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THIYOS: A Classifier System Model of
Implicit Knowledge of Artificial Grammars
Barry B. Druhan and Robert C. Mathews
Louisiana State University
Department of Psychology

ABSTRACT

This study develops a computational model based on the Holland et al.’s (1986) induction theory to
simulate the tacit knowledge of artificial grammars acquired from experience with exemplars of the
grammar (e.g., Reber, 1969, 1976). The initial application of this model tests the proposition that the
rules acquired about an artificial grammar consist of sets of partially valid rules that compete against
one another to control response selection. Choices are made and the strength of rules is adjusted based
on current levels of strength, specificity, and support among rules having their conditions matched on a
particular trial. Verbal instructions generated by two human subjects who developed expertise in
discriminating valid from invalid strings through extensive practice on a multiple choice string discrimi-
nation task served as inputs into the simulation model. Results show that these sets of rules verbalized
by subjects can be represented as sets of condition-action rules. Further, these rules can compete
against each other to select valid choices on the string discrimination task as described in the Holland et
al. model, resulting in a level of performance very similar to that of human yoked subjects who
attempted to use the rules provided by the original subjects. Finally, when the rules are automatically
tuned by an optimization algorithm using feedback about correctness of choices, performance of the
simulation approaches the level of the original subject. It is concluded that a considerable portion of
implicit knowledge that is not verbalized to yoked partners consists of the relative strengths of compet-
ing rules.

INTRODUCTION

Learning of artificial grammars has attracted attention in cognitive psychology for two
main reasons: First, knowledge about a grammar is acquired as well or better by pas-
sive observation of exemplars as compared to deliberate attempts to derive the rules of
the grammar (e.g., Reber, 1976; Reber & Allen, 1978). Second, subjects who have
acquired knowledge of the grammar implicitly through observing exemplars have a
difficult ime verbalizing what they have learned (see Reber, in press for a review of
this research). Thus researchers have been interested in determining whether this form
of learning reflects a unique, subconscious learning mechanism capable of abstracting
regularities among exemplars without conscious rule generation.

Recently Mathews, Buss, Stanley, Blanchard-Fields, Cho, and Druhan (in press) per-
formed an extensive series of experiments examining learning of artificial grammars
through practice discriminating exemplars from nonexemplars of the grammar. The
finite state grammar used in these experiments is illustrated in Figure 1. Each valid
string represents one complete path through the grammar, following any allowed set of
transitions (arrows) and generating each letter corresponding to the label on each tran-
sition chosen. The grammar generates a total of 177 unique valid strings. The
Mathews et al. (in press) experiments used a novel teach aloud procedure in which
subjects, while learning about the grammar through practice on a multiple choice string
discrimination task, periodically attempted to verbalize instructions for another person
(yoked subject) to perform the same string discrimination task. On each trial of the
string discrimination task original subjects selected one of five alternatives which they
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Figure 1.

thought was a valid string. Of the five strings presented, four of them contained "vio-
lations" (incorrect letters), and one was correct. They were then given feedback about
which was the correct string. These subjects practiced this task 200 trials a week for
three weeks. They recorded instructions for their yoked partner after each sequence of
ten multple choice trials. The yoked subjects attempted to perform the same string
discrimination task without feedback, using only the current instructions provided by
their partner for that trial block.

Several findings from the Mathews et al. experiments are consistent with competitive
rule induction models. The instructions verbalized during training resembled sets of
condition-action rules such as "select strings that begin with SCT" or "select strings
that end in VV". Moreover, the set of rules acquired by different subjects appeared to
be different (see Dulany, Carlson, & Dewey, 1984, 1985); and there was no tendency
to converge on a common set of rules even after experience with hundreds of exem-
plars generated by the grammar over an extended period of practice with the task.
Thus, as predicted by the Holland et al., (1986) model, learning appeared to involve
finding a set of cues to distinguish valid from invalid strings and, once a sufficient set
of cues was acquired, learning did not continue (i.e., no additional cues were
acquired). In Holland et al. terms learning is completely failure driven. These initially
positive results concerning the application of the Holland et al., (1986) framework to
implicit learning of artificial grammars encouraged us to develop a formal model to
further test the adequacy of this framework for explaining this type of learning.

