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We discovered five risk regions specific to

ovarian cancer subtypes by performing a

genome-wide association study involving

26,000 ovarian cancer cases and 105,000

controls. We located 4,008 credible causal

variants in ovarian cancer active promoters

and enhancers. We also identified

susceptibility genes and explored gene-

variant interactions.
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Summary
To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed

genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of

European origin. We identified five histotype-specific EOC risk regions (p value <5 3 10�8) and confirmed previously reported associa-

tions for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions

(p value<10�5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chro-

matin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype.

Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86

candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC

risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide associ-

ation study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV in-

teractions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2,

HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In sum-

mary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and

candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.
Introduction

Epithelial ovarian cancer (EOC) comprises five main histo-

types of invasive disease: high-grade serous ovarian cancer
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(HGSOC), low-grade serous ovarian cancer (LGSOC),

mucinous ovarian cancer (MOC), endometrioid (ENOC),

and clear-cell carcinoma (CCOC). Previous studies have

shown that these histotypes differ in their underlying
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genetic risk factors, their precursor lesions, patterns of

spread, and molecular events during oncogenesis. For

example, the risks associated with pathogenic germline

mutations in DNA double-strand break repair genes (e.g.,

BRCA1, BRCA2, BRIP1, RAD51C, and RAD51D) are higher

for HGSOC than for other subtypes1–3 with HGSOCs also

likely deriving from fallopian tube secretory epithelial

cells.4 In contrast, CCOC and ENOC are more likely to

develop from endometriosis5 and are driven by genes

that function in chromatin remodeling (e.g., ARID1A),

DNA mismatch repair (e.g., MSH2 and MSH6),1 and PI3-ki-

nase signaling pathways.6,7

Women with a single first-degree relative affected with

ovarian cancer have a 3-fold increased risk of developing

EOC compared to the general population.8 About 40% of

the excess familial risk of disease is due to rare variants in
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genome-wide association studies (GWASs) (reviewed in

Kar et al.10). All but one of these common variants are asso-

ciatedwithper allele relative risks of less than1.6, and taken

together, they explain �6.4% of the inherited component

of EOCrisk in thepopulation. Thus, the knownrisk variants

explain less than50%of the excess familial risks, suggesting

that additional risk alleles likely exist.11

The functional mechanisms of common risk variants for

complex traits remains largely unknown. Most common

low penetrance risk variants for ovarian cancer lie in

non-protein-coding DNA and are more likely to lie in reg-

ulatory elements (REs), including enhancers, promoters,

and insulators,12–14 suggesting that many common risk
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variants function by regulating the expression of genes

involved in disease pathogenesis. Approaches to under-

stand the functional consequences of risk variants usually

focus on (1) identifying the causal variants and the non-

coding REs they lie in, (2) identifying the susceptibility

gene targets of Res, and (3) identifying how the causal var-

iants, Res, and susceptibility gene targets interact with

each other to drive disease biology. Thus, understanding

the underlying mechanisms associated with common

non-coding risk alleles requires the generation and

integration of genetic, transcriptomic, and epigenomic

datasets.

It is estimated that there are about one million en-

hancers in the human genome15–17 any of which may be

cell-type and/or disease specific. It is essential that risk var-

iants are evaluated in the context of regulatory landscapes

in tissues relevant to the disease under study.18,19 Statisti-

cal approaches have also been developed to identify puta-

tive susceptibility genes in GWAS risk regions by investi-

gating the associations between risk variants and the

expression of nearby genes (cis-expression quantitative

trait locus [cis-eQTL] analysis); these studies have identified

several candidate susceptibility genes at ovarian cancer risk

loci EOC.20,21 Finally, chromosome conformation capture

assays have identified evidence of looping that links candi-

date genes with candidate REs and/or causal risk alleles at

several EOC risk loci.22–25

Here, we report on a genetic association analysis in

25,981 EOC cases and 105,724 controls genotyped for

>470,000 variants, including a genome-wide backbone.26

The goals were (1) to identify novel variants associated

with the different histotypes of EOC, (2) to fine map

EOC risk regions to identify credible causal variants

(CCVs) that mediate the function of risk alleles, (3) to esti-

mate the contribution of common genetic variation to the

heritability of EOChistotypes in European populations, (4)

to identify the regulatory and transcriptional targets of

EOC risk alleles through the integration of genetic data

with epigenomic and whole-transcriptome datasets gener-

ated in ovarian- and non-ovarian-cancer-associated tissues,

and (5) to validate credible causal SNP-regulatory-tran-

scriptome interactions using whole-genome interactome

analyses.
Methods

Study samples
Genotype data from six Ovarian Cancer Association Consortium

(OCAC) and two BCAC genotyping projects were used for these

analyses. All participating studies were approved by the relevant

local institutional research ethics committee, and all participants

provided written informed consent. Details of participating

studies are provided in Table S1. Some studies (for example,

SEARCH) contributed samples to more than one genotyping proj-

ect, and some case control sets are a combination of multiple in-

dividual studies. A total of 25,981 EOC cases, 40,138 OCAC con-

trols, and 65,586 BCAC controls were of European ancestry and
1064 The American Journal of Human Genetics 111, 1061–1083, Jun
passed quality control. Of the 25,981 EOC cases, histotype distri-

bution was 13,609 (HGSOC), 2,749 (LGSOC), 2,877 (ENOC),

1,427 (CCOC), 2,587 (MOC), and 753 (other EOC, excluding

those of low malignant potential). For 1,979 EOC cases, histology

and/or grade were unascertained. For these cases, we inferred his-

totypes by performing polygenic risk score (PRS) modeling. We

created three separate PRS models: one for HGSOC, one for

LGSOC, and one for MOC. Each PRS model was the sum of risk

alleles specifically associated at nominal genome-wide signifi-

cance with the index histotype but not associated with other his-

totypes (p > 0.05), weighted by the effect size estimates from the

current GWAS analysis. There were 16, 5, and 5 variants in the

HGSOC, LGSOC, and MOC PRS models, respectively. Association

results (Table S2) from the PRS models showed that the unas-

signed cases were more similar to HGSOC than any of the other

histotypes. Therefore, the unassigned cases were subsequently

classified as part of the HGSOC histotype. All histotypes,

excluding the mucinous histotype, were associated to some de-

gree with either the HGSOC PRS or the LGSOC PRS; therefore,

we considered non-mucinous as a separate histotype of interest

during association analysis.
Histotype definitions
EOC is a highly heterogeneous phenotype with five main histo-

types for invasive disease: HGSOC, LGSOC, MOC, ENOC, and

CCOC and two histotypes for borderline disease: serous and

mucinous. We performed association analysis on the five main

histotypes for invasive disease and a non-mucinous histotype,

which is a combination of themain invasive histotypes, excluding

MOC.
Genotype data and quality control
SNP genotyping

Genotyping data from the BCAC and OCAC projects have been

previously published.11,27–29 Genotyping was performed at five

centers: University of Cambridge, Center for Inherited Disease

Research, National Cancer Institute, Genome Quebec, and Mayo

Clinic. Raw intensity data files were sent to the data coordination

center at the University of Cambridge for centralized genotype

calling and quality control. Details of genotype calling are as

described in Pharoah et al.27

Sample quality control

Samples were excluded if they did not harbor two X chromosomes

as determined by lack of heterozygosity on the X chromosome or

presence of a Y chromosome. Duplicates and close relatives were

identified using an in-house software that calculates a concor-

dance matrix for all individuals. Samples with a concordance

>0.86 were flagged as duplicates, and samples with a concordance

between 0.74 and 0.86 were flagged as relatives. One sample per

duplicate or related pair was retained for this analysis. For case-

control pairs, we excluded the control, while for case-case and con-

trol-control pairs, we excluded the sample with the lower call rate.

Concordance statistics were used to identify cryptic duplicates and

expected duplicates whose genotypes did not match. We attemp-

ted to resolve these discrepancies with the study investigators. If

the discrepancy could not be resolved, both samples were

excluded. Samples with genotyping call rate<95% and excessively

low or high heterozygosity were excluded.

SNP quality control

OncoArray quality control (QC) guidelines11 were used to filter

SNPs. Only SNPs that passed quality control for all consortia
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were used for imputation. We excluded SNPs with a call rate

<95%, SNPs deviating from Hardy-Weinberg equilibrium

(p < 1 3 10�7 in controls and p< < 1 3 10�12 in cases), and

SNPs with a concordance <98% among 5,280 duplicate pairs.

For imputation, we additionally excluded SNPs with minor allele

frequency (MAF) <1% and call rate <98%. Of the 533,631 SNPs

manufactured on the array, 470,825 passed quality control and

were used for imputation.

Imputation
Imputation was performed using the Michigan Imputation

Server,30 which provides a service for large scale population

studies. We used SHAPEIT31 for pre-phasing and Minimac330 for

imputation with the first release of the Haplotype Reference Con-

sortium panel.32 We imputed in batches of 10,000 individuals and

analyzed imputation quality statistics together. SNPs with imputa-

tion r2 accuracy <0.3 were excluded. The final dataset after impu-

tation included 10,163,797 variants that passed imputation for

each genotyping project sample set.

Principal component analysis
Intercontinental ancestry was calculated using the software pack-

age FastPop (http://sourceforge.net/projects/fastpop/) developed

for the OncoArray. Only samples with >80% European ancestry

were used in these analyses. Principal component analyses for

the OncoArray data were carried out using data from 33,661

uncorrelated SNPs (pairwise r2 < 0.1) with MAF >0.05 using an

in-house program (available at http://ccge.medschl.cam.ac.uk/

software/pccalc). Principal component analysis for the other geno-

type datasets was carried out as previously described.27

Association analysis
We evaluated the association between genotype and disease using

logistic regressionmodels by estimating the associations with each

additional copy of the minor allele (log-additive models). We car-

ried out initial genome-wide analyses separately for OncoArray,

COGS, and the five GWAS datasets and pooled the results using

a fixed effects meta-analysis. The analyses were adjusted for coun-

try and population substructure by including the eigenvectors of

project-specific principal components as covariates in the model

(nine for OncoArray; five for COGS; two for UK GWAS; two for

the US, BWH, and POL GWAS; and a single principal component

for the MAY GWAS). The number of eigenvectors chosen was

based on the point of inflection of a scree plot. After imputation

of the genotypes, we used genotype dosages in a single logistic

regression model with adjustment for each genotyping project/

study combination and nineteen principal components. Principal

components were set to zero for samples not included in a given

project.

