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ABSTRACT OF THE DISSERTATION

Algorithms for optimal transport and their applications to PDEs

by

Wonjun Lee

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Stanley J. Osher, Chair

Optimal transport theory provides a distance between two probability distributions. It finds

the cheapest transport map that moves one measure to the other measure with respect to

some ground cost. With its deep theoretical properties, the optimal transport distance has

been used in diverse areas such as partial differential equations (PDEs), economics, image

processing, and machine learning. However, computing the optimal transport distances and

maps is difficult, which has been a significant challenge in applications. In this dissertation,

we present new numerical methods using optimal transport distance and their applications in

solving challenging convex and nonconvex optimization problems involving non-linear PDEs.

We demonstrate the suggested methods’ efficiency through numerous numerical results.
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CHAPTER 1

Introduction

1.1 Background

Optimal transport theory provides a distance between two probability measures µ and ν by

computing the cheapest way to transport µ to ν with respect to a cost function c. Consider a

domain Ω ⊂ Rd is an open bounded set in d-dimensional Euclidean space (the domain can be

more general but we will focus on a simple case). The problem can be written mathematically

by

inf
T

{∫
Ω

c(T (x), x) dµ(x) : T#µ = ν

}
(1.1)

where T : Ω→ Ω is a measure preserving transport map and c : Ω×Ω→ R is a cost function

that measures the cost of transporting a mass from x ∈ Ω to y ∈ Ω. In the constraint set,

the pushforward measure T#µ is defined through

(T#µ)(B) = µ(T−1(B))

for all measurable set B ⊂ Ω. The minimization problem solves for the optimal map T

that minimizes the cost to transport µ to ν. This problem is also known as the Monge

problem [Mon81]. When c is a quadratic function (c(x, y) = |x− y|2), the distance is often

referred to as the 2-Wasserstein distance. With its deep theoretical properties, the optimal

transport has been studied extensively, both analytically and numerically. It has found use in

diverse areas such as partial differential equations (PDEs) [BB00, GM18, CCY19, JKT20a],

fluid dynamics [BB00, DWH15, GM18], economics [Gal16], image processing [ZYH07, WOS10,

WSB13], and machine learning [PW08, ACB17b, TPK17a]. Nonetheless, computing optimal

1



transport distances and maps numerically have been a major challenge. This thesis focuses

on fast and accurate algorithms for optimal transport and the implementations of these

algorithms to solve PDEs.

Chapter 2, a collaboration with Prof. Rongjie Lai, Prof. Wuchen Li, and Prof. Stanley

Osher, is adapted from [LLL21a]. We proposed a new model for unnormalized optimal

transport. The classical optimal transport considers the distance between two densities

with the same mass. This model can compute the distance between two measures with

different masses, and, thus, generalizes the optimal transport distance. We also presented

new numerical methods for solving optimal transport distance using a primal-dual algorithm

and an accelerated gradient ascent algorithm.

Chapter 3, a collaboration with Siting Liu, Prof. Hamidou Tembine, Prof. Wuchen Li, and

Prof. Stanley Osher, is adapted from [LLT21] with the algorithm section (Section 3.3) adapted

from [LLL21b]. In response to the COVID-19 pandemic, we proposed a new mean-field

game model of spatial epidemiological dynamics. We added spatial dynamics to the classical

epidemiological models, such as SIR (Susceptible, Infectious, or Recovered) model. The new

model formulates the nonconvex optimization problem and we provided an efficient algorithm

to solve the problem.

Chapter 4, a collaboration with Prof. Matt Jacobs and Prof. Flavien Léger, is adapted

from [JLL21]. In this project, we presented a new method to efficiently compute Wasserstein

gradient flows. Our approach is based on a generalization of the back-and-forth method

(BFM) introduced in [JL20] to solve optimal transport problems. The proposed method is a

state-of-the-art algorithm to solve large-scale gradient flows simulations for a large class of

internal energies including singular and non-convex energies.

In what follows, we provide background information on alternative formulations of optimal

transport which will be used throughout the thesis.

2



1.2 Optimal transport

In this section, we briefly review two alternate formulations of the Monge problem (1.1):

the Kantorovich dual formulation [Kan06] and the Benamou-Brenier formulation [BB00].

Chapter 2 and Chapter 3 use the Benamou-Brenier formulation to formulate new models in

unnormalized optimal transport and epidemiology. Chapter 4 uses the dual formulation to

derive the dual problem of the minimizing movement scheme [JKO98] (often also called the

JKO scheme) and presents the efficient algorithm to compute it.

The Kantorovich formulation is a relaxed version of the Monge problem. Suppose µ and

ν are discrete probability measures such that µ = δx and ν = 1
2
δy + 1

2
δz where δx is a Dirac

measure with a mass at x. Then (1.1) does not have a solution since maps cannot split the

mass. One can resolve this issue by considering a joint probability measure instead of a map.

Consider a set of joint probability measures Π(µ, ν) ⊂ P(Ω× Ω) such that the first marginal

is µ and the second marginal is ν. In other words, if γ ∈ Π(µ, ν) then

γ(B × Ω) = µ(B), γ(Ω×B) = ν(B) (1.2)

for all measurable sets B ⊂ Ω. The relaxed minimization problem takes the form of

inf
γ

{∫
Ω×Ω

c(x, y) dγ(x, y) : γ ∈ Π(µ, ν)

}
(1.3)

where dγ(x, y) is the amount of mass transported from x to y, which allows the mass to be

transported to multiple locations from x. The set Π(µ, ν) is called a set of transport plans

between µ and ν and the minimizer γ is called the optimal transport plan.

The Kantorovich formulation (1.3) has a dual formulation which is important in Chapter 4.

First, we convert the minimization problem (1.3) into a saddle point problem by introducing

Lagrangian multipliers φ and ψ.

inf
γ

sup
φ,ψ

∫
Ω×Ω

c(x, y) dγ(x, y) +

∫
Ω

ψ(x) dµ(x)−
∫

Ω×Ω

ψ(x) dγ(x, y)

−
∫

Ω

φ(y) dν(y) +

∫
Ω×Ω

φ(y) dγ(x, y).
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Note that the above equation satisfies the constraint set (1.2) and is equivalent to (1.3).

When γ is not in the constraint set, by the sup over φ and ψ, the value can be +∞ by having

arbitrarily large values of φ and ψ. By rearranging the terms, we have

= inf
γ

sup
φ,ψ

∫
Ω×Ω

(c(x, y) + φ(y)− ψ(x)) dγ(x, y) +

∫
Ω

ψ(x) dµ(x)−
∫

Ω

φ(y) dν(y)

= sup
φ,ψ

∫
Ω

ψ(x) dµ(x)−
∫

Ω

φ(y) dν(y) + inf
γ

∫
Ω×Ω

(
c(x, y) + φ(y)− ψ(x)

)
dγ(x, y)

where the second equality interchanges sup and inf. The interchange is valid under the

assumption that the cost function c is lower semi continuous [San15]. The equation can be

rewritten as

= sup
φ,ψ

{∫
Ω

ψ(x) dµ(x)−
∫

Ω

φ(y) dν(y) : ψ(x)− φ(y) ≤ c(x, y) for all x, y ∈ Ω

}
. (1.4)

This maximization problem is the dual formulation of the optimal transport and called the

Kantorovich dual formulation.

The other alternative formulation, the Benamou-Brenier formulation, is a dynamical

formulation of the optimal transport problem. Given probability densities µ ∈ P(Ω) and

ν ∈ P(Ω) and a cost function c(x, y) = |x − y|p (p ≥ 1), one can calculate the optimal

transport distance by solving the following minimization problem:

inf
ρ,v

∫ 1

0

∫
Ω

ρ(t, x)|v(t, x)|p dx dt

subject to ∂tρ(t, x) +∇ · (ρ(t, x)v(t, x)) = 0,

ρ(0, ·) = µ, ρ(1, ·) = ν.

(1.5)

The infimum is taken over continuous density function ρ : [0, 1]× Ω→ R+ and velocity fields

v : [0, 1]× Ω→ Rd with zero flux condition on ∂Ω. The formulation solves for a nonnegative

density ρ(t, x) that flows from µ at t = 0 to ν at t = 1 through the continuity equation

∂tρ +∇ · (ρv) = 0 while minimizing the cost of the flow defined as ρ|v|p. The formulation

computes the same optimal transport distance as the Monge problem (1.1). The optimal
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velocity fields v(t, x) satisfies the following ODE:
yx(t)

′ = v(t, yx(t))

yx(0) = x.

The solution of the ODE defines the map through Tt(x) = yx(t) and the map satisfies

ρ(t, ·) = (Tt)#ρ(0, ·) [San15]. Thus, we have (T1)#µ = ν and the map corresponds to the

optimal transport map T in the Monge problem (1.1). By modifying the objective function

and constraints, the formulation can describe various optimal control problems and certain

cases of the mean-field games model. For example, in Chapter 2, we consider the following

formulation

inf
ρ,v

∫ 1

0

∫
Ω

ρ(t, x)|v(t, x)|p dx dt+
1

α

∫ 1

0

∫
Ω

|f(t, x)|p dx dt :

subject to ∂tρ(t, x) +∇ · (ρ(t, x)v(t, x)) = f(t, x),

ρ(0, ·) = µ, ρ(1, ·) = ν.

The objective function and a constraint are modified by adding new terms involving a function

f : [0, 1] × Ω → R. This modified formulation computes the optimal transport distance

between two densities with different masses. Chapter 3 also utilizes the Benamou-Brenier

formulation to propose the new epidemiological model.
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CHAPTER 2

Generalized Unnormalized Optimal Transport

And Its Fast Algorithms

We introduce fast algorithms for generalized unnormalized optimal transport. To handle

densities with different total mass, we consider a dynamic model, which mixes the Lp

optimal transport with Lp distance. For p = 1, we derive the corresponding L1 generalized

unnormalized Kantorovich formula. We further show that the problem becomes a simple L1

minimization which is solved efficiently by a primal-dual algorithm. For p = 2, we derive the

L2 generalized unnormalized Kantorovich formula, a new unnormalized Monge problem and

the corresponding Monge-Ampère equation. Furthermore, we introduce a new unconstrained

optimization formulation of the problem. The associated gradient flow is essentially related

to an elliptic equation which can be solved efficiently. Here the proposed gradient descent

procedure together with the Nesterov acceleration involves the Hamilton-Jacobi equation

ariseing from the KKT conditions. Several numerical examples are presented to illustrate the

effectiveness of the proposed algorithms.

2.1 Introduction

Optimal transport describes transport plans and metrics between two densities with equal

total mass [Vil09]. It has wide applications in various fields such as physics [LL19, LYO18],

mean field games [CLO18], image processing [PC18], economics [BT09], inverse problem

[EY18, YES18], Kalman filter [GHL19] as well as machine learning [ACB17a, LLO18]. In
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practice, it is also natural to consider transport and metrics between two densities with

different total mass. For example, in image processing, it is very common that we need to

compare and process images with unequal total intensities [RLY17].

Recently, there has been increasing interests in studying the optimal transport between two

densities with different total mass. Based on the linear programming formulation, generalized

versions for unnormalized optimal transport have been considered in [PR16, TPK17b]. In

this paper, our discussion is based on the fluid-dynamic formulation following [BB00], which

has significantly fewer variables than the linear programming formulation. We consider

a source function to provide dynamical behaviors of a source term during transportation.

Adding a source term for handling densities with unequal total mass has been considered in

[CL18, CGT19, CPS15, CPS18, LMS18, MRS15, PR14]. These methods consider density-

dependent source terms and lead to a dynamical mixture of Wasserstein-2 distance and

Fisher-Rao distance. The corresponding minimization of the source term is weighted with the

density. More recently, a spatially independent source function was considered in [GLO19] to

transport densities with unequal mass. This model results in creating or removing masses

in the space uniformly during transportation when moving one density to another. Here,

we further extend the model [GLO19] using a spatially dependent source function. As a

result, the transportation map between two densities with different masses has the flexibility

to create or remove masses locally. In all our models, the source term does not depend

on the current density. This property keeps the Hamilton-Jacobi equation arising in the

original (normalized) optimal transport problem. We further explore the Kantorovich duality

and derive the corresponding unnormalized Monge problems and Monge-Ampère equations.

Besides these model derivations, the other main contribution of this paper is to propose fast

algorithms for all related dynamical optimal transport problems with source terms.

More specifically, the proposed model is a minimal flux problem mixing both Lp metric
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and Wasserstein-p metric, following Benamou-Brenier formula [BB00]:

inf
v,µ,f

∫ 1

0

∫
Ω

‖v(t, x)‖pµ(t, x) dx dt+
1

α

∫ 1

0

∫
Ω

|f(t, x)|p dx dt,

such that

∂tµ(t, x) +∇ · (µ(t, x)v(t, x)) = f(t, x), µ(0, x) = µ0(x), µ(1, x) = µ1(x).

The minimization problem solves for the optimal map between two nonnegative densities µ0

and µ1, given a source function f (see the details in definition 2.2.1 from section 2.2). The

optimal map shows how the masses are added or removed by the source function during the

transportation. In this paper, in particular, we focus on the cases p = 1 and p = 2, and

design corresponding fast algorithms. For the L1 case, we propose a primal-dual algorithm

[CP11a]. The method updates variables at each iteration with explicit formulas, which only

involve low computational cost shrink operators, such as those used in [LRO18]. For the

L2 case, we formulate the minimal flux problem into a novel unconstrained minimization

problem as follows

inf
µ

{∫ 1

0

∫
Ω

∂tµ(t, x)(−∇ · (µ(t, x)∇) + αId)−1∂tµ(t, x)dxdt :

µ(0, x) = µ0(x), µ(1, x) = µ1(x), x ∈ Ω

}
,

(2.1)

where α is a given positive scalar, Id is the identity operator, and the infimum is taken

among all density paths µ(t, x) with fixed terminal densities µ0, µ1. From the associated

Euler-Lagrange equation, we derive a Nesterov accelerated gradient descent method to solve

the unnormalized optimal transport problem. It turns out that our method only needs to

solve an elliptic equation involving the density at each iteration. Thus, fast solvers for elliptic

equations can be directly used. Interestingly, the Euler-Lagrange equation of this formulation

introduces the Hamilton-Jacobi equation, which characterizes the Lagrange multiplier (see

related studies in [Li18]). We, in fact, construct the gradient descent method in the density

path space to solve this equation:

∂τµ(τ, t, x) = ∂tΦ(τ, t, x) +
1

2
‖∇Φ(τ, t, x)‖2,
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with

Φ(τ, t, x) = (−∇ · (µ(τ, t, x)∇) + αId)−1∂tµ(τ, t, x).

Here τ is an artificial time variable in optimization. The minimizer path µ∗(t, x) is obtained

by solving µ∗(t, x) = limτ→∞ µ(τ, t, x) numerically.

The outline of this paper is as follows. In section 2.2, we propose a formulation for the

generalized unnormalized optimal transport. We then derive the Kantorovich duality for both

cases. We also formulate the generalized unnormalized Monge problem and the corresponding

Monge-Ampère equation. In section 2.3, we propose a fast algorithm for L1-generalized

unnormalized optimal transport using a primal-dual based method. We also propose a new

method for L2-generalized unnormalized optimal transport based on the Nesterov accelerated

gradient descent method. In addition, we discuss detailed numerical discretization of the

two problems. In section 2.4, we present several numerical experiments to demonstrate the

effectiveness of our algorithms. We conclude the paper in section 2.5.

2.2 Generalized unnormalized optimal transport

In this section, we study a formulation of generalized unnormalized optimal transport problem

as a natural extension of the exploration studied in [GLO19]. We specifically discuss the

L1 and L2 versions of the generalized unnormalized optimal transport and their associated

Kantorovich dualities. Furthermore, we derive a new generalized unnormalized Monge

problem and the corresponding Monge-Ampère equation.

Let Ω ⊂ Rd be a compact convex domain. Denote the space of unnormalized densities

M(Ω) by

M(Ω) := {µ ∈ L1(Ω) : µ(x) ≥ 0}.

Given two densities µ0, µ1 ∈ M(Ω), we define the generalized unnormalized optimal

transport as follows:
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Definition 2.2.1 (Generalized Unnormalized Optimal Transport). Define the Lp generalized

unnormalized Wasserstein distance UWp :M(Ω)×M(Ω)→ R by

UWp(µ0, µ1)p = inf
v,µ,f

∫ 1

0

∫
Ω

‖v(t, x)‖pµ(t, x) dx dt+
1

α

∫ 1

0

∫
Ω

|f(t, x)|p dx dt,

such that the dynamical constraint, i.e. the unnormalized continuity equation, holds

∂tµ(t, x) +∇ · (µ(t, x)v(t, x)) = f(t, x), µ(0, x) = µ0(x), µ(1, x) = µ1(x).

The infimum is taken over continuous unnormalized density functions µ : [0, 1] × Ω → R,

and Borel vector fields v : [0, 1]× Ω→ Rd with zero flux condition on [0, 1]× ∂Ω, and Borel

spatially dependent source functions f : [0, 1]× Ω→ R. A positive constant α ∈ (0,∞) is a

fixed parameter.

This is a generalized definition of unnormalized optimal transport from [GLO19]. Here,

we consider a spatially dependent source function f(t, x). In this paper, we will focus on the

cases with p = 1 and p = 2.

Remark 2.2.1. We note that [CGT19] has proposed the model for p = 2 without any discussion

about numerical methods. In this paper, we mainly study Kantorovich duality and design

fast algorithms.

Remark 2.2.2. In literature, [CPS15] studied the other dynamical formulations of unbalanced

optimal transport problems. In their approach, the optimal source term is expressed as a

product of a density function and a scalar field function. In our approach, the optimal source

term only depends on a scalar field function. This fact shows that our approach is different

from [CPS15] in variational problems and dual (Kantorovich) problems.
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2.2.1 L1 Generalized Unnormalized Wasserstein metric.

When p = 1, the problem (2.2.1) becomes

UW1(µ0, µ1) = inf
v,µ,f

{∫ 1

0

∫
Ω

‖v(t, x)‖µ(t, x) dx dt+
1

α

∫ 1

0

∫
Ω

|f(t, x)| dx dt :

∂tµ(t, x) +∇ · (µ(t, x)v(t, x)) = f(t, x)

µ(0, x) = µ0(x), µ(1, x) = µ1(x)

}
.

(2.2)

Here ‖ · ‖ can be any homogeneous of degree one norm, i.e. lq norm ‖u‖q = (
∑d

i=1 |ui|q)
1
q . In

particular, we consider q = 1, 2 with

‖u‖1 = |u1|+ · · ·+ |ud| for u ∈ Rd,

or

‖u‖2 =
√
|u1|2 + · · ·+ |ud|2 for u ∈ Rd.

Proposition 2.2.1. The L1 unnormalized Wasserstein metric is given by

UW1(µ0, µ1) = inf
m,c

{∫
Ω

‖m(x)‖dx+
1

α

∫
Ω

|c(x)|dx :

µ1(x)− µ0(x) +∇ ·m(x)− c(x) = 0

}
. (2.3)

There exists Φ(x), such that the minimizer (m, c) for the problem (2.3) satisfies

∇Φ(x) ∈ ∂‖m(x)‖ and αΦ(x) ∈ ∂|c(x)|

where ∂‖m(x)‖ and ∂|c(x)| denote their sub-differentials.

Proof. Denote

m(x) =

∫ 1

0

v(t, x)µ(t, x)dt,
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Using Jensen’s inequality and integration by parts, we can reformulate (2.2).∫ 1

0

∫
Ω

‖v(t, x)‖µ(t, x)dxdt+
1

α

∫ 1

0

∫
Ω

|f(t, x)|dxdt

≥
∫

Ω

‖m(x)‖dx+
1

α

∫
Ω

∣∣∣∣∫ 1

0

f(t, x)dt

∣∣∣∣ dx. (2.4)

Define c(x) =
∫ 1

0
f(t, x)dt. Integrating on the constraint of problem (2.2) with the zero flux

condition of v yields,∫
Ω

c(x)dx =

∫ 1

0

∫
Ω

f(t, x)dxdt =

∫
Ω

µ1(x)dx−
∫

Ω

µ0(x)dx.

Plug c(x) into the equation (2.4), we obtain a new formulation.

inf
m,c

{∫
Ω

‖m(x)‖dx+
1

α

∫
Ω

‖c(x)‖dx : µ1(x)− µ0(x) +∇ ·m(x)− c(x) = 0

}
.

Note that the minimization path can be attained in the inequality (2.4) by choos-

ing µ(t, x) = tµ0(x) + (1 − t)µ1(x), m(x) = µ(t, x)v(t, x) and f(t, x) = c(x). Then

{µ(t, x), v(t, x), f(t, x)} is a feasible solution to (2.2) and (2.3) , hence the two minimization

problems have the same optimal value.

Consider the Lagrangian of this minimization problem.

L(m, c,Φ) =

∫
Ω

‖m(x)‖dx+
1

α

∫
Ω

|c(x)|dx+

∫
Ω

Φ(x)

(
µ1(x)− µ0(x) +∇ ·m(x)− c(x)

)
,

(2.5)

where Φ(x) is a Lagrange multiplier. From the Karush–Kuhn–Tucker (KKT) conditions, we

derive the following properties of the minimizer

0 ∈ ∂mL ⇒ ∇Φ(x) ∈ ∂‖m(x)‖

0 ∈ ∂cL ⇒ αΦ(x) ∈ ∂|c(x)|

δΦL = 0⇒ µ1(x)− µ0(x) +∇ ·m(x)− c(x) = 0.
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Remark 2.2.3. In the case that L1 unnormalized Wasserstein metric with a spatially inde-

pendent function f(t), c is defined to be c =
∫ 1

0
f(t)dt, which is a constant. Integrating on a

spatial domain for continuity equation,

c =
1

|Ω|

(∫
Ω

µ0(x)dx−
∫

Ω

µ0(x)dx

)
.

As a result, the minimization problem becomes

UW1(µ0, µ1) = inf
m

{∫
Ω

‖m(x)‖dx+
1

α

∣∣∣∣∫
Ω

µ1(x)dx−
∫

Ω

µ0(x)dx

∣∣∣∣:
µ1(x)− µ0(x) +∇ ·m(x) =

1

|Ω|

(∫
Ω

µ1(x)dx−
∫

Ω

µ0(x)dx

)}
.

This is compatible with the result obtained in [GLO19]. In this case, we note that m(x) does

not depend on α.

Proposition 2.2.2 (L1 Generalized Unnormalized Kantorovich formulation). The Kan-

torovich formulation of L1 unnormalized Wasserstein metric is the following:

UW1(µ0, µ1) = sup
Φ

{∫
Ω

Φ(x)(µ1(x)− µ0(x))dx : ‖∇Φ‖ ≤ 1, |Φ| ≤ 1

α

}
(2.6)

Remark 2.2.4. The Kantorovich formulation of the generalized unnormalized Wasserstein-1

metric has also been stated in [CGN17] for the ‖ · ‖2 norm.

Proof. From the Lagrangian (2.5),

inf
m,c

sup
Φ
L(m, c,Φ)

≥ sup
Φ

inf
m,c
L(m, c,Φ)

= sup
Φ

inf
m,c

{∫
Ω

‖m(x)‖dx+
1

α

∫
Ω

|c(x)|dx+

∫
Ω

Φ(x)(µ1(x)− µ0(x) +∇ ·m(x)− c(x))dx

}
= sup

Φ
inf
m,c

{∫
Ω

‖m(x)‖dx+
1

α

∫
Ω

|c(x)|dx+

∫
Ω

Φ(x)(µ1(x)− µ0(x)− c(x))dx

−
∫

Ω

∇Φ(x) ·m(x)dx+

∫
∂Ω

Φ(x)m(x) · n(x)ds(x)

}
= sup

Φ

{∫
Ω

Φ(x)(µ1(x)− µ0(x)) + inf
m,c

∫
Ω

‖m(x)‖ − ∇Φ(x) ·m(x)dx+

∫
Ω

1

α
|c(x)| − Φ(x)c(x)dx

}
= sup

Φ

{∫
Ω

Φ(x)(µ1(x)− µ0(x))dx : ‖∇Φ‖ ≤ 1, |Φ| ≤ 1

α

}
.
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From the calculation, the optimizer Φ satisfies the following:

∇Φ ∈ ∂‖m(x)‖, αΦ ∈ ∂|c(x)|.

We show the duality gap is zero using the proposition 2.2.1.∫
Ω

‖m(x)‖dx+
1

α

∫
Ω

|c(x)|dx+

∫
Ω

Φ(x)(µ1(x)− µ0(x) +∇ ·m(x)− c(x))dx

=

∫
Ω

‖m(x)‖ − ∇Φ ·m(x)dx+

∫
Ω

1

α
|c(x)| − Φ(x)c(x)dx+

∫
Ω

Φ(x)(µ1(x)− µ0(x))dx

=

∫
Ω

Φ(x)(µ1(x)− µ0(x))dx

This concludes the proof.