This paper reports our initial results using a computational model which simulates

behavior of our yoked subjects. This model is an implementation of a classifier sys-
tem in which sets of condition-action rules characterizing original subjects’ verbalized
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instructions compete against each other to control response selection in the string
discrimination task. That is, just like our human yoked subjects, THIYOS (for THe
Ideal YOked Subject) receives a set of instructions from an original subject for each
block of ten trials and then it attempts to select the valid string generated by the gram-
mar from among five choices. In the initial run of the simulation THIYOS gets no
feedback about correctness of its choices, so it has to rely entirely on the set of
instructions provided by the original subject. THIYOS is an "ideal" yoked subject in
the sense that it makes no attempts to generate additional rules, as a human yoked sub-
ject might do even in the absence of feedback (Fried & Holyoak, 1984). Also, by giv-
ing THIYOS perfect memory for every rule received, not only on the current trial
block but on all previous trial blocks, we can see how good performance would be if
all of the original subjects’ rules were allowed to compete for response selection.
Finally, by using additional runs of THIYOS with feedback, we can determine whether
an optimization scheme similar to the bucket brigade algorithm is capable of improv-
ing THIYOS’s performance by tuning the relative strength of the competing rules.

One hypothesis tested in this simulation is that part of what original subjects do not
verbalize in their instructions for their yoked partners is the relative strengths of com-
peting rules which lead to optimal performance. If we assume that the original sub-
jects’ rules have been tuned for optimal application, but the yoked subjects’ have not;
then THIYOS'’s performance might improve considerably when sufficient feedback has
occurred to optimally tune the strengths of competing rules.

THE MODEL

Classifier systems are a type of production system model with some specific processing
assumptions. First, the condition action pairs are composed of strings of equal length,
where the elements of the string are restricted to the set {1, 0, #}. This condition
action pair is called simply a "classifier". Each element can be thought of as
representing a unique feature of the object, or event being described by the classifier.
Within this representation, a "1" represents the presence of a feature, a "0" represents
its absence, and a "#" is a type of wildcard that will match either case. Complex
objects or events can be coded by adding conditions to the condition side of the
classifier-- each classifier has only one action. Classifiers operate on "messages” that
are similar in format to the condition and action sides of the classifier. Messages
reside on a "message list" that represents the current state of the world for the model.
The system operates by cycling through the following steps: Process the input inter-
face by putting incoming messages on the message list; compare the condition sides
of each classifier to each message on the message list and record all matches; calcu-
late a bid for each classifier that matched and select a set of "highest bidders" to post
their messages on a new message list-- the size of the set selected reflects the models’
assumptions about working memory limitations; process the contents of the new mes-
sage list through an output interface which strips off messages tagged for output;
replace the old message list with the new one; return to step one. Simple classifier sys-
tems such as these can be combined by coupling input and output interfaces to form
more complex systems. The performance of the system is regulated by the bidding
system, in which a bid is equal to a constant multiplied by the sum of the classifier’s
strength (past effectiveness), specificity (number of non-"#’s"), and support (number of
classifiers on the previous time step that supported the current classifier). (see Hol-
land, et al., 1986).
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The computational model described here is essentially a classifier system model with
certain assumptions that make it amenable to modeling artificial grammars. Subjects’
rules are represented as condition-action pairs, in which both the conditions and the
actions are fixed length strings of letters, numbers, "#’s", and "_". The exemplars of
the grammar to be learned are represented in a similar fashion such that the lengths of
the condition string, the action string, and the exemplar string are all equal. In order
to determine whether a rule applies, its condition side is matched position by position
against the exemplar string. The "#’s" are a sort of wildcard character that will match
anything. In addition, the "#’s" act as variables in that they can pass information
through from a message to an action. Consider the following example: if the subject
says to choose strings that begin with "SCT", then the corresponding classifier rule
would be:

"##SCTH#H##H##H#O###00102CHOOSE HEHRBH".
The pipe or "I" symbol separates the condition side from the action side of the
classifier. The five alternative strings are placed on the message list in a similar for-
mat. For example, the above rule would match an exemplar on the message list such
as: "01SCTVPXVV___#10###". Numbers at the beginning of the strings are tags
which differentiate strings coming from the input interface from those going to the out-
put interface. In the exemplar string, the "1" and "0" in the 14th and 15th positions
indicate that it is choice number 1 for the given trial, and that it has zero violations.
Since the corresponding positions in the condition and action side of the classifier con-
tain "#’s", the "1" and "0" are passed through from the exemplar to the action. Since
the action of this classifier is tagged for the output interface, it would tell the system to
choose letter string number 1. The execution cycle performs one trial per cycle by
iterating through the following steps:

1) Read in the five alternative exemplars from the input interface, and place
them on the message list.

2) If at the beginning of a trial block, read in the rules given by the original
subject for that trial block.

3) Compare the condition sides of all rules to each message on the message
list and record all matches.

4) Select the set of w matches involving classifiers with the highest strengths
and allow these classifiers to post their messages on an interim message list.

(The size of the set selected reflects the models’ assumptions about working

memory limitations.)

5) Calculate a bid for each classifier on the interim list using the parameters

of strength, specificity, and support.

6) Resolve conflicts on the interim list on the basis of the bids from step 5,
and place any remaining messages on the new message list.

7) Process the contents of the new message list through an output interface
which strips off messages tagged for output. If feedback is turned on, then
correct choices cause payoff to be rewarded to all rules on the interim mes-
sage list supporting the same choice made by the highest bidder. All rules
on the interim list payout a portion of their strength. If feedback is off, rules
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neither payoff nor payout.
8) Replace the old message list with the new one; return to step one.

This process continues until all trials have been completed.

The performance of the system is regulated by the bidding system, in which a bid is
equal to a constant multiplied by the sum of the classifier’s strength (past
effectiveness), specificity (number of non- "#’s"), and support (number of classifiers
that agree to pick the same choice).

Hence, the bid is represented by the following formula:
B = (b)[(sw)S+(w)R+(vw)V]

where b 1s a constant between 0 and 1; S, R, and V are strength, specificity, and sup-
port respectively; sw, rw, and vw are weights associated with each parameter. In
classifier systems, a rule must pay out an amount proportional to its current strength
whenever it is selected to fire, and it receives a payoff whenever it is successful.
Within the Induction framework by Holland et. al,, it is these two parameters that
implement the "bucket brigade algorithm". The algorithm gets its name from the fact
that it implements a limited spread of activation by passing strength back to rules,
which on the previous time step, supported a classifier in its attempt to post its mes-
sage. In doing so the system implicitly couples sets of rules that tend to work together
in so far as they lead to a successful representation of the environment.

In the current model, since the goal was to simulate a yoked subject, we intended for
the rules to operate with some autonomy unless explicitly coupled by the original sub-
ject who stated the rules. For example, a subject might say "strings that start with
SCT are good rules, and strings that end in VV are good rules”. Whereas on another
occasion the same subject might deliberately couple the rules: "choose strings that
begin with SCT and end in VV". The goal was to have THIYOS strictly adhere to the
rules of the original subject. For that reason, there is only one type of action (i.e. to
choose one of the alternatives) and all of the actions are tagged for the output inter-
face. The result is that no direct chaining of rules takes place. Tuning the rules when
feedback 1s on changes only the relatve surengths of the rules. No additional explicit
or implicit (coupled) rules are created by THIYOS. Therefore the tuned rules remain
literal representations of the rules provided by the original subject.