Fine mapping
We performed fine mapping in new regions (those not previously

reported as detailed in Table S3) with variants associated at p< 53

10�8 as well as 26 other variants identified from previous analysis,

which replicated in this study (Table S4). Each region was explored

to identify additional independent association signals and investi-

gate the genomic localization of causal variants. SNPs within a

given genomic region were jointly analyzed to evaluate the simul-

taneous effects of multiple SNPs, using a 1Mbwindow centered on

the most significant variant, in stepwise conditional analysis. In

these models, all SNPs within a region, including SNPs in high
The America
LD with the lead SNP, were included. Given the presence of a

genome-wide significant variant in the region, the prior probabil-

ity of an additional variant in the same region is higher than in a

region without a genome-wide significant lead SNP, therefore we

used a threshold of p < 10�5 to identify additional independent

signals.
Credible causal variant sets
Putative causal SNPs were selected to create a CCV set, the mini-

mum set of SNPs that contain all causal SNPs in the region, by

triaging variants based on p values from the association analysis

(for primary association signals) and the conditional analysis

(for secondary signals). All SNPs in each region were ranked by

the likelihood of association with EOC, including histotype spe-

cific analysis. The likelihood of each SNP was then compared

with the likelihood of the lead SNP in the region. SNPs with cau-

sality odds >1:100 compared with the lead SNP were selected.

CCV sets were created for all published hits that replicated in

this analysis, primary association signals, and secondary associa-

tion signals (Table S5) from this analysis. As secondary signals

were by definition identified in regions with genome-wide signif-

icant SNPs, there was some overlap in the CCV sets identified for

the secondary signals with the CCV set identified for the primary

signals.
Functional annotation and enrichment analyses
Epigenomic datasets for ovarian cancer and their precursor tissues

A collection of epigenomic datasets in 18 ovarian cancer cell lines

and precursor cell types were compiled (Table S6). These datasets

include previously published and newly generated chromatin

immunoprecipitation sequencing (ChIP-seq) for four histone

marks (H3K27ac, H3K4me1, H3K4me3, and CTCF), and RNA

sequencing (RNA-seq) for gene expression. There are 12

established EOC cell lines that model undifferentiated EOC

(HEYA8), HGSOC (CaOV3, UWB1.289, and Kuramochi), LGSOC

(VOA1056 and OAW42), CCOC (JHOC5, ES2, and RMG-II), and

MOC (GFTR230, MCAS, and EFO27) and six cell lines for three

ovarian cancer precursor cell types, comprising of fallopian tube

secretory epithelial cells (FTSECs; FT246, FT33, and FT282),

ovarian surface epithelial cells (OSECs; IOSE4 and IOSE11), and

endometriosis epithelial cells (EECs; EEC16).33

RNA-seq data were generated as previously described,34 and

are publicly available at GEO: GSE114332. ChIP-seq for

H3K27ac, H3K4me3, and H3K4me1 was performed as previously

described.19 Peak calling was performed using the AQUAS pipe-

line.35 Reads were aligned against the reference human genome

(GRCh38). Quality control metrics were computed for each indi-

vidual replicate, including number of reads, percentage of dupli-

cated reads, normalized strand coefficient, relative strand correla-

tion, and fraction of reads in called peaks. Peak calling was

performed with macs2 with pooled replicate peaks that overlap

50% or more of each individual replicate selected for the final

peak set. When replicates were not available (HEYA8, ES2, and

RMG-II) pseudo replicates were formed and pooled peaks selected

in the same manner from these pseudo replicates.

Generating chromatin state annotations for ovarian cancer cell lines

We used ChromHMM v1.1936 to identify chromatin states in

18 EOC-associated cell lines profiled for the histone marks

H3K27ac, H3Kme1, H3Kme, CTCF, and RNA-seq (Table S6). The

input for each cell line was RNA-seq and ChIP-seq peaks for

four histone marks—H3K27ac, H3K4me1, H3K4me3, and CTCF.
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Signals were binarized at 200 bp resolution. For chromatin mark

ChIP-seq files, we used the BinarizedBed function to convert coor-

dinates with default settings. For RNA-seq files, gene expression

was calculated at transcript level and extended to include untrans-

lated region (UTR) and exon regions as intervals for ChromHMM

input. Transcripts with expression counts greater than 15 were

labeled as 1 (expressed), otherwise 0, as recommended by the

edgeR package37 default filterByExpression value. RNA-seq for

FT282 cell line was excluded and treated as ‘‘missing’’ in

ChromHMM due to unmatched read length and read depth to

other RNA-seq files. Gene coordinates from GENCODE version

34lift3738 in GRCh37 Human Genome reference were used.

We trained six ChromHMMmodels, ranging from five to ten to-

tal chromatin states, based on our prior experience in chromatin

states model training.19 We selected an eight-state model, as it

best captured the known classes of genomic elements such as pro-

moters and transcribed regions,39 and the larger number of states

did show more distinctive interactions. The eight states were

labeled as active promoter, active enhancer, active region, weak

promoter, weak enhancer, insulator, transcribed region, and low

signal based on the emission probability and transmission proba-

bility matrix learned from ChromHMM. Active regions represent

intervals with H3K27ac mark but absence of H3K4me1 and

H3K4me3 marks. We note that low-signal regions were not

analyzed in this study because there were no repressive histone

marks in our inputs, thereby there was no way to differentiate be-

tween low-signal and poised regions.

To create consensus peak sets across a single histotype for

enrichment analyses, we retained peaks with at least 50% overlap

with at least one other peak in two or more samples from the same

histotype group and then stretched boundaries to the edge of each

peak in the overlap. Chromatin state peak files were then concat-

enated, and peak coordinates were merged such that if records

within the concatenated file were overlapping, they were further

combined into a single consensus peak. In total, we compiled

seven sets of consensus peaks: three sets for ovarian cancer precur-

sor cell types (FTSECs, OSECs, and endometrioid epithelial cells),

and four sets for EOC histotypes (HGSOC, LGSOC, CCOC, and

MOC).

Estimating SNP heritability and partitioned SNP heritability

We estimated the variance explained by known SNP effects, or SNP

heritability. We first calculated the total SNP heritability of each

EOC histotype by using linkage disequilibrium score regression

(LDSC),40,41 version 1.0.0. Briefly, this method uses GWAS sum-

mary statistics to estimate SNP heritability and explicitly models

the effect of all other SNPs in the same LD region. It applies a

regression model to examine the relationship between the

GWAS test statistics from a given SNP and ‘‘LD scores.’’ The LD

score is measured by the amount of genetic variation of all other

SNPs tagged by the specific variant under consideration. In this

study, the LD scores were pre-calculated from phased European-

ancestry individuals from the 1000 Genomes Project reference

panel v3 (downloaded alongside the software from https://data.

broadinstitute.org/alkesgroup/LDSCORE/).

We applied stratified LD score regression41 to examine the poly-

genic contribution of each functional annotation to SNP heritabil-

ity. The goal was to estimate the proportion of genome-wide SNP

heritability attributable to each functional annotation by

combining SNPs overlapping with regions of interest and pruning

out the effect of LD. The category-specific enrichment was defined

as the proportion of SNP heritability in the category divided by the

proportion of the number of SNPs in the same category. Instinc-
1066 The American Journal of Human Genetics 111, 1061–1083, Jun
tively, a functional category that has a smaller number of SNP over-

laps but a larger contribution to SNP heritability will show stronger

enrichment. According to the total heritability estimates, only non-

MOC (NMOC) and HGSOC GWAS summary statistics have suffi-

cient power to quantify heritability for downstream enrichment an-

alyses. We therefore proceeded with the partitioned-heritability

enrichment analyses with these two histotypes.

The partitioned-heritability analyses were performed with two

different sets of functional annotations. The first is a full baseline

model with 24 general broad functional annotations curated by Fi-

nucane et al.,41 which were inclusive of all publicly available cell

types and were post-processed.42 The 24 annotations used in

this analysis include coding, 30UTR, 50UTR, promoter, and intron

regions from UCSC Genome Browser42,43; regions conserved in

mammals44,45; combined chromHMM and Segway predictions

comprising CTCF-bound regions, promoter-flanking, transcribed,

transcription start site, strong enhancer, weak enhancer, and

repressed annotations46; digital genomic footprint and transcrip-

tion factor binding sites (TFBSs) from ENCODE42; open chromatin

regions as reflected by DNase I hypersensitivity sites from a

union of all cell types and a union of only fetal cell types on

ENCODE and Roadmap Epigenomics47; FANTOM5 enhancer15;

H3K27ac,48 H3K4me1, and H3K4me3 histonemarks from a union

across cell types on Roadmap Epigenomics16; and super-en-

hancers.48 The second set of functional annotations include 49

ovarian cancer-related chromatin states annotated by a trained

ChromHMM model, as described above.

Prioritization of the likely causal variant using PAINTOR

PAINTOR is a Bayesian approach that combines information from

GWAS summary statistics, LD structure, and functional annotations

to compute the posterior probability of causality for all SNPs at risk

loci.49 Two PAINTOR models were trained: one on NMOC and one

on HGSOC risk loci. Five significant annotations each were chosen

for NMOC and HGSOC. The annotations for NMOC included 30

UTR, TFBS from ENCODE, consensus active promoters in

HGSOC, consensus active enhancers in FT, and consensus active re-

gions in EEC. For HGSOC, we chose 30 UTR, TFBS from ENCODE,

consensus active promoters in CCOC, consensus active enhancers

in FT, and consensus transcribed regions in FT. As recommended

by PAINTOR, chosen annotations were significantly enriched

with CCVs and approximately uncorrelated to each other in order

to maximize the information content.

Enrichment of credible causal variants in functional annotations

Previously reported and newly identified EOC CCVs were com-

bined to create the full candidate set (n¼ 4,008) and then stratified

by EOC histotype (NMOC ¼ 246, HGSOC¼ 3,152, LGSOC ¼ 386,

ENOC ¼ 50, and MOC ¼ 174). HGSOC CCVs at 17q21.31 were

excluded for this analysis due to its disproportionately large num-

ber of CCVs (n ¼ 2,256). Each set of CCVs underwent enrichment

analysis against each of the 49 ovarian cancer-related chromatin

states. Enrichment analysis was performed with the FunciVar

package (https://github.com/Simon-Coetzee/funcivar19) a tool

for annotation and functional enrichment of variant sets. In brief,

FunciVar first takes two lists of variants as inputs: (1) a list of CCVs

as the foreground and (2) a list of control variants as the back-

ground. The background list of variants was generated by aggre-

gating SNPs within 2 Mb (1 Mb þ/�) of the credible causal set in

order to maintain similar genetic architecture (e.g., linkage

disequilibrium, regulatory activity, and transcriptional program)

as CCVs. FunciVar then intersects each variant with functional an-

notations. Enrichment probability is modeled under a beta-bino-

mial distribution and reported as the median of enrichment
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probability differences between foreground and background vari-

ants (labeled as ‘‘difference’’), within the range of �1 to 1, where

1 means strong enrichment and �1 means strong depletion. The

significance of results is reported as probability that foreground

variants have more overlaps with the functional annotation

than background SNPs, within the range of 0–1, the higher being

the more confident.
Candidate susceptibility gene identification
Tissue-specific transcriptome-wide association analyses

We conducted a tissue-specific transcriptome-wide association

study (TWAS) using methods and resources that have been

described previously.21 Briefly, we used three EOC-relevant, tis-

sue-specific RNA-seq resources: 284 TCGA HGSOCs50 and 105

ovarian and 60 fallopian tube epithelial precursor tissues21 and

applied the FUSION TWAS pipeline51 to genome-wide SNP-level

association summary statistics for each of the six EOC histotypes.

