CChla varied hourly because the effect of hourly water temperature is
included (Equation 3-2-50). The simulated CChla had the lowest value at 6 am and
highest value at 10 am. It is difficult to explain the diurnal changes of CChla because the

uncertainties in the relationship between light and carbon content (Geider et al., 1997).

The relationship between the measured DO and Chla is important in identifying potential
problems in model calibration and validation. For Treatment 1 at the Thailand site, the
super-saturated DO was observed at Chla below 100 pg/L and over 600 ng/L. The
difference of Chla in replicates was over 700 png/L (Figure 4.2.1.7). The observed Chla
for Treatment 2 had a similar trend but smaller differences than for Treatment 1 (the
highest difference was about 350 pg/L, Figure 4.1.14). For Treatment 3, the observed
Chla was the highest because of fertilization rate. It appears that the fertilizer application

affected the phytoplankton growth and consumption rates.

For the Rwanda site, the simulated Chla curves were relatively flat and covered most of
the observations except for a few peak values (e.g. Figure 4.2.2.21 pond D0O1). The cause
of the peak values is unknown and the model did not predict them accurately. For the

Honduras site, the measured DO and Chla had low variability in the replicate ponds. The
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simulations were very close to the observations. However, there were not many measured
Chla values in the first two months of the simulation period. Therefore, it is not possible

to determine whether the Chla was predicted accurately during this period.

The DO consumption terms affect the DO simulation directly. One of the main DO
consumption terms is due to organic matter decomposition. The organic matter sources
include applied fertilizers, dead phytoplankton, and fish feces. The decomposition rate
was a constant for each organic matter source. The added fertilizers served as the nutrient
supply for phytoplankton growth and the food for fish and microorganism. Fertilizer
decomposition consumes oxygen and releases nitrogen that stimulates primary
production, that in turn increases the oxygen supply. The ratio of oxygen consumption
and organic matter decomposition was assumed to be a constant, determined in the model
calibration (Table 4-4). The amount of oxygen consumed by organic matter
decomposition is much less than the phytoplankton respiration. Therefore, changes in the

organic matter oxidation rate do not result directly in major changes in DO.

Among the organic matter, the DO consumption due to the decomposition of dead Chla
and fish feces are much smaller than that due to the decomposition of applied fertilizer.
The weekly fertilizer application caused the weekly cycle of DO fluctuation (e.g. Figure
4.2.3.45). The simulated DO was reduced sharply when fertilizer was added. The
fertilizer application also increased TAN concentration that stimulated the phytoplankton

growth and DO concentration increased in the following days. The fluctuation suggested
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that a higher frequency and lower amount of fertilizer per application would help in water

quality management.

Although the fertilizer treatments are the same for replicate ponds in the current
experiment, previous experiments in those ponds might have had different treatments that
caused sediment differences that carry over to the new experiments (Boyd and Teichert-
Coddington, 1994). This could be one of the reasons of high DO and Chla variations in

the replicates.

The major advantage of the model is to prédict the risks for fish losses based on the DO
probability distributions. The frequency distributions change with water layers and time.
The frequency distributions for DO in the upper layers were much wider than for the
lower layers. For the surface layer, the frequency distributions varied with the time of
day but for the bottom layer, the frequency distributions were independent of time. The
low DO risks are showed well by the frequency distributions. Although the distributions
vary with locations, the lowest DO (<0.5 mg/L) had the highest frequency at 6:00 for all
water layers. The other extreme DO value (>20 mg/L) occurred at 14:00 for the Thailand
site. However, the frequency distributions indicated that the frequencies were uniformly

distributed from 2.5 to 10.5 mg/L (see Figures 4.2.1.25, 4.2.2.32, and 4.2.3.32).
The major difference of the model from the previous deterministic models is to predict

the extreme fluctuations of water quality variables. The magnitude of the fluctuations

predicted with this model is due to random weather variables. The frequency
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distributions of DO at each water layer can be used to predict some of the risks associated
with fish production at a given site with a given management strategy. A deterministic
model can predict that low DO occurs in early morning, but the present model provides
information on the probability of the low DO occurrence. The comparison of the
frequency distributions of simulated and observed DO for the Honduras site showed that
the model is reliable. The good simulations of Chla and DO for the Honduras site proved
that the model captures the main affecting factors in the pond system. The simulated

Chla and DO reflected the changes of fertilization rates.

5.4. Fish Growth

Fish growth rate is estimated based on the energy intake, losses, and transformations
within a fish body. The simulated fish growth reflects the influence of weather, water
quality, and fertilization treatments. The differences between the observed and simulated
fish weights varied with treatments and locations. The ranges of simulated fish weights
were much less than the variability of observed fish weights among replicate ponds. The
causes of the high variability among the replicate ponds are not clear but the ranges of
simulated fish weights are the effects of random variables. The major influences on fish
growth are food supply and water quality. The associative effects on food intake, such as
food competition are not included in the model. The Chla is the major food supply for
fish growth in this model and the quality of Chla simulations and data availability affect

the fish model directly.
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For the Thailand site, the fish growth rates are similar to those observed during the first
two months of culture. The Chla supply seems not to be a limiting factor on fish growth
because the rapid increase of the simulated Chla concentration did not result in rapid fish
growth (Figures 4.3.1.1. to 4.2.1.3). The observed fish weights had relatively small
variations. However, during the last month of the fish culture trial the observed weights
had high variations but not the simulated values. The differences indicate that the
differences among pond replicates were not due to the uncertainty of weather variables.
The average fish weights were not significantly different between the observations and
simulations at harvest time for all fertilization treatments. The final average fish weights

also indicate that higher fertilization rates resulted in higher fish growth rates.

The Chla appears to be a limiting factor for fish growth. For the Thailand site, the initial
fish weight was much smaller than for the other two sites. Considering the larger
differences between the fish weights at stocking and at harvesting, the half saturation
Chla uptake coefficient used two values dependent on the fish size. It was assumed that
the filter feeding ability changes as a function of fish size. A laboratory study reported
that two different sizes of juvenile tilapia had different ingestion rates (Northcott, et al.,
1991). For the smaller size fish (40 mm standard length, SL), the grazing rate is lower
than the larger fish (85 mm SL) at the same algal concentrations. Therefore, the
relationship between fish grazing rate and algal concentration was described using a
logarithmic regression for smaller fish and a linear regression was used for lager fish
(Northcott, et al., 1991). In the current model, the use of two half-saturated Chla uptake

constants was attempted to obtain better simulation result for Chla and fish weight. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



202

Northcott’s study, the ingestion rate was also found to increase with particle size. The
high variability of Chla and fish weights in replicates might be affected partly by

phytoplankton species.

For the Rwanda site as for the Thailand site, fish growth is not always proportional to the
fertilizer treatment. The simulated average fish weight at the end of simulations was
lower for Treatment 3 (200 kg chicken manure and 800 kg green grass per hectare per
week) than for Treatment 2 (150 kg chicken manure and 600 kg green grass). Comparing
the simulation fish growth curves between Treatments 2 and 3 (Figures 4 3.2.2. and 4
3.2.3), the simulated fish growth rates were slower for Treatment 3 after about three
months. Chla is still a factor for fish growth, so any error in the simulated Chla could
change the fish growth. However, the extremely high Chla observed in the ponds did not
affect fish growth. Although the simulated fish weights were not correlated to the
fertilization rate for all fertilizer treatments, the highest fertilization rate did result in the

highest fish yield.

For the Honduras site, there were no significant differences between the observed and
simulated average fish weights at the end of simulations (Table 4-9). However, the
observed fish weight curves showed slow increases in the last month of fish culture
(Figures 4 3.3.1 to 4.3.3.4). Fish growth rate is described using a power form. It was
expected to have the fish growth slow at certain time because of physiological and
environmental influences. The flatter curve of observed fish weights indicated a slowing

of fish growth but the simulated curves showed a different trend, especially for Treatment
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1 (Figure 4. 3.3.1). Pond carrying capacity is used to describe the limitation of fish
growth under certain conditions (Nath, 1996). In the fish model, a relative feeding level
Asrepresents the effects of pond carrying capacity (Equation 3-3-2). If the standing crops
of fish exceed the critical standing crop the natural food availability declines and the
relative feed level is reduced. The critical standing stock varies with pond management.
For a fertilized pond without artificial food, the amount of natural food can be increased
up to a certain maximum level, and increasing the pond carrying capacity (Cuenco et al.,
1985¢). In the model, the slow growth rates for the high fertilize ponds were limited by

TAN not by food supply.

The simulated fish weights showed the effects of water quality and food supply. The
present model includes the effects of water quality, food supply, fish size, and stocking
density but does not consider the effects of food competition, appetite, digestion, and
disease. The variations of simulated fish weight are due to the effects of stochastically

generated weather variables only.
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6. Conclusions

The model development was focused on the construction of the solar radiation model, the
effects on the stratification of water temperature and DO as well as on the fish growth
rate. The major contribution of the model is to illustrate the impacts of weather on water
quality and subsequently on fish growth over both short and long terms in a fishpond. In
general, the probability distributions of water temperature and DO under the influence of
weather variables, especially solar radiation can be predicted for a stratified fishpond. To
examine the capability of the model, the model simulation results were carried out for 36
ponds at 11 fertilization treatments for three different locations. The model can be used to
predict the effects of fertilization practices on water quality and fish growth and to assess

the risk that water quality will degrade affecting fish growth and survival.

6.1. Model Approach and Performance

All weather variables including solar radiation, air temperature, wind direction and speed
are generated using stochastic methods. Randomly generated weather variables are the
inputs for deterministic water quality models. The deterministic models simulate water

temperature, DO, Chla, and TAN.

A major difficulty in developing a solar radiation model is to obtain the local climate
characteristics from the limited data available for aquaculture sites. Fortunately, the
monthly cumulative frequency distribution (CFD) curves can be obtained from limited

historical weather data and daily solar radiation values can be generated from site specific

CFD. For the three locations, the monthly average clearness index values ( K ,) were
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different, most likely representing climate characteristics. The three sites have different
average air temperature and annual precipitation. The calculated K, values can be
divided into three ranges corresponding to weather differences. The Rwanda site weather

is cool and humid, the calculated K, values are in the lowest range. The Thailand site is
warm and humid, the K, values are in the middle range. The Honduras site is cool and
dry and the K, values are in the highest range. Although there is some overlap in

K, values between locations, CFD differ for different locations even with the same

K, value.

The development of the solar radiation model is crucial for the water quality model
because the randomly generated hourly solar radiation affects the water quality
simulation. The comparison of the observations and simulations showed that the solar
radiation models performed satisfactorily for all three locations. The hourly model can be

used for any locations because the fixed parameters are independent of the locations.

However, the hourly values are dependent on the daily clearess index KX, .

The water temperature model is built on well-established concepts, so the simulated
water temperatures are close to the observations for most ponds. The hourly solar
radiation plays a major role in the water temperature simulation. Although other weather
variables, such as air temperature, wind speed, and wind direction are important factors

for the water temperature simulation, their effects were not evaluated. The effect of
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fertilization treatment on water temperature appears minor based on the simulations at

various treatments.

