
UCLA
Department of Statistics Papers

Title
Design, Search and Implementation of High-dimension, Efficient, Long-cycle and Portable
Uniform Random Variate Generator

Permalink
https://escholarship.org/uc/item/59f8p4dk

Authors
Deng, Lih-Yuan
Xu, Hong Q

Publication Date
2005

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59f8p4dk
https://escholarship.org
http://www.cdlib.org/

A System of High-dimensional, Efficient, Long-cycle
and Portable Uniform Random Number Generators

LIH-YUAN DENG

The University of Memphis

and

HONGQUAN XU

University of California, Los Angeles

We propose a system of multiple recursive generators of modulus p and order k where all nonzero
coefficients of the recurrence are equal. The advantage of this property is that a single multipli-

cation is needed to compute the recurrence, so the generator would run faster than the general

case. For p = 231 − 1, the most popular modulus used, we provide tables of specific parameter
values yielding maximum period for recurrence of order k = 102 and 120. For p = 231 − 55719
and k = 1511, we have found generators with a period length approximately 1014100.5.

Categories and Subject Descriptors: F.2.1 [Theory of Computation]: Numerical Algorithms
and Problems– computations in finite fields; G.3 [Probability and Statistics]: Random Number
Generation

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: DX-k generator, FMRG-k generator, linear congruential gen-
erator, multiple recursive generator, MT19937, portable and efficient generator, primitive polyno-
mial.

1. INTRODUCTION

Linear Congruential Generators (LCGs), proposed by Lehmer [1951], are known
to have several defects such as a relatively short cycle by today’s standard, and
questionable empirical performances. In Section 2, we review Multiple Recursive
Generators (MRGs), which are natural extensions of LCGs in that the next value
is computed iteratively from the previous k values. MRGs with maximum period
are known to have a much longer period than LCGs and have an equidistribution
property over a higher dimension. However, they may be less efficient than LCGs
because several multiplications are needed. To improve the speed of generation,
Grube [1973], L’Ecuyer and Blouin [1988], L’Ecuyer, Blouin and Couture [1993]
considered MRGs with two non-zero terms. Recently, Deng and Lin [2000] proposed
a special form of MRGs, called FMRG (Fast MRGs), which require only a single

Authors’ addresses: Lih-Yuan Deng, Department of Mathematical Sciences, The University of

Memphis, Memphis, TN 38152-3240, email: lihdeng@memphis.edu. Hongquan Xu, Department

of Statistics, University of California, Los Angeles, CA 90095-1554, email: hqxu@stat.ucla.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM 0098-3500/2003/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003, Pages 1–11.

2 · L. Y. Deng and H. Xu

multiplication and are almost as efficient as LCGs.
In Section 3, we propose a system of special MRGs, called DX-k generators, where

all nonzero coefficients of the recurrence are equal and k is the order of recurrence.
This is motivated by the fact that computer multiplication is more time consuming
than computer addition/subtraction. By requiring a common coefficient for a DX-k
generator, we achieve high efficiency with a single multiplication.

In Section 4, we discuss the bottleneck of the commonly used criteria given in
Knuth [1998, page 30]: It requires the complete factorization of pk − 1, which can
be difficult when p and k are large. Using some powerful computer factorization
programs recently developed, we find all factors of pk − 1 for several (but not all)
values k ≤ 120. In particular, we report a complete factorization of pk − 1, with
p = 231−1, for k = 102 and k = 120. Subsequently, we discuss the effort and result
of finding DX-102 and DX-120 generators. For example, we have found many DX-
120 generators, each with the maximum period of p120 − 1 ≈ 0.679 · 101120.

In Section 5, we describe a C implementation of DX-k random number gener-
ators. Their key component code and some C-directives are given. The general
implementation does not depend on a specific choice of k, modulus p, or the mul-
tiplier. We also discuss the issue of efficiency improvement by exploring a special
form of the multiplier and the modulus p = 231−1. Finally, in Section 6, we briefly
discuss the possibility of extending the limit of k by removing the constraint on p.
The main idea is to avoid the problem of factoring pk − 1 by selecting p so that
(pk − 1)/(p− 1) is a prime number. Checking whether a huge number is a prime is
known to be much easier than finding its factorization (see, for example, Crandall
and Pomerance [2000]). For k = 1511 and p = 231− 55719, we have indeed found a
DX-1511 random number generator with a period length approximately 1014100.5.