2.2.2 L2 Generalized Unnormalized Wasserstein metric.

Let p = 2. From the definition (2.2.1), we now consider

UW2(µ0, µ1)2 = inf
v,µ,f

{∫ 1

0

∫
Ω

‖v(t, x)‖2µ(t, x) dx dt+
1

α

∫ 1

0

∫
Ω

‖f(t, x)‖2 dx dt :

∂tµ(t, x) +∇ · (µ(t, x)v(t, x)) = f(t, x), t ∈ [0, 1], x ∈ Ω,

µ(0, x) = µ0(x), µ(1, x) = µ1(x)

}
.

(2.7)

Proposition 2.2.3. The L2 generalized unnormalized Wasserstein metric is a well-defined

metric function in M(Ω). In addition, the minimizer (v(t, x), µ(t, x), f(t, x)) for (2.7) satisfies

v(t, x) = ∇Φ(t, x), f(t, x) = αΦ(t, x),

and

∂tµ(t, x) +∇ · (µ(t, x)∇Φ(t, x)) = αΦ(t, x)

∂tΦ(t, x) +
1

2
‖∇Φ(t, x)‖2 ≤ 0.

In particular, if µ(t, x) > 0, then

∂tΦ(t, x) +
1

2
‖∇Φ(t, x)‖2 = 0.
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Proof. Denote m(t, x) = µ(t, x)v(t, x). Then the problem becomes

1

2
UW2(µ0, µ1)2 = inf

m,µ,f

{∫ 1

0

∫
Ω

‖m(t, x)‖2

2µ(t, x)
dx dt+

1

2α

∫ 1

0

∫
Ω

|f(t, x)|2dxdt :

∂tµ(t, x) +∇ ·m(t, x) = f(t, x),

µ(0, x) = µ0(x), µ(1, x) = µ1(x), x ∈ Ω, 0 ≤ t ≤ 1

}
.

(2.8)

Denote Φ(t, x) as a Lagrange multiplier. Consider the Lagrangian

L(m, µ, f,Φ) =

∫ 1

0

∫
Ω

‖m(t, x)‖2

2µ(t, x)
dx dt+

1

2α

∫ 1

0

∫
Ω

|f(t, x)|2dxdt

+

∫ 1

0

∫
Ω

Φ(t, x)
(
∂tµ(t, x) +∇ ·m(t, x)− f(t, x)

)
dxdt.

From KKT condition δmL = 0, δµL ≥ 0, δfL = 0, δΦL = 0, the minimizer satisfies the

following properties:

m(t, x)

µ(t, x)
= ∇Φ(t, x) (2.9)

− ‖m(t, x)‖2

2µ(t, x)2
− ∂tΦ(t, x) ≥ 0 (2.10)

f(t, x) = αΦ(t, x)

∂tµ(t, x) +∇ ·m(t, x)− f(t, x) = 0.

Combining (2.9) and (2.10) yields: ∂tΦ(t, x) + 1
2
‖∇Φ(t, x)‖2 ≤ 0.

We next derive the corresponding Monge problem for unnormalized optimal transport

with a spatially dependent source function. We note that the following derivations are formal

in Eulerian coordinates of fluid dynamics. We are following the proof of Proposition 4 in

[GLO19].

Proposition 2.2.4 (Generalized Unnormalized Monge problem).

UW2(µ0, µ1)2 = inf
M,f(t,x)

∫
Ω

‖M(x)− x‖2µ0(x)dx+ α

∫ 1

0

∫
Ω

|f(t, x)|2dxdt

+

∫
Ω

∫ 1

0

∫ t

0

f

(
s, sM(x) + (1− s)x

)
‖M(x)− x‖2Det

(
s∇M(x) + (1− s)I

)
dsdtdx

(2.11)
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where M : Ω → Ω is an invertible mapping function and f : Ω × [0, 1] → R is a spatially

dependent source function. The unnormlized push forward relation holds

µ(1,M(x))Det(∇M(x))

= µ(0, x) +

∫ 1

0

f

(
t, tM(x) + (1− t)I

)
Det

(
t∇M(x) + (1− t)I

)
dt.

(2.12)

Proof. We derive the Lagrange formulation of the unnormalized optimal transport with p = 2.

Consider a mapping function Xt(x) with vector field v(t,Xt(x)) satisfying

d

dt
Xt(x) = v(t,Xt(x)), X0(x) = x. (2.13)

Then∫
Ω

∫ 1

0

‖v(t, x)‖2µ(t, x)dtdx =

∫
Ω

∫ 1

0

‖v(t,Xt(x))‖2µ(t,Xt(x))Det(∇Xt(x))dxdt

=

∫
Ω

∫ 1

0

‖ d

dt
Xt(x)‖2µ(t,Xt(x))Det(∇Xt(x))dxdt. (2.14)

Define J(t, x) := µ(t,Xt(x))Det
(
∇Xt(x)

)
. Differentiate J(t, x) with respect to t,

d

dt
J(t, x) =

d

dt

{
µ(t,Xt(x))Det(∇Xt(x))

}
= ∂tµ(t,Xt(x))Det(∇Xt(x)) +∇Xµ(t,Xt(x)) · d

dt
Xt(x)Det(∇Xt(x))

+ µ(t,Xt(x))∂tDet(∇Xt(x))

= ∂tµ(t,Xt(x))Det(∇Xt(x)) +∇Xµ(t,Xt(x)) · d

dt
Xt(x)Det(∇Xt(x))

+ µ(t,Xt(x))∇ · v(t,Xt(x))Det(∇Xt(x))

=

(
∂tµ+ v · ∇µ+ µ∇ · v

)
(t,Xt(x))Det(∇Xt(x))

=

(
∂tµ+∇ · (µv)

)
(t,Xt(x))Det(∇Xt(x))

= f
(
t,Xt(x)

)
Det(∇Xt(x)).
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Denote

J(t, x) = J(0, x) +

∫ t

0

d

ds
J(s, x)ds.

Since X0(x) = x and ∇X0(x) = I, then J(0, x) = µ(0, x). This yields

µ(t,Xt(x))Det(∇Xt(x)) = µ(0, x) +

∫ t

0

f
(
s,Xs(x)

)
Det(∇Xs(x))ds.

Since the minimizer in Eulerian coordinates satisfies the Hamilton-Jacobi equation:

∂tΦ(t, x) +
1

2
‖∇Φ(t, x)‖2 = 0,

and d
dt
Xt(x) = ∇Φ(t,Xt(x)), then we have d2

dt2
Xt(x) = 0. This implies

d

dt
Xt(x) = v(t,Xt(x)) = M(x)− x,

thus Xt(x) = (1− t)x+ tM(x) and Det(∇Xt(x)) = Det((1− t)I + t∇M(x)). Substitute all

the above into (2.14):

(2.14) =

∫ 1

0

∫
Ω

‖ d

dt
Xt(x)‖2J(t, x)dxdt

=

∫ 1

0

∫
Ω

‖M(x)− x‖2

(
J(0, x) +

∫ t

0

d

ds
J(s, x)ds

)
dxdt

=

∫ 1

0

∫
Ω

‖M(x)− x‖2µ(0, x)dxdt

+

∫ 1

0

∫
Ω

‖M(x)− x‖2

∫ t

0

f
(
s,Xs(x)

)
Det(∇Xs(x))dsdxdt

=

∫
Ω

‖M(x)− x‖2µ(0, x)dx

+

∫ 1

0

∫ t

0

∫
Ω

‖M(x)− x‖2f

(
s, sM(x) + (1− s)x

)
Det

(
(1− s)I + s∇M(x)

)
dxdsdt.

This concludes the derivation.

We next find the relation between the spatially dependent source function f(t, x) and

the mapping function M(x). For the simplicity of presentation, here we assume the periodic

boundary conditions on Ω. We are following the proof of Proposition 5 in [GLO19].
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Proposition 2.2.5 (Generalized Unnormalized Monge-Ampère equation). The optimal

mapping function M(x) = ∇Ψ(x) satisfies the following unnormalized Monge-Ampère equation

µ(1,∇Ψ(x))Det(∇2Ψ(x))− µ(0, x)

= α

∫ 1

0

(
Ψ(x)− ‖x‖

2

2
+
t‖∇Ψ(x)− x‖2

2

)
Det

(
t∇2Ψ(x) + (1− t)I

)
dt.

(2.15)

Proof. From the Hopf-Lax formula for the Hamilton-Jacobi equation,

Φ(1, y) = sup
x

Φ(0, x) +
‖y − x‖2

2
.

Since M is the optimal mapping function, x = M−1(y) is a maximizer of the supremum for

each y. Thus, the maximizer satisfies

∇Φ(0, x) + x−M(x) = 0,

and we can rewrite the formula as

Φ(1,M(x)) = Φ(0, x) +
‖M(x)− x‖2

2
.

We further denote Ψ(x) = Φ(0, x)+ ‖x‖
2

2
, then M(x) = ∇Ψ(x). From Xt(x) = (1−t)x+tM(x),

Φ(t,Xt(x)) = Φ(0, x) +
‖Xt(x)− x‖2

2t

= Φ(0, x) +
t‖M(x)− x‖2

2

= Ψ(x)− ‖x‖
2

2
+
t‖∇Ψ(x)− x‖2

2

and

∇Xt(x) = (1− t)I + t∇2Ψ(x).

Substituting f(t, x) = αΦ(t, x) and M(x) = ∇Ψ(x) into (2.12), we get

µ(1,∇Ψ(x))Det(∇2Ψ(x))− µ(0, x)

=

∫ 1

0

α

(
Ψ(x)− ‖x‖

2

2
+
t‖∇Ψ(x)− x‖2

2

)
Det

(
t∇2Ψ(x) + (1− t)I

)
dt.
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Now, we show the Kantorovich formulation of the problem (2.7).

Proposition 2.2.6 (L2 Generalized Unnormalized Kantorovich formulation). The unnor-

malized Kantorovich formulation with f(t, x) satisfies

1

2
UW2(µ0, µ1)2 = sup

Φ

{∫
Ω

(
Φ(1, x)µ1(x)− Φ(0, x)µ0(x)

)
dx− α

2

∫ 1

0

∫
Ω

Φ(t, x)2 dx dt

}
,

where the supremum is taken among all Φ : [0, 1]× Ω→ R satisfying

∂tΦ(t, x) +
1

2
‖∇Φ(t, x)‖2 ≤ 0.

Proof. We introduce a Lagrange multiplier Φ(t, x) to reformulate the equation (2.8).

1

2
UW2(µ0, µ1)2

= inf
m,µ,f

sup
Φ

{∫ 1

0

∫
Ω

‖m(t, x)‖2

2µ(t, x)
+

1

2α
f(x, t)2 + Φ(t, x)

(
∂tµ(t, x) +∇ ·m(t, x)− f(t, x)

)
dxdt

}
≥ sup

Φ
inf

m,µ,f

{∫ 1

0

∫
Ω

‖m(t, x)‖2

2µ(t, x)
+

1

2α
f(x, t)2 + Φ(t, x)

(
∂tµ(t, x) +∇ ·m(t, x)− f(t, x)

)
dxdt

}
= sup

Φ
inf

m,µ,f

{∫ 1

0

∫
Ω

‖m(t, x)‖2

2µ(t, x)
−∇Φ(t, x) ·m(t, x) +

1

2α
f(x, t)2 + Φ(t, x) ·

(
∂tµ(t, x)− f(t, x)

)
dxdt

}
= sup

Φ
inf

m,µ,f

{∫ 1

0

∫
Ω

1

2

∥∥∥∥m(t, x)

µ(t, x)
−∇Φ(t, x)

∥∥∥∥2

µ(t, x)− 1

2
‖∇Φ(t, x)‖2µ(t, x) dx dt

+

∫
Ω

Φ(1, x)µ1(x)− Φ(0, x)µ0(x)dx

+

∫ 1

0

∫
Ω

−µ(t, x)∂tΦ(t, x) +
1

2α
f(t, x)2 − Φ(t, x)f(t, x)) dx dt

}
.
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By the Proposition 2.2.3, the minimizer m satisfies
m(t, x)

µ(t, x)
= ∇Φ(t, x). Thus,

= sup
Φ

{∫
Ω

(
Φ(1, x)µ1(x)− Φ(0, x)µ0(x)

)
dx

+ inf
µ

∫ 1

0

∫
Ω

−µ(t, x)

(
∂tΦ(t, x) +

1

2
‖∇Φ(t, x)‖2

)
dx dt

+ inf
f

∫ 1

0

∫
Ω

1

2α
f(t, x)2 − Φ(t, x)f(t, x) dx dt

}
= sup

Φ

{∫
Ω

(
Φ(1, x)µ1(x)− Φ(0, x)µ0(x)

)
dx

+ inf
µ

∫ 1

0

∫
Ω

−µ(t, x)

(
∂tΦ(t, x) +

1

2
‖∇Φ(t, x)‖2

)
dx dt

+ inf
f

∫ 1

0

∫
Ω

1

2α

(
f(t, x)− αΦ(t, x)

)2

dx dt− α

2

∫ 1

0

∫
Ω

Φ(t, x)2 dx dt

}
.

Again from Proposition 2.2.3, the minimizer satisfies f(t, x) = αΦ(t, x). With the assumption

µ(t, x) ≥ 0 for all t ∈ [0, 1] and x ∈ Ω, the problem can be written with a constraint.

1

2
UW2(µ0, µ1)2 = sup

Φ

{∫
Ω

(
Φ(1, x)µ1(x)− Φ(0, x)µ0(x)

)
dx− α

2

∫ 1

0

∫
Ω

Φ(t, x)2 dx dt :

∂tΦ(t, x) +
1

2
‖∇Φ(t, x)‖2 ≤ 0

}
.
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We next show that the primal-dual gap is zero.∫ 1

0

∫
Ω

m(t, x)2

2µ(t, x)
+

1

2α
f(t, x)2 dx dt

=

∫ 1

0

∫
Ω

1

2
‖∇Φ‖2µ(t, x) dx dt+

α

2

∫ 1

0

∫
Ω

Φ(t, x)2 dx dt

=

∫ 1

0

∫
Ω

(
−1

2
‖∇Φ(t, x)‖2µ(t, x) + ‖∇Φ(t, x)‖2µ(t, x) +

α

2
Φ(t, x)2

)
dx dt

=

∫ 1

0

∫
Ω

∂tΦ(t, x)µ(t, x) + Φ(t, x)

(
−∇ ·

(
µ(t, x)∇Φ(t, x)

))
+
α

2
Φ(t, x)2 dx dt

=

∫
Ω

Φ(1, x)µ1(x)− Φ(0, x)µ0(x)dx

−
∫ 1

0

∫
Ω

Φ(t, x)

(
∂tµ(t, x) +∇ ·

(
µ(t, x)∇Φ(t, x)

))
dx dt+

α

2

∫ 1

0

∫
Ω

Φ(t, x)2dxdt

=

∫
Ω

Φ(1, x)µ1(x)− Φ(0, x)µ0(x)dx

−
∫ 1

0

∫
Ω

Φ(t, x)f(t, x) dx dt+
α

2

∫ 1

0

∫
Ω

Φ(t, x)2dxdt.

Using f(t, x) = αΦ(t, x), we get

1

2
UW2(µ0, µ1)2 =

∫
Ω

Φ(1, x)µ(1, x)− Φ(0, x)µ(0, x)dx− α

2

∫ 1

0

∫
Ω

Φ(t, x)2dxdt.

This concludes the proof.

Remark 2.2.5. We note that our results and proofs follow directly from the those used

in [GLO19]. The major difference between [GLO19] and our paper is that in the case of

spatial independent source function, f(t) = α
|Ω|

∫
Ω

Φ(t, x)dx, while in the case of spatial

dependent source function, f(t, x) = αΦ(t, x). This difference remains in the corresponding

Monge problem and Kantorvich problem. In particular, we obtain a new spatial dependent

unnormalized Monge-Ampère equation (2.15).

2.3 Numerical methods

In this section, we propose a Nesterov accelerated gradient descent method to solve L2

unnormalized OT. In addition, we design a primal-dual hybrid gradient method to solve L1
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unnormalized OT.

2.3.1 L2 Generalized Unnormalized Wasserstein metric

In this section, we present a new numerical implementation for L2 unnormalized Wasserstein

metric. We obtain a unconstrained version of the problem by plugging the PDE constraint

into the objective function. Then the accelerated Nesterov gradient descent method is applied

to solve the problem. We show that each iteration involves a simple elliptic equation where

fast solvers can be applied. This novel numerical method can also be used in normalized

optimal transport and unnormalized optimal transport with a spatially independent source

function f(t).

Using Proposition 2.2.3, we can rewrite the equation (2.8) as follows:

UW2(µ0, µ1)2 = inf
Φ,µ

{∫ 1

0

∫
Ω

‖∇Φ(t, x)‖2
2µ(t, x)dxdt+ α

∫ 1

0

∫
Ω

|Φ(t, x)|2 dx dt :

∂tµ(t, x) +∇ · (µ(t, x)∇Φ(t, x)) = αΦ(t, x),

µ(0, x) = µ0(x), µ(1, x) = µ1(x)

}
.

Define an operator Lµ = −∇ · (µ∇). The constraint ∂tµ− LµΦ = αΦ leads to

Φ = (Lµ + αId)−1∂tµ. (2.16)

With (2.16), the minimization problem can be reformulated as

UW2(µ0, µ1)2 = inf
µ

{∫ 1

0

∫
Ω

µ‖∇(Lµ + αId)−1∂tµ‖2
2 dx dt+ α

∫ 1

0

∫
Ω

|(Lµ + αId)−1∂tµ|2 dx dt :

µ(0, x) = µ0(x), µ(1, x) = µ1(x)

}
.

(2.17)
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Using integration by parts,∫ 1

0

∫
Ω

µ‖∇(Lµ + αId)−1∂tµ‖2 dx dt+ α

∫ 1

0

∫
Ω

|(Lµ + αId)−1∂tµ|2 dx dt

=

∫ 1

0

∫
Ω

−
(
∇µ∇(Lµ + αId)−1∂tµ

)(
(Lµ + αId)−1∂tµ

)
dx dt

+ α

∫ 1

0

∫
Ω

|(Lµ + αId)−1∂tµ|2 dx dt

=

∫ 1

0

∫
Ω

(
Lµ(Lµ + αId)−1∂tµ

)(
(Lµ + αId)−1∂tµ

)
dx dt

+ α

∫ 1

0

∫
Ω

|(Lµ + αId)−1∂tµ|2 dx dt

=

∫ 1

0

∫
Ω

(
(Lµ + αId)(Lµ + αId)−1∂tµ

)(
(Lµ + αId)−1∂tµ

)
dx dt

=

∫ 1

0

∫
Ω

∂tµ(t, x)(Lµ + αId)−1∂tµ(t, x) dx dt.

Thus, the unnormalized Wasserstein-2 distance forms

UW2(µ0, µ1)2 = inf
µ

{∫ 1

0

∫
Ω

∂tµ(t, x)(Lµ + αId)−1∂tµ(t, x) dx dt :

µ(0, x) = µ0(x), µ(1, x) = µ1(x)

}
.

(2.18)

Proposition 2.3.1. If µ(t, x) > 0, then the Euler-Lagrange equation of problem (2.18)

satisfies the Hamilton-Jacobi equation, i.e.

∂tΦ(t, x) +
1

2
‖∇Φ(t, x)‖2 = 0, x ∈ Ω, t ∈ [0, 1]

where Φ(t, x) = (Lµ + αId)−1∂tµ(t, x).

Remark 2.3.1. For unnormalized optimal transport with a spatially independent source

function f(t), the formula uses (Lµ + α
|Ω|

∫
Ω

)−1 instead of (Lµ + αId)−1, i.e.

UW2(µ0, µ1)2 = inf
µ

{∫ 1

0

∫
Ω

∂tµ(t, x)

(
Lµ +

α

|Ω|

∫
Ω

)−1

∂tµ(t, x) dx dt :

µ(0, x) = µ0(x), µ(1, x) = µ1(x)

}
.
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The Euler-Lagrange equation satisfies the following:

∂tΦ(t, x) +
1

2
‖∇Φ(t, x)‖2 = 0, x ∈ Ω, t ∈ [0, 1]

where Φ(t, x) =
(
Lµ + α

|Ω|

∫
Ω

)−1
∂tµ(t, x).

Remark 2.3.2. If µ(t, x) = 0, one can show that the Euler-Lagrange equation of problem

(2.18) satisfies

∂tΦ(t, x) +
1

2
‖∇Φ(t, x)‖2 ≤ 0.

Proof. Define

I(µ) =

∫ 1

0

∫
Ω

∂tµ(t, x)(Lµ + αId)−1∂tµ(t, x)dxdt.

We now calculate the first variation of I(µ) with a perturbation η(t, x) ∈ C∞(Ω× [0, 1]).

0 = lim
h→0

I(µ+ hη)− I(µ)

h

= lim
h→0

1

h

∫ 1

0

∫
Ω

(
(∂tµ+ h∂tη)(Lµ+hη + αId)−1(∂tµ+ h∂tη)− ∂tµ(t, x)(Lµ + αId)−1∂tµ(t, x)

)
dxdt

= lim
h→0

[∫ 1

0

∫
Ω

∂tµ

(
(Lµ+hη + αId)−1 − (Lµ + αId)−1

h

)
∂tµ

+ 2∂tη(Lµ+hη + αId)−1∂tµdxdt+O(h)

]

=

∫ 1

0

∫
Ω

−∂tµ(Lµ + αId)−1Lη(Lµ + αId)−1∂tµ+ 2∂tη(Lµ + αId)−1∂tµdxdt

=

∫ 1

0

∫
Ω

−ΦLηΦ + 2Φ∂tηdxdt

=

∫ 1

0

∫
Ω

−η
(
‖∇Φ‖2 + 2∂tΦ

)
dxdt.

This has to be true for all η ∈ C∞(Ω× [0, 1]). Thus, we get

∂tΦ +
1

2
‖∇Φ‖2 = 0, x ∈ Ω, t ∈ [0, 1].

This concludes the proof.
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Using Proposition 2.3.1, we can formulate a Nesterov accelerated gradient descent

method [Nes83] to solve the minimization problem (2.18).

Algorithm 1 Nesterov Gradient descent method for UW2 with f(t, x)

While not converged

µk+ 1
2 = µk − τ∇I(µk) = µk +

τ

2

(
∂tΦ

k +
1

2
‖∇Φk‖2

)
where Φk = (Lµk + αId)−1∂tµ

k

µk+ 1
2 (t, x) = max{µk+ 1

2 (t, x), 0} for all (t, x) ∈ [0, 1]× Ω

µk+1 = (1− γk)µk+ 1
2 + γkµk

Here, τ and γk are step sizes of the algorithm.

γk =
1− λk

λk+1
, λ0 = 0, λk =

1 +
√

1 + 4(λk−1)2

2
.

Remark 2.3.3. The Nesterov accelerated gradient descent method can be used for a spatially

independent source function f(t). We simply replace the operator Lµ + αId with Lµ + α
∫

Ω

from Algorithm 1.

Remark 2.3.4. Here we apply an iterative method, such as conjugate gradient, to solve

(Lµk + αId)−1∂tµ
k.

Remark 2.3.5. We remark that variational problem (2.18) is convex w.r.t. µ(t, x). This fact

holds following the second variational formula derived in Lemma 2 of [Li18]. In other words,

our gradient descent algorithm is applied to a convex optimization problem (2.18). For the

completeness of this paper, we present the formal derivation here. Denote

J(µ) =
1

2

∫ 1

0

∫
Ω

∂tµ(t, x)(Lµ + αId)−1∂tµ(t, x) dx dt.

Consider a test function h ∈ C∞([0, 1]× Ω), such that h(0, x) = h(1, x) = 0. Given ε ∈ R1,

we claim
d2

dε2
J(µ+ εh)|ε=0 ≥ 0.
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If the above statement is true, we know that the variational problem (2.18) is convex w.r.t

µ(t, x). In fact, by routine computations, we observe that

d2

dε2
J(µ+ εh)|ε=0

=

∫
Ω

(
[∂th− L(h)(Lµ + αId)−1∂tµ], (Lµ + αId)−1[∂th− L(h)(Lµ + αId)−1∂tµ]

)
dx dt,

which finishes the proof.

We next present the discretization of density path in both time and spatial domains,

where the spatial domain is given by 1D or 2D. Here we formulate the operator Lµ and

derive its inverse into matrix forms; see similar approaches in [Li18].

