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Generalization by Studying Examples Versus Generalization by Applying
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Richard Catrambone (rc7@prism.gatech.edu)
School of Psychology
Georgia Institute of Technology
Atlanta, GA 30332-0170 USA

Abstract

Two views of problem solving procedure generalization are
compared in an experiment: the Generalization by
Applying Examples (GenApp) and Generalization by
Studying Examples (GenStudy) views. The results suggest
that learners can acquire a sufficiently general approach for
solving novel problems by studying appropriately-
designed examples that encourage one to form subgoals to
represent a solution procedure. Learners who are led to
form a more rote procedure show much less transfer. No
evidence was found for generalization through application.

Introduction

Learners have difficulty solving problems that involve more
than minor changes to the procedure demonstrated by
training problems or examples (e.g., Bassok, Wu, & Olseth,
1995; Catrambone, 1995, 1996, in press; Novick &
Holyoak, 1991; Reed, Dempster, & Ettinger, 1985; Ross,
1987, 1989). People tend to form solution procedures that
consist of a long series of steps rather than more meaningful
representations that would enable them to successfully tackle
new problems (Singley & Anderson, 1989).

Such findings are a cause for concern. Presumably one of
the jobs of education is to equip people to deal with novel
problems and situations, not just a small recognizable set.
Yet it appears that this job does not get done. Leamers
seem to be predisposed, or the environment shapes them to
develop the disposition, to have their problem solving
guided by sets of memorized steps and by surface features of
problems (Chi, Feltovich, & Glaser, 1981; Larkin,
McDermott, Simon, & Simon, 1980; Ross, 1987, 1989).
Surface or superficial features are those aspects of problems
that, when changed, do not affect the solution procedure; that
is, they have no necessary relevance to the solution to the
problem. Learners often do not realize that seemingly
different sets of steps across problems might be calculating
the same thing such as the force acting on a particular
object.

Students tend to memorize the details of how equations are
filled out rather than learning the deeper, conceptual
knowledge that is implicit in the details. Thus, if they are
given a new problem that seems similar to an old one--at a
surface level--they will try to apply a set of steps from the
old problem. These steps are invoked when the learner
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recognizes certain features to be present in a problem. If the
steps can not be used, the learner will frequently not know
what to do or will carry out an inappropriate procedure.

A more fruitful approach to problem solving would be to
organize one's problem solving knowledge in some way that
generalizes across problems in a domain. One type of
knowledge structure that appears to aid procedural
generalization is one organized by subgoals.

As used in the present paper, a subgoal represents a
meaningful conceptual piece of an overall solution
procedure. Subgoals can be used by a learner to help him or
her solve novel problems since problems within a domain
typically share the same set of subgoals, although the steps
for achieving the subgoals might vary from problem to
problem. A subgoal can serve as a guide to which part of a
previously-learned solution procedure needs to be modified
for a novel problem (Catrambone, 1996, in press).

Designing Better Examples

Earlier studies have demonstrated that if examples are
designed in such a way as to encourage subgoal learning,
then learners are more likely to correctly solve new
problems that involve the same subgoals but require new
steps for achieving them (Catrambone, 1995, 1996). This
view might be called the ‘generalization by studying
examples” (or GenStudy) view.

For instance, consider the permutation example and
“equation-oriented” solution in Figure la. After studying
this example about computers, a learner might think that the
way to solve such “choice’ problems is to find the number
of things being picked, decrement that number by the
number of times things are being picked, multiply those
numbers together, and then divide 1 by that result.
However, such an approach would be wrong for problems in
which the roles of humans and objects were reversed.

Consider the problem in Figure 1b about chairs. The correct
1

answer to this problem is 11*10, One must consider what
is being picked and not just assume that the number of
objects forms the basis for the denominator. In the
computer problem it is computers that are being picked and
thus, the number of computers (or things) supplies the
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starting value for the denominator. Such an approach to the Probability of the first scientist (who comes first
1 alphabetically) getting the computer with the lowest

chair problem would lead to an incorrect answer of 14*13 serial number = 1/11.