2. RECENT RANDOM NUMBER GENERATORS

2.1 Multiple Recursive Generators

A multiple recursive generator (MRG), is defined as

Xi = (α1Xi−1 + · · ·+ αkXi−k) mod p, i ≥ k (1)

for any initial seeds (X0, . . . , Xk−1), not all of them being zero. Here the modulus
p is a large prime number and Xi can be transformed using Ui = Xi/p. Other
transformations will be discussed later. It is well-known that the maximum period
of an MRG is pk − 1, reached if the polynomial

f(x) = xk − α1x
k−1 − · · · − αk, (2)

is a primitive polynomial. See, for example, Knuth [1998], Zierler [1959], Golomb
[1967], Grube [1973], L’Ecuyer [1990], and Lidl and Niederreiter [1986] for more
details about primitive polynomials and MRGs.

It is well-known that a maximum period MRG has the property of equidistri-
bution up to k dimensions (see, for example, Lidl and Niederreiter [1986, page
240]).

2.2 Fast Multiple Recursive Generators

While the maximum period is increased to pk − 1, an MRG may be less efficient
because it needs several multiplications whereas an LCG needs only one multiplica-
ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

DX-k random number generators · 3

tion. To improve the efficiency of MRGs, Grube [1973], L’Ecuyer and Blouin [1988],
L’Ecuyer, Blouin and Couture [1993] considered only two nonzero coefficients αj

and αk (1 ≤ j < k) of the MRG in (1) and provided portable implementations of
MRGs satisfying these conditions. Deng and Lin [2000] proposed to set as many
coefficients αi in an MRG to be 0 and/or ±1 as possible. In particular, they pro-
posed a Fast MRG (FMRG) which is a special MRG with maximum period pk − 1
of the form

Xi = (BXi−k ±Xi−1) mod p, i ≥ k. (3)

An FMRG is fast because it requires one multiplication and one addition/subtraction.
In addition, they proposed to restrict the multiplier B in (3) (say B ≤ √

p) for ef-
ficiency and portability.

According to L’Ecuyer [1997], a necessary (but not sufficient) condition for an
MRG to have a good lattice structure is that the sum of squares of coefficients,∑k

i=1 α2
i , is large. This implies that an FMRG generator does not have a desirable

lattice structure because it has only two nonzero coefficients B and ±1. Therefore,
it is of interest to extend the limit of B to a much larger value and/or to add more
nonzero terms while maintaining efficiency and portability.

3. DESIGN OF DX RANDOM NUMBER GENERATORS

Similar to FMRGs, we consider a special efficient MRG with maximum period
pk − 1. Ideally, we would like to have many nonzero terms without significantly
increasing its computing time. A simple way is to choose all nonzero coefficients
in (1) to be equal so that only one multiplication is required. This leads us to a
general class of efficient MRGs as described next.

3.1 DX random number generators

Formally, a DX-k-s generator is a special MRG in (1) that has s nonzero coefficients,
all of them being equal. To pinpoint the nonzero coefficients, we require that their
indices be about k/(s− 1) apart. Therefore, coefficients in a DX-k-s generator can
be written as

α1 = αbk/(s−1)c = αb2k/(s−1)c = · · · = αb(s−2)k/(s−1)c = αk = B,

where bxc denotes a floor function, where x is truncated to an integer. In this
paper, we consider only s ≤ 4 with the following four special cases:

(1) FMRG-k (α1 = 1, αk = B)

Xi = BXi−k + Xi−1 mod p, i ≥ k. (4)

(2) DX-k-2 (α1 = αk = B)

Xi = B(Xi−k + Xi−1) mod p, i ≥ k. (5)

(3) DX-k-3 (α1 = αbk/2c = αk = B)

Xi = B(Xi−k + Xi−bk/2c + Xi−1) mod p, i ≥ k. (6)

(4) DX-k-4 (α1 = αbk/3c = αb2k/3c = αk = B)

Xi = B(Xi−k + Xi−b2k/3c + Xi−bk/3c + Xi−1) mod p, i ≥ k. (7)

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

4 · L. Y. Deng and H. Xu

While FMRG-k does not formally belong to the DX-k-s class, we still refer it as
DX-k-1 for convenience. The family of generators is referred as DX-k, when the
value of k is specified. We refer to the collection of DX-k generators as a system of
DX random number generators.