The DO model predicted well for the Honduras and Rwanda sites but not for the Thailand
site. The probability distributions indicated the possible risks for extremely high and low
DO during certain time periods. The DO model also predicted the DO changes under
different fertilization treatments. The DO model is constructed for both short and long-
terms simulation. The long-term simulations revealed the effects of fertilizer application.
The simulation results suggested that changes of fertilizer application rate and frequency

could reduce the low DO occurrences.

The Chla model is a key component of the DO model. The Chla were predicted well for
the Honduras site but not for the Thailand site. The observations for the Thailand site
had high variability among pond replicates. The exact reasons for the high variability in
the replicated ponds could not be identified. It is common for ecological system to have
high variability in replicates because of the uncertainty of ecological system. The
deterministic model cannot describe the uncertainty of the pond system. However, the
Chla model may be improved if the model includes zooplankton and the species of
phytoplankton. At the current stage, the model could not include these two factors

because no data were available to support model calibration and validation.

The Fish growth model predicted well for most fishponds. The variability of simulated

fish due to weather variables is much smaller than that of any water quality variables.
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Higher fertilization resulted in higher fish growth rate for the Thailand and Honduras

sites but the higher fertilization resulted in lower fish growth for some ponds for the

Rwanda site. This is probably due to high TAN concentrations under high fertilization

rates. Fish death due to low DO is not simulated in the present model.

Based on the simulation results, the study reached its objectives. The advantages of the

model:

(1) The model can predict both long- and short-term water temperature as well as DO for
a stratified fish pond.

(2) The randomness and uncertainty of weather variables are taken into account in the
water quality model.

(3) The outputs provide the probability distributions of water quality and fish growth
under certain site characteristics.

(4) The model application is simple and requires a few input variables.

(5) The model is easy to update and refine as additional information available.

6.2. The CRSP Database

The CRSP database provides detailed information about the weather and water quality in
several countries. The database contains different treatments at different locations for
similar fish species. Without these data, the model could not be developed. Since the
experiment design was not prepared for this specific study, the weather data are not 1deal
for the model development. The weather data were recorded only during experiment
periods but the model requires continues data. The wind speed and direction are random

variables that can significantly affect stratification and water quality distribution, while
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the local measured data will help to improve the accuracy of simulations. Inclusions of
relative humidity and precipitation will be useful in future model modifications. More
detailed information about zooplankton and species of phytoplankton may help to

construct a random term in phytoplankton model and in fish growth model.

6.3. Future Work

The present model is used to predict water quality and fish growth under randomly
generated weather variables. Based on the results of the study, the following are
recommended for future research:

e Weather variables: the current model includes air temperature, wind speed and
direction models. These models use a simple structure and most of the parameters
were adapted from the literature. The models were not validated due to lack of
data. It is necessary to validate these models when additional data become
available.

e Account for precipitation: the current model does not include precipitation.
Rainfall could impact the stratification of water temperature and DO directly, and
impact the other water quality parameters indirectly. It is particularly important
for the sites that have high precipitation rates.

e Phytoplankton: the dynamic behavior of phytoplankton needs to be explored
further. The phytoplankton distribution in the water column in terms of size,
species, and Chla concentrations should be considered. Filter feeding fish grazing
rate depends on the fish species and size. A detailed model for fish grazing may

help in the Chla simulation if the phytoplankton size and species are known.
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e Zooplankton: a model for zooplankton should be developed. Zooplankton could
affect the phytoplankton and DO mass balances significantly.

e Light extinction coefficient: the light extinction coefficient estimation needs to be
modified for a long-term simulation. A stochastic model may be suitable to
estimate the light extinction coefficient based on the concentration of Chla and
inorganic matter.

e Nitrogen model: a detailed nitrogen distribution model for fish pond has been
developed by Jamu (1998). The model includes a nitrogen cycle in the water
column and sediment. It is possible to combine the present model with Jamu’s
model. The information may be more useful for pond management. The combined
model could improve the prediction of the impact of fertilization.

e Sediment model: a detailed model to describe organic matter decomposition in the
sediments is necessary. It may improve the DO simulation for the bottom water
layer.

e Fish mortality: death rate is estimated from the data using a constant in the model.
The mortality rate due to DO deficiency may need to be included if the model is
used for different fish species. TAN caused mortality needs to be considered in

the model after a detailed TAN model is included.
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Wind Speed and Wind Direction Generation Models
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Energy Balance Model
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Calculation of Water Temperaure
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Heatlosses atthe Surface
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Transfer From Middle to Bottom Layer
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The dynamic Chlorophyil-a Conc. Ratio of Carbon to Chlorophyii a
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Water Column Respiration
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Fish Repiration
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Total Feed Uptake
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Fish Growth Model

FishWeight

Critical standing crop | " po&ganon @

ishWeightOut

Fish biomass
Relative feeding level

FishGrowthRate
InitFishWeight

TotFeedUptake

CoeffConsump

MinTemp

Temperature factor Fish population L

NumFishBot NumFishiMid

WaterQuali Optimal water temperature

Critical DO

/

FeedThreshbldForDO
Feeding threshold

Minimum DO

Critical NH3

Maximum NH3

NumFishSurf
NumFishiMid NumFishBot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



238

Feed Quality Factor Calculation
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Total Ammonia Nitrogen Balance
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B. Stella Equations
AcummFecal(t) = AcummPFecal(t - dt) + (Fecalln - FecalOM - FecalSink) * dt
INIT AcummFecal = 0.0 {g/m2}

INFLOWS:

Fecalln = Fecals*Fish_population/PondArea {g /m2/hr}

OUTFLOWS:

FecalOM = kfecal* AcummFecal*Fecal CPCHCelu {g/m2/hr}

FecalSink = CMsinkRate* AcummFecal

ChickManure(t) = ChickManure(t - dt) + (CMIn - CMtoOM - CMsink - CMGrazedByFish) * dt
INIT ChickManure = CMinput*0.1 { 23.4 g/m2}

INFLOWS:

CMIn = AddedCM {g/m2/hr}

OUTFLOWS:

CMtoOM = ChickManure*Kfert*CMCpCHCelu {g OM/hr/m2}

CMsink = ChickManure*CMsinkRate

CMGrazedByFish = NoNPhtoByFish*(ChickManure/TotDetridus)*Fish_population/PondArea {g CM/m2}
ChlaDeath(t) = ChlaDeath(t - dt) + (ChlaOut - DeadChla - DeadEatByfish) * dt

INIT ChlaDeath = 0.5 {mg Chla /m3}

INFLOWS:

ChlaOut = ChlaDeathK*ChlaNet {mg Chla /m3/hr}

OUTFLOWS:

DeadChla = if ChlaDeath>0 then ChlaDeath*AlgalCpChCelu*kphyto*Water Col Depth else 0
{mg/hr/m2 chla}

DeadEatByfish =
NoNPhtoByFish*(ChlaDeath/(TotDetridus*1000/Water_Col_Depth))*ChlaToCell*Fish_population/Pond
Vol*1000 {mg chla/m3/hr}

ChlaNet(t) = ChlaNet(t - dt) + (Chlaln - ChlaOut - ChlaSink - ChlaGrazed - Chlaeffluent) * dt

INIT ChlaNet = InitialChla {mg Chla /m3}

INFLOWS:

Chlaln = ChlaProdRate+Chlainfluent {mgchla/m3/hr}

OUTFLOWS:

ChlaOut = ChlaDeathK*ChlaNet {mg Chla /m3/hr}

ChlaSink = SinkRate*ChlaNet {mgchla/m3/hr}

ChlaGrazed = ChlaGrazByFishRate+ChlaRespRate {mg/m3/hr}

Chlaeffluent = OutflowRate*ChlaNet/PondVol {mg/m3/hr, chla in the effluent}
FishPopulationCumm(t) = FishPopulationCumm(t - dt) + (- FishDeadDueNature) * dt
INIT FishPopulationCumm = INITFISHNum

OUTFLOWS:
FishDeadDueNature = DeadRate*FishPopulationCumm
FishWeight(t) = FishWeight(t - dt) + (FishWeightIn - FishWeightOut) * dt
INIT FishWeight = 39.8 {g fish}
TRANSIT TIME = 1
INFLOW LIMIT = INF
CAPACITY = INF
INFLOWS:

FishWeightIn = if time<=1 then InitFishWeight else Individual fish weight {g fish/fish}
OUTFLOWS:
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FishWeightOut = CONVEYOR OUTFLOW
GGrass(t) = GGrass(t - dt) + (Grassin - GrassOMout - Sink - GrassGrazedByFish) * dt
INIT GGrass = 0.0 {g/m2}

INFLOWS:

Grassin = AddedGrass

OUTFLOWS:

GrassOMout = GGrass*K grass*GrassCpCHCelu*TlimitDecay {g OM/hr/m2}

Sink = GGrass*CMsinkRate

GrassGrazedByFish = NoNPhtoByFish*(GGrass/TotDetridus)*Fish_population/PondArea {g/m2/hr}
Icompare(t) = Icompare(t - dt) + (MaxI) * dt

INIT Icompare = 0

INFLOWS:

MaxI = if mod(time,24)>=24-dt then (PenPar-Icompare)*1/dt else (max(PenPar, Icompare)-Icompare)*1/dt
{find the maximum value of Solarrad }

Individual fish weight(t) = Individual_fish_weight(t - dt) + (FishWeightINPUT - FishweightOUTPUT) *
dt

INIT Individual_fish weight = InitFishWeight {g/fish }

INFLOWS:

FishWeightINPUT = B*(1-A)*FeedQualityFactor*TotFeedUptake{ g fish /fish/hr}

OUTFLOWS:

FishweightOUTPUT = (CoeffConsump*EXP(0.015*(Temp_For_Fish-15))*Individual_fish weight*0.81)
{0.81; g/hr}

JulianDay(t) = JulianDay(t - dt) + (DayIncrement) * dt
INIT JulianDay = InitialDay

INFLOWS:

DaylIncrement = if JulianDay>=365 and StandardTime=23-+(1-dt) then (-1*364/dt) else IF
(StandardTime>23+(1-DT)) THEN (1/DT) ELSE 0

NetEnergyBot(t) = NetEnergyBot(t - dt) + (Diffusion2 + SolarRadAbsBot - BotSedEngEx) * dt
INIT NetEnergyBot = InitialHeatBot {KJ/m2/hr}

INFLOWS:

Diffusion2 = HeatTransferByDiffB {transfer from middle to bottom layer; KJ/m2/hr}
SolarRadAbsBot = SolarRadDepAdj2 - SolarRadDepAdj3 {KJ/m2/hr}
OUTFLOWS:

BotSedEngEx = Ks * (TempGradBtSed/DepthGradBtSed) * 3.6 {KJ/m2/hr}
NetEnergyGroundWater(t) = NetEnergyGroundWater(t - dt) + (SedGWEngEx) * dt
INIT NetEnergyGroundWater = InitialHeatSed {KJ/m2/hr}

INFLOWS:

SedGWEngEx = Ke * (TempGradSedtGW/DepthGradSedtGW) * 3.6 {KJ/m2/hr}
NetEnergyMid(t) = NetEnergyMid(t - dt) + (SolarRadAbsMid + Diffusion1 - Diffusion2) * dt
INIT NetEnergyMid = InitialHeatMid {KJ/m2}

INFLOWS:

SolarRadAbsMid = SolarRadDepAdj1 - SolarRadDepAd;j2 {KJ/m2/hr}

Diffusionl = HeatTransferByDiffA {transfer from surface to middle layer; KJ/m2/hr}
OUTFLOWS:

Diffusion2 = HeatTransferByDiffB {transfer from middle to bottom layer; KJ/m2/hr}
NetEnergySed(t) = NetEnergySed(t - dt) + (SolarRadAbsSed + BotSedEngEx - SedGWEngEx) * dt
INIT NetEnergySed = InitialHeatSed {KJ/m2/hr}

INFLOWS:
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SolarRadAbsSed = SolarRadDepAd;j3 {KJ/m2/hr}

BotSedEngEx = Ks * (TempGradBtSed/DepthGradBtSed) * 3.6 {KJ/m2/hr}

OUTFLOWS:

SedGWEngEx = Ke * (TempGradSedtGW/DepthGradSedtGW) * 3.6 {KJ/m2/hr}
NetEnergySurf(t) = NetEnergySurf{(t - dt) + (EnergyInSurf - EnergyOutSurf - Diffusion1) * dt
INIT NetEnergySurf = InitialHeatSurf {KJ/m2}

INFLOWS:

EnergyInSurf = AtRad + SolarRadAbsSurf+EnergyInflow {KJ/m2/hr}

OUTFLOWS:

EnergyOutSurf = SurfRadToAtmos + EvapLossAdj + ConvectiveLossGain+EnergyOutflow {KJ/m2/hr}
Diffusionl = HeatTransferByDiffA {transfer from surface to middle layer; KJ/m2/hr}

NetOxBot(t) = NetOxBot(t - dt) + (OxDiff2 + OxInBot - OxOutSed - OxOutBot) * dt

INIT NetOxBot = InitialDOBot*1000*BotThick {mg02/m2}

INFLOWS:

OxDiff2 = (O2TransferByDiffB) * ((DOMid - DOBot)/DepthGradMtB) * 1000 {/m3; yields
mgO2/hr/m2}

OxInBot = PhotoRateBot {mgO2/hr/m2}

OUTFLOWS:

OxOutSed = SedRespRate *TempeffectFactor {mgO2/hr}

OxOutBot = OxyRespBot + WCRespBot + FishRespBot +O2Nitr {mgO2/hr/m2}
NetOxMid(t) = NetOxMid(t - dt) + (OxDiff1 + OxInMid - OxDiff2 - OxOutMid) * dt

INIT NetOxMid = InitialDOMid*1000*MidThick {mg02/m2}

INFLOWS:

OxDiffl = (O2TransferByDiffA) * (DOSurf - DOMid)/DepthGradSurftM) * 1000 {I/'m3; yields
mg02/m2/hr}

OxInMid = PhotoRateMid {mgO2/m2/hr}

OUTFLOWS:

OxDiff2 = (O2TransferByDiffB) * ((DOMid - DOBot)/DepthGradMtB) * 1000 {//m3; yields
mgO2/hr/m2}

OxOutMid = OxyRespMid + WCRespMid + FishRespMid +O2Nitr+ExcessSedResp {mgO2/hr/m2)}
NetOxSurf(t) = NetOxSurf(t - dt) + (OxInSurf - OxDiff1 - OxOutSurf) * dt

INIT NetOxSurf = InitialDOSurf*1000*SurfThick {mg/m2}

INFLOWS:

OxInSurf = (SurfDiffIn + PhotoRateSurf +DOinflow) {mgO2/hr/m2}

OUTFLOWS:

OxDiffl = (O2TransferByDiffA) * (DOSurf - DOMid)/DepthGradSurftM) * 1000 {I/m3; yields
mgO2/m2/hr}

OxOutSurf = (SurfDifOut + FishRespSurf + OxyRespSurf + WCRespSurf +O2Nitr + DOoutflow)
{mg/hr/m2}

OrganicN(t) = OrganicN(t - dt) + (OrganicNin - OrganToAmmonia) * dt

INIT OrganicN = 0.7 {0.74 g/m2}

INFLOWS:

OrganicNin =
Labile_N*((GrassOMout*GrassCP/GrassCpCHCelu+CMtoOM*CMCp/CMCpCHCelu+FecalOM *FecalC
p/Fecal CPCHCelu+AlgalCP*OMAlgal/AlgalCpChCelu) )/6.25 {g/m2/hr available organic nitrogen}
OUTFLOWS:

OrganToAmmonia = KOrgNToAmmonia*OrganicN*TlimitDecay {g/m2/hr}

PreImax(t) = PreImax(t - dt) + (preImaxIn) * dt

INIT Prelmax = 857 {1144 for Honduras; 857 for Rwanda; 1543 for Thailland; umol/m2/s}

INFLOWS:
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prelmaxIn = if mod(time,24) >= 24-dt and time/24 >2 then
(((0.1*ImaxPreviousday2+0.2*ImaxPreviousDay1+0.7*Icompare)-Prelmax)*(1/dt)) else if mod(time,24)
>=24-dt and time/24 <=2 then (Icompare-prelmax)*1/dt else 0
PResidualMax(t) = PResidualMax(t - dt) + (Residualln_2 - ResidualOut2) * dt
INIT PResidualMax = 0

TRANSIT TIME = varies

INFLOW LIMIT = INF

CAPACITY =INF
INFLOWS:
Residualln 2 = if mod(time,24)>=24-dt then Add100Max else ResidualOut2 { delay 24 hours }
OUTFLOWS:
ResidualOut2 = CONVEYOR OUTFLOW

TRANSIT TIME = dt
PResidualMin(t) = PResidualMin(t - dt) + (Residualln - ResidualOut) * dt
INIT PResidualMin = 0

TRANSIT TIME = varies

INFLOW LIMIT = INF

CAPACITY = INF
INFLOWS:
Residualln = if mod(time,24)>=24-dt then Add100min else ResidualOut { delay 24 hours }
OUTFLOWS:
ResidualOut = CONVEYOR OUTFLOW

TRANSIT TIME = dt
SolarResidualDaily(t) = SolarResidualDaily(t - dt) + (SolarResidualln - solarResidueOut) * dt
INIT SolarResidualDaily = 0

TRANSIT TIME = varies

INFLOW LIMIT = INF

CAPACITY = INF
INFLOWS:
SolarResidualln = if mod(time,24)>=24-dt then Addthreshold else solarResidueOut { delay 24 hours }
OUTFLOWS:
solarResidueOut = CONVEYOR OUTFLOW

TRANSIT TIME = dt
SolarResidualHour(t) = SolarResidualHour(t - dt) + (SolarResidualln_2 - solarResidueOut_2) * dt
INIT SolarResidualHour = 0

TRANSIT TIME = varies

INFLOW LIMIT = INF

CAPACITY =INF
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INFLOWS:

SolarResidualln_2 = if mod(time, 24)>=24-dt then 100 else if mod(time,1)>=1-dt then Addthreshold 2
else solarResidueOut 2 { delay one hour }

OUTFLOWS:

solarResidueOut_2 = CONVEYOR OUTFLOW

TRANSIT TIME = dt
TANaccum(t) = TANaccum(t - dt) + (TANin + NsedDiffusion - TANout - Tanleach) * dt
INIT TANaccum = Initial TAN {ug/L}

INFLOWS:

TANin = Nreleased+FishProdTAN+TANfromUrea+TANinflow {ugN/L/hr}

NsedDiffusion = NdiffusionRate/Water_Col_Depth*TempeffectFactor/24*1000 {ug/L/hr}
OUTFLOWS:

TANout = nitrRate+NuptakeByChla+TANoutflow {ug/L/hr, nitrogen consum by nitrification and
chlorophyll}

Tanleach = Kleach*TANaccum {ug/L/hr}

WindResidualDaily(t) = WindResidualDaily(t - dt) + (WindResidualln - WindResidueQut) * dt
INIT WindResidualDaily = 0

TRANSIT TIME = varies
INFLOW LIMIT = INF
CAPACITY =INF

INFLOWS:

WindResidualln = if mod(time,24)>=24-dt then AddthresholdWind else WindResidueOut { delay 24 hours
}

OUTFLOWS:

WindResidueOut = CONVEYOR OUTFLOW

TRANSIT TIME = dt
A =025 {0.25; DIMENSIONLESS;FRACTION OF FOOD ASSIMILATED BUT USED FOR
CATABOLISM (DIMENSIONLESS}
Add100Max = CalcResidualMax+100
Add100min = CalcResidualMin+100
AddedCM = if FertileTime=1 then CMinput*0.1/4 else 0 {g dry chicken manure matter/m2 }
AddedGrass = if Fertilizeddays=1 then GrassInput *0.1/4 else 0 {g/m2}
addedurea = if UreaAddedTime=1 then (Urealnput*0.1)/4/2 else 0 {g/m2}
Addthreshold = CalcofResGenDaily+100 {rise the threshold}
AddthresholdWind = GenResidDailyWind+100 {rise the threshold}
Addthreshold 2 = CalcofResHourly+100 {rise the threshold}
AdjFetch = IF AverageFetch > 1 THEN 1 ELSE IF AverageFetch < 0.5 THEN 0.5 ELSE AverageFetch
{adjustment to fetch calculations, see Losordo pg.167}
AdjlightExtCoeff = LightExtCoeff*oneovercosr {1/m }
AdjWindSpeed = if Windvectorest * 1000/3600%(10/AnemometerHeight)*(1/7) <MinWindSpeed then
MinWindSpeed else Windvectorest * 1000/3600*(10/AnemometerHeight)"(1/7) {wind speed, adjusted for
windspeed less than MINIMUMWINDSPEED and anemometer height}
aeroresistcoeff = 0.0013 {approximation for all wind speeds, see Losordo pg.160}
AirCorCoeMax = 0.431{Correlation Coefficient of Lag One.}
AirCorCoeMin = 0.694 {Correlation Coefficient of Lag One.}
AirDensity = 1.0375 {1.1988 at sea level; 1.0375 is at 1700m,; dry air density kg/m3}
AirGMax = ResidualMax*StdDevAirMax+AveTairMax {estimated solar radiation total for the day}
AirGMin = ResidualMin*StdDevAirmin+AveTairMin {estimated solar radiation total for the day}
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AirMaxRondom = NORMAL(0,1) {Random number from a normal distribution with mean 0 and
standard deviation 1}

AirMinRondom = NORMAL(0,1) {Random number from a normal distribution with mean 0 and standard
deviation 1}

AKh = 0.409+0.5016*sin((ssha-1.047))

AlgalCP = 0.45 {crude protein content}

AlgalCpChCelu = 0.86 {decomposible, CP, CH, and Cellulose}

AMP = (Tairmax-DelayTairmin)*(1+(Tairmax-DelayTairmin)/Tk)

AnemometerHeight = 2.0 {m}

Arcsinz = if sinzn>=1 then pi/2 else if sinzn<=-1 then -pi/2 else arctan(sinzn/(1-sinzn"2)"0.5) { use arctan(
) to calculate arcsin(zenith) }

Arctagsunangle = arctan(SunAngle/(1-SunAngle”2)"0.5)

ArtficialFeed = 0*12.5 {g/m2/hr, Cassava}

ArtifiByFish = ArtifiUptakeSpecFactor*MaxRation

ArtificialKhalfsaturated = 1 {g/m3}

ArtificialUptakeLimit = ArtficialFeed/(ArtificialK halfsaturated+ArtficialFeed)