Transcriptome-wide significant associations were determined us-

ing a false discovery rate (FDR) threshold of 5%. The FUSION pipe-

line integrates colocalization analysis as implemented in the ‘‘co-

loc’’ tool.52 We used coloc to further prioritize the TWAS results

and only focused on transcriptome-wide significant genes with co-

loc posterior probability (‘‘PP4’’)>0.6, which indicates that there is

a >60% probability of a shared SNP signal underlying the associa-

tion in the GWAS for EOC risk and in the gene-expression datasets.

Cross-tissue transcriptome-wide association analyses

We performed transcriptome-wide association analyses by inte-

grating genome-wide SNP-level association summary statistics

for each of the six EOC histotypes with GTEx version 853 gene-

expression quantitative trait locus data from 49 tissue types. Sum-

mary association statistics for each histotype were used as inputs

to S-MultiXcan54 in order to identify associations with ovarian

cancer risk mediated via gene expression. This method taps the

joint effects of gene expression correlation across tissues to boost

the power to detect candidate disease susceptibility genes.

First, S-PrediXcan55 was run for each histotype and for each of

the 49 tissues in GTEx version 8. The results were then fed into

S-MultiXcan, which outputs a list of p values for the association

between each gene and each ovarian cancer histotype. Transcrip-

tome-wide significant associations were determined using an

FDR threshold of 5%.

We used colocalization implemented in fastENLOC56,57 in order

to refine further the results of S-MultiXcan for each histotype.

Summary statistics were annotated with posterior inclusion prob-

abilities and were used as inputs to fastENLOC for each of the 49

GTEx tissues. This provided regional colocalization probabilities

(RCPs) for each gene across tissues. These RCPs were merged

with the S-MultiXcan results to identify genes with an FDR

<0.05 and RCPR 0.1 in any tissue. This fastENLOCRCP threshold

indicates that the same SNP signal is likely to underlie the GWAS

and gene expression associations.
Interactome analysis of EOC risk regions
H3K27ac HiChIP sequencing

HiChIP utilized four different cell lines, two precursor fallopian

tube lines (FT33 and FT246), and two HGSOC cell lines (Kuramo-

chi and UWB1.289). All FT lines were cultured in DMEM:F12

(Corning, Cellgro) with 10% fetal bovine serum (FBS). Kuramochi

cells were grown in RPMI 1640 (Gibco) with 10% FBS added.

UWB1.289 cells were grown in a 1:1 mixture of MEGM

(DMEM:F12, 5% horse serum, 20 ng/mL epidermal growth factor,
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0.5 mg/mL hydrocortisone, 100 ng/mL cholera toxin, 10 mg/mL

insulin) and RPMI 1640. Cells were grown to 80% confluency, de-

tached with trypsin, and strained through a 40-micron filter. The

cell pellet was crosslinked with 1% formaldehyde (Sigma) that

was freshly made for 10 min at room temperature with rotation

and quenched with 125 mM of ice-cold glycine. Cells were pel-

leted, washed in PBS, flash frozen in liquid nitrogen, and stored

at �80�C.
HiChIP libraries were generated utilizing the Mumbach et al.58

protocol with the following modifications. All samples were pro-

cessed as technical replicates. Cells were digested with MBoI for

4 h and mixed intermittently. After digestion, overhangs were

filled in with DNA polymerase I, large Klenow fragment for 1 h

at 37�C. Samples were ligated using a T4 DNA ligase for 4 h at

room temperature, nuclei were lysed using Lysis buffer (PBS pH

7.4, 0.1% SDS, 0.137 M NaCl, 0.5% Na-deoxycholic acid, 1%

NP-4059) with protease inhibitor, and chromatin was sonicated

for 5 min on a Covaris E220. Sonicated chromatin was precleared

in a mixture of protein A and G Dynabeads (Thermo Fisher A:

10002D, G: 10004D), and the remaining chromatin incubated in

5.6 mug of H3K27ac antibody (Diagenode C15410196) overnight.

Chromatin was then purified using a NucleoSpin PCR clean-up kit

(Machery-Nagel 740609) and tagmented with Tn5 enzyme (Illu-

mina 15027865) when captured with streptavidin beads and

eluted. Libraries were generated by PCRwith a PhusionHF 2xMas-

termix (BioLabs MO536S) using Nextera custom oligos. A two-

sided size selection with Ampure XP beads (Beckman Coulter,

A63881) captured fragments between 300 and 700 bp. Libraries

were pooled and assessed by a shallow depth 2 3 150 bp paired-

end sequencing run on an Illumina Miniseq, generating 1–5

million reads per replicate. Full depth sequencing of the HiChIP

pool was performed on the Illumina Novaseq at 23150 bp, gener-

ating 300–400 million paired-end reads per sample.

HiChIP data analysis

Sequencing reads from HiChIP libraries were filtered, and the

adapters were removed using cutadapt60 and mapped to the

GRCh38 genome via HiC-Pro v2.11.0.61 Replicates were merged

together, and the HiCPro output files were used for QC metrics

and subsequent input for FitHiChIP.62 FitHiChIP was used to call

peaks from Hi-C Pro with default settings. This tool uses all reads

from dangling ends, re-ligation and self-circle pairs, as well as all

reads with Washington Epigenome browser.63

We integrated 6 different datasets/annotations—GWAS p value,

distance to promoter, GTEx/FTE/OSE eQTLs, HiChIP looping as-

says, weighted Remap transcription factor (TF) database, and

weighted variant effect predictor (VEP) score. For the latter three,

we weighted scores according to biological disruptiveness. TF in-

teractions were weighted higher for variants that break the corre-

spondingmotif (as predicted by "motifbreakR") and VEP by disrup-

tiveness (e.g., stop mutations vs. missense). In addition, loop

scores are weighted by epigenetic context at loop ends (e.g.,

"enhancer-promoter" interaction vs. "other enhancer"). We used

a three-step procedure to accomplish this. In the first step, genes

are selected for each hit region as follows: all genes were selected

within the larger of the most significant HiChIP interaction in 1

Mb flanking the top variant (2 Mb total) or 500 kb flanking

sequence. Second, we assigned a scale-normalized score for each

of the aforementioned assays and annotations for each variant-

gene combination, which summed together we call the "gene

score" (see Table S7). We then sum the gene scores across variants

for each region and multiply by the negative log of the p value,

producing a "total score" for each gene in the region, which by
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now has been weighted by the preponderance of genetic and epi-

genomic evidence in its favor (summarized in Table S8). These

scores can be affected by various factors, including the length of

CCV list, so we applied a softmax function so that genes in each

region sum to 1 (the "escore") thus producing a relative confidence

level that can be compared between and across different loci and

histotypes. Finally, in step 3, we organized the top CCV-gene pairs

into a table (Table S8) that reports the variance of the escores by

region ("region score"), which can be interpreted as related to

the confidence in our predictions, i.e., low variance regions prob-

ably do not distinguish well between genes vs. high-variance re-

gions in which one or two candidates stand out above the rest.

Functional analysis of PAX8 in ovarian cancer cell lines
We used a small interfering RNA (siRNA) pool to knockdown the

expression of PAX8 in the HGSOC line OVCAR4 compared to a

scrambled control pool. Count matrices of siRNA scramble con-

trol, and PAX8 were downloaded from GEO: GSE150443. Counts

were normalized as transcripts per million and analyzed for differ-

ential analysis with DESEQ2.64
Results

Genetic association and fine mapping analyses of EOC

risk regions

Genotype data were available for 25,981 EOC cases and

105,724 controls of European origin (Table S1), including

13,609 HGSOC cases, 2,749 LGSOC cases, 2,877 ENOC

cases, 1,427 CCOC cases, and 2,587 MOC cases, as well

as 753 cases of other EOC histotypes (excluding those of

low malignant potential) confirmed by histology. Histol-

ogy and/or grade information were not available for

1,979 cases, and so we inferred histotype for these cases

using PRS modeling (Table S2). This indicated that the

unassigned EOC cases are more similar to HGSOC than

any of the other histotypes, and so we classified them as

such, increasing the number of HGSOC cases to 15,588,

the total number of N. PRS modeling also suggested that

the genetic architecture of MOC was substantially

different from the other histotypes, and so EOC cases

were also classified either as MOC or as NMOC (n ¼
23,394) (Figure 1A). After quality control analysis,

470,825 SNPs were available for imputation using the

Haplotype Reference Consortium reference panel.65 Thir-

ty-two million SNPs were imputed of which 10,163,797

passed quality control (MAF > 0.01, imputation r2 >

0.3). These SNPs were evaluated for association with risk

of the different histotype groups.

We identified five novel EOC risk associations (genomic

regions where no EOC risk association had previously

been reported at genome-wide significance (p value

<5 3 10�8) (Tables S3 and S4) (Table 1; Figure 1B). Risk-

associated SNPs in these regions were common

(MAF >0.05), well imputed (r2 > 0.90), and had low prob-

abilities of being false-positive associations (Bayes false dis-

covery probability [BFDP] < 5%), assuming a prior proba-

bility of association of 0.0001 and upper-likely odds ratio

(OR) under the alternative hypothesis of 1.2. Two regions
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were associated with HGSOC risk, rs4149419 at 4q13.3

(OR 0.93 [95% confidence interval (CI) 0.90–0.95],

p value ¼ 2.7 3 10�8) and rs7851336 at 9p22.1 (OR 1.10

[95% CI 1.07–1.13], p value ¼ 2.9 3 10�10); two with

risk of NMOC, rs336126 at 5q11.2 (OR 0.92 [95% CI

0.90–0.94], p value ¼ 6.4 3 10�11) and rs2070368 at

21q22.12 (OR 0.94 [95% CI 0.92–0.96] p value ¼ 1.1 3

10�8); and one with risk of MOC, rs72827480 at 2q14.2

(OR 0.85 [95% CI 0.80–0.90], p value ¼ 2.7 3 10�8).

We confirmed the associations at genome-wide signifi-

cance for 19 of 28 previously reported EOC risk re-

gions,11,23,27,66–71 six (of nine) risk loci identified in

meta-analyses of data from OCAC and the Consortium

of Investigators of Modifiers of BRCA1/2 (CIMBA),11,72

and two (of five) risk associations conferring risk of both

breast and ovarian cancer73 (Table 2; Figure 1C; Tables S3

and S4).