3.2 Limits on B for DX-k-s

We now turn our attention to the limit on B. According to the ANSI/IEEE Stan-
dard 754-1985, the IEEE double precision floating point standard representation
requires a 64-bit word, which are numbered from 0 to 63, left to right. The first bit
is the sign bit, the next 11 bits are the exponent bits, and the final 52 bits are the
fraction (mantissa). Note that the multiplication of two 31-bit numbers may yield
a number 62-bit long, which cannot be stored exactly in double-precision.

It is straightforward to see that if p < 231 and B satisfies the following condition

B < 2e, where e = 20, when s = 1, 2; e = 19, when s = 3, 4, (8)

then the double precision implementation of the DX-k-s will keep precise results in
the 52-bit mantissa. Another possibility is to consider the special form

B = ±2r ± 2w. (9)

A multiplier of this form was first suggested by Wu [1997] for LCGs. It can result in
a fast computation by using only shift and addition operations. However, L’Ecuyer
and Simard [1999] correctly pointed out that the successive values in the output
of LCGs show strong dependence on corresponding Hamming weights. It would
be interesting to know whether the successive values in the output of the DX-k-s
generators have such weakness.

3.3 U(0, 1) Generators

To generate a uniform variate, we need to scale Xi to a number Ui between 0 and
1. Since 0 ≤ Xi ≤ p− 1, there are three reasonable choices:

(a)Ui = Xi/p, (b)Ui = Xi/(p− 1), (c)Ui = (Xi + 0.5)/p = Xi/p + H, (10)

where H = 1/(2p). Here, (a), (b), (c) are referred as U [0, 1), U [0, 1], and U(0, 1)
generators, respectively.

We recommend a U(0, 1) generator as in (10)(c) because it has three major
advantages: (i) there is no possibility of obtaining Ui = 0 or Ui = 1, (ii) the average
of Ui over its entire period is closer to 1/2, and (iii) the range of Ui, 1/(2p) = H ≤
Ui ≤ 1−H, is symmetric around 1/2. Generating either 0 or 1 may cause problems
in certain applications. For example, it is common to use X = − ln(U) to generate
a random variable with a standard exponential distribution. To generate a random
variable with a logistic distribution, one usually uses Y = ln(U) − ln(1 − U). In
both cases, a U [0, 1) or U [0, 1] generator will fail when U = 0 is generated.

3.4 Statistical Justification

Regardless of how we scale the Xi into Ui, using any of equation (10), one has

Ui = (α1Ui−1 + · · ·+ αkUi−k + d) mod 1, (11)
ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

DX-k random number generators · 5

where d is simply a constant. Treating Ui as a continuous random variable, Deng
and George [1990] and Deng, Lin, Wang and Yuan [1997] provided some theoretical
and heuristic justification of the asymptotic uniformity and independence of the
generator in (11). Their study shows that a good MRG should have many terms
with large coefficients. L’Ecuyer [1997] further pointed out that large multiplier is
only a necessary condition and other additional conditions are required.

Consequently, in theory, one should consider an MRG that has as many terms
as possible with large coefficients. However, the more terms an MRG has, the less
efficient it is, and the harder to design a portable program. In practice, one needs
to balance the tradeoff among various criteria such as “portability”, “efficiency”,
“empirical”, and “theoretical” properties. As evidenced by popular generators pro-
posed by L’Ecuyer [1999], it is usually sufficient to use an MRG of two or three
terms. We believe that the restriction, s ≤ 4, imposed on DX-k-s generators is
reasonable.

4. SEARCH FOR DX RANDOM NUMBER GENERATORS

4.1 Algorithm to search for DX random number generators

To search for DX random number generators, we need to check whether f(x) in (2)
is a primitive polynomial. A search algorithm usually verifies a set of conditions
(Alanen and Knuth [1964] and Knuth [1998, page 30]):

(i) (−1)k−1αk must be a primitive root mod p.
(ii) xR = (−1)k−1αk mod (f(x), p), where R = (pk − 1)/(p− 1).
(iii) For each prime factor q of R, the degree of xR/q mod (f(x), p) is positive.

