
UCLA
UCLA Electronic Theses and Dissertations

Title
Uncertainty Calibration for Robotic Navigation and Vision

Permalink
https://escholarship.org/uc/item/59g9f0m0

Author
Tsuei, Stephanie

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59g9f0m0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Uncertainty Calibration for Robotic Navigation and Vision

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Stephanie Tsuei

2023

© Copyright by

Stephanie Tsuei

2023

ABSTRACT OF THE DISSERTATION

Uncertainty Calibration for Robotic Navigation and Vision

by

Stephanie Tsuei

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Stefano Soatto, Chair

We experimentally demonstrate that an uncertainty-aware framework for robotic navigation

and vision is able to navigate a robotic platform around an obstacle without choosing an

overly long and conservative path. The framework contains many interconnected experi-

mental pieces, including monocular visual-inertial odometry (VIO) based on an Extended

Kalman Filter (EKF), a recurrent neural network that predicts future covariance estimates

from the EKF, a model predictive controller that uses uncertainty in its cost function, and an

object detection network. Each interconnected piece is an algorithm that makes assumptions

about its inputs, which are the outputs of another piece. The rest of the thesis is a systems

validation exercise that examines several of these assumptions for validity and finds that

they are largely not true. First, we learn that uncertainty estimates of the commonly used

EKF are overconfident, but that the overconfidence is systematic and correctable. Next,

we examine the distribution of feature track errors and find that not only are the errors

not zero-mean Gaussian, the errors are dependent on motion type, speed, and the type of

feature tracking algorithm used. We then quantify the effect of attribution errors, Gaussian

noise, and drift on performance and uncertainty estimates of the VIO algorithm used in

the framework. Finally, we attempt to characterize the uncertainty of image classification

networks in a manner appropriate for online navigation. To our knowledge, the proposed

architecture is new and this dissertation is the first time a systems validation exercise has

focused on uncertainty estimation.

ii

The dissertation of Stephanie Tsuei is approved.

Cho-Jui Hsieh

Quanquan Gu

Mark Milam

Paulo Tabuada

Stefano Soatto, Committee Chair

University of California, Los Angeles

2023

iii

To my dad,

who never once doubted that

I would write this thesis someday

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Motivation . 1

1.2 A Proposed Solution and Thesis Outline . 2

1.3 Related Work . 4

1.3.1 Active SLAM: Planning Under Uncertainty 4

1.3.2 Uncertainty Calibration of Extended Kalman Filters 5

1.3.3 Characterization of Feature Track Uncertainty 6

1.3.4 Uncertainty Quantification of Deep Neural Networks 7

1.4 Summary of Contributions . 9

2 Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for

Online Collision Avoidance . 12

2.1 Methods . 14

2.1.1 Architecture Overview . 15

2.1.2 General MPC Formulation . 16

2.1.3 MPC Constraints . 18

2.1.4 Obstacle Detection . 21

2.1.5 Recurrent Neural Networks for Learning Uncertainties 23

2.2 Experimental Results . 26

2.2.1 Robot Model and Motion Tracking Controller 26

2.2.2 Analysis of Learning Components . 27

2.2.3 Gazebo Simulation . 28

2.3 Discussion and Future Work . 28

v

3 Learned Uncertainty Calibration for Visual Inertial Localization 32

3.1 Evaluating Calibration of Kalman Filters . 33

3.1.1 Background: Sources of Error in EKFs 33

3.1.2 1,2,3-σ Intervals in Multiple Dimensions 34

3.1.3 Overall Calibration with Monte-Carlo Simulations 34

3.1.4 Exploiting Residual Independence for Calibration 35

3.2 Computing a Calibrated Covariance . 35

3.2.1 Finding Ground-Truth Covariance . 36

3.2.2 Hypothesis 1: Constant Multiplicative Scalar 37

3.2.3 Hypothesis 2: Constant Linear Transformation 37

3.2.4 Hypothesis 3 and 4: Fully-Connected Neural Networks 38

3.3 Two Contrasting Illustrations . 38

3.3.1 Illustration 1: Linear Kalman Filter 38

3.3.2 Illustration 2: EKF for 2D Localization 39

3.4 Calibration of Visual Inertial Odometry . 41

3.4.1 Validating the Zero-Mean Assumption 47

3.4.2 Validating the Ergodicity Assumption 47

3.4.3 Experimental Results . 48

3.5 Summary . 50

4 Feature Tracks are not Zero-Mean Gaussian 51

4.1 Method . 52

4.1.1 Equations . 53

4.2 Experiment Details . 55

4.2.1 Feature Tracker Configuration . 55

vi

4.2.2 Dataset-Specific Details . 56

4.2.3 Results . 59

4.3 Summary . 60

5 Quantifying VIO Uncertainty . 64

5.1 Preliminaries . 65

5.1.1 On Observability and Identifiability for Monocular VIO 66

5.2 Experiment . 68

5.2.1 The Trajectory Studied . 68

5.2.2 Configuration . 69

5.2.3 Experiment Parameters . 71

5.2.4 Results . 72

5.3 Summary and Discussion . 73

6 Scene Uncertainty of Deterministic Image Classifiers 85

6.1 Introduction . 85

6.2 Method . 87

6.2.1 Proposed Measures of Scene Uncertainty 90

6.3 Measuring Scene Uncertainty . 91

6.3.1 Datasets . 91

6.3.2 Discriminant . 92

6.3.3 Scene Uncertainty Values . 93

6.4 Summary . 95

7 Discussion . 96

7.1 Future Work . 97

vii

7.1.1 Chapter 2: “Risk-Averse MPC via Visual-Inertial Input and Recurrent

Networks for Online Collision Avoidance” 97

7.1.2 Chapter 3: “Learned Uncertainty Calibration for Visual Inertial Lo-

calization” . 97

7.1.3 Chapter 4 and 5: “Feature Tracks are not Zero-Mean Gaussian” and

“Quantifying VIO Uncertainty” . 98

7.1.4 Chapter 6: “Scene Uncertainty of Deterministic Image Classifiers” . . 99

A XIVO . 101

A.1 Preliminaries . 102

A.1.1 Notation . 102

A.1.2 Representation of 3D Rotations and Coordinate Transformations . . . 105

A.1.3 Special Jacobians . 106

A.2 Filter Equations . 107

A.2.1 Coordinate Frames . 107

A.2.2 States . 107

A.2.3 The Error State . 109

A.2.4 Nominal Equations of Motion (EKF State Prediction) 111

A.2.5 Nominal Measurement Model (EKF Measurement Prediction) 112

A.2.6 Incorporating the Error State and Noise into Nominal Equations . . . 113

A.2.7 Covariance Matrix Prediction . 114

A.2.8 Augmenting the State and Covariance Matrix with new Features and

Groups . 114

A.3 Mapping: Management of Features and Groups 115

A.3.1 Killing Two Birds with One Stone: A Note on Observability and Fea-

ture Position Uncertainty. 115

viii

A.3.2 Feature and Group Management . 117

A.4 Jacobians . 120

A.4.1 Our approach to deriving approximate Jacobians. 121

A.4.2 The Matrix F (eqs. (A.8), (A.22)) 121

A.4.3 The Matrix G (eqs. (A.8), (A.22)) 123

A.4.4 The Matrix H (eq. (A.9)) . 123

A.5 Feature Depth Initialization . 126

A.5.1 Subfilter Equations . 126

A.5.2 Two-View Triangulation (Optional) 128

A.5.3 Depth Refinement (Optional) . 129

A.6 Loop Closure (Optional) . 129

B Supporting Figures for “Feature Tracks are not Zero-Mean Gaussian” . 131

B.1 Supporting Figures for DTU Point Features Dataset 131

B.2 Supporting Figures for KITTI Vision Suite 184

B.3 Supporting Figures for Gazebo Linear Dataset 196

References . 208

ix

LIST OF FIGURES

1.1 An overview of this thesis. Chapter 2. describes the uncertainty-aware

systems architecture in the background. The algorithms in the systems archi-

tecture make four implicit assumptions, noted in blue boxes. Chapters 3, 4, 5,

and 6 then examine the correctness of each assumption and explores possible

solutions. 3

2.1 Architecture Overview. This figure demonstrates the training and testing

procedures of our method. In training, we first select different maps, where

obstacles in each map are randomly distributed. A simulation where the

robot moves from an initial to a goal position is executed on this map. At each

timestep an observation is taken (e.g., camera or on-board sensor data). These

measurements are used as the input to our SLAM/Object Detection/Sensors

system, which estimate the current position and uncertainty in position of

the robot, and also location and size of obstacles. MPC accounts for this

information and produces outputs entered into our motion tracking controller.

For every map at every timestep, the current observations, state position,

and positional uncertainty (among other variables outlined in Section 2.1.5)

are entered into a large database to produce our RNN model. Lastly, in the

testing phase, RNNs can predict the positional uncertainty (which provide our

collision boundaries) of the robot at future timesteps of the MPC prediction

horizon. 13

2.2 Example Module Outputs. Left : An example output image of our trained

object detector using a custom-trained convolutional neural network model.

We used the YOLOv3 [RF18] architecture with default initialized weights for

fast training and inference. Right : Inlier (green +) and outlier tracks (red *)

produced by XIVO on data collected from the Intel Realsense D435i. 22

x

2.3 Recurrent Neural Network Architecture. Our RNN architecture pre-

dicts the covariances at robot poses [xt+n, yt+n] at timesteps t + n for n =

1, ..., N (where N is the length of the MPC’s prediction horizon). During

training, we used inputs collected from the output of XIVO to parameterize

the network towards the four output units, as indicated by the first 18 input

units and last four units in the figure above. Seven hidden layers were used

with ReLU activation functions, with five recurrent layers (green) and two

fully connected layers (purple), to learn the temporal structure for covariance

propagation. 24

2.4 Gazebo Simulation. Our high-fidelity simulation accurately models the

dynamics of the ALPHRED quadruped robot. 26

2.5 Training Loss. Top: Our CNN model’s training loss, used in our object

detection pipeline. We trained for 5,200 epochs but only display 300 in the

figure above. Note that we verified avoidance of overfitting via a validaton

set but did not plot the curve here. Bottom: Our RNN model’s training loss,

used to infer future localization uncertainty for the MPC. As with the CNN,

we verified avoidance of overfitting using a validation set. 27

2.6 Trajectory Comparison. A comparison of the trajectories computed by

three different approaches. The baseline method (red) is an MPC framework

without our extensions to consider propagated future state uncertainty from

an RNN, and we define the naive approach (blue) as artificially inflating a

robot’s boundary through all time. In comparison, our approach (green) can

plan for a quick yet safe trajectory by predicting potential future collisions. . 29

xi

2.7 ALPHRED Hardware. The ALPHRED quadrupedal robot developed by

Hooks et al. [HAY20] of the RoMeLa robotics laboratory at the University of

California, Los Angeles. This complex platform is an ideal model to apply our

methods, as showing success on this platform also demonstrates the potential

of applying our methods to a wide selection of robotic systems. Table 2.2

describes some physical properties of the system. 31

3.1 The state estimation and innovation of the linear Kalman Filter for a single run

are shown in (a) and (b) - the state estimation is accurate and the innovation

is essentially white noise. (c) plots pρ̄k against the χ2
2 density for a single run.

Visually, the histogram and the χ2
2 density are very close, showing that the

independence assumption holds and that the covariance estimates are well-

calibrated. This is further verified in (d), which is the same plot as (c), except

that the normalized histogram is computed using a ground-truth covariance

from Monte-Carlo trials. (3.6). 40

3.2 Calibration results for the EKF’s test sequence. The EKF has small estima-

tion error (a) and poor covariance calibration. The innovation for this 2D

localization problem (b) is clearly not white. In (c), the approximate density

of ρk is far from the χ2
4 density that we did not plot the χ2

4 pdf. Finally, in

(d), the overlay is much closer to the ground-truth covariance computed using

Monte-Carlo simulations, although still not a perfect fit because independence

of the ek is only an approximation. 42

3.3 Overlays of χ2
4 with pρ̂k computed with adjusted covariances for the 2D local-

ization problem. These overlays visualize the trends seen in Table 3.1. 43

xii

3.4 The 3D trajectory, innovation, and overlays for the VIO test sequence. As with

the EKF experiments, the state estimation error is small, but the innovation

is clearly not white noise. In (c), there is very little overlap between the

histogram approximation of ρ̂k the χ2
9 distribution. (d) contains the same

plot, except with ρ̂k generated using ground-truth covariances computed using

ergodicity from the test set. A visual comparison of (c) and (d) shows that the

ergodic assumption and the independence assumption are both approximately

true. 45

3.5 Overlays of the test set’s ρ̂k computed with adjusted covariances - a visual-

ization of the results in Table 3.2. 49

4.1 An Illustration of the Light Stage Setup in the DTU Point Features

Dataset. Left: The locations at which images were acquired in the DTU

Point Features dataset form three arcs and a linear path. Laser scans of the

scenes were collected at the Key Frame (front and center). Frames from Arc

1 (circled in blue) are used for this experiment. Right: Red circles depict

the location of 19 physical LEDs used to light the scene, which are spaced

out over the scene. At each camera position in the left figure, the authors of

the DTU Point Features dataset acquired 19 images. In each image, exactly

one of the 19 LEDs is switched on. Acquiring 19 images in each location this

way facilitates experiments in lighting using image-based relighting. Diffuse

lighting can be simulated by using all 19 photographs from each position

equally. More intense directional lighting can be simulated by weighting some

LEDs more than others. In our experiments, we vary lighting from back-to-

front (BF0-BF7) and left-to-right (LR0-LR9) as the camera follows the motion

of Arc 1. Lights LR0 - LR9 and BF0 - BF7 are calculated by using Gaussian-

weights on the 19 lights with σ = 20cm; Light LR6 is highlighted in green.

Figures are reprinted and annotated with permission. 58

xiii

5.1 The Brownian motion trajectory. Linear acceleration and angular veloc-

ity are modeled as Brownian motion. Translation is plotted in the left figure

in 3D. The linear acceleration and angular velocity inputs, in the body frame,

are plotted in the right figure. Sudden jumps in the acceleration input cor-

respond to instances when the trajectory hits a boundary condition in the

spatial frame. 69

5.2 XIVO’s Configuration for Monte-Carlo Experiments. For Monte-

Carlo experiments, XIVO’s typical feature tracker was replaced with simple

bookkeeping software. Loop closure, an optional component, was not used.

The typical configuration of XIVO is given in Figure A.1. 70

5.3 σ̄p = σp: Performance decreases with Gaussian Noise. Each box-and-

whisker illustrates the distribution of Absolute Trajectory Error (top) and

Relative Pose Error (bottom) over 100 Monte-Carlo trials. Boxes extend from

the first to the third quartile. Medians are lines in the boxes, means are

triangles. Whiskers extend the box by 1.5x the inter-quartile range. All other

points are plotted as “fliers”. Mean and median error increase with noise for

all σ̄p = σp ≥ 0.50. The performance is lower for σp = 0.25 than for σp = 0.50

because σ̄p = 0.25 is too small to capture uncertainties due to poor feature

initialization in Brownian motion in addition to Gaussian noise. 74

5.4 σ̄p = σp: Gaussian Noise leads to larger sample covariances. Each

box-and-whisker illustrates the distribution of sample covariance (eq. (5.1))

computed using 100 Monte-Carlo trials. Boxes extend from the first to the

third quartile. Medians are lines in the boxes, means are triangles. Whiskers

extend the box by 1.5x the inter-quartile range. All other points are plotted

as “fliers”. As the amount of noise increases, so does the sample covariance

and the variation in sample covariance. 75

xiv

5.5 σ̄p = σp: Mean and variation of scale factor ρ is a nonlinear function

of σp. Each box-and-whisker illustrates the distribution of ρ computed using

100 Monte-Carlo trials. Boxes extend from the first to the third quartile.

Medians are lines in the boxes, means are triangles. Whiskers extend the

box by 1.5x the inter-quartile range. All other points are plotted as “fliers”.

Generally, we see that although there is no trend in the mean or median scale,

the variation in scale generally increases with σp. Scale estimates are relatively

poor for σp = 0.25 because σ̄p = 0.25 is too small to capture uncertainties due

to poor feature initialization in addition to Gaussian noise. 76

5.6 σ̄p = σp+0.25: Performance decreases with Gaussian Noise. Each box-

and-whisker illustrates the distribution of Absolute Trajectory Error (top) and

Relative Pose Error (bottom) over 100 Monte-Carlo trials. Boxes extend from

the first to the third quartile. Medians are lines in the boxes, means are

triangles. Whiskers extend the box by 1.5x the inter-quartile range. All other

points are plotted as “fliers”. Mean and median error increase with noise for

all σ̄p = σp ≥ 0.50. 77

5.7 σ̄p = σp + 0.25: Gaussian Noise leads to larger sample covariances.

Each box-and-whisker illustrates the distribution of mean sample covariance

(eq. (5.1)) computed using 100 Monte-Carlo trials. Boxes extend from the

first to the third quartile. Medians are lines in the boxes, means are triangles.

Whiskers extend the box by 1.5x the inter-quartile range. All other points

are plotted as “fliers”. As the amount of noise increases, so does the sample

covariance and the variation in sample covariance. 78

xv

5.8 σ̄p = σp + 0.25: Mean and variation of scale factor ρ is a nonlinear

function of σp. Each box-and-whisker illustrates the distribution of ρ com-

puted using 100 Monte-Carlo trials. Boxes extend from the first to the third

quartile. Medians are lines in the boxes, means are triangles. Whiskers ex-

tend the box by 1.5x the inter-quartile range. All other points are plotted

as “fliers”. Generally, we see that although there is no trend in the mean or

median scale, the variation in scale generally increases with σp. 78

5.9 Drift increases estimation error and variation in estimation error.

Each box-and-whisker illustrates the distribution of ATE and RPE computed

using 100 Monte-Carlo trials. Boxes extend from the first to the third quartile.

Medians are lines in the boxes, means are triangles. Whiskers extend the box

by 1.5x the inter-quartile range. All other points are plotted as “fliers”. The

mean and median performance error creeps upwards with the drift σb for both

σ̄p = 0.50 and σ̄p = 1.00. Performance is better when σ̄p = 0.50 for smaller

amounts of drift; for values of σb ≥ 0.40, σ̄p = 1.00 is better. 79

5.10 Drift only slightly increases state uncertainty. Each box-and-whisker

illustrates the distribution of sample covariance (eq. (5.1)) computed using

100 Monte-Carlo trials. Boxes extend from the first to the third quartile.

Medians are lines in the boxes, means are triangles. Whiskers extend the

box by 1.5x the inter-quartile range. All other points are plotted as “fliers”.

Mean and median covariance size increases with drift. For both σ̄p = 0.50 and

σ̄p = 1.00, the mean and median values of drift creep slightly upwards with

increasing values of σ̄b. 80

5.11 Drift increases both bias and uncertainty in scale. Each box-and-

whisker illustrates the distribution of scale factor (eq. (5.3)) computed using

100 Monte-Carlo trials. Boxes extend from the first to the third quartile.

Medians are lines in the boxes, means are triangles. Whiskers extend the box

by 1.5x the inter-quartile range. All other points are plotted as “fliers”. . . . 80

xvi

5.12 Attribution errors increase bias and variance in performance. Each

box-and-whisker illustrates the distribution of ATE and RPE computed using

100 Monte-Carlo trials. Boxes extend from the first to the third quartile.

Medians are lines in the boxes, means are triangles. Whiskers extend the box

by 1.5x the inter-quartile range. 81

5.13 Attribution errors produce more uncertainty. Each box-and-whisker

illustrates the distribution of mean sample covariance computed using 100

Monte-Carlo trials. Boxes extend from the first to the third quartile. Medians

are lines in the boxes, means are triangles. Whiskers extend the box by 1.5x

the inter-quartile range. 82

5.14 Attribution errors increase bias and variance in scale. Each box-and-

whisker illustrates the distribution of scale factor computed using 100 Monte-

Carlo trials. Boxes extend from the first to the third quartile. Medians are

lines in the boxes, means are triangles. Whiskers extend the box by 1.5x the

inter-quartile range. 82

5.15 The increases in performance errors, state uncertainty, and scale

uncertainty due to attribution errors are exponential. The four figures

plot mean values of ATE, RPE, state uncertainty, and scale factor as a function

of η, for η ∈ [0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4]. Both the horizontal and

vertical axes are in log scale. All curves are exponential functions of η. . . . 83

xvii

6.1 Scene Uncertainty is Real. Histograms of the four measures of scene

uncertainty (logit spread, softmax spread, percent non-mode, and scene en-

tropy) from Section 6.2.1 for ResNet-50 on Objectron (top row), ResNet-101

on ImageNetVid (second row), ResNet-50 on MiniObjectron (third row), and

ResNet-50 on SyntheticObjectron (bottom row). Each point in the histograms

above is a scene. The mean of each distribution is shown in the top-left. For

the cases when the uncertainty of the network is measured over the test split

of the same dataset it was trained on (top two rows) thick bars at the left of a

histogram indicates that most images of most scenes are classified identically

within a scene and that discriminants are similar. However, there is a long tail

in the plots showing that scene uncertainty is a real phenomenon that will be

encountered in real systems. In the bottom two rows, where the uncertainty

of ResNet-50 was measured on our two “more fair” constructed datasets, the

measures of scene uncertainty are much higher. 94

A.1 XIVO Overview. IMU Measurements are first used to propagate the es-

timated state χ forward in time. After propagation of χ, XIVO then calcu-

lates predicted image locations of all features currently tracked by the Feature

Tracker. In the Feature Tracker, feature tracks are extracted from RGB images

using either Lucas-Kanade Sparse Optical Flow or Correspondence Matching.

Feature Tracks may then be pruned for outliers using planar outlier rejection

(e.g. RANSAC, LMEDS, RHO), an optional step when using sparse opti-

cal flow, but effectively a required step when using Correspondence Matching.

For further rejection of outlier feature tracks, XIVO also contains implementa-

tions of the 3D outlier rejection algorithms Mahalnobis Gating and One-Point

RANSAC [CGD09]. With all outliers removed, the last steps are the standard

EKF measurement update and an optional loop closure. 102

xviii

A.2 Software Objects in XIVO. The Estimator, Tracker, Graph, Memory

Manager, Camera, and Mapper are implemented as C++ Singletons. Features

and Groups exist outside the Singletons. The components that require access

to Features and Groups contain organized pointers. 103

A.3 Map. XIVO’s map can be visualized as a graph with two types of nodes

(Features and Groups) and two types of edges (Ownership and Visibility). A

feature fi is owned by a group gsbr ∈ SE(3), when its estimated position in the

spatial frame X i
s is calculated using the parameters of group gsbr . A feature fi

may also be visible in other groups, or past values of Rsb and Tsb in the map.

Although features are initially owned by the group where it is first detected,

its state may be parameterized by any group in which it is visible. In order

to enforce a global gauge, the covariance of a single group containing at least

three features must be fixed at all times – the first reference group is always

the initial position (left figure). A group is dropped when fewer than three

features remain visible. When a reference group is dropped, a new group is

chosen as the reference and its covariance is fixed (right figure). 118

A.4 Life of a XIVO Feature. A feature has two state variables, one main-

tained by the feature tracker, TrackStatus, the other maintained by the

EKF, FeatureStatus. Details about transitions are described in the main

text of Section A.3.2. 119

A.5 Adding Features into the EKF. At each timestep, XIVO will attempt to

add features into the EKF state. It will always try to add at least one new

group before adding features to existing groups. 120

A.6 XIVO’s Feature Depth Initialization Process. This flowchart illustrates

the states of a feature during the depth initialization process. TrackStatus

and FeatureStatus are the same as those used in Figure A.4. The main

variables affecting the process are whether or not two-view triangulation is

performed, or whether or not depth refinement is performed. 127

xix

B.1 DTU Point Features Dataset: We will throw out the 10% of tracks

with the most error from each scene. The right figure plots the histogram

density of all feature tracks’ maximum L2 error in log scale. The corresponding

scene is pictured on the left. Outliers in the blue histogram are caused by noisy

depth measurements and the imperfect association of features with laser scan

points. 131

B.2 DTU Point Features Dataset: Feature lifetimes generated by the

Lucas-Kande Tracker is a long tailed distribution. The histograms

above plot feature lifetime density in log scale for scenes with diffuse light-

ing and no skipped frames (speed=1.00) for the Lucas-Kanade (blue) and

Correspondence (orange) Trackers. There is a long tail of tracks with longer

lifetimes when we use a sparse optical flow rather than correspondences. . . . 132

B.3 DTU Point Features Dataset: Outlier Ratio Depends on Speed. In

the box-and-whisker plots above, the orange line is the median, the green

triangle is the mean, and the box extends from the first to the third quar-

tiles. The whiskers extend up to 1.5x the length of the boxes. Outlier ratios

increase with speed for all tested feature trackers to a point, and then falls

slightly. Each box-and-whisker is computed using features from all 60 scenes,

one tracker, and one speed. Outlier ratios then decrease at higher speeds not

because the tracker is more accurate, but because the percentage of features

that fail to be tracked from frame to frame increases. 133

B.4 DTU Point Features Dataset: Outlier ratio does not depend on the

existence of directional lighting. In the box-and-whisker plots above, the

orange line is the median, the green triangle is the mean, and the box extends

from the first to the third quartiles. The whiskers extend up to 1.5x the

length of the boxes. Each box-and-whisker plot is computed using features

from all 60 scenes, one tracker, speed=1.00, and one of the lighting conditions

in Figure 4.1. The distribution of outlier ratio is approximately the same for

all lighting conditions. 134

xx

B.5 DTU Point Features Dataset: Feature lifetime does not depend on

the existence of directional lighting. In the box-and-whisker plots above,

the orange line is the median, the green triangle is the mean, and the box

extends from the first to the third quartiles. The whiskers extend up to 1.5x

the length of the boxes. Outlier ratios increase with speed for all tested feature

trackers to a point, and then falls slightly. Each box-and-whisker is computed

using features from all 60 scenes, one tracker, and one speed. The distribution

of feature lifetime is approximately the same for all lighting conditions. . . . 135

B.6 Each curve shows the total number of tracked features at each timestep for

the Lucas-Kanade Tracker (left) and the Correspondence Tracker (right) in

log scale. Each dot on a curve is a frame in the sequence and each curve is

computed using all features visible in the Key Frame under diffuse lighting

and one speed. The number of features that can be used to compute mean µ(t)

and covariance Σ(t) declines quickly away from the Key Frame when using

the Correspondence Tracker. When using the Lucas-Kanade Tracker, a slower

speed means that more features are tracked for more frames. When using the

Correspondence Tracker, the number of features tracked is dependent on the

number of frames as well as the speed for the reasons noted in Section 4.2.1.

The closer two frames are (i.e., the slower the speed), the fewer features are

dropped between them. This is consistent with previously known results about

the precision and recall of feature descriptors [MS05, SHS17a,WOB17]. We

limit calculations of mean error µ(t), mean absolute error, κ(t), and

covariance Σ(t) to timesteps that contain at least 100 features. . . . 136

xxi

B.7 DTU Point Features Dataset: At nominal speed and with diffuse

lighting, the tracker used has little effect on µ(t). Lines shown are mean

feature track errors µ(t) at each timestep t calculated over all scenes. The blue

lines are feature track errors calculated using the Lucas-Kanade Tracker and

the orange lines are feature track errors calculated using the Correspondence

Tracker. Lines are cut-off to timesteps where at least 100 features with 3D

data are available (see Fig. B.6). The orange lines are on top of the blue lines,

therefore the tracker used does not affect mean error. 137

B.8 DTU Point Features Dataset: At nominal speed and under diffuse

lighting, the tracker used does affect mean absolute error κ(t) and

covariance Σ(t). Lines shown are horizontal and vertical coordinates of κ(t)

(top row), and Σ(t) (bottom row) calculated using all tracks from all scenes.

Each dot corresponds to a single frame. Mean absolute error and covariance

for the Correspondence Tracker are roughly constant with respect to time,

while the same values for the Lucas-Kanade Tracker increases steadily with

time away from the Key Frame. 138

xxii

B.9 DTU Point Features Dataset: Speed affects mean error when us-

ing the Lucas-Kanade Tracker with diffuse lighting. The left column

contains plots of the horizontal and vertical coordinates of mean error µ(t)

at each timestep and multiple speeds. Each dot corresponds to a processed

frame. The right column plots the ordinate value of each line in the left figures

as a box plot. As speed is increased, the slope of the horizontal components

of µ(t) in the left plots (eq. (4.6)) decreases and the height of each box in

the right plot decreases, i.e. the absolute magnitude of µ(t) slighty decreases.

This trend indicates the existence of two speed-related components that af-

fect µ(t): the difference between frames and the number of frames that have

elapsed; the former has a much larger effect than the latter. The latter occurs

because the exact point that the Lucas-Kanade Tracker tracks drifts with each

frame. Fewer frames means that the tracked point has fewer opportunities to

drift. 139

B.10 DTU Point Features Dataset: Speed affects mean absolute error

when using the Lucas-Kanade Tracker with diffuse lighting. The

left column contains plots of the horizontal (top row) and vertical (bottom

row) coordinates of mean absolute error κ(t) at each timestep and multiple

speeds. Each dot corresponds to a processed frame. The right column plots

the ordinate value of each line in the left figures as a box plot. As speed is

increased, the mean absolute error at each timestep slightly decreases. This

indicates the existence of two speed-related components that affect κ(t): the

difference between frames and the number of frames that have elapsed; the

former has a much larger effect than the latter. The latter occurs because

the exact point that the Lucas-Kanade Tracker tracks drifts with each frame.

Fewer frames means that the tracked point has fewer opportunities to drift. . 140

xxiii

B.11 DTU Point Features Dataset: Speed affects covariance when using

the Lucas-Kanade Tracker with diffuse lighting. The left column con-

tains plots of the square root of the horizontal (top row) and vertical (bottom

row) coordiantes of Σ(t) at each timestep and multiple speeds. Each dot

cooresponds to a processed frame. The right column plots the ordinate value

of each line in the left figures as a box plot. As speed is increased, the co-

variance of both the horizontal and vertical coordiantes slightly decreases; the

lines in the left plot become slightly less steep and mean values of covariance

get slightly smaller. This indicates the existence of two speed-related com-

ponents to these statistics: the difference between frames and the number of

frames that have elapsed; the former has a much larger effect than the lat-

ter. The latter occurs because the exact point that the Lucas-Kanade Tracker

tracks drifts with each frame. Fewer frames means that the tracked point has

fewer opportunities to drift. 141

B.12 DTU Point Features Dataset: When using the Correspondence

Tracker with diffuse lighting, mean error µ(t) is not affected by

speed. The left column contains plots of the horizontal coordinate (top row)

and vertical coordinate (bottom row) of µ(t) at each timestep and multiple

speeds. Each dot corresponds to a processed frame. The right column plots

the ordinate value of each line in the left figures as a box plot. Both the line

and box plots only contain timesteps that contain at least 100 tracked features

(see Fig. B.6), leading to some asymmetry of the lines about the Key Frame.

As speed is increased, there is no change in both the horizontal and vertical

coordinates, as all lines in the left column plots are on top of one another.

The boxes in the box plots of the horizontal coordinate are taller for higher

speeds because the time cutoff for those speeds is longer than for the lower

speeds, allowing more error to appear in the tracked features. 142

xxiv

B.13 DTU Point Features Dataset: When using the Correspondence

Tracker with diffuse lighting, mean absolute error κ(t) increases in

the horizontal direction, but not the vertical direction, as speed is

increased. The left column contains plots of the horizontal coordinate (top

row) and vertical coordinate (bottom row) of κ(t) at each timestep and multi-

ple speeds. Each dot corresponds to a processed frame; lines for higher speeds

contain data from fewer frames and therefore show fewer dots. The right

column plots the ordinate value of each line in the left figures as a box plot:

means are shown as green triangles and medians are shown as orange lines.

Both the line and box plots only contain timesteps that contain at least 100

tracked features (see Fig. B.6). The mean and median values of the horizontal

coordinate of κ(t) increases as speed is increased. 143

B.14 DTU Point Features Dataset: When using the Correspondence

Tracker with diffuse lighting, covariance Σ(t) increases in the hori-

zontal direction, but not the vertical direction, as speed is increased.

The left column contains plots of the square root of the horizontal coordinate

(top row) and vertical coordinate (bottom row) of Σ(t) at each timestep and

multiple speeds. Each dot corresponds to a processed frame; lines for higher

speeds contain data from fewer frames and therefore show fewer dots. The

right column plots the ordinate value of each line in the left figures as a box

plot: means are shown as green triangles and medians are shown as orange

lines. Both the line and box plots only contain timesteps that contain at

least 100 tracked features (see Fig. B.6). The mean and median values of the

horizontal value of Σ(t) as speed is increased. 144

xxv

B.15 DTU Point Features Dataset: The existence of directional lighting

does not change trends in mean error µ(t) when using the Lucas-

Kande Tracker at nominal speed. We compute µ(t) using diffuse lighting

(black lines) and each of the directional lighting conditions listed in Figure 4.1

using all tracks from all 60 scenes. Results for the horizontal coordinate are

in the top row and results for the vertical coordinate are in the bottom row.

Timesteps are limited to those that contain at least 100 features. The variation

of µ(t) due to the existence of directional lighting is at most 10 percent the

size of the variation common to all plotted lines. The effect of directional

lighting is relatively small because changes between adjacent frames are small

whether or not the scene contains directional lighting. 145

B.16 DTU Point Features Dataset: The existence of directional lighting

does not change trends in mean error µ(t) when using the Corre-

spondence Tracker at nominal speed. We compute µ(t) using diffuse

lighting (black lines) and each of the directional lighting conditions listed in

Figure 4.1 using all tracks from all 60 scenes. Results of the horizontal co-

ordinate are shown in the top row and results for the vertical coordinate are

shown in the bottom row. Timesteps are limited to those that contain at least

100 features. The variation of µ(t) due to the existence of directional lighting

is at most 10 percent of the variation common to all plotted lines. The effects

of directional lighting is relatively small because changes between adjacent

frames are small whether or not the scene contains directional lighting. . . . 146

xxvi

B.17 DTU Point Features Dataset: The existence of directional lighting

does not change trends in mean absolute error κ(t) when using the

Lucas-Kanade Tracker at nominal speed. We compute µ(t) at each

timestep using diffuse lighting (black lines) and each of the directional lighting

conditions listed in Figure 4.1 using all tracks from all 60 scenes. Timesteps are

limited to those that contain at least 100 features. The variation of κ(t) due

to the existence of directional lighting is at most 10 percent of the variation

common to all plotted lines. The effect of directional lighting is relatively

small because changes between adjacent frames are small whether or not the

scene contains directional lighting. 147

B.18 DTU Point Features Dataset: The existence of directional lighting

does not change trends in mean absolute error κ(t) when using the

Correspondence Tracker at nominal speed. We compute κ(t) using

diffuse lighting (black lines) and each of the directional lighting conditions

listed in Figure 4.1 using all tracks from all 60 scenes. Timesteps are limited

to those that contain at least 100 features. The variation of κ(t) due to the

existence of directional lighting is at most 10 percent of the variation common

to all plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 148

xxvii

B.19 DTU Point Features Dataset: The existence of directional lighting

does not change trends in covariance Σ(t) when using the Lucas-

Kanade Tracker at nominal speed. We compute Σ(t) using diffuse light-

ing (black lines) and each of the directional lighting conditions listed in Figure

4.1 using all tracks from all 60 scenes. Timesteps are limited to those that

contain at least 100 features. The variation of Σ(t) due to the existence of di-

rectional lighting is at most 10 percent of the variation common to all plotted

lines. The effect of directional lighting is relatively small because changes be-

tween adjacent frames are small whether or not the scene contains directional

lighting. The blip in the bottom-right figure is due to one specific scene where

the AGAST tracker finds very few features, causing a failure in tracking and

outlier rejection, and then calculation of Σ(t) downstream. 149

B.20 DTU Point Features Dataset: The existence of directional lighting

does not change trends in covariance Σ(t) when using the Corre-

spondence Tracker at nominal speed. We compute Σ(t) using diffuse

lighting (black lines) and each of the directional lighting conditions listed in

Figure 4.1 using all tracks from all 60 scenes. Timesteps are limited to those

that contain at least 100 features. The variation of Σ(t) due to the existence

of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is small because changes be-

tween adjacent frames are small whether or not the scene contains directional

lighting. 150

B.21 DTU Point Features Dataset: Mean errors are larger about the

direction of motion for both the Lucas-Kanade and Correspondence

Trackers. In Figures B.9, B.12, B.15, and B.16, the horizontal component

(left column) of µ(t) was always larger than the vertical component (right

column). When images are rotated 90 degrees counterclockwise (“sideways”),

the trend is reversed. Errors shown above are computed for the Lucas-Kanade

Tracker at nominal speed and in diffuse lighting. 151

xxviii

B.22 DTU Point Features Dataset: Mean absolute errors are larger about

the direction of motion when using the Lucas-Kanade Tracker. In

Figures B.9, B.12, B.15, and B.16, the horizontal component of κ(t) was al-

ways larger than the vertical component. When images are rotated 90 degress

counterclockwise (“sideways”), the trend is reversed. Mean absolute errors

shown above are computed for the Lucas-Kanade Tracker at nominal speed

and in diffuse lighting. 152

B.23 DTU Point Features Dataset: The direction of motion does not

affect mean absolute error when using the Correspondence Tracker.

In Figures B.13, and B.18, the difference between the horizontal and vertical

components of κ(t) was a fraction of the size of κ(t) in both components.

When images are rotated 90 degrees counterclockwise (“sideways”), the trend

is the same. Errors shown above are computed for the Correspondence Tracker

at nominal speed and in diffuse lighting. 153

B.24 DTU Point Features Dataset: Covariances are larger about the di-

rection of motion when using the Lucas-Kanade Tracker. In Figures

B.11, B.14, B.19, and B.20, the horizontal component of Σ(t) was always larger

than the vertical component. When images are rotated 90 degrees counter-

clockwise (“sideways"), the trend is reversed for both errors (top row) and

covariance (bottom row). Errors above are computed for the Lucas-Kanade

Tracker at nominal speed and in diffuse lighting. 154

B.25 DTU Point Features Dataset: The direction of motion does not

affect covariance when using the Correspondence Tracker. In Figures

B.14, and B.20, the difference between the horizontal and vertical components

of Σ(t) was a fraction of the size of Σ(t) in both components. When images

are rotated 90 degrees counterclockwise (“sideways”), the trend is the same.

Errors shown above are computed for the Correspondence Tracker at nominal

speed and in diffuse lighting. 155

xxix

B.26 At twice nominal speed, the existence of directional lighting does

not affect outlier ratio. In the box-and-whisker plots above, the orange

line is the median, the green triangle is the mean, and the box extends from

the first to the third quartiles. The whiskers extend up to 1.5x the length of

the boxes. Each box-and-whisker plot is computed using features from all 60

scenes, one tracker, speed=2.00, and one of the lighting conditions in Figure

4.1. The distribution of outlier ratio is approximately the same for all lighting

conditions. 156

B.27 At four times nominal speed, the existence of directional lighting

does not affect outlier ratio. In the box-and-whisker plots above, the

orange line is the median, the green triangle is the mean, and the box extends

from the first to the third quartiles. The whiskers extend up to 1.5x the

length of the boxes. Each box-and-whisker plot is computed using features

from all 60 scenes, one tracker, speed=4.00, and one of the lighting conditions

in Figure 4.1. The distribution of outlier ratio is approximately the same for

all lighting conditions. 157

B.28 At eight times nominal speed, the existence of directional lighting

does not affect outlier ratio. In the box-and-whisker plots above, the

orange line is the median, the green triangle is the mean, and the box extends

from the first to the third quartiles. The whiskers extend up to 1.5x the

length of the boxes. Each box-and-whisker plot is computed using features

from all 60 scenes, one tracker, speed=8.00, and one of the lighting conditions

in Figure 4.1. The distribution of outlier ratio is approximately the same for

all lighting conditions. 158

xxx

B.29 At twelve times nominal speed, the existence of directional lighting

does not affect outlier ratio. In the box-and-whisker plots above, the

orange line is the median, the green triangle is the mean, and the box extends

from the first to the third quartiles. The whiskers extend up to 1.5x the length

of the boxes. Each box-and-whisker plot is computed using features from all

60 scenes, one tracker, speed=12.00, and one of the lighting conditions in

Figure 4.1. The distribution of outlier ratio is approximately the same for all

lighting conditions. 159

B.30 DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in mean error µ(t) when using the

Lucas-Kanade Tracker. We compute µ(t) at each timestep using diffuse

lighting (black lines) and each of the directional lighting conditions listed in

Figure 4.1 using all tracks from all 60 scenes. The variation of µ(t) due to the

existence of directional lighting is at most 10 percent of the variation common

to all plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 160

B.31 DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the

Lucas-Kanade Tracker. We compute µ(t) at each timestep using diffuse

lighting (black lines) and each of the directional lighting conditions listed in

Figure 4.1 using all tracks from all 60 scenes. The variation of µ(t) due to the

existence of directional lighting is at most 10 percent of the variation common

to all plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 161

xxxi

B.32 DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the

Lucas-Kanade Tracker. We compute µ(t) at each timestep using diffuse

lighting (black lines) and each of the directional lighting conditions listed in

Figure 4.1 using all tracks from all 60 scenes. The variation of µ(t) due to the

existence of directional lighting is at most 10 percent of the variation common

to all plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 162

B.33 DTU Point Features Dataset: At twelve times nominal speed, light-

ing condition does not change trends in mean error µ(t) when using

the Lucas-Kanade Tracker. We compute µ(t) at each timestep using dif-

fuse lighting (black lines) and each of the directional lighting conditions listed

in Figure 4.1 using all tracks from all 60 scenes. The variation of µ(t) due

to the existence of directional lighting is at most 10 percent of the variation

common to all plotted lines. The effect of directional lighting is relatively

small because changes between adjacent frames are small whether or not the

scene contains directional lighting. 163

B.34 DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in mean absolute error κ(t) when using

the Lucas-Kanade Tracker. We compute κ(t) using diffuse lighting (black

lines) and each of the directional lighting conditions listed in Figure 4.1 using

all tracks from all 60 scenes. The variation of κ(t) due to the existence of di-

rectional lighting is at most 10 percent of the variation common to all plotted

lines. The effect of directional lighting is relatively small because changes be-

tween adjacent frames are small whether or not the scene contains directional

lighting. 164

xxxii

B.35 DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in mean absolute error κ(t) when

using the Lucas-Kanade Tracker. We compute κ(t) using diffuse lighting

(black lines) and each of the directional lighting conditions listed in Figure 4.1

using all tracks from all 60 scenes. The variation of κ(t) due to the existence

of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 165

B.36 DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in κ(t) when using the Lucas-

Kanade Tracker. We compute κ(t) using diffuse lighting (black lines) and

each of the directional lighting conditions listed in Figure 4.1 using all tracks

from all 60 scenes. The variation of κ(t) due to the existence of directional

lighting is at most 10 percent of the variation common to all plotted lines.

