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A Simple Solution to Bayesian Mixture Labeling

Weixin Yao

Department of Statistics, Kansas State University, Manhattan, Kansas 66506, U.S.A.

wxyao@ksu.edu

Abstract

The label switching problem is one of the fundamental problems in Bayesian mixture analysis.

Using all the Markov chain Monte Carlo samples as the initials for the EM algorithm, we

propose to label the samples based on the modes they converge to. Our method is based

on the assumption that the samples converged to the same mode have the same labels. If a

relative noninformative prior is used or the sample size is large, the posterior will be close to

the likelihood and then the posterior modes can be located approximately by the EM algorithm

for mixture likelihood, without assuming the availability of the closed form of the posterior. In

order to speed up the computation of this labeling method, we also propose to first cluster the

samples by K-means with large number of clusters K. Then, by assuming that the samples

within each cluster have the same labels, we only need to find one converged mode for each

cluster. Using a Monte Carlo simulation study and a real data set, we demonstrate the success

of our new method in dealing with the label switching problem.

Key Words: Bayesian approach; EM algorithm; Label switching; Markov chain Monte Carlo;

Mixture models

1 Introduction

The label switching problem is one of the fundamental problems in Bayesian mixture analysis. If

the prior is symmetric for all components, the posterior distribution of Bayesian mixtures will be

symmetric and thus invariant to all the permutations of the component parameters. Then the

marginal posterior distributions for the parameters will be identical for each mixture component.

Therefore the posterior means of all the components are the same and thus are poor estimates of

these parameters. Similar problems will occur if we want to estimate the quantities relating to
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individual components, such as predictive component densities and marginal classification proba-

bilities. It is then meaningless to draw inference directly from Markov chain Monte Carlo (MCMC)

samples using ergodic averaging before solving the label switching problem. For the illustrative

examples of label switching, see Stephens (2000) and Jasra et al. (2005), among others.

To deal with the labeling problem in Bayesian analysis, many methods have been proposed. One

simple way is to use an explicit parameter constraint so that only one permutation can satisfy it.

See Diebolt and Robert (1994); Dellaportas et al. (1996); Richardson and Green (1997). Stephens

(2000) and Celeux (1998) proposed a relabeling algorithm, which is based on minimizing a Monte

Carlo risk. Stephens (2000) suggested a particular choice of loss function based on the Kullback-

Liebler (KL) divergence. Yao and Lindsay (2009) proposed to label the samples based on the

highest posterior region and posterior modes. Yao (2012a) established the equivalence between the

labeling and clustering and proposed two clustering objective functions to label the samples. Other

labeling methods include, for example, Celeux et al. (2000); Fruhwirth (2001); Hurn et al. (2003);

Chung et al. (2004); Marin et al. (2005); Geweke (2007); Grun and Leisch (2009); Yao (2012b).

Jasra et al. (2005) provided a good review about the existing methods to solve the label switching

problem in Bayesian mixture modelling.

In this article, we propose a new modal labeling method, which labels the samples based on

the likelihood modes they are associated with when they are used as the starting points for the EM

algorithm of mixture models (Dempster et al., 1977). The modal labeling method assumes that

if the two samples converge to the same likelihood modes based on the EM algorithm, then they

have the same labels. If the prior is relative noninformative, which is the case in general, or the

sample size is large, the likelihood will be close to the posterior density. Then this labeling method

is almost equivalent to labeling the samples based on the posterior modes. One important nice

feature of our new method is that it avoids finding the posterior modes directly. Therefore, our

method doesn’t depend on the specific priors used. In order to speed up our labeling process, we

also propose to first cluster the samples by a method like K-means with large number of clusters

K. Then, by assuming that the samples within each cluster have the same labels (this assumption

will hold if K is large enough), we only need to find one converged mode for each cluster.
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Compared to many existing labeling methods, such as KL algorithm (Stephens, 2000), and Yao

(2010a)’s clustering algorithm, our proposed new method have the following main advantages:

1. It does not depend on any objective/loss function;

2. It is an online algorithm and is computationally much faster when the number of components

is large;

3. It does not depend on the initial labels, which saves much computation time and provides

more stable labeling results.