The major bottleneck in the above criteria is to find a complete factorization of
pk − 1. That may be very time consuming when k and p are large. While p can be
any prime number, it is common to choose p = 231−1, the largest prime number that
can be stored as a signed integer in a 32-bit computer word. Deng and Rousseau
[1991] gave a complete listing of pk − 1 with the ten largest prime numbers below
231 and k ≤ 6. As k becomes larger, finding the complete factorization becomes
harder.

There are various powerful factorization programs available on different web sites.
With their help, we find a complete factorization of pk − 1, p = 231 − 1, for many
(but not all) values of k ≤ 120. We report only the results for k = 102 and k = 120
because they are the largest values of k found so far.

4.2 Factoring p102 − 1 and p120 − 1 with p = 231 − 1

Due to the space limitation, we will not tabulate the complete factorizations of
p102 − 1 and p120 − 1 with p = 231 − 1. They can be found at authors’ web sites:
http://www.cs.memphis.edu/~dengl/ and http://www.stat.ucla.edu/~hqxu/.

For p102−1, we label its four largest prime factors with 62, 131, 295 and 297 digits
as p62, p131, p295 and p297, respectively. Note that p102 − 1 ≈ 0.719 · 10952 has
952 digits. Generally speaking, factoring such a huge number is almost impossible
with current computer technology. Fortunately, the four largest prime factors can
be found separately in a simple polynomial factorization of p102 − 1. In particular,
p62 was found in p17 − 1, p131 in p17 + 1, p297 in (p51 − 1)/(p17 − 1), and p295 in

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

6 · L. Y. Deng and H. Xu

Table 1 Listing of various types of B for DX-k-s random number generators
k s (a) min B (b) max B <

√
p (c) max B < 2e (d) (r, w) (r, w) (r, w)

102 1 820 46329 1048554 (20,9) (29,9) (30,25)
102 2 23 45787 1047849 (20,16) (30,22)

102 3 358 45537 523905 (29,24)

102 4 721 46299 524076 (18,14) (29,11)

120 1 335 44771 1047690 (26,-22) (28,-16)

120 2 33 46213 1048555 (20,9) (28,-16)
120 3 392 46116 522630 (21,-8)

120 4 1441 45546 521673 (21,17)

(p51 +1)/(p17 +1). Then, a complete factorization of p102− 1 with p = 231− 1 was
found.

For p120 − 1 with p = 231 − 1, let p39, p51, p65, p112 and p278 be the five
largest prime factors with 39, 51, 65, 112 and 278 digits, respectively. Again, these
large prime factors are contained in some simple polynomial factors of p120 − 1. In
particular, p51 and p278 were found in the first and the second polynomial factor
of (p60 + 1)/(p20 + 1) = (p8 − p4 + 1)× (p32 + p28 − p20 − p16 − p12 + p4 + 1); p112
and p39 in (p30 + 1)/(p10 + 1); and p65 in (p30 − 1)/(p10 − 1). The hardest part
of the factorization is finding p112 and p39 because they are the only two prime
factors contained in the second polynomial factor of

(p30 + 1)/(p10 + 1) = (p4 − p2 + 1) ∗ (p16 + p14 − p10 − p8 − p6 + p2 + 1).

It took more than one week for 35 PCs (700 MHz Pentium III) running concurrently
to find them. The remaining prime factors are less than 35 digits and were not
difficult (relatively speaking, of course) to find.

4.3 Listing of DX-102 and DX-120 random number generators

We have performed a complete search for DX-102-s and DX-120-s generators with
s = 1, 2, 3, 4 for 0 < B <

√
p. We have found a total of 377 and 239 values of

B <
√

p within DX-102 and DX-120, respectively. To save space, we will only
report minB and maxB in each of DX-k-s, s = 1, 2, 3, 4. A complete table is
available from the authors’ web sites.

In addition, we search for max B below the upper limit B < 2e as in (8). Finally,
we also explore the possibility of B = 2r ± 2w as in (9) within each DX-k-s, s =
1, 2, 3, 4.