The effect of directional lighting is small because changes between adjacent

frames are small whether or not the scene contains directional lighting. . . . 166

B.37 DTU Point Features Dataset: At twelve times nominal speed, light-

ing condition does not change trends in mean absolute error κ(t)

when using the Lucas-Kanade Tracker. We compute κ(t) using diffuse

lighting (black lines) and each of the directional lighting conditions listed in

Figure 4.1 using all tracks from all 60 scenes. The variation of κ(t) due to the

existence of directional lighting is at most 10 percent of the variation common

to all plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 167

xxxiii

B.38 DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in covariance Σ(t) when using the

Lucas-Kanade Tracker. We compute Σ(t) using diffuse lighting (black

lines) and each of the directional lighting conditions listed in Figure 4.1 using

all tracks from all 60 scenes. The variation of Σ(t) due to the existence of di-

rectional lighting is at most 10 percent of the variation common to all plotted

lines. The effect of directional lighting is relatively small because changes be-

tween adjacent frames are small whether or not the scene contains directional

lighting. 168

B.39 DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in covariance Σ(t) when using the

Lucas-Kanade Tracker. We compute Σ(t) using diffuse lighting (black

lines) and each of the directional lighting conditions listed in Figure 4.1 using

all tracks from all 60 scenes. The variation of Σ(t) due to the existence

of directional lighting is less than 10 percent of the variation common to

all plotted lines for all but one lighting condition. The effect of directional

lighting is relatively small because changes between adjacent frames are small

whether or not the scene contains directional lighting. The larger-than average

covariance for lighting condition BF7 is caused by a single scene where feature

tracking fails. 169

B.40 DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in covariance Σ(t) when using the

Lucas-Kanade Tracker. We compute Σ(t) using diffuse lighting (black

lines) and each of the directional lighting conditions listed in Figure 4.1 using

all tracks from all 60 scenes. The variation of Σ(t) due to the existence

of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 170

xxxiv

B.41 DTU Point Features Dataset: At twelve times nominal speed, light-

ing condition does not change trends in covariance Σ(t) when using

the Lucas-Kanade Tracker. We compute Σ(t) using diffuse lighting (black

lines) and each of the directional lighting conditions listed in Figure 4.1 using

all tracks from all 60 scenes. At twelve times nominal speed, tracking failures

cause large covariances to appear for some lighting conditions. Otherwise,

the variation of Σ(t) due to the existence of directional lighting is at most 10

percent of the variation common to all plotted lines. The effect of directional

lighting is relatively small because changes between adjacent frames are small

whether or not the scene contains directional lighting. 171

B.42 DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in mean error µ(t) when using the

Correspondence Tracker. We compute µ(t) at each timestep using diffuse

lighting (black lines) and each of the directional lighting conditions listed in

Figure 4.1 using all tracks from all 60 scenes. Lines are limited to timesteps

containing at least 100 features. The variation of µ(t) due to the existence

of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 172

xxxv

B.43 DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the

Correspondence Tracker. We compute µ(t) at each timestep using diffuse

lighting (black lines) and each of the directional lighting conditions listed in

Figure 4.1 using all tracks from all 60 scenes. Lines are limited to timesteps

containing at least 100 features. The variation of µ(t) due to the existence

of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 173

B.44 DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the

Correspondence Tracker. We compute µ(t) at each timestep using diffuse

lighting (black lines) and each of the directional lighting conditions listed in

Figure 4.1 using all tracks from all 60 scenes. Lines are limited to timesteps

containing at least 100 features. The variation of µ(t) due to the existence of

directional lighting is smaller than the variation common to all plotted lines.

The effect of directional lighting is small because changes between adjacent

frames are small whether or not the scene contains directional lighting. . . . 174

xxxvi

B.45 DTU Point Features Dataset: At twelve times nominal speed, light-

ing condition does not change trends in mean error µ(t) when using

the Correspondence Tracker. We compute µ(t) at each timestep using

diffuse lighting (black lines) and each of the directional lighting conditions

listed in Figure 4.1 using all tracks from all 60 scenes. Lines are limited to

timesteps containing at least 100 features. With the exception of one lighting

condition, the variation of µ(t) due to the existence of directional lighting is

at most 10 percent of the variation common to all plotted lines. The effect

of directional lighting is relatively small because changes between adjacent

frames are small whether or not the scene contains directional lighting. The

large variation in lighting condition LR6 is caused by tracking failures. . . . 175

B.46 DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in mean absolute error κ(t) when us-

ing the Correspondence Tracker. We compute κ(t) using diffuse lighting

(black lines) and each of the directional lighting conditions listed in Figure 4.1

using all tracks from all 60 scenes. Lines are limited to timesteps containing

at least 100 features. The variation of κ(t) due to the existence of directional

lighting is at most 10 percent of the variation common to all plotted lines.

The effect of directional lighting is relatively small because changes between

adjacent frames are small whether or not the scene contains directional light-

ing. 176

B.47 DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in mean absolute error κ(t) remains

independent of lighting condition when using the Correspondence

Tracker. We compute κ(t) using diffuse lighting (black lines) and each of the

directional lighting conditions listed in Figure 4.1 using all tracks from all 60

scenes. Lines are limited to timesteps containing at least 100 features. There

are no significant differences between lines. The effect of directional lighting

is small because changes from frame-to-frame are small. 177

xxxvii

B.48 DTU Point Features Dataset: At eight times nominal speed, light-

ing condition does not change trends in mean absolute error κ(t)

when using the Correspondence Tracker. We compute κ(t) using dif-

fuse lighting (black lines) and each of the directional lighting conditions listed

in Figure 4.1 using all tracks from all 60 scenes. Lines are limited to timesteps

containing at least 100 features. The variation of κ(t) due to the existence

of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains

directional lighting. 178

B.49 DTU Point Features Dataset: At twelve times nominal speed, light-

ing condition does not change trends in mean absolute error κ(t)

when using the Correspondence Tracker. We compute κ(t) using dif-

fuse lighting (black lines) and each of the directional lighting conditions listed

in Figure 4.1 using all tracks from all 60 scenes. Lines are limited to timesteps

containing at least 100 features. With the exception of lighting condition BF6,

the variation of κ(t) due to the existence of directional lighting is at most 10

percent of the variation common to all plotted lines. The effect of directional

lighting is relatively small because changes between adjacent frames are small

whether or not the scene contains directional lighting. 179

B.50 DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in covariance Σ(t) when using the

Correspondence Tracker. We compute Σ(t) using diffuse lighting (black

lines) and each of the directional lighting conditions listed in Figure 4.1 using

all tracks from all 60 scenes. Timesteps are limited to those with at least 100

features. The variation of Σ(t) due to the existence of directional lighting is

at most 10 percent of the variation common to all plotted lines. The effect

of directional lighting is relatively small because changes between adjacent

frames are small whether or not the scene contains directional lighting. . . . 180

xxxviii

B.51 DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in covariance Σ(t) when using the

Correspondence Tracker. We compute Σ(t) using diffuse lighting (black

lines) and each of the directional lighting conditions listed in Figure 4.1 using

all tracks from all 60 scenes. Timesteps are limited to those with at least 100

features. The variation of Σ(t) due to the existence of directional lighting is

at most 10 percent of the variation common to all plotted lines. The effect

of directional lighting is relatively small because changes between adjacent

frames are small whether or not the scene contains directional lighting. . . . 181

B.52 DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in covariance Σ(t) when using the

Correspondence Tracker. We compute Σ(t) using diffuse lighting (black

lines) and each of the directional lighting conditions listed in Figure 4.1 using

all tracks from all 60 scenes. Timesteps are limited to those with at least 100

features. The variation of Σ(t) due to the existence of directional lighting is

at most 10 percent of the variation common to all plotted lines. The effect

of directional lighting is relatively small because changes between adjacent

frames are small whether or not the scene contains directional lighting. . . . 182

B.53 DTU Point Features Dataset: At twelve times nominal speed, light-

ing condition does not change trends in covariance Σ(t) when using

the Correspondence Tracker. We compute Σ(t) using diffuse lighting

(black lines) and each of the directional lighting conditions listed in Figure

4.1 using all tracks from all 60 scenes. Timesteps are limited to those with

at least 100 features. With the exception of feature track failures in light-

ing condition BF6, the variation of Σ(t) due to the existence of directional

lighting is a fraction of the variation common to all plotted lines. The effect

of directional lighting is relatively small because changes between adjacent

frames are small whether or not the scene contains directional lighting. . . . 183

xxxix

B.54 KITTI Dataset: We will throw out the 10% of tracks from each

scene with the most error. The bottom figure plots the histogram density

of the maximum L2 error of all feature tracks of a single scene in log scale.

The corresponding scene is pictured on top. The outlier errors are caused by

noisy data in the depth image collection process. 184

B.55 KITTI Dataset: Most features live for less than five frames. The

distribution of feature lifetimes is plotted as a log-scale histogram for both

the Lucas-Kanade and Correspondence-Based Tracker at nominal speed. The

Lucas-Kanade Tracker produces a long tail of features with longer lifetimes.

Features with long-lifetimes are those far away from the car’s camera, in the

center of the image. 185

B.56 Feature lifetime is plotted on the horizontal axis. The vertical axis, in log

scale, shows the number of features in all 28 scenes that were tracked for

at least that many frames. In both plots the number of features drops very

fast. Note that for speeds greater than 8.00, the Lucas-Kanade tracker fails to

match any features past one frame. In subsequent analyses on the KITTI

dataset, we only compute mean errors and covariances at timesteps

with at least 100 features. We also only analyze speeds 1.00, 2.00,

and 3.00 because higher speeds would otherwise be limited to ≤ two

timesteps. 186

B.57 KITTI Dataset: Outlier ratios are above 40 percent. Outlier ratios per

frame are shown as box-and-whisker plots for the Lucas-Kanade tracker on

the left and the Correspondence tracker on the right. For the Lucas-Kanade

tracker, outlier ratios remain a constant 40 percent. For the correspondence

tracker, outlier ratios are higher, around 50 percent, for lower speeds and

then decrease. The decreases exists not because of improvements in feature

matching with higher speeds, but because fewer features are matched at all. 187

xl

B.58 KITTI Dataset: The zero-mean assumption approximately holds for

both the Lucas-Kanade Tracker and the Correspondence Tracker

at nominal speed. Lines shown are horizontal (left) and vertical (right)

coordinates of mean error ν(t) calculated using tracks averaged over all scenes;

calculation is cutoff at 24 frames for the Lucas-Kanade Tracker and 6 frames

for the Correspondence Tracker so that averages can be computed with at

least 100 features. Mean errors remain at roughly zero. 188

B.59 KITTI Dataset: The Lucas-Kanade Tracker drifts more than the

Correspondence Tracker in all directions. Lines shown are horizontal

(left column) and vertical (right column) coordinates of mean absolute error

η(t) (top row) and covariance Φ(t) (bottom row) calculated using tracks av-

eraged over all scenes; calculation is cutoff at 24 frames for Lucas-Kanade

Tracker and 6 frames for the Correspondence Tracker so that averages can

be computed with at least 100 features. Both mean absolute error and co-

variance are roughly constant when using the Correspondence Tracker. On

the other hand, both drift slightly upwards and then level off when using the

Lucas-Kanade Tracker. 189

B.60 KITTI Dataset: Mean tracking errors increase with speed when us-

ing the Lucas-Kanade Tracker. The left column contains plots of the hor-

izontal (top row) and vertical (bottom row) components of the mean tracking

error ν(t) at each timestep t after initial feature detection at multiple speeds.

Each dot corresponds to a processed frame; lines for higher speeds contain

data from fewer frames and therefore show fewer dots. The right column

plots the ordinate values of each line for t > 0 in the left figures as a box

plot: means are shown as green triangles and medians are shown as orange

lines. The mean and median values of the horizontal and vertical coordinates

of ν(t) increases by about two pixels when speed is increased from 2.00 to

3.00. There is no such increase in ν(t) when speed is increased from 1.00 to

2.00. 190

xli

B.61 KITTI Dataset: Mean absolute errors increase with speed when

using the Lucas-Kanade Tracker. The left column contains plots of the

horizontal (top row) and vertical (bottom row) components of the mean ab-

solute error η(t) at each timestep t after initial feature detection at multiple

speeds. Each dot corresponds to a processed frame; lines for higher speeds

contain data from fewer frames and therefore show fewer dots. The right col-

umn plots the ordinate values of each line for t > 0 in the left figures as a box

plot: means are shown as green triangles and medians are shown as orange

lines. The mean and median values of η(t) jump when speed is increased from

2.00 to 3.00. Left column plots show that η(t) is approximately unchanged

when speed is increased from 1.00 to 2.00. Since the box plot for speed=1.00

contains more points at larger values of t than the box plot for speed=2.00,

the mean and median values in the box plot decrease. 191

B.62 KITTI Dataset: Covariances increase with speed when using the

Lucas-Kanade Tracker. The left column contains plots of the horizontal

(top row) and vertical (bottom row) components of the covariance Φ(t) at

each timestep t after initial feature detection at multiple speeds. Each dot

corresponds to a processed frame; lines for higher speeds contain data from

fewer frames and therefore show fewer dots. The right column plots the or-

dinate values of each line for t > 0 in the left figures as a box plot: means

are shown as green triangles and medians are shown as orange lines. We see

a linear increase in covariance in the horizontal coordinate with speed. The

increase in the vertical coordinate follows the same trend noted in Figures

B.60 and B.61. 192

xlii

B.63 KITTI Dataset: Mean errors are unaffected by speed when using

the Correspondence Tracker. The left column contains plots of the hori-

zontal (top row) and vertical (bottom row) components of the mean tracking

error ν(t) at each timestep t after initial feature detection at multiple speeds.

Each dot corresponds to a processed frame; lines for higher speeds contain

data from fewer frames and therefore show fewer dots. The right column

plots the ordinate values of each line for t > 0 in the left figures as a box plot:

means are shown as green triangles and medians are shown as orange lines.

Compared to the results for the Lucas-Kanade Tracker in Figure B.60, mean

errors do not change when speed is increased from 1.00 to 3.00. 193

B.64 KITTI Dataset: Mean absolute errors are unaffected by speed when

using the Correspondence Tracker. The left column contains plots of

the horizontal (top row) and vertical (bottom row) components of the mean

absolute error η(t) at each timestep t after initial feature detection at multiple

speeds. Each dot corresponds to a processed frame; lines for higher speeds

contain data from fewer frames and therefore show fewer dots. The right

column plots the ordinate values of each line for t > 0 in the left figures as a

box plot: means are shown as green triangles and medians are shown as orange

lines. Compared to the results for the Lucas-Kanade Tracker in Figure B.61,

mean errors do not change when speed is increased from 1.00 to 3.00. 194

xliii

B.65 KITTI Dataset: Covariance is unaffected by speed when using the

Correspondence Tracker. The left column contains plots of the horizontal

(top row) and vertical (bottom row) components of the mean absolute error

η(t) at each timestep t after initial feature detection at multiple speeds. Each

dot corresponds to a processed frame; lines for higher speeds contain data

from fewer frames and therefore show fewer dots. The right column plots the

ordinate values of each line for t > 0 in the left figures as a box plot: means are

shown as green triangles and medians are shown as orange lines. Compared

to the results for the Lucas-Kanade Tracker in Figure B.62, covariances do

not change when speed is increased from 1.00 to 2.00. Covariances show an

increase of about 2 pixels when speed is increased from 2.00 to 3.00, however. 195

B.66 Gazebo Linear Dataset: We will throw out the 20% of tracks with

the most error instead of the 10% of tracks. The right figure plots the

histogram density of the maximum L2 error of all feature tracks of one scene

in log scale. The corresponding scene is pictured on the left. The large errors

that still remain after removing the 10% of tracks with the most errors are

caused by track propagation along smooth edges when the AGAST feature

detector does not select perfect corners, as well as the asynchronous collection

of RGB and depth images in the Gazebo simulator. The errors caused by track

propagation along smooth edges are unlikely to occur in real world data, where

backgrounds and textures are less ideal. 196

B.67 Gazebo Linear Dataset: Feature Lifetime is usually ≤ five frames.

The distribution of feature lifetimes is plotted as a log-scale histogram for

both the Lucas-Kanade and Correspondence Tracker at nominal speed. Many

features live for less≤ five frames, especially when the Correspondence Tracker

is used. However, Lucas-Kanade produces a long tail of features with longer

lifetimes. 197

xliv

B.68 Feature Lifetime is plotted on the horizontal axis. The vertical axis, in log

scale, shows the number of features in all 11 scenes that lived at least that

long for every tested speed. The number of features drops very fast, especially

when the Correspondence Tracker is used. In subsequent analyses, we

only compute means errors and covariances at timesteps with at

least 500 features on the Gazebo Linear Dataset. 197

B.69 Gazebo Linear Dataset: Outlier Ratios are a function of speed when

using the Lucas-Kanade Tracker and constant for the Correspon-

dence Tracker. Outlier ratios per frame are shown as box-and-whisker plots

for tested speeds for the Lucas-Kanade tracker on the left and the Correspon-

dence Tracker on the right. Mean values are shown as green triangles and

median values are shown as orange lines. For lower speeds, the Lucas-Kanade

tracker produces fewer outliers. Outlier ratios then increase with speed. On

the other hand, the outlier ratio for the Correspondence Tracker remains con-

stant, at around 40 percent. 198

B.70 Gazebo Linear Dataset: The Lucas-Kanade Tracker slowly accumu-

lates negative error in the horizontal direction at nominal speed.

The Correspondence Tracker has zero mean error. Lines shown are

horizontal (left) and vertical (right) coordinates of mean error ν(t) calculated

using tracks averaged over all scenes; calculation is cut off at 58 frames for the

Lucas-Kanade Tracker and 9 frames for the Correspondence Tracker so that

averages can be computed with at least 500 features. 199

xlv

B.71 Gazebo Linear Dataset: The Lucas-Kanade tracker drifts consider-

ably more than the Correspondence Tracker, but only in the hori-

zontal direction. Lines shown are horizontal (left column) and vertical (right

column) coordinates of mean absolute error η(t) (top row) and covariance Φ(t)

(bottom row) calculated using tracks averaged over all scenes; calculation is

cut off at 58 frames for Lucas-Kanade Tracker and 9 frames for the Correspon-

dence Tracker so that averages can be computed with at least 500 features.

Both mean absolute error and covariance are constant when using the Corre-

spondence Tracker. On the other hand, the horizontal coordinate of η(t) and

Φ(t) drifts upwards when using the Lucas-Kanade Tracker. 200

B.72 Gazebo Linear Dataset: Mean errors increase with speed when us-

ing the Lucas-Kanade Tracker. The left column contains plots of the hor-

izontal (top row) and vertical (bottom row) components of the mean tracking

error ν(t) at each timestep t after initial feature detection at multiple speeds.

Each dot corresponds to a processed frame; lines for higher speeds contain

data from fewer frames and therefore show fewer dots. The right column

plots the ordinate values of each line for t > 0 in the left figures as a box plot:

means are shown as green triangles and medians are shown as orange lines.

The top-right shows that mean errors in the horizontal coordinate become

more negative as speed is increased from 1.00 to 8.00. The mean error then

decreases for speeds=10.00 (brown line), 15.00 (pink line), and 20.00 (gray

line), showing that both the number of elapsed frames, and the speed are

both factors that affect ν(t). For all speeds, mean error is close to zero in the

vertical coordinate. 201

xlvi

B.73 Gazebo Linear Dataset: Mean absolute errors increase with speed

when using the Lucas-Kanade Tracker. The left column contains plots

of the horizontal (top row) and vertical (bottom row) components of the mean

absolute error η(t) at each timestep t after initial feature detection at multiple

speeds. Each dot corresponds to a processed frame; lines for higher speeds

contain data from fewer frames and therefore show fewer dots. The right

column plots the ordinate values of each line for t > 0 in the left figures as

a box plot: means are shown as green triangles and medians are shown as

orange lines. Mean absolute errors in the horizontal coordinate increase as

speed is increased from 1.00 to 8.00. η(t) then decreases for speeds=10.00

(brown line), 15.00 (pink line), and 20.00 (gray line), showing that both the

number of elapsed frames, and the speed are both factors that affect ν(t). For

all speeds, mean absolute error is close to zero in the vertical coordinate. . . 202

B.74 Gazebo Linear Dataset: Covariance increases with speed when us-

ing the Lucas-Kanade Tracker. The left column contains plots of the

horizontal (top row) and vertical (bottom row) components of the covariance

Φ(t) at each timestep t after initial feature detection at multiple speeds. Each

dot corresponds to a processed frame; lines for higher speeds contain data

from fewer frames and therefore show fewer dots. The right column plots the

ordinate values of each line for t > 0 in the left figures as a box plot: means

are shown as green triangles and medians are shown as orange lines. Co-

variance increases in the horizontal coordinate increase as speed is increased

from 1.00 to 8.00. The covariance then decreases for speeds=10.00 (brown

line), 15.00 (pink line), and 20.00 (gray line), showing that both the number

of elapsed frames, and the speed are both factors that affect Φ(t). For all

speeds, covariance is close to zero in the vertical coordinate. 203

xlvii

B.75 Gazebo Linear Dataset: Mean errors are unaffected by speed when

using the Correspondence Tracker until tracking failure occurs. The

left column contains plots of the horizontal (top row) and vertical (bottom

row) components of the mean tracking error ν(t) at each timestep t after initial

feature detection at multiple speeds. Each dot corresponds to a processed

frame; lines for higher speeds contain data from fewer frames and therefore

show fewer dots. The right column plots the ordinate values of each line for

t > 0 in the left figures as a box plot: means are shown as green triangles

and medians are shown as orange lines. In the horizontal coordinate, mean

errors remain near zero as speed is increased from 1.00 to 15.00. Mean errors

are larger when speed=20.00. The mean error is close to zero in the vertical

coordinate. 204

B.76 Gazebo Linear Dataset: Mean absolute errors increase with speed

when using the Correspondence Tracker. The left column contains

plots of the horizontal (top row) and vertical (bottom row) components of

the mean absolute error η(t) at each timestep t after initial feature detection

at multiple speeds. Each dot corresponds to a processed frame; lines for

higher speeds contain data from fewer frames and therefore show fewer dots.

The right column plots the ordinate values of each line for t > 0 in the left

figures as a box plot: means are shown as green triangles and medians are

shown as orange lines. In the horizontal coordinate, mean absolute errors

increase slowly with speed at first; increases are larger from speed=10.00 to

speed=15.00 and speed=15.00 to speed=20.00. The mean absolute error is

approximately 0 in the vertical coordinate. 205

xlviii

B.77 Gazebo Linear Dataset: Covariance increases speed when using the

Correspondence Tracker. The left column contains plots of the horizontal

(top row) and vertical (bottom row) components of the mean tracking error

Φ(t) at each timestep t after initial feature detection at multiple speeds. Each

dot corresponds to a processed frame; lines for higher speeds contain data

from fewer frames and therefore show fewer dots. The right column plots

the ordinate values of each line for t > 0 in the left figures as a box plot:

means are shown as green triangles and medians are shown as orange lines.

In the horizontal coordinate, covariance increases slowly with speed at first;

increases are larger from speed=10.00 to speed=15.00 and speed=15.00 to

speed=20.00. The covariance is close to zero in the vertical coordinate. . . . 206

B.78 Gazebo Linear Dataset: The Lucas-Kanade Tracker drifts opposite

the direction of motion. Lines above contain ν(t) computed from tracks

using the Lucas-Kanade Tracker. In the black lines, the quadrotor is flying

horizontally from left to right, as is the case in the rest of the experiments

on the Gazebo Linear Dataset. In the blue lines, the quadrotor is flying

horizontally from right to left while observing the same scene; the scene is not

mirror-imaged, so the features tracked in the two trajectories are not identical.

Once again, there is nearly no mean error in the vertical direction. However,

mean horizontal error is positive instead of negative. 207

xlix

LIST OF TABLES

2.1 Model Predictive Control Constraints . 20

2.2 ALPHRED Configuration . 30

3.1 Calculated divergences for the 2D localization problem. 44

3.2 Table of computed divergences for the VIO experiment. 46

4.1 DTU Point Features Results Summary. Cells contain whether or not

the dependent variables in the left column are affected by the independent

variables listed in the top row. Entries also contain figure numbers containing

justification. The “Tracker” and “Lighting” columns contain references to fig-

ures containing plots at nominal speed. Although not indicated in the table,

Figures B.26 - B.41 in the Appendix show that the existence of directional

lighting continues to not affect outlier ratio, mean error, mean absolute error,

and covariance at higher speeds for both the Lucas-Kanade and Correspon-

dence Trackers. 60

4.2 KITTI Results Summary. Cells contain whether or not the dependent

variables in the left column are affected by the independent variables listed in

the top row. Entries also contain figure numbers containing justification. . . 61

4.3 Gazebo Linear Results Summary. Cells contain whether or not the de-

pendent variables in the left column are affected by the independent variables

listed in the top row. Entries also contain figure numbers containing justifi-

cation. 62

6.1 Hyperparameters and decision variables used in fine-tuning image classifiers

on the Objectron and ImageNetVid datasets using stochastic gradient descent

and the cross-entropy loss for all three trials. Reported training and validation

errors are for the selected epoch, not after the maximum number of epochs. . 93

l

6.2 This table accompanies Figure 6.1. Entries are means and standard devia-

tions of proposed measures of uncertainty (logit spread, softmax spread, per-

cent non-mode predictions, and scene entropy) computed using the empirical

paragon. Means and standard deviations come from performing all calcula-

tions over all datasets three times using different trained networks. The only

difference between networks is the data shuffling used at training time. . . . 95

li

ACKNOWLEDGMENTS

Although I did not officially start this PhD program until the Fall 2018, it would be more

accurate to say this work started while I was working in an autonomous systems research

group at Northrop Grumman. It was there that Mark Milam, a member of my committee,

told me something along the lines of the most important thing about any kind of autonomy

deployed is that we can verify and validate it. The autonomy group consisted of engineers

and scientists who not only made the systems they worked on function well, but took the

time to understand why and check all the details over multiple times. Mark, Elaine, Michael,

Robert, and Ken – thank you for being the role models I needed early in my career. I look

forward to working with you again. Many thanks also go to Tom Pieronek for setting up my

fellowship and giving me a rare opportunity to coexist in academia and industry.

During that time, I also met Paulo Tabuada, another member of my committee, when he

consulted for us on issues in verification and validation during his sabbatical. As a consultant,

and my secondary adviser at UCLA, he always listened very carefully to whatever issues I

was running into, gave thoughtful feedback, and pointed me to pockets of scientific literature

that I was unaware of. I also appreciate Paulo letting me use the equipment in his lab and

his students as sounding boards during my PhD.

(Chronologically,) I next thank my adviser, Stefano Soatto. The environment Stefano

created and encouraged – a motley group of people working towards a deep understanding of

a myriad of computer vision tasks – complemented my past experience at Northrop Grumman

surprisingly well. My research direction cemented quickly in my first year when he pointed

me to the literature on uncertainty quantification. I appreciate his guidance in helping

me transition from working in the more exact science of control systems to the empirical

science that computer vision has become. I am grateful for his patience as I struggled to

grasp concepts in visual-inertial odometry that proved to be more difficult and subtle than

I originally thought.

Next, I thank my peers in the Stefano’s Vision Lab, Paulo’s CyPhy Lab, and a few others

for their camaraderie and all their help over the years. In particular, I want to thank Xiaohan

lii

Fei for taking on the daunting task of rewriting Corvis. The rewrite made the experiments

in Chapters 2-5 much easier. Special thanks also go to Aditya Golatkar for many late nights

working on Scene Uncertainty with me; to Alex Wong for making sure that I could build a

lab machine, for helping me debug my research, and for an endless stream of research ideas;

and to Alex Schperberg and Kenny Chen for bringing me the experiment in Chapter 2.

My last professional thanks go to Professors Quanquan Gu and Cho-Jui Hsieh for serving

on my committee. I know that in the age of deep learning, my work is an anomaly in the

computer science department and well out of your wheelhouse.

Last but not least, I would like to thank the friends and family that made sure I was sane,

fed, and rested during these hectic years. Thank you for believing that I could finish this

PhD through the times I wasn’t sure I believed in myself. I couldn’t have done it without

you.

liii

VITA

2008 - 2012 B.S. in Mechanical Engineering, California Institute of Technology

2012 - 2014 M.S. in Control and Dynamical Systems, California Institute of Technology

2014 - 2016 Guidance, Navigation, Controls Engineer, Northrop Grumman

2016 - present Associate Researcher, Northrop Grumman

2018 - present PhD. Student in Computer Science, University of California, Los Angeles

PUBLICATIONS

A. Schperberg, S. Tsuei, S. Soatto, and D. Hong, SABER: Data-Driven Motion Planner for

Autonomously Navigating Heterogeneous Robots, IEEE Robotics and Automation Letters,

vol. 6, no. 4, pp. 8086–8093, Oct. 2021, doi: 10.1109/LRA.2021.3103054.

S. Tsuei, S. Soatto, P. Tabuada, and M. B. Milam, Learned Uncertainty Calibration for

Visual Inertial Localization, in 2021 IEEE International Conference on Robotics and Au-

tomation (ICRA), May 2021, pp. 5311–5317. doi: 10.1109/ICRA48506.2021.9561179.

A. Schperberg, K. Chen, S. Tsuei, M. Jewett, J. Hooks, S. Soatto, A. Mehta, and D. Hong,

Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for Online Collision

Avoidance, in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Oct. 2020, pp. 5730–5737. doi: 10.1109/IROS45743.2020.9341070.

liv

A. Wong, X. Fei, S. Tsuei, and S. Soatto, Unsupervised Depth Completion From Visual

Inertial Odometry, IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1899–1906,

Apr. 2020, doi: 10.1109/LRA.2020.2969938.

Y. Shoukry, P. Tabuada, S. Tsuei, M. B. Milam, J. W. Grizzle, and A. D. Ames, Closed-

form controlled invariant sets for pedestrian avoidance, in 2017 American Control Conference

(ACC), May 2017, pp. 1622–1628. doi: 10.23919/ACC.2017.7963185.

S. Tsuei and M. B. Milam, Trajectory generation for constrained differentially flat systems

with time and frequency domain objectives, in 2016 IEEE 55th Conference on Decision and

Control (CDC), Dec. 2016, pp. 4172–4177. doi: 10.1109/CDC.2016.7798902.

lv

CHAPTER 1

Introduction

1.1 Motivation

Algorithms and software to be deployed in safety-critical systems require extensive verifica-

tion and validation. Verification is the process of checking that the algorithm behaves as

intended. Validation is the process of checking whether or not the assumptions made by the

algorithm are true. Industrial standards, such as DO-178C and ISO 26262, identify the tests

that must be completed before any software may be legally deployed on an airplane or an

automobile, respectively. Unsurprisingly, the difficulty of meeting those standards increases

with complexity of the software. Software errors have already caused loss of life and major

product recalls.

To reduce the amount of testing required while still being sure that the software can

run, we would ideally turn to mathematical proof and formal methods. Mathematical proof

typically comes from designing an algorithm to meet a specific specification or a clever

search for a counterexample, a worst-case outcome. In computer systems domains where

the world can be modeled as Boolean variables, these ideas have already been deployed in

real-world applications. [Hol13,Lau10]. They have also seen some success in the verification

and synthesis of controllers of hybrid systems, or systems with a combination of discrete and

continuous states [ALF11,SNS18].

However, fundamental problems, or problems that must be solved before the usual curses

of dimensionality and computational complexity become relevant, appear when applying

these ideas to systems that use any kind of computer vision. The first issue arises from the

use of statistical algorithms, especially deep learning, in computer vision tasks. Not only

1

are deep neural networks large and difficult to interpret, they are driven by imperfect data

and are not designed for absolute guarantees on a specific specification. Nevertheless, their

performance on vision tasks such as semantic segmentation, depth completion, and object

detection, is far better than any method that does not use deep learning.

The second fundamental issue is that using mathematical proof and formal methods

requires a mathematical description of the “environment”. Such a description is possible for

an industrial robot arm whose interaction of the world can be measured by force sensors

and joint encoders.1 However, the interaction of light and matter that generates images,

and the processing of images into useful information is not easily described with a closed-

form equation y = h(x) because the visual world is too complex and diverse. Indeed,

the formal methods community has begun to develop methods for analyzing whether or

not the inputs and outputs of neural networks for control systems can satisfy a particular

specification [KHI19, TYM20]. Their efforts to lessen the curse of dimensionality do not

change the fact that we do not know how to write an appropriate specification for a vision

network.

1.2 A Proposed Solution and Thesis Outline

Our proposed solution is to start from the premise that absolute guarantees are impossible

when computer vision is part of a system and instead design an autonomous system to be

uncertainty-aware. We start with a demonstration of a proposed architecture. The rest of

this dissertation is an exercise in systems validation, for it is not enough that a systems

architecture be comprised of uncertainty-aware algorithms. If the assumptions that each

algorithm makes about its inputs are incorrect, then any successful experiment is successful

not because of correctness, but because of luck. Uncertainty-awareness is not a new idea —

Partially Observable Markov Decision Processes (POMDPs) were first introduced in 1965

[Ås65] — and neither is the examination of separate components integrated into a system.

1The description, however, will likely be conservative because possibly large, but low-probability distur-
bances will be deemed just as likely as smaller, but commonplace disturbances.

2

Observation

Sensor

Measurements
/ Map features

SLAM/Object

Detection/
Sensors

MPC Process

Cubic Spline

Tracking

Planning

Motion Tracking

Controller

Robot Takes Action

U

Data for example

map

Run Recurrent

Neural Network
(RNN) for training

RNN Model RNN Model

TRAINING (offline) TESTING (online)

Predicted robot

collision

boundary at

current and

future timesteps

Obstacle and feature

positions

Estimated robot

position

MPC

solution

Estimated robot and feature

positions,

Estimated robot position

covariance matrices

Implicit Assumption 1

Estimated covariance

matrices are correct

Implicit Assumption 2

Feature track errors are

normally distributed

Implicit Assumption 4

Object detection is

perfect in every frame

Implicit Assumption 3

Estimated robot position

is correct

Figure 1.1: An overview of this thesis. Chapter 2. describes the uncertainty-aware

systems architecture in the background. The algorithms in the systems architecture make

four implicit assumptions, noted in blue boxes. Chapters 3, 4, 5, and 6 then examine the

correctness of each assumption and explores possible solutions.

3

To our knowledge, the proposed architecture is new and this dissertation is the first time a

systems validation exercise has focused on uncertainty estimation.

The proposed architecture, labeled with the four assumptions that we examine, is pic-

tured in Figure 1.1. The heart of the architecture is an uncertainty-aware model predictive

controller that depends on position and covariance estimates from a Simultaneous Local-

ization and Mapping (SLAM) algorithm, and the outputs of an object detection neural

network. Chapter 2 describes the model predictive controller and the architecture in more

detail. Chapter 3 finds that the covariance matrices estimated by the SLAM algorithm are

systematically inaccurate, but can be corrected. Chapter 4 finds the feature tracks used

in the SLAM algorithm are not always Gaussian, as commonly assumed, and characterizes

their distribution conditional on motion, speed, lighting, and the feature tracking algorithm

extracting them. Chapter 5 then characterizes the effects of feature track errors on the es-

timated state, which the model predictive controller assumes is correct. Chapter 6 presents

a preliminary study of uncertainty quantification of neural networks with semantic vision

tasks. Finally, Chapter 7 ends with some concluding remarks. The SLAM software used

throughout the experiments in this dissertation, XIVO, is described in detail in Appendix

A.

1.3 Related Work

1.3.1 Active SLAM: Planning Under Uncertainty

Necessary requirements for robots to autonomously perform complex tasks such as search

and rescue operations and unknown environment exploration include, but are not limited to,

online low-level feedback controls, localization, vision, motion planning, high-level reasoning,

and reasoning under uncertainty. Currently, all individual components are well-developed,

but integrating multiple pieces together into a single system, especially for environments

that are not well-known, has proven to be a daunting challenge because of issues related

to robustness [ACH18]. For example, simultaneous planning, localization, and mapping

4

(SPLAM, or “Active SLAM”) is an active area of research that attempts to satisfy some

of these requirements. The main challenges to Active SLAM consist of planning under

uncertainty in an acceptable amount of time, bridging the gap between sensor data (“semantic

mapping”), and ensuring that it is robust enough for a complex platform. Because of these

challenges, there are many works addressing a subset of Active SLAM, namely simultaneous

localization and planning [AAC15], and SLAM [MMT15a,JS11,ESC14]. Other Active SLAM

works use very simple research platforms [KIS19] or were only tested in simulation [LHD06].

There are two common frameworks to address the problem of planning under uncertainty,

which are explicitly modeling the posterior distributions in a Bayesian setting [FBH18] or

using a partially-observable Markov decision process (POMDP) [KLC95]. However, the

Bayesian setting is only computationally tractable for the simplest cases (e.g. Gaussian prior

and Gaussian observations); POMDPs suffer from the curses of history and dimensionality

and do not sufficiently model an agent’s future intent [ECH18]. Recent work addressing

Active SLAM using POMDPs also either lacks mapping capability [AAC15], requires an

inordinate amount of computational resources [Van14]. As a consequence, there is a need for

new path planning architectures for unknown and uncertain environments that addresses the

concerns of belief space planning or provides alternative methods that can be ubiquitously

applied on most robotic systems.

1.3.2 Uncertainty Calibration of Extended Kalman Filters

While deep learning has dominated much of the computer vision literature in recent years,

“traditional” filtering methods still perform better in localization problems that use one or

more cameras, such as Visual Odometry (VO) and Visual Inertial Odometry (VIO). This is

because the filters hard-code known nonlinear kinematic models that are difficult to learn

from data, although deep neural networks are often used to learn feature representations

of measured data. The Extended Kalman Filter (EKF) is the most common because it

is so simple, even though complex non-linearities in the rotational dynamics and patent

violation of the Gaussian assumption in the visual measurements remove all guarantees of

5

convergence and accuracy. In practice, the EKF provides accurate state estimates x̂ and

overconfident covariance estimates P̂ [BNG06]. To improve the covariance estimates of VO

problems, [VBB13] and [LOV18] learn time-dependent measurement noise covariances Q

while [DL20] uses a deep convolutional network to correct x̂ and P̂ directly from images.

On the other hand, [HMR09,KHB13,HP18,HKB14,BBB19, ZWS17,FCD17] improve VIO

covariance estimation by using filters specific to VIO. The accuracy of covariance estimates

are evaluated by tabulating the percentage of timesteps where the estimation error is within

the 1,2,3-σ bounds dictated by the estimated covariance P̂ .

1.3.3 Characterization of Feature Track Uncertainty

Performance of feature detectors and descriptors conditional on nuisances. The

main metric used to evaluate feature detectors is repeatability [MTS05], or the probability

that a feature detector will detect the same feature across multiple images of the same

scene under different illuminations and viewpoints. Other metrics are entropy [HDF12], the

spread of detected features over an image, and recall [ADS12], the number of features that

are likely “matchable” to features in another image of the same scene. On the other hand,

the primary metrics used to evaluate feature descriptors are precision and recall, calculated

using pairs of “matches” that are found using the descriptor [MS05]. The evaluation of

feature detectors requires multiple images of the same scene. The evaluation of descriptors

originally used the same datasets as the evaluation of detectors. To disentangle the problem

of detecting features from the evaluation of feature description, two comprehensive datasets

of image patches was released in 2017 [BLV17,MHZ17]. At around the same time, [SHS17b]

evaluated both learned and handcrafted feature detectors and descriptors. Of most interest

to us are [HDF12], which used a small dataset containing pure rotation, pure scaling, and

illumination changes to evaluate the performance of various detector/descriptor combinations

condition on each, [ZCY20], which extended the datasets used in [HDF12], and [ADS12],

which evaluated the performance of feature detectors conditional on change in view angle

and lighting condition. Tangentially interesting are [HS12], which released a dataset of image

pairs that are geometrically consistent, but contain large changes in style (e.g. summer vs.

6

winter) and lighting; and [SMT18], which contains groups of image sequences with similar

motions, but large outdoor illumination changes.

Learning or Fitting a Covariance Matrix to Feature Tracks. Early works sought

to compute covariance of feature location using information in the RGB image. [KK01]

approximated the covariance with the Hessian of the image centered at the feature point

was the covariance of a detected feature – the idea is that the sharper the curvature given

by the Hessian, the more likely a convolutional filter will find the correct location of the

feature. [NH02] contains a sum-of-squared-differences formula for computing feature track

covariance. [ZGS09] contains a formula for computing the covariance matrix of SIFT and

SURF features. Later on, [SKY15] and [WM17] present two methods to model the mean and

covariance of Lucas-Kanade feature tracks. With the exception of [SKY15], which assumes

that the location of a feature track could be a Gaussian Mixture Model, all other models

assume that uncertainty is zero-mean Gaussian.

1.3.4 Uncertainty Quantification of Deep Neural Networks

There is a large amount of literature on uncertainty quantification for neural networks,

especially in recent years. Uncertainty, and the methods that estimate and measure it,

is often sorted into one of two categories: epistemic, or a model’s lack of knowledge, and

aleatoric, uncertainty inherent in the data-generating process. Many works, including ours,

do not fit cleanly into either category. Below, we sort a sample of methods for uncertainty

quantification in image classification by answering the question it estimates uncertainty with

respect to what?

To the weights. The data-fitting capacity of modern deep networks is so large that all

epistemic uncertainty can be captured as uncertainties in the values of the weights. This is

formalized in Bayesian neural nets [Nea12,GDS20,WVB18,RTS18]. At inference time, the

output prediction and uncertainty is computed using Bayes rule, rather than a simple forward

pass. This is computationally intractable for models the size of modern deep nets, but can

7

be approximated using Monte-Carlo test-time dropout [GG16], deep ensembles [LPB17], or

even a mix of the two [DBB21].

To the pixels in the image. In image classification, the only aleatoric uncertainty con-

sidered is the noise caused by the cameras capturing the image. So far, there has been far less

work estimating aleatoric uncertainty than epistemic uncertainty. Two methods that address

this problem are Assumed Density Filtering [GR18] and test-time dropout [KG17]. [LSS20]

implements both [GR18] and [GG16] to estimate both aleatoric and epistemic uncertainty.

To a test dataset. Works on calibration ignore the distinction between aleatoric and epis-

temic uncertainty and focus on achieving the frequentist notion of calibration — confidence

scores are calibrated when exactly X% of all samples given a confidence of X% are correctly

classified. The quality of a network’s confidence scores is given by the Expected Calibration

Error (ECE) metric and several other variants [NDZ19].

It was first noted in [GPS17] that modern deep neural networks trained with the cross-

entropy loss are incredibly overconfident when the maximum value of the softmax vector is

taken as a measure of confidence. [GPS17] compared and proposed several methods for post-

hoc adjustment of the softmax vector. It is also common to use Monte-Carlo dropout [GG16]

and deep ensembles [LPB17] to compute more calibrated softmax vectors as well. More recent

work has focused on ensuring that calibrated confidences remain calibrated in the presence

of OOD data [OFR19, TGE21, ZL21]. Other work has extended calibration to conformal

prediction [ABJ20,BCR21], where a model predicts a set of classes whose probabilities sum

to a desired confidence level rather than a single class.

Other categories. [MG18,SKK18] incorporate the likelihood that a test image is from the

same distribution as the training images into the training and inference process. [HOZ21]

uses GANs to improve upon [SKK18]. A common feature of these methods is interpreting

the softmax vector as the parameters of a Dirichlet distribution rather than a categorical

distribution. [JCS20] models uncertainty to specifically address noise and errors in ground-

8

truth labels.