We also performed conditional analysis to fine map risk

variants at all new and previously reported risk regions, ad-

justing for themost statistically significant SNP in each risk

region. The index SNP in each region was imputed with r2

>0.90 and estimated allele frequency>0.05, identifying 11

signals at six risk regions with p values <10�5 (of which

four had a p value <5.0 3 10�8) that were independent

of the primary signal (Table 1). Independent risk signals

were identified for two or more ovarian cancer histotypes

in five regions, notably at 8q24.21 where we replicated

the previously reported risk associations for HGSOC

(chr8:129541931 [genome build 37])21 and NMOC

(chr8:128817883 [genome build 37])11 and identified three

additional independent risk associations: rs6470494

(chr8:128087904 [genome build 37]) associated with

MOC (OR 0.87 [95% CI 0.82–0.92], p value ¼ 5.7 3

10�6), rs7833298 (chr8:129080657 [genome build 37])

associated with HGSOC (OR 0.92 [95% CI 0.90–0.95], p

value ¼ 1.2 3 10�9), and rs77235147 (chr8:129982731

[genome build 37]) associated with NMOC (OR 0.91

[95% CI 0.87–0.95], p value ¼ 7.2 3 10�6) (positions

shown are in hg19; Figure 2A). Another example was at

2q31.1 where we replicated previously reported associa-

tions with MOC (chr2:177037311 [genome build 37])23

and NMOC (chr2:177039578 [genome build 37]).68 Subse-

quent conditional analysis revealed a previously unidenti-

fied independent risk association with MOC for rs2594950

(chr2:177508622 [genome build 37]; OR 0.87 [95% CI

0.81–0.92], p value ¼ 6.5 3 10�6) (Figure 2B). The other re-

gions associated with risks of two or more EOC histotypes

were 2q13a (HGSOC and MOC), 5p15.33 (HGSOC,

LGSOC, and NMOC), and 17q12 (HGSOC and CCOC)

(Tables 1 and 2).

Fine mapping identified 4,008 CCVs at the 32 new or

replicated risk regions and the 11 secondary risk regions

(Table S5). Of the 4,008 CCVs, 169 (4.2%) were in known

gene transcripts and included 60 CCVs in 30 UTRs, 50

CCVs in 5’ UTRs, 32 coding missense variants, and 39 syn-

onymous variants (Table S9). Of the CCVs in 30 UTRs, 13

were in MAPT at the 17q21.31 risk locus, 5 were in PAX8
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A B

C

Figure 1. Study design for the identification and functional analysis of common low penetrance risk variants for epithelial ovarian
cancer (EOC)
(A) Study design: HGSOC, high-grade serous ovarian cancer; ENOC, endometrioid ovarian cancer; LGSOC, low-grade serous ovarian can-
cer; CCOC, clear-cell ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancer; fine mapping of risk
regions and epigenomic annotation to identify credible causal risk variants (CCVs) at each risk locus; cell-type-specific epigenomic
enrichment and partitioning heritability analysis; expression QTL-based approaches to identify candidate susceptibility genes in EOC
risk regions; and 3D looping analysis to identify gene-CCV interactions at EOC risk loci.
(B) Genome-wide association analyses identified five novel EOC risk loci at p < 5 3 10�8 for different EOC histotypes; bubble plot illus-
trates both the effect size and the statistical significance value for each region by histotype.
(C) Risk associations by histotype for previously reported EOC risk regions including 22 regions for which the association signal repli-
cates in one or more histotypes at p < 5 3 10�8 and 11 risk regions that do not replicate at genome-wide significance.
at the 2q13 locus, and 5 were in ANKLE 1 at the 19p13.11

locus. Of the CCVs in 50 UTRs, 25 were inMAPT, 10 were in

KANSL1 at the 17q21.31 risk locus, and 7 were in SMC2 at

the 9q31.3 locus. Finally, of the 32 missense variants, 7

were predicted to be deleterious by consensus from the

Sorting Intolerant From Tolerant (SIFT),74 Polymorphism

Phenotyping (Polyphen),75 and Combined Annotation

Dependent Depletion76 algorithms, including 3 CCVs in

ANKLE1 and 1 CCV in CHECK2, CHMP4C, KANSL1, and

MAPT, respectively.
The America
Estimating SNP heritability and partitioning heritability

for EOC risk alleles

We estimated the genome-wide contribution of risk vari-

ants to narrow-sense heritability (i.e., the proportion of

phenotypic variance attributable to the additive effects of

common GWAS SNPs) by LDSC using genome-wide

GWAS summary statistics for each EOC histotype group.

The genome-wide SNP-heritability estimates per histotype

were 4.6% for NMOC cases, 4% for HGSOC, 1.6% for

MOC, 1.3% for LGSOC, 1% for ENOC, and 0.8% for
n Journal of Human Genetics 111, 1061–1083, June 6, 2024 1069



Table 1. Histotype specific EOC risk associations identified in this study

Analysis Locus Histotype Index SNP rsid Index SNP positiona Effect allele Effect allele freq. r2b OR (95% CI)c p value BFDPd (%) # of CCVse
Nearest gene to
lead SNP

Primary 2q14.2 MOC rs72827480 121146501 C 0.36 0.94 0.85 (0.80–0.90) 2.7 3 10�8 3 4 INHBB

4q13.3 HGSOC rs4149419 70592242 T 0.34 0.93 0.93 (0.90–0.95) 2.7 3 10�8 2 85 SULT1B1

5q11.2 NMOC rs336126 54476556 A 0.72 0.93 0.92 (0.90–0.94) 6.4 3 10�11 <1 10 CDC20B

9p22.1 HGSOC rs7851336 19030883 C 0.25 0.95 1.10 (1.07–1.13) 2.9 3 10�10 <1 47 SAXO1

21q22.12 NMOC rs2070368 36080398 C 0.39 0.97 0.94 (0.92–0.96) 1.1 3 10�8 <1 6 CLIC6

Conditional 2q13a LGSOC rs1470053 111915946 T 0.16 1.00 0.84 (0.78–0.90) 2.6 3 10�6 22 6 BCL2L11

2q13b HGSOC rs895412 113973964 C 0.49 0.95 1.08 (1.04–1.11) 1.3 3 10�7 <1 87 PAX8

2q31.1 MOC rs2594950 177508622 C 0.31 0.91 0.87 (0.81–0.92) 6.5 3 10�6 28 63 MTX2

5p15.33 HGSOC rs10069690 1279790 T 0.28 0.99 1.09 (1.05–1.13) 2.1 3 10�6 9 2 TERT

5p15.33 LGSOC rs2853677 1287194 A 0.51 0.99 0.80 (0.74–0.86) 7.8 3 10�10 <1 1

5p15.33 NMOC rs2853669 1295349 G 0.30 0.99 0.92 (0.90–0.95) 4.9 3 10�8 <1 6

8q24.21 MOC rs6470494 128087904 C 0.69 1.00 0.87 (0.82–0.92) 5.7 3 10�6 70 4 PCAT1/CASC1

8q24.21 HGSOC rs7833298 129080657 C 0.38 1.00 0.92 (0.90–0.95) 1.2 3 10�9 <1 10 PVT1

8q24.21 NMOC rs77235147 129982731 T 0.07 0.98 0.91 (0.87–0.95) 7.2 3 10�6 27 47 CCDC26

9p22.1 HGSOC rs10810671 16914835 C 0.27 1.00 1.08 (1.05–1.11) 6.5 3 10�10 <1 20 BNC2

19p13.11 HGSOC rs12982058 17409380 T 0.48 0.99 0.92 (0.89–0.96) 4.1 3 10�6 15 44 ABHD8

Primary analysis: EOC risk loci (p< 53 10�8) at genomic regions not previously reported; conditional analysis: independent EOC risk associations (p< 13 10�5) identified at previously genomic regions previously reported to
be associated with EOC.
aBuild 37 position.
bAverage imputation accuracy estimate.
cOdds ratio (95% confidence interval).
dBayesian false discovery probability based on a prior probability on the alternative hypothesis of 1:10,000 and an upper likely effect size (odds ratio) of 1.2.
eCCVs, credible causal variants.
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Table 2. Re-analysis of previously reported genome-wide significant risk loci

Cytoband Histotype
Lead SNP
previous analysisa Lead SNP reanalysis Effect allele Effect allele freq. R2b OR (95% CI)c p value BFDPd (%) # of CCVse