4. It is easy to implement since it only involves running a traditional EM algorithm for mixtures

starting from different initial values. Therefore, we can easily use existing mixture models

package in R, such as “mixtools”, “FlexMix”, “MCLUST”, and “MIX”, to implement our

labeling methods.

The rest of the paper is organized as follows. Section 2 introduces our new labeling method. In

Section 3, we use two simulation examples and a real data set to compare the new labeling method

with two popular existing methods. We summarize our proposed labeling method in Section 4.

2 Introduction of New Labeling Method

Let x = (x1, . . . , xn) be independent observations from a m-component mixture density

p(x;θ) = π1f(x;λ1) + π2f(x;λ2) + · · ·+ πmf(x;λm) ,

where θ = (π1, . . . , πm, λ1, . . . , λm), f(·) is a density function called the component density, λj

is the component specific parameter, and πj is the proportion of jth subpopulation in the whole

population with
∑m

j=1 πj = 1. The likelihood for x is

L(θ; x) =

n∏
i=1

{π1f(xi;λ1) + π2f(xi;λ2) + · · ·+ πmf(xi;λm)} . (1)
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The maximum likelihood estimator (MLE) of θ, by maximizing (1), is straightforward using the

EM algorithm (Dempster et al., 1977). For a general introduction to mixture models, see Lindsay

(1995); Bohning (1999); McLachlan and Peel (2000); Fruhwirth (2006).

For any permutation ω = (ω(1), . . . ,ω(m)) of the identity permutation (1, . . . ,m), define the

corresponding permutation of the parameter vector θ by

θω = (πω(1), . . . , πω(m), λω(1), . . . , λω(m)).

A special feature of mixture model is that the likelihood function L(θω; x) is numerically the same

as L(θ; x) for any permutation ω. This is the so-called label switching problem.

Let π(θ) be the prior for mixture model, the posterior distribution of θ is equal to p(θ | x) =

π(θ)L(θ; x)/p(x), where p(x) is the marginal density for x = (x1 · · · , xn). If π(θ) = π(θω) for any

permutation ω, then p(θ | x) = p(θω | x) for any permutation ω and thus the posterior p(θ | x)

has m! permutation symmetric maximal modes.

For simplicity of explanation of our new labeling method, let us consider the situation when

m = 2. The following explanation can be easily extended to the situation when m > 2. When

m = 2, the posterior distribution will have two symmetric modal regions, around each of the two

symmetric maximal models. We can consider each of them as the “true” labeled parameter space.

The aim of labeling is to recover one of the modal regions. Assuming that the prior is relative

noninformative, which is the case in general, or the sample size is large, the posterior will be

very close to the likelihood function. Hence the posterior modes can be found closely by the EM

algorithm of the mixture models.

Ideally, suppose that there are only two symmetric modes with one in each modal region.

Because of the monotone increasing property of the EM algorithm (Dempster et al., 1977), the

points in one modal region will most likely converge to the same mode using the EM algorithm and

the points in the other modal region will converge to the other permuted mode. Therefore, using

the converged modes to label the samples, we can easily recover the modal regions. Practically,

we can use one of the modes, say by order constraint labeling on some parameter, as the reference

4



mode. Denote by θ̂ the chosen reference mode and thus θ̂ has the identical label (1, 2). Suppose we

have N raw unlabeled MCMC samples (θ1, . . . ,θN ) (see, for example, Diebolt and Robert (1994)

and Richardson and Green (1997) for more detail about how to draw MCMC samples for mixture

models), the aim of labeling is to find the labels (ω1, . . . ,ωN ) such that {θω1
1 , . . . ,θωN

N } are in

the same modal region (i.e. have the same label meaning) as the reference mode θ̂. If a sample

converges to θ̂, then it is most likely in the same modal region as θ̂ and thus has the label (1, 2);

if a sample converges to the permuted mode of the reference mode, which is θ̂
ω

, then it is in the

other permuted modal region and thus has the label (2, 1).