Table 1 lists values of B with (a) minB, (b) maxB <
√

p, (c) maxB < 2e in (8),
and (d) (r, w). Here, we use (r, w) for B = 2r + 2w, and (r,−w) for B = 2r − 2w.

It should be clear that we do not recommend the general use for the values under
“minB” in column (a). However, they are useful to determine the “power” of
empirical tests. The values under “max B <

√
p” in column (b) are useful if one

wishes to use only integer operation with the techniques by Payne, Rabung and
Bogyo [1969] and L’Ecuyer [1988]. The values under “maxB < 2e” in column (c)
are recommended for general purpose generators. As described next, they are quite
simple to implement. Finally, B = 2r ± 2w in column (d) are recommended for
efficiency and portability. However, we need to code each generator individually
and it only works for p = 231 − 1.

In Deng and Lin [2000], only FMRG-k with k ≤ 4 were listed with maximum
ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

DX-k random number generators · 7

period length up to p4 − 1 ≈ 0.212 · 1038. With DX-120, we extend the maximum
period length to p120−1 ≈ 0.679·101120. The DX-120-s is a major improvement with
extremely long cycle and the property of equidistribution up to 120 dimensions.

5. IMPLEMENTATION OF DX RANDOM NUMBER GENERATORS

Here we describe the main components of the C code implementing DX-120. In
the authors’ web sites, we have a list of complete C implementations for DX-k-s
with various k and s ≤ 4. The programs are carefully designed so that they can be
easily modified to a new DX-k generator for any k or p.

5.1 C directives for various implementations

There are two ways to implement DX-k generators: (a) use the function fmod(n,p)
in <math.h>, if n and p are stored as double, or (b) use the operation n % p if n
and p are stored as _int64 or int64_t, a data type of 64-bit integers. The former
is the default version because it is available in any C/C++ compiler, whereas the
latter is system-dependent but more efficient. In particular, _int64 is available
in MS C/C++ compiler, and int64_t is available in GNU C/C++ compiler. We
include a C-directive so that the program can automatically choose an appropriate
version and be portable across all computer systems with a C compiler that follows
the IEEE-754 standard.

/*_int64/int64_t : machine dependent, see sys/types.h */
/*_int64 used in MS-C, int64_t used in GNU-C */
#if defined(_WIN32)
typedef _int64 XXTYPE;
#define DMOD(n, p) ((n) % (p))
#elif defined(__GNUC__)
typedef int64_t XXTYPE;
#define DMOD(n, p) ((n) % (p))
#else
#include <math.h>
typedef double XXTYPE;
#define DMOD(n, p) fmod((n), (p))
#endif

5.2 Initialization

Any 120 integer numbers, not all zero, can be used as initial seeds for DX-120. Here
we provide an initialization routine that requires a single 32-bit number from the
user to produce the required 120 initial seeds. To generate these numbers quickly,
we use an LCG with the most popular multiplier 16807 to generate 119 remaining
numbers.

#define KK 120 /* can be changed */
#define PP 2147483647 /* 2^31-1, can be changed */
#define HH 1/(2.0*PP)
#define B_LCG 16807 /* for LCG, can be changed */

/* internal buffer and status, initialized in su_dx() */

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

8 · L. Y. Deng and H. Xu

static XXTYPE XX[KK]; /* buffer */
static int II; /* index */
static int K12; /* used by u_dx3 */
static int K13, K23; /* used by u_dx4 */

/* su_dx : Initialization of dx-k-s, using an LCG */
void su_dx(unsigned int seed)
{

int i;
if(seed==0) seed = 12345; /* seed can not be zero */
XX[0] = seed;
for(i=1; i<KK; i++) XX[i] = DMOD(B_LCG * XX[i-1], PP);

II = KK-1; /* running index */
K12 = KK/2-1; /* used by u_dx3 */
K13 = KK/3-1; K23 = 2*KK/3-1; /* used by u_dx4 */

}

Some workspace, of size 121 to 123, is needed to store the generated sequence
and its running index. Using this LCG, none of 120 initial seeds produced will be
zero. This should not present any problem because the empirical performances of
a good random number generator should not be affected by the initial seeds. To
explore other specific seeds for DX-120, the user needs to provide an initialization
routine.