2.3.1.1 1D Discretization

Consider the following one dimensional discretization:

µ = (µ0, · · · ,µNt) ∈ R(Nt+1)×Nx

µn = (µn0 , · · · , µnNx−1) ∈ RNx (n = 0, · · · , Nt)

µni ∈ R (i = 0, · · · , Nx − 1, n = 0, · · · , Nt)

µ0
i = µ0(i∆x), µNti = µ1(i∆x), (i = 0, · · · , Nx − 1)

∆x =
|Ω|

Nx − 1
∆t =

1

Nt

.

Using the finite volume method, the weighted Laplacian operator L̃µn,α := Lµn + αId can be

represented as the following matrix:

L̃µn,α =



µn0 +µn1
2∆x2 −µn0 +µn1

2∆x2 0 · · · 0

−µn0 +µn1
2∆x2

µn0 +µn1
2∆x2 +

µn1 +µn2
2∆x2 −µn1 +µn2

2∆x2 · · · 0

0 −µn1 +µn2
2∆x2

µn1 +µn2
2∆x2 +

µn2 +µn3
2∆x2 · · · 0

vdots
. . . . . . . . . vdots

0 · · · · · · · · · −µnNx−2+µnNx−1

2∆x2


+ αId
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Further using the forward Euler method in time, formula (2.18) can be discretized as∫ 1

0

∫
Ω

∂tµ(t, x)(Lµ + αId)−1∂tµ(t, x)dxdt

≈ ∆t∆x
Nt−1∑
n=0

〈
µn+1 − µn

∆t
, (Lµn + αId)−1µ

n+1 − µn

∆t

〉
L2

=
∆x

∆t

Nt−1∑
n=0

〈
µn+1 − µn, (Lµn + αId)−1(µn+1 − µn)

〉
L2

with µ0 and µNt are given. 〈·, ·〉L2 is L2 norm in RNx such that

〈a, b〉L2 =
Nx−1∑
i=0

aibi for a, b ∈ RNx .

We are now ready to present the derivative of E(µ), and formulate the discrete Hamilton-

Jacobi equation as in Algorithm 1.

Proposition 2.3.2. Denote L̃µn,α := Lµn + αId. Let

E(µ) :=
∆x

∆t

Nt−1∑
n=0

〈
µn+1 − µn, L̃−1

µn,α(µn+1 − µn)
〉
L2
.

Suppose x ∈ Ω. The derivative of E(µ) with respect to µn (n = 1, · · · , Nt − 1) is

δE(µ)

δµn
=

∆x

∆t

(
−2L̃µn,α(µn+1 − µn) + 2L̃µn−1,α(µn − µn−1)

−
(〈

L̃−1
µn,α(µn+1 − µn), LeiL̃

−1
µn,α(µn+1 − µn)

〉
L2

)Nx−1

i=0

)

where ei ∈ RNx is an index vector defined as

ei =


1 ith index

0 else.
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Proof. Differentiating E(µ) with respect to µn for n = 1, · · · , Nt − 1, we get

δE(µ)

δµn
=

δ

δµn

(
∆t∆x

Nt−1∑
m=0

(µm+1 − µm)L̃−1
µn,α(µm+1 − µm)

)

= ∆t∆x

(
−2L̃−1

µn,α(µn+1 − µn) + 2L̃−1
µn−1,α(µn − µn−1)

+ (µn+1 − µn)
∂L̃−1

µn,α

∂µn
(µn+1 − µn)

)
,

and

(µn+1 − µn)
δL̃−1

µn,α

δµnn
(µn+1 − µn) = −

〈
µn+1 − µn, L̃−1

µn,αLeiL̃
−1
µn,α(µn+1 − µn)

〉
L2

= −
〈
L̃−1
µn,α(µn+1 − µn), LeiL̃

−1
µn,α(µn+1 − µn)

〉
L2
.

This concludes the proof.

Consider u = (u0, · · · , uNx−1)
T ∈ RNx , then 〈u, Leiu〉L2

forms the R.H.S. of the discrete

Hamilton-Jacobi equation as follows

〈u, Leiu〉L2 =


1
2

(ui+1−ui
∆x

)2
+ 1

2

(ui−ui−1

∆x

)2
, i = 1, · · · , Nx − 2

1
2

(ui+1−ui
∆x

)2
, i = 0

1
2

(ui−ui−1

∆x

)2
, i = Nx − 1.

2.3.1.2 2D Discretization

Now, consider the two dimensional discretization. Assume Ω = [0, 1]× [0, 1] and t ∈ [0, 1].

µ = (µ0, · · · ,µNt) ∈ R(Nt+1)×Nx×Ny

µn = (µnij)
Nx−1
i=0

Ny−1
j=0 ∈ RNx×Ny (n = 0, · · · , Nt)

µnij ∈ R (i = 0, · · · , Nx − 1, j = 0, · · · , Ny − 1, n = 0, · · · , Nt)

µ0
ij = µ0(i∆x, j∆y), µNtij = µ1(i∆x, j∆y), (i = 0, · · · , Nx − 1, j = 0, · · · , Ny − 1)

∆x =
1

Nx − 1
, ∆y =

1

Ny − 1
, ∆t =

1

Nt

.
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Similar to 1D case, using the finite volume method, formula (2.18) can be discretized as∫ 1

0

∫ 1

0

∫ 1

0

∂tµ(t, x, y)(Lµ + αId)−1∂tµ(t, x, y)dx dy dt

≈ ∆x∆y

∆t

Nt−1∑
n=0

〈
µn+1 − µn, (Lµn + αId)−1(µn+1 − µn)

〉
L2

with µ0 and µNt are given and 〈·, ·〉L2 is defined as

〈a, b〉L2 =
Nx−1∑
i=0

Ny−1∑
j=0

aijbij for a, b ∈ RNx×Ny .

The major difference between 1D discretization and 2D discretization arises from the weighted

Laplacian operator L̃µn,α. Consider w = (wi,j)
Nx−1
i=0

Ny−1
j=0 ∈ RNx×Ny . For i = 0, · · · , Nx − 1

and j = 0, · · · , Ny − 1, the operator can be described as follows:

(L̃µn,αw)ij

=− 1

∆x2

(
µni+1,j + µni,j

2
wi+1,j − 2

(
µni+1,j + µni,j

2
+
µni,j + µni−1,j

2

)
wi,j +

µni,j + µni−1,j

2
wi−1,j

)

− 1

∆y2

(
µni,j+1 + µni,j

2
wi,j+1 − 2

(
µni,j+1 + µni,j

2
+
µni,j + µni,j−1

2

)
wi,j +

µni,j + µni,j−1

2
wi,j−1

)
+ αwi,j.

Here, we assume the Neumann boundary on the spatial domain Ω. Thus,

w−1,j = w0,j, wNx,j = wNx−1,j, j = 0, · · · , Ny − 1

wi,−1 = wi,0, wi,Ny = wi,Ny−1, i = 0, · · · , Nx − 1

µn−1,j = µn0,j, µnNx,j = µnNx−1,j, j = 0, · · · , Ny − 1

µni,−1 = µni,0, µni,Ny = µni,Ny−1, i = 0, · · · , Nx − 1.

Proposition 2.3.3. Denote L̃µn,α := Lµn + αId. Let

E(µ) :=
∆x∆y

∆t

Nt−1∑
n=0

〈
µn+1 − µn, L̃−1

µn,α(µn+1 − µn)
〉
L2
.
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Suppose x ∈ Ω = [0, 1]× [0, 1]. The derivative of E(µ) with respect to µn (n = 1, · · · , Nt− 1)

is

δE(µ)

δµn
=

∆x∆y

∆t

(
−2L̃µn,α(µn+1 − µn) + 2L̃µn−1,α(µn − µn−1)

−
(〈

L̃−1
µn,α(µn+1 − µn), Leij L̃

−1
µn,α(µn+1 − µn)

〉
L2

)Nx−1,Ny−1

i=0,j=0

)
.

where eij is an index vector such that ek,l = 1 if k = i and l = j and 0 otherwise.

Proof. The proof follows exactly the one in proposition 2.3.2.

Consider a vector u = (uij)
Nx−1
i=0

Ny−1
j=0 ∈ RNx×Ny that satisfies the Neumann boundary condition.

Similar to 1D case,
〈
u, Lei,ju

〉
L2 can be computed easily based on the operator and it forms the

R.H.S. of the discrete Hamilton-Jacobi equation. For i = 0, · · · , Nx−1 and j = 0, · · · , Ny−1,

〈
u, Lei,ju

〉
L2 =

1

2

(
ui+1,j − ui,j

∆x

)2

+
1

2

(
ui,j − ui−1,j

∆x

)2

+
1

2

(
ui,j+1 − ui,j

∆y

)2

+
1

2

(
ui,j − ui,j−1

∆y

)2

.

2.3.2 L1 Generalized Unnormalized Wasserstein metric

Our discussion here mainly focuses on ‖u‖1 =
∑

i |ui|. The algorithm can be simply extended

to ‖u‖2 =
√∑

i u
2
i using the corresponding shrinkage operator. With the Lagrangian (2.5),

we consider a saddle point problem.

inf
m,c

sup
Φ
L(m, c,Φ).
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We can use PDHG [CP11a] to solve the saddle point problem by minimizing L(m, c,Φ) over

m and c and maximizing over Φ.

mk+1 = argmin
m

(
‖m‖1 +

ε

2
‖m‖2

2 +
〈
Φk,∇ ·m

〉
L2 +

1

2λ
‖m−mk‖2

2

)
(2.19)

ck+1 = argmin
c

(
1

α
‖c‖1 +

ε

2
‖c‖2

2 −
〈
Φk, c

〉
L2 +

1

2λ
‖c− ck‖2

2

)
(2.20)

Φk+1 = argmax
Φ

(〈
Φ,∇ · (2mk+1 −mk)− (2ck+1 − ck) + µ1 − µ0

〉
L2 −

1

2τ
‖Φ− Φk‖2

2

)
(2.21)

where λ and τ are step sizes of the algorithm. Note that we add a small ‖ · ‖2
2 perturbation

in (2.19) and (2.20) to strictly convexify the problem. This adjustment can overcome the

possible non-uniqueness of the optimal transport problem. This trick is also related to so

called the elastic net regularization [PB14], whose proximal operator is essentially the same

as the proximal operator of L1 norm shrink operator.

Algorithm 2 PDHG for UW1 with f(t, x)

mk+1 = 1/(1 + ελ)shrink

(
mk + λ∇Φk, λ

)
ck+1 = 1/(1 + ελ)shrink

(
ck + λΦk,

λ

α

)
Φk+1 = Φk + τ

(
∇ · (2mk+1 −mk)− (2ck+1 − ck) + µ1 − µ0

)

where the shrink operator is defined as following:

(shrink(u, t))i =


(1− t/|ui|)ui, for ‖ui‖1 ≥ t;

0, for ‖ui‖1 < t.

i = 1, · · · , d.

Remark 2.3.6. This algorithm can also be extended to ‖ · ‖2 by simply replacing the above
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shrink operator as

shrink(u, t) =


(1− t/‖u‖2)u, for ‖u‖2 ≥ t;

0, for ‖u‖2 < t.

2.3.2.1 Discretization

Consider the following two dimensional discretization on a domain Ω = [0, 1]× [0, 1] based on

the finite volume method.

∆x =
1

Nx

,∆y =
1

Ny

µ0
ij = µ0(i∆x, j∆y), µ1

ij = µ1(i∆x, j∆y)

V = {(i, j) : i = 0, · · · , Nx, j = 0, · · · , Ny}

Ex = {(i± 1

2
, j) : i = 1, · · · , Nx − 1, j = 0, · · · , Ny)}

Ey = {(i, j ± 1

2
) : i = 0, · · · , Nx, j = 1, · · · , Ny − 1)}

Φ = (Φij)ij∈V ∈ R(Nx+1)×(Ny+1), c = (cij)ij∈V ∈ R(Nx+1)×(Ny+1)

mx = (mxe)e∈Ex ∈ RNx×(Ny+1), my = (mye)e∈Ey ∈ R(Nx+1)×Ny

mxi+ 1
2
,j ≈

∫ (i+1)∆x

i∆x

∫ (j+1/2)∆y

(j−1/2)∆y

mx(x, y)dydx

myi,j+ 1
2
≈
∫ (i+1/2)∆x

(i−1/2)∆x

∫ (j+1)∆y

j∆y

my(x, y)dydx.

Here m satisfies the zero flux condition. Thus, mx and my satisfy the following boundary

conditions on m:

mx− 1
2
,j = mxNx+ 1

2
,j = 0, j = 0, · · · , Ny

myi,− 1
2

= myi,Ny+ 1
2

= 0, i = 0, · · · , Nx.
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The discretization of Algorithm 2 can be written as the following:

mx
k+ 1

2

i+ 1
2
,j

=
1

1 + ελ

(
mxk

i+ 1
2
,j

+
λ

∆x
(Φi+1,j − Φi,j)

)
my

k+ 1
2

i,j+ 1
2

=
1

1 + ελ

(
myk

i,j+ 1
2

+
λ

∆y
(Φi,j+1 − Φi,j)

)
c
k+ 1

2
ij =

1

1 + ελ
shrink

(
ck + λΦk

ij,
λ

α

)
mxk+1 =2mxk+ 1

2 −mxk

myk+1 =2myk+ 1
2 −myk

ck+1 =2ck+ 1
2 − ck

Φk+1
ij =Φk

ij + τ

(
1

∆x
(mxk+1

i+ 1
2
,j
−mxk+1

i− 1
2
,j

) +
1

∆y
(myk+1

i,j+ 1
2

−myk+1
i,j− 1

2

)− ck+1
ij + µ1

ij − µ0
ij

)
.

2.4 Numerical experiments

In this section, we show the numerical results with various examples for L1 and L2 unnormal-

ized optimal transport with the spatially dependent source function. The computations were

conducted on 2019 MacBook Pro with 2.6 GHz 6-Core and 16GB RAM.

2.4.1 Nesterov Accelerated Gradient Descent for UW2

We present four numerical experiments with different µ0 and µ1 using Algorithm 1.

2.4.1.1 Experiment 1

Consider a one dimensional problem on Ω = [0, 1] with µ0 and µ1 in M(Ω) as

µ0 = N(x;
1

5
, 0.0001)

µ1 = N(x;
4

5
, 0.0001) · 1.4

Here we choose N(x, µ, σ2) = C exp
(
− (x−µ)2

2σ2

)
with an appropriate choice of C satisfying∫

Ω
N(x;µ, σ2)dx = 1. Note that

∫
Ω
µ0dx = 1 and

∫
Ω
µ1dx = 1.4. We use the Algorithm 1 to
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compute the minimizer µ(t, x) of UW2(µ0, µ1). The parameters chosen for the experiment are

Nx = 40, Nt = 30, τ = 0.1,maximum iterations = 200, 000.

Figure 2.1: Experiment 1. L2 Unnormalized optimal transportation with a spatially dependent

source function f(t, x). The figures show the transportation of the densities from t = 0 (top

left) to t = 1 (bottom right). Blue line shows α = 0.1, orange line shows α = 10, and green

line shows α = 100.

Figure 2.1 shows the L2 unnormalized optimal transport with a spatially dependent source

function f(t, x) with different α values. The parameter α determines the ratio between

transportation and linear interpolation for µ0 and µ1. If α is small, the geodesic of generalized

unnormalized optimal transport is similar to the normalized (classical) optimal transport

geodesics. As the parameter α increases, the generalized unnormalized optimal transport

geodesic behaves closer to the Euclidean geodesics.
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Figure 2.2: Experiment 1. L2 Unnormalized optimal transportation with a spatially indepen-

dent source function f(t). The figures show the transportation of the densities from t = 0

(top left) to t = 1 (bottom right). Blue lines show α = 1, orange lines show α = 100, and

green lines show α = 1000.

Figure 2.2 shows the transportation with a spatially independent source function f(t).

It is clear to see that the masses are created or removed locally for the transportation with

f(t, x), while they are created or removed globally for the transportation with f(t).

For each 1-dimensional numerical experiment, the computation took about 5 seconds for

200, 000 iterations.
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(a) |Ω| vs. UW 2
2 with f(t, x) (b) |Ω| vs. UW 2

2 with f(t)

Figure 2.3: Experiment 2. The size of the domain |Ω| vs. L2 unnormalized Wasserstein

metrics for f(t, x) and f(t). x-axis represents |Ω| and y-axis represents UW2(µ0, µ1)2. Both

f(t, x) and f(t) use α = 100.

2.4.1.2 Experiment 2

In this experiment, we can see how the size of the domain affects the unnormalized Wasserstein

distances for both a spatially dependent source function f(t, x) and a spatially independent

source function f(t). Consider a one dimensional problem between two densities with different

total masses. Figure 2.3 shows plots for the size of the domain |Ω| vs. the unnormalized

Wasserstein distance UW2. As expected, for the spatially independent source function, the

distance increases as |Ω| increases since the source function affects the transportation globally.

Thus, more masses are created or removed as |Ω| increases. However, the unnormalized

Wasserstein distance with the spatially dependent source function does not depend on |Ω|.

This actually provides an advantage of using the spatially dependent source function over

the spatially independent source function when we need a consistent Wasserstein distance for

any size of the domain.
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2.4.1.3 Experiment 3

Consider a two dimensional problem with the following input values:

µ0 = N

(
(x, y), (

1

3
,
1

3
), (

√
2

20
,

√
2

20
)

)
+N

(
(x, y), (

2

3
,
1

3
), (

√
2

20
,

√
2

20
)

)

µ1 = N

(
(x, y), (

2

3
,
2

3
), (

√
2

20
,

√
2

20
)

)

where N
(
(x, y); (µx, µy), (σ

2
x, σ

2
y)
)

= C exp
(
− (x−µx)2

2σ2
x
− (y−µy)2

2σ2
y

)
and C is a constant such that∫

Ω
N((x, y); (µx, µy), (σ

2
x, σ

2
y))dxdy = 1. Using the Algorithm 1, we calculate the minimizers

of UW2(µ0, µ1) with a spatially dependent source function f(t, x). The parameters are chosen

as

Nx = 35, Ny = 35, Nt = 15, τ = 0.1,maximum iterations = 6, 000.

Figure 2.4 shows the transportation with α = 1 and α = 1000, respectively. The same

phenomena can be observed as in 1D case from Experiment 1. In other words, the geodesic

with the spatially dependent source function with small α in Figure 2.4 behaves closer to

the normalized (classical) optimal transport geodesic and the geodesic with large α behaves

closer to the Euclidean geodesic. The computation took 402.54 seconds for α = 1 and 77.82

seconds for α = 1000. Note that when α is small, the condition number of the Laplacian

operator gets larger. This results in slower convergence rate of conjugate gradient method for

inverting the Laplacian operator.

2.4.1.4 Experiment 4

In this experiment, we are interested in calculating L2 unnormalized Wasserstein distance

between two images. We show two sets of experiments with different initial and terminal

densities. First, consider images of two cats with different total masses defined on the domain

Ω = [0, 1]× [0, 1]. We use Algorithm 1 with the following parameters:

Nx = 64, Ny = 64, Nt = 15,maximum iterations = 4, 000.
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Figure 2.4: Experiment 3. L2 generalized unnormalized optimal transportation: 2D example

with a spatially dependent source function f(t, x). The first row is with α = 1. The second

row is with α = 1000.

Figure 2.5 shows transportation between two cats images with α = 10 and α = 1000,

respectively. The computation took 353.85 seconds for α = 10 and 93.67 seconds for

α = 1000.

Figure 2.5: Experiment 4. L2 generalized unnormalized optimal transportation between two

cats with a spatially dependent source function f(t, x). The first row is with α = 10. The

second row is with α = 1000.

Additionally, we consider images of a pair of scissors and Homer Simpson. We again

use Algorithm 1 with the same set of parameters as above. Figure 2.6 shows transportation

between two images with α = 10 and α = 1000, respectively. The computation took 353.00

seconds for α = 10 and 93.96 seconds for α = 1000.
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Figure 2.6: Experiment 4. L2 generalized unnormalized optimal transportation between a

pair of scissors and Homer Simpson with a spatially dependent source function f(t, x). The

first row is with α = 10. The second row is with α = 1000.

2.4.2 Primal dual algorithm for UW1

We conduct two numerical examples of L1 unnormalized optimal transport using Algorithm

2. For UW1 experiments, we use maximum iterations for the stopping condition.

2.4.2.1 Experiment 5

Assume Ω = [0, 1]× [0, 1]. Consider the two dimensional problem with the following initial

densities:

µ0 = N

(
(x, y), (

1

3
,
1

2
), (

1

10
,

1

10
)

)
µ1 = N

(
(x, y), (

2

3
,
1

2
), (

1

10
,

1

10
)

)
· 1.4

N is the same as the one used in Experiment 3. We chose the parameters as:

Nx = Ny = 40, ε = 0.001, λ = 0.001, τ = 0.1,maximum iterations = 30, 000.

In Figure 2.7, the initial densities µ0 and µ1 are shown on the top two plots and the minimizers

m’s are plotted for three different α values in the second row. As a comparison, the top right

picture in Figure 2.7 shows the result from L1 transportation with a spatially independent
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source function f(t). This experiment shows the clear difference between L1 unnormalized

optimal transport with f(t, x) and with f(t). While the minimizer m from the unnormalized

optimal transport with f(t, x) is nonzero only on the area between two densities, the minimizer

from the unnormalized optimal transport with f(t) is nonzero everywhere. This is because

the spatially dependent source function f(t, x) affects the minimizer locally but the spatially

independent source function f(t) affects the minimizer globally. The computation took 2.02

seconds for α = 1, 2.74 seconds for α = 10, and 2.67 seconds for α = 100.

Figure 2.7: Experiment 5. Top left: initial density µ0. Top middle: the terminal density

µ1. Top right: the solution m of L1 unnormalized optimal transportation with a spatially

independent source f(t) . The bottom images show the solution of L1 unnormalized optimal

transportation with f(t, x) using different α values. Bottom left: α = 0.1, bottom middle:

α = 10, bottom right: α = 100.

40



2.4.2.2 Experiment 6

In this experiment, we are interested in UW1 distance between two images. Consider the same

2D example as in the Experiment 4. We use the Algorithm 2 with the following parameters:

Nx = Ny = 256, ε = 0.001, λ = 0.0001, τ = 0.01,maximum iterations = 40, 000.

Figure 2.8 plots the results of L1 unnormalized optimal transport with a spatially dependent

source function f(t, x) with different α values 0.1, 5, and 10 in the second row. As a

comparison, the top right picture in Figure 2.8 shows the result from L1 transportation

with a spatially independent source function f(t). The result is similar to the Experiment 5.

The minimizer m from L1 unnormalized optimal transport with f(t) has nonzero values on

the surrounding area of the two densities, but the minimizers from unnormalized optimal

transport with f(t, x) are zero on that surrounding area. The computation took 153.07

seconds for α = 1, 192.82 seconds for α = 10, and 186.27 seconds for α = 100.

2.4.2.3 Experiment 7

In this last experiment, we demonstrate the spatial convergence of Algorithm 2. Assume

Ω = [0, 1]× [0, 1]. Consider an initial density to be a circle of radius 0.05 at (0.2, 0.2) with

a mass 1 and a terminal density to be a circle of radius 0.05 at (0.8, 0.8) with a mass 1

(Figure 2.9). UW1 distance between these two densities is 0.8 which equals L1 distance. We

use the following parameters:

α = 0.001, ε = 0.01, λ = 0.001, τ = 0.01,maximum iterations = 50, 000.

We repeat the experiment with 4 different space discretizations (Nx = Ny = 16, 32, 64, 128).

The table 2.1 summarizes the result of the experiment which shows the algorithm is accurate

to order 1 in space.
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Figure 2.8: Experiment 6. Top left: initial density µ0. Top middle: the terminal density

µ1. Top right: the solution m of L1 unnormalized optimal transportation with a spatially

independent source f(t). The bottom images show the solution of L1 unnormalized optimal

transportation with f(t, x) using different α values. Bottom left: α = 0.1, bottom middle:

α = 5, bottom right: α = 10.

2.5 Discussion

In this paper, we introduced a new class of Lp generalized unnormalized optimal transport

distance with a spatially dependent source function. We presented new fast algorithms for L1

and L2 generalized unnormalized optimal transport. For L1 case, we derived the Kantorovich

duality and used a primal-dual algorithm which has explicit formulas with low computational

costs. For L2 case, we derived the duality formula, the generalized unnormalized Monge

problem and corresponding Monge-Ampère equation. We applied a weighted Laplacian
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Table 2.1: The summary of the results of Experiment 7

Nx Ny Time (s) Error

16 16 0.62 5.4× 10−2

32 32 2.39 3.8× 10−2

64 64 9.87 1.4× 10−2

128 128 44.14 9.4× 10−3

Figure 2.9: Initial and terminal densities for Experiment 7.

operator Lµ to formulate the problem into an unconstrained optimization. The gradient

operator of this unconstrained optimization is precisely the Hamilton-Jacobi equation. We

apply the Nesterov accelerated gradient descent method to solve this minimization problem.