To the scene. The counterfactual ideas we present in this work have appeared elsewhere,

but have not been formalized. [HD18] and [SDR19] find that image classifiers are not able to

correctly classify all the frames of short videos. [WLA19] use test-time data augmentation

in the same way we do, except in the context of segmentation of medical images. Related in

spirit to our approach is [ABA20], which adds a layer of counterfactual reasoning to quantify

the sensitivity of uncertainty estimates to changes in the input.

1.4 Summary of Contributions

Uncertainty-aware motion planning, visual-inertial odometry, and estimation of uncertainty

are not new ideas. However, their combined use in safety-critical systems is limited for two

reasons: computational complexity and a lack of trust2 in SLAM and uncertainty estimation.

Chapter 2 address computational complexity in a manner different from the papers noted

above, which ignore mapping or planning. Instead, it uses a Recurrent Neural Network

(RNN) to predict future belief states quickly so that a model predictive controller can use

belief states in its planning problem. Although not included in this thesis, we have also

extended the ideas in Chapter 2 to a cooperative multi-agent scenario [STS21].

The rest of this dissertation addresses the lack of trust in SLAM and uncertainty esti-

mation. Lack of trust in SLAM stems from the fact that state estimation accuracy is not

robust [CCC16]; the existence of recently released SLAM benchmarks [WZW20], [ZHF22]

corroborates this. Lack of trust in uncertainty estimation stems from the fact that mea-

suring the accuracy of an uncertainty estimate is difficult outside of simulation and that

Monte-Carlo simulations have already shown that estimates are commonly overconfident

2There are many definitions of “trust” in the literature on psychology and human machine interaction. For
the purposes of this dissertation, a system is trusted if its performance is predictable, reliable, and verifiable,
i.e. it has to work “well” in “enough” operating conditions and human engineers must understand how and
why it works well when it does. Examples of trustworthy technologies are GPS, modern operating systems,
airplanes, and automobiles.

9

(see references in Section 1.3.2). Since the architecture of Chapter 2, and most real-world

systems, are too complex for provable guarantees, we address the lack of trust using empirical

approaches.

Chapter 3 makes two contributions. The first is a method for calculating ground-truth

uncertainty estimates in real-world data without Monte-Carlo simulations by assuming er-

godicity. An accompanying method to verify whether or not the ergodic assumption is

true is also presented. This method is related to those in [HMR09,FCD17] to evaluate the

calibration of estimates from a state estimator, except without the need for Monte-Carlo

experiments. The second contribution of Chapter 3 is the use of deep learning to correct

overconfident uncertainty estimates. While it is not the first work to use supervised machine

learning in this manner, its scope encompasses all Extended Kalman Filters and it uses the

smallest neural network possible – the only input to the network is the estimated covariance

matrix and the network is a feedforward neural network. On the other hand, [DL20] uses a

convolutional network whose input is the RGB image used for state estimation. This second

contribution illustrates that the overconfidence in the Extended Kalman Filter’s covariance

estimates is systematic.

Chapters 4 and 5 addresses the last of robustness in visual and visual-inertial SLAM.

Rather than trying to create a new system and experimentally demonstrating that the new

system is better than all existing ones using a research benchmark, they search for the root

causes of this lack of robustness. In Chapter 4, we show that the common assumption that

measurement errors are zero-mean Gaussian is not true when the measurements are feature

tracks. In particular, we show that measurement errors have nonzero mean and covariance

that is dependent on time, the feature tracking algorithm, and the type of motion. We were

unable to find any existing works that attempted to characterize the error distribution of

feature tracks. Related experimental characterizations of the performance of feature trackers

are listed in Section 1.3.3.

In Chapter 5, we then attached our in-house VIO system, XIVO, to a simulation of

a pinhole camera in a point cloud world. This allowed us full control over measurement

errors and attribution errors, and allowed us to characterize how each type of measurement

10

error and attribution error affected XIVO’s performance and uncertainty. Most existing

works on realistic SLAM systems benchmark performance on real-world datasets of motion

sequences. On the other hand, works that use simulations, such as [ZWS17] often test a

complex algorithm whose software is not written for deployment and a simulation that only

adds Gaussian noise to simulated visual measurements. Using a simulation enables us to

analyze the effects of drift, Gaussian noise, and attribution errors individually, as they are all

entangled in real-world data. We find that performance degradation due to Gaussian noise

and drift is graceful, while the degradation due to attribution errors is exponential. We find

that even with small levels of drift and Gaussian noise, the probability of poor performance is

greater than 1 in 100, unacceptably high for a safety-critical system. At the end of Chapters

4 and 5, we offer suggestions for building off of our work to improve SLAM.

Finally, in Chapter 6, we tackle the problem of integrating a neural network designed for a

semantic task into the architecture of Chapter 2 in an uncertainty-aware fashion. In Chapter

2, an objection detection neural network was integrated like a black box sensor that would

return perfect results on every frame. The object detection network successfully detected

an obstacle in enough frames to ensure success of the experiment, but not all frames. This

indicates that the object detection network needs to be integrated like a noisy sensor, not a

perfect sensor. In order to integrate it like a noisy sensor, we need to be able to model its

uncertainty. To simplify the problem, we focused on image classification instead of object

detection, and formalize the idea of uncertainty with respect to the scene, or how much we

expect an image classification to vary given multiple images of the same environment. There

are many existing works on the uncertainty of an image classifier; we list a selection in

Section 1.3.4. Most of them use a definition of uncertainty that does not capture uncertainty

with respect to the scene. The few that do either are not focused on uncertainty [ABA20],

or use a subset of our ideas on a different problem [WLA19].

11

CHAPTER 2

Risk-Averse MPC via Visual-Inertial Input and

Recurrent Networks for Online Collision Avoidance

Our uncertainty-aware architecture is a multifaceted approach that uses model predictive

control (MPC), SLAM1, and recurrent neural network (RNN) algorithms to address the

problem of Active SLAM and account for uncertainties in both current and future robot

positions. Our architecture is based on MPC because MPC operates online, continually

satisfies the dynamic state of the robot over a prediction horizon N , and naturally offsets

estimation errors [XOT19]. The MPC is augmented to be “risk-averse” by considering uncer-

tainty in position from timestep k to k+N . This uncertainty is inferred by an RNN, which

has been demonstrated to handle time series data, account for temporal factors that directly

affect predictions, have shown promise in modeling complex interactions between agents and

their environment [ECH18,YWL19] and previously applied to MPC but for industrial pro-

cesses [LLC19]. Our RNN model is trained on the positional covariance estimations of a

visual-inertial odometry (VIO) system taking readings from an inertial measurement unit

(IMU) and camera data as input. By considering the current and future positional uncer-

tainties in the MPC optimization problem, our method can solve for more optimal control

actions at each timestep. To facilitate object avoidance, we additionally incorporate an ob-

ject detection pipeline that uses a deep convolutional neural network (CNN) to recognize

obstacles and a feature detector with RGB and depth images to estimate the distance and

size of nearby obstacles. We show that by using a trained RNN model to infer positional

uncertainties at future timesteps, a robot can demonstrate more evasive behavior to better

1In this paper, “SLAM” includes visual-inertial odometry with sparse mapping in addition to algorithms
that produce denser maps.

12

Observation

Sensor

Measurements

/ Map features

SLAM/Object

Detection/

Sensors

MPC Process

Cubic Spline

Tracking

Planning

Motion Tracking

Controller

Robot Takes Action

U

Data for example

map

Run Recurrent

Neural Network

(RNN) for training

RNN Model RNN Model

TRAINING (offline) TESTING (online)

Predicted robot

collision

boundary at

current and

future timesteps

Obstacle location and

features location

Estimated position

and covariance

MPC

solution

Figure 2.1: Architecture Overview. This figure demonstrates the training and testing

procedures of our method. In training, we first select different maps, where obstacles in each

map are randomly distributed. A simulation where the robot moves from an initial to a goal

position is executed on this map. At each timestep an observation is taken (e.g., camera

or on-board sensor data). These measurements are used as the input to our SLAM/Object

Detection/Sensors system, which estimate the current position and uncertainty in position

of the robot, and also location and size of obstacles. MPC accounts for this information

and produces outputs entered into our motion tracking controller. For every map at every

timestep, the current observations, state position, and positional uncertainty (among other

variables outlined in Section 2.1.5) are entered into a large database to produce our RNN

model. Lastly, in the testing phase, RNNs can predict the positional uncertainty (which

provide our collision boundaries) of the robot at future timesteps of the MPC prediction

horizon.

13

guarantee collision avoidance without becoming too conservative. Our linearized path plan-

ning framework is applied and tested on a complex quadruped robot, which demonstrates

our algorithm’s robustness and efficiency in computation, showing the feasibility of extending

our work to a wide range of robotic platforms. In short,

1. We evaluate the feasibility of an online end-to-end path planner that unifies MPC,

SLAM, RNN, and an object detector using CNNs to generate paths for unknown and

uncertain environments using a non-linear programming solver.

2. We verify that our quadrupedal robot, ALPHRED [HAY20], avoids collisions and com-

putes a shorter trajectory while maintaining safety using our method as compared to

a more conservative and naive planner.

3. We use RNNs to estimate positional uncertainties at all future timesteps of the MPC’s

prediction horizon.

4. We integrate all components into a high-fidelity simulation using the quadruped dy-

namics of ALPHRED (Figure 2.4). Additionally, we test all components individually

either online or offline using hardware (Figure 2.7).

In the following sections, we will explicitly refer to the simulation or hardware data. The

main difference between the model of ALPHRED in simulation versus hardware is that in

simulation the model is equipped with an idealistic RGB + dense depth Microsoft Kinect

camera, while the actual hardware is equipped with Intel’s Realsense D435i. The idealistic

camera publishes both RGB and dense depth images at arbitrarily fast speeds while the

RealSense publishes RGB images at 30Hz and dense depth images at only 2Hz.

2.1 Methods

In this section, we provide an overview of our architecture and how our risk-averse MPC

propagates uncertainty through its finite time horizon trajectory. In Section 2.1.1, we pro-

vide a high-level overview of our path planning algorithm. In Section 2.1.2, we describe our

14

MPC’s mathematical framework for planning and tracking. In Section 2.1.3, we describe

the constraints used in our cost functions. In Section 2.1.4, we describe our object detec-

tion system using CNNs and keypoint detection on RGB and depth images, and finally in

Section 2.1.5, we detail our RNN training and inference procedures (utilizing our SLAM

algorithm) for predicting future positional uncertainties used to create collision boundaries.

2.1.1 Architecture Overview

Our path planner is formulated as an MPC optimization problem using a non-linear pro-

gramming solver [AGH19]. We divide our MPC framework into a planning phase and a

tracking phase, with different cost functions for each. In the planning phase, the goal of

our MPC is to create waypoints that move a robot closer to a desired position while detect-

ing and avoiding obstacles through measurement updates. Specifically, the object detection

algorithm feeds the MPC with the position and size of surrounding obstacles, while the po-

sitional uncertainty of the robot at all future timesteps in the MPC prediction horizon is

inferred by RNNs. In the tracking phase, we discretize the generated path into segments

of fixed temporal length using a cubic polynomial to create a smooth reference trajectory.

MPC is used to track this reference trajectory and outputs our desired planar velocity values

(vd and ψ̇d). These velocity values are used by our motion tracking controller to generate

stable footstep trajectories. Note that dividing our MPC formulation into two phases fa-

cilitates lower computation time, and allows for separate control on waypoint generation

and creation of custom reference trajectories if desired (see Algorithm 1, Fig. 2.1, or our

accompanied video2 for a general overview of our path planning architecture).

2https://www.youtube.com/watch?v=faurQ1LpNVI

15

Algorithm 1: Risk-Averse MPC

1 Initialize state X, control U , dtplan, dttrack, horizon N , robot collision boundary

rΣk:k+N
, and timestep k

// Planning Phase (waypoints to goal)

2 while ∥Xcurr −Xgoal∥2 > 0 do

3 X,Usols ← MPC(Xcurr, Xgoal, rΣk:k+N
)

4 Xref , Uref ← CubicSpline(X,Usols)

5 [pixelx, pixely]1:f ← FeatureExtractor(RGB)

6 bboxes← CNN(RGB)

7 [x, y, z]1:l ← ObjectDetector(RGB-D, [pixelx, pixely]1:f , bboxes)

8 Xcurr ← RobotEstimator(U, IMU, joint encoders)

9 rΣk:k+N
← RNN(Xsols, [x, y, z]1:l)

// Tracking Phase (follow Xref and Uref)

10 while dt ≤ dtplan do

11 U ← MPC(Xcurr, Xref(dt), Uref(dt))

12 Xcurr ← MotionTrackingController(U)

13 dt += dttrack

14 end

15 dt = 0

16 end

2.1.2 General MPC Formulation

2.1.2.1 Planning Phase

MPC in the planning phase has the following time-invariant linear discretized model:

f (Xk, Uk) = Xk+1 = AXk +BUk + wk (2.1)

where X =
[
x, y

]⊤
represents our state variables (planar waypoint position), and U =

16

[
vx, vy

]⊤
represents our control variables (planar velocity). We also initialized our state

and control variables to zero before run-time.

Because we have a motion tracking controller to incorporate robot dynamics (see Section

2.2.1), our A and B matrices can assume a simple point mass:

A =

 1 0

0 1

, B =

 dtplan 0

0 dtplan


where dtplan is the time between taking proprioceptive and exteroceptive sensor measure-

ments (e.g., RGB-D images and odometer readings), and wk represents a non-unit variance

random Gaussian noise (wk ∼ N (0, σ2), where σ represents the standard deviation of planar

velocity).

The goal of our cost function in the planning phase (equation (2.2)) is to find the optimal

control value that minimizes the distance from the current and predicted states (Xk=0→N) to

the goal state (Xgoal) – where Xk=0 is given by the results of localization. Note, that we use

Ûk instead of Uk in our cost function to represent the inclusion of a slack decision variable,

ϵ (the slack variable has no role in our discretized model equation, but does affect the cost

function through R - see 2.1.3), so that Û =
[
vx, vy, ϵ

]⊤
.

min
Uk:k+N

N∑
k=0

(
Xk+1 −Xgoal

)⊤
Q
(
Xk+1 −Xgoal

)
+ Ûk

⊤
RÛk (2.2)

s.t. I, II, III, V (see Table 2.1)

2.1.2.2 Tracking Phase

MPC in the tracking phase has the following time-invariant linear discretized model:

f (Xk, Uk) = Xk+1 = AXk +BUk (2.3)

where X =
[
x, y, ψ

]⊤
represents our state variables (desired planar position and yaw

or heading angle), and U =
[
vx, vy, ψ̇

]⊤
represents our control variables (desired planar

17

velocity and yaw rate). Matrices A and B are the same as shown in (2.1), except for an

additional row/column for yaw and yaw rate.

The goal of our cost function in the tracking phase (equation (2.4)) is to output desired

planar velocity and yaw rate (vd and ψ̇d) values that follow a reference trajectory.

min
Uk:k+N

N∑
k=0

(
Xk −Xref

k

)⊤
Q
(
Xk −Xref

k

)
+
(
Uk − U ref

k

)⊤
R
(
Uk − U ref

k

) (2.4)

s.t. I, II, III, IV (see Table 2.1)

Xref and U ref are obtained by cubic interpolation (equation (2.5)) with end points specified

by the MPC planning phase from Xk...Xk+2 and Uk...Uk+2 (the reason we discretize to k + 2

instead of k + 1 is to ensure there are enough reference points for MPC to “look-ahead”).

Xref (t), U ref (t) = a0 + a1t+ a2t
2 + a3t

3,

ai = f (dttrack, Xk, Uk, Xk+2, Uk+2)
(2.5)

2.1.3 MPC Constraints

2.1.3.1 Constraints I - IV

Constraint I represents multiple shooting constraints which facilitate solving non-linear pro-

grams [HHC15]. The limits on state variables (i.e., map constraints), and control variables

(limits on velocity) are represented by Constraint II (note that the slack decision variable

should be set as 0 ≤ ϵ). If there is apparent jerk during path planning, it may be necessary

to include Constraint III, where αlimit represents the limit on acceleration (ax, ay, and ψ̈)

and U represents velocity (vx, vy and ψ̇). Orienting the robot along the planned trajectory

can be achieved using Constraint IV, and setting the limit on vy to be much smaller than the

limit on vx (which points directly along the path) in the body frame. Because MPC outputs

velocities in the inertial reference frame (irf), a rotation matrix is required to transform

these velocities into the correct frame of reference.

18

2.1.3.2 Constraint V - Collision Boundary with Slack Variable

Our obstacle avoidance constraints are given by Constraint V, which ensure that the collision

boundary of the robot does not collide with detected obstacles (note, that because these

constraints are updated at every timestep dtplan, moving obstacles can also be considered).

xoi and yoi represent the x and y center positions of all obstacles detected by the robot

(i → M : where M is the number of obstacles currently in range). xk and yk represent the

x and y positions of the robot from timestep k to timestep k + N (future positions can

be received from the MPC solution). rΣk
represents the radius of the collision boundary

of the robot, and roi represents the radius of the collision boundary of the obstacle. The

collision boundary radius of the robot is calculated by using the major axis of the covariance

uncertainty ellipse (Σ) estimated from RNN and is added to the radius or size of the robot

itself (thus, we assume a more conservative collision boundary, which, combined with the

slack variable—see below—provides some tolerance to ensure the planner does not fail while

at the same time lowering the probability of collision). Note, from timestep k to timestep

k +N , Σk→N is predicted by our RNN (see Section 2.1.5).

Without a slack variable and because of sensor measurement noise, the measured state of

the robot may suddenly find itself very near or slightly inside the collision boundary of the

obstacle and cause the solver to fail. To accommodate for this issue, Constraint V includes

a slack variable to allow for some degree of constraint violation in our optimization problem.

In other words, we effectively separate the covariance into a constraint and slack variable,

where we tune the confidence attributed to the posterior estimate and break it into a nominal

estimate, and a controllable slack parameter. Specifically, slack can be tuned through the

R matrix, where a high cost for ϵ will ensure that the majority of solutions will not violate

Constraint V, while lower values allow for greater violation (the cost on the slack variable is

largely dependent on user-experience during implementation).

19

Table 2.1: Model Predictive Control Constraints

No. Constraint

I Xk+1 − f (Xk, Uk) = 0

II X limit ≥ |Xk|, U limit ≥ |Uk|

III αlimit ≥ | [Uk+1 − Uk] |/dt

IV


vlimit
x

vlimit
y


body

≥

∣∣∣∣∣∣∣∣∣∣∣∣∣


cos θk sin θk

− sin θk cos θk




vx

vy


irf

∣∣∣∣∣∣∣∣∣∣∣∣∣
V −

√
(xk − xoi)

2 + (yk − yoi)
2 + rΣ

k
+ roi − ϵ ≤ 0

20

2.1.4 Obstacle Detection

2.1.4.1 Convolutional Neural Networks

To support the avoidance of incoming obstacles as our robot traverses the environment, we

use a custom-trained CNN model for real-time object detection. More specifically, using

Redmon et al.’s YOLOv3 [RF18] fast CNN architecture because of its maturity (although

other methods could be used, such as [FS18]), we trained two custom models. One localized

brown boxes within an RGB camera frame using 1,500 hand-labeled images and the other

localized black 1m x 1m boxes in a mostly empty Gazebo environment using 300 images.

Weights were initialized using YOLOv3’s default weights and trained for 5,200 epochs using

stochastic gradient descent with a batch size of 64, momentum of 0.9, and learning rate of

0.001 for both models. We validated our model on labeled data withheld from the train-

ing data and we verified empirically that our object detector could successfully draw tight

bounding boxes around our brown boxes (Fig. 2.2).

2.1.4.2 From Bounding Boxes to 3D Obstacles

For our end-to-end Gazebo simulation, we implemented simple classical feature detection

over the simulated RGB and dense depth images to transform the bounding boxes from

the object detector into useful 3D obstacles for the motion planner. The scheme described

below assumes that features are cubes and that ALPHRED is directly facing all existing

boxes. It is executed only once, at the beginning of the simulation. Note that instead of

fully addressing the semantic mapping problem, we use simple placeholder computer vision

components designed for our specific test scenarios; for now, we only utilize SLAM as training

data for the RNN.

First, ORB features [RRK11] are extracted. Let xp and yp be the pixel coordinates of a

single feature, and Zc be its depth. Then, let gsb = (Rsb, Tsb) be the body-to-spatial trans-

formation, gbc = (Rbc, Tbc) be the camera-to-body transformation, and K be the intrinsics

matrix. Then, the position of the feature in the spatial frame, Xs (a 3x1 vector) can be

21

CNN XIVO

Figure 2.2: Example Module Outputs. Left : An example output image of our trained

object detector using a custom-trained convolutional neural network model. We used the

YOLOv3 [RF18] architecture with default initialized weights for fast training and inference.

Right : Inlier (green +) and outlier tracks (red *) produced by XIVO on data collected from

the Intel Realsense D435i.

22

calculated as: 
xc

yc

1

 = K−1


xp

yp

1



Xc = Zc


xc

yc

1


Xb = RbcXc + Tbc

Xs = RsbXb + Tsb

(2.6)

Next, for each bounding box captured by the CNN object detection process, we determine

which features are in each bounding box. The size of the box is the maximum distance (in

meters) between any two points. Half of that size then becomes the “radius” of the obstacle’s

collision boundary (the MPC assumes that the collision boundary are circles).

We note that our classical feature detection approach is computationally efficient but also

simple (i.e., not as robust). For example, most features exist near corners, where rounding

errors could lead to a very different depth value. For the purpose of our end-to-end Gazebo

simulation, we discarded any obstacle detections that were more than 5 meters away.

2.1.5 Recurrent Neural Networks for Learning Uncertainties

The RNN, shown in Figure 2.3, uses a combination of feedforward layers and simple RNN

layers. The hidden layers all use ReLU activations. The network’s 18 inputs are the robot’s

x, y, and z positions. The next 15 inputs consist of the x, y, and z positions of the five

closest tracked features at any given state. The four output layer neurons correspond to the

four values of the robot’s 2× 2 x-y covariance matrix, which is then used in Constraint V of

the motion planning MPC. Unlike the hidden layers, the output layer uses a linear activation

function because the outputs themselves are not restricted. Note that even though our MPC

plans in only two dimensions, the inputs to the neural network are three-dimensional because

the state estimation in our experiment is three-dimensional.
23

5 Closest Feature
Locations (x, y, z)

Robot Location
(x, y, z)

Robot Covariance
∑(x, y)

4 Units

256 Units 256 Units

128 Units 32 Units
32 Units

4 Units

16 Units

Simple RNN

Dense

18 Units

Figure 2.3: Recurrent Neural Network Architecture. Our RNN architecture predicts

the covariances at robot poses [xt+n, yt+n] at timesteps t+n for n = 1, ..., N (where N is the

length of the MPC’s prediction horizon). During training, we used inputs collected from the

output of XIVO to parameterize the network towards the four output units, as indicated by

the first 18 input units and last four units in the figure above. Seven hidden layers were used

with ReLU activation functions, with five recurrent layers (green) and two fully connected

layers (purple), to learn the temporal structure for covariance propagation.

24

We used the Mean Squared Error (MSE) as the loss function:

MSE =
1

N

N∑
i=1

(Σi − Σ̂i)
2

Here N is the total number of timesteps, Σi is the covariance matrix of the planer position

computed by a SLAM system at timestep i and Σ̂i is the covariance matrix predicted by the

RNN. Conceptually, the covariance matrix is a 2× 2 matrix, but the implementation of the

RNN treats it as a 4 × 1 flattened matrix when it makes predictions and propagates error.

Lastly, we note that covariance matrices are positive semidefinite by definition. However, the

above training procedure does not constrain the output of the RNN to positive semidefinite;

the outputs were indeed arbitrary 2 x 2 matrices. To account for this, we zeroed out off-

diagonal elements and negated any negative diagonal elements.

Training data (robot position, position of tracked features, and covariance matrices) for

the RNN was collected from running XIVO,3 a simplified and modernized implementation of

the SLAM system described in [JS11], on time-synchronized RGB and IMU data collected

from an Intel RealSense D435i mounted onto ALPHRED’s head. We collected four ∼40-

second training sequences in total (using 100 epochs for training on the four sequences).

The right side of Figure 2.2 displays tracked features and localization estimates from the

collected data.

One key assumption that XIVO makes is that disturbances to the angular velocity and

acceleration measurements (bias + noise) are a random walk (i.e. white, zero-mean, and

Gaussian). This is not true for a walking robot, where each step produces a large periodic

disturbance. Thus, XIVO’s generic motion model is best suited to a flying robot. However, to

adapt XIVO for our quadruped, we limited the acceleration and angular rate measurements

to “realistic” values and then “de-tuned” the filter by setting large bounds on expected IMU

measurement noise. This hampered accuracy, but ultimately enabled convergence.

25

Figure 2.4: Gazebo Simulation. Our high-fidelity simulation accurately models the dy-

namics of the ALPHRED quadruped robot.

2.2 Experimental Results

In this section, we provide an overview of our robot model and its motion tracking controller,

describe the training and testing results of the CNN and RNN neural networks, and then

summarize our end-to-end results using our Gazebo simulation environment.

2.2.1 Robot Model and Motion Tracking Controller

The robot used in this study is ALPHRED from Hooks et al. [HAY20], a full-sized quadruped

robot that has unique kinematic configurations which enable several dynamic modes of op-

eration as shown in Fig. 2.7 and Table 2.2. Our path planner is tested on a highly accurate

simulation of ALPHRED using Gazebo software [KH] (Fig. 2.4). The robot is modeled as sev-

eral interconnected rigid-bodies in PyBullet so that the state includes not only joint angular

velocities, but sensor and actuator noise due to motor temperature. The camera model used

is a standard perspective projection with the same intrinsics as the Intel RealSense camera

used to collect RNN training data, but without distortions. ALPHRED uses an Extended

Kalman Filter (EKF) that fuses kinematic encoder data with on-board IMU measurements

to provide full state estimation [BHH13]. A Raibert-style controller [Rai86] is used to track

desired trajectories, where the input to the controller is desired planar velocities (vd) and a

desired yaw rate (ψ̇d) in the body frame. The controller operates by planning footsteps using

powerful heuristics based on velocity feedback and corrects velocity and orientation errors

by adjusting the length of the limbs in support. Further details of the ALPHRED platform

and its low-level motion tracking controller can be seen in [HAY20].

3Code available: https://github.com/ucla-vision/xivo

26

Epoch

CNN Training Loss

RNN Training Loss

A
ve

ra
g

e
Lo

ss
 [a

.u
.]

2
A

ve
ra

g
e

Lo
ss

 [m
]

Figure 2.5: Training Loss. Top: Our CNN model’s training loss, used in our object

detection pipeline. We trained for 5,200 epochs but only display 300 in the figure above.

Note that we verified avoidance of overfitting via a validaton set but did not plot the curve

here. Bottom: Our RNN model’s training loss, used to infer future localization uncertainty

for the MPC. As with the CNN, we verified avoidance of overfitting using a validation set.

2.2.2 Analysis of Learning Components

Training loss for both the CNN and RNN are shown in Figure (Fig. 2.5). CNN and RNN

networks were trained for 5,300 and 100 epochs, respectively, but only a limited range was

plotted for visualization. To avoid overfitting, we used cross-validation and ensured that the

validation loss was close to the training loss during the training process for both networks.

Additionally, we observed that as ALPHRED tracked more features (i.e., the corners of an

obstacle), the RNN’s covariance estimates decreased. Conversely, as tracked features went

out of view, estimates would increase. This is expected from the behavior of a visual-inertial

odometry algorithm.

27

2.2.3 Gazebo Simulation

To test our proposed method, we used a custom Gazebo environment loaded with a high-

fidelity model of our quadrupedal robot equipped with a Microsoft Kinect sensor. For lo-

calization, we used the motion tracking controller as described in Section 2.2.1. Our 3D

environment consisted of a 1m3 box obstacle with the objective to command ALPHRED to

move from its initial position at [0,0] to the goal position at [8,0]. We compared our method

against a baseline approach, in which only an MPC was used for trajectory planning (with

the obstacle explicitly hardcoded), and a naive approach for safer traversal, in which the

robot’s radius was artificially inflated to twice the original size (from 0.7m to 1.4m).

In the illustrative example shown in Fig. 2.6, we observed that when using a classic

MPC controller, which assumes that the robot’s state estimation is perfect, the resulting

trajectory is too close to the obstacle and ALPHRED crashes (red). On the other hand,

when using a conservative MPC controller, in which the assumed value of ALPHRED’s

radius is twice its actual size, the resulting trajectory over-avoids collisions and ALPHRED

moves slowly towards the goal point (blue). However, when using our full risk-aware MPC in

this scenario, we observed that ALPHRED not only avoids collision, but executes a tighter

trajectory than the conservative approach and requires less time to move to the goal. Note

that the simulation was run on a laptop with an Intel Core i7 6700 HQ CPU and a NVIDIA

GeForce GTX 970M GPU in real time with dtplan = 0.1s and dttrack = 0.005s.

2.3 Discussion and Future Work

Collision-free path planning within unknown and unexplored environments requires the

daunting integration of several components, such as sensor processing, control algorithms,

and uncertainty resolution, into a fast and online end-to-end framework. To this end, we pro-

pose an architecture that unifies these modalities which attempts to address the fundamental

problem of uncertainty in Active SLAM. By inferring the future positional uncertainty for

an MPC using an RNN, we can substitute typical belief space planners with a more com-

28

Figure 2.6: Trajectory Comparison. A comparison of the trajectories computed by three

different approaches. The baseline method (red) is an MPC framework without our exten-

sions to consider propagated future state uncertainty from an RNN, and we define the naive

approach (blue) as artificially inflating a robot’s boundary through all time. In comparison,

our approach (green) can plan for a quick yet safe trajectory by predicting potential future

collisions.

29

Table 2.2: ALPHRED Configuration

Parameter Value

Degrees of Freedom 12 (3 per leg)

Weight 17.9 kg

Max Velocity 1.5 m/s

IMU VectorNav 200

Camera RealSense D435i

putationally efficient approach. Our work can also pave the way towards using RNNs to

address problems with temporal structure which are difficult for classic robotic algorithms.

Overall, our architecture addresses Active SLAM by combining MPC, SLAM, RNN, and

CNN algorithms. We demonstrate that by inferring future positional uncertainties of the

robot using our RNN prediction model, the robot can reach a goal state faster than when

assuming a fixed uncertainty while still safely avoiding obstacles. This is significant because

modeling uncertainties within a neural network framework, rather than belief space planning

(i.e., POMDP), sufficiently shortens the computation time, one of the major barriers to

belief-space planning.

30

Figure 2.7: ALPHRED Hardware. The ALPHRED quadrupedal robot developed by

Hooks et al. [HAY20] of the RoMeLa robotics laboratory at the University of California, Los

Angeles. This complex platform is an ideal model to apply our methods, as showing success

on this platform also demonstrates the potential of applying our methods to a wide selection

of robotic systems. Table 2.2 describes some physical properties of the system.

31

CHAPTER 3

Learned Uncertainty Calibration for Visual Inertial

Localization

We now examine Assumption 1 of Figure 1.1: that the covariance estimates of the SLAM

algorithm within the framework are accurate. First, we create a statistical test similar to

that used in [HMR09,FCD17] to evaluate the calibration of estimates from a state estimator,

except without the need for Monte-Carlo experiments (Sect. 3.1). Using that statistical test,

we show that ground-truth covariance can be computed assuming ergodicity when Monte-

Carlo experiments are impractical (Section 3.1.4) and also count the number of timesteps

that are within 1,2,3-σ bounds given by P̂ . Our approach for correcting inaccurate covariance

estimates is most similar to [DL20] in that we use supervised machine learning to improve

the covariance estimates, but the input to our models only consist of P̂ and x̂ instead of the

entire input image; having only P̂ and x̂ as inputs allows us to use much smaller networks.

In Section 3.3, we test our method on two simple examples as a quick validation. Section

3.4 contains our main experiment, where we test our method on a VIO system processing

real-world data. We achieved significant calibration using both a state-independent model

ϕ(P̂) and a state-dependent model ϕ(x̂), which implies that the state x̂ contains very little

information about the miscalibration of P̂ – most of the miscalibration of P̂ can be computed

from P̂ itself.

32

3.1 Evaluating Calibration of Kalman Filters

3.1.1 Background: Sources of Error in EKFs

Consider a nonlinear discrete-time dynamical system and measurement model with state

x ∈ Rn and measurement y ∈ Rm:

xk = f(xk−1, uk−1) + νk

yk = h(xk) + wk

(3.1)

Assume that νk ∼ N (0, R) and wk ∼ N (0, Q) are white Gaussian noise processes, and the

input uk is known, along with the dynamics f and nominal measurement model h. An

Extended Kalman Filter (EKF) recursively computes an estimate of xk, x̂k, along with its

covariance P̂k = E
[
(xk − x̂k)(xk − x̂k)T

]
whenever it receives a new measurement yk by

computing the quantities:

x̂k|k−1 = f(x̂k−1, uk−1)

P̂k|k−1 = AkP̂k−1A
⊤
k +R

K = P̂k|k−1C
⊤
k (CP̂k|k−1C

⊤ +Q)−1

x̂k = x̂k|k−1 +K(yk − h(x̂k|k−1))

P̂k = (I −KC)P̂k|k−1(I −KC)⊤ +KQK⊤.

(3.2)

The matrices Ak and Ck are the Jacobians of f(x, u) and h(x) with respect to x evaluated at

x̂k−1 and uk−1. Estimates x̂k and P̂k represent a posterior Gaussian distribution. If f(x, u)

and h(x) are both linear, then as k increases, x̂k is guaranteed to converge to xk and the

computation of the P̂k are completely separate from the computation of the x̂k. Moreover,

the innovation zk = yk − h(x̂k|k−1) should be zero-mean and white in both components and

time. These same guarantees do not apply when either f(x, u) or h(x) are nonlinear. In the

nonlinear case, the mean and innovation are computed using the original nonlinear model

f and the covariance is updated using linearized models. These unaccounted linearization

errors mean that P̂k is usually underestimated [BNG06]. Finally, most implementations of

VO and VIO treat Q and R as constants, though they may be state and time-dependent.

33

3.1.2 1,2,3-σ Intervals in Multiple Dimensions

For a set of discrete samples ϕk, k = 1, . . . , N drawn from a 1-D Gaussian distribution

N (µk, σk), about 68% lie in the interval µk±σk, 95% in µk±2σk, and 99.7% in µk±3σk. The

same can be done for a set of points vk ∈ Rd, each from a potentially different multivariate

Gaussian distribution N (uk,Σk). First, diagonalize each Σk with eigenvalue decomposition:

Σk = XkΛkX
⊤
k . Then, the columns of the matrix XkΛ

1/2
k form an orthogonal, but not

orthonormal, basis and

νk = (XkΛ
1/2
k)−1(vk − uk) (3.3)

contains the coordinates of vk in the new coordinate system. Then, for each dimension

1, . . . , d of νk, 68% of samples are in the interval [−1, 1], 95% in [−2, 2] and 99.7% in [−3, 3].

By counting the value of νk for each dimension at each timestep, we can evaluate the filter’s

calibration for each individual dimension, but not overall.

3.1.3 Overall Calibration with Monte-Carlo Simulations

Let ek = xk − x̂k be the estimation error and ρ̂k be the normalized estimation error squared

(NEES), or square of the Mahalanobis distance at each timestep k:

ρ̂k = e⊤k P̂
−1
k ek (3.4)

ρ̂k ∼ χ2
n, i.e. ρ̂k is a χ2 variable with n degrees of freedom. If we run M Monte-Carlo

simulations and compute a value of ρk,i for every timestep k in each run i, then their sum

ˆ̄ρk =
∑M

i=1 ρ̂k,i is a χ2 variable with M × n degrees of freedom. Then, over the Monte-Carlo

runs, we can compute confidence intervals for values of ˆ̄ρk. Values for ˆ̄ρk should remain

within the confidence interval for all k if the P̂k are well-calibrated. If ˆ̄ρk is consistently

too high, then the covariance estimates P̂k are too optimistic. If ˆ̄ρk is consistently too low,

then the P̂k are conservative. This approach was used in [HMR09,FCD17] to measure the

accuracy of their covariance estimates.

Unfortunately, Monte-Carlo approximations are not scalable, and not practical in a real-

world scenario where one would have to carefully place the sensor platform in the same precise

34

position and orientation at every run to conduct repeated trials. Also, to perform repeated

and sufficiently exciting motions required for VIO, one would need a precise actuation system,

like a robot arm and not a quadcopter. Therefore, we need another approach to evaluate

the covariance calibration.

3.1.4 Exploiting Residual Independence for Calibration

Here, we present a finer-grained method for evaluating calibration in a multiple dimensions

with a goodness-of-fit test for unbiased estimators that does not require Monte-Carlo sim-

ulations. First, we assume that the ek are approximately independent. While not strictly

satisfied, this assumption enables a practical procedure, which we will then validate empir-

ically. Next, let pρ̂k be the approximate probability density function of ρ̂k, which can be

computed with a normalized histogram of the ρ̂k. Next, since each ρ̂k ∼ χ2
n if the system

is well-calibrated, we can then use pρ̂k(x) in a goodness-of-fit test with the χ2
n distribution.

For this work, we use the L2 divergence [PXS11] between this approximate density and the

density of χ2
n as a comparison metric, pχ2

n
(x):

DL2(ρ̂k∥χ2
n) =

(∫ ∞

0

(pρ̂k(x)− pχ2
n
(x))2dx

)1/2

(3.5)

DL2 is easy to compute and useful for comparing goodness-of-fit of multiple sets of ρ̂k on the

same dataset, but not as an absolute measure as one would use a p-value. We will use it to

compare methods of calibration to ground truth covariance in the rest of the paper.

3.2 Computing a Calibrated Covariance

Our hypothesis is that the covariance estimates provided by an EKF present systematic

errors and because of that, there exists a learnable map from the estimated value to a more

calibrated value that can be executed in real-time. We consider maps of the following forms,

in order of complexity:

1. A multiplicative scalar: All components of the estimated covariance are offset by a

single scaling factor, Pk = sP̂k.
35

2. Pk = AP̂kA
⊤, i.e. the map is a constant transformation of the covariance.

3. Qk = ϕ(P̂k) and Pk = QkQ
⊤
k , i.e. the map is an arbitrary function of the estimated

covariance. This map, and the next, can be implemented by a feedforward neural

network.

4. Qk = ϕ(x̂k, P̂k) and Pk = QkQ
⊤
k , i.e. the map is an arbitrary function of the estimated

state and the estimated covariance.

An even more general model would be a map represented with a recurrent neural network.

Our experiments show, however, that the memoryless maps of hypotheses 3 and 4 are suffi-

cient for uncertainty calibration.

3.2.1 Finding Ground-Truth Covariance

Validating any of the hypotheses above requires a “ground-truth” value of covariance. In a

Monte-Carlo experiment, we can use the unbiased sample covariance at a given timestep k

given measurements ek,i:

P̃k =
1

M − 1

M∑
i=1

ek,ie
⊤
k,i (3.6)

However, running many nearly identical tests on real-world equipment to measure ground-

truth covariance is costly and time-consuming. For real-world experiments, we can compute

a pseudo-ground-truth covariance with only one test if we additionally assume that that the

motion state is approximately ergodic, i.e. that the population statistics match the temporal

statistics. Practically, assuming ergodicity means assuming that errors in the motion state

vary slowly over time, which is often true for converged filters. For an odd-sized time window

K, we define pseudo-ground-truth as

P̃k =
1

K − 1

k+⌊K/2⌋∑
k−⌊K/2⌋

eke
⊤
k . (3.7)

We can then use P̃k instead of P̂k in (3.4) to compute a new set of ρ̃k and a new value for

DL2 . For simplicity, we discard timesteps for which we cannot compute a sample covariance,

36

k ≤ ⌊K/2⌋ and k ≥ N − ⌊K/2⌋, where N is the total number of timesteps, from further

analysis. Using these ρ̃k, we can verify the ergodic assumption: if the ergodic assumption

is true, then DL2(ρ̃k∥χ2
n) should be small. In the experiments section, we visualize typical

“small” and “large” values of DL2 .

The authors of [LOV18] and [DL20] trained neural networks to predict covariances by

training them with negative log-likelihood (NLL) losses. Unlike the typical maximum likeli-

hood problem in which a few parameters are estimated from many data, in their NLL loss

every datum is potentially drawn from a different distribution. We believe that they were

nevertheless able to train a neural network to predict covariances because their training data

was approximately ergodic and therefore not drawn from many different distributions.

3.2.2 Hypothesis 1: Constant Multiplicative Scalar

We solve for a constant factor over all M sequences in a training dataset using the following

optimization problem:

minimize
s

M∑
q=1

N∑
k=0

n∑
i=0

n∑
j=i

(sP̂ i,j
q,k|k − P

i,j
q,k)

2

subject to s ≥ 0

(3.8)

where P i,j
q,k denotes the i, jth entry of the covariance matrix from the kth timestep of the qth

sequence. This hypothesis is simplistic and not powerful enough, but it is an easily solvable

quadratic program.

3.2.3 Hypothesis 2: Constant Linear Transformation

The second hypothesis is expressed as the optimization problem with decision variable A ∈

Rn×n

minimize
A

M∑
q=1

N∑
k=0

n∑
i=0

n∑
j=i

((AP̂q,k|kA
⊤ − Pq,k)

i,j)2 (3.9)

This quartic and nonconvex optimization problem is the natural next step from Hypothesis

1. We implement Hypothesis 2 using IPOPT [WB06]. Theoretically, this adjustment should
37

be at least as effective as the constant multiplicative scalar, since A = sI, where s is the

solution to (3.8), is a feasible solution to (3.9). However, because local nonconvex optimizers

are sensitive to the initial guess and are not guaranteed to return the correct solution, the

calibration of Hypothesis 2 is not uniformly better than that of Hypothesis 1. In Sections

3.3 and 3.4, it is always worse than Hypothesis 1.

3.2.4 Hypothesis 3 and 4: Fully-Connected Neural Networks

Let Q ∈ Rn×n be the output of the neural network and let the adjusted covariance be QQ⊤.

We use a weighted elementwise difference between the upper triangles of QQ⊤ and P as the

loss function:

L =
n∑

i=0

n∑
j=i

wij((QQ
⊤)i,j − P i,j)2 (3.10)

Each timestep of each sequence serves as a training point. The inputs to the network are

the upper triangle of a covariance matrix. In each of our experiments, we trained many

simple feedforward neural networks using the Adam Optimizer in Tensorflow with varying

architectures, L2 regularization weights, and epochs; very little thought was given to the

architectures we tested. The outputs of these neural networks are well-calibrated and the

best performing architecture for each experiment is detailed in Sections 3.3 and 3.4.

3.3 Two Contrasting Illustrations

Before presenting our main experiment in Section 3.4, we illustrate concepts from the previ-

ous two sections with a couple of easy-to-visualize examples.

3.3.1 Illustration 1: Linear Kalman Filter

A system that should have perfectly calibrated state estimates is a spring-mass damper

system with mass m = 1, spring constant k = 4, and damping coefficient c = 0.1. Af-

ter discretizing time into timesteps of length δt = 0.01s, the discrete-time dynamics and

38

measurement equations are:x1
x2


k+1

=

 1 δt

− k
m
δt 1− c

m
δt

x1
x2


k

+

 0

δt

uk + νk

yk =
[
1 0

]x1
x2


k

+ wk

(3.11)

where x1 is the horizontal position, x2 is the horizontal velocity, and u is a forcing input.