5.3 Generation

Once a generator is selected and initialized, we simply call the generator function
provided whenever a uniform random variate is needed. The user is free to choose
different types of DX-120-s as well as different values of B. We recommend the
selection of s = 4 with the largest value of B given.

#define BB4 521673
double u_dx4(void)
{

int II0 = II;
if(++II >= KK) II = 0; /*wrap around running index */
if(++K13 >= KK) K13 = 0; /*wrap around K13*/
if(++K23 >= KK) K23 = 0; /*wrap around K23*/
XX[II] = DMOD(BB4 * (XX[II]+XX[K13]+XX[K23]+XX[II0]), PP);
return ((double) XX[II] /PP) + HH;

}

Clearly, DX-120-4 generators are slightly less efficient than DX-120-1 generators.
The actual difference in computing times is system-dependent. On our PCs, the
difference is in the range of 10% to 15%. If computing efficiency is the major
concern, we recommend using s = 2 and/or some special efficient generators as
described next.
ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

DX-k random number generators · 9

5.4 More efficient generators

The code discussed previously can be easily changed to any B satisfying the con-
dition in (8), any degree k, and any prime number p < 231. Next, we discuss how
to improve the computing efficiency by exploring the special feature of p = 231 − 1
and B = 2r ± 2w. Here we describe a DX-120-2 generator with B = 220 + 29.

static unsigned long XX[KK]; /* buffer for u_dx2d */

unsigned long MODP(unsigned long z) {return (((z)&PP)+((z)>>31));}

#define MUL20(x) (((x)>>11) + ((x)<<20)&PP)
#define MUL9(x) (((x)>>22) + ((x)<<9) &PP)
double u_dx2d()
{

int II0 = II; unsigned long S ;
if(++II >= KK) II = 0;
S = MODP(XX[II] + XX[II0]);
XX[II] = MODP(MUL20(S) + MUL9(S));
return ((double) XX[II] /PP) + HH;

}

This special form of B = 2r + 2w and its implementation is borrowed from
Wu [1997] and L’Ecuyer and Simard [1999]. There are several advantages for a
generator of this kind: (a) it is efficient because neither multiplication nor modulo
operation is needed, (b) the multiplier B can be very large, and (c) it remains
portable with improved efficiency across different platforms because it uses data
type unsigned long, not a system-dependent 64-bit integer type or a slower double
type. The only drawback is that we need to code a specific generator separately
and it works only for p = 231 − 1.

6. EXTENDING DX RANDOM NUMBER GENERATORS

As noted previously, while it is common to choose p = 231 − 1, we can select
any prime number as p. In particular, we can choose p so that (pk − 1)/(p − 1)
is a prime number. This implies, of course, that k must be a prime number.
Using such p and k, we can avoid the problem of factoring pk − 1. This idea was
first considered in L’Ecuyer, Blouin, and Couture [1993] for k ≤ 7, and later in
L’Ecuyer [1999] for k ≤ 13. Here, we are mainly interested in a much larger value
of k. For each prime number k, we first find the largest prime p < 231 such that
(pk − 1)/(p− 1) is also a prime number. As pointed out earlier, a primality check
of a huge number is easier than its factorization. After k and p are fixed, we then
search for a multiplier B in DX-k-s. We have found many generators in DX-k-s,
for k > 100. Only k = 1511 is reported here because it is the largest value found
so far. More comprehensive results will be reported elsewhere. For k = 1511, we
find p = 231 − 55719 = 2147427929 and B = 521816 in DX-1511-4:

Xi = 521816(Xi−1511 + Xi−1007 + Xi−503 + Xi−1) mod 2147427929, i ≥ 1511.

The generator defined above has a period of p1511 − 1 ≈ 1014100.5 and equidistri-
bution property up to 1511 dimensions. For comparison, MT19937 proposed by

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

10 · L. Y. Deng and H. Xu

Matumoto and Nishimura [1998] has a period of 219937 − 1 ≈ 106001.6 and equidis-
tribution property up to 623 dimensions.

Among the DX-k generators, the advantages of choosing p = 231 − 1 are: (i)
more efficient implementations are available and (ii) it is also the largest (signed)
integer that can be stored in a 32-bit computer word. Thus, p = 231−1 is the most
popular choice. The main disadvantage is that it appears to be hard to extend k
much further. Removing the limitation on p, however, we can find a much larger k
for DX-k generators.