ArtifiFeedCarbonFraction = 0.5 {g C/g feed dry matter}

ArtifiFeedCPFraction = 0.08 {g CP/g feed}

ArtifiUptakeSpecFactor = if 1-(NoNUptakeSpecFactor+PhytoUptakeSpecificFactor)<=0 then 0 else (1-
(NoNUptakeSpecFactor+PhytoUptakeSpecificFactor))* ArtificialUptakeLimit

ArtiN = ArtifiFeedCPFraction/6.25

AtRad = (1-LWReflect) * e * StefanBoltzman * ((TaK)"4)

{net atmospheric radiation into pond; kJ/m2/hr}

AutoCoeffWind = 0.65 {Correlation Coefficient of Lag One. Obtained from miniTAB using the measured
data from Rwanda}

AveDO = (DOBot+DOMid+DOSurf)/3 {average DO, mg/L }

AveOxyResp = ChlaRespRate/ChlaProductionPerOxy*(Water_Col_Depth) {mgO2/m2/hr}

AVERAGE =191.1628 { }

AverageFetch = MeanFetch/MaxFetch }

AverFetchl = 0.5*MaxFetchl

AverFetch2 = 0.5*MaxFetch2

AveTairMax = 26.63+(7.16*4*N_MaxExp/(1+N_MaxExp)"2)

AveTairtMin = 15.42+(5.84*4*N_MinExp/(1+N_MinExp)"2)

B =0.65 {unitless; EFFICIENCY OF FOOD ASSIMILATION; 0.5 average values for phytoplankton not
artificial food }

Bkh = 0.6609-0.4767*sin((ssha-1.047))

BOD = Komoxy*(CMtoOM+GrassOMout+FecalOM+OMAlgal) {gO2/hr/m2}

BODlayer = BOD/3*1000 {mg/m2/hr}

BotDepth = SurfThick + MidThick + (BotThick/2) {meters, measurement depth}

BotThick = Water_Col_Depth/3 {meters thick}

BoundDepth1 = (SurfDepth + MidDepth)/2 {depth at boundry between surface and middle layers; m}
BoundDepth2 = (MidDepth + BotDepth)/2 {depth at boundry between middle depth and bottom depth; m}
CalcofResGenDaily = (CorCoefLagOneDaily_Solar*SubtractThreshold) +sqrt(1-
(CorCoefLagOneDaily_Solar)*2)*RandomNODailySolar {Generated Residual }

CalcofResHourly = (CorCoefLagOne_Hourly*SubtractThreshold_3) +sqrt(1-
(CorCoeflLagOne_Hourly)"2)*RandomNoHourSolar {Generated Residual }

CalcResidualMax = (AirCorCoeMax)*ResidualMax+sqrt(1-(AirCorCoeMax)"2)*AirMaxRondom
{Generated Residual }

CalcResidualMin = (AirCorCoeMin)*ResidualMin+sqrt(1-(AirCorCoeMin)*2)*AirMinRondom
{Generated Residual }

CarbonProd = ChlaProdRate*NewCCHLa {mgC/hr/m3}

CCHLa = (CChlaAlf*Imax)/(Umax/ratioOxyCarbon*2.718) {mg ¢/ mg chla, predicted ratio of carbon to
chlorophyll a. }

CChlaAlf = 1./24 {0.45 (Rwanda); 1.4 (thailand); 1.85 ; mgC/mg chla*umol/m2.s; 35 mg c/(mg chla
*(umol/m2)), slope of PI curve}
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CChlaMax = 600 { maximum CChla, mgC/mg Chla }
CChlaMin = 10 { minimum CChla, mg C/mg Chla }
ChalRespR = ChlaResp20*gt*DOfactor {1/hr}

ChlaDeathDetridus = if ChlaDeath>0 then ChlaDeath else 0

ChlaDeathK = 0.01/24 {0.02/24, 1/hr; death rate}

ChlaGrazByFishRate = ((PhytoByFish*Fish_population*ChlaToCell/PondVol)*1000) {mg chla/m3/hr}
Chlainfluent = InflowRate*InputChla/PondVol {mg/m3 chla in the influent}

Chlalimit = 1500 {800 , mg chla/m3, the maximum chla in the pond}

ChlaProdRate = TotChlaProd/Water_Col Depth {mgChla/hr/m3}

ChlaProductionPerOxy = (1/(ratioOxyCarbon*NewCCHLa)) { mgchla/mg 02, the amount of chla
produced}

ChlaResp20 = 0.002{0.008; 0.002 1/hr; from Zhu, S}

ChlaRespK = ChalRespR { 0.05/24; 1/hr; phytoplankton respiration rate}

ChlaRespRate = ChlaRespK *newChla {mg chla/hr/m3}

ChlaToCell = 0.01 { 0.014; range is from 0.005 to 0.02 mg Chla/ mg Cell dry weight }

CMC =0.278 {assumed carbon}

CMCp = 0.14 { Fraction of Chicken manure is Crude protein; Msiska, 1981}

CMCpCHCelu =0.69 {g /g ChickManure; 0.12 celloclose and 0.43 CarbonHydrate; 0.283 crude Protein}
CMinput = 500 {kg/ha/wk dry matter, then maximum is 1000}

CMN = CMCp/6.25

CMNcontent = 0.022 {g N/g dry chicken manure}

CMsinkRate = 0.05/24 {1/hr}

CoeffConsump = if FishWeightINPUT>=0.03 then 0.025/24 else 0

CoeffExpandH20A = (0.000015 * (TavA - 277)) - (0.0000002 * ((TavA - 277)"2)) {coefficient for
expansion of water}

CoeffExpandH20B = (0.000015 * (TavB - 277)) - (0.0000002 * ((TavB - 277)"2)) {coefficient for
expansion of water}

CoeffoodConsumption = 0.8/24 {0.55/24; g fish ~(1-m)/g fish/hr, COEFF OF Food consumption =h IN
BEI 0.8 from calibration using CRSP data}

CONTROL_2 = (PI/180)*(STDV*(2/SKEW)*( (1+(SKEW/6)*(STDNORMAL-(SKEW/6) ) ) *3 -1)
+AVERAGE) { radians }

ConvectiveLossGain = 1.5701 * WindSpeedAtZms* (TempSurfCalc - DegreeCAir) {Sensible/convective
loss of heat; KJ/m2/hr}

ConvertFunc = if ErrFunction>=0.99 then 0.5+0.5*0.98 else if ExrFunction <=(-0.96) then 0.5+0.5*(-0.96)
else 0.5+0.5*ErrFunction

ConvertFunc_2 = if ErrFunction_2>0.98 then 0.5+0.5%0.98 else if ErrFunction_2<=(-0.96) then 0.5+0.5*(-
0.96) else 0.5+0.5*ErrFunction 2

CorCoefLagOneDaily_Solar = 0.29 {Correlation Coefficient of Lag One. Obtained from literature,
Graham, 1988}

CorCoeflLagOne_Hourly = 0.54 {Correlation Coefficient of Lag One. Obtained from literature, Graham,
1988}

correctKt = if Estimated_Kt>=Ktmin and Estimated Kt<= Ktmax then Estimated_Kt else if

Estimated Kt>Ktmax then Ktmax else Ktmin {limit the value of Kt in a reseable range}

Cos_z = SIN(fi)*SIN(Delination)+COS(fi)*COS(Delination)*COS(Hour _Angle)
CriticalFoodNutrientRatio = FishNCRatio*GrowthEffic

Critical DO = 6.2 {6.2 mg oxygen/liter. Critical DO level above which food intake is not affected (Balarin
and Haller 1979) }

Critical NH3 = 0.06 {mg/L, Critical NH3 level above which food intake is affected. Chervinski (1982) }
Critical standing_crop = 100 {kg fish biomass; maximum biomass in the specific fish pond, based on the
measured data. kg Fish biomass above which fish will be fed limited}

Csat = CsatT * (1 - (0.0001 * SiteElevation)) {saturation concentration value for oxygen in water, corrected
for elevation; mg/1}

CsatT = 14.625 - (0.41022 *TempSurfCalc) + (0.007991 * (TempSurfCalc)*(2)) - (0.0000778 *
(TempSurfCalc)(3)) {saturation concentration of oxygen in water of temperature given; mg/1}
darkLength = 24-DayLength {dark time}
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DayLength = if srss<=0 then (2/15)*(180-Arctagsunangle*180/pi) else (2/15)*(Arctagsunangle*180/pi)
Daylightscaler = if StandardTime>=(SunRiseTime+2) and StandardTime<=(SunSetsTime-2) then 1 else 0
{day light scaler, because only day time feeding}

DeadRate = 4e-5 {1/hr, death rate}

DegreeCAir = TairHour {air temperature mode! from Ephrath et al, 1996}

DelayTairmin = delay(Tairmin,24)

Delination = (23.45*SIN(360/365*(284+JulianDay)*pi/180))*pi/180 { delination in radians}
DepthGradBtSed = SedDepth - BotDepth {m}

DepthGradMtB = BotDepth - MidDepth {m}

DepthGradSedtGW = GWDepth - SedDepth {m}

DepthGradSurftM = MidDepth - SurfDepth {m}

Dewpointabs = (AirGMin - 2.0) + (273.15) {°K; from Koon et. al. -- dry-bulb temp at 600 a.m. minus 2°C}
DielSampleTime = if (mod((JulianDay-(InitialDay+9)), 14) =0 and StandardTime>=6) or
(mod((JulianDay-(InitialDay+9)), 14) =1 and StandardTime<=6) then 1 else 0

DOBot = IF O2ConcCalcBot < 0 THEN 0 ELSE O2ConcCalcBot {eliminates negative values}
DObotLimit = DOBot/(KDO+DOBot)

DOfactor = AveDO/(AveDO+KDO) {unitless}

DOinflow = (InputDO*1000)*InflowRate/PondArea {mg/m2/hr}

DOMid = IF O2ConcCalcMid < 0 THEN 0 ELSE O2ConcCalcMid {eliminates negative values}
DOmidLIimit = DOMid/(KDO+DOMid)

DOoutflow = (DOSurf*1000)*OutflowRate/PondArea {mg/m2/hr}

DOSurf = IF 02ConcCalcSurf < 0 THEN 0 ELSE O2ConcCalcSurf {mg/L; eliminates negative values}
DOsurflimit = DOSurf/(KDO+DOSurf)

DO_For_Fish = if (DOSurf*NumFishSurf+DOMid*NumFishMid+DOBot*NumFishBot)/Fish_population
<=0 then DOSurf else
(DOSurf*NumFishSurf+DOMid*NumFishMid+DOBot*NumFishBot)/Fish_population

DTSL = 4%(STD_Longitude - Longitude)/60 {Solar time difference between Standard Longitude, and Site
Longitude, hr}

e =0.398 * (10"(-5)) * ((TaK)"2.148)

{average emitance of the atmosphere; dimensionless}

ea = (610.78 * EXP(17.2649 * (Dewpointabs - 273.15)/(Dewpointabs - 35.86))) * 0.001 * 7.5006 {water
vapor pressure above pond surface; mm Hg}

Earth_Sun= 1+ 0.017 * COS(0.0172 * (186 - JulianDay))