Our algorithm can be applied to general unnormalized/unbalanced optimal transport

problems. It is also suitable for considering general variational mean-field games. In future

works, we will derive new formulations for all related Lp unbalanced or unnormalized mean-

field games and design fast numerical algorithms to solve them.
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CHAPTER 3

Controlling Propagation of Epidemics

via Mean-Field Controls

The coronavirus disease 2019 (COVID-19) pandemic is changing and impacting lives on

a global scale. In this paper, we introduce a mean-field control model in controlling the

propagation of epidemics on a spatial domain. The control variable, the spatial velocity, is first

introduced for the classical disease models, such as the SIR model. For this proposed model,

we provide fast numerical algorithms based on proximal primal-dual methods. Numerical

experiments demonstrate that the proposed model illustrates how to separate infected patients

in a spatial domain effectively.

3.1 Introduction

The outbreak of the COVID-19 epidemic has resulted in millions of confirmed cases and

hundreds of thousands of deaths globally. It has a huge impact on the global economy as

well as everyone’s daily life. There has been a lot of interest in modeling the dynamics and

propagation of the epidemic. One of the well-known and basic models in epidemiology is the

SIR model proposed by Kermack and McKendrick [KM27] in 1927. Here, S, I, R represent

the number of susceptible, infected, and recovered people respectively. They use an ODE

system to describe the transmission dynamics of infectious diseases among the population.

As the propagation of COVID-19 has a significant spatial characteristic actions such as travel

restrictions, physical distancing and self-quarantine are taken to slow down the spread of
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the epidemic. It is important to have a spatial-type SIR model to study the spread of the

infectious disease and movement of individuals [Ken65, Kal84, HI95].

Since the epidemic has affected society and individuals significantly, mean-field games and

mean-field controls (MFG, MFC) provide a perspective to study and understand the underlying

population dynamics. Mean-field games were introduced by Jovanovic and Rosenthal [JR88],

Huang, Malhamé, and Caines [HMC06], and Lasry and Lions [LL06a, LL06b]. They model a

huge population of agents playing dynamic games. There is growing research interest in this

direction. For a review of MFG theory, we refer to [LL07, Gom14]. With wide application to

various fields [GNP15, BDM13, LLL16, AL19], computational methods are also designed to

solve related high dimensional MFG problems [BC15, AKS18, EHL18, LFL20, ROL19, LJL20].

In this paper, we combine the above ideas of the spatial SIR model and MFG. In other

words, we introduce a mean-field game (control) model for controlling the virus spreading

within a spatial domain. Here the goal is to minimize the number of infectious agents and

the amount of movement of the population. In short, we formalize the following constrained

optimization problem

inf
(ρi,vi)i∈{S,I,R}

E(ρI(T, ·)) +

∫ T

0

∫
Ω

∑
i∈{S,I,R}

αi
2
ρi|vi|2 +

c

2
(ρS + ρI + ρR)2dxdt

subject to 

∂tρS +∇ · (ρSvS) + βρSρI −
η2
S

2
∆ρS = 0

∂tρI +∇ · (ρIvI)− βρSρI + γρI −
η2
I

2
∆ρI = 0

∂tρR +∇ · (ρRvR)− γρI −
η2
R

2
∆ρR = 0

ρS(0, ·), ρI(0, ·), ρR(0, ·) are given.

Here ρi represents the population density and vi describes the movement, with i ∈ {S, I, R}

corresponding to the susceptible, infected and recovered compartmental state or class. We

consider the spatial SIR model with nonlocal spreading modeled by an integration kernel K

representing the physical distancing and spatial diffusion of population and set it as dynamic
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to our mean-field control problem. This is the constraint to the minimization problem. The

minimization objective include both the movement and the congestion of the population. The

kinetic energy terms describe the situation that, if the population (the susceptible, infected

or recovered) needs to be moved to alleviate the local medical shortage. The congestion term

models the fact that the government doesn’t want the population to get too concentrated

in one place. This might increase the risk of disease outbreaks and their faster and wider

spread. Due to the multiplicative nature of the interaction term between susceptible and

infectious agents βρSρI , the mean-field control problem can be a non-convex optimization

problem. By using Lagrange multipliers, we formalize the mean-field control problem as an

unconstrained optimization problem. Fast numerical algorithms are designed to solve the

non-convex optimization problem in 2D with the G− prox preconditioning method [JLL19].

In the literature, spatial SIR models in the form of a nonlinear integrodifferential [Aro77,

Die79, Thi77] and reaction-diffusion system [Kal84, HI95] have been studied. Traveling

waves are studied to understand the propagation of various types of epidemics, such as Lyme

disease, measles, etc, and recently, COVID-19 [CGC02, GBK01, WW10, BRR20]. In [BRR20],

they introduce a SIRT model to study the effects of the presence of a road on the spatial

propagation of the epidemic. For surveys, see [Mur01, Rua07]. As for numerical modeling of

epidemic model concerning the spatial effect, finite-difference methods are used to discretize

the reaction-diffusion system and solve the spatial SIR model, and its various extensions

[CC10, JC14, FH16]. Epidemic models have been treated using optimal control theory, with

major control measures on medicare (vaccination) [SS78, LES18, JKL20]. In [JKL20], a

feedback control problem of the SIR model is studied to help determine the vaccine policy

to minimize the number of infected people. In [LZM19], they introduce a nonlinear SIQS

epidemic model on complex networks and study the optimal quarantine control. Compared

to previous works, our model is the first to consider an optimal control problem for the SIR

model on a spatial domain, combining optimal transport and mean field controls. As SIR

model can be interpreted in terms of stochastic processes of agent-based models, it can be
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obtained as a motion of the law of a three-state Markov chain with the transition from S to

I and I to R [All17]. Here, we formulate velocity fields among S, I, R populations as control

variables. And our model applies a pair of PDEs, consisting Fokker-Planck equation and

Hamilton-Jacobi equation. These equations describe how different populations (susceptible,

infected or recovered) react to the propagation of pandemic on a spatial domain.

Our paper is organized as follows. In section 3.2, we introduce the mean field control model

for the propagation of epidemics. We introduce a primal-dual hybrid gradient algorithm for

this model in section 3.3. In section 3.4, several numerical examples are demonstrated.

3.2 Model

In this section, we briefly review the classical epidemics models, e.g., SIR dynamics. We then

introduce a mean field control model for SIR dynamics on a spatial domain. We derive a

system to find the minimizer of the proposed model.

3.2.1 Review

We first review the classical SIR model.

dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t)− γI(t)

dR(t)

dt
= γI(t)

where S, I, R : [0, T ]→ [0, 1] represent the proportion of the susceptible population, infected

population, and recovered population, respectively, given time t ∈ [0, T ]. Susceptible people

become infected with a rate of β, and infected people are recovered with a rate of γ. The

SIR model can be derived based on the mean-field assumptions. Thus it can be interpreted

as the mean field equations for a three-state Markov chain on S, I, R states.
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3.2.2 Spatial SIR variational problem

We consider the spatial dimension of the S, I, R functions. Let Ω ⊂ Rd be a bounded domain.

Consider the following functions

ρS, ρI , ρR : [0, T ]× Ω→ [0,∞).

Here, ρS, ρI , and ρR represent susceptible, infected and recovered populations, respectively.

We assume ρi for each i ∈ {S, I, R} moves on a spatial domain Ω with velocities vi. We can

describe these movements by continuity equations.

∂tρS +∇ · (ρSvS) + βρSρI −
η2
S

2
∆ρS = 0

∂tρI +∇ · (ρIvI)− βρSρI + γρI −
η2
I

2
∆ρI = 0

∂tρR +∇ · (ρRvR)− γρI −
η2
R

2
∆ρR = 0

ρS(0, ·), ρI(0, ·), ρR(0, ·) are given.

(3.1)

Here vi : [0, T ]×Ω→ Rd (i ∈ {S, I, R}) are vector fields that represent the velocity fields for

ρi (i ∈ {S, I, R}) and nonnegative constants ηi (i ∈ {S, I, R}) are coefficients for viscosity

terms. We add these viscosity terms to regularize the systems of continuity equations, thus

stabilize our numerical method that will be discussed in later sections. In addition, we assume

zero flux conditions by the Neumann boundary conditions, that is no mass can flow in or out

of Ω. These systems of continuity equations satisfy the following equality:

∂

∂t

∫
Ω

ρS(t, x) + ρI(t, x) + ρR(t, x)dx = 0.

This means that the total mass of the three populations will be conserved for all time.

Lastly, we introduce the proposed mean field control models. Consider the following

variational problem:

inf
(ρi,vi)i∈{S,I,R}

E(ρI(T, ·)) +

∫ T

0

∫
Ω

∑
i∈{S,I,R}

αi
2
ρi|vi|2 +

c

2
(ρS + ρI + ρR)2dxdt

subject to (3.1) with fixed initial densities.

(3.2)
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Here E is a convex functional and αi (i ∈ {S, I, R}) and c are nonnegative constants. The

formulation is mainly divided into two parts: a terminal cost and a running cost. The

functional E is a terminal cost which increases if there is greater mass of the infected

population at the terminal time. For example, we choose E(ρ(T, ·)) = 1
2

∫
Ω
ρ2(T, x)dx for the

experiments (Section 3.4). The rest of the terms besides the functional E are running costs.

Kinetic energy terms αi
2
ρi|vi|2 (i ∈ {S, I, R}) represent the cost of moving the density ρi with

velocities vi over time 0 ≤ t ≤ T . A high value of αi means that it is expensive to move

ρi for corresponding i ∈ {S, I, R}. In the numerical experiments (Section 3.4), we assume

αS = αR = 1 and αI = 10 to simulate the real life scenario where infected group is harder

to move than other groups. The last term in the running cost, c
2
(ρS + ρI + ρR)2, penalizes

the congestion of the total population. A high value of c means more penalization on the

congestion. The minimizers of the variational problem will provide the optimal movements

for each population while minimizing the terminal cost functional with respect to the infected

population ρI .

We note that the function (ρi, vi) 7→ ρi|vi|2 is not convex. By introducing new variables

mi := ρivi, we convert the cost functional to be convex in term of (ρi,mi). In other words,

min
ρi,vi

P (ρi,mi)i∈{S,I,R} (3.3a)

subject to 

∂tρS +∇ ·mS + βρSρI −
η2
S

2
∆ρS = 0

∂tρI +∇ ·mI − βρSρI + γρI −
η2
I

2
∆ρI = 0

∂tρR +∇ ·mR − γρI −
η2
R

2
∆ρR = 0

ρS(0, ·), ρI(0, ·), ρR(0, ·) are given

(3.3b)

where

P (ρi,mi)i∈{S,I,R} =E(ρI(T, ·)) +

∫ T

0

∫
Ω

∑
i∈{S,I,R}

αi|mi|2

2ρi
+
c

2
(ρS + ρI + ρR)2dxdt.
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From an optimization viewpoint, we note that the minimization problem is not a convex

problem since the coupling terms, βρSρI , in constraints make the feasible set nonconvex. We

replace the nonconvex coupling term βρSρI with convolution. Note that Kendall [Ken65]

introduced this kernel for modeling pandemic dynamics and took the nonlocal exposure to

infectious agents into consideration. This term also helps regularize the minimization problem.

min
(ρi,vi)i∈{S,I,R}

P (ρi,mi)i∈{S,I,R} (3.4a)

subject to

∂tρS(t, x) +∇ ·mS(t, x) + βρS(t, x)

∫
Ω

K(x, y)ρI(t, y)dy − η2
S

2
∆ρS(t, x) = 0

∂tρI(t, x) +∇ ·mI(t, x)− βρI(t, x)

∫
Ω

K(x, y)ρS(t, y)dy + γρI(t, x)− η2
I

2
∆ρI(t, x) = 0

∂tρR(t, x) +∇ ·mR(t, x)− γρI(t, x)− η2
R

2
∆ρR(t, x) = 0

ρS(0, ·), ρI(0, ·), ρR(0, ·) given.

(3.4b)

Here, K(x, y) is a symmetric positive definite kernel. In this paper, we focus on a Gaussian

kernel

K(x, y) =
1√

(2π)d

d∏
k=1

1

σk
exp

(
−|xk − yk|

2

2σ2
k

)
.

The variance σk of Gaussian kernel can be viewed as a parameter for modeling the spatial

spreading effect of the virus. Let’s consider the convolution term in the first continuity

equation, ρS(t, x)
∫

Ω
K(x, y)ρI(t, y)dy. Larger values of variance σk’s in K mean that a

susceptible agent located at position x can be affected by infectious agents farther away from

x. Note that by letting σk → 0, we get

ρS(t, x)

∫
Ω

K(x, y)ρI(t, y)dy → ρS(t, x)ρI(t, x).

Thus, when σk becomes close to 0, the susceptible agent is only affected by infectious agents

nearby. If we let σk →∞, then

ρS(t, x)

∫
Ω

K(x, y)ρI(t, y)dy → ρS(t, x)

∫
Ω

ρI(t, y)dy,
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which means the susceptible group is affected by the total number of the infected population.

Remark 3.2.1. The formulation is not limited to the SIR model we chose in this paper. It

can be used to solve any types of spatial epidemiological models. For example, if we use the

SEIR model where E stands for the exposed group, we just add one additional variable ρE

and add one more continuity equation.

3.2.3 Properties

We next derive the mean field control system, i.e. the minimizer system associated with

spatial SIR variational problem (3.4). We introduce three dual variables φi (i ∈ {S, I, R}) to

convert the minimization problem (3.4) into a saddle problem.

inf
(ρi,vi)i∈{S,I,R}

{
P (ρi,mi)i∈{S,I,R} : subject to (3.4b)

}
= inf

(ρi,vi)i∈{S,I,R}
sup

(φi)i∈{S,I,R}

P (ρi,mi)i∈{S,I,R}

−
∫ T

0

∫
Ω

φS

(
∂tρS +∇ ·mS + βρSK ∗ ρI −

η2
S

2
∆ρS

)
dxdt

−
∫ T

0

∫
Ω

φI

(
∂tρI +∇ ·mI − βρSK ∗ ρI + γρI −

η2
I

2
∆ρI

)
dxdt

−
∫ T

0

∫
Ω

φR

(
∂tρR +∇ ·mR − γρI −

η2
R

2
∆ρR

)
dxdt.

Simplifying the above function, we define the Lagrangian functional

L((ρi,mi, φi)i∈{S,I,R})

=P (ρi,mi)i∈{S,I,R} −
∫ T

0

∫
Ω

∑
i∈{S,I,R}

φi

(
∂tρi +∇ ·mi −

η2
i

2
∆ρi

)
dxdt

+

∫ T

0

∫
Ω

βρS(φI − φS)K ∗ ρI + γρI(φR − φI)dxdt.

(3.5)

Thus, we have the following saddle problem:

inf
(ρi,mi)i∈{S,I,R}

sup
(φi)i∈{S,I,R}

L((ρi,mi, φi)i∈{S,I,R}). (3.6)
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The existence of the saddle point of this mini-max problem is based on the assumption

that the dual gap is zero. In other words, given a primal solution with respect to optimal

primal variables (ρi,mi)i∈{S,I,R} and a dual solution with respect to optimal dual variables

(φi)i∈{S,I,R}, the difference between these two solutions is zero. However, the dual gap may

not be zero for this problem because the nonconvex functional (ρS, ρI) 7→ ρSK ∗ ρI makes

the feasible set of the problem nonconvex. Throughout the paper, we assume the dual gap is

zero.

The following propositions are the properties of the saddle point problem derived from

optimality conditions, known as Karush–Kuhn–Tucker (KKT) conditions.

Proposition 3.2.1 (Mean-field control SIR system). By KKT conditions, the saddle point

(ρi,mi, φi) of (3.6) satisfies the following equations.

∂tφS −
αS
2
|∇φS|2 +

η2
S

2
∆φS + c(ρS + ρI + ρR) + β(φI − φS)K ∗ ρI = 0

∂tφI −
αI
2
|∇φI |2 +

η2
I

2
∆φI + c(ρS + ρI + ρR)

+ βK ∗ (ρS(φI − φS)) + γ(φR − φI) = 0

∂tφR −
αR
2
|∇φR|2 +

η2
R

2
∆φR + c(ρS + ρI + ρR) = 0

∂tρS −
1

αS
∇ · (ρS∇φS) + βρSK ∗ ρI −

η2
S

2
∆ρS = 0

∂tρI −
1

αI
∇ · (ρI∇φI)− βρSK ∗ ρI + γρI −

η2
I

2
∆ρI = 0

∂tρR −
1

αR
∇ · (ρR∇φR)− γρI −

η2
R

2
∆ρR = 0

φI(T, ·) = δE(ρI(T, ·)).

(3.7)

The term δE is the functional derivative. Given a smooth functional F : H → R where H is

a separable Hilbert space and ρ ∈ H, we say a map δF
δρ

is the functional derivative of F with

respect to ρ if it satisfies

lim
ε→0

F (ρ+ εh)− F (ρ)

ε
=

∫
Ω

δF

δρ
(ρ(x))h(x) dx,

for any arbitrary function h ∈ H.
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The proof of Poposition 3.2.1 can be found in the appendix. We note that dynamical system

(3.7) models the optimal vector field strategies for S, I, R populations. It combines both

strategies from mean field controls and SIR models. For this reason, we call (3.7) Mean-field

control SIR system.

3.3 Algorithm

In this section, we propose an algorithm to solve the proposed SIRV variational problem.

We use the primal-dual hybrid gradient (PDHG) algorithm [CP11b, CP16]. The PDHG can

solve the following convex optimization problem

min
u

f(Au) + g(u)

where f and g are convex functions and A is a continuous linear operator. Since f is a convex

function, by the convex duality relation, we have f ∗∗ = f where f ∗ is the Legendre transform

such that

f ∗(p) = sup
u
〈u, p〉L2 − f(u)

where 〈·, ·〉L2 is L2 inner product. Thus, f can be represented as a Legendre transform of f ∗,

i.e.,

f(Au) = f ∗∗(Au) = sup
p
〈Au, p〉L2 − f ∗(p).

The algorithm solves the problem by converting it into a saddle point problem by introducing

a dual variable p and using the convex duality relation

min
u

max
p

g(u) + 〈Au, p〉L2 − f ∗(p).

The method solves for the saddle point (u∗, p∗) by iterating

p(k+1) = argmax
p
〈Au(k), p〉L2 − f ∗(p)− 1

2σ
‖p− p(k)‖2

L2

u(k+1) = argmin
u

g(u) + 〈u,AT (2p(k+1) − p(k))〉L2 +
1

2τ
‖u− u(k)‖2

L2 .

(3.8)
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The scheme converges if the step sizes τ and σ satisfy

τσ‖ATA‖L2 < 1, (3.9)

where ‖ · ‖L2 is an operator norm in L2. However, the SIR variational problem has a nonlinear

function A for the constraint. Thus, we use the extension of the algorithm from [CV17a]

which solves the nonlinear constrained optimization problem.

min
u

max
p

g(u) + 〈A(u), p〉L2 − f ∗(p), (3.10)

where A is a nonlinear function. The scheme iterates the algorithm (3.8) with a linear

approximation of A at a base point ū

A(u) ≈ A(ū) + [∇A(ū)](u− ū).

Denote Au := ∇A(u). We have a linearized saddle point problem

min
u

max
p

g(u) + 〈A(ū) + Aū(u− ū), p〉L2 − f ∗(p) (3.11)

and the scheme iterates

u(k+1) = argmin
u

g(u) + 〈u,ATu(k)p
(k)〉L2 +

1

2τ (k)
‖u− u(k)‖2

L2

ũ(k+1) = 2u(k+1) − u(k)

p(k+1) = argmax
p
〈A(u(k)) + Au(k)(ũ(k+1) − u(k)), p〉L2 − f ∗(p)− 1

2σ(k)
‖p− p(k)‖2

L2

(3.12)

The paper [CV17a] proves that the sequence {u(k), p(k)}∞k=0 of the algorithm converges to

some saddle point (u∗, p∗) that satisfies the following KKT conditions of (3.12):

[∇A(u∗)]
Tp∗ = −∂g(u∗)

A(u∗) = ∂f ∗(p∗).
(3.13)

However, the scheme converges if the step sizes satisfy

σ(k)τ (k)‖∇A(u(k))‖2
L2 < 1, k = 1, 2, · · · .
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Suppose we use an unbounded operator that depends on the grid size, for example, A = ∇.

Then the operator norm ‖∇A(u(k))‖2
L2 increases as the grid sizes increase. Thus, the scheme

can result in a very slow convergence if we use a fine grid resolution. To circumvent the

problem, we use the General-proximal Primal-Dual Hybrid Gradient (G-prox PDHG) method

from [JLL19] which is another variation of the PDHG algorithm. This variant provides an

appropriate choice of norms for the algorithm, and the authors prove that choosing the proper

norms allows the algorithm to have larger step sizes than the vanilla PDHG algorithm. The

G-prox PDHG iterates

u(k+ 1
2

) = argmin
u

g(u) + 〈u,ATu(k)p
(k)〉L2 +

1

2τ (k)
‖u− u(k)‖2

L2

u(k+1) = 2u(k+ 1
2

) − u(k)

p(k+1) = argmax
p
〈A(u(k)) + Au(k)(u(k+1) − u(k)), p〉L2 − f ∗(p)− 1

2σ(k)
‖p− p(k)‖2

H(k) .

(3.14)

where the norm ‖ · ‖H(k) is defined as

‖p‖2
H(k) = ‖ATu(k)p‖2

L2 .

By choosing the proper norms, the step sizes only need to satisfy

σ(k)τ (k) < 1, k = 1, 2, · · ·

which are clearly independent of the grid size.

3.3.1 Local convergence of the algorithm

In this section, we show the iterations from the algorithm (3.14) locally converges to the saddle

point. The local convergence theorem in this paper is mainly based on the Theorem 2.11

from [CV17a]. However, we add a preconditioning operator from the G-prox PDHG method.

We show that the method converges locally to the saddle point with the step sizes independent

of the nonlinear operator A.
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From the algorithm (3.14), (u(k+1), p(k+1)) satisfies the following first-order optimality

conditions

0 ∈ ∂g(u(k+1)) + ATu(k)p
(k) +

1

τ (k)
(u(k+1) − u(k))

0 ∈ A(u(k)) + 2Au(k)(u(k+1) − u(k))− ∂f ∗(p(k+1))− 1

σ(k)
Au(k)ATu(k)(p

(k+1) − p(k))
(3.15)

which can be rewritten as

0 ∈ Hu(k)(q(k+1)) +M (k)(q(k+1) − q(k)) (3.16)

with q = (u, p). Here, the monotone operator Hū is defined as

Hū(q) :=

 ∂g(u) + ATūp

∂f ∗(p)− A(ū)− Aū(u− ū)


and

M (k) :=

 1
τ (k) Id −AT

u(k)

−Au(k)
1

σ(k)Au(k)AT
u(k)


where Id is an identity operator.

Recall that from (3.13), the saddle point q∗ = (u∗, p∗) has to satisfy

0 ∈ Hu∗(u∗, p∗).

Throughout, we assume that

‖∇A(u∗)‖ > 0 (3.17)

and u 7→ ∇A(u) is continuous.

Lemma 3.3.1. There exists constants 0 < c < C and R > 0 such that

c ≤ ‖∇A(u)‖ ≤ C, (‖u− u∗‖L2 ≤ R)

where ‖ · ‖ is an operator norm.

Proof. This follows immediately from (3.17) and the fact that the derivative ∇A(u) is

continuous with respect to u.
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Lemma 3.3.2. Suppose (3.17) holds and let τ (k)σ(k) < 1. Then there exist constants

0 < θ < Θ such that

θ2‖q‖2
L2 ≤ 〈q,M (k)q〉 ≤ Θ2‖q‖2

L2

where

‖q‖2
L2 = ‖u‖2

L2 + ‖p‖2
L2 .

A proof of Lemma 3.3.2 is provided in the appendix.

With the above Lemmas, we can use the Theorem 2.11 from [CV17a] to show the local

convergence of the algorithm.

Theorem 3.3.3. Let (u∗, p∗) ∈ L2 ×H(∗) be a solution to (3.13) where ‖p‖2
H(∗) = ‖ATu∗p‖

2
L2.

Let the step sizes τ (k) and σ(k) satisfy τ (k)σ(k) < 1 for all k. Then there exists δ > 0 such that

for any initial point (u(0), p(0)) ∈ L2 ×H(0) satisfying

‖u(0) − u∗‖2
L2 + ‖p(0) − p∗‖2

L2 < δ2,

the iterates (u(k), p(k)) from (3.14) converges to the saddle point (u∗, p∗).

Proof. By Lemma 3.3.1, Lemma 3.3.2, and strong convexity of the functional P , we can

use [CV17a, Theorem 2.11], which proves the theorem.