In order to benefit from the powerful use of support provided by the bucket brigade
algorithm, while adhering to a literal representation, the current model attempts to
emulate the algorithm by measuring support as the number of classifiers on a given
time step that agreed to pick the same choice, and by giving feedback to all classifiers
that supported each other in making a correct selection. Further, an optimal perfor-
mance measure was sought through the implementation of a double bidding process.
The parameters of payoff and payout tend to operate in a manner that causes the
strength of rules with average cue validity to remain relatively constant, while those
with above average cue validity have their strength increased, and those with below
average cue validity have their strength decreased. The double bidding process, the
algorithm assures that access to the final competition is limited to the strongest set of
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applicable rules. Thus overly general rules can not repeatedly enter the final competi-
tion through support by stronger more specific rules. Steps three through six of the
execution cycle described above implement this two-stage process. In the first stage,
all matches are recorded and are considered for placement on the message list. In
THIYOS, the competition to move on to the next stage is based on strength alone. In
the second stage, if there is a conflict between messages that have been presented to
represent the environment, then those items compete on the basis of strength,
specificity, and support. In this manner the system is assured of adjusting the strength
based on past performance by eliminating the possibility that clusters of bad rules will
overcome the stronger rules through mutual support. At the same time, weaker rules
are not completely locked out of the system by virtue of the fact that not all of the
strongest rules will apply at the same time. Also, the double bidding process
effectively implements the system’s assumptions about the size of working memory
(i.e. the number of rules chosen to enter the second stage), and at same time, imple-
ments the system’s assumptions about the nature of working memory. That is, that
rules enter into working memory automatically based on their strength, and once there,
can be consciously manipulated based on their strength, specificity, and support.
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THE SIMULATION

The data from two human subjects in the Mathews et. al. (in press) letter string task
were selected at random for the simulation. Their verbal instructions were translated
into classifier rules using the aforementioned representation scheme. The simulation
proceeded trial by trial in the same order as the original and yoked subjects, and the
rules were presented block by block. There were 600 trials total divided into three
weeks of 200 trials per week for each of the original and yoked subjects. In the
experiment, verbal instructions were given by the original subjects every 10 trials
yielding 60 sets of rules that were read in to THIYOS for each subject. Subjects
number one and two stated 104 and 144 unique rules respectively. Rules that were
repeated by the subjects were not stored as additional rules, but had their strength
increased by a diminishing amount proportional to their current strength (the higher the
strength, the less the increase). The set of rules for each subject was run once without
feedback, once with feedback, and finally in a "maximum tuning" run in which the
system was allowed to continue cycling for three runs through the experiment using
the same set of rules until the increase in performance leveled off.

RESULTS AND DISCUSSION

The dependent variable on the string discrimination task is the number of violations in
each set of choices in a trial block. Each multiple choice trial consisted of five
choices including one valid string (no violations), one string with one violation (one
letter which could not occur in a particular position), one string with two violations,
one with three, and one with four violations. Thus, chance performance is approxi-
mately 20 violations per trial block, and better performance consists of fewer viola-
tions. The mean performance of the two original subjects and their human yoked
partners is plotted in the upper and lower panels of Figure 2 across the three weeks of
practice. Performance of THIYOS without feedback, with feedback, and after three
runs with feedback is also plotted on each graph.

The pattern of results is quite clear. Original subjects always perform better than their
yoked partners, but both subjects perform much better than chance; implying some but
not all of an original subject’s knowledge was successfully transmitted to their yoked
partner. THIYOS performs at about the level of the yoked subject without feedback,
better with feedback, and at nearly the level of the original subject on the third run
with feedback.

We conclude from this simulation that the original subjects’ knowledge of the gram-
mar can be adequately represented as a set of condition-action rules which compete for
control of response selection using strength, specificity and support to determine the
winners. We also conclude that a human yoked subject’s behavior is reasonably well
described as attempts to apply these rules without adequate knowledge of the relative
strengths necessary to optimally employ the set of rules.

By allowing feedback to adjust the strengths of the rules using the optimization algo-
rithm, performance of THIYOS came very close to that of the original subject. This
result implies that the set of rules verbalized by the original subjects was probably an
adequate description of the rules actually used by that subject. However, subjects do
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not adequately verbalize information about the relative strengths of the competing
rules. That is, a large part of the nonverbalized, tacit knowledge acquired about an
artificial grammar appears to be the optimal relative strengths of competing rules
resulting from the nonconscious rule-tuning implemented by the optimization algo-
rithm.
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