In the chair problem it is the number of secretaries that

supplies the starting value for the denominator since

Probability of second scientist getting second lowest

secretaries are being assigned to chairs (or, chairs are serial number = 1/10.
“picking” secretaries). - . R : ,
Suppose though that the solution studied to the computer Prqbab:hty of third scientist getting third lowest
problem was presented in the following “subgoal-oriented” serial number = 1/9.
way:

L=_1 = overall probability
So, 11 10 9 990

a.) The supply department at IBM has to make sure that scientists get computers. Today, they have 11 IBM computers
and 8 IBM scientists requesting computers. The scientists randomly choose their computer, but do so in alphabetical
order. What is the probability that the first 3 scientists alphabetically will get the lowest, second lowest, and third
lowest serial numbers, respectively, on their computers?

Equation-Oriented Solution:

1
The equation needed for this problemis n*(m-1)*..*(n r+1)  This equation allows one to determine the
probability of the above outcome occurring. In this problem n = I1 and r =3. The 11 represents the number of
computers that are available to be chosen while the 3 represents the number of choices that are being focused on in this
problem. The equation divides the number of ways the desired outcome could occur by the number of possible

. 1 = 1 - overall probability
outcomes. So, inserting 11 and 3 into the equation, we find that 11 * 10*9 990

b.) The secretaries at city hall are supposed to get new chairs this week. Today, city hall received 14 new chairs and
there are 11 secretaries requesting them. For inventory purposes, the property manager wants to assign the chairs in
the order that they are unpacked. So, starting with the chair that is unpacked first, she randomly chooses a secretary to
receive it, and continues until all the secretaries have chairs. What is the probability that the first 2 secretaries
alphabetically will get the first and second chairs that are unpacked, respectively?

¢.) The Nashville Gnats Baseball team has a bus that has 30 seats. There are 25 players that are going on a road trip to
play in a nearby town. To avoid arguments, the manager randomly chooses a player for each seat, starting with the
seats in the front. What is the probability that the 6 pitchers get the 6 front seats? (It does not matter which of the
particular six front seats the pitchers get, just as long as it is any one of the six in the front.)

d.) As part of a new management policy, the Campbell Company is allowing the 20 company-owned vacation cottages
to be used for vacations by their 14 plant managers. If the managers, in order of seniority, randomly choose a cottage
from a list, what is the probability that the four managers with the most seniority get the most lavish, second most
lavish, third most lavish, and fourth most lavish cottages, respectively?

Figure 1: Example and Problems.
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This subgoal-oriented solution is assumed to help learners
form two goals. The first is the goal to find the overall
probability. This goal is assumed to be formed because that
goal is explicitly stated in the example. The second is the
subgoal to find each event probability, for example, the
probability of the first scientist getting the computer with
the lowest serial number, the probability of the second
scientist getting the computer with the second-lowest serial
number, etc. This subgoal is assumed to be formed because
each individual event probability is explicitly labeled and
spatially separate in the subgoal-oriented solution. A learner
who studied such an approach might, when faced with the
chair problem, be more likely to notice that chairs are
picking secretaries rather than the other way around. Thus,
this learner might be more likely to provide the correct
answer. In addition, such a learner might also have a better
chance at figuring out that the numerators for the individual
event probabilities in the problem in Figure lc are not
simply “1" but rather are numbers that indicate the number
of “acceptable choices.”