Remark 3.3.1. [CV17a, Theorem 2.11] requires Hu∗ to satisfy the condition called metric

regularity. In our formulation, the constraint A(u) = 0 makes Hu∗ metrically regular by

[CV17b, Section 5.3]. We refer readers to [CV17a, CV17b, RW09] for further details about

metric regularity.
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3.3.2 Implementation of the algorithm

To implement the algorithm to the minimization problem (3.4), we set

u = ((ρi,mi)i∈{S,I,R})

p = (φi)i∈{S,I,R}

g(u) = P (u)

f(A(u)) =


0 if A(u) = 0

∞ otherwise

f ∗(p) = 0

where A is a nonlinear operator defined as

A(u) =
(
AS(u), AI(u), AR(u)

)
= (∂tρS +∇ ·mS −

η2

2
∆ρS + βρSK ∗ ρI ,

∂tρI +∇ ·mI −
η2

2
∆ρI − βρIK ∗ ρS + γρI ,

∂tρR +∇ ·mR −
η2

2
∆ρR).

Define the Lagrangian functional as

L(u, p) := P (u)− 〈A(u), p〉L2

where 〈·, ·〉L2 is an inner product defined as

〈p, q〉L2 =
∑

i=S,I,R

∫ 1

0

∫
Ω

pi(t, x) qi(t, x) dx dt

for p = (pS, pI , pR) and q = (qS, qI , qR). Thus, using definitions of the inner product and the

operator A, 〈A(u), p〉L2 can be written as

〈A(u), p〉L2 =

∫ 1

0

∫
Ω

φS

(
∂tρS +∇ ·mS −

η2

2
∆ρS + βρSK ∗ ρI

)
dx dt

+

∫ 1

0

∫
Ω

φI

(
∂tρI +∇ ·mI −

η2

2
∆ρI − βρIK ∗ ρS + γρI

)
dx dt

+

∫ 1

0

∫
Ω

φR

(
∂tρR +∇ ·mR −

η2

2
∆ρR

)
dx dt.
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Now we are ready to implement the algorithm (3.14) to solve the SIR variataional problem.

Algorithm 3 G-proximal PDHG for mean-field control SIR system

Input: ρi(0, ·) (i ∈ {S, I, R})

Output: ρi,mi, φi (i ∈ {S, I, R}) for x ∈ Ω, t ∈ [0, T ]

While relative error > tolerance For i ∈ {S, I, R}

φ
(k+1)
i = argmaxφ L(ρ(k),m

(k)
i , φ)− 1

2σi
‖φ− φ(k)

i ‖2

H
(k)
i

ρ
(k+1)
i = argminρ L(ρ,m

(k)
i , 2φ

(k+1)
i − φ(k)

i ) + 1
2τi
‖ρ− ρ(k)

i ‖2
L2

m
(k+1)
i = argminm L(ρ(k+1),m, 2φ

(k+1)
i − φ(k)

i ) + 1
2τi
‖m−m(k)

i ‖2
L2

Here, with abuse of notations, L2 norms are defined as

‖ρi‖2
L2 =

∫ T

0

∫
Ω

ρ2
i (t, x)dx dt

‖mi‖2
L2 =

∫ T

0

∫
Ω

|mi(t, x)|2dx dt, (i = S, I, R)

and H
(k)
i are defined as

‖φi‖2

H
(k)
i

= ‖[∇Ai(u(k))]Tφi‖2
L2 , (i = S, I, R)

‖φS‖2

H
(k)
S

=

∫ T

0

∫
Ω

(∂tφS)2 + |∇φS|2 +
η4

4
(∆φS)2 + β2(K ∗ ρ(k)

I φS)2 dx dt

‖φI‖2

H
(k)
I

=

∫ T

0

∫
Ω

(∂tφI)
2 + |∇φI |2 +

η4

4
(∆φI)

2 + β2(K ∗ ρ(k)
S φI)

2 + γ2(φI)
2 dx dt

‖φR‖2

H
(k)
R

=

∫ T

0

∫
Ω

(∂tφR)2 + |∇φR|2 +
η4

4
(∆φR)2 dx dt.

Moreover, the relative error is defined as

relative error =
|P (ρ

(k+1)
i ,m

(k+1)
i )− P (ρ

(k)
i ,m

(k)
i )|

|P (ρ
(k)
i ,m

(k)
i )|

.

By formulating these optimality conditions, we can find explicit formulas for each variable.

Proposition 3.3.4. The variables ρ
(k+1)
i ,m

(k+1)
i , φ

(k+1)
i (i ∈ {S, I, R}) from the Algorithm 4

satisfy the following explicit formulas:
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ρ
(k+1)
S = root+

(
τS

1 + cτS

(
∂tφ

(k)
S +

η2
S

2
∆φ

(k)
S −

1

τS
ρ

(k)
S + β

(
K ∗ (φ

(k)
I ρ

(k)
I )− φ(k)

S K ∗ ρ(k)
I

)
+ c(ρI + ρR)

)
, 0,−τSαS(m

(k)
S )2

2(1 + cτS)

)

ρ
(k+1)
I = root+

(
τI

1 + cτI

(
∂tφ

(k)
I +

η2
I

2
∆φ

(k)
I −

1

τI
ρ

(k)
I + β

(
φ

(k)
I K ∗ ρ(k)

S −K ∗ (φ
(k)
S ρ

(k)
S )
)

+ γ(φR − φI) + c(ρS + ρR)

)
, 0,−τIαI(m

(k)
I )2

2(1 + cτI)

)

ρ
(k+1)
R = root+

(
τR

1 + cτR

(
∂tφ

(k)
R +

η2
R

2
∆φ

(k)
R −

1

τR
ρ

(k)
R + c(ρS + ρI)

)
, 0,−τRαR(m

(k)
R )2

2(1 + cτR)

)

m
(k+1)
i =

ρ
(k+1)
i

ταi + ρ
(k+1)
i

(
m

(k)
i − τ∇φ

(k)
i

)
, (i ∈ {S, I, R})

φ
(k+1)
S = φ

(k)
S + σS(ASA

T
S )−1

(
−∂tρ(k+1)

S −∇ ·m(k+1)
S − βρ(k+1)

S K ∗ ρ(k+1)
I +

η2
S

2
∆ρ

(k+1)
S

)

φ
(k+ 1

2
)

I = φ
(k)
I + σI(AIA

T
I )−1

(
−∂tρ(k+1)

I −∇ ·m(k+1)
I + βρ

(k+1)
I K ∗ ρ(k+1)

S

− γρ(k+1)
I +

η2
I

2
∆ρ

(k+1)
I

)

φ
(k+ 1

2
)

R = φ
(k)
R + σR(ARA

T
R)−1

(
−∂tρ(k+1)

R −∇ ·m(k+1)
R + γρ

(k+1)
I +

η2
R

2
∆ρ

(k+1)
R

)
where root+(a, b, c) is a positive root of a cubic polynomial x3 + ax2 + bx+ c = 0 and

ASA
T
S = −∂tt +

η4
S

4
∆2 − (1 + 2βηS)∆ + β2

AIA
T
I = −∂tt +

η4
I

4
∆2 − (1 + 2(γ + β)ηS)∆ + (γ + β)2

ARA
T
R = −∂tt +

η4
R

4
∆2 −∆.

61



We use FFTW library to compute (AiA
T
i )−1 (i ∈ {S, I, R}) and convolution terms by

Fast Fourier Transform (FFT), which is O(n log n) operations per iteration with n being the

number of points. Thus, the algorithm takes just O(n log n) operations per iteration.

In this section, we implement optimization methods to solve the proposed SIR variational

problems. Specifically, we use G-Prox Primal-Dual Hybrid Gradient (G-Prox PDHG) method

[JLL19]. This is a variation of Chambolle-Pock primal-dual algorithm [CP11b, CP16]. G-Prox

PDHG proposes a way of choosing proper norms for the optimization based on the given

minimization problem whereas the Chambolle-Pock primal-dual algorithm just uses L2 norms.

Choosing appropriate norms results in faster and more robust convergence of the algorithm.

3.3.3 Review of primal-dual algorithms

The PDHG method solves the minimization problem

min
x
f(Ax) + g(x)

by converting it into a saddle point problem

min
x

sup
y
{L(x, y) := 〈Ax, y〉+ g(x)− f ∗(y)} .

Here, f and g are convex functions, A is a continuous linear operator, and

f ∗(y) = sup
x
〈x y〉 − f(x)

is a Legendre transform of f . For each iteration, the algorithm finds the minimizer x∗

by gradient descent method and the maximizer y∗ by gradient ascent method. Thus, the

minimizer and maximizer are calculated by iterating
xk+1 = argminx L(x, yk) + 1

2τ
‖x− xk‖2

yk+ 1
2 = argmaxy L(xk+1, y) + 1

2σ
‖y − yk‖2

yk+1 = 2yk+ 1
2 − yk
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where τ and σ are step sizes for the algorithm.

G-Prox PDHG is a modified version of PDHG that solves the minimization problem by

choosing the most appropriate norms for updating x and y. Choosing the appropriate norms

allows us to choose larger step sizes. Hence, we get a faster convergence rate. In details,
xk+1 = argminx L(x, yk) + 1

2τ
‖x− xk‖2

H

yk+ 1
2 = argmaxy L(xk+1, y) + 1

2σ
‖y − yk‖2

G

yk+1 = 2yk+ 1
2 − yk

where H and G are two Hilbert spaces with the inner product

(u1, u2)G = (Au1, Au2)H.

In particular, we use G-Prox PDHG to solve the minimization problem (3.4) by setting

H = L2 and G = H2. Furthermore,

x = (ρS, ρI , ρR,mS,mI ,mR), g(x) = P (ρi,mi)i∈{S,I,R}, f(Ax) =


0 if Ax = (0, 0, γρI)

∞ otherwise.

Ax = (∂tρS +∇ ·mS −
η2

2
∆ρS + βρSK ∗ ρI ,

∂tρI +∇ ·mI −
η2

2
∆ρI − βρIK ∗ ρS + γρI ,

∂tρR +∇ ·mR −
η2

2
∆ρR).

Thus, we have the following inner products

(u1, u2)L2 =

∫ T

0

∫
Ω

u1(t, x)u2(t, x)dxdt, (u1, u2)H2 =

∫ T

0

∫
Ω

Au1(t, x)Au2(t, x)dxdt.

Note that the operator A is nonlinear. In the implementation, we approximate the operator

with the following linear operator

Ax ≈ (∂tρS +∇ ·mS −
η2

2
∆ρS + βρS,

∂tρI +∇ ·mI −
η2

2
∆ρI + (γ + β)ρI ,

∂tρR +∇ ·mR −
η2

2
∆ρR).
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3.3.4 G-Prox PDHG on SIR variational problem

In this section, we implement G-Prox PDHG to solve the saddle problem (3.6). For i ∈

{S, I, R},

ρ
(k+1)
i = argmin

ρ
L(ρ,m

(k)
i , φ

(k)
i ) +

1

2τi
‖ρ− ρ(k)

i ‖2
L2

m
(k+1)
i = argmin

m
L(ρ

(k+1)
i ,m, φ

(k)
i ) +

1

2τi
‖m−m(k)

i ‖2
L2

φ
(k+ 1

2
)

i = argmax
φ
L(ρ

(k+1)
i ,m

(k+1)
i , φ)− 1

2σi
‖φ− φ(k)

i ‖2
H2

φ
(k+1)
i = 2φ

(k+ 1
2

)

i − φ(k)
i

where τi, σi (i ∈ {S, I, R}) are step sizes for the algorithm and by G-Prox PDHG, L2 norm

and H2 norm are defined as

‖u‖2
L2 =

∫ T

0

∫
Ω

u2dxdt, ‖u‖2
H2 =

∫ T

0

∫
Ω

(∂tu)2 + |∇u|2 +
η4

4
(∆u)2dxdt

for any u : [0, T ]× Ω→ [0,∞).

By formulating these optimality conditions, we can find explicit formulas for each variable.

ρ
(k+1)
S = root+

(
τS

1 + cτS

(
∂tφ

(k)
S +

η2
S

2
∆φ

(k)
S −

1

τS
ρ

(k)
S + β

(
K ∗ (φ

(k)
I ρ

(k)
I )− φ(k)

S K ∗ ρ(k)
I

)
+ c(ρI + ρR)

)
, 0,−τSαS(m

(k)
S )2

2(1 + cτS)

)

ρ
(k+1)
I = root+

(
τI

1 + cτI

(
∂tφ

(k)
I +

η2
I

2
∆φ

(k)
I −

1

τI
ρ

(k)
I + β

(
φ

(k)
I K ∗ ρ(k)

S −K ∗ (φ
(k)
S ρ

(k)
S )
)

+ γ(φR − φI) + c(ρS + ρR)

)
, 0,−τIαI(m

(k)
I )2

2(1 + cτI)

)

ρ
(k+1)
R = root+

(
τR

1 + cτR

(
∂tφ

(k)
R +

η2
R

2
∆φ

(k)
R −

1

τR
ρ

(k)
R + c(ρS + ρI)

)
, 0,−τRαR(m

(k)
R )2

2(1 + cτR)

)

m
(k+1)
i =

ρ
(k+1)
i

ταi + ρ
(k+1)
i

(
m

(k)
i − τ∇φ

(k)
i

)
, (i ∈ {S, I, R})
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φ
(k+1)
S = φ

(k)
S + σS(ATSAS)−1

(
−∂tρ(k+1)

S −∇ ·m(k+1)
S − βρ(k+1)

S K ∗ ρ(k+1)
I +

η2
S

2
∆ρ

(k+1)
S

)

φ
(k+ 1

2
)

I = φ
(k)
I + σI(A

T
I AI)

−1

(
−∂tρ(k+1)

I −∇ ·m(k+1)
I + βρ

(k+1)
I K ∗ ρ(k+1)

S

− γρ(k+1)
I +

η2
I

2
∆ρ

(k+1)
I

)

φ
(k+ 1

2
)

R = φ
(k)
R + σR(ATRAR)−1

(
−∂tρ(k+1)

R −∇ ·m(k+1)
R + γρ

(k+1)
I +

η2
R

2
∆ρ

(k+1)
R

)
where root+(a, b, c) is a positive root of a cubic polynomial x3 + ax2 + bx+ c = 0 and

ATSAS = −∂tt +
η4
S

4
∆2 − (1 + 2βηS)∆ + β2

ATI AI = −∂tt +
η4
I

4
∆2 − (1 + 2(γ + β)ηS)∆ + (γ + β)2

ATRAR = −∂tt +
η4
R

4
∆2 −∆.

We use FFTW library to compute (ATi Ai)
−1 (i ∈ {S, I, R}) and convolution terms by Fast

Fourier Transform (FFT), which is O(n log n) operations per iteration with n being the

number of points. Thus, the algorithm takes just O(n log n) operations per iteration.

In all, we summarize the algorithm as follows.

Algorithm 4 G-proximal PDHG for mean-field control SIR system

Input: ρi(0, ·) (i ∈ {S, I, R})

Output: ρi,mi, φi (i ∈ {S, I, R}) for x ∈ Ω, t ∈ [0, T ]

While relative error > tolerance For i ∈ {S, I, R}

φ
(k+1)
i = argmaxφ L(ρ(k),m

(k)
i , φ)− 1

2σi
‖φ− φ(k)

i ‖2
H2

ρ
(k+1)
i = argminρ L(ρ,m

(k)
i , 2φ

(k+1)
i − φ(k)

i ) + 1
2τi
‖ρ− ρ(k)

i ‖2
L2

m
(k+1)
i = argminm L(ρ(k+1),m, 2φ

(k+1)
i − φ(k)

i ) + 1
2τi
‖m−m(k)

i ‖2
L2
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Here, the relative error is defined as

relative error =
|P (ρ

(k+1)
i ,m

(k+1)
i )− P (ρ

(k)
i ,m

(k)
i )|

|P (ρ
(k)
i ,m

(k)
i )|

.

3.4 Experiments

In this section, we present several sets of numerical experiments using the algorithm with

various parameters. We wrote C++ codes to run the numerical experiments. Let Ω = [0, 1]2

be a unit cube in R2 and T = 1. The domain Ω is discretized with the regular rectangular

mesh

∆x =
1

Nx

, ∆y =
1

Ny

, ∆t =
1

Nt − 1

xkl = ((k + 0.5)∆x, (l + 0.5)∆y) , k = 0, · · · , Nx − 1, l = 0, · · · , Ny − 1

tn = n∆t, n = 0, · · · , Nt − 1

where Nx, Ny are the number of data points in space and Nt is the number of data points in

time. For all the experiments, we use the same set of parameters,

Nx = 128, Ny = 128, Nt = 32

σ = 0.02, c = 0.01, ηi = 0.01 (i ∈ {S, I, R})

αS = 1, αI = 10, αR = 1

and choose the same terminal cost functional

E(ρI(1, ·)) =
1

2

∫
Ω

ρ2
I(1, x)dx.

By setting a higher value for αI , we penalize the infected population’s movement more than

other populations. Considering the immobility of the infected individuals, this is a reasonable

choice in terms of real-world applications.

We would like to minimize the terminal cost functional E(ρI(T, ·)). A solution needs to

reduce the number of the infected population. There are mainly two ways of reducing the
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number of infected. One way is to recover infected to recovered population. However, it may

not be feasible if the rate of recovery γ is low. Another way to reduce the number of infected

is by separating the susceptible population from the infected population. The number of

infected doesn’t increase if there are no susceptible people near infected. However, the total

cost increases when densities move due to the kinetic energy term ρi|vi|2 (i ∈ {S, I, R}) in

the running cost. A solution needs to find the optimal balance between the terminal cost and

the running cost. Experiment 1 shows the effectiveness of controlling populations’ movements.

We compute two solutions of the model: with and without control of movements. The

comparison between these solutions shows that the number of infected people can be reduced

effectively with the control at the terminal time. Experiment 2 shows that the algorithm finds

the proper solutions based on different recovery rates given nonsymmetric initial densities.

In Experiment 3, we consider a more complicated terminal energy functional E(ρI(T, ·)), and

compute the solutions based on different infection rates.

3.4.1 Experiment 1

In this experiment, we compare the solutions of the SIR model with and without control. We

set initial densities for susceptible, infected and recovered populations as

ρS(0, x = (x1, x2)) = 0.6 exp
(
−10

(
(x1 − 0.5)2 + (x2 − 0.5)2

))
ρI(0, x = (x1, x2)) = 0.6 exp

(
−35

(
(x1 − 0.6)2 + (x2 − 0.6)2

))
ρR(0, x = (x1, x2)) = 0

Susceptible population and infected population are Gaussian distributions centered at (0.5, 0.5)

and (0.6, 0.6), respectively. We set β = 0.7 and γ = 0.1.

We show two different numerical results: one with control and one without control. The

67



formulation without control has the following system of equations,

∂ρS(t, x)

dt
= −βρS(t, x)ρI(t, x)

∂ρI(t, x)

dt
= βρS(t, x)ρI(t, x)− γρI(t, x)

∂ρR(t, x)

dt
= γρI(t, x).

By removing the velocity terms, we assume no movements of population. We solve these

equations by using Euler’s method. Thus, the solution can be computed by iterating

n = 0, · · · , Nt − 2,

ρS(tn+1, xkl) = ρS(tn, xkl)−∆tβρS(tn, xkl)ρI(tn, xkl)

ρI(tn+1, xkl) = ρI(tn, xkl) + ∆t (βρS(tn, xkl)ρI(tn, xkl)− γρI(tn, xkl))

ρR(tn+1, xkl) = ρR(tn, xkl) + ∆tγρI(tn, xkl),

for k = 0, · · · , Nx− 1, l = 0, · · · , Ny− 1. The results can be seen in Figure 3.1 and Figure 3.2.

Figure 3.1 shows snapshots of the initial and terminal densities. The first row shows the initial

densities of susceptible, infected and recovered (from left to right) based on the equations

above. The second row and the third row show the terminal densities without control and

with control, respectively. Figure 3.2 shows a quantitative comparison between these two

solutions. The graphs indicate the total sum of each group over time. More specifically, they

show
∫

Ω
ρi(t, x)dx for i ∈ {S, I, R} from t = 0 to t = 1.

In Figure 3.1, when we compare the susceptible groups from second and third rows, the

susceptible group with control moves more than the susceptible group without control. If

there is no control (the second row in Figure 3.1), the groups don’t move, and the susceptible

group is exposed to the infected group, leading to a high chance of susceptible being infected

over time. If the population is in control (the third row in Figure 3.1), we see a clear

separation between susceptible and infected at the terminal time. This separation decreases

the exposure of susceptible to infected effectively and, as a result, we see less number of the

infected and more number of susceptible at the terminal time from the solution with control.
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Figure 3.1: Snapshots of susceptible (column 1), infected (column 2) and recovered populations

(column 3). The first row shows the initial densities, the second row shows the solution

without control at the terminal time and the third row shows the solution with control at the

terminal time.
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Figure 3.2: The comparison between solutions with and without control. The graphs show

the total population of each group
∫

Ω
ρi(t, x)dx for 0 ≤ t ≤ 1 and i ∈ {S, I, R}.

3.4.2 Experiment 2

In this experiment, we consider nonsymmetric initial densities.

ρS(0, x) = 0.45
(

exp
(
−15((x− 0.3)2 + (y − 0.3)2)

)
+ exp

(
−25((x− 0.5)2 + (y − 0.75)2)

)
+ exp

(
−30((x− 0.8)2 + (y − 0.35)2)

))
ρI(0, x) = 10

(
0.04− (x− 0.2)2 − (y − 0.65)2

)
+

+ 12
(
0.03− (x− 0.5)2 − (y − 0.2)2

)
+

+ 12
(
0.03− (x− 0.8)2 − (y − 0.55)2

)
+

ρR(0, x) = 0.

The susceptible population is the sum of three Gaussian distributions, and the infected

population is the sum of the positive part of quadratic polynomials. We conduct this

experiment to show that the algorithm works well for nonsymmetric initial densities. Moreover,

we choose β = 0.34 (an infection rate) and γ = 0.12 (a recovery rate) from [BFM20] based

on the data in California, U.S. from March to May 2020. Figure 3.3 shows the evolution of

densities using these parameters. We repeat the experiment with the same initial densities and
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β but with different γ (Figure 3.4). In this experiment, we show the solution to the problem

based on γ = 0.36. This experiment is under the scenario when the vaccine comes to the public.

In both figures, evolutions of densities ρi (i ∈ {S, I, R}) are shown at t = 0, 0.21, 0.47, 0.74, 1.

The total population of each density is indicated as sum in the subtitle of each plot, and it is

calculated as
∫

Ω
ρi(t, x)dx for 0 ≤ t ≤ T and i ∈ {S, I, R}.

When γ = 0.12 (a low recovery rate), the solution separates susceptible population away

from infected population. By separating susceptible from infected, the solution prevents

susceptible populations from becoming infected, thus reducing the terminal cost at t = 1.

When γ = 0.36 (a high recovery rate), recovering the infected is considered a better choice

than separating the susceptible population from the infected population. In Figure 3.4, the

susceptible population barely moves over time. We also observe that less number of the

infected and more number of recovered. The total population of the infected at the terminal

time in Figure 3.4 is 0.045, which is smaller than the total population of the infected in

Figure 3.3. This experiment tells us that, with a high recovery rate, the optimal way to

minimize the number of infected is by focusing on recovering them rather than moving the

susceptible population.

3.4.3 Experiment 3

In this experiment, we consider the initial densities

ρS(0, x) =


0.4 if x ∈ B0.3(0.5, 0.5)

0 else

, ρI(0, x) =


0.4 if x ∈ B0.2(0.5, 0.5)

0 else

, ρR(0, ·) = 0

where BR(x1, x2) is a ball of radius R centered at (x1, x2) with value. Furthermore, we

consider the following energy functional:

E(ρI(T, ·)) =

∫
Ω

1

2
ρ2
I(T, x) + ρI(T, x)V (x)dx
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Figure 3.3: Experiment 2. The evolution of populations from t = 0 to t = 1 with β = 0.34

and γ = 0.12. The first row represents the susceptible population, the second row represents

the infected population, and the last row represents the recovered population.

where, for x = (x1, x2),

V (x) =


1 if |x1 − 0.5| < 0.1 and |x2 − 0.5| < 0.1

0 otherwise.

Here V (x) is a step function that equals 1 on a square with a side length 0.2 at the center

of the domain and 0 elsewhere. This energy penalizes if there is a positive infected density

on the square. Thus, the solution has to move the infected density away from the square

region while minimizing the total infected population. In this set of experiments, we show

how the solution changes based on an infection rate β. We consider the case with a high

infection rate β = 0.96, γ = 0.12 (Figure 3.5) and with β = 0.34, γ = 0.12 (Figure 3.6) same
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Figure 3.4: Experiment 2. The evolution of populations from t = 0 to t = 1 with β = 0.34

and γ = 0.36. The first row represents the susceptible population, the second row represents

the infected population, and the last row represents the recovered population.

as Experiment 2.