EffectDiffuCoeffA = IF TempGradientSurftM <= 0 THEN Emax ELSE IF StableFlowDiffuCoeffA < 0
THEN 0.0054 ELSE IF StableFlowDiffuCoeffA > Emax THEN Emax ELSE StableFlowDiffuCoeffA
{m2/hr}

EffectDiffuCoeffB = IF TempGradMtB <= 0 THEN Emax ELSE IF StableFlowDiffuCoeffB < 0 THEN
0.054 ELSE IF StableFlowDiffuCoeffB > Emax THEN Emax ELSE StableFlowDiffuCoeffB {m2/hr}
Emax = 0.4 {0.4 ;m2/hr}

Energylnflow = InputTemp*InflowRate*H2OHeatCap*H2ODensity/PondArea {kJ/m2/hr}
EnergyOutflow = TempSurfCalc*OutflowRate *H20Density*H2OHeatCap/PondArea {kJ/m2/hr, effluent
energy, energy loss is due to water effluent}

Eq Time = (9.87*sin(2*Orbit)-7.53*cos(Orbit)-1.5*sin(Orbit))/60 {equation time, hr}

ErrFunction = if SubtractThreshold>=0 then 0.016040162+1.4902455*SubtractThreshold-+(-
0.66947908)*SubtractThreshold*2+0.13026229*SubtractThreshold"3+(-
0.048797198)*exp(SubtractThreshold) else (-1)*(0.016040162+(-1.4902455)*(SubtractThreshold)+(-
0.66947908)*SubtractThreshold"2+(-0.13026229)*Subtract Threshold”3+(-0.048797198*exp(-
SubtractThreshold))

ErrFunction_2 = if SubtractThreshold_3>=0 then 0.016040162+1.4902455*SubtractThreshold 3+(-
0.66947908)*SubtractThreshold_3"2+0.13026229*SubtractThreshold 3"3+(-
0.048797198)*exp(SubtractThreshold_3) else (-1)*(0.016040162+(-1.4902455)*(SubtractThreshold_3)+(-
0.66947908)*SubtractThreshold_3"2+(-0.13026229)*SubtractThreshold_3"3-+(-0.048797198)*exp(-
SubtractThreshold 3))

es = 25.374 * EXP(17.62 - (5271/TempWK)) {saturated vapor pressure at WaterTemp; mm Hg}
EstimatedlightExtin = 7.67+0.013*newChla {estimated light extinction coefficient}

Estimated Kh = if (Khm+KhAlf)>1.0 then 1.0 else if (Khm+KhAlf)<0 then 0 else (Khm+KhAlf)
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Estimated Kt = if (JulianDay>=1 and JulianDay<91) then func1 else Func2

EvapLoss = (N * WindSpeedAtZ * (es - ea)) {KJ/m2/hr}

EvapLossAdj = EvapLoss {KJ/m2/hr}

ExcessSedResp = IF DOBot <= 0 THEN -(PhotoRateBot + OxDiff2 - OxOutSed) ELSE 0

ExtraAveHho = 4.921*(1+0.033*cos(360/365* JulianDay*pi/180))*Cos_z {extraterrestrial daily solar
radiation, MJ/m2}

ExtraAveHo =
24/P1*4.921*(1+0.033*cos(360/365*JulianDay*pi/180))*(ssha*sin(fi)*sin(Delination)-+cos(fi)*cos(Delinat
ion)*sin(ssha)) {extraterrestrial solar radiation, MJ/m2}

FecalCp = 0.03 {Nitrogen content, 0.02 to 0.046 cp for marine fish}

Fecal CPCHCelu = 0.94 { content of CP, CH, & cellulose in fish fecal}

Fecals = TotFeedUptake*B {g /hr, total produced fecals}

Feeding_threshold for NH3 = IF NH3Conc<Critical NH3 then 1 ELSE if NH3Conc>Maximum NH3
then 0 else (Maximum NH3-NH3Conc)/(Maximum NH3-Critical NH3) {Dimensionless. captures the
effect of high unionized levels of ammonia that result in feeding cessation}

FeedNCRatio = if TotalC>0 then TotalN/TotalC else 0 {g N/g C uptake by fish}

FeedQualityFactor = (if FeedNCRatio<=0 then 0 else if FeedNCRatio<CriticalFoodNutrientRatio then
FeedNCRatio/CriticalFoodNutrientRatio else 1) {effect of feed on fish growth}

FeedThresholdForDO = If DO_For_Fish>Critical DO then 1 else if DO_For_Fish >= Minimum_DO and
DO_For_Fish <=Critical_DO then (DO_For_Fish-Minimum_DO)/(Critical DO-Minimum_DO) else 0
{Dimensionless function describing the effect of high DO levels on feeding cessation by fish}
FertileTime = if Fertilizeddays=1 and (StandardTime>10 and StandardTime<=14) then 1 else 0 { assumed
at 10:00 am to add fertilizer}

Fertilizeddays = if mod((JulianDay-(InitialDay+4)), 7) =0 and JulianDay<188 then 1 else 0 { Hoduras,
from Data F301, fertilization was stoped three weeks before end of season}

fi= Latitude * PI1/180 {Latitude in radians}

FishC = 0.33 {g C/g fish; fish carbon}

FishGrowthRate = FishWeightIn-FishWeightOut {g fish/fish/hr}

FishN = 0.7/6.25 {0.7 is crude protein, g CP/g fish}

FishNCRatio = FishN/FishC

FishProdTAN = (TANprodByFish/PondVol)*1000 {ug N/L/hr}

FishRespBot = DObotLimit*FRespBot/PondArea {mgO2/hr/m2}

FishRespMid = DOmidLIimit*FRespMid/PondArea {mgO2/m2/hr}

FishRespSurf = DOsurflimit*FRespSurf/PondArea {mgO2/m2/hr}

FishSizeLarge = 0 {average size large fish; g}

FishSizeMiddle = 0 {average size of medium fish; g}

FishSizeSmall = 34.0 {average weight of small fish; g}

Fish_biomass = Fish_population*Individual_fish weight/1000 { kg, total biomass}

Fish_population = int(FishPopulationCumm) {number of fish}

fNH3 = 1/(10"(pKa-pH)+1) {NH3 fraction, Boyd, 1990}

FoodWeightEffect = (Individual_fish_weight*WtEffect )*CoeffoodConsumption{g fish/fish/hr}
FractionLarge = 0.0 {% of population}

FractionMiddle = 0.0 {% of population}

FractionSmall = 1.0 {% of population, as fraction}

FRespBot = (10°(-0.999 - 0.000957 * Individual_fish_weight + 0.0000006 * Individual fish weight*2 +
0.0327 * TempBotCalc - 0.0000087 *TempBotCalc 2 + 0.0000003 * Individual fish weight *
TempBotCalc)) * (Individual_fish weight*NumFishBot) {mgO2/hr}

FRespMid = (107(-0.999 - 0.000957 * Individual fish_weight + 0.0000006 * Individual fish weight"2 +
0.0327 * TempMidCalc - 0.0000087 * TempMidCalc*2 + 0.0000003 * Individual fish weight *
TempMidCalc)) * Individual_fish weight*NumFishMid {mgO2/hr}

FRespSurf = (10(-0.999 - 0.000957 * Individual_fish_weight + 0.0000006 * Individual fish weight"2 +
0.0327 * TempSurfCalc - 0.0000087 *TempSurfCalc”2 + 0.0000003 *Individual fish weight *
TempSurfCalc)) *(Individual_fish weight*NumFishSurf) {mgO2/hr}

FrictVelWindStress = ((WShearStress/(H20DensSurf * 1000))(0.5)) {m/s; shown as Ws* in Losordo}
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Funcl = 0.62601177-0.088785601*(LOGN(1.05574/(ConvertFunc+0.01)-1))  {accumulate frequency
distribution function for month Jan, Feb, and March}

Func2 = 0.53013909-0.072482258*(logn(1.0177006/(ConvertFunc+0.01)-1)) {this function is for months
April to Dec, Honduras}

FUNCTION = (10/36)*(-0.045094133+3.9603766*EXP(-0.5*(((5+COUNTER(6,30))-
14.428748)/2.8386295)*2)) { m/sec. }

g=9.81 {m/s/s}

GendailyWindMean = if GenWindMean<windmin then windmin else if GenWindMean>windmax then
windmax else GenWindMean

GeneratedHt = Estimated_Kt*ExtraAveHo {calculated solar radiation values, mJ/m2}
GenResidDailyWind = (AutoCoeffWind*SubtractThresholdWind) +sqrt(1-
(AutoCoeffWind)"2)*RandomWindResidual {Generated Residual }

GenWindMean = SubtractThresholdWind*StdevWind+Wmean {km/hr}

GrassCP = 0.13 { organic nitrogen content from CP}

GrassCpCHCelu = 0.85 {kg decomped matter/kg grass}

Grasslnput = 0 {kg/ha/wk grass in dry matter}

GrowthEffic = if (TotalC/Fish_population) <=0 or FishGrowthRate<=0 then 0 else if
(FishGrowthRate*FishC/(TotalC/Fish_population)) >1 then 0 else
FishGrowthRate*FishC/(TotalC/Fish_population) {unitless, growth efficiency}

gt = 1.066"(Tave-OPTTEMP) {1.066 temperature correction, 1/hr from Lee, 1991}

gtbot = 1.049"(TempBotCalc-OPTTEMP) { temperature correction, 1/hr from Lee, 1991}

gtmid = 1.049"(TempMidCalc-OPTTEMP) { temperature correction, 1/hr from Lee, 1991}

gtsurf = 1.066"(TempSurfCalc-OPTTEMP)

GWDepth = 6.0 {meters, measurement depth; "earth"}

H20ODensity = 1000 {kg/m3, water density}

H20DensSurf = 0.99987 + ((0.0000069) * (TempSurfCalc)) - ((0.00000889) * ((TempSurfCalc)*2)) +
((0.000000074) * ((TempSurfCalc)*3)) {kg/l}

H2OHeatCap = 4.1819 {KI/°K/kg at 20C; 4.1718 at 30 C}

HeatTransferByDiffA = (H20HeatCap * EffectDiffuCoeffA *1000 {kg/m3} *
((TempGradientSurftM)/(DepthGradSurftM))) {KJ/m2/hr}

HeatTransferByDiffB = H2OHeatCap * EffectDiffuCoeffB * 1000 {kg/m3} *
(TempGradMtB/(DepthGradMtB)) {KJ/m2/hr}

Hh = if Solar Time<SunRiseTime or Solar Time>SunSetsTime then 0 else Estimated Kh

HighestSH = 12-DTSL -1.5/60 {the time of heightest position of the sun which is at the decline angle 23.5}
HourSolarAngle = ( HourSolarTime-12 ) * 15 * PI/180 {radians}

HourSolarTime = int(Solar_Time)

Hour_Angle = ( Solar_Time-12 ) * 15 * PI/180 {radians}

Imax = testimax*Prelmax { max solarRad, umole/m2/s }

ImaxPreviousDay! = delay(Prelmax,24)

ImaxPreviousday2 = delay(ImaxPreviousDay1,24)