GenApp Vs. GenStudy

One problem with prior studies supporting the GenStudy
view (e.g., Catrambone, 1995, 1996) is that participants
were given, after studying examples, one or two isomorphic
problems to solve before being given novel problems to
solve (where “novel” means that the problem had a change
in roles compared to the examples and may have involved a
change in the steps needed to achieve the subgoals). It is
possible that the attempt to apply the examples to the
isomorphic problems led participants to form generalizations
of the solution procedure which then helped them solve the
novel problems. This alternative might be called the
“‘generalization by applying examples” (or GenApp) view.
The GenApp view is supported by the findings of Ross
and Kennedy (1990). In a typical experiment they had
learners  study four probability  principles (e.g.,
permutations, combinations) that were each illustrated
through a worked example. After studying the principles
and examples learners attempted to solve two problems for
each principle. The first test problem for each principle
either did or did not contain a cue indicating which prior
training example was relevant for solving the problem. The
second test problem for each principle did not contain a cue.
Ross and Kennedy (1990) found that when learners
received a cue on the first test problem for a particular
principle, they were more likely to correctly solve the
second test problem for that principle compared to cases in
which the first test problem was uncued. More specifically,
this benefit manifested itself in terms of an increased
likelihood in using the correct principle for the second test
problem as well as instantiating the variables correctly. For
instance, if the example involved humans picking objects
(e.g., scientists choosing computers), the problems would
involve objects “picking” humans (e.g., as a particular
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computer is unpacked, a randomly chosen scientist is
assigned to use it). Learners who were cued to the relevant
example when working on the first test problem for a
particular principle were more likely to get the roles for
humans and objects correct when working on the second test
problem for that principle (there was no difference between
cued and uncued performance on the first test problem with
respect to getting the roles correct). Ross and Kennedy
argued that differences between the problem and the cued
example led learners to form a generalization as they
attempted to apply the example to the problem. This
generalization affected performance on the second test
problem,

One difficulty with the Ross and Kennedy (1990) study is
that the examples were not designed to help learners form a
generalization of the solution procedure. Rather, training
consisted of a statement of the probability principle, a study
example, and one means of working out the example
(similar to the equation-oriented solution to the computer
example in Figure 1a).

The aim of the present experiment was to pit the
GenStudy and GenApp views against each other.
Participants studied a single permutation example (Figure
la) with either the equation-oriented solution or the subgoal-
oriented solution. The first test problem was a permutation
problem that had humans and objects playing either the
same roles as in the example or playing reversed roles. So,
for half of the participants, the first test problem they
received was the chair problem which had reversed roles
relative to the example (see Figure 1b). For the other half
of the participants, the first test problem was just like the
training example and is shown in Figure 1d. The second and
third test problems were the same for all participants. The
second prablem was a permutation problem with reversed
roles, that is, objects choosing humans (similar to the
problem in Figure 1Ib). The third problem was a
combination problem also with reversed roles (see Figure
lc).

Consider the fate of two hypothetical learners--one who
studied the equation-oriented solution to the computer
example and one who studied the subgoal-oriented solution--
when faced with the novel problem in Figure 1c in which
the make-up of the individual events, as well as the roles of
humans and objects, are different from the example. The
answer to this problem is
S 45 44434241
25 24 23 22 21

_ 6%5%4x3%2%]
20 25%24*23%22%21%20

The successful learner must be sensitive to the fact that
the numerator for each individual event probability is not
simply “1” and that the denominator is not automatically
based on the number of objects. A learner with an equation-
oriented approach has little guidance for making such
observations; however, a learner with the subgoal-oriented



approach might be able to figure all this out since he or she
is more likely to focus on the individual events.

Predictions

According to the GenApp view, the following predictions
should be made:

1) Participants whose first test problem was the reversed
roles permutation test problem should do better on the
second reversed roles permutation problem compared to
participants whose first test problem was the same-roles
permutation problem. This is because the first group would
be led, in the process of applying the example, to form a
better generalization than the second group and thus could
use this superior generalization to deal with the reversed
roles in the second permutation problem.

2) Participants whose first test problem was the reversed
roles permutation test problem should do better on the
reversed roles combination problem--at least with respect to
role assignment, that is, putting the correct values in the
denominator--compared to participants whose first test
problem was the same-roles permutation problem. Once
again, the former group would have a better generalization to
use when solving the combination problem.

3) No particular prediction would be made about
differential performance between the equation-oriented and
subgoal-oriented groups.