In our experiment, u(t) is the discretized version of sin(π
2
t). In both the simulation and the

Kalman Filter, νk ∼ N (0, 0.0032) and each element of wk ∼ N (0, 0.0052). Results for a

single run from a set of 50 Monte-Carlo trials are shown in Figure 3.1. The overlay of the

χ2
2 density and the normalized histogram of the ρ̂k are a near-perfect fit. Additionally, using

the transformation in (3.3), we find that in the first dimension 68.20, 95.42, and 99.74% of

points are within ±1, 2, 3, respectively. In the second dimension, the percentages are 68.12,

95.45, and 99.73%.

3.3.2 Illustration 2: EKF for 2D Localization

We repeat the same process above for an extended Kalman Filter for a 2D localization

problem. The system is a Dubin’s car with state [x, y, v, θ] and acceleration a and angular

velocity ω inputs. It receives range and bearing measurements from a set of four known bea-

cons located at (3.5,−1.1), (10, 10), (−5, 15), and (−10,−8.2). The discrete-time dynamics

with discretization δt = 0.1s are:

xk = xk−1 +

∫ tk

tk−1

v(τ) cos(θ(τ))dτ

yk = yk−1 +

∫ tk

tk−1

v(τ) sin(θ(τ))dτ

vk = aδt

θk = ωδt

(3.12)

and the measurement equations for beacon i located at [xi, yi] are:

ri,k = ((xi − xk)2 − (yi − yk)2)1/2

ϕi,k = arctan(yi − yk, xi − xk)− θ
(3.13)

39

(a) State Errors (b) Innovation

(c) χ2
2 Overlay with pρ̂k

(d) χ2
2 Overlay with pρk

Figure 3.1: The state estimation and innovation of the linear Kalman Filter for a single run

are shown in (a) and (b) - the state estimation is accurate and the innovation is essentially

white noise. (c) plots pρ̄k against the χ2
2 density for a single run. Visually, the histogram

and the χ2
2 density are very close, showing that the independence assumption holds and that

the covariance estimates are well-calibrated. This is further verified in (d), which is the

same plot as (c), except that the normalized histogram is computed using a ground-truth

covariance from Monte-Carlo trials. (3.6).

40

In these experiments, we generate 11 training sequences and one test sequence of ak and

ωk. In all 12 sequences ak is a sinusoid with frequency 0.5Hz and ωk is a constant. Figure

3.2 is the corresponding figure to Figure 3.1 for this localization problem. It is clear that

although the state estimation errors are small, the covariance estimates are inaccurate, and

we test Hypotheses 1-4 on this problem. The neural network in Hypothesis 3 is a fully

connected network with hidden layers that have 512, 512, 256, 256, 128, and 64 nodes.

The L2 regularization weight was 1e-4 and it was trained for 50 epochs. The network for

Hypothesis 4 is fully connected with five hidden layers that all have 128 nodes. Its L2

regularization weight was 1e-3 and was trained for 150 epochs. Both networks use ReLU

activations, wij = 5 on the diagonals, and wij = 1 on the off-diagonals.

Divergences for the unadjusted covariances, ground-truth, and the four hypotheses are

shown in Table 3.1 with corresponding overlays are in Figures 3.2 and 3.3. In Table 3.1, the

third column contains the mean and standard deviation of the divergences of 50 Monte-Carlo

runs. Ground-truth covariances are computed using (3.6) and the divergences in Table 3.1

are the mean and standard deviation of divergences of the 50 runs. The second column

contains the reduction in divergence of the means in the second column as a percentage of

the reduction from the unadjusted covariances to the ground-truth covariances. We observe

that the calibration of the ground-truth covariances are within one standard deviations of

the calibrations of both Hypothesis 3 and 4. The main conclusion of the results is that both

Hypotheses 3 and 4 can achieve calibration, but that the state-dependence in Hypothesis 4

only yields a modest benefit. Note that in Figures 3.2 and 3.3, we did not plot the χ2 density

over the histogram when there was very little overlap between the two.

3.4 Calibration of Visual Inertial Odometry

In the VIO problem, the state x consists of the orientation, position, velocity, the map

states, and any autocalibration states. Since we often do not have ground truth for the

map, alignment, and autocalibration states, we will only analyze the localization states.

Orientation is represented as a rotation vector, so in this work, the state dimension is n = 9.

41

(a) State Errors (b) Innovation

(c) χ2
4 Overlay with pρ̂k

(d) χ2
4 Overlay with pρk

Figure 3.2: Calibration results for the EKF’s test sequence. The EKF has small estimation

error (a) and poor covariance calibration. The innovation for this 2D localization problem

(b) is clearly not white. In (c), the approximate density of ρk is far from the χ2
4 density that

we did not plot the χ2
4 pdf. Finally, in (d), the overlay is much closer to the ground-truth

covariance computed using Monte-Carlo simulations, although still not a perfect fit because

independence of the ek is only an approximation.

42

(a) Scalar Adj. Overlay (b) Matrix Adj. Overlay

(c) NN Adj. Overlay (d) NN w/State Overlay

Figure 3.3: Overlays of χ2
4 with pρ̂k computed with adjusted covariances for the 2D localiza-

tion problem. These overlays visualize the trends seen in Table 3.1.

43

Table 3.1: Calculated divergences for the 2D localization problem.

% Dec.
Test Set

Sampling
% 1-σ % 2-σ % 3-σ

Original

Estimated
0%

0.3394 ±

0.0145

16.2, 17.6,

8.9, 58.5

30.0, 34.1,

17.1, 86.8

42.5, 48.3,

27.3, 94.8

MC

Ground-

Truth

100%
0.1839 ±

0.0547

60.8, 67.5,

68.5, 68.5

98.7, 96.1,

95.4, 95.9

99.7, 99.9,

99.5, 99.7

Global

Scalar
31.6%

0.2902 ±

0.0510

30.2, 34.3,

17.3, 87.0

53.3, 60.3,

39.2, 96.7

69.3, 75.9,

60.8, 97.5

Global

Matrix
-9.1%

0.3535 ±

2.4e-06

5.6, 2.1,

0.7, 0.4

11.2, 4.1,

1.0, 0.5

16.2, 6.1,

1.4, 0.5

Neural

Network
75.4%

0.2222 ±

0.0884

89.6, 62.0,

64.1, 45.6

98.0, 88.3,

88.0, 75.2

99.8, 96.3,

94.4, 89.0

State-

Dependent

NN

90.9%
0.1981 ±

0.0553

95.7, 56.4,

51.1, 64.8

100.0, 95.3,

80.7, 91.4

100.0, 99.8,

92.7, 98.0

44

(a) 3D Trajectory (b) Innovation

(c) χ2
9 Overlay (d) Ground-Truth Overlay

Figure 3.4: The 3D trajectory, innovation, and overlays for the VIO test sequence. As with

the EKF experiments, the state estimation error is small, but the innovation is clearly not

white noise. In (c), there is very little overlap between the histogram approximation of ρ̂k

the χ2
9 distribution. (d) contains the same plot, except with ρ̂k generated using ground-truth

covariances computed using ergodicity from the test set. A visual comparison of (c) and (d)

shows that the ergodic assumption and the independence assumption are both approximately

true.

45

Table 3.2: Table of computed divergences for the VIO experiment.

% Dec.
Test Set

Sampling
% 1-σ % 2-σ % 3-σ

No Adjustment 0%
0.2697 ±

5.61e-08

11.4, 9.5, 10.2,

6.2, 5.1, 6.0,

3.3, 2.4, 2.1

21.8, 19.1, 20.5,

12.0, 9.6, 12.9,

6.2, 4.7, 4.7

32.6, 29.1, 30.4,

18.2, 14.5, 19.2,

9.2, 7.3, 7.0

“Ground-Truth” 100% 0.1103 ± 0.0223

60.4, 65.3, 67.4,

70.9, 71.7, 70.5,

67.1, 67.3, 70.3

98.2, 95.1, 96.1,

96.7, 96.9, 95.6,

95.8, 95.4, 95.1

99.9, 99.5, 99.5,

99.6, 99.7, 99.8,

99.7, 99.6, 99.4

Global Scalar 42.7% 0.1937 ± 0.0088

96.7, 93.4, 90.8,

74.7, 62.5, 79.7,

42.9, 30.1, 30.3

100.0, 97.8,

97.6, 95.5,

90.6, 96.8,

72.8, 50.3, 50.8

100.0, 98.6,

99.0, 98.8,

96.9, 99.0,

86.3, 65.1, 64.4

Global Matrix 16.1% 0.2433 ± 0.0037

98.1, 92.9, 78.1,

60.9, 66.5, 71.1,

60.0, 56.0, 74.2

99.7, 98.1, 83.0,

69.9, 77.0, 85.2,

71.1, 70.6, 90.3

99.9, 98.3, 83.9,

74.9, 82.8, 88.2,

75.3, 75.9, 94.9

Neural Network 97.8% 0.0987 ± 0.0159

76.4, 64.7, 72.8,

70.6, 70.6, 70.9,

69.8, 67.8, 65.7

96.5, 91.0, 93.3,

93.8, 94.0, 94.8,

93.2, 90.6, 90.1

99.6, 99.6, 98.5,

98.5, 98.8, 99.3,

98.4, 98.3, 98.1

NN with State 105.6% 0.1028 ± 0.0219

69.9, 65.4, 70.5,

70.2, 71.7, 71.3,

71.1, 70.6, 71.3

95.8, 91.2, 94.9,

95.0, 95.9, 95.6,

94.2, 94.2, 94.8

99.1, 99.2, 99.6,

99.3, 99.2, 99.4,

99.0, 99.2, 99.3

A detailed description and derivation of the equations of motion for a VIO system can be

found in [JS11].

We evaluated XIVO, a reimplementation of the EKF SLAM system described in [JS11],

on the TUM Visual Inertial Dataset [SGD18], a benchmark that features sequences of large,

fast, and aggressive motions of a rig containing a stereo camera pair and an IMU. The dataset

includes six sequences, named room1-room6, with “ground-truth” position and orientation

collected using a motion capture system. Since XIVO’s algorithm only uses monocular im-

ages, and not stereo images, we effectively have twelve sequences, totalling 32,470 timesteps.

XIVO’s estimate of the position and orientation is comparable with other state-of-the-art

46

VIO systems.1

Since the motion capture system did not measure velocity, we backdifferenced the position

ground truth in order to compute a velocity ground truth as well. Next, we used the method

of Horn [Hor87] to compute the transformation (a rotation and a translation) between the

ground-truth points and the estimated points, since the two sets of points were not recorded

in the same coordinate frame. The two room6 sequences were set aside as a test set while

the other ten sequences were used for training. The trajectory of the test set, the innovation

of the translation states, and overlay with the χ2
9 distribution are shown in Figure 3.4.

3.4.1 Validating the Zero-Mean Assumption

The analysis in Section 3.1.3 assumes that the errors are zero-mean. We compute the errors

for all timesteps of the twelve sequences in the TUM VI dataset and find the mean of all

of them. After interpolation and alignment of the ground-truth data, the mean translation,

rotation, and velocity errors are 5.18e-17m, 0.0064rad, and 0.0017m/s, respectively while

the mean Euclidean norms of ground-truth translation, rotation, and velocity across all 12

sequences in the dataset are 1.15m, 1.50rad, and 0.902m/s. The translation error is zero

because the method of Horn optimizes translation error when computing the alignment be-

tween the coordinate frames from the ground-truth measurements and the estimated states.

Although technically nonzero, the rotation and velocity errors are small when compared to

the motions in the dataset. Therefore, we will consider them negligible and consider the

mean of the errors to be zero.

3.4.2 Validating the Ergodicity Assumption

The sample covariance in (3.7) is computed for each timestep k using a window of states

centered around k. In order to find the best possible window size for each state of interest,

we computed DL2(ρ̃k∥χ2) using odd-numbered window sizes between 27 and 601 for the ten

1See the table at https://github.com/ucla-vision/xivo/blob/devel/wiki.md for XIVO’s absolute
trajectory error (ATE) and relative pose error (RPE). Note that these errors are not the same as the mean
error in Section 3.4.1.

47

training sequences. A window size of 275 produced low divergences for both the ten training

sequences and the two test sequences. The divergence on the test set was 0.1105. The

overlay with the χ2
9 distribution is in Figure 3.4. Because these numbers are relatively small

when compared to the divergences computed with the sampled covariances, and because of

the relative visual fit compared to the overlay generated with the unadjusted covariance, we

consider the ergodicity assumption validated.

3.4.3 Experimental Results

We run our ten sequences of training data through Hypotheses 1-4. For Hypotheses 3 and

4, we use ReLU activations, a L2 regularization weight of 0.001 in the loss function, and set

wij = 10 along the diagonals, 2.5 for off-diagonals in the same state’s 3 x 3 block, and 0.5

otherwise. The neural network for Hypothesis 3 had hidden layers with widths 1024, 512,

256, 128, 64 and was trained for 25 epochs. The best network for Hypothesis 4 had hidden

layers with widths 256, 256, 256, 128, 128 and was trained for 50 epochs.

Divergences for the combined two test sequences are shown in Table 3.2 and visualized in

Figure 3.5. The “% Dec.” column in Table 3.2 displays the total decrease in divergence from

the unadjusted covariances as a percentage of the reduction achieved using ergodic ground-

truth. Numbers in the “Test Set Sampling” column are means and standard deviations

of divergences computed from 50 groups of 200 points each from the test sequences. In the

interest of space, the last three columns contain percentages for the position and orientations

only. The trends are the same as those shown for the 2D localization experiment despite using

ergodicity rather than Monte-Carlo simulations to compute ground-truth covariances: the

calibration of the ground-truth covariance is within one standard deviation of the calibration

of both neural networks and the calibrations of Hypotheses 1 and 2 are inadequate. Once

again, when there was very little overlap between a histogram and the χ2 density, we did

not plot the χ2 density.

48

(a) Scalar Adjustment (b) Matrix Adjustmnet

(c) Neural Network Adjustment (d) State-Dependent NN Adjustment

Figure 3.5: Overlays of the test set’s ρ̂k computed with adjusted covariances - a visualization

of the results in Table 3.2.

49

3.5 Summary

We have shown that there exists a learnable map between the uncalibrated estimates of a

typical Extended Kalman Filter for VIO and the true, calibrated values. Another conclusion

is that the ergodicity assumption is a reasonable way to compute a “ground-truth” value for

covariance for suitable ground-truth motion when Monte-Carlo trials are not possible. Most

interesting is the fact that the learnable map is almost entirely dependent on the covariance

matrices alone for both XIVO and the smaller 2D navigation system.

50

CHAPTER 4

Feature Tracks are not Zero-Mean Gaussian

We now examine Assumption 2 of Figure 1.1, that feature track measurement errors are zero-

mean Gaussian. That measurement errors, in general, are zero-mean Gaussian is an explicit

assumption in the Kalman Filter and its nonlinear variants [TBF05, BB18] and implicitly

built-into the optimization problem of bundle adjustment algorithms [MMT15b] and outlier-

rejection algorithms [CGD09]. With extensive calibration with respect to temperature and

mechanical alignment, the zero-mean Gaussian assumption is sufficient for the measurements

of sensors such as inertial measurement units (IMUs) [Vec, TPM14], even if it is still not

completely true: Extended Kalman Filters (EKFs) that rely on these IMUs are deployed on

safety-critical systems actively in use.

Even though several well-known algorithms for Simultaneous Localization and Mapping

(SLAM) rely on the often-deployed EKF (e.g. [JS11,GEL20,BBO17]), SLAM is still an active

area of research. The existence of recently-released and actively used research benchmark

datasets [ZHF22,WZW20] indicate that the robotics and computer vision communities still

believe that performance of SLAM and an understanding of its failure cases are still insuffi-

cient, even after three decades of development [DB06]. This motivates an examination into

the fundamental assumptions of SLAM.

This manuscript visits the assumption that feature tracks, the “measurements” of any

indirect visual SLAM algorithm, contain only zero-mean Gaussian error. The covariance of

the feature tracks is typically a tuning parameter to for all features at all times. We show

that the feature track errors are not zero-mean Gaussian and furthermore, that the errors

are conditional on the type of motion, the speed of motion, and the type of feature tracker

used to extract the feature tracks. To our knowledge, this is the first study of the mean and

51

covariance of feature tracks conditional on the factors that affect them.

The organization of this chapter is as follows. Section 4.1 details the methods. Section 4.2

presents some key figures, and summarizes the error distribution of feature trackers. Section

4.3 ends with some concluding remarks. Additional figures from the experiment are given in

Appendix.

4.1 Method

We wish to characterize the dependence of mean error, mean absolute error, covari-

ance, outlier ratio, and feature lifetime on motion type, speed, tracker type, and when

available, lighting. The types of motion investigated are:

• Sideways motion – Linear movement with no rotation.

• Fixating motion – Moving in a constant radius around a central object. The camera

is always pointed directly at the central object, creating some rotation.

• Forwards motion – Driving-like motion. The primary change frame-to-frame is scale.

Points near the center of an image will stay near the center in subsequent frames.

To vary speed, we skip frames at regular intervals from the image sequences. Nominal speed,

or a speed of 1.00, means that all frames are used. A speed of 2.00 means that the feature

tracker will only see every other frame, and a speed of 3.00 means that the feature tracker

will only see one in every three frames. We do not test speeds below 1.00. The exact speeds

tested depends on dataset. Finally, we also investigate the effect of two types of feature

trackers:

• Lucas-Kanade Sparse Optical Flow [LK81]

• Correspondence Tracker using the SIFT descriptor [Low99]. Although computa-

tionally expensive, the SIFT descriptor was chosen because of its availability and its

performance when used in state estimation tasks [SHS17b]. The descriptor of a feature

track is set at the first frame it is detected and never updated.
52

We have chosen not to study lens distortion, since this would require multiple simi-

lar datasets collected with different cameras. All images in all datasets either have been

preprocessed to remove lens distortions, or simulated without lens distortions. Since the

Lucas-Kanade tracker is differential, we also choose not to study a differential correspon-

dence tracker that updates the descriptor of a feature track at every frame.

4.1.1 Equations

Consider a feature i that was first detected at time ti0. If a depth image is available at time

ti0 and gsc(ti0) is known, we may fix the feature’s position in the spatial frame, X i
s:

X i
c(t

i
0) = π−1

K (xp(t
i
0), Z

i
0)

X i
s = gsc(t

i
0) ◦Xc(t

i
0) (4.1)

In the above equation, Zi
c(t

i
0) is the third coordinate, or depth, of X i

c(t
i
0). Once, X i

s is fixed,

we can then calculate the “ground-truth feature track” x̄ip(t):

x̄ip(t) = πK(g
−1
sc (t) ◦X i

s). (4.2)

Some datasets provide a ground-truth point-cloud generated by a single lidar scan rather than

a stream of depth images. A lidar scan is a point cloud withM ∼ 107 points in the lidar frame

L, which is defined as the camera frame at a particular time tL: PL = {P 0
L, P

1
L, . . . , P

M
L }.

We can calculate the pixel coordinates of each point j in PL:

πK(PL) = {πK(P 0
L), πK(P

1
L), . . . , πK(P

M
L)} (4.3)

Feature tracks visible at time tL can be associated with the nearest point in πK(PL). Suppose

the nearest point in πK(PL) to feature i is P j
L. Then, the ground-truth track of feature i is

X i
s = gsc(tL) ◦ P j

L

x̄ip(t) = πK(g
−1
sc (t) ◦X i

s).
(4.4)

Once we have a ground-truth feature track for feature i, we can calculate the error signal for

that feature:

ei(t) = xip(t)− x̄ip(t) (4.5)
53

where xip(t) is the observed track.

For datasets that provide a ground-truth point cloud at a single frame, the mean error

at timestep t is

µ(t) =
1

M(t)

M(t)∑
i=1

ei(t) (4.6)

where M(t) is the number of tracked features at time t. The mean absolute error at

timestep t

κ(t) =
1

M(t)

M(t)∑
i=1

|ei(t)|. (4.7)

Similarly, the covariance at timestep t is calculated by

Σ(t) =
1

M(t)− 1

M(t)∑
i=1

ei(t)ei(t)T . (4.8)

It is only possible to compute µ(t), κ(t), and Σ(t) for features that are visible at time tL,

when the laser scan was acquired.

For datasets that provide a stream of depth images, we use different definitions of mean

error, mean absolute error, and covariance. We can also use all features and not just those

visible in a particular frame. The mean error after k timesteps is

ν(k) =
1

Ψ(k)

Φ(k)∑
i=1

ei(ti0 + kδt) (4.9)

where Ψ(k) is the number of features in the entire dataset tracked for at least k timesteps

and δt is the length of each timestep. The mean absolute error after k timesteps is:

η(k) =
1

Ψ(k)

Ψ(k)∑
i=1

|ei(ti0 + kδt)| (4.10)

where Φ(k) is the number of features tracked for at least k timesteps and δt is the length of

each timestep. Finally, the covariance after k timesteps is given by

Φ(k) =
1

Ψ(k)− 1

Ψ(k)∑
i=1

ei(ti0 + kδt)e
i(ti0 + kδt)

T . (4.11)

When depth data is available at all frames, we define the feature’s 3D location at the frame

it is first detected and use equations (4.9), (4.10), (4.11).
54

At each frame, a feature tracker will attribute some features in one frame to the features

in the previous frame. Let F (t) be the total number of features in the frame at time t. The

features in each frame will consist of f0(t) correct attributions, f1(t) incorrect attributions,

and f2(t) new features, where f0(t) + f1(t) + f2(t) = F (t) and f0(t) + f1(t) ≤ F (t − 1).

Outlier rejection algorithms are used to determine f0(t) and f1(t) in real-time. The outlier

ratio is defined as:
f1(t)

F (t− 1)
. (4.12)

Finally, the feature lifetime of a feature track is the total number of consecutive frames

in which it found and successfully attributed. A feature is “born” at the frame it is first

detected and “dies” if a feature is not found for a single frame.

4.2 Experiment Details

4.2.1 Feature Tracker Configuration

We used the feature tracker is the Tracker object integrated with XIVO, our in-house SLAM

system. The tracker is configured to use the AGAST corner detector [MHB10], and to track

between 1000 and 1200 features at a time. The AGAST corner detector was chosen for its

speed and because it detects a large number of features in most scenes. The feature tracker

was configured to track up to 1200 features per scene. We use RANSAC with p = 0.995

and an error threshold of 3 pixels to reject outliers. More details on the Tracker object and

XIVO can be found in Appendix A.

Since the tracker software was programmed to be part of a larger system and not specif-

ically for these experiments, the implementation of the Correspondence Tracker is not ideal.

If a feature is visible in frames 0-5, but is not detected in frame 2, the tracker will drop

the feature at frame 2 and initialize a new one in frame 3. This behavior is consistent with

the definition of feature lifetime given in the previous section, but is not the ideal imple-

mentation for a Correspondence Tracker because there is always a possibility that a corner

detector will not find the corner in one frame, or that a descriptor will be just a little too

55

different in one particular frame because of lighting. A more ideal implementation of the

Correspondence Tracker would drop frames after a Nm missed frames, where Nm > 1 is an

experimentally determined number. The definition of feature lifetime would also be changed

to accommodate this more complex behavior. As a result of this choice, the distribution

of feature lifetimes for the Correspondence Tracker are shorter than they otherwise would

be. Furthermore, our experiments will fail to characterize trends that only appear at higher

speeds.

4.2.2 Dataset-Specific Details

DTU Point Features Dataset. The DTU Point Features Dataset [ADS12] consists of

sixty scenes of fixating motion. In the dataset, one or more objects is placed at the center of

stage lit with up to 19 LEDs. A camera is mounted on a robot arm and moved in a precise

manner at the stage. At each of 119 fixed locations, the camera acquires an image lit with

one of the 19 LEDs, enabling lighting experiments using image-based relighting. The dataset

contains a laser scan of the scene at a single frame, called the Key Frame. The original image

size is 1600 × 1200. For speed, we use 800 × 600 px. grayscale versions of the images instead

of the full resolution images.

We make use of the first 49 frames of each scene, or Arc 1 (see Figure 4.1). The Key

Frame is Frame 25. We calculate mean error µ, mean absolute error κ, and covariance Σ

using equations (4.6), (4.7), and (4.8). Since 3D data is only available at the Key Frame,

calculation of errors and covariances only includes features that exist in Frame 25. Therefore,

there is a bias towards longer tracks, as all short tracks that don’t exist in Frame 25 are all

tossed out. Since the “ground-truth” position of each feature in 3D is defined by its position

in Frame 25, all results will therefore show that Frame 25 has zero covariance and the lowest

errors. Statistics on feature lifetime and outlier rejection, however, do include features that

do not exist in Frame 25.

To compute the ground-truth location of a feature track, we must associate a feature

track to a point in a laser scan point cloud (eq. (4.4)). Since the point cloud does not cover

56

every pixel in the image, associations between features and laser scan points are only made

if the pixel value of the laser scan point (eq. (4.3)) is less than 0.25 pixels from the feature.

Associating a pixel to a laser scan point with the incorrect depth measurement will result in

a very large calculated means in equation (4.6). Even with the low 0.25 pixel threshold, this

bad association can still happen around edges and corners of objects. So that our analyses do

not include very many of these poor depth associations, we throw out feature tracks whose

maximum error is greater than the 90th percentile.

Since the DTU Point Features dataset was designed to enable image-based relighting, we

also investigated the effects of directional light in addition to speed and the tracker used.

We tested the same directional lights as [ADS12]. The position of each directional light is

shown in Figure 4.1.

KITTI Vision Suite. The raw data [GLU12] in the KITTI Vision Suite consists RGB,

GPS, IMU, and Lidar data captured from a moving vehicle. The motion captured in the

images is predominantly forwards. The Lidar data was then processed into a separate

benchmark dataset of depth images for single-image depth prediction and depth comple-

tion [USS17]. We make use stream Image02. Sequences containing “still frames” (e.g. signif-

icant amount of waiting at a traffic light), are excluded. Excluding sequences containing still

frames leaves 28 scenes for our experiments. Although this is fewer scenes than the DTU

dataset, it is still more frames because most sequences are longer than 49 frames.

Since 3D data is available at every frame, we define a feature’s 3D position using the

depth image from the very first frame where it was detected. Therefore, we use mean error ν

(eq. (4.9)), absolute error η (eq. (4.10)), and covariance Φ (eq. (4.11)). To avoid errors due

to bad depth measurements, we throw out the tracks whose maximum L2 error are above

the 90th percentile and only calculate ν, η, and Φ at timesteps where there are at least 100

features (see Fig. B.56).

Simulated Supplementary Data. For sideways motions, we collected simulated RGB-D

data in Gazebo. The simulation consisted of a Microsoft Kinect, modified so that RGB and

57

Figure 4.1: An Illustration of the Light Stage Setup in the DTU Point Features

Dataset. Left: The locations at which images were acquired in the DTU Point Features

dataset form three arcs and a linear path. Laser scans of the scenes were collected at the Key

Frame (front and center). Frames from Arc 1 (circled in blue) are used for this experiment.

Right: Red circles depict the location of 19 physical LEDs used to light the scene, which

are spaced out over the scene. At each camera position in the left figure, the authors of

the DTU Point Features dataset acquired 19 images. In each image, exactly one of the 19

LEDs is switched on. Acquiring 19 images in each location this way facilitates experiments

in lighting using image-based relighting. Diffuse lighting can be simulated by using all 19

photographs from each position equally. More intense directional lighting can be simulated

by weighting some LEDs more than others. In our experiments, we vary lighting from back-

to-front (BF0-BF7) and left-to-right (LR0-LR9) as the camera follows the motion of Arc 1.

Lights LR0 - LR9 and BF0 - BF7 are calculated by using Gaussian-weights on the 19 lights

with σ = 20cm; Light LR6 is highlighted in green. Figures are reprinted and annotated with

permission.

58

depth data would be co-located, mounted on a Hector quadrotor [MSK12] in ROS Melodic.

The scene consisted of large objects from the Open Source Robotics Foundation’s Gazebo

Model Library. Images have a resolution of 800 × 600 pixels. In the subsequent sections, we

refer to this dataset as “Gazebo Linear”.In the Gazebo Linear dataset, we throw out tracks

whose errors are above the 80-th percentile due to drift that naturally occurs when using the

Lucas-Kanade Tracker in an environment containing straight and crisp edges parallel to the

direction of motion. More details are given in Figure B.66.

4.2.3 Results

Mean error, mean absolute error, covariance, feature lifetime, and outlier ratio are all depen-

dent on the type of motion, the tracker used, and the speed. For the DTU Point Features

dataset, we found no dependence on the existence of directional light unless the directional

light happened to cause tracking failure at high speeds. In Tables 4.1 - 4.3, we list the exact

dependence of mean error, mean absolute error, feature lifetime, covariance, and outlier ratio

on each independent variable. Differences in Tables 4.1 - 4.3 lead us to conclude that feature

tracks are dependent on motion, tracker, and speed, but not the existence of directional

light.

One notable difference between the Lucas-Kanade and Correspondence Trackers is that

feature tracks produced by the Lucas-Kanade Tracker drift steadily while the Correspon-

dence Tracker does not. This is because the Lucas-Kanade Tracker is differential, i.e. the

characterization of a feature will slightly change frame to frame. For the Correspondence

Tracker, this is not true. Therefore, the location of the feature track will drift, and the

direction and magnitude of drift is dependent on the direction of motion. With left-to-right

fixating motion, drift is positive (see Figure B.7). With left-to-right linear motion, drift is

negative, and also larger (see Figure B.72). The flipside is that the Lucas-Kanade tracker

generates features with a longer lifetime (see Figures B.2, B.55, B.67. When motion is

fixating, the Correspondence Tracker also drifts about the direction of motion (see Figure

B.21).

59

Finally, we note that the zero-mean Gaussian assumption holds when motion is predom-

inantly forwards and we are using the Correspondence Tracker (see Figures B.63 and B.65).

All figures supporting the assertions in this section are given in the Appendix.

Tracker Lighting Speed

µ(t) No (fig. B.7) No (figs.

B.15, B.16)

No (figs. B.12, B.9)

κ(t) Yes (fig. B.8) No (fig. B.8) Yes for Correspondence Tracker

(fig. B.13), No for Lucas-Kanade

Tracker (fig. B.10)

Σ(t) Yes (fig. B.8) No (fig. B.19,

B.20)

Yes for Correspondence Tracker

(fig. B.14), No for Lucas-Kanade

Tracker (fig. B.11)

Feature Life-

time

Yes (fig. B.2) No (fig. B.5) Yes (fig. B.6)

Outlier Ratio Yes (figs. B.4,

B.3)

No (fig. B.4) Yes (fig. B.3)

Table 4.1: DTU Point Features Results Summary. Cells contain whether or not the

dependent variables in the left column are affected by the independent variables listed in

the top row. Entries also contain figure numbers containing justification. The “Tracker” and

“Lighting” columns contain references to figures containing plots at nominal speed. Although

not indicated in the table, Figures B.26 - B.41 in the Appendix show that the existence of

directional lighting continues to not affect outlier ratio, mean error, mean absolute error,

and covariance at higher speeds for both the Lucas-Kanade and Correspondence Trackers.

4.3 Summary

Other than the caveat about the Correspondence Tracker noted in Section 4.2.1, the main

limitation of this work is that there are more variables we could have tested, but chose

60

Tracker Speed

ν(t) No (fig. B.58) Yes (figs. B.60, B.63)

η(t) Yes (fig. B.59) No for Correspondence Tracker

(fig. B.64), Yes for Lucas-Kanade

Tracker (figs. B.61)

Φ(t) Yes (fig. B.59) No for Correspondence Tracker

(fig. B.65), Yes for Lucas-Kanade

Tracker (fig. B.62)

Feature Life-

time

Yes (fig. B.55) Yes (fig. B.56)

Outlier Ratio Yes (fig. B.57) Yes (fig. B.57)

Table 4.2: KITTI Results Summary. Cells contain whether or not the dependent vari-

ables in the left column are affected by the independent variables listed in the top row.

Entries also contain figure numbers containing justification.

61

Tracker Speed

ν(t) Yes (fig. B.70) No for Correspondence Tracker

(fig. B.75), Yes for Lucas-Kanade

Tracker (fig. B.72)

η(t) Yes (fig. B.71) Yes (figs. B.73, B.76)

Φ(t) Yes (fig. B.71) Yes (figs. B.77, B.74)

Feature Life-

time

Yes (fig. B.67) Yes (fig. B.68)

Outlier Ratio Yes (fig. B.69) No for Correspondence Tracker,

Yes for Lucas-Kanade Tracker (fig.

B.69)

Table 4.3: Gazebo Linear Results Summary. Cells contain whether or not the dependent

variables in the left column are affected by the independent variables listed in the top row.

Entries also contain figure numbers containing justification.

62

not to. Examples of variables we chose not to test are the choice of feature detector and

descriptor, and characteristics in the scene. For example, would the Correspondence Tracker

have as little drift when moving forwards in an indoor environment and comparing BRIEF

descriptors? Testing for conditionality on more variables inevitably leads to an unmanageable

experiment, so we chose to lock in the feature detector and descriptor to well-performing

available options and let the dataset dictate available scenes. Nevertheless, our work is a

first step in characterizing the dependence of mean error, mean absolute error, covariance,

feature lifetime, and outlier ratio on motion, tracker, speed, and the existence of directional

lighting. The main conclusion is that the common zero-mean Gaussian assumption is rarely

true.

63

CHAPTER 5

Quantifying VIO Uncertainty

This chapter examines Assumption 3 of Figure 1.1: that the estimated robot position is

reliably correct. The previous chapter observed that the feature tracks commonly used in

visual inertial odometry algorithms are affected by drift, noise, and attribution errors. This

chapter follows up on the previous chapter and investigates the effect of drift, noise, and

attribution errors on state estimation performance and uncertainty of XIVO in simulation.1

Using a simulation rather than a benchmark dataset of real-world data allows us to quantify

the individual effects of each rather than a mixture of all three. It also enables Monte-Carlo

trials to calculate uncertainty without using the ergodicity assumption in Chapter 3. Since

our previous work has shown that covariance matrices estimated by XIVO are not accurate,

all mentions of “uncertainty” or “covariance” refers to sample covariances calculated using

Monte-Carlo trials.

Most existing works on visual-inertial odometry benchmark performance on a real-world

dataset of motion sequences consisting of IMU data and RGB images. When using current

real-world datasets, there is little opportunity to benchmark uncertainty, as each motion

sequence is only collected once.2 Simulated cause-and-effect on our in-house monocular

visual-inertial system allows us to study the effects of Gaussian noise, drift, and attribution

errors individually on a general implementation. In real-world data, all these effects are

tangled together.

Section 5.1 details the exact definitions and equations used in this chapter. Section 5.2

1Assumption 3 of Figure 1.1 is that the state estimate is “correct”.

2If the ergodicity assumption holds, the methods in Chapter 3 can be used to compute uncertainty using
real data.

64

gives details about the experiment. This chapter then ends with some concluding remarks.

5.1 Preliminaries

Our notation is consistent with [ML94] and past works describing the algorithm implemented

in XIVO [JS11], [HTS15]. A description of the notation is given in Appendix A.

Let T denote the length of a trajectory in timesteps. Timestamps are denoted with the

variable t. The state x(t) ∈ R9 contains a rotation vector, translation vector, and velocity.

Let x̂(t) denote the estimated state and e(t) = x̂(t)− x(t) denote the error state.

Our Monte-Carlo trials contain N runs each, indexed by n. xn(t), en(t) are the state and

error state at time t in run n. The sample covariance at each timestep is given by

Σ(t) =
1

N − 1

N∑
n=1

en(t)en(t)
T . (5.1)

The mean sample covariance over an entire trajectory is

Σ̄ =
1

T

T∑
t=0

Σ(t) (5.2)

Although not a part of standard metrics for evaluating SLAM systems [SEE12], errors

in scale are the most sensitive to small perturbations in the input data. In other words, the

error in translation and linear velocity are state-dependent and well-aligned with the ground-

truth translation vector. This magnitude of these errors will vary widely depending on the

exact imperfections in the input data. The scale factor ρ of an estimated trajectory is the

mean value of the ratio of the norms of the estimated translation T̂sb(t) and ground-truth

translation Tsb(t), after both trajectories are centered around their centroids:

ρ =
1

T

T∑
t=0

∥ ˆ̃Tsb(t)∥
∥T̃sb(t)∥

(5.3)

where

T̃sb(t) = Tsb(t)−
1

T

T∑
τ=0

Tsb(τ)

ˆ̃Tsb(t) = T̂sb(t)−
1

T

T∑
τ=0

T̂sb(τ).

(5.4)

65

When ρ < 1, the estimated trajectory is “smaller” than the ground-truth trajectory. When

ρ > 1, the estimated trajectory is “larger” than the ground-truth trajectory. To avoid

division-by-zero errors when Tsb is close to the origin, we only include timesteps when

∥Tsb(t)∥ > 0.1 when computing ρ. For a set of N Monte-Carlo trials indexed by n, we

can compute a set of scale factors ρn using equation (5.3) and plot their distribution.

5.1.1 On Observability and Identifiability for Monocular VIO

Observability is a property of a model that is assumed to contain a dynamic state, inputs,

and outputs. Informally, a model is observable if given the inputs and outputs, the trajectory

of the dynamic state can be exactly determined. A model is unknown-input observable if

the state of the model can be exactly determined even if a subset of the inputs are not

known. If the model contains calibration parameters to be estimated online, then the model

is identifiable if the value of the calibration parameters and the trajectory of the dynamic

state can be determined from the inputs and outputs. Parameter identifiability requires

a sufficiently exciting input, i.e. if the input is not varied enough then it is possible that

multiple values of the calibration parameters can satisfy the model dyanmics and output

equations. What makes an input sufficiently exciting depends on the model.

For linear time-invariant systems, the definition of a sufficiently exciting input is well-

known. The condition is called persistent excitation. Various equivalent definitions can be

found in [AT65], [SLG76], and [WRM05].

The exact conditions for sufficient excitation of nonlinear systems is not well understood

and is still an active area of study. An early result states that nonlinear systems are locally

identifiable if their linearization about an equilibrium point is identifiable [GG76] — then the

requirement for parameter identifiability is the same as for a linear time-invariant system,

persistent excitation. Examples of recent papers on the topic are [PSA17,VT20,TM22]. In

texts on systems identification and adaptive control, the requirements for sufficient excitation

can be derived from LaSalle’s invariance theorem and Barbalat’s Lemma [LW12]. Texts on

system identification and adaptive control typically focus on linear-in-parameters nonlinear

66

systems, or other assumed relationships between the dynamics and the parameters.

VIO models are not covered by the literature on systems identification and adaptive

control. There are many previous works about the observability and identifiability of VIO

models; each paper uses a slightly different model. The definition of sufficient excitation

therefore varies from work to work. For example in [JS11], IMU measurements are outputs

and the inputs to the model, linear jerk and angular acceleration, are modeled as noise inde-

pendent of the state. IMU biases are Brownian motion. In [YGE19], the IMU measurements

are modeled as inputs, rather than outputs, and the state contains an extra time-calibration

parameter. IMU input noise is independent of the state. In [HTS15], IMU measurements

are inputs to the model, IMU input noise is not independent of the state, there is no extra

time-calibration parameter, and IMU biases are slowly-varying unknown inputs rather than

noise. The model implemented in XIVO and used in these experiments is the one examined

in [HTS15].

[HTS15] proves that the VIO model under examination is identifiable if and only if IMU

bias rates are zero or exactly known. Otherwise, there exist multiple trajectories that can

satisfy the output equations. The multiple trajectories are, however, a bounded set; the size

of the bounded set is proportional to the IMU bias rates and inversely proportional to the

minimum excitation of the angular velocity, angular acceleration, angular jerk, and linear

jerk. The minimum excitation of a 3D signal f(t) over a time interval t ∈ I is defined as:

m(f : I) = inf
∥x∥=1

(
sup
t∈I
∥f(t)× x∥

)
. (5.5)

In other words, the minimum excitation of f(t) is determined by the (arbitrary) direction

in 3D space with the smallest maximum value. If there is a direction that is not covered at

all (e.g. no angular jerk in the z-direction), then the minimum excitation is zero, and the

bounded set of possible trajectories in [HTS15] is actually unbounded. Sufficient excitation

therefore means that angular velocity, angular acceleration, angular jerk, and linear jerk each

cover 3-DOF. A randomly generated 3D trajectory will almost surely meet the requirement.

Of course, the model and the state estimation algorithm are different. A state estimation

algorithm may fail to find the correct state of an observable model with a sufficiently exciting
67

input. Conversely, it is also possible for a state estimation algorithm to produce the original

state even if the model is not observable or the input is not sufficiently exciting.

5.2 Experiment

We simulate IMU and visual inputs to our in-house VIO system, XIVO. Inputs are perturbed

with Gaussian noise, drift, and random attribution errors so that we may measure the effect

of each on Absolute Trajectory Error (ATE), Relative Pose Error (RPE), sample covariance

Σ(t) (5.1), and scale factor ρ (5.3).

5.2.1 The Trajectory Studied

Our experiment focuses on a randomly generated trajectory that is guaranteed to be suf-

ficiently exciting and pictured in Figure 5.1. In the randomly generated trajectory, linear

acceleration αs
sb and angular velocity ωs

sb in the spatial frame are modeled as Brownian mo-

tion with acceleration drift σα = 0.1 m and angular velocity drift σω = 0.001 rad/s. A

random amount of drift is added to αs
sb and ωs

sb with every IMU measurement, at 400Hz. αs
sb

and ωs
sb are then transformed into the body-frame inputs, αb

sb and ωb
sb. Boundary conditions

on linear velocity vsb are set to [−3,−1,−1] m/s and [3, 1, 1] m/s. Boundary conditions on

translation Tsb are set to [−6,−3,−3] m and [6, 3, 3] m. If the simulated ground-truth state

in the spatial frame hits either boundary, the sign of that component of linear acceleration

is flipped. Boundary conditions on all components of rotation vector wsb are set to −π and

π. The total length of the trajectory is 127.76m over 80 seconds.

Although randomly generated Brownian motion curves, such as the trajectory in Figure

5.1, are guaranteed to be sufficiently exciting, the frequent and non-smooth changes in

rotation and acceleration make convergence of an EKF and feature depth initialization (see

Appendix A) difficult due to lack of parallax for triangulation.

68

x (m)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

y (
m)

0.8
0.6

0.4
0.2

0.0
0.2

z (
m

)

1

0

1

2

3

0 10 20 30 40 50 60 70 80

0.2

0.0

0.2

Gy
ro

sc
op

e
(ra

d/
s)

x
y
z

0 10 20 30 40 50 60 70 80
Time (s)

25

0

25

50

Ac
ce

l (
m

/s
2)

Figure 5.1: The Brownian motion trajectory. Linear acceleration and angular velocity

are modeled as Brownian motion. Translation is plotted in the left figure in 3D. The linear

acceleration and angular velocity inputs, in the body frame, are plotted in the right figure.

Sudden jumps in the acceleration input correspond to instances when the trajectory hits a

boundary condition in the spatial frame.