InflowRate = 0./24 {inflow rate, m3/hr}

InitChlaRandom = Normal(19.5, 13.3) {ug/L, initial chla}

InitDORandom = normal(0.8, 1.1) {mg/L, initial DO at 6:00 middle layer}

INITFISHNum = 1012 {Initial number of fish }

InitFishWeight = InitTotalFishWeight/INITFISHNum*1000 {g, initial fish weight}

InitialChla = if InitChlaRandom<15 then 15 else InitChlaRandom {477, mg chla /m3, Inital chla
canc.3/11/91 }

InitialDay = 38

InitialDO = if InitDORandom<0 then 0 else InitDORandom {7.9, initial DO for all layers; average on
5/26/89 ponds COS5, DO6, DO8}

InitialDOBot = Initial DO {mg/l; input value on day 40}

InitialDOMid = InitialDO {mg/1; input value}

InitialDOSurf = InitialDO {mg/l; input value}

InitialHeatBot = InitialTempBot * 1000 * 4.1816*BotThick {Kj/m2; 1000 is the density; 4.1816 is spcific
heat at 20°C}
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InitialHeatMid = Initial TempMid * 1000 * 4.1816*MidThick {Kj/m2; 1000 is the density; 4.1816 is

spcific heat at 20°C}

InitialHeatSed = InitialTempSed * 1000 * 4.1816*SedThick {Kj/m2; 1000 is the density; 4.1816 is spcific
heat at 20°C}

InitialHeatSurf = InitialTempSurf * 1000 * 4.1816*SurfThick {Kj/m2; 1000 is the density; 4.1816 is the
spcific heat at 20°C}

Initial TAN = if InitTANRandom<50 then 50 else InitTANRandom {100, mg/M3, initial TAN}
Initial Temp = if InitTempRandom <15 then 15 else InitTempRandom {21, C; initial temperature for all
three layers on 5/26/89 average from ponds b01, b05, and b11}

InitialTempBot = InitialTemp

Initial TempGW = 20 {°C}

InitialTempMid = Initial Temp

InitialTempSed = Initial Temp

InitialTempSurf = InitialTemp

InitialTime = 6.00 { Initial time, hr }

InitTANRandom = Normal(150, 120) {ug/L, TAN, initial TAN}

InitTempRandom = Normal(25.4, 2.01) {C, inintial temperature, from Honduras site FO3D-E file}
InitTotalFishWeight =37 {kg}

InputChla = 0 {mg/m3, chla in the influent}

InputDO =7 {mg/L, DO in the influent water}

InputTAN = 10 {ug/L TAN, TAN in inflow}

InputTemp =20 {C, the inflow water temperature }

k = (6 * (WindShearArea)"(-1.84)) {empirical drift coefficient; m/s}

KchickHalfSat = 60*Water_Col_Depth {g/m2, 60 g/m3 }

KConvertBot = TempBotCalc + 273.15 {conversion to Kelvin degrees}

KConvertMid = TempMidCalc + 273.15 {°Cto ° K}

KConvertTop = TempSurfCalc + 273.15 {°C to °K}

KDO =1 {halfsatuation DO constand, mg O2/L}

Ke = 0.667 {watts/m/°C}

kfecal = TlimitDecay*0.24/24 {1/hr, fecal decomposition rate}

Kfert = TlimitDecay*0.7/24 {1/hr; 0.7/24 from ref. average decomposition rate}

Kgrass = 0.53/24 {1/h, decomposition rate}

KhAlf = (-1)*(Sigmkh/1.58)*Lnrandom {calculate random component, Knight, 1991}

KhKhoA = IF RichardsonNoA < 0 THEN 1 ELSE (1 + (0.05 * RichardsonNoA))*(-1) {dimensionless
ratio; Losordo pg. 32, 161}

KhKhoB = IF RichardsonNoB < 0 THEN 1 ELSE (1+ (0.05 * RichardsonNoB))"(-1) {dimensionless ratio;
Losordo pg. 32, 161}

Khm = correctKt*(AKh+Bkh*cos(HourSolarAngle)) {empirical equation, Hsieh, 1986. p58}

KL =(0.0036 * (8.43 * (WindSpeedAtZms)"(0.5) - 3.67 * (WindSpeedAtZms) + (0.43 *
(WindSpeedAtZms)*(2)))) {oxygen transfer coefficient; m/hr}

Kleach = Seepage/Water_Col_Depth {1/hr; sink rate }

KN =30 { 15 ug/L, half saturation constant for N, 10-20 ug/L, frm Lee, 1991a }

KNuptake = 5 {nutrient uptake rate, ug N/ug chla 10 is from Lee; the value is 4.6 from calculation based on
Thailand }

Komoxy =3 {1.08; 3.0 g O2 removed/ g Organic matter}

KOrgNToAmmonia = 0.05/24 {1/hr, range is 0.05 to 0.1 (1/day)}

kphyto = TlimitDecay*0.72/24 { 1/hr, phytoplankton decomposition rate}

KphytoHalfSat = 30 { mg/m3; 80 }

Ks =0.667 {W/m/°C}

KTempGradMtB = KConvertMid - KConvertBot

Ktmax = 0.8 {0.8; the maximum Kt value, from CRSP}

Ktmin = 0.1 {the minimum value of Kt}

Labile N =1 {Labile N fraction;0.45}

Latitude = 14.43 {degrees south}

LightExtCoeff = EstimatedlightExtin { 1.7/SECCHIDISK ,m-1}

Lnrandom = logn(1/ConvertFunc 2-1)
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Longitude = 87.68 {degrees west}

LowDO = 2.0 {mg/l; limit before fish move to higher DO}

LWReflect = 0.05 {0.03 reflectance of water surface to Lw radiaton, as decimal}

MaxFetch = 65{ m, measured from pond }

MaxFetchl = IF WindDirection1>0 THEN PondWidth/COS(WindDirectionl) ELSE 0

MaxFetch2 = IF WindDirection2>0 THEN PondLength/COS(WindDirection2) ELSE 0

Maximum_NH3 = 0.14 {Maximum NH3 level above which tilapia will not feed (Hassan, 1989)}
MaxRation = FoodWeightEffect*WaterQualityFactor*Relative_feeding_level {g fish/fish/hr; Rmax}
Maxtemp =41 {41, maximum temperature}

MeanFetch = IF RelWindDirect >= PondAngle THEN MeanFetch2 ELSE MeanFetch] }

MeanFetchl = IF WindDirection1=0 THEN PondWidth ELSE TriWtFetchl+OtherFetchl { }
MeanFetch2 = IF (WindDirection2 = 0) THEN PondLength ELSE (OtherFetch2+TriWtFetch2) { }
Measured WSP = if ModelTime>=0 and ModelTime<4 then 1.53 else if ModelTime>=4 and
ModelTime<10 then 2.47 else if ModelTime>=10 and ModelTime<18 then 2.72 else 0.86 {m/s measured
from Thailand}

MidBotBoundryDepth = SurfThick + MidThick {m; midlayer/bottom layer boundry depth}

MidDepth = SurfThick + (MidThick/2) {meters, measurement depth}

MidThick = Water_Col Depth/3 {meters thick}

Minimum_DO = 2.5 { 2.5 mg/l. Minimum DO below which fish will not feed. Mabaye (1971) 2.5 ; 0.5}
MinTemp = 15 {minimum temperature}

MinWindSpeed = 0.1*3.6 {km/hr; used in calculating evaporation, shear, etc...}

ModelTime = MOD(time,24)

mu = FrictVelWindStress * 30 {drift velocity; m/s}

N =35.0593 {empirical "Lake Hefner" coefficient; kJ/m2/km/mmHg}

NdiffusionRate = 0.075 {g TAN/m2/d}

NeutBuoyEffectDiffuCoeffA = ((((FrictVelWindStress)*(2))/(mu * k)) * EXP(-k *
SurfMidBoundryDepth)) {m2/sec; neutrally buoyant diffusion coefficient at surf/middepth boundry Kho in
Losordo, but adjusted for depth}

NeutBuoyEffectDiffuCoeffB = (((FrictVelWindStress"(2))/(mu * k)) * EXP(-k * MidBotBoundryDepth))
{m2/sec; neutrally buoyant diffusion coefficient at middepth/bottomdepth boundry}

NewCCHLa = if CCHLa>CChlaMax then CChlaMax else if CCHLa<CChlaMin then CChlaMin else
CCHLa {mg C/mg chla}

newChla = if ChlaNet>Chlalimit then Chlalimit else if ChlaNet<0 then 0 else ChlaNet {mg/m3, net chla}
NH3Conc = TANaccum*fNH3/1000 {mg/L, estimated NH3 conc.}

nitrRate = (0.01)*TANaccum {ug/L/hr; nitrofication rate, Lee 1991a}

Nlimit = (TANWaterColumn/(KN+TANWaterColumn)) {unitless, nitrogen limitation, from Lee 1991a}
NoNPhtoByFish = MaxRation*NoNUptakeSpecFactor

NonPhytopLimitFactor = TotDetridus/KchickHalfSat {unitless, the factor limits the nonphytoplankton
food uptake}

NoNUptakeSpecFactor = NonPhytopLimitFactor/(1+sumFeed)

NORMALDIST = NORMAL( (10/36)*WIND, (10/36)*WINDSTDV){ m/sec }

Nreleased = (OrganToAmmonia)/Water Col_Depth*1000 {ug N/L/hr}

NumFishBot = if DOBot>=LowDO then Fish_population/3 else 0 {number of fish}

NumFishMid = if DOMid<LowDO then 0 else if dobot<LowDO and DOMid>=LowDO then
Fish_population/2 else Fish_population/3 {number of fish}

NumFishSurf = if DObot<LowDO and DOmid>=LowDO then Fish_population/2 else if
DOSurf>=LowDO and DOMid>=LowDO and DOBot>=LowDO then Fish_population/3 else if
DOSurf<LowDO then 0 clse Fish_population {number of fish }

NuptakeByChla = ChlaProdRate*KNuptake

N_MaxExp = exp(-(JulianDay-183.83)/78.07)

N_MinExp = exp(-(JulianDay-194.57)/83.52)

02ConcCalcBot = if NetOxBot<0 then 0 else NetOxBot/BotThick/1000 {mg/1}

02ConcCalcMid = if NetOxMid<O0 then 0 else NetOxMid/MidThick/1000 {mg/1}

02ConcCalcSurf = if NetOxSurf<0 then 0 else NetOxSurf/SurfThick/1000 {mg/l; initial plus net change
(mg/m3) divided by liters in a m2 element of given thickness}

O2Nitr = 4.57*nitrRate*Water_Col_Depth/3 {mg O2/hr/m2, oxy consumed by Nitrification in the segment}
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O2RateBot = (PMAX * (ST1Bot - ST2Bot) * EXP(1))/(AdjLightExtCoeff * (BotThick))*Nlimit*TlimitBot
O2RateMid = (PMAX * (ST1Mid - ST2Mid) * EXP(1))/(AdjLightExtCoeff *
MidThick)*Nlimit*TlimitMid

O2RateSurf = (PMAX * (ST1 - ST2) * EXP(1))/(AdjLightExtCoeff * (SurfThick))*Nlimit*TlimitSurf
{mgO2/mgChla/hr}

O2TransferByDiffA = EffectDiffuCoeffA {m2/hr. }

O2TransferByDiffB = EffectDiffuCoeffB { m2/hr}

OMAlgal = DeadChla/ChlaToCell/1000 {g/m2/hr OM from algal cell}

oneovercosr = 1/cos(Arcsinz/1.33)