Nearest gene to
lead SNP

1p34.3 HGSOC 38,096,421 38,082,122 A 0.254 0.99 1.12 (1.09–1.15) 1.9E-14 <1 13 RSPO1

2q13a MOC 113,972,945 113,979,364 A 0.150 0.92 1.31 (1.21–1.41) 4.5E-12 <1 18 PAX8-AS1

2q13b HGSOC 111,818,658 111,782,834 A 0.159 0.99 1.10 (1.06–1.13) 7.6E-08 4 38 ACOXL; BCL2L11

2q31.1 MOC 177,037,311 177,508,622 C 0.332 0.91 0.87 (0.82–0.93) 1.0E-5 86 63 HOXD3

NMOC 177,042,633 177,039,578 T 0.680 0.99 0.90 (0.88–0.92) 4.9e-20 <1 16 HOXD-AS1

3q23 MOC 138,849,543 138,849,543 C 0.288 0.86 1.29 (1.21–1.37) 8.1E-15 <1 10 MRPS22

3q25.31 HGSOC 156,435,640 156,402,487 T 0.049 1.00 1.59 (1.52–1.68) 8.0E-71 <1 61 –

3q28 NMOC 190,525,516 190,531,882 A 0.303 0.97 0.93 (0.91–0.96) 6.9E-9 1 40 –

5p15.33 LGSOC 1,279,790 1,279,790 T 0.259 0.99 1.22 (1.15–1.29) 2.4E-10 <1 2 TERT

HGSOC 1,279,790 T 0.259 0.99 1.14 (1.11–1.17) 1.0E-19 <1 2

LGSOC 1,285,974 1,285,974 A 0.330 0.98 1.32 (1.24–1.39) 1.8E-21 <1 1

HGSOC 1,285,974 A 0.330 0.98 1.09 (1.06–1.12) 2.4E-10 <1 1 –

8q21.13 NMOC 82,668,818 82,653,644 G 0.068 1.00 1.15 (1.10–1.19) 2.2E-11 <1 8 CHMP4C

8q24.21 NMOC 129,541,931 129,541,931 A 0.130 1.00 0.83 (0.81–0.86) 2.1E-28 <1 49 LINC00826

LGSOC 129,541,931 A 0.130 1.00 0.70 (0.64–0.77) 2.0E-15 <1 49

HGSOC 129,541,931 A 0.130 1.00 0.80 (0.77–0.83) 8.2E-30 <1 49

NMOC 128,817,883 128,817,883 G 0.457 0.99 1.08 (1.05–1.10) 9,8E-12 <1 18 PVT1; MYC

HGSOC 128,817,883 G 0.457 0.99 1.09 (1.06–1.12) 1.7E-11 <1 18 –

9p22.2 NMOC 16,914,716 16,914,716 A 0.205 1.00 0.81 (0.79–0.83) 7.8E-51 <1 8 BNC2

HGSOC 16,914,716 A 0.205 1.00 0.75 (0.72–0.77) 2.7E-68 <1 8

9q31.1 NMOC 106,856,793 106,866,703 C 0.552 0.99 1.06 (1.04–1.09) 1.3E-08 1 135 SMC2

HGSOC 106,866,703 C 0.552 0.99 1.08 (1.05–1.11) 4.0E-09 <1 135

9q34.2 NMOC 136,155,000 136,155,000 T 0.197 0.96 1.10 (1.07–1.13) 7.6E-13 <1 9 ABO

HGSOC 136,155,000 T 0.197 0.96 1.13 (1.10–1.17) 1.6E-14 <1 9

10p12.31 NMOC 21,821,274 21,821,274 A 0.331 0.99 1.08 (1.06–1.11) 2.0E-12 <1 13 MLLT10

HGSOC – 21,821,274 A 0.331 0.99 1.08 (1.06–1.11) 1.5E-09 <1 13 –

12q24.31 NMOC 121,403,724 121,403,724 A 0.576 0.99 0.95 (0.93–0.97) 3.0E-07 17 31 HNF1A-AS1

12q24.31 HGSOC 121,403,724 12,140,3724 A 0.576 0.99 0.93 (0.91–0.95) 7.0E-09 1 31 HNF1A-AS1

(Continued on next page)
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A

B

Figure 2. Regional plots show primary and secondary risk asso-
ciation signals for different histotypes at the 8q24.1 and 3q31.1
risk loci
SNPs are colored by histotype with light points representing p
values from primary (unadjusted) analyses and dark points repre-
senting p values from CCVs.
(A) At the 8q24.21 risk locus we identified two independent risk
signals for HGSOC (dark red points), two independent risk signals
for NMOC (dark blue points), and one signal for MOC (dark or-
ange points at 128,087,904). p values from unadjusted association
analyses are plotted beneath CCVs in light red, blue, and orange
for HGSOC, NMOC, and MOC, respectively.
(B) At the 2q31.1 risk locus, primary signals for the HGSOC,MOC,
and NMOC histotypes were co-localized to the same region with
evidence for a secondary signal for MOC located approximately
500 kb distal to the primary signal for the same histotype.
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CCOC (Figure 3A). We found strong genetic correlations

(correlation >0.5 and p value <0.05) between HGSOC

and all other histotypes except MOC (Table S10). Heritabil-

ity was partitioned across functional annotations in

NMOC and HGSOC histotype groups only due to the

low SNP-heritability estimates for other histotypes.We first

partitioned genome-wide SNP heritability across func-

tional annotations agnostic to cell type. SNPs in REs such

as promoters, enhancers, and known TF binding sites

contributed significantly to SNP-heritability estimates

(Figure 3B). Promoters showed enrichment of up to 5%

of risk SNPs, accounting for 28% of the SNP heritability
e 6, 2024



Figure 3. Estimates of SNP-heritability (hg
2) and enrichment in regulatory features

(A) Overall SNP-heritability estimates for each EOC histotype. The error bars represent 95% confidence intervals.
(B) Enrichment of 24 functional annotations for NMOC and HGSOC risk loci calculated as the proportion of estimated SNP-heritability
explained by the proportion of SNPs in each of several functional categories. Statistically significant annotations (p< 0.05) are shown in
orange.
(C) Enrichment analyses for CCVs by EOC histotype (HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade serous ovarian can-
cer; CCOC, clear-cell ovarian cancer; MOC, mucinous ovarian cancer; FT, fallopian tube epithelial cells; OSE, ovarian surface epithelial
cells; and EEC, endometriosis epithelial cells). Enriched histotype-specific chromatin states are shown in red; depleted chromatin states
are shown in blue; density of the color indicates strength of enrichment/depletion; size of the circle indicates the probability of enrich-
ment, circles outlined met significance (probability > 0.98).
for NMOC (6.1-fold enrichment, p value ¼ 0.01) and 32%

of SNP heritability for HGSOC (7.0-fold enrichment, p

value ¼ 7.5 3 10�3). Next, genome-wide SNP heritability

was partitioned across ChromHMMchromatin states avail-

able for 18 EOC precursor or cell lines related to EOC his-

totypes (Table S11; Figure S1). The highest proportion of

heritability accounted for by NMOC and HGSOC sum-

mary statistics was in active promoters in EOC and fallo-

pian tube cell lines (Table S11; Figure S2).

PAINTOR49 was used to compute the posterior probabil-

ity of causality for all SNPs at NMOC and HGSOC risk

loci by combining information from summary statistics,

linkage disequilibrium structure, and functional annota-

tions. This identified rs1562315 at 2q31 near HAGLR,

rs1491585 and rs13429413 at 2q13 near PAX8-AS1,

rs3745185 and rs4609972 at 19p13 near BABAM1, and

rs6005807 at 22q12.2 near TTC28 as putative causal risk al-

leles (Table S12).
The America
Enrichment of CCVs in chromatin states defined in

ovarian precursor and cancer cell types

Using FunciVar, we integrated the 4,008 CCVs with epige-

nomic features in ovarian precursor and cancer cell types.

These analyses excluded the 17q21.31 risk region for

which fine mapping identified a disproportionately large

number of CCVs (n ¼ 2,256 of a total of 4,008 CCVs

genome wide). Thus, we evaluated 1,752 CCVs across 32

risk regions, including 246 CCVs associated with NMOC,

896 CCVs associated with HGSOC, 386 CCVs associated

with LGSOC, 174 CCVs associated with MOC, and 50

CCVs associated with ENOC (Table S5). We identified his-

totype-specific enrichment for CCVs at HGSOC and

LGSOC risk loci in both enhancers and promoters active

across multiple EOC cell types. HGSOC CCVs were signif-

icantly enriched in active promoters in all EOC cell lines

with significant enrichment for promoters characterized

in fallopian tube cell lines at nine of 11 HGSOC risk loci
n Journal of Human Genetics 111, 1061–1083, June 6, 2024 1073



and in HGSOC cell lines at seven HGSOC risk loci. At eight

of these loci, CCVs intersected a single promoter. There

was also enrichment for CCVs at both LGSOC and

HGSOC risk loci in active REs across all ovarian cancer

cell types (Figure 3C; Table S13). We note that the

NMOC CCVs are qualitatively different from the HGSOC

CCVs and so the different enrichment patterns may sim-

ply reflect a different underlying biology. At several loci,

CCVs for different histotypes were enriched in the same

chromatin states, for example the 2q13a HGSOC and

LGSOC risk locus (Table S14) where CCVs for both histo-

types were enriched in active enhancers and the active pro-

moter of ACOXL. At other loci, enrichment analyses iden-

tified different putative target genes, for example at 2q31.1

where CCVs for NMOC intersect active enhancers and pro-

moters in the HOXD3, HOXD1, HAGLR, and HAGLROS

gene clusters; CCVs for MOC intersected active enhancers

and promoters for several miRNA and other non-coding

RNA transcripts (Table S14). Functional annotation tracks

and CCV information is available in a custom UCSC

Genome Browser Session available at https://genome.

ucsc.edu/s/pengp/ovariancancerregulatoryatlas.

Transcriptome-wide association analyses to identify

candidate EOC susceptibility genes

We performed TWAS51,54 to identify candidate susceptibil-

ity genes associated with risk alleles for the six histotype

groups and to identify gene associations in regions not

associated with EOC risk at genome-wide significance.

First, we performed EOC-specific TWAS that was based on

genotyping and RNA-seq data for 284 HGSOCs performed

by TCGA,50 105 ovarian surface epithelial, and 60 fallopian

tube epithelial precursor tissues.21 Second, we performed a

cross-tissue TWAS based on genotyping and RNA-seq data

from 49 non-cancerous tissue types profiled by GTEx.53 All

TWAS analyses were coupled with colocalization ana-

lyses,52,56,57 and we highlight only transcriptome-wide sig-

nificant genes (FDR <0.05) for which there is concomitant

evidence of colocalization between gene expression and

genetic-association signals.

Tissue-specific TWAS identified 18 genes at transcrip-

tome-wide significance (p value %4.2 3 10�5 and

FDR %0.05). This included five genes that were over 1

Mb away from any EOC index SNP, suggesting they repre-

sent new risk regions (Tables 3 and S15). The five genes

included THSD7A, which was associated with HGSOC

risk, in a region previously reported as a sub-genome-

wide significant EOC risk region in Asian women

(rs10260419—nearest coding gene THSD7A, p value ¼
10�7)77 and IRF5 associated with LGSOC risk, a gene

that was reported to be associated with endometriosis

risk in a previous TWAS.78

Cross-tissue TWAS identified 83 genes at transcriptome-

wide significance (p value %2.2 3 10�4 and FDR %0.045).

This included 27 genes in 19 distinct genomic regions that

were over 1 Mb away from any EOC index SNP (Tables 3

and S16). Some of these candidate genes have been identi-
1074 The American Journal of Human Genetics 111, 1061–1083, Jun
fied as candidate eQTL associations in other studies: for

example, HOXD9 at 2q31.1,25 CHMP4C at 8q21.13,27

and HAUS6 at 9p22.1,21 while other genes represent candi-

date susceptibility genes at risk loci not previously re-

ported, notably SMC2 (structural maintenance of chromo-

somes 2) at 9p31.1. Sixty-four of the genes within 1Mb of a

genome-wide significant index risk SNP were identified as

putative functional targets in previous studies, including

PAX8 at 2q14.1,23 TERT at 5p15.33,69 BNC2 at 9p22.3,22

RCCD1 at 15q26.1,79 ABHD8 at 19p13.11,24 and HNF1B

at 17q12.71 Other candidate EOC susceptibility genes iden-

tified in this study include TIPARP at 3q25.31 (p value ¼
2.6 3 10�65 in HGSOC) and SKAP1 at 17q21.1 (p value ¼
5 3 10�17 in HGSOC).