When β = 0.96 (a high infection rate), the solution minimizes the total infected population

by separating the susceptible from the infected. Due to the usage of this energy functional,

the infected population has to move away from the square region at the center. Since there is

going to be no infected population in this square region at the terminal time, the optimal

place for the susceptible population is inside this square region. As a result, we can see the

concentrated susceptible population inside this square at the terminal time. When β = 0.32

(a low infection rate), the susceptible population does not move as much as in the case

when β is large. There are more overlaps between susceptible and infected groups at the
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terminal time when β is small. However, when β is large, there is a complete separation

between these groups. Thus, based on β and γ values, our model’s solution can find the most

cost-effective way of moving susceptible and infected populations while minimizing the total

infected population.

Figure 3.5: Experiment 3. The evolution of populations from t = 0 to t = 1 with β = 0.96

and γ = 0.12. The first row represents the susceptible population, the second row represents

the infected population, and the last row represents the recovered population.

3.5 Discussion

In this paper, we introduce a mean-field control model for controlling the virus spreading of

a population in a spatial domain, which extends the current SIR model with spatial effect.
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Figure 3.6: Experiment 3. The evolution of populations from t = 0 to t = 1 with β = 0.34

and γ = 0.12. The first row represents the susceptible population, the second row represents

the infected population, and the last row represents the recovered population.

Here, the state variable represents the population status, such as S, I, R, with a spatial

domain, while the control variable is the population’s velocity of motion. The terminal cost

forms government’s goal, which balances the total infection number and maintains suitable

physical movement of essential tasks and goods. Numerical algorithms are derived to solve the

proposed model. Several experiments demonstrate that our model can effectively demonstrate

how to separate the infected and susceptible population in a spatial domain.

Our model opens the door to many questions in modeling, inverse problems, and com-

putations, especially during this COVID-19 pandemic. On the modeling side, first, we are

interested in generalizing the geometry of the spatial domain. Second, our current model
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only focuses on the control of population movement. The control of the diffusion operator

among populations is also of great interest in future work. Third, the government can also

put restrictions on the interaction for a different class of populations, depending on their

infection status. Fourth, in real life, the spatial domain is often inhomogeneous, containing

airports, schools, subways, etc. We also need to formulate our mean-field control model on

a discrete spatial graph (network). Besides, our model focuses on the forward problem of

modeling the virus’s dynamics. In practice, real-time data is generated as a virus spreading

across different regions. To effectively model this dynamic, a suitable inverse mean-field

control problem needs to be constructed. On the computational side, our model involves

a non-convex optimization problem, which comes from the multiplicative term of the SIR

model itself. In future work, we expect to design a fast and reliable algorithm for these

advanced models. We will develop and apply AI numerical algorithms to compute models in

high dimensions.
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CHAPTER 4

The Back-And-Forth Method

For Wasserstein Gradient Flows

We present a method to efficiently compute Wasserstein gradient flows. Our approach is

based on a generalization of the back-and-forth method (BFM) introduced in [JL20] to solve

optimal transport problems. We evolve the gradient flow by solving the dual problem to the

JKO scheme. In general, the dual problem is much better behaved than the primal problem.

This allows us to efficiently run large scale gradient flows simulations for a large class of

internal energies including singular and non-convex energies.

4.1 Introduction

In this work, we are interested in simulating the evolution of parabolic equations of the form

∂tρ−∇ · (ρ∇φ) = 0,

φ = δU(ρ).
(4.1)

Equation (4.1), often referred to as Darcy’s law or the generalized porous medium equation,

describes the evolution of a mass density ρ flowing along a pressure gradient ∇φ generated by

an internal energy functional U . This class of equations models various physical phenomena

such as fluid flow, heat transfer, aggregation-diffusion, and crowd motion [Vaz07, San15].

In general, these equations are both stiff and non-linear making them challenging to solve

numerically. For example, in the important special case where U(ρ) = 1
m−1

∫
ρm (m > 1),
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equation (4.1) becomes a non-linear version of the heat equation

∂tρ−∆(ρm) = 0,

known as the porous medium equation (PME). When U is non-differentiable or non-convex,

simulation of these equations becomes even more difficult. Thus, in this paper, our goal is to

design a method that can efficiently and accurately simulate equation (4.1) for a wide variety

of internal energies U .

Our approach to simulating Darcy’s law is based on the celebrated interpretation of

equation (4.1) as a gradient flow with respect to the Wasserstein metric [JKO98, Ott01]. This

interpretation can be used to create a discrete-in-time approximation scheme known as the

JKO scheme [JKO98]. The scheme constructs approximate solutions by iterating

ρ(n+1) := argmin
ρ

U(ρ) +
1

2τ
W 2

2 (ρ, ρ(n)). (4.2)

Here, τ plays the role of the time step in the scheme and W2(·, ·) is the 2-Wasserstein metric

from the theory of optimal transportation [San15] (see Section 4.2.1 for a brief overview of

optimal transport and the 2-Wasserstein metric). Thanks to the variational structure of the

scheme, the iterates are unconditionally energy stable and one can choose the time step τ

independently from any spatial discretization. In addition, the JKO scheme retains many

desirable properties of the continuum equation, such as comparison and contraction type

principles [JKT20b, DMS16, AKY14].

In light of the many favorable properties of the JKO scheme, there have been many works

devoted to the computation of minimizers for problem (4.2), see [BCW10, CM10, Pey15,

BCM16, BCL16, CDP17, CCW19, CWX20, LMS20] to name just a few. Despite the amount

of work on this problem, it remains a challenge to efficiently solve the JKO scheme at a

high resolution. The main difficulty in solving problem (4.2) lies in the handling of the

Wasserstein distance term. Indeed, there is not a simple formula that gives the variation of

the Wasserstein distance with respect to the density ρ. As such, essentially all methods for
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solving (4.2) are adaptations of algorithms for computing the Wasserstein distance between

two fixed densities.

In this paper, we solve problem (4.2) by adapting the back-and-forth method (BFM)

introduced in [JL20]. BFM is a state-of-the-art algorithm for computing optimal transport

maps between two fixed densities. Instead of directly solving Monge’s optimal transportation

problem, BFM finds optimal maps by solving the associated Kantorovich dual problem.

Building on this approach, rather than directly solving problem (4.2), we instead compute

solutions to its dual problem. The dual problem is a concave maximization problem that

produces the pressure variable at the next time step φ(n+1). The optimal density variable can

then easily be recovered from the pressure via the duality relation φ(n+1) = δU(ρ(n+1)).

There are several advantages to solving the dual problem rather than the original primal

problem. The pressure variable φ has better regularity than the density variable ρ. Indeed,

at worst, the pressure gradient must be square integrable. As a result, the pressure is better

suited to discrete approximation schemes. In addition, there is an explicit formula to compute

derivatives of the dual functional, hence one can apply gradient ascent to solve the dual

problem (the corresponding gradient descent scheme for the primal problem is much more

difficult). Finally, the dual approach is very convenient when U encodes hard constraints

(such as incompressibility of the density), as the dual problem will be unconstrained.

Leveraging the advantages of the dual problem to (4.2) and the special gradient ascent

structure of BFM, we are able to rapidly and accurately solve the JKO scheme for a large

class of internal energies U . We show that the algorithm increases the value of the dual

problem at every step. In particular, this analysis holds even in cases where the Hessian of U

is singular and our analysis has no dependence on the size of the computational grid. As a

result, we are able to simulate equation (4.1) on a much larger scale than previous methods,

and we are easily able to handle difficult cases like incompressible crowd motion models with

obstacles and aggregation-diffusion equations.

79



4.1.1 Overall approach

The back-and-forth method for Wasserstein gradient flows is based on solving the dual

problem associated to the JKO scheme. The starting point for this analysis is Kantorovich’s

dual formulation of optimal transport. Given two measures µ and ν, the dual formulation of

the 2-Wasserstein distance is given by

1

2τ
W 2

2 (µ, ν) = sup
(φ,ψ)∈C

∫
Ω

ψ(x) dµ(x)−
∫

Ω

φ(y) dν(y), (4.3)

where we maximize over the constraint

C := {(φ, ψ) ∈ C(Ω)× C(Ω) : ψ(x)− φ(y) ≤ 1

2τ
|x− y|2}.

Using the dual formulation of optimal transport, we can rewrite problem (4.2) as

inf
ρ

sup
(φ,ψ)∈C

U(ρ) +

∫
Ω

ψ(x) dρ(n)(x)−
∫

Ω

φ(y) dρ(y).

When U is convex, we can interchange the inf and sup to get an equivalent dual problem to

(4.2):

sup
(φ,ψ)∈C

∫
Ω

ψ(x) dρ(n)(x)− U∗(φ), (4.4)

where U∗ is the convex conjugate of U,

U∗(φ) := sup
ρ

∫
Ω

φ(y) dρ(y)− U(ρ).

Problem (4.4) looks difficult due to the constraint encoded by C. Nevertheless, there is a

very convenient way to reformulate the problem. Because ρ(n) is a nonnegative measure, it is

favorable to choose ψ to be pointwise as large as possible. If we fix φ, it then follows that the

corresponding largest possible choice for ψ is given by

φc(x) := inf
y∈Ω

φ(y) +
1

2τ
|x− y|2. (4.5)

Conversely, U∗ is increasing with respect to φ (see Section 4.2.1), therefore, we would like

to choose φ to be pointwise as small as possible. Thus, if we fix ψ, then the corresponding
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smallest choice for φ is given by

ψc̄(y) := sup
x∈Ω

ψ(x)− 1

2τ
|x− y|2. (4.6)

Formulas (4.5) and (4.6) are known as the backward-c-transform and forward-c-transform

respectively. These transforms play an essential role in optimal transport and are integral to

our method. Crucially, we can use these transforms to eliminate the constraint C and either

one of the variables φ or ψ. More explicitly, problem (4.4) is equivalent to maximizing either

one of the following two unconstrained functionals:

J(φ) :=

∫
Ω

φc(x) dρ(n)(x)− U∗(φ), (4.7)

I(ψ) :=

∫
Ω

ψ(x) dρ(n)(x)− U∗(ψc̄). (4.8)

Indeed, if φ∗ is a maximizer of J and ψ∗ is a maximizer of I, then we must have the relations

φc∗ = ψ∗, ψc̄∗ = φ∗,

and (φ∗, ψ∗) is a maximizer of (4.4). The reformulations I and J genuinely simplify the task

of finding maximizers. On a regular discrete grid, the c-transform can be computed very

efficiently [Luc97, JL20]. As a result, it is much more tractable to maximize I and J , rather

than trying work with (4.4) directly.

We will find the maximizers φ∗ and ψ∗ by building upon the BFM algorithm introduced

in [JL20]. The original BFM gives a very efficient scheme for finding the maximizers in the

special case where U∗ is a linear functional. Rather than focusing on either I or J , BFM

simultaneously maximizes both functionals. The method proceeds by hopping back-and-forth

between gradient ascent updates on J in φ-space and gradient ascent updates on I in ψ-space

(hence the name). In between gradient steps, information in one space (φ-space or ψ-space) is

propagated back to the other by taking a forward/backward c-transform. As noted in [JL20],

the advantage of the back-and-forth approach is that certain features of the optimal solution

pair (φ∗, ψ∗) may be easier to build in one space compared to the other. As a result, the
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back-and-forth method converges far more rapidly than vanilla gradient ascent methods that

operate only on φ-space or only on ψ-space.

In order to generalize BFM to the Wasserstein gradient flow case, we need to be able to

guarantee the stability of gradient ascent steps on (4.7) and (4.8) when U∗ is nonlinear. In fact,

for many important cases, the Hessian of U∗ may have a singular component. To overcome

this difficulty, we perform the gradient ascent steps in an appropriately weighted Sobolev

space. The Sobolev control allows us to use Stokes’ Theorem to convert boundary integrals

into integrals over the full space, thus taming the singularities of U∗ (see Section 4.3.2). As a

result of this continuous analysis, the discretized scheme will have a convergence rate that

is independent of the grid size. The back-and-forth method is summarized in Algorithm 5,

where H is the aforementioned weighted Sobolev space.

Algorithm 5 The back-and-forth scheme for solving (4.4)

Given ρ(n) and φ0, iterate:

φk+ 1
2

= φk +∇HJ(φk)

ψk+ 1
2

= (φk+ 1
2
)c

ψk+1 = ψk+ 1
2

+∇HI(ψk+ 1
2
)

φk+1 = (ψk+1)c̄

Once we have solved the dual problem, we can recover the solution to the original problem

(4.2). If U is convex, then the optimal dual variable φ∗ is related to ρ(n+1) through the duality

relation ρ(n+1) = δU∗(φ∗) (see Theorem 4.2.7 in Section 4.2.2). When U is not convex, the

connection between (4.2) and the dual problem becomes more tenuous. Luckily, we can

circumvent this difficulty using a convexity splitting scheme [Eyr98]. Indeed, if we write

U = U1 + U0 where U1 is convex and U0 is concave, then we can replace the JKO scheme

(4.2) with the modified scheme

ρ(n+1) = argmin
ρ

U1(ρ) + U0(ρ(n)) + (δU0(ρ(n)), ρ− ρ(n)) +
1

2τ
W 2

2 (ρ, ρ(n)). (4.9)
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It is well-known that convexity splitting retains the energy stability of a fully implicit scheme.

Crucially, the energy term U1(ρ) +U0(ρ(n)) + (δU0(ρ(n)), ρ− ρ(n)) in (4.9) is a convex function

of the variable ρ, and thus, we can apply the duality approach. All together, our method gives

an extremely rapid way to simulate the PDE (4.1) even when U is non-convex or irregular.

The remainder of the paper is organized as follows. In Section 4.2, we review important

background information on optimal transport, convex analysis, and optimization. In Sec-

tion 4.3, we present the back-and-forth algorithm and explain how to guarantee stability and

choose step sizes. Lastly, in Section 4.4, we demonstrate the accuracy, speed, and versatility of

the algorithm through a wide suite of numerical experiments. In particular, our experiments

include many cases that are well-known to be numerically challenging.

4.2 Background

In this section, we will rigorously establish the connection between the primal and dual

formulations of the JKO scheme. Furthermore, we will review key concepts from optimal

transport and convex analysis that are needed to compute the gradients ∇HJ,∇HI and

establish stability of Algorithm 5. Note that throughout the paper we shall assume that

Ω ⊂ Rd is a bounded open set.

4.2.1 The c-transform and optimal transport

Throughout this section the space of continuous functions over Ω will be denoted by C(Ω).

Definition 4.2.1. Given φ ∈ C(Ω) its backward c-transform is

φc(x) := inf
y∈Ω

φ(y) +
1

2τ
|x− y|2.

Given ψ ∈ C(Ω) its forward c-transform is

ψc̄(y) := sup
x∈Ω

ψ(x)− 1

2τ
|x− y|2.
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Lemma 4.2.1 ([San15]). Given φ, ψ ∈ C(Ω), we have

φcc̄ ≤ φ, ψ ≤ ψc̄c,

and

φcc̄c = φc, ψc̄cc̄ = ψc̄.

Definition 4.2.2. Given φ, ψ ∈ C(Ω), we say that φ is c-convex if φcc̄ = φ and we say that

ψ is c-concave if ψc̄c = ψ. Furthermore, if φc = ψ and ψc̄ = φ, then we say the pair (φ, ψ) is

c-conjugate.

The following two propositions establish the fundamental relationship between optimal

transport and the c-transform.

Proposition 4.2.2 ([Gan94, Gan95b, GM96]). If φ : Ω→ R is c-convex and ψ : Ω→ R is

c-concave, then the maps

Tφ(x) := argmin
y∈Ω

φ(y) +
1

2τ
|x− y|2 (4.10)

and

Sψ(y) := argmax
x∈Ω

ψ(x)− 1

2τ
|x− y|2 (4.11)

are well-defined and unique almost everywhere. Furthermore, if u ∈ C(Ω), then for almost

every x, y ∈ Ω we have the following perturbation formulas for the c-transform

lim
t→0+

(φ+ tu)c(x)− φc(x)

t
= u(Tφ(x)), (4.12)

lim
t→0+

(ψ + tu)c̄(y)− ψc̄(y)

t
= u(Sψ(y)). (4.13)

Finally, if φ and ψ are c-conjugate, then

Sψ(y) = y + τ∇φ(y),

Tφ(x) = x− τ∇ψ(x),

and Tφ
(
Sψ(y)

)
= y, Sψ

(
Tφ(x)

)
= x almost everywhere.
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Proposition 4.2.3 ([San15]). If µ, ν ∈ L1(Ω) are nonnegative densities with the same mass,

then
1

2τ
W 2

2 (µ, ν) = sup
φ∈C(Ω)

∫
Ω

φc(x)µ(x)dx−
∫

Ω

φ(y) ν(y)dy,

1

2τ
W 2

2 (µ, ν) = sup
ψ∈C(Ω)

∫
Ω

ψ(x)µ(x)dx−
∫

Ω

ψc̄(y) ν(y)dy.

Now we can state the fundamental result that guarantees the existence and uniqueness of

the optimal transport maps.

Theorem 4.2.4 ([Bre91, Gan95a, GM96]). If µ, ν ∈ L1(Ω) are nonnegative densities with

the same mass, then there exists a c-conjugate pair (φ∗, ψ∗) such that

φ∗ ∈ argmax
φ∈C(Ω)

∫
Ω

φc(x)µ(x)dx−
∫

Ω

φ(y) ν(y)dy,

ψ∗ ∈ argmax
ψ∈C(Ω)

∫
Ω

ψ(x)µ(x)dx−
∫

Ω

ψc̄(y) ν(y)dy,

1

2τ
W 2

2 (µ, ν) =

∫
Ω

ψ∗(x)µ(x)dx−
∫

Ω

φ∗(y) ν(y)dy,

and Tφ∗ , Sψ∗ are the unique optimal transport maps sending µ to ν and ν to µ respectively,

i.e. Tφ∗#µ = ν and Sψ∗#ν = µ.

4.2.2 Convex duality

Now that we have developed the basics of optimal transport, we are ready to return to the

JKO scheme. To iterate the JKO scheme, one must be able to solve generalized optimal

transport (GOT) problems of the form

ρ∗ = argmin
ρ∈L1(Ω)

U(ρ) +
1

2τ
W 2

2 (ρ, µ), (4.14)

where µ ∈ L1(Ω) is a given nonnegative density. Our method solves the GOT problem by

appealing to its dual formulation. In the rest of this subsection, we shall derive the dual

problem and develop its basic properties. To obtain a well-behaved dual problem, we shall

need the following assumptions on the energy U .
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Assumption 1. The internal energy is given by a proper, convex, and lower semicontinuous

functional U : L1(Ω)→ R ∪ {+∞} such that U(ρ) =∞ if ρ is negative on a set of positive

measure.

Assumption 2. There exists a function s : R → R ∪ {+∞} with superlinear growth such

that

U(ρ) ≥
∫

Ω

s(ρ(y)) dy.

Remark 4.2.1. Assumption 1 encodes the fact that ρ must be a nonnegative density, while

Assumption 2 guarantees that for each B ∈ R the sets {ρ ∈ L1(Ω) : U(ρ) < B} are weakly

compact.

Remark 4.2.2. Except for the convexity requirement, Assumptions 1 and 2 are very natural in

the context of Wasserstein gradient flows. Note that we will eventually consider non-convex

U in Section 4.3.3.

At the heart of duality is the notion of convex conjugation.

Definition 4.2.3. Given a functional U : L1(Ω)→ R its convex conjugate U∗ : L∞(Ω)→ R

is defined by

U∗(φ) := sup
ρ∈L1(Ω)

∫
Ω

φ(x)ρ(x) dx− U(ρ),

Thanks to Assumption 1, U∗ possess an important monotonicity property.

Lemma 4.2.5. U∗ is monotonically increasing, i.e. if φ0, φ1 : Ω→ R are functions such that

φ0 ≤ φ1 pointwise everywhere, then

U∗(φ0) ≤ U∗(φ1).

Proof. By Assumption 1 the internal energy is finite only over nonnegative densities, thus,

U∗(φ) = sup
ρ≥0

∫
Ω

φ(x) ρ(x)dx− U(ρ).
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If we take some ρ ∈ L1(Ω), with ρ(x) ≥ 0 a.e., then we have∫
Ω

φ0(x) ρ(x)dx− U(ρ) ≤
∫

Ω

φ1(x) ρ(x)dx− U(ρ).

Taking a supremum over ρ ≥ 0 finishes the proof.

Now we are ready to reintroduce the twin dual functionals I and J .

Proposition 4.2.6. Fix a nonnegative density µ ∈ L1(Ω). The functionals I, J given by

J(φ) :=

∫
Ω

φc(x)µ(x)dx− U∗(φ)

I(ψ) :=

∫
Ω

ψ(x)µ(x)dx− U∗(ψc̄),

are proper, weakly upper semicontinuous, concave and supφ∈C(Ω) J(φ) = supψ∈C(Ω) I(ψ).

Furthermore, if φ is c-convex and ψ is c-concave, then J and I have first variations

δJ(φ) = Tφ#µ− δU∗(φ),

δI(ψ) = µ− Sψ#δU
∗(ψc̄),

where δU∗ is the first variation of U∗.

Proof. Following the logic in the proof of Lemma 4.2.5, we may write

U∗(ψc̄) = sup
ρ≥0

∫
Ω

ψc̄(y) ρ(y)dy − U(ρ).

Next, let M(Ω× Ω) denote the space of nonnegative measures on Ω× Ω, and for any given

density ρ ≥ 0 define

Π(ρ) :=

{
π ∈M(Ω× Ω) :

∫∫
Ω×Ω

f(y) dπ(x, y) =

∫
Ω

f(y) ρ(y)dy for all f ∈ C(Ω)

}
.

Using the definition of the c-transform, we can then write∫
Ω

ψc̄(y) ρ(y)dy = sup
π∈Π(ρ)

∫∫
Ω×Ω

(
ψ(x)− 1

2τ
|x− y|2

)
dπ(x, y).
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Therefore, we have

−U∗(ψc̄) = inf
ρ≥0

inf
π∈Π(ρ)

U(ρ)−
∫∫

Ω×Ω

(
ψ(x)− 1

2τ
|x− y|2

)
dπ(x, y).

Now it is clear that I can be written as the infimum over a family of linear functionals of ψ.

Hence, I must be proper, concave and weakly upper semicontinuous. An essentially identical

argument applies to J .

Since U∗ is monotonically increasing, Lemma 4.2.5 implies that for any φ, ψ ∈ C(Ω)

J(φ) ≤ I(φc), I(ψ) ≤ J(ψc̄).

Therefore, we must have

sup
ψ∈C(Ω)

I(ψ) = sup
φ∈C(Ω)

J(φ).

When φ and ψ are c-convex/concave respectively, the formulas for the first variations follow

directly from Proposition 4.2.2.

Finally, we conclude this subsection by stating the essential result linking the primal

and dual generalized optimal transport problems. Crucially, this shows how to recover the

solution to (4.14) from the maximizers of I and J .

Theorem 4.2.7 ([JKT20b]). If µ ∈ L1(Ω), U satisfies Assumptions 1, 2, and δU(µ) is not

a constant function, then there exists a unique density ρ∗ and a pair of c-conjugate functions

(φ∗, ψ∗) such that

ρ∗ = argmin
ρ∈L1(Ω)

U(ρ) +
1

2τ
W 2

2 (ρ, µ), φ∗ ∈ argmax
φ∈C(Ω)

J(φ), ψ∗ ∈ argmax
ψ∈C(Ω)

I(ψ),

U(ρ∗) +
1

2τ
W 2

2 (ρ∗, µ) = J(φ∗) = I(ψ∗),

ρ∗ ∈ δU∗(φ∗), φ∗ ∈ δU(ρ∗), ρ∗ = Tφ∗#µ.

Remark 4.2.3. Note that if δU(µ) is constant, then µ = argminρ∈L1(Ω) U(ρ) + 1
2τ
W 2

2 (ρ, µ).

Thus, the excluded case is trivial.
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4.2.3 Concave gradient ascent

Now that we see how to link the JKO scheme to the dual functionals I and J , it remains

to develop a method to find the maximizers of I and J . To that end, in this subsection, we

review classical unconstrained gradient ascent. Let us first recall the notion of gradient. This

will require the structure of a real Hilbert space H with inner product 〈·, ·〉H and norm ‖·‖H.

Definition 4.2.4. Given a point ϕ ∈ H, we say that a bounded linear map δF (ϕ) : H → R

is the first variation (Fréchet derivative) of F at ϕ if

lim
‖h‖H→0

‖F (ϕ+ h)− F (ϕ)− δF (ϕ)(h)‖H
‖h‖H

= 0.