However, if there are other minor modes besides the two permuted major modes, we simply

label these minor modes by minimizing their euclidian distance to the reference major mode. Here

the major mode is defined to be the one that most samples are converged to among all the posterior

modes. Empirically, the major mode is usually the mode having the largest posterior.

If one wishes to use this algorithm in a way that does not require storage of all the MCMC

samples (then the proposed algorithm is an on-line algorithm), one needs to find the reference major

mode θ̂ in advance of processing. The reference major mode can be found by the EM algorithm.

We propose to run the EM algorithm from different initial values and choose the mode to which

most initial values converge. Practically, the initial values can be chosen equally spaced from the

burn-in samples of the MCMC sampling. Based on our experience, twenty initial values will be

very reassuring to find the major mode.

Suppose the found reference mode is θ̂ and it is labeled by order constraint on some parameter.

The aim of labeling is to find the labels (ω1, . . . ,ωN ) such that {θω1
1 , . . . , θωN

N } have the same

label meaning as θ̂. Based on the above explanation, for general m, the algorithm of our proposed

labeling method is as follows.

Algorithm 1. Labeling based on EM algorithm (EMLAB)

Step 1: Taking the MCMC sample {θt, t = 1, . . . , N} as the initial value, find the corresponding

converged mode {mt, t = 1, . . . , N} using the EM algorithm of the mixture models.

Step 2: Apply to mt the order constraint labeling used to define θ̂, denoted by ω∗
t (hence m

ω∗
t

t has
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the same order constraint as θ̂) and find the label ωt of θt based on the following situations.

a) If m
ω∗

t
t is θ̂, up to numerical error, then ωt = ω∗

t .

b) If m
ω∗

t
t is not θ̂, ωt is found by a risk based criterion such as least squares:

ωt = arg min
ω

(mωt − θ̂)T (mωt − θ̂) . (2)

For example, when m = 2 and there are only two symmetric modes, suppose the reference mode

is

θ̂ = (π̂1, π̂2, λ̂11, λ̂21, . . . , λ̂1p, λ̂2p),

where (λj1, . . . , λjp) is the p-dimensional parameter vector for jth component. Suppose λ̂1k and

λ̂2k are different for some index k and θ̂ is chosen such that λ̂1k < λ̂2k. (If such k doesn’t exist

when m > 2, which is very unlikely in practice, we can also use a set of component parameters,

say (λjk1 , . . . , λjkl), that can differentiate all the m components, which always exists since at least

(λj1, . . . , λjp) are different for all the m components. Then the order of components can be done by

applying the “alphabetical order” to (λjk1 , . . . , λjkl) for all js, i.e., we first order the components

based on λjk1 and if there is a tie, we order the components based on λjk2 , etc.)

Based on Algorithm 1, for any given sample θt, in order to find the label ωt such that θωt
t has

the same label meaning as the reference mode θ̂, we first run the ascending EM algorithm using θt

as the initial value and denote by mt the final converged mode after the EM algorithm converges.

If there is only two symmetric modes, then mt is either equal to the reference mode θ̂ or equal to its

permutation θ̂
ω

. Therefore, if mt has the same order constraint, λ1k < λ2k, as θ̂, mt must be equal

to θ̂ (otherwise, it is equal to θ̂
ω

). Therefore, we can simply apply order constraint labeling method

to mt to find the label ωt such that mωt
t is equal to θ̂. Therefore, one nice feature of EMLAB is

that it does not require to compare m! permutations to find ωt in step 2 if mt is one of the major

modes. In our experience, most of the samples will converge to one of the m! major modes. This

computation strategy makes EMLAB much faster, when m is larger, than the relabeling algorithm,

such as KL algorithm (Stephens, 2000), and Yao (2010a)’s clustering algorithm, which requires m!
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comparisons in each iteration. In addition, note that mt is the converged mode starting from θt

based on the ascending EM algorithm. Therefore, graphically, we can consider θt and mt are in

the same modal region and have the same labels. Therefore if mt has the label ωt, θt also has the

label ωt, i.e., θωt
t is in the same modal region as θ̂.