According to the GenStudy view, the
predictions should be made:

1) For participants who receive the reversed-roles problem
as their first test problem, those receiving the subgoal-
oriented solution in the example will do better on that
problem compared to participants who studied the equation-
oriented solution.

2) Subgoal-oriented participants will solve the second test
problem--the reversed-roles permutation problem--with more
success than equation-oriented participants.

3) Subgoal-oriented participants will perform better on the
reversed-roles combination problem compared to equation-
oriented participants.

following

Experiment

Method

Participants.  Participants were 120 students from
introductory psychology classes at the Georgia Institute of
Technology who participated in the experiment for course
credit. None of them had taken a probability course prior to
participating in the experiment.

Materials and Procedure. Participants received a
booklet containing one training example (a worked-out
permutation example involving humans picking objects; see
Figure la) and three test problems.

Two factors were manipulated: 1) subgoal orientation of
the example, and 2) order of test problems. With respect to
the subgoal orientation, half of the participants were in the
subgoal-oriented condition which meant that that the
solution to the studied example was designed to help
participants to form the needed subgoals for solving both
permutation and combination problems. The other half of
the participants studied the equation-oriented solution that
encouraged a more rote approach. With respect to test
problem order, the first test problem was either a same-roles
permutation problem in which humans pick objects (as in
the example) or a reversed-roles permutation problem in
which objects pick humans. The second and third test
problems were the same for all participants: the first was a
reversed-roles permutation problem and the second was a
reversed-roles combination problem. Thus, there were four
groups with 30 participants per group.

Participants were asked to study the example carefully
since after studying it they would be asked to solve some
problems. They were told they could not look at the
example when working on the problems. This restriction
was intended to increase the likelihood that participants
would pay attention to the example and how it was solved.

Participants worked at their own pace and were asked to
show all their work. In general, participants took about 30
minutes to complete the experiment.

Each permutation problem was scored for whether a

participant used the correct denominator. For instance, the
1

solution to the chair problem is 11*10_ If a participant
|

wrote 14*13_ confusing the roles of the chairs and
secretaries, the denominator would be scored as incorrect.
For the combination problem, the numerator and
denominator were both scored as correct or incorrect. Two
raters independently scored the problems and agreed on
scoring 96% of the time. Any disagreements were resolved
by discussion.'

Results

Table | presents the percentage of subjects in each condition
who found the denominator correctly in each problem as
well as the percentage who found the numerator correctly in
the combination problem. These percentages are compared

' Logically one could write the correct starting value for the
denominator (for permutation and combination problems) or the
correct starting value for the numerator (for combination
problems) but fail to decrement the value appropriately. In
practice though, if a participant found the correct initial value
(e.g., 14 for the denominator in the chair problem or 6 for the
numerator in the baseball problem), he or she almost invariably
did the decrementing appropriately. Thus, for each problem
there is a single score for the denominator and, for the
combination problem, a single score for the numerator.
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in various ways below in order to test the predictions of the
GenApp and GenStudy views.

Performance on First Permutation Problem with Same
Roles as Example: As the first row of results in Table 1
indicates, participants in both the equation-oriented and
subgoal-oriented conditions found the denominator in this
problem with little difficulty. This simply demonstrates
that participants could mimic the steps shown in the
example.

Performance on First Permutation Problem with Reversed
Roles from Example: The second row of results in Table 1
shows that, as predicted by the GenStudy view, subgoal-
oriented  participants  outperformed  equation-oriented
participants. y2(1, N =60) = 4.44, p = .035.

Performance on Second Permutation Problenm: As
predicted by the GenStudy view, subgoal-oriented
participants outperformed equation-oriented participants,
¥2(1, N = 120) = 9.85, p = .0017. Furthermore, the two
equation-orientation groups did not differ from each other.
The GenApp view predicted a difference between these two
groups since the Ist-problem-has-reversed-roles-from-
example group should have been led to a generalization that
should have helped their performance on the 2nd permutation
problem relative to the other equation-oriented group. This
did not occur. Such a difference also failed to appear
between the two subgoal-oriented groups.