Definition 4.2.5. We say that a map ∇HF : H → H is the H-gradient of F (or simply

gradient if there is no ambiguity about the space H) if

〈∇HF (ϕ), h〉H = δF (ϕ)(h)

for all (ϕ, h) ∈ H ×H.

The above identity highlights that gradients are intimately linked to the inner product of

the Hilbert space, in contrast to first variations. Indeed, note that one can define the notion

of a first variation over any normed vector space, while the notion of a gradient requires an

inner product.

Gradient ascent method

Given a concave functional J over H, consider the gradient ascent iterations

φk+1 = φk +∇HJ(φk). (4.15)

The gradient ascent scheme (4.15) can equivalently be written in the variational form

φk+1 = argmax
φ

J(φk) + δJ(φk)(φ− φk)−
1

2
‖φ− φk‖2

H. (4.16)
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Note that equations (4.15) and (4.16) typically include a step size parameter that controls

how far one travels in the gradient direction. For reasons that will become clear shortly (see

equation (4.20) and the subsequent discussion), we prefer to incorporate any parameters into

the norm ‖·‖H itself.

In order to obtain convergence of the scheme

J(φk) −−−→
k→∞

sup
φ
J(φ),

with an efficient rate, it is essential to choose the norm ‖·‖H properly. If the norm is too

weak, then the algorithm may become unstable and fail to converge. On the other hand,

if the norm is too strong, then very little change happens at each step and the algorithm

converges slowly. The following theorem, one of the cornerstones of optimization, explains

how to balance these competing considerations.

Theorem 4.2.8 ([Nes13]). Let J : H → R be a twice Fréchet-differentiable concave functional

with maximizer φ∗. If

− δ2J(φ)(h, h) ≤ ‖h‖2
H, (4.17)

for all φ, h ∈ H (J is said to be “1-smooth”), then the gradient ascent scheme

φk+1 = φk +∇HJ(φk)

starting at a point φ0 satisfies the ascent property

J(φk+1) ≥ J(φk) +
1

2
‖∇HJ(φk)‖2

H, (4.18)

and has the convergence rate

J(φ∗)− J(φk) ≤
‖φ∗ − φ0‖2

H
2k

. (4.19)

From Theorem 4.2.8, we can again see the competing interests of weakening or strength-

ening the norm ‖·‖H. A stronger norm makes it easier to satisfy equation (4.17), while a

weaker norm gives a better convergence rate in (4.19). Putting these considerations together,

we see that it is optimal to choose the weakest possible norm such that (4.17) holds.
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Sobolev norm

Let Ω be an open bounded convex subset of Rd. Our gradient ascent schemes use a norm H

based on the Sobolev space H1(Ω). For two constants Θ1 > 0 and Θ2 > 0 we define

‖h‖2
H =

∫
Ω

Θ2|∇h(x)|2 + Θ1|h(x)|2 dx. (4.20)

The precise value of Θ1 and Θ2 will depend on the functional being maximized (see for

instance Theorem 4.3.3 in Section 4.3). In many instances, it will be optimal to choose Θ1

and Θ2 to have rather different values. For this reason, we do not wish to reduce these

parameters to a single step size value. The next lemma describes how to compute gradients

with respect to this inner product.

Lemma 4.2.9. Suppose that F = F (φ) is a Fréchet-differentiable functional such that for

any φ the first variation δF (φ) evaluated at any point h can be written as integration against

a function fφ, i.e.

δF (φ)(h) =

∫
Ω

h(x)fφ(x) dx.

Define ‖·‖H by (4.20). Then the H-gradient of F can be written

∇HF (φ) = (Θ1 Id−Θ2∆)−1fφ,

where Id is the identity operator and ∆ is the Laplacian operator, taken together with zero

Neumann boundary conditions.

Proof. Fix φ and consider the unique solution to the elliptic equation
(Θ1 Id−Θ2∆)g = fφ in Ω,

n · ∇g = 0 on ∂Ω.

91



Then we have the chain of equalities

δF (φ)(h) =

∫
Ω

h(x)fφ(x) dx

=

∫
Ω

h(x)(Θ1 Id−Θ2∆)g(x) dx

=

∫
Ω

Θ1h(x)g(x) + Θ2∇h(x) · ∇g(x) dx

= 〈h, g〉H .

This shows that g is the H-gradient of F .

The above result can be restated as follows: the H-gradient of F is obtained by “precon-

ditioning” δF with the inverse operator (Θ1 Id−Θ2∆)−1.

4.3 The back-and-forth method

Our goal is to develop an efficient algorithm for solving the JKO scheme for a large class

of interesting energies U . We begin in Section 4.3.1 with the case where U is convex with

respect to ρ. In this case, the JKO scheme has an equivalent dual problem that we solve

using an adaptation of the back-and-forth method from [JL20]. In Section 4.3.2, we show

that the algorithm is gradient stable in a properly weighted H1 space for convex energies of

the form

U(ρ) =

∫
Ω

um(ρ(x)) + V (x)ρ(x) dx,

where V : Ω→ [0,+∞] is a fixed function, and

um(ρ) =


γ

m−1
(ρm − ρ) if ρ ≥ 0,

+∞ otherwise,

(4.21)

for some constants γ > 0 and m > 1. We shall also consider the two limiting cases m→ 1

and m → ∞. Let us note that our analysis can be extended to more general functionals,

however, we focus on the (important) special case above for clarity of exposition. After we
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have developed the method for convex energy functionals U , in Section 4.3.3 we show how to

generalize the algorithm for non-convex U .

4.3.1 The back-and-forth method for convex U

To iterate the JKO scheme, we must be able to solve the generalized optimal transport (GOT)

problem

ρ∗ = argmin
ρ∈L1(Ω)

U(ρ) +
1

2τ
W 2

2 (ρ, µ), (4.22)

for any fixed nonnegative density µ ∈ L1(Ω). As we saw in Section 4.2 (see Theorem 4.2.7),

when U is convex, the generalized optimal transport problem is in duality with the twin

functionals I and J , i.e.

inf
ρ∈L1(Ω)

U(ρ) +
1

2τ
W 2

2 (ρ, µ) = sup
φ
J(φ) = sup

ψ
I(ψ).

Recall I and J are given by

J(φ) =

∫
Ω

φc(x)µ(x)dx− U∗(φ), (4.23)

I(ψ) =

∫
Ω

ψ(x)µ(x)dx− U∗(ψc̄). (4.24)

Furthermore, the minimizer ρ∗ of problem (4.22) is related to the maximizers φ∗, ψ∗ through

the relations

ρ∗ = Tφ∗#µ, ρ∗ ∈ δU∗(φ∗), φc∗ = ψ∗. (4.25)

Both I and J are unconstrained concave functionals (see Proposition 4.2.6), therefore,

it is now clear that one can find the maximizer of either functional via standard gradient

ascent methods. On the other hand, choosing to work with solely I or solely J breaks the

symmetry of the problem. Thus, rather than focusing on only one of the functionals, the

back-and-forth method performs alternating gradient ascent steps on I and J . Although I

and J use different variables, we can switch between φ and ψ by using the c-transform. As
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noted in [JL20], the alternating steps on I and J substantially accelerate the convergence

rate of the method beyond standard gradient ascent.

We are now ready to introduce our approach to find the twin dual maximizers (φ∗, ψ∗) to

problem (4.22). The method is outlined in Algorithm 6 and is based on two main ideas:

1. A back-and-forth update scheme, alternating between gradient ascent steps on I and J .

2. Gradient ascent steps in an H1-type norm H, with

∇HJ(φ) = (Θ1 Id−Θ2 ∆)−1
[
Tφ#µ− δU∗(φ)

]
,

∇HI(ψ) = (Θ1 Id−Θ2 ∆)−1
[
µ− Sψ#(δU∗(ψc̄))

]
.

Algorithm 6 The back-and-forth scheme for solving (4.23) and (4.24)

Given µ and φ0, iterate:

φk+ 1
2

= φk +∇HJ(φk)

ψk+ 1
2

= (φk+ 1
2
)c

ψk+1 = ψk+ 1
2

+∇HI(ψk+ 1
2
)

φk+1 = (ψk+1)c̄

Our ultimate goal is to show that each step of Algorithm 6 increases the value of the

functionals J and I. Thanks to Lemmas 4.2.1 and 4.2.5 it is easy to check that

J(φk+ 1
2
) ≤ I((φk+ 1

2
)c), I(ψk+1) ≤ J((ψk+1)c̄).

Thus, we see that the alternating steps where we switch between the φ and ψ variables can only

increase the values of the dual problems. To show that the gradient steps φk+ 1
2

= φk+∇HJ(φk)

and ψk+1 = ψk+ 1
2

+∇HI(ψk+ 1
2
) increase the values of J and I respectively requires a more

detailed analysis, which will be the main focus of Section 4.3.2. As we shall see, the enhanced

stability provided by the H1 preconditioner (Θ1 Id−Θ2∆)−1 will be essential to ensure that

the gradient steps have the ascent property.
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Once the dual problems I and J have been solved to sufficient accuracy, one can recover

the optimal density ρ∗ in (4.22) through the duality relations in (4.25). In certain examples,

such as incompressible flows, the subdifferential δU∗ may be multivalued. When this happens,

the relation ρ∗ ∈ δU∗(φ∗) does not uniquely define ρ∗. However, in practice, δU∗ is typically

only multivalued on a single level set of φ∗ which has zero measure. As a result, for numerical

purposes, we can simply identify ρ∗ = δU∗(φ∗). Note that it is advantageous to recover

ρ∗ in this way as opposed to the pushforward relation ρ∗ = Tφ∗#µ. Indeed, the formula

ρ∗ = Tφ∗#µ requires the computation of numerical derivatives of φ∗, while the duality relation

ρ∗ ∈ δU∗(φ∗) is derivative free.

Combining our work, we obtain an algorithm for evolving the JKO scheme.

Algorithm 7 Running the JKO scheme

Given initial data ρ(0), initialize φ(0) = δU(ρ(0)).

for n = 0, . . . , N do

φ(n+1) ←Run Algorithm 6 with µ = ρ(n) and φ0 = φ(n).

ρ(n+1) = δU∗(φ(n+1)).

end

4.3.2 H1 gradient ascent

In order to ensure stability of the gradient ascent steps, the gradients of I and J are computed

in a metric based on the H1 Sobolev norm. Given two constants Θ1 > 0, Θ2 > 0, we define

the Hilbert norm H by

‖h‖2
H =

∫
Ω

Θ2|∇h(x)|2 + Θ1|h(x)|2 dx. (4.26)

The main steps of the back-and-forth scheme are the gradient ascent steps in the in the H

norm

φk+ 1
2

= φk +∇HJ(φk)
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and

ψk+1 = ψk+ 1
2

+∇HI(ψk+ 1
2
).

In order to obtain convergence of our method, we want these steps to increase the values of

the concave functionals J and I respectively. The so-called gradient ascent property

J(φk+ 1
2
)− J(φk) ≥

1

2
‖∇HJ(φk)‖2

H ,

I(ψk+1)− I(ψk+ 1
2
) ≥ 1

2
‖∇HI(ψk+ 1

2
)‖2
H ,

can be obtained when the Hessian bounds

−δ2J(φ)(h, h) ≤ ‖h‖2
H ,

−δ2I(ψ)(h, h) ≤ ‖h‖2
H

(4.27)

are satisfied (c.f. Theorem 4.2.8 in Section 4.2.3). When (4.27) holds, I and J are said to be

“1-smooth” with respect to H.

We shall devote the rest of this subsection to obtaining inequalities of the form (4.27).

Specifically, we shall show how to choose the constants Θ1 and Θ2 in equation (4.26) to ensure

that I and J are 1-smooth (under regularity assumptions on φ and ψ) when U has the form

U(ρ) =

∫
Ω

um(ρ(x)) dx+

∫
Ω

V (x)ρ(x) dx, (4.28)

where um is defined in (4.21) and V : Ω→ [0,+∞] is some given function.

Crucially, we will give upper bounds on Θ1 and Θ2 that can be efficiently computed from

the data. Obtaining tight bounds for Θ1 and Θ2 is important as they essentially control the

step size of the algorithm (note that small values of Θ1 and Θ2 correspond to large gradient

steps). As we explained in Section 4.2.3, it is optimal to choose the smallest values of Θ1 and

Θ2 such that (4.27) holds. This analysis is actually practical, as our numerical experiments

confirm that the convergence of BFM can be substantially accelerated by making good choices

for Θ1 and Θ2.
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Those who are interested in the analysis of these bounds can continue reading this section,

otherwise, one can immediately jump to the statements of Theorems 4.3.3 and 4.3.4, which

give approximately optimal values of Θ1 and Θ2 for the functionals I and J .

4.3.2.1 Hessian bound analysis

It turns out that the Hessian bound analysis is nearly identical for I and J . Therefore, we

will primarily focus on the analysis for J , and we will later explain how to deal with I in a

similar fashion. To obtain Hessian bounds on J(φ) =
∫

Ω
φcµ− U∗(φ), we first derive bounds

on the c-transform term

F (φ) :=

∫
Ω

φc(x)µ(x)dx, (4.29)

and then on the internal energy term U∗(φ). Let us begin by providing an expression for

δ2F (φ), the Hessian of F at a point φ that is c-convex.

Lemma 4.3.1 (Hessian bounds on the c-transform). Let F be the functional defined in

(4.29). If φ is a c-convex function, then the Hessian of F at φ can be written as

δ2F (φ)(h, h) = −τ
∫

Ω

∇h(y) · cof(Id×d + τD2φ(y))∇h(y)µ(y + τ∇φ(y)) dy,

where cof(Id×d + τD2φ(y)) denotes the cofactor matrix of Id×d + τD2φ(y). Furthermore, if

the eigenvalues of Id×d + τD2φ(y) are bounded above by some constant Λ for every y ∈ Ω,

then we have the bound

− δ2F (φ)(h, h) ≤ τ‖µ‖L∞Λd−1‖∇h‖2
L2 . (4.30)

The proof of Lemma 4.3.1 can be found in the appendix. To gain some insight into

the bound (4.30), note that given a positive definite symmetric matrix M ∈ Rd×d with

eigenvalues {λ1, . . . , λd}, the eigenvalues of cof(M) are {det(M)
λ1

, . . . , det(M)
λd
}. This produces

the d− 1 degree scaling of Λd−1. To understand the meaning of Λ itself better, recall that

the optimal primal variable ρ∗ is given by Tφ∗#µ = µ(y + τ∇φ∗(y)) det(Id×d + τD2φ(y)).
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Hence, the eigenvalues of Id×d + τD2φ roughly measure how concentrated the mass of ρ∗ is

compared to µ. Since one expects the difference between ρ∗ and µ to be on the order of τ , it

is reasonable to expect that Λ will be close to 1.

We now turn our attention to bounding the Hessian of the internal energy term U∗(φ).

When U takes the form (4.28), its convex conjugate can be written as

U∗(φ) =

∫
Ω

u∗m(φ(x)− V (x)) dx,

where

u∗m(p) = γ−
1

m−1

((m− 1)p+ γ

m

) m
m−1

+

and (·)+ = max(·, 0). Now it is clear that the Hessian of U∗ is given by

δ2U∗(φ)(h, h) =

∫
Ω

(u∗m)′′
(
φ(x)− V (x)

)
|h(x)|2 dx. (4.31)

When 1 ≤ m ≤ 2, the bounds are straightforward as (u∗m)′′(p) is increasing with respect

to p. Hence, in this case, we have

δ2U∗(φ)(h, h) =

∫
Ω

(u∗m)′′(φ(x)− V (x))|h(x)|2 dx ≤ B‖h‖2
L2(Ω),

where B = supx∈Ω(u∗m)′′(φ(x)− V (x)). It was shown in [JKT20b] that the maximizer φ∗ of

J obeys a maximum type principle in the sense that

φ∗(x) ≤M := sup
x∈Ω

δU(µ)(x).

It is therefore natural to assume that φ will be bounded above by M throughout the algorithm

(the gradient steps tend to diffuse pressure in the regions of highest concentration). Assuming

V (x) ≥ 0 everywhere, it now follows that

δ2U∗(φ)(h, h) ≤ (u∗m)′′(M)‖h‖2
L2(Ω).

The aforementioned maximum principle on the pressure, φ(x) ≤M , can be used again to

write the upper bound in terms of density instead of pressure. Indeed note that

ρ(x) = (u∗m)′(φ(x)− V (x)) ≤ (u∗m)′(φ(x)) ≤ (u∗m)′(M).
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Therefore the quantity

ρmax := (u∗m)′(M) (4.32)

acts a natural upper bound on the densities. Furthermore writing (u∗m)′′(M) = (u∗m)′′
(
u′m(ρmax)

)
=

u′′m(ρmax)−1, we obtain

δ2U∗(φ)(h, h) ≤ u′′m(ρmax)−1‖h‖2
L2(Ω).

The case m > 2 is substantially more complicated. When m > 2, (u∗m)′′ is singular at

zero. Hence, the integrand may be unbounded near points where φ(x) = V (x). In this case,

it may not be possible to bound (4.31) in terms of the L2 norm of h. To understand this

better, let us focus on the most difficult model we consider in this paper: the incompressible

limit m→∞. When m→∞, the energy um encodes a hard ceiling constraint on the density

values, i.e.

u∞(ρ) =


0 if 0 ≤ ρ ≤ 1,

+∞ otherwise.

Hence, the dual energy u∗∞ is given by

u∗∞(p) =


0 if p < 0

p if p ≥ 0.

We pause here to point out that u∗∞ has much better regularity than u∞, for instance u∗∞

is continuous over R while u∞ is discontinuous at 0 and 1. This illustrates once more the

advantage of working with dual quantities. Nevertheless, u∗∞ is clearly not smooth in the

convex sense, as there is a jump of derivative at 0. In fact, we have (u∗∞)′′ = δ0, where δ0

denotes the Dirac delta function at 0.

Luckily, even though U∗ is built from u∗∞ which is not smooth, it is possible to bound the

Hessian of U∗ as long as the singularity only occurs on a small set. Indeed, if we make the

assumption that |∇φ(x)−∇V (x)| stays away from zero on the surface {φ = V }, i.e. there
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exists a constant Γ0 > 0 such that

sup
{x∈Ω:φ(x)=V (x)}

1

|∇φ(x)−∇V (x)|
≤ Γ0

(note this is a quantitative way of saying that {φ = V } is a lower dimensional set), then we

can use the coarea formula to rewrite equation (4.31) as

δ2U∗(φ)(h, h) =

∫
R
(u∗∞)′′(α)

∫
{x∈Ω:φ(x)−V (x)=α}

|h(x)|2

|∇φ(x)−∇V (x)|
ds(x) dα

=

∫
{φ=V }

|h(x)|2

|∇φ(x)−∇V (x)|
ds(x)

≤ Γ0

∫
{φ=V }

|h(x)|2 ds(x),

(4.33)

where ds is the usual surface measure. Due to the fact that the integration occurs over a

surface, we cannot bound the right hand side of (4.33) in terms of ‖h‖L2 . However, we can use

trace inequalities from PDE theory to bound surface integrals by volume integrals involving a

higher derivative [Eva10] (this can be essentially viewed as an inequality version of Stokes’

Theorem). More precisely, there exist constants C1, C2 depending on the surface {φ = V },

but independent of h such that∫
{φ=V }

|h(x)|2 ds(x) ≤ C2‖∇h‖2
L2(Ω) + C1‖h‖2

L2(Ω).

From there we can immediately deduce that U∗ is H-smooth, since

Γ0

∫
{φ=V }

|h(x)|2 ds(x) ≤ ‖h‖2
H

as long as we choose Θi ≥ CiΓ0, i = 1, 2.

Now that we have seen how to obtain Hessian bounds in the most singular case m→∞,

we are ready to return to the case 2 < m < ∞. Note that in this case, (u∗m)′′(p) is zero if

p < 0, singular at zero, and decreasing for p > 0. Hence, if we choose some value λ > 0 and

let

Aλ = {x ∈ Ω : 0 ≤ φ(x)− V (x) ≤ λ},

100



then we immediately have the bound

δ2U∗(φ)(h, h) ≤ (u∗m)′′(λ)‖h‖2
L2(Ω) +

∫
Aλ

(u∗m)′′(φ(x)− V (x))|h(x)|2 dx.

To estimate the second term, we proceed along the same lines as the case m =∞. For any

α ∈ R let {φ − V = α} = {x ∈ Ω : φ(x)− V (x) = α }. As long as we have a constant Γλ

and trace inequality constants C1(α), C2(α) such that

sup
x∈Aλ

1

|∇φ(x)−∇V (x)|
≤ Γλ (4.34)

and ∫
{φ−V=α}

|h(x)|2 ds(x) ≤ C2(α)‖∇h‖2
L2(Ω) + C1(α)‖h‖2

L2(Ω), (4.35)

then we can replicate the argument from above. Combining the coarea formula and trace

inequality, we get the following string of inequalities∫
Aλ

(u∗m)′′(φ(x)− V (x))|h(x)|2 dx

≤ Γλ

∫ λ

0

(u∗m)′′(α)

∫
{φ−V=α}

|h(x)|2 ds(x) dα

≤ (u∗m)′(λ)Γλ

(
C2,λ‖∇h‖2

L2(Ω) + C1,λ‖h‖2
L2(Ω)

)
,

where

Ci,λ = max
0≤α≤λ

Ci(α). (4.36)

Thus, −δ2U∗(h, h) is bounded by ‖h‖2
H as long as we choose

Θ1 ≥ (u∗m)′′(λ) + (u∗m)′(λ) ΓλC1,λ

and

Θ2 ≥ (u∗m)′(λ) ΓλC2,λ

where we have the freedom to choose the precise value of λ.

Our above computations are now summarized in the following lemma.
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Lemma 4.3.2 (Hessian bound on the internal energy). Define ρmax, Γλ and Ci,λ by (4.32), (4.34)

and (4.36).

1. Case 1 ≤ m ≤ 2. We have

δ2U∗(φ)(h, h) ≤ 1

γm
(ρmax)2−m‖h‖2

L2 .

2. Case 2 < m <∞. For any λ > 0,

δ2U∗(φ)(h, h) ≤ (γm′)1−m′C2,λ Γλ ‖∇h‖2
L2+

(γm′)1−m′
(
C1,λ Γλλ

m′−1 + (m′ − 1)λm
′−2
)
‖h‖2

L2 ,

where m′ = m
m−1

.

3. Case m =∞. We have

δ2U∗(φ)(h, h) ≤ C2,0 Γ0‖∇h‖2
L2 + C1,0 Γ0‖h‖2

L2 .

Combining Lemma 4.3.1 and 4.3.2 we directly obtain the main theorem of this section.

Theorem 4.3.3 (1-smoothness of J). Let 1 ≤ m ≤ ∞ and U(ρ) =
∫

Ω
um(ρ(x))+V (x)ρ(x) dx,

where um is defined by (4.21). Then J(φ) :=
∫

Ω
φc(x)µ(x)dx− U∗(φ) satisfies the Hessian

bound

−δ2J(φ)(h, h) ≤ Θ2‖∇h‖2
L2 + Θ1‖h‖2

L2 ,

where Θ1 and Θ2 > 0 are given by the table below (Table 4.1).

As in Lemma 4.3.1, Λ is an upper bound on the eigenvalues of Id×d + τD2φ(y) uniformly

in y. Additionally λ > 0 is a parameter to choose and ρmax, Γλ and Ci,λ are defined

by (4.32), (4.34) and (4.36).
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Table 4.1: Constants Θ1 and Θ2 in Theorem 4.3.3

m Θ1 Θ2

m = 1
ρmax

γ
τΛd−1‖µ‖L∞

1 < m < 2
ρ 2−m

max

γm
τΛd−1‖µ‖L∞

m = 2
1

2γ
τΛd−1‖µ‖L∞

m > 2 (γm′)1−m′
(
λm
′−1C1,λ Γλ +

m′ − 1

λ2−m′

)
(γm′)1−m′C2,λ Γλ + τΛd−1‖µ‖L∞

m =∞ C1,0 Γ0 C2,0 Γ0 + τΛd−1‖µ‖L∞

In order to use Theorem 4.3.3 in the case m > 2, we need to be able to compute Γλ

and Ci,λ and we need to choose a value for λ when m ∈ (2,∞). On a discrete grid with

n points, one can easily compute Γλ for all λ in O(n) operations. On the other hand, it

requires O(n) operations to compute C1(α) and C2(α) for a single value of α (c.f. Section

4.1). Thus, for the case m =∞, we can compute the constants explicitly in O(n) operations.

The case 2 < m <∞ is harder, since we cannot efficiently compute Ci,λ = max0≤α≤λCi(α).

To overcome this difficulty, we typically choose λ by minimizing

λ∗ = argmin
λ≥0

(γm′)1−m′
(
λm
′−1ΓλC1(0) +

m′ − 1

λ2−m′

)
,

which gives a reasonable estimate for the optimal choice of λ to make Θ1 as small as possible.