5.2.2 Configuration

The configuration of XIVO in Monte-Carlo experiments is given in Figure 5.2. More details

about the configuration are given in the paragraphs below.

IMU Simulation. We simulate an IMU with similar specifications to the Intel RealSense

d435i, a low-cost device. The accelerometer and gyroscope produce measurements at 400

Hz. IMU noise levels are held constant with accelerometer noise σa = 1e−4 m/s2/
√

Hz

and gyroscope noise σg = 1e−5 radians/s/
√

Hz. IMU bias is initially zero, but drifts with

parameters σba = 3e−4 m/s2/
√

Hz and σbg = 5e−6 radians/s/
√

Hz.

Vision Simulation. So that we may have complete control over feature position errors

and attribution, we skip the typical image processing step and instead directly feed pixel

measurements of an attributed point cloud into XIVO at a rate of 25Hz. The point cloud

consists of 1000 randomly generated points uniformly located in a box; all Monte-Carlo trials

use the same set of generated features. At each vision timestep Visibility is calculated using

69

3D Outlier
Rejection

EKF
Measurement

Prediction

EKF
Measurement

Update

EKF State
Prediction

IMU Meas.
Pred. Pixel Coords.
of Tracked FeaturesPred. State

Est. State

Pruned
Feature List

“Feature Tracker”

Select features
to “track”

Feature IDs and
Pixel Coordinates

Figure 5.2: XIVO’s Configuration for Monte-Carlo Experiments. For Monte-Carlo

experiments, XIVO’s typical feature tracker was replaced with simple bookkeeping software.

Loop closure, an optional component, was not used. The typical configuration of XIVO is

given in Figure A.1.

a camera with no distortion and the following intrinsics:

K =


275 0 320

0 275 240

0 0 1

 (5.6)

Observed features fall in and out of view during motion.

Extrinsics. Due to the development of specialized visual-inertial calibration algorithms

and software, such as Kalibr, we assume that camera intrinsics, camera-IMU timestamp

alignment, camera-IMU extrinsics, and accelerometer-gyroscope alignment are known. As

in [JS11], we “remove” camera-IMU extrinsics from the state by setting the initial covariance

of that portion of the state to a value ∼ 1e−10. All other calibration quantities are removed

from the state through compile-time switches.

XIVO Configuration. A bare-bones “feature tracker” is configured to “track” and initial-

ize depth estimates of 250 - 500 visible features. If there are more than 500 features, they
70

will be ignored. Feature depths are initialized with a combination of triangulation minimiz-

ing angular reprojection errors [LC19a] and subfiltering. There is no loop closure in these

experiments. The EKF in XIVO uses 60 tracked features in its state. The features selected

for state estimation are those with the most confident estimate of depth (see Appendix A

for more details).

5.2.3 Experiment Parameters

Gaussian Noise. Let σp be the standard deviation of noise added to feature tracks and

let σ̄p be the standard deviation of noise used by the EKF when creating state estimates.

We test values of σp ∈ {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50} pixels and set

σ̄p = σp.

Drift. To simulate drift, we associate with each feature j a bias bjp(t) ∈ R2, with unit

of pixels. When feature j is first detected, bjp(t) is initialized to [0, 0]T . With each frame,

bjp(t) evolves as bjp(t + 1) = bjp(t) + B where B ∼ N (0, σb). At time t, the XIVO receives

a simulated tracker measurement of π(Xc(t)) + bjp(t), where Xj
c (t) ∈ R3 is the location of

feature j in the camera frame at time t. We test σb ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and

two different values for the assumed Gaussian noise uncertainty in the EKF, σ̄p = 0.50 and

σ̄p = 1.00. Over 25 frames (one simulated second), this corresponds to an average drift of

zero pixels for all values of σb, with standard deviations of {0.005, 0.025, 0.05, 0.25, 0.5, 2.5}

pixels.

Attribution Errors. To create attribution errors, we swap the measurements of η percent

of uniformly randomly selected visible features each frame before passing feature tracks to

XIVO. The features assigned attribution errors are always those that are “tracked” by the

bare-bones feature tracker, but may or may not be used in state estimation by the EKF.

XIVO is configured to use Mahalanobis Gating to reject outlier measurements, such as

those caused by misattributions. Since measurement errors caused by randomly swapping

visible features are catastrophic, Mahalanobis Gating prevents the outlier measurements

71

from becoming part of the EKF’s measurement update. Therefore, the real effect of our

random misattributions is that the lifetime of feature tracks are prematurely cut short. We

test with η = 0, 1, 2.5, 5, 7.5, 10, 20, 30, 40 percent.

5.2.4 Results

The outputs of our Monte-Carlo experiments are the box-and-whisker plots of distributions

of ATE, RPE, mean sample covariance, and scale factor, shown in Figures 5.3 - 5.14. As

expected, increasing Gaussian noise, drift, and attribution errors increase ATE, RPE, mean

sample covariance, and scale errors. The degradation with respect to Gaussian noise and

drift is graceful. However, the degradation with respect to attribution errors is exponential.

Cutting the lifetime of feature tracks causes the largest performance errors, mean sample

covariance, scale bias, and scale variance. Next, Gaussian noise causes larger performance

errors, mean sample covariance, and scale uncertainty than drift. Drift, however, causes

larger scale bias than Gaussian noise.

More particular details are noted in the paragraphs below. All plots for the same quantity

(e.g. distribution of ρ) use the same vertical-axis scale for the Gaussian noise and drift

experiments. The plots containing results of the attribution experiments require a different

vertical-axis scale because of the exponential degradation.

Gaussian Noise. Results are shown in Figures 5.3, 5.4, 5.5. The general trend is that

performance errors and state uncertainty, and variations of performance error and state

uncertainty, increase with σp. The variation in ρ generally increases with σp, but mean and

median of ρ hover around 2.1.

Next, we note that for performance error and scale errors for σp = 0.25 are larger than

performance error and scale errors for σp = 0.50. We hypothesize that the combination of

frequent changes in motion that make the dynamics less linear and poor feature initialization

add measurement errors that are not adequately captured when we set σ̄p = σp. When we

instead set σ̄p a little bit higher, to σ̄p = σp + 0.25, performance error and scale errors when

72

σp = 0.25 become lower than when σp = 0.50. Results when σ̄p = σp + 0.25 are shown in

Figures 5.6, 5.7, and 5.8.

Drift. Distributions of performance error, state covariance, and scale error in the drift

experiment are shown in Figures 5.9, 5.10, 5.11. Performance error, state covariance, and

scale errors increase monotonically with σb for both σ̄p = 0.50 and σ̄p = 1.00; their variations

also widen as σb increases. Values of performance error, state covariance, and ρ are closer to

their ideal values when σ̄p = 0.50 than when σ̄p = 1.00 for smaller quantities of drift. Once

σb is high enough, values of performance error, state covariance, and ρ are closer to their

ideal values with σ̄p = 1.00.

Attribution Errors. Distributions of performance error, state covariance, and scale error

are shown in Figures 5.12, 5.13, 5.14. Results are simple: performance error, state covariance,

and scale factor increase exponentially as η is increased. Variation in all three increase

uniformly with η. Figures 5.12, 5.13, and 5.14 only display values of η up to η = 0.1, so that

distributions of performance error, state covariance, and scale error at lower values are not

dwarfed. Mean values of performance error, state covariance, and scale factor are shown for

all tested values of η in Figure 5.15.

We note that η = 0.1 is a rather low percentage of outliers and that SLAM systems com-

monly encounter higher outlier ratios, as illustrated by the previous chapter. This indicates

that outliers in real-world data are not random, like our simulated attribution errors, and

that algorithms used to select features for state estimation are functioning as intended.

5.3 Summary and Discussion

There are at least two limitations to our results. The first is that we used theoretically correct

values of σ̄p in the Gaussian noise experiment rather than treating σ̄p as a tuning parameter.

An ideal experiment with infinite resources would find the very best3 value of σ̄p for every

3The notion of “best” also needs to be defined.

73

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Noise Added To Feature Tracks p (px)

0

1

2

3

4

5
Ab

so
lu

te
 Tr

aj
ec

to
ry

 E
rro

r (
m

)

p = p

(a) Absolute Trajectory Error

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Noise Added To Feature Tracks p (px)

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Po
se

 E
rro

r (
m

)

p = p

(b) Relative Pose Error

Figure 5.3: σ̄p = σp: Performance decreases with Gaussian Noise. Each box-and-

whisker illustrates the distribution of Absolute Trajectory Error (top) and Relative Pose

Error (bottom) over 100 Monte-Carlo trials. Boxes extend from the first to the third quartile.

Medians are lines in the boxes, means are triangles. Whiskers extend the box by 1.5x the

inter-quartile range. All other points are plotted as “fliers”. Mean and median error increase

with noise for all σ̄p = σp ≥ 0.50. The performance is lower for σp = 0.25 than for σp = 0.50

because σ̄p = 0.25 is too small to capture uncertainties due to poor feature initialization in

Brownian motion in addition to Gaussian noise.

74

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Noise Added To Feature Tracks p (px)

0

10

20

30

40

50

60

Fr
o(

(t)
) (

m
)

p = p

Figure 5.4: σ̄p = σp: Gaussian Noise leads to larger sample covariances. Each box-

and-whisker illustrates the distribution of sample covariance (eq. (5.1)) computed using 100

Monte-Carlo trials. Boxes extend from the first to the third quartile. Medians are lines in

the boxes, means are triangles. Whiskers extend the box by 1.5x the inter-quartile range.

All other points are plotted as “fliers”. As the amount of noise increases, so does the sample

covariance and the variation in sample covariance.

possible value of every disturbance and then compare the distribution of performance errors,

mean sample covariance, and scales. The second limitation is that we studied a randomly

generated trajectory to eliminate the possibility that the number of trajectories that could

produce the same measurements could be unbounded. Many realistic trajectories, such as

driving a car on a flat road or flying a drone at a constant velocity, are not sufficiently

exciting.

Nevertheless, we have systematically quantified and characterized the performance and

uncertainty of an well-known monocular-VIO state estimation algorithm based on the Ex-

tended Kalman Filter. Our results largely confirm what is anecdotally known by practi-

tioners: monocular VIO is “finicky”. Whenever possible, a practitioner will always choose

RGB-D SLAM, Lidar-Inertial Odometry, or Stereo Visual-Inertial Odometry if the platform

allows it. The fliers in Figures 5.3, 5.5, 5.9, and 5.11 indicate that the right combination of

noise and/or drift in the IMU and visual measurements has more than a 1 in 100 chance of

creating a state estimate with a performance error more than twice the mean error and far

75

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Noise Added To Feature Tracks p (px)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sc
al

e
Fa

ct
or

p = p

Figure 5.5: σ̄p = σp: Mean and variation of scale factor ρ is a nonlinear function of

σp. Each box-and-whisker illustrates the distribution of ρ computed using 100 Monte-Carlo

trials. Boxes extend from the first to the third quartile. Medians are lines in the boxes,

means are triangles. Whiskers extend the box by 1.5x the inter-quartile range. All other

points are plotted as “fliers”. Generally, we see that although there is no trend in the mean or

median scale, the variation in scale generally increases with σp. Scale estimates are relatively

poor for σp = 0.25 because σ̄p = 0.25 is too small to capture uncertainties due to poor feature

initialization in addition to Gaussian noise.

76

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Noise Added To Feature Tracks p (px)

0

1

2

3

4

5

Ab
so

lu
te

 Tr
aj

ec
to

ry
 E

rro
r (

m
)

p = p + 0.25

(a) Absolute Trajectory Error

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Noise Added To Feature Tracks p (px)

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Po
se

 E
rro

r (
m

)

p = p + 0.25

(b) Relative Pose Error

Figure 5.6: σ̄p = σp + 0.25: Performance decreases with Gaussian Noise. Each box-

and-whisker illustrates the distribution of Absolute Trajectory Error (top) and Relative Pose

Error (bottom) over 100 Monte-Carlo trials. Boxes extend from the first to the third quartile.

Medians are lines in the boxes, means are triangles. Whiskers extend the box by 1.5x the

inter-quartile range. All other points are plotted as “fliers”. Mean and median error increase

with noise for all σ̄p = σp ≥ 0.50.

77

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Noise Added To Feature Tracks p (px)

0

10

20

30

40

50

60

Fr
o(

(t)
) (

m
)

p = p + 0.25

Figure 5.7: σ̄p = σp +0.25: Gaussian Noise leads to larger sample covariances. Each

box-and-whisker illustrates the distribution of mean sample covariance (eq. (5.1)) computed

using 100 Monte-Carlo trials. Boxes extend from the first to the third quartile. Medians are

lines in the boxes, means are triangles. Whiskers extend the box by 1.5x the inter-quartile

range. All other points are plotted as “fliers”. As the amount of noise increases, so does the

sample covariance and the variation in sample covariance.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Noise Added To Feature Tracks p (px)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sc
al

e
Fa

ct
or

p = p + 0.25

Figure 5.8: σ̄p = σp + 0.25: Mean and variation of scale factor ρ is a nonlinear

function of σp. Each box-and-whisker illustrates the distribution of ρ computed using 100

Monte-Carlo trials. Boxes extend from the first to the third quartile. Medians are lines in

the boxes, means are triangles. Whiskers extend the box by 1.5x the inter-quartile range.

All other points are plotted as “fliers”. Generally, we see that although there is no trend in

the mean or median scale, the variation in scale generally increases with σp.

78

0.00 0.01 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.75
Drift Size Standard Deviation b (px)

0

1

2

3

4

5

Ab
so

lu
te

 Tr
aj

ec
to

ry
 E

rro
r (

m
)

p = 0.50
p = 1.00

(a) Absolute Trajectory Error

0.00 0.01 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.75
Drift Size Standard Deviation b (px)

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Po
se

 E
rro

r (
m

)

p = 0.50
p = 1.00

(b) Relative Pose Error

Figure 5.9: Drift increases estimation error and variation in estimation error. Each

box-and-whisker illustrates the distribution of ATE and RPE computed using 100 Monte-

Carlo trials. Boxes extend from the first to the third quartile. Medians are lines in the

boxes, means are triangles. Whiskers extend the box by 1.5x the inter-quartile range. All

other points are plotted as “fliers”. The mean and median performance error creeps upwards

with the drift σb for both σ̄p = 0.50 and σ̄p = 1.00. Performance is better when σ̄p = 0.50

for smaller amounts of drift; for values of σb ≥ 0.40, σ̄p = 1.00 is better.

79

0.00 0.01 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.75
Drift Size Standard Deviation b (px)

0

10

20

30

40

50

60

Fr
o(

(t)
) (

m
)

p = 0.50
p = 1.00

Figure 5.10: Drift only slightly increases state uncertainty. Each box-and-whisker

illustrates the distribution of sample covariance (eq. (5.1)) computed using 100 Monte-Carlo

trials. Boxes extend from the first to the third quartile. Medians are lines in the boxes,

means are triangles. Whiskers extend the box by 1.5x the inter-quartile range. All other

points are plotted as “fliers”. Mean and median covariance size increases with drift. For both

σ̄p = 0.50 and σ̄p = 1.00, the mean and median values of drift creep slightly upwards with

increasing values of σ̄b.

0.00 0.01 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.75
Drift Size Standard Deviation b (px)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sc
al

e
Fa

ct
or

p = 0.50
p = 1.00

Figure 5.11: Drift increases both bias and uncertainty in scale. Each box-and-whisker

illustrates the distribution of scale factor (eq. (5.3)) computed using 100 Monte-Carlo trials.

Boxes extend from the first to the third quartile. Medians are lines in the boxes, means are

triangles. Whiskers extend the box by 1.5x the inter-quartile range. All other points are

plotted as “fliers”.

80

0.00 0.01 0.03 0.05 0.07 0.10
Fraction of Features Misattributed

0

2

4

6

8

10

12

Ab
so

lu
te

 Tr
aj

ec
to

ry
 E

rro
r (

m
)

p = 0.50

(a) Absolute Trajectory Error

0.00 0.01 0.03 0.05 0.07 0.10
Fraction of Features Misattributed

0

1

2

3

4

5

6

7

Re
la

tiv
e

Po
se

 E
rro

r (
m

)

p = 0.50

(b) Relative Pose Error

Figure 5.12: Attribution errors increase bias and variance in performance. Each

box-and-whisker illustrates the distribution of ATE and RPE computed using 100 Monte-

Carlo trials. Boxes extend from the first to the third quartile. Medians are lines in the boxes,

means are triangles. Whiskers extend the box by 1.5x the inter-quartile range.

81

0.00 0.01 0.03 0.05 0.07 0.10
Fraction of Features Misattributed

0

25

50

75

100

125

150

175

200
Fr

o(
(t)

) (
m

)
p = 0.50

Figure 5.13: Attribution errors produce more uncertainty. Each box-and-whisker

illustrates the distribution of mean sample covariance computed using 100 Monte-Carlo

trials. Boxes extend from the first to the third quartile. Medians are lines in the boxes,

means are triangles. Whiskers extend the box by 1.5x the inter-quartile range.

0.00 0.01 0.03 0.05 0.07 0.10
Fraction of Features Misattributed

0

1

2

3

4

5

6

7

Sc
al

e
Fa

ct
or

p = 0.50

Figure 5.14: Attribution errors increase bias and variance in scale. Each box-and-

whisker illustrates the distribution of scale factor computed using 100 Monte-Carlo trials.

Boxes extend from the first to the third quartile. Medians are lines in the boxes, means are

triangles. Whiskers extend the box by 1.5x the inter-quartile range.

82

10 2 10 1

Fraction of Features Misattributed

100

101

102

103

104

Ab
so

lu
te

 Tr
aj

ec
to

ry
 E

rro
r (

m
)

p = 0.50

10 2 10 1

Fraction of Features Misattributed

10 1

100

101

102

103

Re
la

tiv
e

Po
se

 E
rro

r (
m

)

p = 0.50

10 2 10 1

Fraction of Features Misattributed

102

104

106

108

1010

Fr
o(

n)
 (m

)

p = 0.50

10 2 10 1

Mismatch Percnet

100

101

102

103

104

Sc
al

e
Fa

ct
or

p = 0.50

Figure 5.15: The increases in performance errors, state uncertainty, and scale

uncertainty due to attribution errors are exponential. The four figures plot

mean values of ATE, RPE, state uncertainty, and scale factor as a function of η, for

η ∈ [0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4]. Both the horizontal and vertical axes are in

log scale. All curves are exponential functions of η.

83

above the lowest possible error. This highlights the need for more Monte-Carlo studies of

SLAM, rather than reliance on benchmark datasets with individual trajectories.

84

CHAPTER 6

Scene Uncertainty of Deterministic Image Classifiers

Finally, we turn our attention to Assumption 4 in Figure 1.1. Object detection neural

networks, such as the one in used in Chapter 2, identify the class and location of detected

objects. Since assessing the uncertainty of a neural network is a new topic, we simplified our

analysis and focused only on the uncertainty of the class of detected objects. The text below

is therefore about simpler image classification networks instead of object detection networks.

6.1 Introduction

It appears that Deep Neural Networks (DNNs) can classify images as well as humans, at

least as measured by popular benchmarks, yet small perturbations of the images can cause

changes in the predicted class. Even excluding adversarial perturbations, simply classifying

consecutive frames in a video shows variability inconsistent with the reported error rate (see

Figure 6.1). So, how much should we trust image classifiers? How confident should we be of

the outcome they render on a given image? There is a substantive literature on uncertainty

quantification, including work characterizing the (epistemic and aleatoric) uncertainty of

trained classifiers (see Section 1.3.4). Such uncertainty is a property of the classifier, not

of the outcome of inference on particular datum. We are instead interested in ascertaining

how confident to be in the response of a particular DNN model to a particular image, not

generally how well the classifier performs on images from a given class: Say we have an

image x, and a DNN that computes a discriminant vector y = f(x) ∈ RK with as many

components as the number of classes K (e.g., logits or softmax vector) from which it returns

the estimated label k̂ = argmaxk yk =“cat.” How sure are we that there is a cat in this

85

image? Even if the classifier in question was wrong most of the times, even on the class

“cat,” so long as it is confident that its answer on this particular image is correct, we would

be content. If faced with the question “are you sure?” a human would take a second look,

or capture a new image, to either confirm or profess doubt. But a DNN classifier would

return the same answer, correct or not, since most real-world deep networks in use today are

deterministic maps f from the input x to the output y.

Since the classifier is deterministic, and the image is given, the first key question we

must address is with respect to what variability should uncertainty be defined and evaluated.

To this end, we define scene uncertainty of a deterministic image classifier, which is the

distribution of outcomes that would have been obtained in response to data that could have

been generated by the same scene that produced the given image. Simply put, there are no

cats in images, only pixels. Cats are in the scene, about which images provide evidence.

The question of whether we are “sure” of the outcome of the an image classifier is therefore

of counterfactual nature: Had we been given different images of the same scene, would an

image-based classifier have returned the same outcome?

Formally, given an image x, if we could compute the posterior probability of the estimated

label, k̂ from which we can then measure confidence intervals, entropy, and other statistics

commonly used to measure uncertainty, what we are after is not P (k̂|x). Instead, it is

P (k̂|{x′}) where x′ ∼ p(x′|S), and S is the scene that yielded the given image x. The

scene S, whether real or imagined, is the vehicle that allows one to guess what is not known

(S) from what is known (x), which is the inductive process. Computing scene uncertainty

requires knowledge of the scene that generated the given image, or possibly a very good

guess, which we discuss in Sect. 6.2.

Contribution. Unlike work described in Section 1.3.4, ours does not propose a new mea-

sure of uncertainty nor a new way to calibrate the discriminant to match empirical statistics:

We use standard statistics computed from the “posterior probability”, such as covariance and

entropy, to measure uncertainty. The core of our work aims to specify with respect to what

posterior to measure uncertainty. Since deep network image classifiers used in the real world

86

are deterministic, the choice is consequential, and yet seldom addressed explicitly in the

existing literature. Scene uncertainty is introduced to explicitly characterize the variability

with respect to which uncertainty is measured.

6.2 Method

We start by introducing the nomenclature used throughout the rest of the paper:

– The scene S is an abstraction of the physical world. It can be thought of as a sample

from some distribution S ∼ pS that is unknown and arguably unknowable. The scene itself

(not just its distribution) is arguably unknowable but for some of its “attributes” manifest

in sensory data.

– An attribute k is a characteristic of the scene that belongs to a finite set (e.g., names

of objects), k(S) ∈ {1, . . . , K}. Note that there can be many scenes that share the same

attribute(s) (intrinsic variability). For instance, k can be the label “cat” and pS(·|k) is the

distribution of scenes that contain a “cat.” Continuous, but finitely-parametrized, attributes

are also possible, for instance related to shape or illumination.

– Extrinsic variability gt is an unknown transformation of the scene that changes its

manifestation (measurements, see next point) but not its attributes. It can be thought of as

a sample from some nuisance distribution gt ∼ pg. For instance, extrinsic variability could

be due to the vantage point of the camera, the illumination, partial occlusion, sensor noise,

quantization etc., none of which depends on whether the scene is labeled “cat”. Note that

there can be spurious correlations between the attribute and nuisance variability: An indoor

scene is more likely to contain a cat than a beach scene. Nevertheless, if there were a cat

on the beach, we would want our classifier to say so with confidence. The fact that nuisance

variables can correlate with attributes on a given dataset may engender confusion between

intrinsic and extrinsic variability. To be clear, phenomena that generate intrinsic variability

would not exist in the absence of the attribute of interest. The pose, color and shape of

a cat do not exist without the cat. Conversely, ambient illumination (indoor vs. outdoor)

exists regardless of whether there is a cat, even if correlated with its presence. The effect

87

of nuisance variability on confidence, unlike intrinsic variability, is correlational, rather than

causal.

– A measurement xt is a known function of both the scene S (and therefore its attributes)

and the nuisances. We will assume that there is a generative model that, if the scene S was

known, and if the nuisances gt were known, would yield a measurement up to some residual

(white, zero-mean, homoscedastic Gaussian) noise nt

xt = h(gt, S) + nt. (6.1)

For example, h can be thought of as a graphics engine where all variables on the right hand-

side are given.

– The discriminant y = f(x) is a deterministic function of the measurement that can be

used to infer some attributes of the scene. For instance, y = P (k|x) ∈ SK−1 is the Bayesian

discriminant (posterior probability). More in general, y could be any element of a vector

(embedding) space.

– The estimated class k̂(x) is the outcome of a classifier, for instance k̂ = argmaxk[f(x)]k.

Given an image x and a classifier k̂(·), we reduce questions of confidence and uncertainty

to the posterior probability P (k̂ = k|x). In the absence of any variability in the estimator

f , defining uncertainty in the estimate k̂ requires assuming some kind of variability. The

Wellington Posterior hinges on the following assumptions:

• The class k is an attribute of the scene S and is independent of intrinsic and extrinsic

variability, by their definition.

• We posit that, when asking “how confident we are about the class k̂(x)” we do not refer

to the uncertainty of the class given that image, which is zero. Instead, we refer to

uncertainty of the estimated class with respect to the variability of all possible images

of the same scene S which could have been obtained by changing nuisance (extrinsic)

variability.

In other words, if in response to an image, a classifier returns the label “cat,” the question

is not how sure to be about whether there is a cat in the image. The question is how sure
88

to be that there is a cat in the scene portrayed by the image. For instance, if instead of the

given image, one was given a slightly different one, captured slightly earlier or a little later,

and the classifier returned “dog,” would one be less confident in the answer than if it had

also returned “cat”? Intuitively yes. Hypothetical repeated trials would involve not running

the same image through the classifier over and over, but capturing different images of the

same scene, and running each through the classifier. Of course, different images obtained

by adding noise would be a special case where the world is static and the only nuisance

variability is due to sensor noise.

Intrinsic variability does not figure in the definition of scene uncertainty. The fact that

we are given one image implies that we are interested in one scene, the one portrayed in

the image. So, the question of how sure we are of the answer “cat” given an image is not

how frequently the classifier correctly returns the label “cat” on different images of different

scenes that contain different cats. It is a question about the particular scene portrayed by

the image we are given, with the given cat in it. The goal is not P (k̂|k), which would be how

frequently we say “cat” when there is one (in some scene). We are interested in this scene,

the one portrayed by the image. Written as a Markov chain we have

k → S → x→ y → k̂ (6.2)

where the first arrow includes intrinsic variability (a particular attribute is shared by many

scenes) and the second arrow includes nuisance/extrinsic variability (a particular scene can

generate infinitely many images). The last two arrows are deterministic. We are interested

only in the variability in the second arrow. To compute scene uncertainty, we observe that

P (k̂ = k|S)

=

∫
P (k̂|x)dP (x|S)

=

∫
δ(k̂(x)− k)dP (x|S)

=

∫
δ(argmin f(h(g, S)︸ ︷︷ ︸

x

)− k)dP (g)

≃ 1

T

T∑
t=1

δ(argmin f(h(gt, S)︸ ︷︷ ︸
xt

)− k).

(6.3)

89

That is, given samples from the nuisance variability gt, or sample images generated by

changing nuisance variability, xt, we can compute the probability of a particular label by

counting the frequency of that label in response to different nuisance variability. We defer

the question of whether the samples given are fair or sufficiently exciting. In the expression

above, f is computed by the given DNN classifier, gt is from a chosen class of nuisance

transformations, and h is an image formation model that is also chosen by the designer of

the experiment.

As we defined it, the scene is an abstraction of the physical world. Such abstraction can

live inside the memory of a computer. Since a scene is only observed through images of it, if a

synthetic scene generates images that are indistinguishable from those captured of a physical

scene, the real and synthetic scenes – while entirely different objects – are equivalent for the

purpose of computing scene uncertainty. Thus a “scene” could be any generative model

that can produce images that are indistinguishable from real ones including the given one.

Different images are then obtained by perturbing the scene with nuisance variability.

6.2.1 Proposed Measures of Scene Uncertainty

We propose to use the following as measures of uncertainty that can computed from a

posterior distribution p(y|S) or p(k̂|S). In the text below, assume that for a sample of N

images from a single scene, we have logits yi, softmax vectors si, and predictions k̂i for

i = 1, . . . N .

• Logit Spread: Frobenius norm of the covariance matrix of the logits, ∥Cov(y)∥F .

• Softmax Spread: Standard deviation of cosine similarity distance between the soft-

max vectors, StdDev(arccos(s · s̄)), where s̄ is the mean softmax vector.

• Percent Non-Mode: The percentage of predictions k̂i that are not equal to k̄, P (k̂ ̸=

k̄), where k̄ is the most often predicted class within that scene.

• Scene Entropy: Entropy of the histogram of the k̂i within a scene, Entropy(P (k̂|S)).

90

6.3 Measuring Scene Uncertainty

6.3.1 Datasets

We performed experiments on two datasets, Objectron [AZA21], and the ImageNetVid

[RDS15] and ImageNetVid-Robust [SDR19] datasets. These datasets are ideal for our image

classification experiments because they contain multiple images of the same scene and each

scene contains a single object of interest that is visible in all the images. ImageNetVid was

created in 2015 and consists of videos with bounding boxes for 30 classes. In 2017, additional

annotated videos were added to the ImageNetVid validation dataset and in 2019, a set of

frames, mostly selected from the 2017 videos, were human-curated into the ImageNetVid-

Robust dataset. Each “video” in ImageNetVid-Robust consists of 21 frames: 20 regular

frames and one designated “anchor” frame. Temporally, the anchor frame is the middle of

the other frames. Human curation guaranteed that the object of interest would be clearly

visible in each frame and that the frames would be quite similar. We use ImageNetVid

frames as a training set and ImageNetVid-Robust frames as a test set in our experiments.

Objectron [AZA21] contains short video clips of scenes with 9 classes: Bikes, Books,

Bottles, Cameras, Cereal Boxes, Chairs, Cups, Laptops, and Shoes. Videos in the dataset

consist of humans moving a smartphone around a static object. Motions in all videos are

quite similar: a human waves a smartphone around a stationary object with large changes

in the azimuth angle between a point on the object and the camera, but smaller changes in

the elevation between a point on the object and the camera and in the distance from the

object to the camera. We selected a subset of 5000 videos for training set, 500 videos for

validation set, and 500 for testing — there is no overlap in video frames between training,

validation and test splits. From each video clip, we selected 20 evenly-spaced frames to serve

as an empirical paragon and designated the middle frame the anchor image.

In general, evenly distributed frames across a short video clip do not provide a fair

sample from the population of all possible images that the scene could have generated, so

any resulting statistics cannot be considered proper ground truth. A better experiment would

use synthetically generated 3D scenes containing all possible intrinsic and extrinsic variability
91

instead of natural videos. However, this would require manually creating thousands of 3D

scenes, each focused on a different object; the cost of this task is prohibitive. Another

possibility would be to create a smaller group of synthetic scenes containing the same classes

of objects as Objectron and ImageNetVid and use domain adaptation to adapt the synthetic

scenes to natural images; the cost-prohibitive part would then become manually creating

many extrinsic variabilities found in scenes. For example, creating a laptop scene for the

Objectron dataset in this manner would require a 3D model of not only the laptop, but the

table beneath it and decorations around it. Therefore, an empirical baseline of 20 uniformly

sampled frames from each video serves as a first step in evaluating methods to predict scene

uncertainty.

So that we would have a fairer dataset, we created two additional tiny datasets to accom-

pany the Objectron dataset: one synthetic and one real. Each dataset consists of two items

from each class. The one consisting of real images “MiniObjectron”, has 20 images per scene,

captured from a set of positions around the object with low precision. The one consisting

of synthetic images, “SyntheticObjectron”, consists of 468 images per scene, captured from

a set of positions around the object with perfect precision.

6.3.2 Discriminant

In order to compute the empirical posterior and the various forms of Wellington Posterior,

we need a discriminant function f(·), from which to build a classifier. We use the backbone of

an ImageNet-pretrained ResNet-50 or ResNet-101 [HZR16], where f(x) is called the vector

of logits, whose maximizer is the selected class, and whose normalized exponential is called

softmax vector. Fine-tuning and validation for ResNet-50 on Objectron, and ResNet-101 on

ImageNetVid, used one frame from each scene. The focus is not to achieve the highest pos-

sible accuracy, but to provide a meaningful estimate of uncertainty relative to the variability

of different images of the same scene. For this reason, we select the most common, not the

highest performing, baseline classifier. Hyperparameters, training error, and validation error

are given in Table 6.1. Test error on the Objectron test set was 0.9607 ± 0.0015 for all

92

frames and 0.9693 ± 0.0076 for only the anchor frames. Test error on ImageNetVid-Robust

was 0.7187 ± 0.0084 for all frames and 0.7207 ± 0.0139 for only the anchor frames. These

test errors do not reflect the variation shown in Figure 6.1.

Parameter Objectron ImageNetVid

Architecture ResNet-50 ResNet-101

Init. Learning Rate 0.01 0.001

Momentum 0.9 0.9

Weight Decay 1e-5 1e-5

γ 0.1 0.1

Milestones 25, 35 25, 35

Max Epochs 50 50

Batch Size 32 32

Selected Epoch 50, 40, 40 30, 50, 50

Training Error 0.0326,0.0366,0.0318 0.0478,0.0478,0.0476

Validation Error 0.0320,0.0220,0.0320 0.2747,0.2711,0.2912

Table 6.1: Hyperparameters and decision variables used in fine-tuning image classifiers on

the Objectron and ImageNetVid datasets using stochastic gradient descent and the cross-

entropy loss for all three trials. Reported training and validation errors are for the selected

epoch, not after the maximum number of epochs.

6.3.3 Scene Uncertainty Values

We computed the measures of uncertainty proposed in Section 6.2.1 (logit spread, softmax

spread, percent non-mode predictions, and scene entropy) over empirical paragon scenes to

compute baseline uncertainty values. Baseline values are plotted as a histogram in Figure

6.1. Means and standard deviation of baseline values from three separate experiments are

shown in Table 6.2. Both Figure 6.1 and Table 6.2 show that scene uncertainty is a real

phenomena.

93

0 50 100
Logit Spread

0.00

0.02

0.04

De
ns

ity

ResNet-50 (Objectron)
=18.38

0.0 0.1 0.2 0.3 0.4
Softmax Spread

0

5

10

15

De
ns

ity

ResNet-50 (Objectron)
=0.05

0.0 0.2 0.4 0.6
Percent Non-Mode

0

5

10

15

De
ns

ity

ResNet-50 (Objectron)
=0.03

0.0 0.2 0.4 0.6
Scene Entropy

0

5

10

De
ns

ity

ResNet-50 (Objectron)
=0.03

0 10 20 30
Logit Spread

0.00

0.05

0.10

0.15

De
ns

ity

ResNet-101 (ImageNetVid)
=3.60

0.0 0.1 0.2 0.3 0.4
Softmax Spread

0

5

10
De

ns
ity

ResNet-101 (ImageNetVid)
=0.09

0.0 0.2 0.4 0.6
Percent Non-Mode

0

5

10

De
ns

ity

ResNet-101 (ImageNetVid)
=0.09

0.0 0.2 0.4
Scene Entropy

0

5

10

De
ns

ity

ResNet-101 (ImageNetVid)
=0.06

20 40 60
Logit Spread

0.00

0.01

0.02

0.03

De
ns

ity

ResNet-50 (MiniObjectron)
=32.60

0.0 0.1 0.2 0.3 0.4
Softmax Spread

0

5

10

15

De
ns

ity

ResNet-50 (MiniObjectron)
=0.05

0.0 0.2 0.4 0.6
Percent Non-Mode

0

2

4

De
ns

ity

ResNet-50 (MiniObjectron)
=0.23

0.0 0.2 0.4 0.6
Scene Entropy

0

1

2

De
ns

ity

ResNet-50 (MiniObjectron)
=0.28

20 40 60 80
Logit Spread

0.00

0.02

0.04

0.06

De
ns

ity

ResNet-50 (SyntheticObjectron)
=27.55

0.0 0.1 0.2 0.3 0.4
Softmax Spread

0

5

10

15

De
ns

ity

ResNet-50 (SyntheticObjectron)
=0.05

0.2 0.4 0.6
Percent Non-Mode

0

2

4

De
ns

ity

ResNet-50 (SyntheticObjectron)
=0.28

0.2 0.4 0.6
Scene Entropy

0

2

4

De
ns

ity

ResNet-50 (SyntheticObjectron)
=0.32

Figure 6.1: Scene Uncertainty is Real. Histograms of the four measures of scene un-

certainty (logit spread, softmax spread, percent non-mode, and scene entropy) from Section

6.2.1 for ResNet-50 on Objectron (top row), ResNet-101 on ImageNetVid (second row),

ResNet-50 on MiniObjectron (third row), and ResNet-50 on SyntheticObjectron (bottom

row). Each point in the histograms above is a scene. The mean of each distribution is shown

in the top-left. For the cases when the uncertainty of the network is measured over the

test split of the same dataset it was trained on (top two rows) thick bars at the left of a

histogram indicates that most images of most scenes are classified identically within a scene

and that discriminants are similar. However, there is a long tail in the plots showing that

scene uncertainty is a real phenomenon that will be encountered in real systems. In the

bottom two rows, where the uncertainty of ResNet-50 was measured on our two “more fair”

constructed datasets, the measures of scene uncertainty are much higher.

94

ImageNetVid Objectron Mini Objectron
Synthetic

Objectron

Logit Spread 0.5618 ± 0.0131 1.5803 ± 0.0077 32.8264 ± 0.5193 29.7664 ± 2.0210

Softmax Spread 0.0619 ± 0.0000 0.0418 ± 0.0000 0.2652 ± 0.0000 0.3142 ± 0.0000

Percent Non-Mode 0.0933 ± 0.0026 0.0315 ± 0.0019 0.2269 ± 0.0273 0.2908 ± 0.0125

Scene Entropy 0.2129 ± 0.0041 0.0774 ± 0.0036 0.2692 ± 0.0254 0.3403 ± 0.0135

Table 6.2: This table accompanies Figure 6.1. Entries are means and standard deviations

of proposed measures of uncertainty (logit spread, softmax spread, percent non-mode pre-

dictions, and scene entropy) computed using the empirical paragon. Means and standard

deviations come from performing all calculations over all datasets three times using different

trained networks. The only difference between networks is the data shuffling used at training

time.

6.4 Summary

We have defined a new concept, uncertainty with respect to variation in the scene, or p(y|S).

Experiments in Section 6.3 illustrate that this phenomena exists and that Assumption 4

from Figure 1.1 is false. Integration of neural networks into architectures such as Figure 1.1

should therefore be cognizant of Scene Uncertainty.

95

CHAPTER 7

Discussion

In the introduction, we noted that if the assumptions made by the components of the frame-

work presented in Figure 1.1 and Chapter 2 were not met, that any successful experiment is

successful because of luck rather than correctness. Work in the subsequent chapters showed

that there was some luck in the experiment’s success: the overconfident covariance estimate

from XIVO was just large enough that the MPC navigated Alphred around the obstacle. The

simulated obstacle looked just enough like the real cardboard boxes in the training set that

the object detection algorithm found an obstacle. However, the demonstration of Chapter

2 was meant to be a preliminary demonstration. Less luck and better covariance estimates,

and an uncertainty-aware integration of the object detector would have achieved the same

successful result in Figure 2.6.

The motivation for this work was the verification and validation of autonomous systems

with computer vision in the loop. Our proposed framework, and subsequent analyses, is a

classical architecture with a combination of classical components and neural network compo-

nents. The neural network components perform semantic vision and belief-space prediction,

two tasks where classical algorithms have never been successful. We could have chosen to

use a reinforcement learning network, such as those described in [SZY21], instead of a model

predictive controller. We could also have used a deep network, such as [CWW17,KGC15], in-

stead of XIVO. The exact opposite approach would be to an end-to-end learning framework,

such as [ZHL21].

Our choices are themselves a statement. For safety-critical systems, we value the explain-

ability and transparency that classical algorithms provide. Designing components separately,

rather than end-to-end, also enables transparently. Isolating neural networks to specific tasks

96

avoids the difficult problem of explainability and reduces the amount of data that must be

collected as much as possible. However, when the performance gap between a classical com-

ponent and a learned component widens enough, the correct choice is to use the learned

component, with uncertainty quantification and awareness providing system safety.

7.1 Future Work

We list ways in which the content of each chapter could be used in future endeavors.

7.1.1 Chapter 2: “Risk-Averse MPC via Visual-Inertial Input and Recurrent

Networks for Online Collision Avoidance”

The architecture in Chapter 2 is an initial demonstration using a low-dimensional MPC and

“off-the-shelf” components. Since the demonstration was successful, future work that builds

off of the demonstration will consist of either improving existing components, or extending or

adding components for more complex scenarios. For example, rather than using generic VIO

equations in XIVO, XIVO’s equations of motion could explicitly model a walking gait. Then,

the performance-limiting detuning and signal clipping will become unnecessary. The object-

detection combined with classical feature detection and unprojection could be replaced with

a modern semantic mapping algorithm, such as [FS18] configured for the environment of

interest. Finally, the uncertainty-aware MPC could be extended for more complex scenarios,

such as multi-robot planning [STS21] or 3D navigation.

7.1.2 Chapter 3: “Learned Uncertainty Calibration for Visual Inertial Local-

ization”

The most immediate direction could investigate how generalizable the results of Chapter 3

are. The datasets in this work consisted of several sequences all collected using the same

sensor in the same environment. We suspect that the calibration described in this work can

be performed once for each sensor and VIO implementation, but generalize across multiple

97

environments. This would require performing the covariance calibration experiment for

multiple VIO systems on multiple sensor systems with enough sequences to enable deep

learning. At least one dataset would have to encompass multiple environments, and all

sequences need ground-truth pose. We anticipate this exercise would require a combination

of existing VIO datasets and newly collected data.

Provided that the results of Chapter 3 are sufficiently generalizable, the neural network

presented in this paper could be integrated into the architecture in Figures 1.1 and 2.1. Its

input would be the covariance estimates from the RNN and its output would be sent to

the MPC. The RNN could be trained exactly as described in Chapter 2, but the covariance

predictions given to the MPC would be more accurate. As the navigation exercise in Chapter

2 only consists of moving around one box in a room that is not narrow, it may not be difficult

to set up a more complex navigation exercise where the architecture in Chapter 2 fails in its

current state, but then succeeds with more accurate covariance estimates.

A third direction of research would include using information from a neural network

to modify an EKF in the loop in an end-to-end fashion instead of simply adjusting the

covariances post-hoc. In other words, the final line of equation (3.2) would take the form:

P̂k+1 = ϕw(Pk, x̂k) (7.1)

where ϕw is a recurrent network. This raises questions not only of prediction accuracy, but

of stability, since the online optimization would create closed-loop dependencies.

7.1.3 Chapter 4 and 5: “Feature Tracks are not Zero-Mean Gaussian” and

“Quantifying VIO Uncertainty”

The results of Chapter 4 can be used in several areas future work. The most immediate

direction is to continue to use the Extended Kalman Filter, but dynamically adapt filter

parameters, such as covariance estimates and the number of tracked features, to the scene.

Since feature tracks are not zero-mean, covariance estimates will have to be enlarged so

that feature tracks containing the extra bias are not outliers. Machine learning approaches

to adapting the covariance already exist [VBB13, LOV18]. Since statistical methods are
98

not often desirable in safety critical systems, it is of interest to compare performance when

covariance is adjusted by a learned model to when covariance is adjusted by a finite state

machine. While this approach is the most immediate, it does not address the fact that it

brings no convergence guarantees in a downstream state estimation process and will therefore

require extensive testing for each application.