Gene-regulatory interaction analyses in EOC risk regions

To identify cis-interactions between CCVs, candidate

genes, and REs in EOC risk regions, we performed

HiChIP-sequencing58 for the histone mark H3K27ac in

two normal-derived fallopian tube secretory epithelial

cell lines (FT33 and FT246) and two HGSOC cell lines

(UWB1.289 and Kuramochi). To quantify these interac-

tions, we first summarized the evidence for every CCV

with each gene within 500 kb flanking each fine-mapped

risk locus, integrating GWAS and TWAS statistics,

HiChIP-seq data, weighted ReMap TF data and VEP

scores61 paired with MotifbreakR.18 This provided a

‘‘CCV/gene’’ score for each region (Table S7). We then

summed the scores of all CCVs for each gene to produce

a composite score (a ‘‘region/gene’’ score) reflecting the

relative weight of evidence of interaction for every gene-

CCV pair at each risk locus. These data are given in

Table S8. In the combined MotifbreakR and TF ChIP-seq

analysis, we identified CCVs that broke or created a TF

motif located within a ChIP-seq-verified TF binding site

in the ReMap database for any cell type and weighted the

results based on looping class. The weighting prioritizes

active enhancer-to-promoter looping interactions over

inactive etc., see methods for details. The results of this

analysis are presented in Table S17, and MotifbreakR re-

sults are in Table S18. Python library pygenometracks80

was used to plot and visualize the most significant gene-

regulatory interactions in each risk region.

These analyses identified the top candidates at each risk

region based on evidence from genetic fine mapping

(GWAS), genotype-gene expression associations identified

by TWAS, chromatin architecture (H3K27Ac HiChIP),

and TF binding (Remap/motifbreakR). At some risk loci,

we identified strong evidence of interactions between

CCVs and candidate genes that we identified by TWAS.

For example, Figure 4 illustrates the 2q31 risk region,

where both tissue-specific and cross-tissue TWAS iden-

tified several significant candidate susceptibility genes

(Tables S15 and S16). The strongest interactions in this re-

gion were for two CCVs associated with NMOC risk and

HOXD-AS2 gene expression, HOXD8 associated with

RUNX2 TF binding sites, and for HOXD3 associated with
e 6, 2024
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Table 3. Genes identified by transcriptome-wide association analyses that were located over 1 Mb away from genome-wide significant
EOC risk loci

Histotype TWAS Gene Chr Starta Enda p value FDRb RCP/ColocPP4c

HGSOC multi-tissue ST3GAL3 1 44,171,495 44,396,837 8.1E-06 2.7E-03 0.71

HGSOC multi-tissue TRIM46 1 155,146,263 155,157,447 2.2E-05 6.5E-03 0.14

HGSOC multi-tissue MUC1 1 155,161,993 155,162,707 4.1E-06 1.5E-03 0.18

HGSOC multi-tissue THBS3 1 155,165,379 155,178,842 1.6E-04 3.7E-02 0.17

HGSOC multi-tissue TDRD5 1 179,560,748 179,660,407 8.0E-05 2.0E-02 0.42

HGSOC multi-tissue PIGG 4 492,999 533,989 1.7E-05 5.3E-03 0.17

HGSOC multi-tissue MTO1 6 74,171,301 74,218,959 2.0E-04 4.2E-02 0.14

HGSOC multi-tissue AC058791.1 7 130,561,568 130,598,069 1.8E-04 4.0E-02 0.47

HGSOC multi-tissue PANK1 10 91,339,254 91,405,329 1.4E-04 3.2E-02 0.11

HGSOC multi-tissue RP11-80H5.7 10 91,454,052 91,457,685 3.1E-05 8.8E-03 0.13

HGSOC multi-tissue RP11-20L19.1 12 91,202,984 91,204,466 1.0E-04 2.5E-02 0.15

HGSOC multi-tissue CHMP6 17 78,965,398 78,983,317 8.1E-06 2.7E-03 0.74

HGSOC multi-tissue CTD-2561B21.11 17 78,991,769 79,001,879 1.0E-04 2.5E-02 0.24

HGSOC multi-tissue BAIAP2 17 79,008,922 79,091,232 1.4E-04 3.3E-02 0.54

MOC multi-tissue RP11-161D15.3 4 174,845,358 174,912,175 5.2E-06 9.0E-03 0.37

NMOC multi-tissue ST3GAL3 1 44,171,495 44,396,837 1.4E-04 3.0E-02 0.44

NMOC multi-tissue TNN 1 175,036,969 175,117,211 2.5E-06 9.3E-04 0.20

NMOC multi-tissue TLR6 4 38,825,336 38,858,438 3.8E-05 1.0E-02 0.14

NMOC multi-tissue FAM114A1 4 38,869,298 38,947,360 9.0E-05 2.2E-02 0.15

NMOC multi-tissue NAT2 8 18,248,792 18,258,728 1.6E-04 3.4E-02 0.10

NMOC multi-tissue FRMPD1 9 37,650,951 37,746,901 1.3E-04 2.9E-02 0.18

NMOC multi-tissue NDUFA12 12 95,290,831 95,397,524 1.7E-05 4.8E-03 0.13

NMOC multi-tissue FGD6 12 95,470,525 95,611,258 5.5E-05 1.5E-02 0.29

NMOC multi-tissue SYNE2 14 64,228,617 64,693,151 1.2E-04 2.8E-02 0.27

NMOC multi-tissue TEFM 17 29,224,354 29,233,256 3.8E-06 1.3E-03 0.45

NMOC multi-tissue RGS19 20 62,704,534 62,711,341 4.6E-05 1.2E-02 0.34

NMOC multi-tissue OPRL1 20 62,711,435 62,731,996 1.5E-04 3.2E-02 0.20

NMOC multi-tissue BIK 22 43,506,756 43,525,718 5.5E-05 1.5E-02 0.54

CCOC tissue-specific DEPDC5 22 32,149,944 32,303,012 4.2E-05 2.0E-02 0.90

HGSOC tissue-specific THSD7A 7 11,414,173 11,871,824 1.1E-04 1.2E-02 0.77

HGSOC tissue-specific FLJ37201 10 91,451,057 91,457,685 1.7E-04 1.5E-02 0.89

LGSOC tissue-specific GSK3B 3 119,540,804 119,813,264 9.9E-06 5.2E-03 0.67

LGSOC tissue-specific IRF5 7 128,577,769 128,590,086 5.9E-07 9.2E-04 0.99

NMOC tissue-specific FLJ37201 10 91,451,057 91,457,685 1.7E-04 1.7E-02 0.65

aBuild 37 position.
bOnly FDR <0.05 results are shown, which was the threshold used to identify transcriptome-wide significant genes.
cColocalization probabilities used were RCP (threshold RCP >0.1) for multi-tissue MultiXcan transcriptome-wide association analysis and ColocPP4 (threshold
ColocPP4 >0.6) for tissue-specific FUSION transcriptome-wide association analysis.
enhancers and LINC01116. CCVs associated with MOC

were located about 500 kb distal to the CCV cluster associ-

ated with NMOC. The strongest interaction for these CCVs

was also with HOXD-AS2. Other interactions were found

with HAGLROS, LINC01116, and HOXD1. Thus, the genes
The America
with the strongest interactions were the same for NMOC

and MOC CCVs even though the top CCVs for each sub-

type were separated by hundreds of kilobases, implying

cell-type-specific dysregulation of the same gene in these

histologically distinct cancers.
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Figure 4. Looping interactions between
candidate genes, CCVs, and REs at the
2q31.1 locus
(A) Locus plot of 2q31.1 showing the inte-
gration of genetic fine mapping data
(NMOC CCVs in purple, MOC CCVs in
pink) with chromatin state calls by cell/tis-
sue type. The profiles of cis-interactions in
the fallopian tube cell line FT33 and
HGSOC cell line Kuramochi were very
similar. A heatmap shows the CCV/gene
scores associated with each gene in the re-
gion. The greater the intensity the stronger
the evidence of the interaction. This is sum-
marized across CCVs separately for each his-
totype to the right of the heatmap.
(B) The gray box zooms into a region of
strongest interaction between HOXD-AS2
and two CCVs associated with NMOC risk
about 500 kb distal to the gene. A cluster of
NMOC CCVs are located in an active
enhancer/promoter region of HAGLROS in
both FT33 and Kuramochi cells. Kuramochi
cells exhibit looping between the CCV
rs6755766 (chr2:177,043,205) within a
Remap ChIP-seq RUNX2 peak that breaks a
RUNX2 motif.
(C) Highlights this motif disruption.
At other risk loci we identified strong evidence of interac-

tions between CCVs and candidate genes not identified by

TWAS (i.e., eQTL-negative genes). Notably, at the 8q24 risk

region, there were several independent, histotype-specific

risk signals (Figure 5). At this locus, CCVs for the newly

discovered secondary signal for HGSOC are located in un-

transcribedregionsofPVT1andshowprominent interaction

with theMYCpromoter. This region is enriched for TEAD3/4

and PAX8 TFBSs with one CCV (chr8:129076573:C>T

[genome build 37], rs13255292) predicted to disrupt a

TEAD3/4 motif that shows evidence for binding of TEAD3/

4 and cobinding between TEAD3/4 and PAX8 at the MYC

promoter. Consistent with this, depletion of PAX8 expres-

sion in the HGSOC line OVCAR4 using an siRNA pool

against PAX8 significantly perturbed the expression of

MYC (log2FoldChange ¼ �0.55; adjusted p value ¼ 5.3 3

10�7) (Figure 5B). By contrast, CCVs for NMOC located

downstreamandproximal toMYC showedevidenceof inter-

actions with PVT1. The strongest region/gene score predic-

tion for both genes jointly was for a single CCV for HGSOC

(chr8:129069820:G>A [genome build 37], rs35916594),

which disrupts a CREB1 MotifbreakR-TFBS. CREB1 also

binds to both MYC and PVT1 promoters. Two CCVs distal

to LINC00824 representing the primary independent signal

in the region show strongest looping to theMYC promoter.

Discussion

We have increased the statistical power over previous

ovarian cancer GWASs by using genotyping data from
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the OCAC with additional controls combined with

improved imputation using the HRC reference panel

(about 65,000 haplotypes). We identified five new EOC

risk loci at genome-wide significance. Increase in sample

size was provided by an increase in the number of controls

compared to previous analyses together with improved

imputation for some variants. We also identified 11 signals

at six risk regions that were independent of the primary

signal and confirmed 24 previously reported EOC risk asso-

ciations. The BFDP was %3% for association signals at all

five new risk loci and <10% for six of the 11 independent

signals at previously identified EOC risk loci, indicating a

high likelihood that the majority of these risk associations

are real.

Fifteen previously reported genome-wide significant risk

associations did not replicate at nominal genome-wide sig-

nificance. Of these, two were reported in a study of Han

Chinese women,81 three were published from a multi-can-

cer meta-analysis73 and so may not be expected replicate

for ovarian cancer alone without a substantial increase in

sample size, one was only reported in ovarian cancer occur-

ring in individuals with BRCA1mutations,82 and nine were

reported either for OCAC data alone or from a meta-anal-

ysis of OCAC and CIMBA data.11,72 For all nine of these

risk loci, p values of the original associations were close

to the nominal threshold for genome-wide significance.