The expression (2) is used to find the label ωt for a minor mode mt, such that mωt
t is in the

same modal region as the reference mode θ̂. The expression (2) assumes that the distance between

mωt and θ̂ for any permutation ω will be more likely smaller when they are in the same modal

region than when they are in different modal regions. Therefore, for a minor mode mt, we need to

try all m! possible permutations and find ωt such that mωt
t is closest to θ̂.

Notice that the EMLAB method does not depend on the initial labels, which can save much

computation time compared to the relabeling algorithm. In addition, it is an online algorithm,

which does not use batch processing and thus reduces the amounts of storage.

However, note that the EMLAB method requires to run EM algorithm for each MCMC sample

to find their labels. If m = 2 and there are only two symmetric modes, the posterior will have

two symmetric modal regions around each mode. Then it is natural to think if the two points are

close enough, they are most likely to be in the same modal region and thus have the same labels.

Therefore, one might expect that if one sample, say θ, has label ω, then the samples in a small

neighborhood around θ will be most likely in the same modal region as θ and thus have the same

label ω. Therefore, in order to speed up the computation, we can also first cluster the samples

by a method like K-means with large number of clusters K. Then, by assuming that the samples

within each cluster have the same labels, we only need to run the EM algorithm once and find one

converged mode for each cluster. We will denote this labeling method by EMLAB-KM.

If the likelihood is unbounded, it is possible for some points to converge to the parameter

values with infinity likelihood. When this happens, we might consider running the constrained EM

algorithm which puts some constraint on parameter space to make the likelihood function bounded.

For example, the univariate normal mixture with unequal variance has an unbounded likelihood

function. When the variance of one component goes to zero and the corresponding mean is equal to

any observation, the likelihood value will go to infinity. In order to avoid this kind of unboundness,
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one might run the EM algorithm over the constrained parameter space

ΩC = {θ ∈ Ω : σ2h/σ
2
j ≥ C > 0, 1 ≤ h 6= j ≤ m}, (3)

where Ω denotes the unconstrained parameter space and σj is the standard deviation of the jth

normal component. See Hathaway (1983, 1986); Bezdek, Hathaway, and Huggins (1985) for more

detail. Hathaway (1985) showed that the global maximizer θ̂ of likelihood over ΩC exists and

that θ̂ is strongly consistent for the true value θ provided that the true value of θ lies in ΩC .

For multivariate normal mixture with unequal covariance matrix, Σi (i = 1 . . . ,m), the likelihood

function is also unbounded. Similarly to the univariate case, we can put some constraint on the

covariance matrix to get the constrained global maximizer. For example, we constrain all the

eigenvalues of ΣhΣ−1
j (1 ≤ h 6= j ≤ m) to be greater than or equal to some minimum value C > 0

or |Σh|/|Σj | ≥ C > 0 (1 ≤ h 6= j ≤ m).

3 Examples

In this section, we use a simulation study and a real data application to compare our proposed

labeling methods EMLAB-KM and EMLAB with order constraint (OC) labeling and Stephens’ KL

algorithm (KL). The OC method refers to ordering on the mean parameters. For EMLAB-KM and

EMLAB, we used twenty equally spaced samples from the burn-in samples as the initial values to

find the reference major mode. In all of our examples, we successfully found the major modes. For

EMLAB-KM, we used 100 clusters for K-means.

All the computations were done in Matlab 7.0 using a personal desktop with Intel Core 2 Quad

CPU 2.40GHz. For comparison, we reported the number of different labels for each method that

differed from EMLAB. It is known that the OC method is the fastest one and it took no more than

several seconds in our examples. Hence, we only reported the runtime for KL, EMLAB-KM, and

EMLAB. We here have used EMLAB-KM and EMLAB in batch mode so that we can determine its

runtime in direct comparison with the others. Since the runtime for the KL algorithm depends on

the number of starting points (i.e., the initial labels for all samples), we only reported the runtime
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of KL when using the EMLAB labels as the initial labels. (The real runtime for KL could be much

longer. If one used ten different initializations for the algorithm, it might take about ten times as

long .) Using these starts also ensures that KL is as similar to EMLAB as possible.