The second area of future work is to adapt existing state estimation algorithms to accom-

modate feature tracks that are not zero-mean Gaussian, with the results from this chapter

serving as a guide for what type of errors to accommodate. It may not be possible, however,

to design a filter that is both computationally tractable, guaranteed to converge, and simple

enough to implement on a complex, realistic system. This motivates the third area of future

work.

The third direction of future work is to adjust individual feature tracks before they

are used by a state estimation algorithm that assumes that measurements are zero-mean

Gaussian. This is the approach used for IMUs: errors in IMU measurements are primarily

dependent on temperature and mechanical alignment errors, so IMU measurements are ad-

justed for temperature and any known mechanical misalignment before they are passed to a

downstream computer. For feature tracks, the calibration table would be more complex, as

it is dependent on speed, motion type, and the type of tracker used.

While Chapter 5 provides no direct input into any future experiment, its methodology

is a template for evaluating visual and visual-inertial SLAM algorithms. The effects of any

future work arising from Chapter 4 on state estimation performance, state uncertainty, and

scale uncertainty can be quantified in simulations.

7.1.4 Chapter 6: “Scene Uncertainty of Deterministic Image Classifiers”

Chapter 6 introduced the concept of scene uncertainty, or uncertainty with respect to varia-

tion in the scene. The measurements of scene uncertainty in Chapter 6 use multiple images

of the same scene. However, at test-time, an image classifier is only given one image x.

Estimating scene uncertainty given a single image x remains an open problem.

99

Although Chapter 6 is focused exclusively on image classification, the concept of scene

uncertainty may apply to other tasks that are more relevant to robotics, such as object

detection and image segmentation. The nature of computing or estimating for those tasks

may be very different from the procedure in Chapter 6. Furthermore, if the distributions of

intrinsic and extrinsic variabilities and nuisances are known, such as for a robot on a factory

floor, then it may be possible in some applications to use a calibration procedure to measure

scene uncertainty. For example, the scene uncertainty of an IMU measurement can be safely

assumed to be a normal distribution centered around the correct value. Simply knowing the

distribution of measurement errors has allowed engineers to create safety-critical technologies

relying on imperfect sensors. Understanding scene uncertainty of neural networks in this way

may be key to incorporating imperfect neural networks into safety-critical systems to perform

functions that could not be performed otherwise.

100

APPENDIX A

XIVO

XIVO, or “Xiaohan’s Inertial-aided Visual Odometry” is a SLAM algorithm and software

package based on the Extended Kalman Filter (EKF) that estimates state using measure-

ments of angular velocity and linear acceleration from an IMU and feature tracks extracted

from a stream of RGB images. XIVO was first introduced as “Corvis” in [JS11], which

presented a basic observability analysis. In the original implementation of Corvis, the equa-

tions of motion contained no inputs – both the IMU measurements and feature tracks are

modeled as system outputs. By 2015, Corvis had been modified so that IMU measurements

would become model inputs and only the feature tracks were system outputs. This second

version is the model analyzed in [HTS15]. Additional features added at that time, some of

which made Corvis no longer an EKF, were One-Point RANSAC outlier rejection [CGD09],

advanced feature covariance initialization, and the option to use a Huber Loss instead of the

standard L2 loss in the EKF measurement update step.

When technical debt was deemed insurmountable in 2019, the Corvis software was

scrapped and rewritten as XIVO by Xiaohan Fei. XIVO was then maintained, instrumented,

and modified as needed for the experiments detailed in this thesis. The basic equations are

still those in [HTS15] – IMU measurements are system inputs. However, not all features

of Corvis were kept and there are more (optional) calibration states than those mentioned

in [HTS15] and [JS11]. This Appendix aims to give the full description of the state, auto-

calibration state, and dynamics equations implemented in XIVO as of January 2023.

The steps implemented in XIVO are: EKF prediction, EKF measurement update, fea-

ture detection and tracking, 2D outlier rejection, 3D outlier rejection, and loop closure. A

flowchart of the steps is given in Figure A.1. The software modules are listed in Figure A.2.

101

3D Outlier
Rejection
(optional)

EKF
Measurement

Prediction

EKF
Measurement

Update

Loop Closure
(optional)

EKF State
Prediction

IMU Meas.
Pred. Pixel Coords.
of Tracked FeaturesPred. State

Pixel Coords. of
Tracked Features

Est. State

Updated State Estimates

Feature Tracker

Feature
Detection and

Tracking

2D Outlier
Rejection
(optional)

RGB
Image

Pruned
Feature List

Figure A.1: XIVO Overview. IMU Measurements are first used to propagate the estimated

state χ forward in time. After propagation of χ, XIVO then calculates predicted image

locations of all features currently tracked by the Feature Tracker. In the Feature Tracker,

feature tracks are extracted from RGB images using either Lucas-Kanade Sparse Optical

Flow or Correspondence Matching. Feature Tracks may then be pruned for outliers using

planar outlier rejection (e.g. RANSAC, LMEDS, RHO), an optional step when using sparse

optical flow, but effectively a required step when using Correspondence Matching. For

further rejection of outlier feature tracks, XIVO also contains implementations of the 3D

outlier rejection algorithms Mahalnobis Gating and One-Point RANSAC [CGD09]. With all

outliers removed, the last steps are the standard EKF measurement update and an optional

loop closure.

This Appendix is a guide to understanding the components of XIVO, but is not a user’s

guide or software documentation.

A.1 Preliminaries

A.1.1 Notation

We use the following conventions for notation in this Appendix:

• Vectors are represented by lower-case symbols, such as x, y, and z. Individual scalar

elements inside the vectors are denoted with subscripts, e.g. x1, x2, x3 for x ∈ R3.
102

Estimator - filter

Graph (Map) -
organized references
to features and
groups

Camera -
distort/undistort
equations for various
camera models

Memory Manager -
manages
creation/deletion of
features and groups)

Mapper - contains old
features and
searches for loop
closures

Tracker - extracts
feature tracks for the
Estimator

Feature Group Reference Group

Figure A.2: Software Objects in XIVO. The Estimator, Tracker, Graph, Memory

Manager, Camera, and Mapper are implemented as C++ Singletons. Features and Groups

exist outside the Singletons. The components that require access to Features and Groups

contain organized pointers.

103

Vector indices are 1-indexed (like in Matlab).

• Matrices are represented with upper-case symbols. All upper-case symbols are matri-

ces, unless specifically specified to be something else below.

• Coordinated frames are designated as lower-case subscripts, e.g. xa refers to a vector

x resolved in coordinate frame a.

• An upper-case R, with or without subscripts, always refers to a rotation matrix; R ∈

SO(3).

• An upper-case T , with or without subscripts, always refers to the translation compo-

nent of a rigid body transformation; T ∈ R3

• A lower-case g pared with no subscripts always refers to the gravity vector [0, 0,−9.8]

m/s2.

• A lower-case w, with or without subscripts, always refers to a rotation vector. R(w) is

the rotation matrix corresponding to the rotation vector.

• A lower-case ω always refers to angular velocity.

• An upper-case V always refers to linear velocity.

• A lower-case a, when not part of a subscript, always refers to linear acceleration.

• Linear velocity, angular velocity, and linear acceleration are written with three sub-

scripts. For example ωb
sb is the angular velocity of the body frame with respect to the

spatial frame resolved in the body frame.

• The upper-case symbolsX, Y, Z with no subscripts represent the x, y, and z-coordinates

of a position of a feature in R3.

• The symbol X with a subscript q (e.g. Xq = [X, Y, Z]) is a vector in R3 containing the

position of a feature or group in coordinate frame q.

• The symbol χ represents the entire EKF-state.
104

• For x ∈ R3, [x]× is the skew-symmetric matrix constructed with elements of x.

• The projection operator π : R3 → R2 is given by:

π(x) =

x1/x3

x2/x3


• The camera intrinsics operator is denoted πc : R2 → R2 and depends on the camera

model. πc depends on both the camera intrinsics matrix K and any lens distortion

parameters.

• A row of dots . . . at the top, bottom, or side of a matrix indicates that the rest of the

matrix is all zeros. For example:

A =


1 2 3

4 5 6

0 0 0

0 0 0

 =


1 2 3

4 5 6

.



A.1.2 Representation of 3D Rotations and Coordinate Transformations

Our notation is consistent with Chapter 2 of [ML94]. Consider two coordinate systems a

and b and a point xb ∈ R3, resolved in b. Then, the coordinates of the same point resolved

in coordinate system a is given by:

xa = Rabxb + Tab. (A.1)

From (A.1), we have the following expressions for the inverse:

xb = R−1
ab (xa − Tab)

Rba = R−1
ab = RT

ab

Tba = −R−1
ab Tab.

(A.2)

XIVO uses rotation vectors to represent 3D rotation in its state equations, since rotation

vectors are the tangent space so(3) of group SO(3). For a rotation vector w = [w1, w2, w3]
T ,

105

the magnitude of w, θ = ∥w∥ is the magnitude, or angle in radians, and ŵ is the axis. The

rotation matrix representation of w is given by

R(w) = exp
(
[w]×

)
where exp is the matrix exponential.

In order to avoid singularities and for ease of numerical integration, however, XIVO

represents internal rotations using quaternions rather than rotation vectors. The Sophus li-

brary1 is used for quaternion integration, and for conversion to rotation matrices and rotation

vectors as needed.

A.1.3 Special Jacobians

Jacobian with Respect to a Rotation Vector A closed-form expression for The Ja-

cobian of R(w) is given in [GY15]. However, due to issues with numerical stability, we do

not derive dynamics and measurement Jacobians using the equations in [GY15]. Instead, we

substitute the first-order Taylor series approximation R(w) ≈ I + [w]× and then compute

derivatives with respect to w. The identity [w]×a = −[a]×w is useful in the derivatives.

Matrix Product Jacobian Let A ∈ Rm×n and B ∈ Rn×p. Then,

• ∂AB
∂B

has dimension mp × np. If the size of B is known, it is a function of the matrix

A. In the texts below, this is written as a function ∂AB
∂B n,p

(X).

• ∂AB
∂A

has dimension mp×mn. If the size of A is known, it is a function of the matrix

B. In the texts below, this is written as a function ∂AB
∂A m,n

(X).

• ∂AT

∂A
has dimension mn×mn. It is a function of the matrix A. In the texts below, this

is written as a function ∂AT

∂A
(X).

• ∂A
∂Au , where Au is the upper triangle of a square matrix A ∈ Rm×m, has dimension

m2 × m(m+1)
2

and is a constant. In the texts below, this is written as ∂A
∂Au (X).

1https://github.com/strasdat/Sophus

106

A.2 Filter Equations

A.2.1 Coordinate Frames

XIVO uses the following coordinate frames:

• Spatial/world frame s – A static frame that is never moving. For issues related to

observability [JS11,HTS15], it is fixed to be the position and orientation of the IMU

at startup.

• Body/IMU frame b – A frame attached to the IMU. The exact direction of the axes

are determined by the manufacturer and how the IMU is mounted.

• Camera frame c – A frame attached to the camera’s pinhole. The Z axis points outward

perpendicular to the image plane. The X axis points horizontally to the right side of

the image plane. The Y axis completes the triad, i.e. the Y axis points down.

• Pixel frame p – A 2D frame whose origin is the top-left corner of the image. The

projection operator and the camera intrinsics map points in the c frame with units of

meters to points in the p frame with units of pixels.

• Gravity frame g – A frame that is aligned with gravity and co-located with the b frame.

In this frame, gravitational acceleration has value [0, 0,−9.8]T .

• Reference body frame br – A frame fixed at the past position and orientation of a body

frame b. The EKF state χ will contain multiple values of gsbr , but no more than one

instance of gsbr will appear in any equation.

• Reference camera frame cr – A frame fixed at the past position and orientation of a

camera frame c. The transformation gscr = gsbr ◦ gbc

A.2.2 States

Ego-state: These states describe the position and orientation of the IMU relative to its

initial condition. The dimension of each state is shown in parentheses:
107

• wsb (3), Tsb (3) - pose of the body frame with respect to the spatial frame, i.e. xs =

R(wsb)xb + Tsb.

• V b
sb (3) - velocity of the body frame with respect to the spatial frame.

• bbg (3) - bias of the IMU’s gyroscope in the body frame, i.e.

ω̄b
sb = ωb

sb − bbg (A.3)

where ωb
sb is the measured angular velocity and ω̄b

sb is the true angular velocity.

• bba (3) - bias of the IMU’s accelerometer in the body frame, i.e.

ābsb = absb −RbsRsgg − bba (A.4)

where absb is the measured angular velocity and ābsb is the true angular velocity.

Calibration States: These states enable autocalibration. The dimension of each state is

shown in parentheses. Optional states are those that may be excluded from the state vector.

• wbc (3), Tbc (3) - pose of the camera frame with respect to the body frame.

• wsg (2) - First two elements of the orientation of the gravity vector with respect to the

spatial frame. Since the rotation around the z-axis of the gravity frame is unobservable

(and does not matter), we take the third element of wsg to be 0.

• (Optional) td (1) - An estimate of the time difference between when an image is acquired

and when an image is timestamped.

• (Optional) Cg (9) and Ca (6) - IMU Calibration parameters. If enabled, equations

(A.3) and (A.4) become

ω̄b
sb = Cgω

b
sb − bbg

ābsb = Ca(a
b
sb −RbsRgg)− bba

(A.5)

108

where the matrices Ca and Cg take the form

Ca =


Ca,1 Ca,2 Ca,3

0 Ca,3 Ca,4

0 0 Ca,6



Cg =


Cg,1 Cg,2 Cg,3

Cg,4 Cg,5 Cg,6

Cg,7 Cg,8 Cg,9

 .
(A.6)

An IMU with no misalignment or scale error has Ca = Cg = I3×3. These parameters

can be found using the procedure detailed in [TPM14].

• (Optional) Intrinsic camera calibration parameters (up to 9). The exact number of

camera calibration parameters depends on the chosen model and includes both projec-

tion and distortion parameters. XIVO currently supports the pinhole (4 parameters),

equidistant (8 parameters), arctangent (5 parameters), and radial-tangential (9 param-

eters) models.

Map states:

• wsbr (3 per group), Tsbr (3 per group) - pose of each group with respect to the spatial

frame, i.e. the value of wsb and Tsb at the time the group was created.

• xcr (3 per feature) - position of each feature resolved in the camera frame in a log-

depth or inverse-depth representation at the time the feature was first observed. In

other words, if the position of the feature in the camera frame at the time it was first

observed is [X, Y, Z], then xcr = [X/Z, Y/Z, log(Z)] or xcr = [X/Z, Y/Z, 1/Z]. Whether

to use a log-depth or an inverse-depth representation is a compile-time parameter.

A.2.3 The Error State

Due to issues of numeric stability, we do not estimate the mean and covariance of the entire

state directly. Instead, we estimate the state and the covariance of the error state. At the
109

end of each measurement update, the error is “absorbed” into the state. More precisely, let

• nx be the dimension of the state

• nu be the dimension of the system input

• ny be the dimension of the measurements

• χ ∈ Rnx be the state and χ̂ ∈ Rnx be the estimated state.

• e ∈ Rnx be the error state

• u ∈ Rnu be the system input, ū be the nominal, noise-free input

• y ∈ Rny be the measurements

• P be the covariance of e

• µ ∼ N (0, Q) be additive noise to u

• η ∼ N (0, R) be sensor noise

The dynamics and measurement model are given by:

χ̇ = f(χ, e, u, µ)

y = h(χ, e) + η.
(A.7)

Note that even though the error state is additive to the state and noise terms are additive

to u and y, they can be incorporated nonlinearly into f(χ, e, u, µ) and h(χ, e). During the

prediction step of the EKF, we integrate the continuous dynamics one timestep:

˙̂χ = f(χ̂, ū)

Ṗ = FP + PF T +GQGT

ė = 0

(A.8)

110

where χ̂ is the current estimated value of χ, ū is the nominal value of the input, F =

∂f
∂e
|e=0,χ=χ̂ and G = ∂f

∂u
|u=ū,µ=0. The measurement step then becomes

K = PHT (HPHT +R)−1

e = K(y − h(χ̂, e))

P = (I −KH)P (I −KH)T +KRKT

(A.9)

where H = ∂h
∂e
|e=0,χ=χ̂, y is the measurement, and K is the Kalman gain.

Finally, after each measurement step, we reset the error state:

χ̂← χ̂+ e

e← 0.
(A.10)

A.2.4 Nominal Equations of Motion (EKF State Prediction)

Let t0 and tf be two timesteps at which IMU measurements are received. Since IMUs operate

very fast, we will assume that the average value of the two measurements is the constant

measured velocity and linear acceleration during this time. Denote these values as ωb
sb and

absb. These are the system inputs.

Adjusting for gravity, bias, and IMU calibration states,

ω̄b
sb = Cgω

b
sb − bbb

ābsb = Ca(a
b
sb −RbsRgg)− bba

(A.11)

Time derivatives of components of the state vector are then:

Ṙsb = Rsb[ω̄
b
sb]×

Ṫsb = RsbV
b
sb

V̇ b
sb = ābsb

(A.12)

For issues related to observability, we enforce Rsb(0) = I and Tsb(0) = 0 by holding one

group in the map fixed (see A.3.1). All other states (calibration and map states) are static

and therefore have time derivatives equal to 0.

111

A.2.5 Nominal Measurement Model (EKF Measurement Prediction)

For each tracked feature, the low-level feature tracking measures the location of the feature

in pixels xp = (xpix, ypix). Let Rsbr and Tsbr be the pose of the feature’s associated group.

Then, the nonlinear measurement equation is:

xp = πc (π (Xc)) (A.13)

where

Xc = RT
bc(R

T
sb(Xs − Tsb)− Tbc)

Xs = Rsbr(RbcXcr + Tbc) + Tsbr

A.2.5.1 Camera Models

XIVO supports the following implementations of camera distortion models πc. In the below

text, let x2dc = [X/Z, Y/Z]T = [x̄, ȳ]T

Pinhole (no distortion). Parameters: fx, fy, cx, cy
xpix

ypix

1

 =


fx 0 cx

0 fy cy

0 0 1



x̄

ȳ

1

 (A.14)

Equidistant. Parameters: fx, fy, cx, cy, k0, k1, k2, k3

Let θ = arctan (∥x2dc ∥) and ϕ = arctan(ȳ, x̄). Then the pixel coordinates are:

xpix = fxr cos(ϕ) + cx

ypix = fyr sin(ϕ) + cy

(A.15)

where

r = θ + k0θ
3 + k1θ

5 + k2θ
7 + k3θ

9. (A.16)

112

Radial-Tangential. Parameters: fx, fy, cx, cy, p1, p2, k1, k2, k3 Let r = ∥x2dc ∥. Then,

xpix = cx + fx
(
2p1x̄ȳ + p2(2x̄

2 + r2) + x̄(1 + k1r
2 + k2r

4 + k3r
6)
)

ypix = cy + fy
(
2p2x̄ȳ + p1(2ȳ

2 + r2) + ȳ(1 + k1r
2 + k2r

4 + k3r
6)
)
.

(A.17)

Arctangent. Parameters: fx, fy, cx, cy, w

Let
w2 = 2 tan

(w
2

)
f =

1

w

arctanw2∥x2dc ∥
∥x2dc ∥

.
(A.18)

Then,

xpix = fxfx̄+ cx

ypix = fyfȳ + cy.
(A.19)

A.2.6 Incorporating the Error State and Noise into Nominal Equations

Let x̃ be a perturbation on variable x. Equations of motion that include the error state can

be made by substituting the following perturbations into all equations in Sections A.2.4 and

A.2.5.

• wsb ← wsb + w̃sb and Rsb ← RsbR(w̃sb)

• Tbc ← Tbc + T̃bc

• V b
sb ← V b

sb + Ṽ b
sb

• ba ← ba + b̃a

• bg ← bg + b̃g

• wbc ← wbc + w̃bc and Rbc ← RbcR(w̃bc)

• Tbc ← Tbc + T̃bc

• wg ← wg + w̃g and Rg ← RgR(w̃g)

• (Optional) IMU Calibration: Cg ← Cg + C̃g and Ca ← C̃a

113

• (Optional) Temporal Calibration: RsbR(w̃sb)← RsbR(w̃sb)R(δrot) and Tsb+ T̃sb ←

Tsb + T̃sb + δT . If using online IMU calibration, then

δt = V b
sb(td + t̃d)

δrot = ω̄t̃d + (C̃gω − b̃g)(td + t̃d).
(A.20)

Otherwise, the perturbation is

δt = V b
sb(td + t̃d)

δrot = ω̄t̃d

(A.21)

• (Optional) Camera Calibration: all additive perturbations

• Group States: wsbr ← w̃sbr , Rsbr ← RsbrR(w̃sbr), Tsbr ← T̃sbr

• Feature States: xcr ← xcr + x̃cr

• IMU Noise: ω ← ω + nimu

A.2.7 Covariance Matrix Prediction

The dynamics of the covariance matrix are given by the Lyapunov equation

Ṗ = FP + PF T +GQimuG
T (A.22)

where F = ∂χ̇
∂e

is the Jacobian of (A.12) with respect to the error state e and G = ∂χ̇
∂nimu

is

the Jacobian of (A.12) with respect to modeled IMU noise nimu.

A.2.8 Augmenting the State and Covariance Matrix with new Features and

Groups

The number of map states (tracked features and reference groups) within the EKF state at

any given time is variable, but XIVO’s implementation does not vary the size of the state χ,

error state e, or covariance matrix P̂ . All three are allocated enough space for the maximum

number of features and groups at initialization to limit the number of system calls that XIVO

114

will make. The maximum number of tracked features and reference groups within the EKF

state are compile-time parameters.

Each tracked feature and reference group is assigned a “slot" in the error vector e and

covariance P . Unused slots have zero error, zero covariance, and zero correlation with any

other part of the EKF state. Therefore, they will not affect any other part of the state during

EKF measurement update, but will just make the measurement update more expensive.

Removing a feature or group from the state is achieved by zeroing out the relevant rows and

columns of the covariance matrix and error vector.

When adding a new reference group to the EKF state, the group is initialized with the

current value of Rsb and Tsb. Its 6 × 6 covariance block is also initialized with the current

covariance of Rsb and Tsb. When adding a new feature to the EKF state, its value and

covariance are initialized with the values and 3× 3 covariance from the subfilter performing

its depth initialization (see A.5). Neither new features nor groups are initialized with any

cross-correlation with other states.

A.3 Mapping: Management of Features and Groups

A.3.1 Killing Two Birds with One Stone: A Note on Observability and Feature

Position Uncertainty.

Detected features, indexed i, are 3D points in space. The map could, theoretically, be

represented as a collection of points X i
s ∈ R3 rather than in the groups noted above. The

representation we use, however, simultaneously addresses two problems:

1. Global gauge, the initial value of gsb, is unobservable and must be fixed – fixing it

requires removing six degrees of freedom from the state while ensuring that values of

gsb may be updated. An Extended Kalman Filter does not naturally provide a means

of enforcing an initial condition; it only provides a means of fixing a portion of the

state of a particular value.

2. The uncertainty of a feature’s position is not well-represented by a ball or spheroid in
115

R3. Because features, 3D points in space, are detected and tracked through 2D images,

when their position is represented in the camera frame c, it is much easier to estimate

their direction (X and Y values), than their depth (Z value). This observation is only

true when its position is represented in a c frame where it is visible, such as frame cr,

or the frame at which each feature was first detected; if its location were estimated in

the s frame the uncertainty would be distributed in all three cardinal directions.

The location of the camera at which a feature was first detected, however, is something

that is not exactly known. Since past c frames are not exactly known, estimating the location

of a feature requires estimating the location of the past c frame as well. This means that

the location of a feature i is represented by the following quantities:

• gsbr ∈ SE(3) - the location of the body coordinate frame when the feature was first

detected

• gbc ∈ SE(3) - the camera-IMU extrinsic calibration, which is already estimated as part

of the state

• X i
cr ∈ R3 - the location of the feature in the camera frame when it was first detected

This representation requires 9 additional parameters per feature (gsbr , Xcr) instead of 3,

which is both computationally inefficient and an overparameterization. Since a feature is a

point in 3 dimensions, there are an infinite number of ways to make 9 parameters satisfy

the observed feature locations during state estimation. This computational inefficiency and

overparameterization can be solved by having multiple features, first detected in the same

frame, share the 6 parameters in gsbr . Then, the number of states used to represent N

features is 6 + 3N instead of 9N . As the total number of degrees of freedom is 3N , this

is still an overparameterization. However, if the X and Y values of three non-collinear X i
cr

that use the same gsbr are fixed, then the total number of degrees of freedom in the group

is the correct value of 3N . The three features that are held fixed in each group are called

gauge features. Groups must therefore “own” at least three features.

116

With this representation of the map, the enforcement of a global gauge transformation

may be accomplished by holding one of the gsbr fixed. At initialization, XIVO will always

fix the gsbr corresponding to its initial position because it enforces that the initial condition

gsb(0) = (I, 0) and because there will be many possible features to choose as the gauge

feature. This is pictured in the left portion of Figure A.3.

A.3.2 Feature and Group Management

Since the state of the EKF vector has size O(N) and the measurement update step has time

complexity O(N3) and still must run in real-time, it is impractical to keep all visible features

in the state. On the other hand, the complexity of XIVO’s feature tracker is only O(N)

for the Lucas-Kanade Tracker and O(N2) for the Correspondence Tracker. Furthermore,

observing 3D features in 2D means that a depth value must be estimated (or guessed) before

it is added to the EKF state vector; more details on feature depth initialization are given

in Section A.5. Enforcing observability also means that groups within the EKF state must

contain at least three features. These facts lead to the following design choices:

• The number of features, and groups of features, in the EKF state is limited to the

compile-time parameters EKF_MAX_FEATURES and EKF_MAX_GROUPS.

• The number of features in the feature tracker is limited to tracker.max_features, a

run-time parameter that is larger than EKF_MAX_FEATURES.

• Features tracked by the feature tracker, but are not part of the EKF state, are in a depth

initialization mode, in which a O(1) complexity filter estimates its depth. Features that

have been in a depth initialization mode for at least subfilter.ready_steps, a run-

time parameter, are deemed READY.

• When features are added to the EKF state, they are added either to an existing group

already in the EKF state, or in groups of at least three features. When a group is

added, three gauge features are chosen. When adding groups to the EKF state, the

selection process will add the group(s) with the most number of READY features.

117

Feature Group Reference Group

Map: t = t2

𝚺＝0 𝚺＝𝚺1 𝚺＝𝚺2

Feature contained in Group

(a) Initial Map

Map: t = t3

𝚺＝0 𝚺＝𝚺1 𝚺＝0 𝚺＝𝚺3

Dropped Reference GroupDropped Group

Feature Visible in Group Dropped Feature

(b) After Reference Group Update

Figure A.3: Map. XIVO’s map can be visualized as a graph with two types of nodes

(Features and Groups) and two types of edges (Ownership and Visibility). A feature fi

is owned by a group gsbr ∈ SE(3), when its estimated position in the spatial frame X i
s is

calculated using the parameters of group gsbr . A feature fi may also be visible in other

groups, or past values of Rsb and Tsb in the map. Although features are initially owned by

the group where it is first detected, its state may be parameterized by any group in which

it is visible. In order to enforce a global gauge, the covariance of a single group containing

at least three features must be fixed at all times – the first reference group is always the

initial position (left figure). A group is dropped when fewer than three features remain

visible. When a reference group is dropped, a new group is chosen as the reference and its

covariance is fixed (right figure).

118

Limbo
TrackStatus::DROPPED
FeatureStatus::DROPPED

Just Detected
TrackStatus::CREATED
FeatureStatus::CREATED

Initializing Depth Estimate
TrackStatus::TRACKED

FeatureStatus::INITIALIZING

In the Filter
TrackStatus::TRACKED
FeatureStatus::INSTATE

Dead v0
TrackStatus::DROPPED

FeatureStatus::INITIALIZING
or

FeatureStatus::READY

Dead v1
TrackStatus::TRACKED

FeatureStatus::REJECTED_BY_FILTER

Automatic,
Same timestep

Out of view, or
2D outlier rejection

3D outlier rejection

Several
timesteps later

Further Refining Depth Estimate
TrackStatus::TRACKED
FeatureStatus::READY

Out of view, or
2D outlier rejection

Out of view, or
2D outlier rejection

Feature/Group
Selection

Figure A.4: Life of a XIVO Feature. A feature has two state variables, one maintained

by the feature tracker, TrackStatus, the other maintained by the EKF, FeatureStatus.

Details about transitions are described in the main text of Section A.3.2.

• Individual features are removed from the EKF state when they fall out-of-view or when

they are flagged by outlier rejection.

• When a gauge feature is removed from the EKF state and its group has more than

three features remaining, a new gauge feature is chosen from the remaining features.

• When a group has fewer than three features remaining, the entire group is removed

from the EKF state. XIVO will attempt to transfer the features to other groups within

the EKF state by recalculating xcr for a separate group.

The possible lifecycles a feature may have is captured by in Figure A.4. The logic for

adding features into the EKF state is given in Figure A.5.

119

Begin Feature
Selection

Add features with
FeatureStatus::READY

to existing groups

End Feature
Selection

Add group(s) with ≥ 3
FeatureStatus::READY

features

else
Less than three
feature slots, or
zero group slots

At least one feature
slot remaining

else

Figure A.5: Adding Features into the EKF. At each timestep, XIVO will attempt to

add features into the EKF state. It will always try to add at least one new group before

adding features to existing groups.

A.4 Jacobians

The order of elements in the state vector χ are:

χ =
[
χIMU χcalib χopt χgroup χfeatures

]
(A.23)

where

χIMU =
[
wsb Tsb Vsb bbg bba

]
(A.24)

χcalib =
[
wbc Tbc wsg

]
(A.25)

χopt =
[
td Cg Ca θ

]
(A.26)

χgroup =
[
wsbr,1 Tsbr,1 wsbr,2 Tsbr,2 . . . wsbr,ng Tsbr,ng

]
(A.27)

χfeatures =
[
x1cr x2cr . . . x

nf
cr

]
(A.28)

ng is the number of feature groups (see Section A.3.1) and nf is the number of features.

χgroup will have size 6ng and χfeatures will have size 3nf . Let nopt be the dimension of χopt.

The value of nopt will depend on the number of optional features used. The dimension of χ

is nχ = 23 + 6ng + 3nf + nopt.

120

A.4.1 Our approach to deriving approximate Jacobians.

For “block-Jacobians" (Jacobians of vectors with respect to vectors), we incorporate the error

state and noise into nominal equations of motion and measurement update equations as in

Section A.2.6. Then we algebraically isolate the error state variables. The final results are

documented in this section.

(Optional) Online Temporal and IMU Calibration If using online temporal and IMU

calibration, we need additional Jacobians with respect to error states t̃d, C̃g, and C̃a.

If we are tracking with online temporal calibration and online IMU calibration, then Rsb

is instead2

Rsb = R̄sbR(w̃sb)R(δrot) (A.29)

where

δrot = (C̄gωm − b̄g)t̃d + (C̃gωm − b̃g)(t̄d + t̃d) (A.30)

A.4.2 The Matrix F (eqs. (A.8), (A.22))

The matrix F ∈ Rnχ×nχ has form:[
∂χ̇

∂χIMU

∂χ̇
∂χcalib

∂χ̇
∂χopt

0nχ×6ng 0nχ×3nf

]
(A.31)

2Without online IMU calibration, C̄g = I and C̃g = 0.

121

Values of individual matrices are:

∂χ̇

∂χIMU
=



−[ω̄b
sb]× 03×3 03×3 −I3×3 03×3

03×3 03×3 I3×3 03×3 03×3

−Rsb[ā
b
sb]× 03×3 03×3 03×3 −Rsb

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

.


(A.32)

∂χ̇

∂χcalib
=


03×3 03×3 03×2

03×3 03×3 03×2

03×3 03×3 (−Rsb[g]×)first two cols

.

 (A.33)

∂χ̇

∂χopt
=


03×1

∂Ṙsb

∂Cg
03×6 03×nθ

03×1 03×9 03×6 03×nθ

03×1 03×9
∂V̇sb

∂Ca
03×nθ

.

 (A.34)

where

∂Ṙsb

∂Cg

=


(ωb

sb)
T 01×3 01× 3

01×3 (ωb
sb)

T 01×3

01×3 01×3 (ωb
sb)

T

 ∈ R3×9 (A.35)

∂V̇sb
∂Ca

=

(
∂AB

∂A 3×3
(absb)

)(
∂AB

∂B 3×3
(Rsb)

)(
∂A

∂Au

)
∈ R3×6 (A.36)

122

A.4.3 The Matrix G (eqs. (A.8), (A.22))

Let u =
[
ng na nbg nba

]T
be the input vector. Then, the matrix G has dimension nimu×

nχ and has form:

G =



−I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 Rsb 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

.


(A.37)

All rows of G not explicitly noted are completely zero.

A.4.4 The Matrix H (eq. (A.9))

The dimension of H is 2nf×nχ, consisting of nf blocks with dimension 2×nχ. Each block is

the Jacobian of predicted pixel coordinates xp of a feature j with respect to the error states

χ̃ at χ̃ = 0. Assume that feature j is owned by group i. Then, each two-row block is given

by:
∂xp
∂χ̃
|χ̃=0 =

∂πc(xc)

∂θ
+
∂πc(xc)

∂xc
· ∂π(Xc)

∂Xc

· ∂Xc

∂χ̃
|χ̃=0. (A.38)

The quantity ∂πc(xc)
∂θ

is equal to zero if online camera calibration is not enabled.

• ∂πc(xc)
∂xc

∈ R2×3 depends on the camera model used. For the pinhole projection model,

∂πc(xc)

∂xc
=

fx 0 0

0 fy 0

 . (A.39)

Expressions for the other camera models are more complex. They were automati-

cally differentiated and autocoded from equations given in Section A.2.5.1 using the

MATLAB Symbolic Toolbox.

123

• If using log-z projection,

∂π(Xc)

∂Xc

=


1/Z 0 −X/Z2

0 1/Z −Y/Z2

0 0 1/Z

 (A.40)

for Xc = [X, Y, Z]T .

• If using inverse-z projection,

∂π(Xc)

∂Xc

=


1/Z 0 −X/Z2

0 1/Z −Y/Z2

0 0 −1/Z2

 (A.41)

• ∂Xc

∂χ̃
is a matrix with dimension 3×nχ with form (the three “rows” below are really one

row):

∂Xc

∂χ̃
=



∂Xc

∂w̃sb

∂Xc

∂T̃sb
03×3

∂Xc

∂bg
03×3

∂Xc

∂w̃bc

∂Xc

∂T̃bc

02×nχ

∂Xc

∂t̃d

∂Xc

∂C̃g
06×nχ 0nθ×nχ 06(i−1)×nχ

∂Xc

∂w̃sbr

∂Xc

∂T̃sbr

06(ng−i)×nχ 03(j−1)×nχ

∂Xc

∂xcr
03(nf−j)×nχ


(A.42)

(Approximate) expressions within ∂Xc

∂χ̃
that are always present are given by:

∂Xc

∂T̃sbr
= −RT

bcR
T
sb (A.43)

∂Xc

∂T̃bc
= −RT

bc +RT
bcR

T
sbRsbr (A.44)

∂Xc

∂T̃sbr
= RT

bcR
T
sb (A.45)

∂Xc

∂w̃sb

= RT
bc[R

T
sb(Xs − Tsb)]× (A.46)

∂Xc

∂w̃sbr

= −RT
bcR

T
sbRsbr [RbcXc + Tbc]× (A.47)

∂Xc

∂w̃bc

= [Xc]× −R
T
bcR

T
sbRsbrRbc[Xcr]× (A.48)

∂Xc

∂xcr
= RT

bcRsbrRbc
∂Xcr

∂xcr
(A.49)

124

If using the log-z projection, ∂Xcr

∂xcr
∈ R3×3 is given by

∂Xcr

∂xcr
=


exp(Z) 0 X exp(Z)

0 exp(Z) Y exp(Z)

0 0 exp(Z)

 (A.50)

where xcr =
[
X Y Z

]T
. If using the inverse-z projection, ∂Xcr

∂xcr
∈ R3×3 is instead.

∂Xcr

∂xcr
=


1/Z 0 X/Z

0 1/Z Y/Z

0 0 −1/Z2

 . (A.51)

(Optional) Online Camera Calibration. If online camera calibration is enabled, the

quantity ∂πc(xc)
∂θ

∈ R2×nθ is nonzero. (The matrix is a sub-block of ∂xp

∂χ̃
.) For the pinhole

camera model with θ = [fx, fy, cx, cy]
T , this quantity is:

∂πc(xc)

∂θ
=

X 0 1 0

0 Y 0 1

 (A.52)

where xc = [X, Y, Z]T .

For other camera models, the expressions are complex and were autocoded from the

equations in Section A.2.5.1 using MATLAB Symbolic Toolbox.

(Optional) Online Temporal Calibration If online temporal calibration is enabled,

then the following Jacobians are nonzero:

∂Xc

∂td
= −RT

bc[ω̄
b
sb]×Xb +RT

sbVsb (A.53)

∂Xc

∂bg
= −∂AB

∂B 3,1
(RT

bc[Xb]×td) (A.54)

(Optional) Online IMU Calibration with Online Temporal Calibration. If on-

line IMU calibration and online temporal calibration are both enabled, then the following

Jacobian is nonzero and takes the form:

∂Xc

∂Cg

=
∂AB

∂B 3,1
(RT

bc[Xb]×td) ·
∂Cgω

b
sb

∂ωb
sb

(A.55)

125

where

∂Cgω
b
sb

∂ωb
sb

=


(ωb

sb)
T 03×3 03×3

03×3 (ωb
sb)

T 03×3

03×3 03×3 (ωb
sb)

T

 ∈ R3×9 (A.56)

(Optional) Online IMU Calibration with no Online Temporal Calibration. If on-

line IMU calibration, but not online temporal calibration, is enabled, then the measurement

equation is not dependent on Ca or Cg.

A.5 Feature Depth Initialization

In Section A.3.1, it was noted that since features are 3D points observed in only two dimen-

sions, that when the position of a feature is estimated in the camera frame at the time it was

first detected, there is a lot more uncertainty in its depth than the X and Y directions. In

the camera frame at the time it was detected, the X and Y values can be observed instantly,

but the depth can only be observed, and initialized, over time.

Before a feature can be added into the main EKF state, its depth value must be initialized

to some value. An inaccurate initialized value will adversely affect the EKF’s estimate of the

current state gsb. This section describes the algorithms used to initialize a depth estimate.

A flowchart of all possibilities is pictured in Figure A.6.

A.5.1 Subfilter Equations

The main component used to estimate feature depth is a subfilter, an incomplete Extended

Kalman Filter. Unlike the main state vector, which contains multiple features, each feature

has its own subfilter; subfiltering N features therefore has a computational complexity of

O(N).

The state of the subfilter is xcr = [X/Z, Y/Z, log(Z)]T with constant dynamics ẋcr = 0.

The measurement equation is:

xp = πc
(
π
(
g−1
bc (t) ◦ g

−1
sb (t) ◦ gsbr ◦ gbc(t) ◦ π

−1(xcr)
))

(A.57)
126

t = 0
Initial Detection

TrackStatus::CREATED
FeatureStatus::CREATED

t = 0
Begin Subfilter

TrackStatus::TRACKED
FeatureStatus::INITIALIZING

t = ready_steps
Update Status

TrackStatus::TRACKED
FeatureStatus::READY

t = 1
Triangulation

TrackStatus::TRACKED
FeatureStatus::INITIALIZING

t = 1
Begin Subfilter

TrackStatus::TRACKED
FeatureStatus::INITIALIZING

t ≥ ready_steps
Depth Refinement

TrackStatus::TRACKED
FeatureStatus::READY

t ≥ ready_steps
Feature Selection End

TrackStatus::TRACKED
FeatureStatus::INSTATE

t ≥ ready_steps
Dead v0

TrackStatus::DROPPED
FeatureStatus::INITIALIZING

or
FeatureStatus::READY

Using triangulation,
wait to initialize
subfilter

Not using
triangulation,
initialize subfilter
with constant depth

Initialize subfilter with
triangulated depth

Chosen by feature
selection, no depth
refinement

Chosen by feature
selection, using depth
refinement

Depth refinement
successful

Depth refinement
unsuccessful

Figure A.6: XIVO’s Feature Depth Initialization Process. This flowchart illus-

trates the states of a feature during the depth initialization process. TrackStatus and

FeatureStatus are the same as those used in Figure A.4. The main variables affecting the

process are whether or not two-view triangulation is performed, or whether or not depth

refinement is performed.

127

where gbc and gsb are read from the main EKF state at each timestep and used as constants in

the subfilter update. If other features sharing the same group parameters gsbr are currently in

the main EKF state, then gsbr is also read from the EKF state. Otherwise, gsbr is a constant,

initialized to the value of gsb at time the feature was first detected. Equation (A.57) is

identical to the main EKF measurement update equation, except that it only estimates the

values of xcr . To compensate for the fact that gsb, gsbr , and gbc will change every timestep,

the covariance values of feature tracks used for the measurement update of the subfilter

should be larger than the covariance values of feature tracks used in the main EKF filter.

The initial state of the subfilter is xcr,0. The X and Y coordinates of xcr,0 can be

computed by inverting the camera intrinsics πc(·). The Z coordinate is initialized with a

constant run-time parameter z_init. The initial covariance of the subfilter is a diagonal

matrix. The parameters of the diagonal matrix are user-defined run-time parameters.

Before a feature is added to the EKF state, the subfilter must run for ready_steps, a

user-defined number of parameters. Afterward, it becomes a candidate for addition to the

state.

A.5.2 Two-View Triangulation (Optional)

Rather than initializing the subfilter of all features with a constant runtime parameter

z_init, we may calculate a separate value of z_init for each feature using two-view trian-

gulation. The two views are the first two frames in which the feature is visible. Two-view

triangulation uses the estimates of gsb at the latest two timesteps and the latest estimate of

gbc as if they were correct.

XIVO contains five implementations of two-view triangulation:

• Essential Matrix [Lon81]

• Direct Linear Transformation [Sut74]

• Minimization of L1, L2, and L-∞ angular reprojection error [LC19b]

Since the first two views of a feature are used in triangulation, triangulation will often fail
128

in practice due to a lack of parallax. When triangulation fails, XIVO will use the user-defined

constant z_init instead of the triangulation output.

A.5.3 Depth Refinement (Optional)

Depth refinement occurs right before a feature is added to the EKF state. This may be after

more timesteps than ready_steps. The depth refinement will directly edit the state of the

subfilter, but not the covariance.

Depth refinement partially solves the following optimization problem:

minimize
xcr

1

2

Nobs∑
i=1

(xp(i)− xobsp (i))TR−1(xp(i)− xobsp (i)) (A.58)

where R is the measurement covariance (a runtime parameter), xp(i) is the predicted mea-

surement at timestep i computed from xcr and xobsp (i) is the actual feature measurement

at timestep i. The partial solving is done using a fixed number (a runtime parameter) of

Newton steps.

If the total L2 error
Nobs∑
i=1

(xp(i)− xobsp (i)) (A.59)

exceeds the threshold max_res_norm, a runtime parameter, then depth refinement failed.

Otherwise, depth refinement is successful.