An increase in sample size in the current study combined

with the winner’s curse effect in the original data is a likely

explanation for why these p values are now slightly larger

and no longer reach genome-wide significance.
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Figure 5. Looping interactions between
candidate genes, CCVs, and REs at the
8q24.1 risk locus
(A) Locus plot of 8q24.1 showing the inte-
gration of genetic fine mapping data
(HGSOC CCVs in red, NMOC CCVs in
green) with chromatin state calls by cell/tis-
sue type, and cis-interaction analysis in the
fallopian tube cell line FT33 and HGSOC
cell line Kuramochi. A heatmap shows the
CCV/gene scores associated with each
gene in the region. The greater the intensity,
the stronger the evidence of and interac-
tion. This is summarized across CCVs sepa-
rately for each histotype to the right of the
heatmap.
(B and C) Zoom in on the two regions high-
lighted: (B) highlights chromatin state calls
in around the MYC gene, which shows
greatest interaction with HGSOC SNPs
located in region C. Epigenomic profiling
indicate activation of the MYC promoter
in both FT33 and Kuramochi cell lines.
HiChIP identifies a strong interaction with
a single HGSOC CCV that disrupts a
Tead3/4 TF motif in a remap PAX8-TEAD3/
4 ChIPseq co-binding site (see black bars
in top tracks) in (C), implicating a biological
connection between MYC and PAX8/
TEAD3/4. Consistent with this, knock
down of PAX8 (siPAX8) in HGSOC cells re-
sulted in a reduction in MYC expression
compared to two controls (siNT1 and
siNT2) (error bars show standard error) (B).
Our findings confirm previous reports that genetic risk

factors reflect the underlying disease heterogeneity. Of

the 16 new risk associations we identified (five from pri-

mary and 11 from conditional analyses), seven were

most strongly associated with HGSOC, two with LGSOC,

and three with MOC. The remaining four risk associations

were most strongly associated with all NMOCs (i.e.,

HGSOC, LGSOC, CCOC, and ENOC cases combined).

While there are clear differences in the histotype-specific

risks for different genetic variants, there was a much

greater distinction betweenMOC compared to other histo-

types. For some loci, themost strongly associated histotype

was different from the histotype with the largest effect es-

timate. For example, rs336126 and rs2070368 were most

strongly associated with NMOCs but had the largest effect

sizes for LGSOC. We found some evidence that alleles that

increased risk of one histotype, may confer protection for

another histotype. For example, at the 17q12 risk locus,

the same risk variants that were associated with an

increased risk of HGSOC at genome-wide levels showed

marginal evidence for protection against CCOC and

MOC, respectively.
The America
More than 99% of CCVs in EOC risk-regions lie in non-

protein coding DNA. We hypothesized that the CCVs are

enriched in REs that show specificity in ovarian cancer-

associated tissues. More than 80% of REs shared across tis-

sues are in promoters whereas >80% of cell-type-specific

REs are enhancers. We found CCVs were enriched in

both promoters and enhancers characterized by epige-

nomic profiling of ovarian normal precursor and cancer

cell lines, suggesting they play a role in both tissue-

agnostic and tissue-specific gene regulation; previous

observations have suggested that cell-type-specific en-

hancers likely drive the spatial and temporal diversity of

gene expression for ovarian cancer-associated tissue

types.14,19,83 This included several likely causal risk vari-

ants and novel associated transcripts, most notably

rs1491585 and rs13429413 at 2q13 associated with

PAX8-AS1 expression, rs10069690 at 5p15.33 associated

with TERT expression, and rs3745185 and rs4609972 at

19p13.11 associated with expression of the BRCA1-inter-

acting gene, BABAM1. At several other risk loci, cross-tissue

TWAS confirmed the results of previous findings, for

example, CHMP4C at 8q21.13,21 ABHD8 at 19p13.11,24
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and MLLT10 at 10p12.31.27 While there may have been a

loss of tissue specificity in our cross-tissue TWAS, the

substantially greater sample size compared to our tissue

specific TWAS has likely provided a significant increase in

statistical power to identify candidate gene associations.

It has been estimated in studies of breast cancer that

thousands of common germline genetic variants

contribute to the burden of heritability for the disease.28

If the same is true for ovarian cancer, then our studies

to date have identified only a small fraction of the excess

heritable risk for the disease. As with other GWASs, our

ability to identify additional risk regions for ovarian can-

cer at p < 5 3 10�8 is limited by sample size. In this study,

we used genotype data for more than 26,000 ovarian can-

cer cases and over 100,000 healthy control subjects.

Modeling studies of the underlying genetic architecture

of cancer suggest that a quadrupling of the sample size

would be needed to be able to explain a substantial frac-

tion of the polygenic component of ovarian cancer

risk.84 Our data also highlight the significance of disease

heterogeneity in identifying risk variants. The different

histotypes appear to be driven by different biology and

different underlying genetics. It is not surprising that

the vast majority of risk alleles were identified for the

two most commonly designated histotype groups,

HGSOC and NMOC, for which genotype data were avail-

able for the largest sample sizes (15,588 and 23,394 cases

respectively). We failed to identify any genome-wide sig-

nificant risk loci associated specifically with endometrioid

(n ¼ 2,877) or clear-cell (n ¼ 1,427) ovarian cancers. In

contrast, and despite the small sample sizes, we were

able to identify several risk regions associated with low-

grade serous (n ¼ 2,749) and mucinous (n ¼ 2,587)

ovarian cancers perhaps indicating that a diagnosis of

these histotypes is more definitive and/or that their

biology and underlying genetics are sufficiently distinct

from other histotypes to identify histotype-specific risk

signals. Identifying additional common low-risk variants

for ovarian cancer will remain a challenge without sub-

stantially increasing the sample size of these studies.

Applying additional ‘‘weighting’’ to sub genome-wide sig-

nificant risk regions based on functional evidence from

epigenomic and gene expression studies is one approach

that may provide evidence for true risk associations. For

example, in this study, cross-tissue TWAS identified 19

distinct genomic regions that were over 1 Mb away from

any genome-significant index SNP but for which there

was significant evidence of at least one genotype-gene

expression association signal suggesting that the integra-

tion of genetics and gene expression data has identified

several novel risk loci.

Chromatin interaction data from genome-wide interac-

tome methods like HiChIP-seq provide context-specific

resolution to validate candidate genes identified by TWAS

in risk regions and their predicted connections to CCVs

and REs. These methods can also identify novel candidate

genes in risk regions where no TWAS association has been
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found (i.e., TWAS-negative risk regions). HiChIP offers a

window into latent or ‘‘potential’’ target genes because

looping is relatively static and not consistently altered in

response to perturbations,85,86 and looping can inform

on the context-specific nature of TWAS as shown for auto-

immune disorders.87 In the current study, we highlight

two examples—one a TWAS-positive locus (2q31), the

other a TWAS-negative locus (8q24)—where the integra-

tion of disease-specific looping data has identified likely

susceptibility gene targets. At the 2q31 region, which is

associated with risk of NMOC and MOC histotypes,

TWAS identified several significant gene associations in

the HOXD family of transcription factors, many of which

were shared across the different histotypes. HiChIP

enabled us to identify HOXD-AS2 as the most likely target

gene for these because its interaction with CCVs for both

NMOC and MOC suggests it may be a key tissue-specific

regulator of gene expression of one or more HOXD genes

in the region. Interestingly, the top-scoring CCVs for

each gene are complementary and non-overlapping,

which suggest the risk in this region could be mediated

independently by several genes as a haplotype. In the

8q24 region, HiChIP identified strong evidence of interac-

tions between the HGSOC risk variants and the MYC pro-

moter and between the NMOC risk variants and the long

non-coding lncRNA PVT1. There is substantial evidence

that both genes are involved in EOC development,88,89

andMYC plays a critical role in the pathogenesis of several

cancer types.90 CCVs in the region that show strong inter-

actions with MYC are also predicted to affect binding to

TEAD3/4 sites that interact with PAX8. This is supported

by experiments in which we knocked down the expression

of PAX8 in an HGSOC line and observed a concomitant

reduction in MYC expression, suggesting a functional

link between PAX8 binding and MYC transcriptional con-

trol in HGSOCs. PAX8 is possibly the most widely recog-

nized lineage-specific TF in the development of fallopian

tube epithelia and its neoplastic progression to HGSOCs.

Consistent with this, a recent study identified significant

genome-wide enrichment of non-coding somatic muta-

tions in the TF motif for TEAD4 and its binding partner

PAX8 and a burden of cis-REs associated with PAX8 as

the most frequently mutated set of enhancers in ovarian

cancers.83

Thus, HiChIP-seq may distinguish between likely causal

susceptibility genes and false-positive TWAS associations

and/or co-regulated genes in the same region, although

there remain challenges in using this method; it has a

limited resolution (�5 kb), which may reduce its sensi-

tivity for detecting interacting regions containing short

REs, and in this study, HiChIP-seq was directed to regulato-

ry features marked only by H3K27ac (i.e., it is not agnostic

to all epigenomic features). Consequently, a proportion of

cis gene-regulatory interactions in ovarian cancer risk re-

gions will likely have been missed.

Assigning variants to genes remains the defining chal-

lenge for post-GWAS research. The target gene scoring
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approach that we adopted in this study relied on triangu-

lating across six lines with statistical and functional evi-

dence. It is worth noting that the absence of a "gold stan-

dard" or "truth set" of target genes makes it particularly

difficult to evaluate the ultimate effectiveness of our

scoring, and we present our results simply as one measure

of confidence in a target. For example, other variant-to-

gene approaches have been benchmarked on metabolite

GWAS data, taking advantage of the fact that target genes

in metabolite GWAS frequently converge on well-anno-

tated biochemical pathways.91 However, such bench-

marking is not straightforward in the context of complex

diseases such as cancer. While we only considered gene

expression QTLs here, future approaches could be

extended to incorporate other emerging cell-type-specific

QTLs such as chromatin92 and DNA methylation.93 The

next functional steps in prioritizing credible causal risk var-

iants and genes emerging from our work will likely involve

a combination of genome editing, single-cell profiling, and

germline-somatic data integration to further characterize

the genetic and epigenomic mechanisms underlying

each risk locus. In addition, by editing credible causal

risk variants and REs to create isogenic cell lines that differ

only by risk genotype, we will be able to measure how spe-

cific genotypes impact target gene expression.94 Given the

germline genetic heterogeneity that we find underpins the

different histotypes of EOC, single-cell RNA sequencing of

ovarian surface, fallopian tube, and other related tissues,

coupled with statistical disease relevance scores,95 has the

potential to pinpoint the specific cellular origins of

each subtype. Finally, the pipeline of variant-to-function

post-GWAS studies in EOCwill likely require an evaluation

of the downstream effects of GWAS-identified target

gene expression on somatic mutations and mutational

signatures.96

In summary, we describe a comprehensive genetic asso-

ciation study for ovarian cancer. It expands upon previous

findings indicating that different genetic alleles confer

risks to different ovarian cancer histotypes but also that

several risk regions confer risk to two or more histotypes,

suggesting there are similarities in the underlying biology

driving the disease spectrum of ovarian cancer. Imputation

identified credible causal risk alleles in each region, which

show a significant enrichment with disease-specific epige-

nomic features that represent candidate regulatory targets

of risk alleles. TWAS identified several plausible ovarian

cancer candidate susceptibility genes in genome-wide sig-

nificant risk regions but also gene associations within mul-

tiple regions at sub-genome wide significance, suggesting

TWAS is an approach that can be used for the further dis-

covery of disease-associated risk alleles. By combining ge-

netic, TWAS, and epigenomic profiling with HiChIP-seq

interactome analysis, we also show the likely functional

mechanisms underlying several EOC risk loci, representing

hitherto unrecognized aspects of biology in the develop-

ment of different EOC histotypes. Taken together, our

approach represents a functional framework for under-
The America
standing the biological mechanisms underlying common

low penetrance risk regions for ovarian and other cancers

in the future.
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gova, A.A., Hoke, H.A., and Young, R.A. (2013). Super-en-

hancers in the control of cell identity and disease. Cell 155,

934–947.