In summary, we propose a system of random number generators with the fol-
lowing desired properties: high dimensional uniformity, efficiency, long cycle, and
portability. Clearly, in addition to the DX-k generators, other generators may also
have these desired properties. The high-dimensional uniformity of a DX-k gener-
ator is achieved by using a large k, say > 100. A DX-k generator is almost as
efficient as an LCG because only a single multiplication is required. It has long
period because it is a maximum period MRG with a large k. Finally, it is portable
so that one can produce the same sequence on various platforms.

ACKNOWLEDGMENT

The authors are very grateful to Pierre L’Ecuyer for very helpful discussion and
correspondence. The comments and suggestions by two anonymous referees have
also made a significant contribution to the improvement of this paper.

REFERENCES

Alanen, J. D., and Knuth, D. E. 1964. Tables of finite fields. Sankhyā, Series A 26, 305–328.

Crandall, R., and Pomerance, C. 2000. Prime Numbers - A Computational Perspective.
Springer-Verlag, New York, NY.

Deng, L. Y., and George, E. O. 1990. Generation of uniform variates from several nearly

uniformly distributed variables. Communications in Statistics B 19, 145–154.

Deng, L. Y., and Lin, D. K. J. 2000. Random number generation for the new century. American
Statistician 54, 145–150.

Deng, L. Y., Lin, D. K. J., Wang, J., and Yuan, Y. 1997. Statistical justification of combination

generators. Statistica Sinica 7, 993–1003.

Deng, L. Y., and Rousseau, C. 1991. Recent development in random number generation. Pro-

ceedings of the 29th ACM Annual Southeast Regional Conference, April 1991, 89–94.

Golomb, S. W. 1967. Shift Register Sequence. Holden-Day, San Francisco, CA.

Grube, A. 1973. Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen. Z. fr angewandte Math. und

Mechanik 53, 223–225.

Knuth, D. E. 1998. The Art of Computer Programming, Vol 2: Seminumerical Algorithms. 3rd

ed. Addison-Wesley, Reading, MA.

L’Ecuyer, P. 1988. Efficient and portable combined random number generators. Commun. ACM

31, 742–748, 774.

L’Ecuyer, P. 1990. Random numbers for simulation. Commun. ACM 33, 85–97.

L’Ecuyer, P. 1997. Bad lattice structures for vectors of non-successive values produced by some

linear recurrences. INFORMS Journal on Computing 9, 57–60.

L’Ecuyer, P. 1999. Good parameter sets for combined multiple recursive random number gen-

erators. Operations Research 47, 159–164.

L’Ecuyer, P., and Blouin, F. 1988. Linear congruential generators of order k > 1. 1988 Winter

Simulation Conference Proceedings, 432–439.

L’Ecuyer, P., Blouin, F., and Couture, R. 1993. A search for good multiple recursive linear random
number generators. ACM Trans. Math. Softw. 3, 87–98.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

DX-k random number generators · 11

L’Ecuyer, P., and Simard, R. 1999. Beware of linear congruential generators with multipliers

of the form a = ±2q ± 2r. ACM Trans. Math. Softw. 25, 367–374.

Lehmer, D. H. 1951. Mathematical methods in large-scale computing units. Proceedings of the
Second Symposium on Large Scale Digital Computing Machinery, Harvard University Press,

Cambridge, MA, 141–146.

Lidl, R., and Niederreiter, H. 1986. Introduction to Finite Fields and Their Applications.

Cambridge University Press, Cambridge, MA.

Matumoto, M., and Nishimura, T. 1998. Mersenne twister: A 623-dimensionally equidistributed

uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3–20.

Payne, W. H., Rabung, J. R., and Bogyo, T. 1969. Coding the Lehmer pseudo number gener-

ator. Commun. ACM 12, 85–86.

Wu, P. C. 1997. Multiplicative, congruential random-number generators with multiplier ±2k1 ±
2k2 and modulus 2p − 1. ACM Trans. Model. Comput. Simul. 23, 255–265.

Zierler, N. 1959. Linear recurring sequences. J. SIAM 7, 31–48.

Received September, 2002; revised March, 2003; accepted ??, 2003.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2003.