A.6 Loop Closure (Optional)

Loop closure is an optional measurement update using features with state Limbo (see Fig.

A.4). If loop closure is enabled, XIVO’s mapper module (enabled with the compile-time

option USE_MAPPER) will look for possible loop closures after each measurement update. The

loop closure process is:

1. Search for loop closures by matching descriptors of features in the current EKF state to

features in Limbo. Descriptor matching is performed using the DBoW2 bag-of-words

129

library [GT12] and a nearest neighbor search. For each matched feature, retrieve the

old value of Xs from the map.

2. Use Perspective-and-Point RANSAC to remove outliers from the list of matches. We

use the Lambda Twist [PN18] solver. Since Perspective-and-Point RANSAC requires at

least four matches, we consider all points outliers if there are fewer than four matches.

3. For the old values of Xs that remain, perform an EKF measurement update with the

following measurement equation:

xp = πc(π(RT
bc(R

T
sbXs − Tsb)− Tbc)) (A.60)

Rbc, Tbc, Rsb, and Tsb are read from the current state vector. Xs is treated like a known

constant. The measurement covariance associated with equation (A.60) is a runtime

parameter.

130

APPENDIX B

Supporting Figures for “Feature Tracks are not

Zero-Mean Gaussian”

B.1 Supporting Figures for DTU Point Features Dataset

0 20 40 60 80
Maximum 2D Feature Track Error (px)

10 3

10 2

10 1

De
ns

ity

No outlier track removal
Top 10% removed

Figure B.1: DTU Point Features Dataset: We will throw out the 10% of tracks

with the most error from each scene. The right figure plots the histogram density of

all feature tracks’ maximum L2 error in log scale. The corresponding scene is pictured on

the left. Outliers in the blue histogram are caused by noisy depth measurements and the

imperfect association of features with laser scan points.

131

0 10 20 30 40 50
Feature Lifetime (# frames)

10 6

10 5

10 4

10 3

10 2

10 1

100

De
ns

ity

Lucas-Kanade
Correspondence

Figure B.2: DTU Point Features Dataset: Feature lifetimes generated by the

Lucas-Kande Tracker is a long tailed distribution. The histograms above plot fea-

ture lifetime density in log scale for scenes with diffuse lighting and no skipped frames

(speed=1.00) for the Lucas-Kanade (blue) and Correspondence (orange) Trackers. There

is a long tail of tracks with longer lifetimes when we use a sparse optical flow rather than

correspondences.

132

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.0

0.2

0.4

0.6

0.8

1.0
Ou

tli
er

 R
at

io

(a) Lucas-Kanade

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(b) Correspondence

Figure B.3: DTU Point Features Dataset: Outlier Ratio Depends on Speed. In the

box-and-whisker plots above, the orange line is the median, the green triangle is the mean,

and the box extends from the first to the third quartiles. The whiskers extend up to 1.5x

the length of the boxes. Outlier ratios increase with speed for all tested feature trackers to a

point, and then falls slightly. Each box-and-whisker is computed using features from all 60

scenes, one tracker, and one speed. Outlier ratios then decrease at higher speeds not because

the tracker is more accurate, but because the percentage of features that fail to be tracked

from frame to frame increases.

133

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0
Ou

tli
er

 R
at

io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(a) Lucas-Kanade

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(b) Correspondence

Figure B.4: DTU Point Features Dataset: Outlier ratio does not depend on the

existence of directional lighting. In the box-and-whisker plots above, the orange line is

the median, the green triangle is the mean, and the box extends from the first to the third

quartiles. The whiskers extend up to 1.5x the length of the boxes. Each box-and-whisker

plot is computed using features from all 60 scenes, one tracker, speed=1.00, and one of the

lighting conditions in Figure 4.1. The distribution of outlier ratio is approximately the same

for all lighting conditions.

134

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0

2

4

6

8

10
Fe

at
ur

e
Lif

et
im

e
(#

 fr
am

es
)

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0

2

4

6

8

10

Fe
at

ur
e

Lif
et

im
e

(#
 fr

am
es

)

(a) Lucas-Kanade

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0

1

2

3

4

5

Fe
at

ur
e

Lif
et

im
e

(#
 fr

am
es

)

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0

1

2

3

4

5

Fe
at

ur
e

Lif
et

im
e

(#
 fr

am
es

)

(b) Correspondence

Figure B.5: DTU Point Features Dataset: Feature lifetime does not depend on

the existence of directional lighting. In the box-and-whisker plots above, the orange

line is the median, the green triangle is the mean, and the box extends from the first to

the third quartiles. The whiskers extend up to 1.5x the length of the boxes. Outlier ratios

increase with speed for all tested feature trackers to a point, and then falls slightly. Each

box-and-whisker is computed using features from all 60 scenes, one tracker, and one speed.

The distribution of feature lifetime is approximately the same for all lighting conditions.

135

0 10 20 30 40 50
Timestep

100

101

102

103

104

Tr
ac

ke
d

Fe
at

ur
es

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

(a) Lucas-Kanade

0 10 20 30 40 50
Timestep

100

101

102

103

104

Tr

ac
ke

d
Fe

at
ur

es

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

(b) Correspondence

Figure B.6: Each curve shows the total number of tracked features at each timestep for the

Lucas-Kanade Tracker (left) and the Correspondence Tracker (right) in log scale. Each dot

on a curve is a frame in the sequence and each curve is computed using all features visible in

the Key Frame under diffuse lighting and one speed. The number of features that can be used

to compute mean µ(t) and covariance Σ(t) declines quickly away from the Key Frame when

using the Correspondence Tracker. When using the Lucas-Kanade Tracker, a slower speed

means that more features are tracked for more frames. When using the Correspondence

Tracker, the number of features tracked is dependent on the number of frames as well as

the speed for the reasons noted in Section 4.2.1. The closer two frames are (i.e., the slower

the speed), the fewer features are dropped between them. This is consistent with previously

known results about the precision and recall of feature descriptors [MS05,SHS17a,WOB17].

We limit calculations of mean error µ(t), mean absolute error, κ(t), and covariance

Σ(t) to timesteps that contain at least 100 features.

136

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(a) µ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(b) µ(t), Vertical Coordinate

Figure B.7: DTU Point Features Dataset: At nominal speed and with diffuse

lighting, the tracker used has little effect on µ(t). Lines shown are mean feature track

errors µ(t) at each timestep t calculated over all scenes. The blue lines are feature track

errors calculated using the Lucas-Kanade Tracker and the orange lines are feature track

errors calculated using the Correspondence Tracker. Lines are cut-off to timesteps where at

least 100 features with 3D data are available (see Fig. B.6). The orange lines are on top of

the blue lines, therefore the tracker used does not affect mean error.

137

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(a) κ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(b) κ(t), Vertical Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

Lucas-Kanade
Correspondence

(c) Σ(t), Horizontal Covariance

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

Lucas-Kanade
Correspondence

(d) Σ(t), Vertical Coordinate

Figure B.8: DTU Point Features Dataset: At nominal speed and under diffuse

lighting, the tracker used does affect mean absolute error κ(t) and covariance Σ(t).

Lines shown are horizontal and vertical coordinates of κ(t) (top row), and Σ(t) (bottom row)

calculated using all tracks from all scenes. Each dot corresponds to a single frame. Mean

absolute error and covariance for the Correspondence Tracker are roughly constant with

respect to time, while the same values for the Lucas-Kanade Tracker increases steadily with

time away from the Key Frame.

138

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

(a) µ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

(b) µ(t), Vertical Coordinate

Figure B.9: DTU Point Features Dataset: Speed affects mean error when using

the Lucas-Kanade Tracker with diffuse lighting. The left column contains plots of

the horizontal and vertical coordinates of mean error µ(t) at each timestep and multiple

speeds. Each dot corresponds to a processed frame. The right column plots the ordinate

value of each line in the left figures as a box plot. As speed is increased, the slope of the

horizontal components of µ(t) in the left plots (eq. (4.6)) decreases and the height of each

box in the right plot decreases, i.e. the absolute magnitude of µ(t) slighty decreases. This

trend indicates the existence of two speed-related components that affect µ(t): the difference

between frames and the number of frames that have elapsed; the former has a much larger

effect than the latter. The latter occurs because the exact point that the Lucas-Kanade

Tracker tracks drifts with each frame. Fewer frames means that the tracked point has fewer

opportunities to drift.

139

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ho
riz

on
ta

l E
rro

r (
px

)

(a) κ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ve
rti

ca
l E

rro
r (

px
)

(b) κ(t), Vertical Coordinate

Figure B.10: DTU Point Features Dataset: Speed affects mean absolute error

when using the Lucas-Kanade Tracker with diffuse lighting. The left column con-

tains plots of the horizontal (top row) and vertical (bottom row) coordinates of mean absolute

error κ(t) at each timestep and multiple speeds. Each dot corresponds to a processed frame.

The right column plots the ordinate value of each line in the left figures as a box plot. As

speed is increased, the mean absolute error at each timestep slightly decreases. This indi-

cates the existence of two speed-related components that affect κ(t): the difference between

frames and the number of frames that have elapsed; the former has a much larger effect than

the latter. The latter occurs because the exact point that the Lucas-Kanade Tracker tracks

drifts with each frame. Fewer frames means that the tracked point has fewer opportunities

to drift.

140

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

(a) Σ(t), Horizontal Covariance

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

St
d.

 V
er

tic
al

 C
oo

rd
ia

nt
e

(p
x)

(b) Σ(t), Vertical Coordinate

Figure B.11: DTU Point Features Dataset: Speed affects covariance when using

the Lucas-Kanade Tracker with diffuse lighting. The left column contains plots of

the square root of the horizontal (top row) and vertical (bottom row) coordiantes of Σ(t) at

each timestep and multiple speeds. Each dot cooresponds to a processed frame. The right

column plots the ordinate value of each line in the left figures as a box plot. As speed is

increased, the covariance of both the horizontal and vertical coordiantes slightly decreases;

the lines in the left plot become slightly less steep and mean values of covariance get slightly

smaller. This indicates the existence of two speed-related components to these statistics:

the difference between frames and the number of frames that have elapsed; the former has

a much larger effect than the latter. The latter occurs because the exact point that the

Lucas-Kanade Tracker tracks drifts with each frame. Fewer frames means that the tracked

point has fewer opportunities to drift.

141

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ho
riz

on
ta

l E
rro

r (
px

)

(a) µ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ve
rti

ca
l E

rro
r (

px
)

(b) µ(t), Vertical Coordinate

Figure B.12: DTU Point Features Dataset: When using the Correspondence

Tracker with diffuse lighting, mean error µ(t) is not affected by speed. The left

column contains plots of the horizontal coordinate (top row) and vertical coordinate (bot-

tom row) of µ(t) at each timestep and multiple speeds. Each dot corresponds to a processed

frame. The right column plots the ordinate value of each line in the left figures as a box

plot. Both the line and box plots only contain timesteps that contain at least 100 tracked

features (see Fig. B.6), leading to some asymmetry of the lines about the Key Frame. As

speed is increased, there is no change in both the horizontal and vertical coordinates, as all

lines in the left column plots are on top of one another. The boxes in the box plots of the

horizontal coordinate are taller for higher speeds because the time cutoff for those speeds is

longer than for the lower speeds, allowing more error to appear in the tracked features.

142

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ho
riz

on
ta

l E
rro

r (
px

)

(a) κ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ve
rti

ca
l E

rro
r (

px
)

(b) κ(t), Vertical Coordinate

Figure B.13: DTU Point Features Dataset: When using the Correspondence

Tracker with diffuse lighting, mean absolute error κ(t) increases in the horizontal

direction, but not the vertical direction, as speed is increased. The left column

contains plots of the horizontal coordinate (top row) and vertical coordinate (bottom row)

of κ(t) at each timestep and multiple speeds. Each dot corresponds to a processed frame;

lines for higher speeds contain data from fewer frames and therefore show fewer dots. The

right column plots the ordinate value of each line in the left figures as a box plot: means

are shown as green triangles and medians are shown as orange lines. Both the line and box

plots only contain timesteps that contain at least 100 tracked features (see Fig. B.6). The

mean and median values of the horizontal coordinate of κ(t) increases as speed is increased.

143

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

(a) Σ(t), Horizontal Covariance

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=6.00
speed=8.00
speed=12.00
speed=24.00

1.00 2.00 3.00 4.00 6.00 8.00 12.00 24.00
Speed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

St
d.

 V
er

tic
al

 C
oo

rd
ia

nt
e

(p
x)

(b) Σ(t), Vertical Coordinate

Figure B.14: DTU Point Features Dataset: When using the Correspondence

Tracker with diffuse lighting, covariance Σ(t) increases in the horizontal direction,

but not the vertical direction, as speed is increased. The left column contains plots

of the square root of the horizontal coordinate (top row) and vertical coordinate (bottom

row) of Σ(t) at each timestep and multiple speeds. Each dot corresponds to a processed

frame; lines for higher speeds contain data from fewer frames and therefore show fewer dots.

The right column plots the ordinate value of each line in the left figures as a box plot: means

are shown as green triangles and medians are shown as orange lines. Both the line and box

plots only contain timesteps that contain at least 100 tracked features (see Fig. B.6). The

mean and median values of the horizontal value of Σ(t) as speed is increased.

144

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) µ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) µ(t), Vertical Coordinate

Figure B.15: DTU Point Features Dataset: The existence of directional lighting

does not change trends in mean error µ(t) when using the Lucas-Kande Tracker

at nominal speed. We compute µ(t) using diffuse lighting (black lines) and each of the

directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. Results

for the horizontal coordinate are in the top row and results for the vertical coordinate are

in the bottom row. Timesteps are limited to those that contain at least 100 features. The

variation of µ(t) due to the existence of directional lighting is at most 10 percent the size

of the variation common to all plotted lines. The effect of directional lighting is relatively

small because changes between adjacent frames are small whether or not the scene contains

directional lighting.

145

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) µ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) µ(t), Vertical Coordinate

Figure B.16: DTU Point Features Dataset: The existence of directional light-

ing does not change trends in mean error µ(t) when using the Correspondence

Tracker at nominal speed. We compute µ(t) using diffuse lighting (black lines) and each

of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

Results of the horizontal coordinate are shown in the top row and results for the vertical

coordinate are shown in the bottom row. Timesteps are limited to those that contain at least

100 features. The variation of µ(t) due to the existence of directional lighting is at most 10

percent of the variation common to all plotted lines. The effects of directional lighting is

relatively small because changes between adjacent frames are small whether or not the scene

contains directional lighting.

146

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) κ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) κ(t), Vertical Coordinate

Figure B.17: DTU Point Features Dataset: The existence of directional lighting

does not change trends in mean absolute error κ(t) when using the Lucas-Kanade

Tracker at nominal speed. We compute µ(t) at each timestep using diffuse lighting (black

lines) and each of the directional lighting conditions listed in Figure 4.1 using all tracks from

all 60 scenes. Timesteps are limited to those that contain at least 100 features. The variation

of κ(t) due to the existence of directional lighting is at most 10 percent of the variation

common to all plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains directional

lighting.

147

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) κ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) κ(t), Vertical Coordinate

Figure B.18: DTU Point Features Dataset: The existence of directional lighting

does not change trends in mean absolute error κ(t) when using the Correspon-

dence Tracker at nominal speed. We compute κ(t) using diffuse lighting (black lines)

and each of the directional lighting conditions listed in Figure 4.1 using all tracks from all

60 scenes. Timesteps are limited to those that contain at least 100 features. The variation

of κ(t) due to the existence of directional lighting is at most 10 percent of the variation com-

mon to all plotted lines. The effect of directional lighting is relatively small because changes

between adjacent frames are small whether or not the scene contains directional lighting.

148

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Σ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Σ(t), Vertical Coordinate

Figure B.19: DTU Point Features Dataset: The existence of directional lighting

does not change trends in covariance Σ(t) when using the Lucas-Kanade Tracker

at nominal speed. We compute Σ(t) using diffuse lighting (black lines) and each of the di-

rectional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. Timesteps

are limited to those that contain at least 100 features. The variation of Σ(t) due to the exis-

tence of directional lighting is at most 10 percent of the variation common to all plotted lines.

The effect of directional lighting is relatively small because changes between adjacent frames

are small whether or not the scene contains directional lighting. The blip in the bottom-right

figure is due to one specific scene where the AGAST tracker finds very few features, causing

a failure in tracking and outlier rejection, and then calculation of Σ(t) downstream.

149

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Σ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Σ(t), Vertical Coordinate

Figure B.20: DTU Point Features Dataset: The existence of directional light-

ing does not change trends in covariance Σ(t) when using the Correspondence

Tracker at nominal speed. We compute Σ(t) using diffuse lighting (black lines) and each

of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

Timesteps are limited to those that contain at least 100 features. The variation of Σ(t) due

to the existence of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is small because changes between adjacent

frames are small whether or not the scene contains directional lighting.

150

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

Normal
Sideways

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

Normal
Sideways

(a) Lucas-Kanade

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

Normal
Sideways

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

Normal
Sideways

(b) Correspondence

Figure B.21: DTU Point Features Dataset: Mean errors are larger about the

direction of motion for both the Lucas-Kanade and Correspondence Trackers. In

Figures B.9, B.12, B.15, and B.16, the horizontal component (left column) of µ(t) was always

larger than the vertical component (right column). When images are rotated 90 degrees

counterclockwise (“sideways”), the trend is reversed. Errors shown above are computed for

the Lucas-Kanade Tracker at nominal speed and in diffuse lighting.

151

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

Normal
Sideways

(a) κ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

Normal
Sideways

(b) κ(t), Vertical Coordinate

Figure B.22: DTU Point Features Dataset: Mean absolute errors are larger about

the direction of motion when using the Lucas-Kanade Tracker. In Figures B.9,

B.12, B.15, and B.16, the horizontal component of κ(t) was always larger than the vertical

component. When images are rotated 90 degress counterclockwise (“sideways”), the trend is

reversed. Mean absolute errors shown above are computed for the Lucas-Kanade Tracker at

nominal speed and in diffuse lighting.

152

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

Normal
Sideways

(a) κ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

Normal
Sideways

(b) κ(t), Vertical Coordinate

Figure B.23: DTU Point Features Dataset: The direction of motion does not affect

mean absolute error when using the Correspondence Tracker. In Figures B.13, and

B.18, the difference between the horizontal and vertical components of κ(t) was a fraction of

the size of κ(t) in both components. When images are rotated 90 degrees counterclockwise

(“sideways”), the trend is the same. Errors shown above are computed for the Correspondence

Tracker at nominal speed and in diffuse lighting.

153

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

Normal
Sideways

(a) Σ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

Normal
Sideways

(b) Σ(t), Vertical Coordinate

Figure B.24: DTU Point Features Dataset: Covariances are larger about the direc-

tion of motion when using the Lucas-Kanade Tracker. In Figures B.11, B.14, B.19,

and B.20, the horizontal component of Σ(t) was always larger than the vertical component.

When images are rotated 90 degrees counterclockwise (“sideways"), the trend is reversed

for both errors (top row) and covariance (bottom row). Errors above are computed for the

Lucas-Kanade Tracker at nominal speed and in diffuse lighting.

154

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

Normal
Sideways

(a) Σ(t), Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

Normal
Sideways

(b) Σ(t), Vertical Coordinate

Figure B.25: DTU Point Features Dataset: The direction of motion does not affect

covariance when using the Correspondence Tracker. In Figures B.14, and B.20, the

difference between the horizontal and vertical components of Σ(t) was a fraction of the size of

Σ(t) in both components. When images are rotated 90 degrees counterclockwise (“sideways”),

the trend is the same. Errors shown above are computed for the Correspondence Tracker at

nominal speed and in diffuse lighting.

155

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0
Ou

tli
er

 R
at

io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(a) Lucas-Kanade

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(b) Correspondence

Figure B.26: At twice nominal speed, the existence of directional lighting does not

affect outlier ratio. In the box-and-whisker plots above, the orange line is the median, the

green triangle is the mean, and the box extends from the first to the third quartiles. The

whiskers extend up to 1.5x the length of the boxes. Each box-and-whisker plot is computed

using features from all 60 scenes, one tracker, speed=2.00, and one of the lighting conditions

in Figure 4.1. The distribution of outlier ratio is approximately the same for all lighting

conditions.

156

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0
Ou

tli
er

 R
at

io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(a) Lucas-Kanade

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(b) Correspondence

Figure B.27: At four times nominal speed, the existence of directional lighting

does not affect outlier ratio. In the box-and-whisker plots above, the orange line is

the median, the green triangle is the mean, and the box extends from the first to the third

quartiles. The whiskers extend up to 1.5x the length of the boxes. Each box-and-whisker

plot is computed using features from all 60 scenes, one tracker, speed=4.00, and one of the

lighting conditions in Figure 4.1. The distribution of outlier ratio is approximately the same

for all lighting conditions.

157

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0
Ou

tli
er

 R
at

io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(a) Lucas-Kanade

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(b) Correspondence

Figure B.28: At eight times nominal speed, the existence of directional lighting

does not affect outlier ratio. In the box-and-whisker plots above, the orange line is

the median, the green triangle is the mean, and the box extends from the first to the third

quartiles. The whiskers extend up to 1.5x the length of the boxes. Each box-and-whisker

plot is computed using features from all 60 scenes, one tracker, speed=8.00, and one of the

lighting conditions in Figure 4.1. The distribution of outlier ratio is approximately the same

for all lighting conditions.

158

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0
Ou

tli
er

 R
at

io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(a) Lucas-Kanade

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7 diffuse
Lighting Condition

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(b) Correspondence

Figure B.29: At twelve times nominal speed, the existence of directional lighting

does not affect outlier ratio. In the box-and-whisker plots above, the orange line is

the median, the green triangle is the mean, and the box extends from the first to the third

quartiles. The whiskers extend up to 1.5x the length of the boxes. Each box-and-whisker

plot is computed using features from all 60 scenes, one tracker, speed=12.00, and one of the

lighting conditions in Figure 4.1. The distribution of outlier ratio is approximately the same

for all lighting conditions.

159

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.30: DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in mean error µ(t) when using the Lucas-Kanade

Tracker. We compute µ(t) at each timestep using diffuse lighting (black lines) and each

of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

The variation of µ(t) due to the existence of directional lighting is at most 10 percent of the

variation common to all plotted lines. The effect of directional lighting is relatively small

because changes between adjacent frames are small whether or not the scene contains direc-

tional lighting.

160

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.31: DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the Lucas-Kanade

Tracker. We compute µ(t) at each timestep using diffuse lighting (black lines) and each

of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

The variation of µ(t) due to the existence of directional lighting is at most 10 percent of

the variation common to all plotted lines. The effect of directional lighting is relatively

small because changes between adjacent frames are small whether or not the scene contains

directional lighting.

161

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.32: DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the Lucas-Kanade

Tracker. We compute µ(t) at each timestep using diffuse lighting (black lines) and each

of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

The variation of µ(t) due to the existence of directional lighting is at most 10 percent of

the variation common to all plotted lines. The effect of directional lighting is relatively

small because changes between adjacent frames are small whether or not the scene contains

directional lighting.

162

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.33: DTU Point Features Dataset: At twelve times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the Lucas-Kanade

Tracker. We compute µ(t) at each timestep using diffuse lighting (black lines) and each

of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

The variation of µ(t) due to the existence of directional lighting is at most 10 percent of

the variation common to all plotted lines. The effect of directional lighting is relatively

small because changes between adjacent frames are small whether or not the scene contains

directional lighting.

163

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.34: DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in mean absolute error κ(t) when using the Lucas-

Kanade Tracker. We compute κ(t) using diffuse lighting (black lines) and each of the

directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. The

variation of κ(t) due to the existence of directional lighting is at most 10 percent of the

variation common to all plotted lines. The effect of directional lighting is relatively small

because changes between adjacent frames are small whether or not the scene contains direc-

tional lighting.

164

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.35: DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in mean absolute error κ(t) when using the

Lucas-Kanade Tracker. We compute κ(t) using diffuse lighting (black lines) and each of

the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

The variation of κ(t) due to the existence of directional lighting is at most 10 percent of

the variation common to all plotted lines. The effect of directional lighting is relatively

small because changes between adjacent frames are small whether or not the scene contains

directional lighting.

165

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.36: DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in κ(t) when using the Lucas-Kanade Tracker.

We compute κ(t) using diffuse lighting (black lines) and each of the directional lighting

conditions listed in Figure 4.1 using all tracks from all 60 scenes. The variation of κ(t) due

to the existence of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is small because changes between adjacent

frames are small whether or not the scene contains directional lighting.

166

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.37: DTU Point Features Dataset: At twelve times nominal speed, lighting

condition does not change trends in mean absolute error κ(t) when using the

Lucas-Kanade Tracker. We compute κ(t) using diffuse lighting (black lines) and each of

the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

The variation of κ(t) due to the existence of directional lighting is at most 10 percent of

the variation common to all plotted lines. The effect of directional lighting is relatively

small because changes between adjacent frames are small whether or not the scene contains

directional lighting.

167

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.38: DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in covariance Σ(t) when using the Lucas-Kanade

Tracker. We compute Σ(t) using diffuse lighting (black lines) and each of the directional

lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. The variation of

Σ(t) due to the existence of directional lighting is at most 10 percent of the variation com-

mon to all plotted lines. The effect of directional lighting is relatively small because changes

between adjacent frames are small whether or not the scene contains directional lighting.

168

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.39: DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in covariance Σ(t) when using the Lucas-Kanade

Tracker. We compute Σ(t) using diffuse lighting (black lines) and each of the directional

lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. The variation

of Σ(t) due to the existence of directional lighting is less than 10 percent of the variation

common to all plotted lines for all but one lighting condition. The effect of directional

lighting is relatively small because changes between adjacent frames are small whether or

not the scene contains directional lighting. The larger-than average covariance for lighting

condition BF7 is caused by a single scene where feature tracking fails.

169

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.40: DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in covariance Σ(t) when using the Lucas-Kanade

Tracker. We compute Σ(t) using diffuse lighting (black lines) and each of the directional

lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. The variation

of Σ(t) due to the existence of directional lighting is at most 10 percent of the variation

common to all plotted lines. The effect of directional lighting is relatively small because

changes between adjacent frames are small whether or not the scene contains directional

lighting.

170

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.41: DTU Point Features Dataset: At twelve times nominal speed, lighting

condition does not change trends in covariance Σ(t) when using the Lucas-Kanade

Tracker. We compute Σ(t) using diffuse lighting (black lines) and each of the directional

lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. At twelve times

nominal speed, tracking failures cause large covariances to appear for some lighting condi-

tions. Otherwise, the variation of Σ(t) due to the existence of directional lighting is at most

10 percent of the variation common to all plotted lines. The effect of directional lighting is

relatively small because changes between adjacent frames are small whether or not the scene

contains directional lighting.

171

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.42: DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in mean error µ(t) when using the Correspondence

Tracker. We compute µ(t) at each timestep using diffuse lighting (black lines) and each

of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

Lines are limited to timesteps containing at least 100 features. The variation of µ(t) due

to the existence of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is relatively small because changes between

adjacent frames are small whether or not the scene contains directional lighting.

172

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.43: DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the Correspon-

dence Tracker. We compute µ(t) at each timestep using diffuse lighting (black lines) and

each of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60

scenes. Lines are limited to timesteps containing at least 100 features. The variation of µ(t)

due to the existence of directional lighting is at most 10 percent of the variation common to

all plotted lines. The effect of directional lighting is relatively small because changes between

adjacent frames are small whether or not the scene contains directional lighting.

173

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.44: DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the Correspon-

dence Tracker. We compute µ(t) at each timestep using diffuse lighting (black lines) and

each of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60

scenes. Lines are limited to timesteps containing at least 100 features. The variation of

µ(t) due to the existence of directional lighting is smaller than the variation common to all

plotted lines. The effect of directional lighting is small because changes between adjacent

frames are small whether or not the scene contains directional lighting.

174

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ho
riz

on
ta

l E
rro

r (
px

)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8

(b) Vertical Coordinate

Figure B.45: DTU Point Features Dataset: At twelve times nominal speed, lighting

condition does not change trends in mean error µ(t) when using the Correspon-

dence Tracker. We compute µ(t) at each timestep using diffuse lighting (black lines) and

each of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60

scenes. Lines are limited to timesteps containing at least 100 features. With the exception

of one lighting condition, the variation of µ(t) due to the existence of directional lighting is

at most 10 percent of the variation common to all plotted lines. The effect of directional

lighting is relatively small because changes between adjacent frames are small whether or

not the scene contains directional lighting. The large variation in lighting condition LR6 is

caused by tracking failures.

175

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.46: DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in mean absolute error κ(t) when using the Corre-

spondence Tracker. We compute κ(t) using diffuse lighting (black lines) and each of the

directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. Lines

are limited to timesteps containing at least 100 features. The variation of κ(t) due to the

existence of directional lighting is at most 10 percent of the variation common to all plotted

lines. The effect of directional lighting is relatively small because changes between adjacent

frames are small whether or not the scene contains directional lighting.

176

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.47: DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in mean absolute error κ(t) remains indepen-

dent of lighting condition when using the Correspondence Tracker. We compute

κ(t) using diffuse lighting (black lines) and each of the directional lighting conditions listed

in Figure 4.1 using all tracks from all 60 scenes. Lines are limited to timesteps containing at

least 100 features. There are no significant differences between lines. The effect of directional

lighting is small because changes from frame-to-frame are small.

177

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.48: DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in mean absolute error κ(t) when using the

Correspondence Tracker. We compute κ(t) using diffuse lighting (black lines) and each

of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

Lines are limited to timesteps containing at least 100 features. The variation of κ(t) due

to the existence of directional lighting is at most 10 percent of the variation common to all

plotted lines. The effect of directional lighting is relatively small because changes between

adjacent frames are small whether or not the scene contains directional lighting.

178

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ho

riz
on

ta
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
riz

on
ta

l E
rro

r (
px

)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
rti

ca
l E

rro
r (

px
)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.49: DTU Point Features Dataset: At twelve times nominal speed, lighting

condition does not change trends in mean absolute error κ(t) when using the

Correspondence Tracker. We compute κ(t) using diffuse lighting (black lines) and each

of the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

Lines are limited to timesteps containing at least 100 features. With the exception of lighting

condition BF6, the variation of κ(t) due to the existence of directional lighting is at most

10 percent of the variation common to all plotted lines. The effect of directional lighting is

relatively small because changes between adjacent frames are small whether or not the scene

contains directional lighting.

179

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.50: DTU Point Features Dataset: At twice nominal speed, lighting con-

dition does not change trends in covariance Σ(t) when using the Correspondence

Tracker. We compute Σ(t) using diffuse lighting (black lines) and each of the directional

lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. Timesteps are

limited to those with at least 100 features. The variation of Σ(t) due to the existence of

directional lighting is at most 10 percent of the variation common to all plotted lines. The

effect of directional lighting is relatively small because changes between adjacent frames are

small whether or not the scene contains directional lighting.

180

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.51: DTU Point Features Dataset: At four times nominal speed, lighting

condition does not change trends in covariance Σ(t) when using the Correspon-

dence Tracker. We compute Σ(t) using diffuse lighting (black lines) and each of the direc-

tional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. Timesteps

are limited to those with at least 100 features. The variation of Σ(t) due to the existence of

directional lighting is at most 10 percent of the variation common to all plotted lines. The

effect of directional lighting is relatively small because changes between adjacent frames are

small whether or not the scene contains directional lighting.

181

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.52: DTU Point Features Dataset: At eight times nominal speed, lighting

condition does not change trends in covariance Σ(t) when using the Correspon-

dence Tracker. We compute Σ(t) using diffuse lighting (black lines) and each of the direc-

tional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes. Timesteps

are limited to those with at least 100 features. The variation of Σ(t) due to the existence of

directional lighting is at most 10 percent of the variation common to all plotted lines. The

effect of directional lighting is relatively small because changes between adjacent frames are

small whether or not the scene contains directional lighting.

182

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(a) Horizontal Coordinate

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

LR0
LR1
LR2
LR3
LR4
LR5
LR6
LR7
LR8
diffuse

0 10 20 30 40 50
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

BF0
BF1
BF2
BF3
BF4
BF5
BF6
BF7
diffuse

(b) Vertical Coordinate

Figure B.53: DTU Point Features Dataset: At twelve times nominal speed, light-

ing condition does not change trends in covariance Σ(t) when using the Cor-

respondence Tracker. We compute Σ(t) using diffuse lighting (black lines) and each of

the directional lighting conditions listed in Figure 4.1 using all tracks from all 60 scenes.

Timesteps are limited to those with at least 100 features. With the exception of feature

track failures in lighting condition BF6, the variation of Σ(t) due to the existence of di-

rectional lighting is a fraction of the variation common to all plotted lines. The effect of

directional lighting is relatively small because changes between adjacent frames are small

whether or not the scene contains directional lighting.

183

B.2 Supporting Figures for KITTI Vision Suite

0 50 100 150 200 250 300 350
Maximum 2D Feature Track Error (px)

10 4

10 3

10 2

De
ns

ity

No outlier track removal
Top 10% removed

Figure B.54: KITTI Dataset: We will throw out the 10% of tracks from each scene

with the most error. The bottom figure plots the histogram density of the maximum L2

error of all feature tracks of a single scene in log scale. The corresponding scene is pictured

on top. The outlier errors are caused by noisy data in the depth image collection process.

184

0 10 20 30 40 50 60 70
Feature Lifetime (# frames)

10 6

10 5

10 4

10 3

10 2

10 1

100

De
ns

ity

Lucas-Kanade
Correspondence

Figure B.55: KITTI Dataset: Most features live for less than five frames. The

distribution of feature lifetimes is plotted as a log-scale histogram for both the Lucas-Kanade

and Correspondence-Based Tracker at nominal speed. The Lucas-Kanade Tracker produces

a long tail of features with longer lifetimes. Features with long-lifetimes are those far away

from the car’s camera, in the center of the image.

185

0 10 20 30 40 50 60 70
Timesteps Since Track Start

100

101

102

103

104

105

106

Fe

at
ur

es
speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

(a) Lucas-Kanade

0 10 20 30 40 50 60 70
Timesteps Since Track Start

100

101

102

103

104

105

106

Fe

at
ur

es

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

(b) Correspondence

Figure B.56: Feature lifetime is plotted on the horizontal axis. The vertical axis, in log

scale, shows the number of features in all 28 scenes that were tracked for at least that

many frames. In both plots the number of features drops very fast. Note that for speeds

greater than 8.00, the Lucas-Kanade tracker fails to match any features past one frame. In

subsequent analyses on the KITTI dataset, we only compute mean errors and

covariances at timesteps with at least 100 features. We also only analyze speeds

1.00, 2.00, and 3.00 because higher speeds would otherwise be limited to ≤ two

timesteps.

186

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

0.0

0.2

0.4

0.6

0.8

1.0
Ou

tli
er

 R
at

io

(a) Lucas-Kanade

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(b) Correspondence

Figure B.57: KITTI Dataset: Outlier ratios are above 40 percent. Outlier ratios

per frame are shown as box-and-whisker plots for the Lucas-Kanade tracker on the left

and the Correspondence tracker on the right. For the Lucas-Kanade tracker, outlier ratios

remain a constant 40 percent. For the correspondence tracker, outlier ratios are higher,

around 50 percent, for lower speeds and then decrease. The decreases exists not because

of improvements in feature matching with higher speeds, but because fewer features are

matched at all.

187

0 5 10 15 20 25
Timesteps Since Track Start

6

4

2

0

2

4

6
Ho

riz
on

ta
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(a) ν(t), Horizontal Coordinate

0 5 10 15 20 25
Timesteps Since Track Start

6

4

2

0

2

4

6

Ve
rti

ca
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(b) ν(t), Vertical Coordinate

Figure B.58: KITTI Dataset: The zero-mean assumption approximately holds

for both the Lucas-Kanade Tracker and the Correspondence Tracker at nominal

speed. Lines shown are horizontal (left) and vertical (right) coordinates of mean error ν(t)

calculated using tracks averaged over all scenes; calculation is cutoff at 24 frames for the

Lucas-Kanade Tracker and 6 frames for the Correspondence Tracker so that averages can be

computed with at least 100 features. Mean errors remain at roughly zero.

188

0 5 10 15 20 25
Timesteps Since Track Start

0

2

4

6

8

10

12

14
Ho

riz
on

ta
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(a) η(t), Horizontal Coordinate

0 5 10 15 20 25
Timesteps Since Track Start

0

2

4

6

8

10

12

14

Ve
rti

ca
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(b) η(t), Vertical Coordinate

0 5 10 15 20 25
Timesteps Since Track Start

0

5

10

15

20

25

30

35

40

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

Lucas-Kanade
Correspondence

(c) Φ(t), Horizontal Coordinate

0 5 10 15 20 25
Timesteps Since Track Start

0

5

10

15

20

25

30

35

40

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

Lucas-Kanade
Correspondence

(d) Φ(t), Vertical Coordinate

Figure B.59: KITTI Dataset: The Lucas-Kanade Tracker drifts more than the

Correspondence Tracker in all directions. Lines shown are horizontal (left column)

and vertical (right column) coordinates of mean absolute error η(t) (top row) and covariance

Φ(t) (bottom row) calculated using tracks averaged over all scenes; calculation is cutoff

at 24 frames for Lucas-Kanade Tracker and 6 frames for the Correspondence Tracker so

that averages can be computed with at least 100 features. Both mean absolute error and

covariance are roughly constant when using the Correspondence Tracker. On the other hand,

both drift slightly upwards and then level off when using the Lucas-Kanade Tracker.

189

0 5 10 15 20 25
Timesteps Since Track Start

6

4

2

0

2

4

6
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

6

4

2

0

2

4

6

Ho
riz

on
ta

l E
rro

r (
px

)

(a) ν(t), Horizontal Coordinate

0 5 10 15 20 25
Timesteps Since Track Start

6

4

2

0

2

4

6

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

6

4

2

0

2

4

6

Ve
rti

ca
l E

rro
r (

px
)

(b) ν(t), Vertical Coordinate

Figure B.60: KITTI Dataset: Mean tracking errors increase with speed when

using the Lucas-Kanade Tracker. The left column contains plots of the horizontal (top

row) and vertical (bottom row) components of the mean tracking error ν(t) at each timestep

t after initial feature detection at multiple speeds. Each dot corresponds to a processed

frame; lines for higher speeds contain data from fewer frames and therefore show fewer dots.

The right column plots the ordinate values of each line for t > 0 in the left figures as a box

plot: means are shown as green triangles and medians are shown as orange lines. The mean

and median values of the horizontal and vertical coordinates of ν(t) increases by about two

pixels when speed is increased from 2.00 to 3.00. There is no such increase in ν(t) when

speed is increased from 1.00 to 2.00.

190

0 5 10 15 20 25
Timesteps Since Track Start

0

2

4

6

8

10

12

14
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

0

2

4

6

8

10

12

Ho
riz

on
ta

l E
rro

r (
px

)

(a) η(t), Horizontal Coordinate

0 5 10 15 20 25
Timesteps Since Track Start

0

2

4

6

8

10

12

14

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

0

2

4

6

8

10

12

Ve
rti

ca
l E

rro
r (

px
)

(b) η(t), Vertical Coordinate

Figure B.61: KITTI Dataset: Mean absolute errors increase with speed when

using the Lucas-Kanade Tracker. The left column contains plots of the horizontal (top

row) and vertical (bottom row) components of the mean absolute error η(t) at each timestep

t after initial feature detection at multiple speeds. Each dot corresponds to a processed

frame; lines for higher speeds contain data from fewer frames and therefore show fewer dots.

The right column plots the ordinate values of each line for t > 0 in the left figures as a box

plot: means are shown as green triangles and medians are shown as orange lines. The mean

and median values of η(t) jump when speed is increased from 2.00 to 3.00. Left column plots

show that η(t) is approximately unchanged when speed is increased from 1.00 to 2.00. Since

the box plot for speed=1.00 contains more points at larger values of t than the box plot for

speed=2.00, the mean and median values in the box plot decrease.

191

0 5 10 15 20 25
Timesteps Since Track Start

0

5

10

15

20

25

30

35

40
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

0

5

10

15

20

25

30

35

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

(a) Φ(t), Horizontal Coordinates

0 5 10 15 20 25
Timesteps Since Track Start

0

5

10

15

20

25

30

35

40

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

0

5

10

15

20

25

30

35

St
d.

 V
er

tic
al

 C
oo

rd
ia

nt
e

(p
x)

(b) Φ(t), Vertical Coordinates

Figure B.62: KITTI Dataset: Covariances increase with speed when using the

Lucas-Kanade Tracker. The left column contains plots of the horizontal (top row) and

vertical (bottom row) components of the covariance Φ(t) at each timestep t after initial

feature detection at multiple speeds. Each dot corresponds to a processed frame; lines for

higher speeds contain data from fewer frames and therefore show fewer dots. The right

column plots the ordinate values of each line for t > 0 in the left figures as a box plot: means

are shown as green triangles and medians are shown as orange lines. We see a linear increase

in covariance in the horizontal coordinate with speed. The increase in the vertical coordinate

follows the same trend noted in Figures B.60 and B.61.

192

0 5 10 15 20 25
Timesteps Since Track Start

6

4

2

0

2

4

6
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

6

4

2

0

2

4

6

Ho
riz

on
ta

l E
rro

r (
px

)

(a) ν(t), Horizontal Coordinate

0 5 10 15 20 25
Timesteps Since Track Start

6

4

2

0

2

4

6

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

6

4

2

0

2

4

6

Ve
rti

ca
l E

rro
r (

px
)

(b) ν(t), Vertical Coordinate

Figure B.63: KITTI Dataset: Mean errors are unaffected by speed when using

the Correspondence Tracker. The left column contains plots of the horizontal (top row)

and vertical (bottom row) components of the mean tracking error ν(t) at each timestep t

after initial feature detection at multiple speeds. Each dot corresponds to a processed frame;

lines for higher speeds contain data from fewer frames and therefore show fewer dots. The

right column plots the ordinate values of each line for t > 0 in the left figures as a box plot:

means are shown as green triangles and medians are shown as orange lines. Compared to

the results for the Lucas-Kanade Tracker in Figure B.60, mean errors do not change when

speed is increased from 1.00 to 3.00.

193

0 5 10 15 20 25
Timesteps Since Track Start

0

2

4

6

8

10

12
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

0

2

4

6

8

10

12

Ho
riz

on
ta

l E
rro

r (
px

)

(a) η(t), Horizontal Coordinate

0 5 10 15 20 25
Timesteps Since Track Start

0

2

4

6

8

10

12

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

0

2

4

6

8

10

12

Ve
rti

ca
l E

rro
r (

px
)

(b) η(t), Vertical Coordinate

Figure B.64: KITTI Dataset: Mean absolute errors are unaffected by speed when

using the Correspondence Tracker. The left column contains plots of the horizontal (top

row) and vertical (bottom row) components of the mean absolute error η(t) at each timestep

t after initial feature detection at multiple speeds. Each dot corresponds to a processed

frame; lines for higher speeds contain data from fewer frames and therefore show fewer dots.

The right column plots the ordinate values of each line for t > 0 in the left figures as a box

plot: means are shown as green triangles and medians are shown as orange lines. Compared

to the results for the Lucas-Kanade Tracker in Figure B.61, mean errors do not change when

speed is increased from 1.00 to 3.00.