Optimal water_temperature = 30 {optimal temperature for fish growth}

OPTTEMP =25.5 {25.5 degrees C; optimum phytoplankton temp. in "middle to upper range of pond
water temperatures” in Giovannini, part 1 in press 1992}

Orbit = (360/364*(JulianDay-81))*pi/180 {Angular position of earth in orbit around sun - Radians}
OtherFetchl = MaxFetchl *(1-TriWtl)

OtherFetch2 = MaxFetch2*(1-TriWt2)

OutflowRate = 0./24 { outflow rate}

OxyRespBot = AveOxyResp*RatioDOBot {mgO2/m2/hr}

OxyRespMid = AveOxyResp*RatioDOMid {mgO2/m2/hr}

OxyRespSurf = AveOxyResp*RatioDOSurf {mgO2/m2/hr}

PenPar = if SolarRadSurfAdj<=0 then 0 else (5.5958+1.8228*(SolarRadSurfAd;j*1000/3600)) {umol/m2/s,
is converted from Kj/m2/hr, penetrating photosynthetically active radiation }

pH=28.5

PhotoRateBot = O2RateBot *newChla*BotThick {mgO2/m2/hr}

PhotoRateMid = O2RateMid *newChla*MidThick {mgO2/m2/hr}

PhotoRateSurf = O2RateSurf *newChla*SurfThick { mgO2/m2/hr; gross growth}

PhytC = 0.4 {g carbon/g phytoplankton}

PhytN = AlgalCP/6.25

PhytoByFish = MaxRation*PhytoUptakeSpecificFactor

PhytoUptakeSpecificFactor = PhytoUptekenLimit/(1+sumFeed)

PhytoUptekenLimit = newChla/KphytoHalfSat {unitless, the factor for limiting the grazing by fish due to
conc. of chla}

pKa = 0.09018+2729.92/(Tave+273) {estimated pKa, Emerson et al., 1975}

PMAX =NewCCHLa*Umax {mgO2/mgChla/h; see Giovannini, part 1, in press 1992}

PondAngle = ARCTAN(PondLength/PondWidth) { }

PondArea = PondLength*PondWidth { m2 }

PondepthPerLayer = Water_Col_Depth/3 {m, water depth per layer}

PondLength =50 {m, need to check! }

PondVol = Water_Col_Depth*PondArea {m3 }

PondWidth = 20 {m}

QsnB = (1 - SurfAbsorb) * SolarRadSurf {KJ/m2/hr}

RandomNODailySolar = NORMAL(0,1) {Random number from a normal distribution with mean 0 and
standard deviation 1}

RandomNoHourSolar = NORMAL(0,1) {Random number from a normal distribution with mean 0 and
standard deviation 1}

RANDOMWIND = IF (NORMALDIST<WINDHIGH) AND (NORMALDIST>WINDLOW) THEN
NORMALDIST ELSE 0 { m/sec }

RandomWindResidual = NORMAL(0,1) {Random number from a normal distribution with mean 0 and
standard deviation 1}

RatioDOBot = if TotDO>1.0 then DOBot/TotDO else 1/3

RatioDOMid = if TotDO>1.0 then DOMid/TotDO else 1/3

RatioDOSurf = if TotDO>1.0 then DOSurf/TotDO else 1/3

ratioOxyCarbon = 2.67 {oxygen / carbon; 36/12=2.67; 2.3}

ReflCalc = IF SolarAlt>0.017453 THEN 2.2 *EXP(-0.97*LOGN(SolarAlt*180/PI)) ELSE 0 {reflectivity
of a smooth water surface under scattered clouds; as a fraction of incoming radiaton}

Reflectance = IF ReflCalc > 1 THEN 1 ELSE ReflCalc * ReflectWindAdj
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ReflectWindAdj = (1 - (0.04* (WindSpeedAtZms* AdjFetch))) { adjustment of reflectivity of water
surface for WINDSPEED}

Relative_feeding_level = IF Fish_biomass<=Critical_standing_crop THEN 1 ELSE
Critical_standing_crop/(Fish_biomass) {RELATIVE FEEDING LEVEL=ACTUAL FOOD
INTAKE/MAXIMUM POSSIBLE INTAKE; DIMENSIONLESS}

RelWindDirect = ARCTAN(ABS(SIN(WINDIRECTION-RotationAngle)/COS(WINDIRECTION-
RotationAngle))) { }

ResidualMax = if time<=24-dt then (ResidualOut2) else (ResidualOut2-100) {substract the threshld}
ResidualMin = if time<=24-dt then (ResidualOut) else (ResidualOut-100) {substract the threshld}
RichardsonNoA = ((CoeffExpandH20A * g * (SurfMidBoundryDepth)*2)/FrictVelWindStress”(2)) *
(TempGradientSurftM/DepthGradSurftM) {Richardson number for diffusion at surf/mid boundry}
RichardsonNoB = ((CoeffExpandH20B * g * (MidBotBoundryDepth)"2)/FrictVelWindStress*(2)) *
(KTempGradMtB/DepthGradMtB) {Richardson number for diffusion at mid/bot boundry}
RotationAngle = 0.0*PI/180 { }

RWing = 0.49607887+1.8431325*exp(-0.5*((Timeconvert-785.11185)/163.10768)"2) {generated the
wind speedd in m/s}

SecchDisk = 124.739/(newChla+3.00)"0.306/100 { m, Honduras data from Shree}

SedDepth = Water_Col_Depth + (SedThick/2) {meters, measurement depth}

SedRefTemp = InitialTemp { °C}

SedRespRate = 0.16/24 {0.015, 0.5 mgO2/m2/hr}

SedThick = Water Col Depth/3 {m}

Seepage = 3/1000/24 {3/1000/24 ; m/hr, infiltration rate}

Sigmkh = 0.1557*sin(PI*correctKt/0.933)

SinkRate = 0.05/24 {0.05/24 nv/hr; algal sink rate, 1 to 1.3m/d; ref. Lee, 1991b }

sinzn = sin(Zenith)/1.33

SiteElevation = 583 {meters above sea level}

SiteWindVect = 1.5 {site specific parameter, unitless }

SKEW = -1.08868{ }

SolarAlt = 1.570796 - Zenith {solar altitude angle; radians}

Solarlrradiance = if SolarRadHourly>solradmax then solradmax*1000 else SolarRadHourly*1000 {
Mj/m2/hr}

SolarRadAbsSurf = SolarRadSurfAdj - SolarRadDepAd;1

SolarRadDaily = if GeneratedHt >=SolarRadDailyMin and GeneratedHt<=SolarRadDailyMax then
GeneratedHt else if GeneratedHt>SolarRadDailyMax then SolarRadDailyMax else SolarRadDailyMin {
average daily solar radiation values, mj/m2}

SolarRadDailyMax = 31.14 {MJ/m2, the maximum value is measured from the Honduras site in 1991}
SolarRadDailyMin = 3.17 {MJ/m2, the minimum value from CRSP data Honduras site in 1991}
SolarRadDepAdj1 = IF SolarRadDepthl > 0 THEN SolarRadDeptht ELSE 0 {KJ/m2/hr; eliminates
negative values}

SolarRadDepAdj2 = IF SolarRadDepth2 >0 THEN SolarRadDepth2 ELSE 0 {KJ/m2/hr; eliminates
negative values}

SolarRadDepAd;j3 = IF SolarRadDepth3 > 0 THEN SolarRadDepth3 ELSE 0 {KJ/m2/hr; eliminates
negative values}

SolarRadDepthl = QsnB * (EXP(-LightExtCoeff * (BoundDepth1))) {adjustment for middepth}
SolarRadDepth2 = QsnB * EXP(-LightExtCoeff * (BoundDepth2)) {KJ/m2/hr; adjusted for middle/bottom
depth}

SolarRadDepth3 = QsnB * EXP(-LightExtCoeff * (Water_Col Depth)) {KJ/m2/hr}

SolarRadHourly = Hh*ExtraAveHho {average hourly solar radiation value, MJ/m2/hr}

SolarRadSurf = Solarlrradiance * (1-Reflectance) { Mj/m2/hr, light intensity at the surface of the pond,
adjusted for roughness of water surface}

SolarRadSurfAdj = IF SolarRadSurf> 0 THEN SolarRadSurf ELSE 0 {KJ/m2/hr}

Solar_Time = StandardTime + Eq_Time + DTSL

solradmax = 4.500 {4.5; Mj/m2/hr}

stha= - (PI/2 - ARCTAN( srss / SQRT(1-srss*2) ) ) {Sun Rise Hour Angle}

srss = -TAN(fi) * TAN(Delination) {Sunrise & Sunset huor, same as cos HA}

ssha = ( PI/2 - ARCTAN( srss / SQRT(1-srss*2) ) ) {Sun Set Hour Angle}
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St = sin((pi*(ModelTime+6+dt-HighestSH+DayLength/2)/(DayLength+2)))

ST1 = EXP((-PenPar/Imax) * EXP(-AdjLightExtCoeff * (BoundDepthl)))

ST1Bot = EXP((-PenPar/Imax) * EXP(-AdjLightExtCoeff * Water_Col Depth))
ST1iMid = EXP((-PenPar/Imax) * EXP(-AdjLightExtCoeff * (BoundDepth2)))

ST2 = EXP((-PenPar/Imax) * EXP(-AdjLightExtCoeff * (TopDepth)))

ST2Bot = EXP((-PenPar/Imax) * EXP(-AdjLightExtCoeff * BoundDepth2))
ST2Mid = EXP((-PenPar/Imax) * EXP(-AdjLightExtCoeff * (BoundDepth1)))
StableFlowDiffuCoeffA = NeutBuoyEffectDiffuCoeffA * 3600 * KhKhoA {m2/hr}
StableFlowDiffuCoeffB = NeutBuoyEffectDiffuCoeffB * 3600 * KhKhoB {m2/hr}
StandardTime = if (InitialTime+ModelTime) > 24 then ModelTime-InitialTime-12 else
(InitialTime+ModelTime) {assumed standard equals model time, hr}
StdDevAirMax = 3.20 {standard deviation, air temperature}

StdDevAirmin = 2.02 { standard deviation of minimim air temperature, C}
StdevWind = 4.43 {km/hr}

STDNORMAL = NORMAL(0,1) { }

STDV =74.41835 { }

STD Longitude =90

StefanBoltzman = 2.042 * 10°(-7) {kJ/m2/hr/°K"4}

st_Night = sin(pi*(DayLength/(DayLength+2)))

SubtractThreshold = if time<=24-dt then (solarResidueOut) else (solarResidueQOut-100) {substract the
threshld}

SubtractThresholdWind = if time<=24-dt then (WindResidueOut)/(2"0.5) else (WindResidueOut-
100)/(2"0.5) {substract the threshld}