49. Kichaev, G., Yang,W.-Y., Lindstrom, S., Hormozdiari, F., Eskin,

E., Price, A.L., Kraft, P., and Pasaniuc, B. (2014). Integrating

functional data to prioritize causal variants in statistical fine-

mapping studies. PLoS Genet. 10, e1004722.

50. Cancer Genome Atlas Research Network (2011). Integrated

genomic analyses of ovarian carcinoma. Nature 474, 609–615.

51. Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx,

B.W.J.H., Jansen, R., de Geus, E.J.C., Boomsma, D.I., Wright,

F.A., et al. (2016). Integrative approaches for large-scale

transcriptome-wide association studies. Nat. Genet. 48,

245–252.

52. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L.,

Hingorani, A.D., Wallace, C., and Plagnol, V. (2014). Bayesian

test for colocalisation between pairs of genetic association

studies using summary statistics. PLoS Genet. 10, e1004383.

53. GTEx Consortium (2020). The GTEx Consortium atlas of ge-

netic regulatory effects across human tissues. Science 369,

1318–1330.

54. Barbeira, A.N., Pividori, M., Zheng, J., Wheeler, H.E., Nicolae,

D.L., and Im, H.K. (2019). Integrating predicted transcriptome

from multiple tissues improves association detection. PLoS

Genet. 15, e1007889.
n Journal of Human Genetics 111, 1061–1083, June 6, 2024 1081

http://refhub.elsevier.com/S0002-9297(24)00126-5/sref25
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref25
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref25
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref26
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref26
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref26
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref26
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref26
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref27
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref27
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref27
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref27
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref27
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref28
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref28
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref28
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref28
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref29
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref29
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref29
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref29
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref29
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref30
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref30
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref30
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref30
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref31
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref31
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref31
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref32
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref32
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref32
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref32
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref32
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref33
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref33
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref33
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref33
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref34
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref34
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref34
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref34
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref34
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref35
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref35
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref35
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref35
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref35
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref37
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref37
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref37
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref38
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref38
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref38
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref38
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref39
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref39
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref39
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref39
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref39
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref40
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref40
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref40
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref40
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref41
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref41
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref41
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref41
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref41
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref41
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref42
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref42
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref42
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref42
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref42
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref43
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref43
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref43
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref43
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref43
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref44
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref44
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref44
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref45
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref45
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref45
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref45
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref46
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref46
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref46
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref47
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref47
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref47
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref47
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref48
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref48
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref48
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref48
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref49
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref49
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref49
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref49
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref50
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref50
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref50
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref50
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref51
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref51
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref52
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref52
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref52
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref52
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref52
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref53
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref53
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref53
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref53
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref54
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref54
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref54
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref55
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref55
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref55
http://refhub.elsevier.com/S0002-9297(24)00126-5/sref55


55. Barbeira, A.N., Dickinson, S.P., Bonazzola, R., Zheng, J.,

Wheeler, H.E., Torres, J.M., Torstenson, E.S., Shah, K.P., Garcia,

T., Edwards, T.L., et al. (2018). Exploring the phenotypic con-

sequences of tissue specific gene expression variation inferred

from GWAS summary statistics. Nat. Commun. 9, 1825.

56. Pividori, M., Rajagopal, P.S., Barbeira, A., Liang, Y., Melia, O.,

Bastarache, L., Park, Y., Consortium, G., Wen, X., and Im,

H.K. (2020). PhenomeXcan: Mapping the genome to the phe-

nome through the transcriptome. Sci. Adv. 6.

57. Wen, X., Pique-Regi, R., and Luca, F. (2017). Integrating mo-

lecular QTL data into genome-wide genetic association anal-

ysis: Probabilistic assessment of enrichment and colocaliza-

tion. PLoS Genet. 13, e1006646.

58. Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari,

P.A., Greenleaf,W.J., and Chang, H.Y. (2016). HiChIP: efficient

and sensitive analysis of protein-directed genome architec-

ture. Nat. Methods 13, 919–922.

59. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B.

(2007). Genome-wide mapping of in vivo protein-DNA inter-

actions. Science 316, 1497–1502.

60. Martin, M. (2011). Cutadapt removes adapter sequences from

high-throughput sequencing reads. EMBnet. j. 17, 10.

61. Chèneby, J., Ménétrier, Z., Mestdagh, M., Rosnet, T., Douida,

A., Rhalloussi, W., Bergon, A., Lopez, F., and Ballester, B.

(2020). ReMap 2020: a database of regulatory regions from

an integrative analysis of Human and Arabidopsis DNA-

binding sequencing experiments. Nucleic Acids Res. 48,

D180–D188.

62. Bhattacharyya, S., Chandra, V., Vijayanand, P., and Ay, F.

(2019). Identification of significant chromatin contacts from

HiChIP data by FitHiChIP. Nat. Commun. 10, 4221.

63. Li, D., Hsu, S., Purushotham, D., Sears, R.L., and Wang, T.

(2019). WashU Epigenome Browser update 2019. Nucleic

Acids Res. 47, W158–W165.

64. Love, M.I., Huber, W., and Anders, S. (2014). Moderated esti-

mation of fold change and dispersion for RNA-seq data with

DESeq2. Genome Biol. 15, 550.

65. McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood,

A.R., Teumer, A., Kang, H.M., Fuchsberger, C., Danecek, P.,

Sharp, K., et al. (2016). A reference panel of 64,976 haplotypes

for genotype imputation. Nat. Genet. 48, 1279–1283.

66. Song, H., Ramus, S.J., Tyrer, J., Bolton, K.L., Gentry-Maharaj,

A., Wozniak, E., Anton-Culver, H., Chang-Claude, J., Cramer,

D.W., DiCioccio, R., et al. (2009). A genome-wide association

study identifies a new ovarian cancer susceptibility locus on

9p22.2. Nat. Genet. 41, 996–1000.

67. Bolton, K.L., Tyrer, J., Song, H., Ramus, S.J., Notaridou, M.,

Jones, C., Sher, T., Gentry-Maharaj, A., Wozniak, E., Tsai,

Y.-Y., et al. (2010). Common variants at 19p13 are associated

with susceptibility to ovarian cancer. Nat. Genet. 42, 880–884.

68. Goode, E.L., Chenevix-Trench, G., Song, H., Ramus, S.J., Nota-

ridou, M., Lawrenson, K., Widschwendter, M., Vierkant, R.A.,

Larson, M.C., Kjaer, S.K., et al. (2010). A genome-wide associ-

ation study identifies susceptibility loci for ovarian cancer at

2q31 and 8q24. Nat. Genet. 42, 874–879.

69. Bojesen, S.E., Pooley, K.A., Johnatty, S.E., Beesley, J., Michaili-

dou, K., Tyrer, J.P., Edwards, S.L., Pickett, H.A., Shen, H.C.,

Smart, C.E., et al. (2013). Multiple independent variants at

the TERT locus are associated with telomere length and risks

of breast and ovarian cancer. Nat. Genet. 45, 371–384e1-2.

70. Permuth-Wey, J., Lawrenson, K., Shen, H.C., Velkova, A.,

Tyrer, J.P., Chen, Z., Lin, H.-Y., Chen, Y.A., Tsai, Y.-Y., Qu, X.,
1082 The American Journal of Human Genetics 111, 1061–1083, Jun
et al. (2013). Identification and molecular characterization

of a new ovarian cancer susceptibility locus at 17q21.31.

Nat. Commun. 4, 1627.

71. Shen, H., Fridley, B.L., Song, H., Lawrenson, K., Cunningham,

J.M., Ramus, S.J., Cicek, M.S., Tyrer, J., Stram, D., Larson,M.C.,

et al. (2013). Epigenetic analysis leads to identification of

HNF1B as a subtype-specific susceptibility gene for ovarian

cancer. Nat. Commun. 4, 1628.

72. Kuchenbaecker, K.B., Ramus, S.J., Tyrer, J., Lee, A., Shen, H.C.,

Beesley, J., Lawrenson, K., McGuffog, L., Healey, S., Lee, J.M.,

et al. (2015). Identification of six new susceptibility loci for

invasive epithelial ovarian cancer. Nat. Genet. 47, 164–171.

73. Kar, S.P., Beesley, J., Amin Al Olama, A., Michailidou, K., Tyrer,

J., Kote-Jarai, Z., Lawrenson, K., Lindstrom, S., Ramus, S.J.,

Thompson, D.J., et al. (2016). Genome-Wide Meta-Analyses

of Breast, Ovarian, and Prostate Cancer Association Studies

Identify Multiple New Susceptibility Loci Shared by at Least

Two Cancer Types. Cancer Discov. 6, 1052–1067.

74. Ng, P.C., and Henikoff, S. (2003). SIFT: Predicting amino acid

changes that affect protein function. Nucleic Acids Res. 31,

3812–3814.

75. Adzhubei, I., Jordan, D.M., and Sunyaev, S.R. (2013). Predict-

ing functional effect of human missense mutations using

PolyPhen-2. Curr. Protoc. Hum. Genet. Chapter 7, Unit7.20.

76. Rentzsch, P., Witten, D., Cooper, G.M., Shendure, J., and

Kircher, M. (2019). CADD: predicting the deleteriousness of

variants throughout the human genome. Nucleic Acids Res.

47, D886–D894.

77. Lawrenson, K., Song, F., Hazelett, D.J., Kar, S.P., Tyrer, J., Phe-

lan, C.M., Corona, R.I., Rodrı́guez-Malavé, N.I., Seo, J.-H.,
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