194

0 5 10 15 20 25
Timesteps Since Track Start

0

5

10

15

20

25

30

35

40
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

0

5

10

15

20

25

30

35

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

(a) Φ(t), Horizontal Coordinates

0 5 10 15 20 25
Timesteps Since Track Start

0

5

10

15

20

25

30

35

40

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00

1.00 2.00 3.00
Speed

0

5

10

15

20

25

30

35

St
d.

 V
er

tic
al

 C
oo

rd
ia

nt
e

(p
x)

(b) Φ(t), Vertical Coordinates

Figure B.65: KITTI Dataset: Covariance is unaffected by speed when using the

Correspondence Tracker. The left column contains plots of the horizontal (top row) and

vertical (bottom row) components of the mean absolute error η(t) at each timestep t after

initial feature detection at multiple speeds. Each dot corresponds to a processed frame; lines

for higher speeds contain data from fewer frames and therefore show fewer dots. The right

column plots the ordinate values of each line for t > 0 in the left figures as a box plot:

means are shown as green triangles and medians are shown as orange lines. Compared to

the results for the Lucas-Kanade Tracker in Figure B.62, covariances do not change when

speed is increased from 1.00 to 2.00. Covariances show an increase of about 2 pixels when

speed is increased from 2.00 to 3.00, however.

195

B.3 Supporting Figures for Gazebo Linear Dataset

0 50 100 150 200 250 300 350
Maximum 2D Feature Track Error (px)

10 4

10 3

10 2

De
ns

ity

No outlier track removal
Top 10% removed
Top 20% removed

Figure B.66: Gazebo Linear Dataset: We will throw out the 20% of tracks with the

most error instead of the 10% of tracks. The right figure plots the histogram density of

the maximum L2 error of all feature tracks of one scene in log scale. The corresponding scene

is pictured on the left. The large errors that still remain after removing the 10% of tracks

with the most errors are caused by track propagation along smooth edges when the AGAST

feature detector does not select perfect corners, as well as the asynchronous collection of

RGB and depth images in the Gazebo simulator. The errors caused by track propagation

along smooth edges are unlikely to occur in real world data, where backgrounds and textures

are less ideal.

196

0 50 100 150 200 250
Feature Lifetime (# frames)

10 5

10 4

10 3

10 2

10 1

De
ns

ity

Lucas-Kanade
Correspondence

Figure B.67: Gazebo Linear Dataset: Feature Lifetime is usually ≤ five frames. The

distribution of feature lifetimes is plotted as a log-scale histogram for both the Lucas-Kanade

and Correspondence Tracker at nominal speed. Many features live for less ≤ five frames,

especially when the Correspondence Tracker is used. However, Lucas-Kanade produces a

long tail of features with longer lifetimes.

0 50 100 150 200 250
Timesteps Since Track Start

100

101

102

103

104

105

106

Fe

at
ur

es

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

(a) Lucas-Kanade

0 50 100 150 200 250
Timesteps Since Track Start

100

101

102

103

104

105

106

Fe

at
ur

es

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

(b) Correspondence

Figure B.68: Feature Lifetime is plotted on the horizontal axis. The vertical axis, in log scale,

shows the number of features in all 11 scenes that lived at least that long for every tested

speed. The number of features drops very fast, especially when the Correspondence Tracker

is used. In subsequent analyses, we only compute means errors and covariances

at timesteps with at least 500 features on the Gazebo Linear Dataset.

197

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

0.0

0.2

0.4

0.6

0.8

1.0
Ou

tli
er

 R
at

io

(a) Lucas-Kanade

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 R

at
io

(b) Correspondence

Figure B.69: Gazebo Linear Dataset: Outlier Ratios are a function of speed when

using the Lucas-Kanade Tracker and constant for the Correspondence Tracker.

Outlier ratios per frame are shown as box-and-whisker plots for tested speeds for the Lucas-

Kanade tracker on the left and the Correspondence Tracker on the right. Mean values are

shown as green triangles and median values are shown as orange lines. For lower speeds,

the Lucas-Kanade tracker produces fewer outliers. Outlier ratios then increase with speed.

On the other hand, the outlier ratio for the Correspondence Tracker remains constant, at

around 40 percent.

198

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

25

20

15

10

5

0

5
Ho

riz
on

ta
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(a) ν(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

25

20

15

10

5

0

5

Ve
rti

ca
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(b) ν(t), Vertical Coordinate

Figure B.70: Gazebo Linear Dataset: The Lucas-Kanade Tracker slowly accumu-

lates negative error in the horizontal direction at nominal speed. The Correspon-

dence Tracker has zero mean error. Lines shown are horizontal (left) and vertical (right)

coordinates of mean error ν(t) calculated using tracks averaged over all scenes; calculation

is cut off at 58 frames for the Lucas-Kanade Tracker and 9 frames for the Correspondence

Tracker so that averages can be computed with at least 500 features.

199

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25
Ho

riz
on

ta
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(a) η(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25

Ve
rti

ca
l E

rro
r (

px
)

Lucas-Kanade
Correspondence

(b) η(t), Vertical Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25

30

35

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

Lucas-Kanade
Correspondence

(c) Φ(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25

30

35

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

Lucas-Kanade
Correspondence

(d) Φ(t), Vertical Coordinate

Figure B.71: Gazebo Linear Dataset: The Lucas-Kanade tracker drifts consider-

ably more than the Correspondence Tracker, but only in the horizontal direction.

Lines shown are horizontal (left column) and vertical (right column) coordinates of mean

absolute error η(t) (top row) and covariance Φ(t) (bottom row) calculated using tracks av-

eraged over all scenes; calculation is cut off at 58 frames for Lucas-Kanade Tracker and 9

frames for the Correspondence Tracker so that averages can be computed with at least 500

features. Both mean absolute error and covariance are constant when using the Correspon-

dence Tracker. On the other hand, the horizontal coordinate of η(t) and Φ(t) drifts upwards

when using the Lucas-Kanade Tracker.

200

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

25

20

15

10

5

0

5
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

25

20

15

10

5

0

5

Ho
riz

on
ta

l E
rro

r (
px

)

(a) ν(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

25

20

15

10

5

0

5

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

25

20

15

10

5

0

5

Ve
rti

ca
l E

rro
r (

px
)

(b) ν(t), Vertical Coordinate

Figure B.72: Gazebo Linear Dataset: Mean errors increase with speed when using

the Lucas-Kanade Tracker. The left column contains plots of the horizontal (top row)

and vertical (bottom row) components of the mean tracking error ν(t) at each timestep t

after initial feature detection at multiple speeds. Each dot corresponds to a processed frame;

lines for higher speeds contain data from fewer frames and therefore show fewer dots. The

right column plots the ordinate values of each line for t > 0 in the left figures as a box

plot: means are shown as green triangles and medians are shown as orange lines. The top-

right shows that mean errors in the horizontal coordinate become more negative as speed is

increased from 1.00 to 8.00. The mean error then decreases for speeds=10.00 (brown line),

15.00 (pink line), and 20.00 (gray line), showing that both the number of elapsed frames,

and the speed are both factors that affect ν(t). For all speeds, mean error is close to zero in

the vertical coordinate.

201

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

5

0

5

10

15

20

25

Ho
riz

on
ta

l E
rro

r (
px

)

(a) η(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

5

0

5

10

15

20

25

Ve
rti

ca
l E

rro
r (

px
)

(b) η(t), Vertical Coordinate

Figure B.73: Gazebo Linear Dataset: Mean absolute errors increase with speed

when using the Lucas-Kanade Tracker. The left column contains plots of the horizontal

(top row) and vertical (bottom row) components of the mean absolute error η(t) at each

timestep t after initial feature detection at multiple speeds. Each dot corresponds to a

processed frame; lines for higher speeds contain data from fewer frames and therefore show

fewer dots. The right column plots the ordinate values of each line for t > 0 in the left figures

as a box plot: means are shown as green triangles and medians are shown as orange lines.

Mean absolute errors in the horizontal coordinate increase as speed is increased from 1.00 to

8.00. η(t) then decreases for speeds=10.00 (brown line), 15.00 (pink line), and 20.00 (gray

line), showing that both the number of elapsed frames, and the speed are both factors that

affect ν(t). For all speeds, mean absolute error is close to zero in the vertical coordinate.

202

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25

30

35
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

5

0

5

10

15

20

25

30

35

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

(a) Φ(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25

30

35

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

5

0

5

10

15

20

25

30

35

St
d.

 V
er

tic
al

 C
oo

rd
ia

nt
e

(p
x)

(b) Φ(t), Vertical Coordinate

Figure B.74: Gazebo Linear Dataset: Covariance increases with speed when using

the Lucas-Kanade Tracker. The left column contains plots of the horizontal (top row)

and vertical (bottom row) components of the covariance Φ(t) at each timestep t after initial

feature detection at multiple speeds. Each dot corresponds to a processed frame; lines for

higher speeds contain data from fewer frames and therefore show fewer dots. The right

column plots the ordinate values of each line for t > 0 in the left figures as a box plot:

means are shown as green triangles and medians are shown as orange lines. Covariance

increases in the horizontal coordinate increase as speed is increased from 1.00 to 8.00. The

covariance then decreases for speeds=10.00 (brown line), 15.00 (pink line), and 20.00 (gray

line), showing that both the number of elapsed frames, and the speed are both factors that

affect Φ(t). For all speeds, covariance is close to zero in the vertical coordinate.

203

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

25

20

15

10

5

0

5
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

25

20

15

10

5

0

5

Ho
riz

on
ta

l E
rro

r (
px

)

(a) ν(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

25

20

15

10

5

0

5

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

25

20

15

10

5

0

5

Ve
rti

ca
l E

rro
r (

px
)

(b) ν(t), Vertical Coordinate

Figure B.75: Gazebo Linear Dataset: Mean errors are unaffected by speed when

using the Correspondence Tracker until tracking failure occurs. The left column

contains plots of the horizontal (top row) and vertical (bottom row) components of the mean

tracking error ν(t) at each timestep t after initial feature detection at multiple speeds. Each

dot corresponds to a processed frame; lines for higher speeds contain data from fewer frames

and therefore show fewer dots. The right column plots the ordinate values of each line for

t > 0 in the left figures as a box plot: means are shown as green triangles and medians are

shown as orange lines. In the horizontal coordinate, mean errors remain near zero as speed

is increased from 1.00 to 15.00. Mean errors are larger when speed=20.00. The mean error

is close to zero in the vertical coordinate.

204

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25
Ho

riz
on

ta
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

5

0

5

10

15

20

25

Ho
riz

on
ta

l E
rro

r (
px

)

(a) η(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25

Ve
rti

ca
l E

rro
r (

px
)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

5

0

5

10

15

20

25

Ve
rti

ca
l E

rro
r (

px
)

(b) η(t), Vertical Coordinate

Figure B.76: Gazebo Linear Dataset: Mean absolute errors increase with speed

when using the Correspondence Tracker. The left column contains plots of the hori-

zontal (top row) and vertical (bottom row) components of the mean absolute error η(t) at

each timestep t after initial feature detection at multiple speeds. Each dot corresponds to a

processed frame; lines for higher speeds contain data from fewer frames and therefore show

fewer dots. The right column plots the ordinate values of each line for t > 0 in the left figures

as a box plot: means are shown as green triangles and medians are shown as orange lines. In

the horizontal coordinate, mean absolute errors increase slowly with speed at first; increases

are larger from speed=10.00 to speed=15.00 and speed=15.00 to speed=20.00. The mean

absolute error is approximately 0 in the vertical coordinate.

205

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25

30

35
St

d.
 H

or
izo

nt
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

5

0

5

10

15

20

25

30

35

St
d.

 H
or

izo
nt

al
 C

oo
rd

in
at

e
(p

x)

(a) Φ(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

5

0

5

10

15

20

25

30

35

St
d.

 V
er

tic
al

 C
oo

rd
in

at
e

(p
x)

speed=1.00
speed=2.00
speed=3.00
speed=4.00
speed=5.00
speed=8.00
speed=10.00
speed=15.00
speed=20.00

1.00 2.00 3.00 4.00 5.00 8.00 10.00 15.00 20.00
Speed

5

0

5

10

15

20

25

30

35

St
d.

 V
er

tic
al

 C
oo

rd
ia

nt
e

(p
x)

(b) Φ(t), Vertical Coordinate

Figure B.77: Gazebo Linear Dataset: Covariance increases speed when using the

Correspondence Tracker. The left column contains plots of the horizontal (top row) and

vertical (bottom row) components of the mean tracking error Φ(t) at each timestep t after

initial feature detection at multiple speeds. Each dot corresponds to a processed frame;

lines for higher speeds contain data from fewer frames and therefore show fewer dots. The

right column plots the ordinate values of each line for t > 0 in the left figures as a box

plot: means are shown as green triangles and medians are shown as orange lines. In the

horizontal coordinate, covariance increases slowly with speed at first; increases are larger

from speed=10.00 to speed=15.00 and speed=15.00 to speed=20.00. The covariance is close

to zero in the vertical coordinate.

206

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

15

10

5

0

5

10

15

Ho
riz

on
ta

l E
rro

r (
px

)

Normal
Reversed

(a) ν(t), Horizontal Coordinate

0 10 20 30 40 50 60 70 80
Timesteps Since Track Start

15

10

5

0

5

10

15

Ve
rti

ca
l E

rro
r (

px
)

Normal
Reversed

(b) ν(t), Vertical Coordinate

Figure B.78: Gazebo Linear Dataset: The Lucas-Kanade Tracker drifts opposite

the direction of motion. Lines above contain ν(t) computed from tracks using the Lucas-

Kanade Tracker. In the black lines, the quadrotor is flying horizontally from left to right, as

is the case in the rest of the experiments on the Gazebo Linear Dataset. In the blue lines,

the quadrotor is flying horizontally from right to left while observing the same scene; the

scene is not mirror-imaged, so the features tracked in the two trajectories are not identical.

Once again, there is nearly no mean error in the vertical direction. However, mean horizontal

error is positive instead of negative.

207

REFERENCES

[AAC15] A. Aghar-Mohammadi, S. Agarwal, S. Chakravorty, and N. Amato. “Simultane-
ous Localization and Planning for Physical Mobile Robots via Enabling Dynamic
Replanning in Belief Space.” CoRR, abs/1510.07380, 2015.

[ABA20] Javier Antoran, Umang Bhatt, Tameem Adel, Adrian Weller, and José Miguel
Hernández-Lobato. “Getting a CLUE: A Method for Explaining Uncertainty
Estimates.” September 2020.

[ABJ20] Anastasios Nikolas Angelopoulos, Stephen Bates, Michael Jordan, and Jiten-
dra Malik. “Uncertainty Sets for Image Classifiers using Conformal Prediction.”
September 2020.

[ACH18] M. S. Ahn, H. Chae, and D. W. Hong. “Stable, Autonomous, Unknown Terrain
Locomotion for Quadrupeds Based on Visual Feedback and Mixed-Integer Con-
vex Optimization.” In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3791–3798, 2018.

[ADS12] Henrik Aanæs, Anders Lindbjerg Dahl, and Kim Steenstrup Pedersen. “Inter-
esting Interest Points.” International Journal of Computer Vision, 97(1):18–35,
March 2012.

[AGH19] J. Andersson, J. Gillis, G. Horn, J. Rawlings, and M. Diehl. “CasADi – A soft-
ware framework for nonlinear optimization and optimal control.” Mathematical
Programming Computation, 11(1):1–36, 2019.

[ALF11] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. “S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid
Systems.” pp. 254–257. Springer Berlin Heidelberg, 2011.

[AT65] Karl-Johan Astrom and Bohlin Torsten. “Numerical Identification of Linear
Dynamic Systems from Normal Operating Records.” IFAC Proceedings Volumes,
2(2):96–111, September 1965.

[AZA21] Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jianing Wei, and
Matthias Grundmann. “Objectron: A Large Scale Dataset of Object-Centric
Videos in the Wild with Pose Annotations.” Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2021.

[BB18] Axel Barrau and Silvère Bonnabel. “Invariant Kalman Filtering.” Annual Review
of Control, Robotics, and Autonomous Systems, 1(1):237–257, 2018. _eprint:
https://doi.org/10.1146/annurev-control-060117-105010.

[BBB19] Martin Brossard, Axel Barrau, and Silvère Bonnabel. “Exploiting Symmetries
to Design EKFs With Consistency Properties for Navigation and SLAM.” IEEE
Sensors Journal, 19(4):1572–1579, February 2019. Conference Name: IEEE
Sensors Journal.

208

[BBO17] Michael Bloesch, Michael Burri, Sammy Omari, Marco Hutter, and Roland Sieg-
wart. “Iterated extended Kalman filter based visual-inertial odometry using di-
rect photometric feedback.” The International Journal of Robotics Research,
36(10):1053–1072, September 2017. Publisher: SAGE Publications Ltd STM.

[BCR21] Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tib-
shirani. “Predictive inference with the jackknife+.” The Annals of Statistics,
49(1):486–507, February 2021. Publisher: Institute of Mathematical Statistics.

[BHH13] M. Bloesch, M. Hutter, M. Hoepflinger, S. Leutenegger, C. Gehring, D. Remy,
and R. Siegwart. “State estimation for legged robots-consistent fusion of leg
kinematics and IMU.” Robotics, 17:17–24, 2013.

[BLV17] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian Mikolajczyk.
“HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local
Descriptors.” pp. 5173–5182, 2017.

[BNG06] Tim Bailey, Juan Nieto, Jose Guivant, Michael Stevens, and Eduardo Nebot.
“Consistency of the EKF-SLAM algorithm.” In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3562–3568. IEEE, 2006.

[CCC16] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J. Leonard. “Past, Present, and Future of Simul-
taneous Localization and Mapping: Toward the Robust-Perception Age.” IEEE
Transactions on Robotics, 32(6):1309–1332, December 2016.

[CGD09] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel. “1-point RANSAC
for EKF-based Structure from Motion.” In 2009 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 3498–3504, October 2009.

[CWW17] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni.
“VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Prob-
lem.” Proceedings of the AAAI Conference on Artificial Intelligence, 31(1),
February 2017. Number: 1.

[DB06] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping: part
I.” IEEE Robotics & Automation Magazine, 13(2):99–110, 2006.

[DBB21] Nikita Durasov, Timur Bagautdinov, Pierre Baque, and Pascal Fua. “Masksem-
bles for Uncertainty Estimation.” In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 13539–13548, June
2021.

[DL20] Andrea De Maio and Simon Lacroix. “Simultaneously Learning Corrections and
Error Models for Geometry-Based Visual Odometry Methods.” IEEE Robotics
and Automation Letters, 5(4):6536–6543, October 2020.

[ECH18] M. Everett, Y. Chen, and J. How. “Motion Planning Among Dynamic, Decision-
Making Agents with Deep Reinforcement Learning.” pp. 3052–3059, 10 2018.

209

[ESC14] Jakob Engel, Thomas Schöps, and Daniel Cremers. “LSD-SLAM: Large-Scale
Direct Monocular SLAM.” In David Fleet, Tomas Pajdla, Bernt Schiele, and
Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pp. 834–849, Cham,
2014. Springer International Publishing.

[FBH18] J. Fisac, A. Bajcsy, S. Herbert, D. Fridovich-Keil, S. Wang, C. Tomlin, and
A. Dragan. “Probabilistically Safe Robot Planning with Confidence-Based Hu-
man Predictions.” 06 2018.

[FCD17] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. “On-
Manifold Preintegration for Real-Time Visual–Inertial Odometry.” IEEE Trans-
actions on Robotics, 33(1):1–21, February 2017.

[FS18] Xiaohan Fei and Stefano Soatto. “Visual-Inertial Object Detection and Map-
ping.” In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair
Weiss, editors, Computer Vision – ECCV 2018, pp. 318–334, Cham, 2018.
Springer International Publishing.

[GDS20] Fredrik K. Gustafsson, Martin Danelljan, and Thomas B. Schon. “Evaluating
Scalable Bayesian Deep Learning Methods for Robust Computer Vision.” pp.
318–319, 2020.

[GEL20] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang.
“OpenVINS: A Research Platform for Visual-Inertial Estimation.” In Proc. of
the IEEE International Conference on Robotics and Automation, Paris, France,
2020.

[GG76] M. Grewal and K. Glover. “Identifiability of linear and nonlinear dynamical
systems.” IEEE Transactions on Automatic Control, 21(6):833–837, December
1976. Conference Name: IEEE Transactions on Automatic Control.

[GG16] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning.” In International Conference
on Machine Learning, pp. 1050–1059, June 2016.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite.” In Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[GPS17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. “On Calibration of
Modern Neural Networks.” In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, pp. 1321–1330. JMLR.org, 2017.
event-place: Sydney, NSW, Australia.

[GR18] Jochen Gast and Stefan Roth. “Lightweight Probabilistic Deep Networks.” pp.
3369–3378, 2018.

210

[GT12] Dorian Gálvez-López and J. D. Tardós. “Bags of Binary Words for Fast Place
Recognition in Image Sequences.” IEEE Transactions on Robotics, 28(5):1188–
1197, October 2012.

[GY15] Guillermo Gallego and Anthony Yezzi. “A Compact Formula for the Derivative of
a 3-D Rotation in Exponential Coordinates.” Journal of Mathematical Imaging
and Vision, 51(3):378–384, March 2015.

[HAY20] J. Hooks, M. Ahn, J. Yu, X. Zhang, T. Zhu, H. Chae, and D. Hong. “ALPHRED:
A Multi-Modal Operations Quadruped Robot for Package Delivery Applica-
tions.” IEEE Robotics and Automation Letters (RA-L), 2020.

[HD18] Dan Hendrycks and Thomas Dietterich. “Benchmarking Neural Network Ro-
bustness to Common Corruptions and Perturbations.” September 2018.

[HDF12] Jared Heinly, Enrique Dunn, and Jan-Michael Frahm. “Comparative Evaluation
of Binary Features.” In Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona,
Yoichi Sato, and Cordelia Schmid, editors, Computer Vision – ECCV 2012, Lec-
ture Notes in Computer Science, pp. 759–773, Berlin, Heidelberg, 2012. Springer.

[HHC15] A. Hereid, C. Hubicki, E. Cousineau, J. Hurst, and A. Ames. “Hybrid zero
dynamics based multiple shooting optimization with applications to robotic
walking.” In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 5734–5740, May 2015.

[HKB14] Joel A Hesch, Dimitrios G Kottas, Sean L Bowman, and Stergios I Roumeli-
otis. “Camera-IMU-based localization: Observability analysis and consistency
improvement.” The International Journal of Robotics Research, 33(1):182–201,
January 2014. Publisher: SAGE Publications Ltd STM.

[HMR09] Guoquan P. Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis. “A
First-Estimates Jacobian EKF for Improving SLAM Consistency.” In Oussama
Khatib, Vijay Kumar, and George J. Pappas, editors, Experimental Robotics,
Springer Tracts in Advanced Robotics, pp. 373–382, Berlin, Heidelberg, 2009.
Springer.

[Hol13] Gerard J. Holzmann. “Landing a Spacecraft on Mars.” IEEE Software, 30(2):83–
86, March 2013.

[Hor87] Berthold K. P. Horn. “Closed-form solution of absolute orientation using unit
quaternions.” JOSA A, 4(4):629–642, April 1987.

[HOZ21] Yibo Hu, Yuzhe Ou, Xujiang Zhao, Jin-Hee Cho, and Feng Chen. “Multidimen-
sional Uncertainty-Aware Evidential Neural Networks.” Proceedings of the AAAI
Conference on Artificial Intelligence, 35(9):7815–7822, May 2021.

[HP18] Sejong Heo and Chan Gook Park. “Consistent EKF-Based Visual-Inertial Odom-
etry on Matrix Lie Group.” IEEE Sensors Journal, 18(9):3780–3788, May 2018.
Conference Name: IEEE Sensors Journal.

211

[HS12] Daniel Cabrini Hauagge and Noah Snavely. “Image matching using local sym-
metry features.” In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 206–213, June 2012. ISSN: 1063-6919.

[HTS15] J. Hernandez, K. Tsotsos, and S. Soatto. “Observability, identifiability and sen-
sitivity of vision-aided inertial navigation.” In 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 2319–2325, May 2015.

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition.” pp. 770–778, 2016.

[JCS20] Taejong Joo, Uijung Chung, and Min-Gwan Seo. “Being Bayesian about Cate-
gorical Probability.” In Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 4950–4961. PMLR, 13–18 Jul 2020.

[JS11] E. Jones and S. Soatto. “Visual-inertial navigation, mapping and localization:
A scalable real-time causal approach.” The International Journal of Robotics
Research, 30(4):407–430, April 2011.

[KG17] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision?” In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pp. 5574–5584. Curran Associates,
Inc., 2017.

[KGC15] Alex Kendall, Matthew Grimes, and Roberto Cipolla. “PoseNet: A Convolu-
tional Network for Real-Time 6-DOF Camera Relocalization.” pp. 2938–2946,
2015.

[KH] N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an open-
source multi-robot simulator.”.

[KHB13] Dimitrios G. Kottas, Joel A. Hesch, Sean L. Bowman, and Stergios I. Roume-
liotis. “On the Consistency of Vision-Aided Inertial Navigation.” In Jaydev P.
Desai, Gregory Dudek, Oussama Khatib, and Vijay Kumar, editors, Experi-
mental Robotics: The 13th International Symposium on Experimental Robotics,
Springer Tracts in Advanced Robotics, pp. 303–317. Springer International Pub-
lishing, Heidelberg, 2013.

[KHI19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić,
David L. Dill, Mykel J. Kochenderfer, and Clark Barrett. “The Marabou Frame-
work for Verification and Analysis of Deep Neural Networks.” In Isil Dillig and
Serdar Tasiran, editors, Computer Aided Verification, Lecture Notes in Com-
puter Science, pp. 443–452, Cham, 2019. Springer International Publishing.

212

[KIS19] V. Kalogeiton, K. Ioannidis, G. Ch. Sirakoulis, and E. Kosmatopoulos. “Real-
Time Active SLAM and Obstacle Avoidance for an Autonomous Robot Based
on Stereo Vision.” Cybernetics and Systems, 50(3):239–260, 2019.

[KK01] Y. Kanazawa and K. Kanatani. “Do we really have to consider covariance matri-
ces for image features?” In Proceedings Eighth IEEE International Conference
on Computer Vision. ICCV 2001, volume 2, pp. 301–306 vol.2, July 2001.

[KLC95] P. Kaelbling, M. Littman, and A. Cassandra. “Planning and acting in partially
observable stochastic domains.” Elsevier, 1995.

[Lau10] Odile Laurent. “Using Formal Methods and Testability Concepts in the Avionics
Systems Validation and Verification (V&V) Process.” In Verification and Vali-
dation 2010 Third International Conference on Software Testing, pp. 1–10, April
2010. ISSN: 2159-4848.

[LC19a] Seong Hun Lee and Javier Civera. “Closed-Form Optimal Two-View Triangula-
tion Based on Angular Errors.” In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[LC19b] Seong Hun Lee and Javier Civera. “Closed-Form Optimal Two-View Triangula-
tion Based on Angular Errors.” pp. 2681–2689, 2019.

[LHD06] C. Leung, S. Huang, and G. Dissanayake. “Active SLAM using Model Predictive
Control and Attractor based Exploration.” pp. 5026 – 5031, 11 2006.

[LK81] Bruce D. Lucas and Takeo Kanade. “An iterative image registration technique
with an application to stereo vision.” In Proceedings of the 7th international
joint conference on Artificial intelligence - Volume 2, IJCAI’81, pp. 674–679,
San Francisco, CA, USA, August 1981. Morgan Kaufmann Publishers Inc.

[LLC19] Nicolas Lanzetti, Ying Zhao Lian, Andrea Cortinovis, Luis Dominguez, Mehmet
Mercangöz, and Colin Jones. “Recurrent neural network based MPC for process
industries.” In 2019 18th European Control Conference (ECC), pp. 1005–1010.
IEEE, 2019.

[Lon81] H. C. Longuet-Higgins. “A computer algorithm for reconstructing a scene from
two projections.” Nature, 293(5828):133–135, September 1981. Number: 5828
Publisher: Nature Publishing Group.

[LOV18] Katherine Liu, Kyel Ok, William Vega-Brown, and Nicholas Roy. “Deep In-
ference for Covariance Estimation: Learning Gaussian Noise Models for State
Estimation.” In 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 1436–1443, May 2018.

[Low99] D.G. Lowe. “Object recognition from local scale-invariant features.” In Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision,
volume 2, pp. 1150–1157 vol.2, September 1999.

213

[LPB17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and
Scalable Predictive Uncertainty Estimation using Deep Ensembles.” In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 30, pp. 6402–
6413. Curran Associates, Inc., 2017.

[LSS20] Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. “A General Frame-
work for Uncertainty Estimation in Deep Learning.” IEEE Robotics and Au-
tomation Letters, 5(2):3153–3160, April 2020.

[LW12] Eugene Lavretsky and Kevin Wise. Robust and Adaptive Control: With
Aerospace Applications. Springer Science & Business Media, November 2012.
Google-Books-ID: a2128lhlWfQC.

[MG18] Andrey Malinin and Mark Gales. “Predictive Uncertainty Estimation via Prior
Networks.” Advances in Neural Information Processing Systems, 31:7047–7058,
2018.

[MHB10] Elmar Mair, Gregory D. Hager, Darius Burschka, Michael Suppa, and Gerhard
Hirzinger. “Adaptive and generic corner detection based on the accelerated seg-
ment test.” In Proceedings of the 11th European conference on Computer vision:
Part II, ECCV’10, pp. 183–196, Berlin, Heidelberg, September 2010. Springer-
Verlag.

[MHZ17] Josef Maier, Martin Humenberger, Oliver Zendel, and Markus Vincze. “Ground
Truth Accuracy and Performance of the Matching Pipeline.” In 2017 IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 969–979, July 2017. ISSN: 2160-7516.

[ML94] Richard M. Murray and Zexiang Li. A Mathematical Introduction to Robotic
Manipulation. Routledge, Boca Raton, 1 edition edition, March 1994.

[MMT15a] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. “ORB-SLAM: A Versa-
tile and Accurate Monocular SLAM System.” IEEE Transactions on Robotics,
31(5):1147–1163, Oct 2015.

[MMT15b] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos. “ORB-SLAM: a Versa-
tile and Accurate Monocular SLAM System.” IEEE Transactions on Robotics,
31(5):1147–1163, October 2015.

[MS05] K. Mikolajczyk and C. Schmid. “A performance evaluation of local descriptors.”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–
1630, October 2005.

[MSK12] Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and
Oskar von Stryk. “Comprehensive Simulation of Quadrotor UAVs using ROS
and Gazebo.” In 3rd Int. Conf. on Simulation, Modeling and Programming for
Autonomous Robots (SIMPAR), p. to appear, 2012.

214

[MTS05] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffal-
itzky, T. Kadir, and L. Van Gool. “A Comparison of Affine Region Detectors.”
International Journal of Computer Vision, 65(1):43–72, November 2005.

[NDZ19] Jeremy Nixon, Michael W. Dusenberry, Linchuan Zhang, Ghassen Jerfel, and
Dustin Tran. “Measuring Calibration in Deep Learning.” pp. 38–41, 2019.

[Nea12] Radford M. Neal. Bayesian Learning for Neural Networks. Springer Science &
Business Media, December 2012.

[NH02] Kevin Nickels and Seth Hutchinson. “Estimating uncertainty in SSD-based fea-
ture tracking.” Image and Vision Computing, 20(1):47–58, January 2002.

[OFR19] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian
Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. “Can you
trust your model’s uncertainty? Evaluating predictive uncertainty under dataset
shift.” Advances in Neural Information Processing Systems, 32:13991–14002,
2019.

[PN18] Mikael Persson and Klas Nordberg. “Lambda Twist: An Accurate Fast Robust
Perspective Three Point (P3P) Solver.” pp. 318–332, 2018.

[PSA17] Alberto Padoan, Giordano Scarciotti, and Alessandro Astolfi. “A Geometric
Characterization of the Persistence of Excitation Condition for the Solutions of
Autonomous Systems.” IEEE Transactions on Automatic Control, 62(11):5666–
5677, November 2017. Conference Name: IEEE Transactions on Automatic
Control.

[PXS11] Barnabás Póczos, Liang Xiong, and Jeff Schneider. “Nonparametric divergence
estimation with applications to machine learning on distributions.” In Proceed-
ings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
UAI’11, pp. 599–608, Barcelona, Spain, July 2011. AUAI Press.

[Rai86] M. Raibert. Legged robots that balance. MIT press, 1986.

[RDS15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. “ImageNet Large Scale Visual Recognition
Challenge.” International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[RF18] J. Redmon and A. Farhadi. “YOLOv3: An Incremental Improvement.” arXiv,
2018.

[RRK11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. “ORB: An efficient alterna-
tive to SIFT or SURF.” In 2011 International Conference on Computer Vision,
pp. 2564–2571, Nov 2011.

215

[RTS18] Carlos Riquelme, George Tucker, and Jasper Snoek. “Deep Bayesian Bandits
Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson
Sampling.” February 2018.

[SDR19] Vaishaal Shankar, Achal Dave, Rebecca Roelofs, Deva Ramanan, Benjamin
Recht, and Ludwig Schmidt. “Do Image Classifiers Generalize Across Time?”
arXiv:1906.02168 [cs, stat], December 2019. arXiv: 1906.02168.

[Comment: 23 pages, 11 tables, 11 figures. Paper Website:
https://modestyachts.github.io/natural-perturbations-website/.]

[SEE12] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. “A benchmark for the evaluation of RGB-D SLAM systems.” In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–
580, October 2012. ISSN: 2153-0866, 2153-0858, 2153-0858.

[SGD18] David Schubert, Thore Goll, Nikolaus Demmel, Vladyslav Usenko, Jörg Stückler,
and Daniel Cremers. “The TUM VI Benchmark for Evaluating Visual-Inertial
Odometry.” In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1680–1687, October 2018. ISSN: 2153-0866.

[SHS17a] Johannes L. Schönberger, Hans Hardmeier, Torsten Sattler, and Marc Pollefeys.
“Comparative Evaluation of Hand-Crafted and Learned Local Features.” In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
6959–6968, 2017.

[SHS17b] Johannes L. Schönberger, Hans Hardmeier, Torsten Sattler, and Marc Pollefeys.
“Comparative Evaluation of Hand-Crafted and Learned Local Features.” In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
6959–6968, July 2017. ISSN: 1063-6919.

[SKK18] Murat Sensoy, Lance Kaplan, and Melih Kandemir. “Evidential Deep Learning
to Quantify Classification Uncertainty.” In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[SKY15] Sameer Sheorey, Shalini Keshavamurthy, Huili Yu, Hieu Nguyen, and Clark N.
Taylor. “Uncertainty Estimation for KLT Tracking.” In C.V. Jawahar and
Shiguang Shan, editors, Computer Vision - ACCV 2014 Workshops, Lecture
Notes in Computer Science, pp. 475–487, Cham, 2015. Springer International
Publishing.

[SLG76] T. Soderstrom, L. Ljung, and I. Gustavsson. “Identifiability conditions for lin-
ear multivariable systems operating under feedback.” IEEE Transactions on
Automatic Control, 21(6):837–840, December 1976. Conference Name: IEEE
Transactions on Automatic Control.

216

[SMT18] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Hammarstrand,
Erik Stenborg, Daniel Safari, Masatoshi Okutomi, Marc Pollefeys, Josef Sivic,
Fredrik Kahl, and Tomas Pajdla. “Benchmarking 6DOF Outdoor Visual Local-
ization in Changing Conditions.” In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8601–8610, June 2018. ISSN: 2575-7075.

[SNS18] Yasser Shoukry, Pierluigi Nuzzo, Alberto L. Sangiovanni-Vincentelli, Sanjit A.
Seshia, George J. Pappas, and Paulo Tabuada. “SMC: Satisfiability Modulo
Convex Programming.” Proceedings of the IEEE, 106(9):1655–1679, September
2018. Conference Name: Proceedings of the IEEE.

[STS21] Alexander Schperberg, Stephanie Tsuei, Stefano Soatto, and Dennis Hong.
“SABER: Data-Driven Motion Planner for Autonomously Navigating Hetero-
geneous Robots.” IEEE Robotics and Automation Letters, 6(4):8086–8093, Oc-
tober 2021. Conference Name: IEEE Robotics and Automation Letters.

[Sut74] I.E. Sutherland. “Three-dimensional data input by tablet.” Proceedings of the
IEEE, 62(4):453–461, April 1974. Conference Name: Proceedings of the IEEE.

[SZY21] Huihui Sun, Weijie Zhang, Runxiang Yu, and Yujie Zhang. “Motion Planning
for Mobile Robots—Focusing on Deep Reinforcement Learning: A Systematic
Review.” IEEE Access, 9:69061–69081, 2021. Conference Name: IEEE Access.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT
Press, August 2005. Google-Books-ID: wjM3AgAAQBAJ.

[TGE21] Christian Tomani, Sebastian Gruber, Muhammed Ebrar Erdem, Daniel Cremers,
and Florian Buettner. “Post-Hoc Uncertainty Calibration for Domain Drift Sce-
narios.” In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10124–10132, June 2021.

[TM22] Patrizio Tomei and Riccardo Marino. “An Enhanced Feedback Adaptive Ob-
server for Nonlinear Systems with Lack of Persistency of Excitation.” IEEE
Transactions on Automatic Control, pp. 1–6, 2022. Conference Name: IEEE
Transactions on Automatic Control.

[TPM14] David Tedaldi, Alberto Pretto, and Emanuele Menegatti. “A robust and easy
to implement method for IMU calibration without external equipments.” In
2014 IEEE International Conference on Robotics and Automation (ICRA), pp.
3042–3049, May 2014. ISSN: 1050-4729.

[TYM20] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. “NNV:
The Neural Network Verification Tool for Deep Neural Networks and Learning-
Enabled Cyber-Physical Systems.” In Shuvendu K. Lahiri and Chao Wang,
editors, Computer Aided Verification, Lecture Notes in Computer Science, pp.
3–17, Cham, 2020. Springer International Publishing.

217

[USS17] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and
Andreas Geiger. “Sparsity Invariant CNNs.” In 2017 International Conference
on 3D Vision (3DV), pp. 11–20, October 2017. ISSN: 2475-7888.

[Van14] W. Van der Hof. “Robot search in unknown environments using POMDPs.” TU
Delft University Thesis, 2014.

[VBB13] William Vega-Brown, Abraham Bachrach, Adam Bry, Jonathan Kelly, and
Nicholas Roy. “CELLO: A fast algorithm for Covariance Estimation.” In 2013
IEEE International Conference on Robotics and Automation, pp. 3160–3167,
May 2013.

[Vec] VectorNav. “Calibration and Characterization of IMUs.”.

[VT20] Cristiano Maria Verrelli and Patrizio Tomei. “Nonanticipating Lyapunov Func-
tions for Persistently Excited Nonlinear Systems.” IEEE Transactions on Auto-
matic Control, 65(6):2634–2639, June 2020. Conference Name: IEEE Transac-
tions on Automatic Control.

[WB06] Andreas Wächter and Lorenz T. Biegler. “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming.” Math-
ematical Programming, 106(1):25–57, March 2006.

[WLA19] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin, and
Tom Vercauteren. “Aleatoric uncertainty estimation with test-time augmenta-
tion for medical image segmentation with convolutional neural networks.” Neu-
rocomputing, 338:34–45, April 2019.

[WM17] Xue Iuan Wong and Manoranjan Majji. “Uncertainty Quantification of Lucas
Kanade Feature Track and Application to Visual Odometry.” In 2017 IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 950–958, July 2017. ISSN: 2160-7516.

[WOB17] Song Wu, Ard Oerlemans, Erwin M. Bakker, and Michael S. Lew. “A compre-
hensive evaluation of local detectors and descriptors.” Signal Processing: Image
Communication, 59:150–167, 2017.

[WRM05] Jan C. Willems, Paolo Rapisarda, Ivan Markovsky, and Bart L.M. De Moor. “A
note on persistency of excitation.” Systems & Control Letters, 54(4):325–329,
April 2005.

[WVB18] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. “Flipout:
Efficient Pseudo-Independent Weight Perturbations on Mini-Batches.” February
2018.

[WZW20] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen
Wang, Yafei Hu, Ashish Kapoor, and Sebastian Scherer. “TartanAir: A Dataset
to Push the Limits of Visual SLAM.” 2020.

218

[XOT19] S. Xin, R. Orsolino, and N. Tsagarakis. “Online Relative Footstep Optimiza-
tion for Legged Robots Dynamic Walking Using Discrete-Time Model Predictive
Control.” 03 2019.

[YGE19] Yulin Yang, Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang. “Degenerate
Motion Analysis for Aided INS With Online Spatial and Temporal Sensor Cal-
ibration.” IEEE Robotics and Automation Letters, 4(2):2070–2077, April 2019.
Conference Name: IEEE Robotics and Automation Letters.

[YWL19] J. Yuan, H. Wang, C. Lin, D. Liu, and D. Yu. “A Novel GRU-RNN Network
Model for Dynamic Path Planning of Mobile Robot.” IEEE Access, 7:15140–
15151, 2019.

[ZCY20] Chen Zhao, Zhiguo Cao, Jiaqi Yang, Ke Xian, and Xin Li. “Image Feature
Correspondence Selection: A Comparative Study and a New Contribution.”
IEEE Transactions on Image Processing, 29:3506–3519, 2020. Conference Name:
IEEE Transactions on Image Processing.

[ZGS09] Bernhard Zeisl, Pierre Fite Georgel, Florian Schweiger, Eckehard Steinbach, and
Nassir Navab. “Estimation of Location Uncertainty for Scale Invariant Feature
Points.” In Proceedings of the British Machine Vision Conference, pp. 57.1–
57.12. BMVA Press, 2009. doi:10.5244/C.23.57.

[ZHF22] Lintong Zhang, Michael Helmberger, Lanke Frank Tarimo Fu, David Wisth,
Marco Camurri, Davide Scaramuzza, and Maurice Fallon. “Hilti-Oxford Dataset:
A Millimetre-Accurate Benchmark for Simultaneous Localization and Mapping.”,
2022.

[ZHL21] Albert Zhao, Tong He, Yitao Liang, Haibin Huang, Guy Van den Broeck, and
Stefano Soatto. “SAM: Squeeze-and-Mimic Networks for Conditional Visual
Driving Policy Learning.” In Jens Kober, Fabio Ramos, and Claire Tomlin,
editors, Proceedings of the 2020 Conference on Robot Learning, volume 155 of
Proceedings of Machine Learning Research, pp. 156–175. PMLR, 16–18 Nov 2021.

[ZL21] Aurick Zhou and Sergey Levine. “Amortized Conditional Normalized Maximum
Likelihood: Reliable Out of Distribution Uncertainty Estimation.” In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 12803–12812. PMLR, 18–24 Jul 2021.

[ZWS17] Teng Zhang, Kanzhi Wu, Jingwei Song, Shoudong Huang, and Gamini Dis-
sanayake. “Convergence and Consistency Analysis for a 3-D Invariant-EKF
SLAM.” IEEE Robotics and Automation Letters, 2(2):733–740, April 2017. Con-
ference Name: IEEE Robotics and Automation Letters.

[Ås65] K. J Åström. “Optimal control of Markov processes with incomplete state in-
formation.” Journal of Mathematical Analysis and Applications, 10(1):174–205,
February 1965.

219