3.1 Simulation Studies

Example 3.1 : 400 data points were generated from 0.3N(0,1)+0.7N(0.5,2). Based on this data

set, we generated 20,000 MCMC samples (after initial burn-in) of component means, component

proportions, and the unequal component variance. The priors used for MCMC samples are

π ∼ D(δ, δ), µj ∼ N(ξ, κ−1), ω−2
j ∼ Γ(α, β), β ∼ Γ(g, h) j = 1, 2 ,

where D(·) is Dirichlet distribution and Γ(α, β) is gamma distribution with mean α/β and variance

α/β2. Following the suggestion of Richardson and Green (1997), we let δ = 1, ξ equal the sample

mean of the observations, κ = 1/R2, α = 2, g = 0.2, and h = 10/R2, where R is the range of the

observations. Similar priors are used for the other two examples.

In this example, all the samples converged to the major modes and thus can be labeled naturally

by the corresponding converged modes. The runtime for KL, EMLAB-KM, and EMLAB were 63,

26, and 235 seconds, respectively. Note that EMLAB-KM was much faster than EMLAB. The total

numbers of different labels between (OC, KL, EMLAB-KM) and EMLAB were: 861, 110, and 0,

respectively. So, EMLAM-KM and EMLAB had the same labeling results in this example and KL

had closer results than OC when compared to EMLAB.

Since there are only two components and the two symmetric modal regions are separate, we

can easily make use of some parameter plots to see where the labeling differences occurred. Figure

1 is the plot of σ1 − σ2 vs. µ1 − µ2 and Figure 2 is the plot of σ1 − σ2 vs. π1. For better visual

results, we also add the permuted samples to the plots. From these plots, we can see that there are

two separated modal regions, and that OC and KL did not accurately recover these two regions.

Based on Figure 2, it appears that KL used the component proportions more heavily than the

other methods. In addition, OC also mixed the two separated regions together. The EMLAB-
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Figure 1: Plots of σ1 − σ2 vs. µ1 − µ2 for the four labeling methods in Example 3.1. The black
points represent one set of labels and the gray points are the permuted samples.

KM/EMLAB methods clustered the two groups more naturally.

Example 3.2 : We generated 400 data points from the 8-component normal mixture
∑8

j=1 0.125N(µj , σ
2
j ),

where µj = 3(j − 1), σj = 0.5j, j = 1, . . . , 8. Based on this data set, we generated 5,000 MCMC

samples of component means, component proportions, and the unequal component variance. (Our

personal computer does not have enough memory for KL algorithm when we tried to label 10,000

samples. Stephens (2000) did provide some alternative on-line versions for KL algorithm, which

can reduce the storage requirements.)

In this example, 91% of samples converged to the major modes and thus can be directly labeled
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by the converged modes. The other 9% of samples converged to minor modes. The runtime for

KL, EMLAB-KM, and EMLAB were 5.12 × 104, 21, and 265 seconds, respectively. We can see

that both EMLAB and EMLAB-KM were much faster than KL method since KL required one to

compare 8! = 40320 permutations in each iteration. From this example, one can see that if the

number of components is large EMLAB and EMLAB-KM will be much faster than KL. The total

numbers of different labels between (OC, KL, EMLAB-KM) and EMLAB were: 198, 812, and 144,

respectively. So, in this case both OC and EMLAB-KM had much closer results than KL when

compared to EMLAB. The difference between EMLAB-KM and EMLAB mainly occurred for the

points converged to the degenerate modes.

It is difficult to graphically compare different labeling methods when the number of components

is large. Here, we provided the trace plots and the marginal density plots to illustrate the success

of EMLAB. (The OC, KL, and EMLAB-KM methods had similar visual results for those plots.)