SubtractThreshold_3 = if time<=1-dt then (solarResidueOut_2) else (solarResidueOut_2-100) {substract
the threshld}

sumFeed = NonPhytopLimitFactor+PhytoUptekenLimit

SunAngle = (1-srss"2)*0.5 {arcsin(x)}

SunRiseTime = 12-DayLength/2 {sunrise time}

SunSetsTime = 12+DayLength/2 {Sunset time}

SurfAbsorb = 0.045 {0.05; decimal %; SW radiation absorbed at water surface}

SurfaceArea = PondLength*PondWidth { }

SurfDepth = SurfThick/2 {meters, measurement depth}

SurfDiffIn = IF TransRateInterf > 0 THEN TransRateInterf ELSE 0

SurfDifOut = IF TransRateInterf < 0 THEN -TransRateInterf ELSE 0

SurfMidBoundryDepth = SurfThick {m; boundry layer depth}

SurfRadToAtmos = 0.97 * StefanBoltzman * ((TwK)"4) {kJ/m2/hr; loss of energy from water body due to
Lw radiation}

SurfThick = Water_Col_Depth/3 {meters thick}

TairDaytime = if (Tk"2+4*AMP*Tk*St)<=0 then DelayTairmin-Tk/2 else DelayTairmin-
Tk/2+0.5*%(Tk"2+4* AMP*Tk*St)"0.5

TairHour = if ModelTime+6>=SunRiseTime-1 and ModelTime+6 <=SunSetsTime then TairDaytime else
TairNighttime

Tairmax = if AirGMax>37 then 37 else AirGMax

Tairmin = if AirGMin<13 then 13 else if AirGMin>25 then 25 else AirGMin

TairNighttime = (Tairmin-Ts*exp(-darkLength/4)+(Ts-Tairmin)*exp(-(Model Time+6-
SunSetsTime)/4))/(1-exp(-darkLength/4)) {Air temperature at night }

TaK = 273.15 + DegreeCAir {conversion to degrees K}

TANfromUrea = ((UreaNcontent*addedurea)/(Water_Col_Depth))*1000 {ug ammonia/L/hr}
TANinflow = InputTAN*InflowRate/PondVol {ug/L/hr TAN}

TANoutflow = OutflowRate*TANaccum/PondVol {ug/L hr}

TANprodByFish = 0.03*FishWeightINPUT*Fish_population {g/hr; total TAN production which is based
on the feed intake}

TANWaterColumn = if TANaccum<0 then 0 else TANaccum

TavA = (KConvertTop + KConvertMid)/2

TavB = (KConvertBot + KConvertMid)/2
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Tave = (TempBotCalc+TempMidCalc+TempSurfCalc)/3 {average water temperature }

TempBotCalc = NetEnergyBot/(1000 * 4.1816*BotThick) {°C}

TempCalcGW = Initial TempGW {°C}

TempeffectFactor = 1.049"(TempSedCalc - SedRefTemp)

Temperature_factor = IF Temp_For_Fish<Optimal water_temperature THEN EXP(-
4.6*((Optimal_water_temperature-Temp_For_Fish)/

(Optimal_water_temperature-MinTemp))*4) ELSE EXP(-4.6*((Temp_For Fish-

Optimal_water temperature)

/(Maxtemp-Optimal_water_temperature))*4) {Describes effects of temp on food intake =TAU IN BEIL;
dimensionless}

TempGradBtSed = TempBotCalc - TempSedCalc {°C}

TempGradientSurftM = TempSurfCalc - TempMidCalc

TempGradMtB = TempMidCalc - TempBotCalc

TempGradSedtGW = TempSedCalc - TempCalcGW {°C}

TempMidCalc = NetEnergyMid/(1000 * 4.1816*MidThick) {°C}

TempSedCalc = NetEnergySed/(1760*SedThick) {KJ/m3/°C}

TempSurfCalc = NetEnergySurf/(1000 * 4.1816*SurfThick) {°C; energy/mass * specific heat; 4.1816 is
spcific heat at 20°C}

TempWK = TempSurfCalc + 273.15

Temp_For Fish = if
(TempSurfCalc*NumFishSurf+TempMidCalc*NumFishMid+TempBotCalc*NumFishBot)/Fish_populatio
n<=TempBotCalc then TempSurfCalc else
(TempSurfCalc*NumFishSurf+TempMidCalc*NumFishMid+TempBotCalc*NumFishBot)/Fish_populatio
n

testlmax = 0.7

Timeconvert = mod(time,24)*100

Tk = 15 {C, parameter for the sensible heat}

TlimitBot = IF TempBotCalc<Toptm THEN EXP(-4.6*((Toptm-TempBotCalc)/(Toptm-Tmin))*4) ELSE
EXP(-4.6*((TempBotCalc-Toptm)/(Tmax-Toptm))"4)

TlimitDecay = 1.08"(Tave-20)

TlimitMid = IF TempMidCalc<Toptm THEN EXP(-4.6*((Toptm-TempMidCalc)/( Toptm-Tmin))"4)
ELSE EXP(-4.6*((TempMidCalc-Toptm)/(Tmax-Toptm))"4)

TlimitSurf=IF TempSurfCalc<Toptm THEN EXP(-4.6*((Toptm-TempSurfCalc)/( Toptm-Tmin))"4)
ELSE EXP(-4.6*((TempSurfCalc-Toptm)/(Tmax-Toptm))"4)

Tmax =41 {41 assumed value}

Tmin = 10 {10 assumed value}

TopDepth = 0.0 {m}

Toptm =25

TotalC = ArtifiFeedCarbonFraction*ArtifiByFish+CMC*NoNPhtoByFish+PhytC*PhytoByFish {g C/hr,
total uptake Carbon}

TotalN = ArtifiByFish*ArtiN+CMN*NoNPhtoByFish+PhytN*PhytoByFish {g N/hr; total uptake
Nitrogen}

TotChlaProd = (PhotoRateBot+PhotoRateMid+PhotoRateSurf) *ChlaProductionPerOxy {mg chla/m2/hr}
TotDetridus = ChickManure+GGrass+ChlaDeathDetridus*Water_Col_Depth/1000 {g/m2}

TotDO = DOBot+DOMid+DOSurf

TotFeedFactor = PhytoUptakeSpecificFactor+NoNUptakeSpecFactor+ArtifiUptakeSpecFactor {unitless;
total feed uptake specific factor}

TotFeedUptake = MaxRation*TotFeedFactor {g fish/fish/hr}

TransRateInterf = (KL * (Csat - DOSurf)) * 1000 { area of interface; yields rate of oxygen transfer across
interface per unit area; mg/hr/m2}

TriAreal = IF WindDirection1<> -1 THEN (PondWidth"2)*TAN(WindDirection1)/2 ELSE 0 { }
TriArea2 = IF WindDirection2<> -2 THEN 0.5*(PondLength*2)*TAN( WindDirection2) ELSE 0 {}
Triwtl = 2*TriAreal/SurfaceArea { }

Triwt2 = 2*TriArea2/SurfaceArea

TriWtFetchl = AverFetch] *Triwt1

TriwtFetch2 = AverFetch2*Triwt2 { }
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Ts = Tairmin+(Tairmax-Tairmin)*st_Night {the temperature connects the day time and night time curve}
TwK =273 + TempSurfCalc {conversion to degrees K}

Umax = (((10%(0.0275 * OPTTEMP - 0.23))/12))*ratioOxyCarbon*gt {0.83; mgO2/mgC/hr; from
Giovannini, in press 1992; part 1}

UreaAddedTime = if (Fertilizeddays=1 or Fertilizeddays=4) and (StandardTime>10 and
StandardTime<=14) then | else O { assumed at 10:00 am to add fertilizer}

Urealnput = 0 {77.04 ; kg urea/ha/wk}

UreaNcontent = 0.38 {38 % of urea is Ammonia from Honduras data}

WaterQualityFactor = Feeding_threshold_for NH3*FeedThresholdForDO*Temperature_factor { unitless,
water quality factor}

Water_Col_Depth = 0.9 {m, sediment depth}

WCRetTemp =27 {°C; 28.8 temperature at which water column respiration rate was measured}
WCRespBot = (1.049"(TempBotCalc - WCRefTemp)) *( BODlayer+WCResRate)*DObotLimit
{mgO2/hr/m3}

WCRespMid = (1.049"(TempMidCalc - WCRefTemp)) *(BODlayer+WCResRate)*
DOmidLIimit{mgO2/hr/m2}

WCREspRate = 0*50 {200; (DOfactor*0.5+0.2)*0.23*1000 ; 0.4 mg/m2/hr}

WCRespSurf = (1.049"(TempSurfCalc-WCRefTemp))*(BODlayer+WCResRate)*DOsurflimit {
mgO2/hr/m2}

WCResRate = 50 {mg O2/m2/hr}

WIND = 5.5655218+2.44074073*SIN((2*PI*(5+TIME)/19.555564)+2.633405) { }

WindDirectionl = IF RelWindDirect<PondAngle THEN RelWindDirect ELSE -1 { }

WindDirection2 = IF (RelWindDirect >= PondAngle) THEN (IF (1.570796 - RelWindDirect) <= 0.001
THEN 0 ELSE (1.50796-RelWindDirect)) ELSE -2 { DIFERENCA NO VALOR DE DT PODE PEDIR
MUDANCA NO 0.001 }

WINDHIGH = (10/36)*(11.366296+7.448528 1 *EXP(-0.5*(((5+COUNTER(6,30))-
16.091399)/1.4503812)"2)) { m/sec }

WINDIRECTION = IF CONTROL_2<0 THEN ABS(CONTROL_2) ELSE CONTROL 2 {radian }
WINDLOW = IF COUNTER(6,30)<18 THEN FUNCTION ELSE 0 { m/sec. }

windmax = 37 {km/hr}

windmin = 2.5 {km/hr}

WindShearArea = AdjWindSpeed * AdjFetch

Windspeed = if GendailyWindMean*(0.575+0.899*exp(-0.5*((ModelTime-9.928)/3.687)2))
<MinWindSpeed then MinWindSpeed else GendailyWindMean*(0.575+0.899*exp(-0.5*((ModelTime-
9.928)/3.687)"2))

WindSpeedAtZ = (Windspeed) * (10/AnemometerHeight)"(1/7) {Wind speed at 2m above pond,
converted to Kmy/hr}

WindSpeedAtZms = WindSpeedAtZ/3.6 {m/s}

WindSpeedms = (Windspeed*1000/3600) {m/s}

WINDSTDV = 3.193815+0.294170*SIN( (2*PI*(5+TIME)/25.007263)+1.8247152) {}
Windvectorest = SiteWindVect*Windspeed {needs to be determined through initialization; relates wind
speed to wind vector estimation}

WinNorm = normal{(RWing,Rwstd)

Wmean = 7.55+1.458*sin(2*pi*JulianDay/313.605+0.5517) {km/hr}

WShearStress = IF WindShearArea > 0 THEN AirDensity * aeroresistcoeff * (WindShearArea)*2 ELSE 0
{N/m2; see Losordo pg.387}

WiEffect = 0.67 { 0.67, unitless, exponent of anabolism, body weight effect to feeding}

Zenith = IF (Hour_Angle > ssha ) OR (Hour_Angle < srha ) THEN 1.5707963 ELSE PI/2 - ARCTAN(
Cos_z/(SQRT (1-(Cos z)*2))) {radians}

Rwstd = GRAPH(Timeconvert {0.50874873+0.43*exp(-0.5*((Timeconvert/100-9.5760451)/-
1.366834)"2)})

(0.00, 9.80), (250, 0.9), (500, 0.8), (750, 0.8), (1000, 1.00), (1250, 0.9), (1500, 0.8), (1750, 0.8), (2000,
0.8), (2250, 0.7), (2500, 0.7)
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