Table I:

Performance on Combination Problem Denominator: As
predicted by the GenStudy view, subgoal-oriented
participants outperformed equation-oriented participants,
x2(1, N =120) = 10.11, p = .0015.

Performance on Combination Problem Numerator. As
predicted by the GenStudy view, subgoal-oriented
participants outperformed equation-oriented participants,
x2(1, N =120) =9.02, p = .0027.

Discussion

The overall performance differences among the groups can be
summarized as follows:  the subgoal-oriented groups
outperformed the equation-oriented groups on all aspects of
the novel problems (role reversals and using a non-"1"
numerator for the combination problem). There was no
evidence of improved generalization by any group as a
function of having attempted to solve a reversed-roles
problem first.

The results suggest that generalization can occur from
properly designed examples and that a learner does not
necessarily have to apply an example to a problem in order
to form useful generalizations. While getting learners to
form useful generalizations is an important pedagogical
goal, it apparently can be achieved in more than one way.
Carefully-designed examples scem to be one effective way to
make this happen.

Percentage of Participants Correctly Finding Denominators for Each Test Permutation and Combination Problem

and Percentage Correctly Finding Numerator for Combination Problem

Condition
Equation-Oriented | Subgoal-Oriented
1st Problem has | 1st Problem has | 1st Problem has | 1st Problem has
Problem Feature Same-Roles Reversed-Roles | Same-Roles Reversed-Roles
as Example from Example as Example from Example
Denominator for Ist
Permutation Problem 93.3 n/a 90.0 n/a
(Same Roles)
Denominator for 1st
Permutation Problem n/a 46.7 n/a 73.3
(Reversed Roles)
Denominator for 2nd 40.0 46.7 70.0 73.3
Permutation Problem
(Reversed Roles)
Denominator for 43.3 50.0 733 76.7
Combination Problem
(Reversed Roles)
Numerator for 26.7 233 53.9 50.0
Combination Problem
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There was no evidence of a generalization being formed
due to applying an example to an initial test problem for
participants in the equation-oriented condition. This is a bit
surprising since this condition was meant to be similar to
Ross and Kennedy's (1990). However, there ar
methodological differences between the present experiment
and those in Ross and Kennedy that may account for the lack
of an effect of application. For instance, Ross and Kennedy
used examples to illustrate four probability principles during
training and were explicitly cueing (or not cueing) a relevant
example for the first test problem for each principle.
Perhaps the potential confusion about which principle is
relevant for a test problem played a role in the generalization
process. Such confusion was not an issue in the present
experiment since only one principle was illustrated during
training. A second difference was that no explicit cue to a
relevant example was used in the present study. However,
there was certainly an implicit cue since participants were
told that the example would help them solve the test
problems.

Such methodological differences may need to be explored
systematically in order to determine if there are situations in
which the application of an example aids generalization as
much as studying examples designed to encourage
generalization.

Conclusions

While the results support a subgoal-oriented approach to
designing example solutions, they do not provide guidance
as to the specific subgoals that should be taught. That is,
another researcher or teacher working with permutation and
combination problems might determine that a different set of
subgoals than those used here are better for students to learn.
The aim of this study was to show that a particular set of
good subgoals--as determined by a task-analysis and by the
researcher’s intuition--can be conveyed to learners through
examples. It would be useful though to develop constraints
on how one determines what are “good” subgoals for
problems in a particular domain. Cognitive modeling tools
such as ACT-R (Anderson, 1993) may provide constraints
within a unified theory that can help one determine the
subgoals that should be taught to learners. On the other
hand, from a pragmatic point of view, it has been this
researcher’s observation that forcing oneself to solve a
reasonably large number of problems within a domain, and
taking careful notes on how one went about solving the
problems, can produce a useful list of subgoals, and other
types of information, that can then be taught to learners
through paper-and-pencil examples, animations, and other
types of teaching materials (Catrambone, Stasko, & Byrne,
1996).
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