Figure 3 provides the trace plots for the original Gibbs samples and the labeled samples by EMLAB

and Figure 4 provides the estimated marginal posterior density plots. From these figures, we can

see that the raw samples jump around between different symmetric regions in the trace plots, which

explains the multi-modalities of the marginal densities for raw samples. However, after applying

EMLAB, the labeled samples have a relatively flat band in the center for the trace plots and have

uni-modal densities. Therefore, EMLAB successfully removed the label switching in the raw output

of the Gibbs sampler at a considerably lower computational expense than KL.

3.2 Real Data Application

Acidity Data: We consider the acidity data set (Crawford et al., 1992; Crawford, 1994). The

observations are the logarithms of an acidity index measured in a sample of 155 lakes in north-

central Wisconsin. More details on the data, including a histogram of its distribution can be found

in Yao (2010a). Crawford et al. (1992), Crawford (1994), and Richardson and Green (1997) have

used a mixture of Gaussian distributions to analyze this data set. Based on the result of Richardson

and Green (1997), the posterior for 3 components was largest. Hence, we fit this data set by a 3-

component normal mixture. We post processed the 20,000 Gibbs samples by the OC, KL, EMLAB,
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and EMLAB-KM labeling methods.

In this example around 91% of samples converged to major modes. The runtime for KL,

EMLAB-KM, and EMLAB were 45, 46, and 130 seconds, respectively. The total numbers of

different labels between (OC, KL, EMLAB-KM) and EMLAB were: 445, 649, and 185, respectively.

We can see that EMLAB-KM had much closer results to EMLAB than OC and KL.

Here we mainly provided the trace plots and the marginal density plots to illustrate the success

of EMLAB method. (The OC, KL, and EMLAB-KM methods had similar visual results for those

plots.) Figure 5 and 6 are the trace plots and the estimated marginal posterior density plots,

respectively, for the original samples and the labeled samples by EMLAB. From the above two

figures, we can see that the raw samples jump around between different symmetric modal regions

in the trace plots and their marginal densities also have multiple modes. However, the labeled

samples by EMLAB have a relatively flat band in the center for the trace plots and their marginal

densities are uni-modal.

4 Summary

In this article, we proposed a new labeling method, called EMLAB, based on the converged modes

when running the EM algorithm of mixtures starting from each MCMC sample. The assumption we

used is that the samples converged to the same likelihood mode have the same labels. The simulation

study and real data application demonstrate the success of the proposed labeling method.

We did not extensively study the effect of the choice of K on labeling results. Usually, when

K increases, the EMLAB-KM method will be closer to the EMLAB. Specially, when K = N (the

number of MCMC samples), the EMLAB-KM will be exactly the same as EMLAB. When K is

larger, the labeling results will be more accurate, but save less computation time compared with

EMLAB. Hence there is a trade-off between the computation time and the accuracy of labeling

when choosing K. Empirically, if K is large enough, the choice of K will not affect the labeling

results too much. Based on our limited empirical studies, we recommend to choose K such that on

average there are no more than 200 samples within each cluster, i.e. K ≥ N/200, where N is the
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number of MCMC samples. Similar idea can be also applied to Yao and Lindsay (2009)’s posterior

modes based labeling method to speed up the computation.
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Figure 2: Plots of σ1 − σ2 vs. π1 for the four labeling methods in Example 3.1.
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(a)

(b)

Figure 3: Trace plots of the Gibbs samples of component means for Example 3.2: (a) original Gibbs
samples; (b) labeled samples by EMLAB.
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(a)

(b)

Figure 4: Plots of estimated marginal posterior densities of component means for Example 3.2
based on: (a) original Gibbs samples; (b) labeled samples by EMLAB.
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(a)

(b)

Figure 5: Trace plots of the Gibbs samples of component means for acidity data: (a) original Gibbs
samples; (b) labeled samples by EMLAB.
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(a)

(b)

Figure 6: Plots of estimated marginal posterior densities of component means for acidity data based
on: (a) original Gibbs samples; (b) labeled samples by EMLAB.
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