We then estimate max0≤α≤λ∗ Ci(α) by simply taking the max over Ci(0) and Ci(λ
∗), which

appears to work well in practice.

To conclude this discussion we turn our attention to the other functional I for which a

similar analysis can be made. First we define

p(x) = (ψc̄ − V )(Tψc̄(x)).
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Next, for λ > 0, we define

Γ̃λ = sup
x:0≤p(x)≤λ

1

|∇p(x)|
. (4.37)

Finally, we define trace constants C̃i(α) such that∫
{p=α}

|h(x)|2 ds(x) ≤ C̃2(α)‖∇h‖2
L2 + C̃1(α)‖h‖2

L2 ,

and then set

C̃i,λ = sup
0≤α≤λ

C̃i(α). (4.38)

Now we can state our result bounding the Hessian of I.

Theorem 4.3.4. Let I(ψ) =
∫

Ω
ψ(x)µ(x)dx−U∗(ψc̄), with U(ρ) =

∫
Ω
um(ρ(x))+V (x)ρ(x) dx,

um is defined by (4.21) and 1 ≤ m ≤ ∞. The Hessian of I can be written

− δ2I(ψ)(h, h) = δ2U∗(ψc)(h ◦ Sψ, h ◦ Sψ)+

τ

∫
Ω

∇h(x) · cof(Id×d − τD2ψ(x))∇h(x) δU∗(ψc)(x− τ∇ψ(x)) dx.

It satisfies the bound

−δ2I(ψ)(h, h) ≤ Θ2‖∇h‖2
L2 + Θ1‖h‖2

L2 ,

where Θ1 and Θ2 > 0 are given by the table below (Table 4.2). Here Λ is an upper bound

on the eigenvalues of Id×d − τD2ψ(x) uniformly in x. Additionally λ > 0 is a parameter to

choose and ρmax is defined by (4.32), Γ̃λ by (4.37) and C̃i,λ by (4.38).

4.3.3 Back-and-forth for non-convex U

In this section, we will discuss how to extend our method when U is not convex with respect to

ρ. The trick is to appeal to convexity splitting [Eyr98], a well-known technique for simulating

gradient flows with non-convex energies. The idea behind convexity splitting is to write U as

a sum of a convex function and a concave function, i.e.

U(ρ) = U1(ρ) + U0(ρ),
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Table 4.2: Constants Θ1 and Θ2 in Theorem 4.3.4

m Θ1 Θ2

m = 1
Λdρmax

γ
τΛd−1ρmax

1 < m < 2
Λd(ρmax)2−m

γm
τΛd−1ρmax

m = 2
Λd

2γ
τΛd−1ρmax

m > 2 Λd(γm′)1−m′
(
C̃1,λ Γ̃λλ

m′−1 +
m′ − 1

λ2−m′

)
Λd(γm′)1−m′C̃2,λ Γ̃λ + τΛd−1ρmax

m =∞ ΛdC̃1,0 Γ̃0 ΛdC̃2,0 Γ̃0 + τΛd−1ρmax

where U1 is convex and U0 is concave. Thanks to the concavity of U0, given any fixed density

ρ̄, we have the inequality

U(ρ) ≤ U1(ρ) + U0(ρ̄) + (δU0(ρ̄), ρ− ρ̄). (4.39)

Crucially, the right-hand-side of equation (4.39) is a convex function. As such, if we replace

the JKO scheme with the relaxed scheme

ρ(n+1) = argmin
ρ

U1(ρ) + U0(ρ(n)) + (δU0(ρ(n)), ρ− ρ(n)) +
1

2τ
W 2

2 (ρ, ρ(n)), (4.40)

then we obtain a convex variational problem. The beauty of convexity splitting is that the

relaxed scheme is still unconditionally energy stable. Combining (4.39) and (4.40) we have

the string of inequalities

U(ρ(n+1)) +
1

2τ
W 2

2 (ρ(n+1), ρ(n)) ≤

U1(ρ(n+1)) + U0(ρ(n)) + (δU0(ρ(n)), ρ(n+1) − ρ(n)) +
1

2τ
W 2

2 (ρ(n+1), ρ(n)) ≤

inf
ρ
U1(ρ) + U0(ρ(n)) + (δU0(ρ(n)), ρ− ρ(n)) +

1

2τ
W 2

2 (ρ, ρ(n)).
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By choosing ρ = ρ(n) in the last line, we can conclude that

U(ρ(n+1)) +
1

2τ
W 2

2 (ρ(n+1), ρ(n)) ≤ U(ρ(n)).

Thus, we see that the energy is still decreasing along the iterates of the relaxed scheme.

Now let us turn to solving the relaxed problem (4.40). Since the energy term in (4.40) is

convex, we can solve the problem using the dual approach outlined above. The twin dual

problems associated to (4.40), which we shall denote as J̃ and Ĩ, are given by

J̃(φ) :=

∫
Ω

φc(x) ρ(n)(x)dx− Ũ∗(φ), (4.41)

Ĩ(ψ) :=

∫
Ω

ψ(x) ρ(n)(x)dx− Ũ∗(ψc̄), (4.42)

where

Ũ∗(φ) := U∗1
(
φ− δU0(ρ(n))

)
+ (δU0(ρ(n)), ρ(n))− U0(ρ(n))

is the convex conjugate of U1(ρ) + U0(ρ(n)) + (δU0(ρ(n)), ρ− ρ(n)). We can then find the dual

maximizers (φ(n+1), ψ(n+1)) of (4.41) and (4.42) using Algorithm 6 along with the Hessian

bounds developed in the previous subsection. As before, one can recover the solution ρ(n+1)

of (4.40) through the duality relation ρ(n+1) = δŨ∗(φ(n+1)).

4.4 Numerical implementation and experiments

4.4.1 Implementation details

In this section, we use the back-and-forth method to numerically simulate equation (4.1)

for a wide variety of internal energies U . Throughout this section we will assume that the

domain Ω = [−1/2, 1/2]2 is the unit square in R2, discretized using a regular rectangular

grid. The numerical simulations in this section were coded in C++ and were run on 2019

MacBook Pro with 2.6 GHz 6-core and 16 GB RAM.

Following the approach in [JL20], we will compute the forward and backward c-

transforms using the fast Legendre transform (FLT) algorithm [Luc97]. On a regular
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rectangular grid with n points, the FLT algorithm can be used to compute either the forward

or backward c-transform in O(n) operations. See [JL20] for more detail on the equivalence of

the c-transform and the Legendre transform.

When computing gradients with respect to the weighted norm (4.20), we will need to

solve a Poisson equation with zero Neumann boundary condition. We will solve this equation

numerically via the fast Fourier transform (FFT). All FFTs were calculated using the free

FFTW C++ library.

To compute the gradients of I and J , we will also need to compute pushforwards. Given

a density µ and an invertible map Z : Ω→ Ω we can compute the pushforward Z#µ via the

Jacobian formula

Z#µ(x) =
µ
(
Z−1(x)

)
| det

(
DZ(Z−1(x))

)
|

= µ
(
Z−1(x)

)
| det

(
D(Z−1)(x)

)
|.

In our case, we will only need to compute pushforwards with respect to the maps Tφ and Sψ that

are induced by the forward and backward c-transforms respectively. Thanks to the structure

of BFM, we only need to compute Tφ#ρ
(n) and Sψ#δU

∗(ψc̄) when φ and ψ are c-convex and

c-concave respectively. As a result, we have the simple formulas T−1
φ (y) = y + τ∇φ(y) and

S−1
ψ (x) = x− τ∇ψ(x). Therefore,

Tφ#ρ
(n)(y) = ρ(n)

(
y + τ∇φ(y)

)
det
(
Id×d + τD2φ(y)

)
,

and

Sψ#δU
∗(ψc̄)(x) =

(
δU∗

(
ψc̄
)
◦
(
x− τ∇ψ(x)

))
det
(
Id×d − τD2ψ(x)

)
.

When implementing our algorithm, we compute these quantities using a simple centered

difference scheme.

Finally, let us briefly explain how to compute the trace inequality constants Ci(α) defined

in equation (4.35). From Lemma A.2.1 and Corollary A.2.2 in the Appendix, we see that
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Ci(α) can be computed from the solution u to the Eikonal equation
|∇u(x)| = 1 if φ(x)− V (x) 6= α,

u(x) > 0 if φ(x)− V (x) < α,

u(x) < 0 if φ(x)− V (x) > α.

Note that

|u(x)|2 = min
{y:φ(y)−V (y)=α}

|x− y|2,

which is nothing but a c-transform of the indicator function

χα(y) =


0 if φ(y)− V (y) = α,

+∞ else.

Therefore, |u|2 can be computed in O(n) operations using the Fast Legendre transform, and

from there one can recover u. Once one has u, it is straightforward to compute the constants

in Corollary A.2.2 in O(n) operations.

4.4.2 Experiments

We present four sets of numerical experiments. In the first set of experiments, we demon-

strate the speed and accuracy of our method by comparing to the so-called Barrenblat

solutions, a special case of equation (4.1) where closed-form solutions are available. In the

next set of experiments, we simulate the porous media equation ∂tρ = ∆(ρm) +∇ · (ρ∇V )

for various interesting functions V : Ω → R ∪ {+∞} and values of m. Note that if V

takes the value +∞ on some closed set E ⊂ Ω, then ρ can never enter E. Hence, this

is equivalent to solving (4.1) on the more complicated domain Ω \ E. In the third set of

experiments, we use the splitting scheme from Section 4.3.3 to simulate (4.1) when U is

nonconvex. In this case, the non-convexity will come from an interaction energy of the

form W(ρ) =
∫

Ω

∫
Ω
W (x− y)ρ(x)ρ(y) dy dx. Finally, in the last set of experiments, we study

incompressible flows where U encodes the hard constraint ρ ≤ 1 everywhere. In this case,

108



the dual energy U∗ will have a very singular Hessian at the boundary of the support of ρ.

Nonetheless, we are still able to simulate the evolution even on very fine grids.

4.4.2.1 Accuracy: Barenblatt solutions

In this experiment, we use our back-and-forth algorithm to solve the PME,

∂tρ = γ∆(ρm), (4.43)

with the initial data

ρ(0, x) = Mδ0(x).

Here, γ > 0 is a constant that controls the speed of the diffusion, M > 0 is the total initial

mass and δ0 is the standard Dirac distribution centered at zero. When m > 1, this equation is

the Wasserstein gradient flow of the energy U(ρ) =
∫

Ω
γ

m−1
ρ(x)m dx. Thanks to the simplicity

of the initial data, on the domain R2 the equation has a closed form solution, known as the

Barenblatt solution [Bar96, Bar03],

ρ(t, x) =

((
M

4πmtγ

)m−1
m

− (m− 1)

4m2tγ
|x|2
) 1

m−1

+

, (4.44)

where (·)+ = max(·, 0). The Barenblatt solution is compactly supported, therefore, it agrees

with the solution on the square [−1/2, 1/2]2 up until the time tc = m−1
16m2γ

(π(m−1)
4mM

)m−1 when

the mass hits the boundary of the square.

Using the Barenblatt solution as a benchmark, we can test the accuracy and efficiency of

our scheme. We will simulate the equation for the exponents m = 2, 4, 6. Since the Dirac

delta function is challenging to work with numerically, we shall instead fix a height h0 > 0

and start the flow at a time t0 > 0, where t0 is chosen so that ‖ρ(t0, ·)‖L∞ = h0. Note that

the value of t0 will depend on the exponent m, and can be found explicitly from equation

(4.44). In addition, we will only consider the flow within in the time interval [t0, tc], since the

Barenblatt solution is only valid on the unit square up to time tc.
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In all of our benchmark experiments, we shall set M = 0.5, h0 = 15 and γ = 10−3.

Note that the small value of γ is just a time rescaling to ensure that the flow occurs on a

macroscopic time interval. We will compute the evolution between the times t0 ≤ t ≤ 2 + t0

with different step sizes τ = 0.4, 0.2, 0.1, 0.05, 0.025 (one can check that with our parameter

choices t0 + 2 < tc for m = 2, 4, 6). Running the experiments with various time step sizes

allows us to verify that the scheme becomes more accurate as the time step is decreased. We

shall measure the accuracy of the solution using the L1 norm, which is very natural in the

context of Wasserstein gradient flows (see for instance [JKT20b]). The precise formula for

our error estimate is

error =
1

Nτ

Nτ∑
n=0

∫
Ω

|ρ(nτ + t0, x)− ρ(n)(x)| dx, (4.45)

where Nτ = b 2
τ
c, ρ(nτ+t0, x) is the Barenblatt solution and ρ(n) is the nth JKO iterate starting

from the initial data ρ(0)(x) = ρ(t0, x). When solving for φ(n+1), we will run Algorithm 6

until the residual ‖Tφ − δU∗(φ)‖L1(Ω) is less than ε = 10−3.

The results of these experiments are displayed in Table 4.3 and Figure 4.1. Table 4.3

displays the error (4.45) and the total computation time for all of the aforementioned

experiments. In Figure 4.1, we plot a cross section of our solutions and the exact solution at

various time snapshots. The cross section is taken along the horizontal line {(x1, 0) : x1 ∈

[−1/2, 1/2]}. One can see that as the time step is decreased, our solution is in excellent

agreement with the exact solution for all exponents m = 2, 4, 6. Figure 4.1 also shows that

our method correctly captures the discontinuity of ∇ρ at the boundary of the support of ρ.

This is notable as most other numerical methods smooth out the discontinuity. The reason

that we are able to correctly capture the discontinuity is due to the fact that we recover

the density through the duality relation ρ(n+1) = δU∗(φ(n+1)) =
(
m−1
mγ

max(φ, 0)
) 1
m−1

. The

function s(x) = max(x, 0)
1

m−1 has discontinuous derivatives at zero, therefore even when

φ(n+1) is smooth, ∇ρ will still have a discontinuity at the boundary of its support.
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Table 4.3: Barenblatt solution test case (grid size 512× 512)

τ Nτ

m = 2 m = 4 m = 6

Error Time (s) Error Time (s) Error Time (s)

0.4 5 6.35× 10−2 14.54 1.19× 10−1 23.11 1.13× 10−1 22.02

0.2 10 3.72× 10−2 22.16 7.95× 10−2 30.34 7.48× 10−1 30.41

0.1 20 2.08× 10−2 36.57 5.03× 10−2 48.41 4.74× 10−2 43.95

0.05 40 1.18× 10−2 55.64 3.06× 10−2 77.03 2.90× 10−2 80.10

0.025 80 8.26× 10−3 77.67 1.89× 10−2 140.38 1.79× 10−2 164.89

4.4.2.2 Slow diffusion with drifts and obstacles.

In our next set of experiments, we add spatially varying potentials to the energy functional.

The resulting equations are a type of drift-diffusion equations. The energy takes the specific

form

U(ρ) =

∫
Ω

γ

m− 1
ρm(x) + V (x)ρ(x)dx,

where V is a given function.

In the first set of experiments, we consider an example where the initial density is the

characteristic function of a star shaped region normalized to have mass 1, and we use the

fixed potential function

V1(x) = 1− sin(5πx1) sin(3πx2). (4.46)

The initial data and the potential V1 are shown in Figure 4.2.

Using this setup, we run two different experiments, one where m = 2 and another where

m = 4. In both cases, we set γ = 0.1 and use the time step τ = 0.001. We run the equations

until we reach a state that is essentially stationary. The flow for m = 2 is run from time

t = 0 to time t = 5, and the flow for m = 4 is run from time t = 0 to time t = 2. The flow

for the m = 2 case is shown in Figure 4.3 and the m = 4 case is shown in Figure 4.4. The
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solutions show the density is drawn to regions where the potential is small, while avoiding

concentration due to the ρm term. Notice that the steady state for m = 4 is much more

diffuse than the steady state for m = 2, this is because ρ4 penalizes concentration much more

than ρ2.

Next, we consider a different potential function:

V2(x) = 10
(
(x1 − 0.4)2 + (x2 − 0.4)2

)
+ ιΩ\E(x) (4.47)

where E is a given subset of Ω and ιΩ\E : Ω→ R ∪ {+∞} is the indicator function

ιΩ\E(x) =


0 if x ∈ Ω\E

+∞ if x ∈ E.

With this setup, the set E represents an obstacle that the density is not allowed to penetrate.

During the flow, the density diffuses and drifts towards the lower level sets of V2, all while

avoiding the set E.

In Figure 4.5 and Figure 4.6, we display two different experiments with different obstacles

E, but the same diffusion exponent m = 4. In both experiments, the starting density is the

characteristic function of a square centered at (−0.3,−0.3) with side length 0.2 renormalized

to have unit mass. In Figure 4.5, the obstacle is a disc with radius 0.2 centered at the

origin, and in Figure 4.6, the obstacle is a star shaped region centered at the origin. In

both experiments, we set τ = 0.001, γ = 0.0075 and we run the flow until time t = 2. An

interesting difference between the two flows is that the non-convexity of the star shaped

obstacle results in some mass being trapped between the arms of the star. It is not entirely

clear if the mass eventually escapes as time goes to infinity. This is because the PME allows

for compactly supported solutions (in contrast to say the behavior of the heat equation).
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4.4.2.3 Non-convex U (aggregation-diffusion)

In this experiment, we simulate (4.1) with an energy functional U that is not a convex with

respect to ρ. Specifically, we consider the energy

U(ρ) =W(ρ) +

∫
Ω

1

60
ρ3(x) dx, (4.48)

where

W(ρ) :=
1

2

∫
Ω

∫
Ω

|x− y|2ρ(x)ρ(y) dy dx.

By separating out the square, one can check W is concave with respect to ρ.

While convex energies U encourage mass diffusion, non-convex energies allow for both

aggregation and diffusion phenomena. Indeed, one can see that W(ρ) encourages the density

to concentrate while the ρ3 term encourages the density to diffuse. Due to the convolution,

W can be viewed as a “lower order” term as compared to ρ3. However, since the coefficients

in front of the convolution is much larger than the coefficient in front of the ρ3 term, the

aggregation effect will dominate until the density reaches a certain saturation level.

Here we run a single experiment starting with an initial density that is the sum of the

characteristic function of four squares with side lengths 0.2 centered at each combination of

(±0.3,±0.3) and renormalized to have total mass equal to one. We set τ = .005 and run the

flow from time t = 0 to t = 10, at which time the evolution appears to have reached a steady

state.

The results of the experiment are displayed in Figures 4.7 and 4.8. Figure 4.7 displays

a heat map of the density evolution, while Figure 4.8 gives a 3 dimensional plot showing

the height of the density. Throughout the evolution, one can see the competing effects of

aggregation and diffusion. The heights of the four densities decrease due to diffusion, however

aggregation pulls the four separate components together towards the center of the domain.
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4.4.2.4 Incompressible projections and flows

In our last set of experiments, we consider incompressible flows, which have applications to

crowd motion models and fluid mechanics. Here the energy takes the form

U(ρ) = s∞(ρ) +

∫
Ω

V (x)ρ(x) dx, (4.49)

where

s∞(ρ) =


0 if 0 ≤ ρ(x) ≤ 1 for a.e. x ∈ Ω,

∞ otherwise,

and V is a fixed potential function. Note that s∞(ρ) can be seen as the limit of the energy

sm(ρ) =
1

m− 1

∫
Ω

ρm(x) dx

as m→∞.

We will run our experiments, using the potential energy

V (x) =
1

2

(
(x1 −

3

10
)2 + (x2 −

3

10
)2
)

+ ιΩ\E(x) (4.50)

where E is a closed set that represents an impenetrable obstacle. We run two simulations

using two different obstacles

E1 = B 1
4
(
1

5
,−1

5
) ∪B 1

4
(−1

5
,
1

5
)

and

E2 = B 1
10

(0,
1

5
) ∪B 1

10
(0,−1

5
) ∪B 1

10
(
1

5
, 0) ∪B 1

10
(−1

5
, 0),

where Br(x1, x2) denotes the closed ball of radius r centered at (x1, x2). In both experiments,

we choose an initial density ρ(0), which equals 1 on a ball of a radius 0.15 centered at

(−0.3,−0.3) and is equal to 0 elsewhere.

The results of our experiments are displayed in Figures 4.9 and 4.10. Figure 4.9 uses the

obstacle E1, while Figure 4.10 uses the obstacle E2. In the figures, the yellow pixels represent
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the density ρ(n) and white pixels represents the obstacle. In both experiments we use a time

step τ = 0.05 and run the evolution from time t = 0 to time t = 20. Both experiments are

conducted on 1024× 1024 pixel grids.

Notably, in both of the simulations depicted in Figures 4.9 and 4.10, there is a sharp

interface separating the regions ρ = 1 and ρ = 0. This matches the expected behavior of the

flow with our chosen potentials. In general, it is difficult for numerical methods to correctly

capture sharp interfaces. Again, the reason that our method is able to do so is because of our

dual approach. By recovering the density through the duality relation ρ(n+1) ∈ δU∗(φ(n+1))

we automatically produce a discontinuity at the level set {y ∈ Ω : φ(n+1)(y)− V (y) = 0}.
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Figure 4.1: Cross sections of our computed solutions and the exact Barenblatt solution at

times t = t0, t0 + 0.4, t0 + 0.8, t0 + 2 along the horizontal line {(x1, 0) : x1 ∈ [−1/2, 1/2]}.

Row 1: m = 2, Row 2: m = 4, Row 3: m = 6.

116



Initial density The potential V1

Figure 4.2: Higher values are depicted with brighter pixels.

Figure 4.3: PME with exponent m = 2 and potential given by (4.46). The images show

the evolution from time t = 0 to t = 5 (top left to bottom right). The final image is the

approximate steady state. Images are 512× 512 pixels. Brighter pixels indicate larger density

values.
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Figure 4.4: PME with exponent m = 4 and potential given by (4.46). The images show

the evolution from time t = 0 to t = 2 (top left to bottom right). The final image is the

approximate steady state. Images are 512× 512 pixels. Brighter pixels indicate larger density

values.

Figure 4.5: PME with exponent m = 4, γ = .0075 and potential given by (4.47). The obstacle

E is represented by the white region. The images show the evolution from time t = 0 to

t = 2 (top left to bottom right). Images are 512 × 512 pixels. With the exception of the

obstacle, brighter pixels indicate larger density values.
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Figure 4.6: PME with exponent m = 4, γ = .0075 and potential given by (4.47). The obstacle

E is represented by the white region. The images show the evolution from time t = 0 to

t = 2 (top left to bottom right). Images are 512 × 512 pixels. With the exception of the

obstacle, brighter pixels indicate larger density values.

Figure 4.7: Aggregation-diffusion equation with an energy given by (4.48). The images show

the evolution from time t = 0 to t = 10 (top left to bottom right). The final image is the

approximate steady state. Images are 512× 512 pixels. Brighter pixels indicate larger density

values.
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Figure 4.8: Aggregation-diffusion equation with an energy given by (4.48). The images show

a 3-d surface plot of the evolution from time t = 0 to t = 10 (top left to bottom right). The

final image is the approximate steady state. Images are 512× 512 pixels.

Figure 4.9: Incompressible flow with the energy (4.49), potential (4.50), and obstacle E1.

The images show the evolution from time t = 0 to t = 20 (top left to bottom right). The

final image is the approximate steady state. Images are 1024× 1024 pixels. Yellow pixels

represents the density and white pixels represents the obstacle.
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Figure 4.10: Incompressible flow with the energy (4.49), potential (4.50), and obstacle E2.

The images show the evolution from time t = 0 to t = 20 (top left to bottom right). The

final image is the approximate steady state. Images are 1024× 1024 pixels. Yellow pixels

represents the density and white pixels represents the obstacle.
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APPENDIX A

Supplementary materials

A.1 Chapter 3 supplementary materials

Proof of Proposition 3.2.1. From the saddle point problem (3.6), we can rewrite the problem

as

inf
(ρi,mi)i∈{S,I,R}

sup
φ
L((ρi,mi, φi)i∈{S,I,R})

= inf
(ρi,mi)i∈{S,I,R}

sup
φ

P ((ρi,mi)i∈{S,I,R})−
∫ T

0

∫
Ω

∑
i∈{S,I,R}

φi

(
∂tρi +∇ ·mi −

η2
i

2
∆ρi

)
dx dt

+

∫ T

0

∫
Ω

Q((ρi, φi)i∈{S,I,R}) dx dt

(A.1)

where

Q((ρi, φi)i∈{S,I,R}) = βρS(φI − φS)K ∗ ρI + γρI(φR − φI).

If ((ρi,mi, φi)i∈{S,I,R}) is the saddle point of the problem, the differential of Lagrangian with

respect to ρi, mi, φi (i ∈ {S, I, R}), and ρI(T, ·) equal to zero. Thus, from δL
δφi

= 0 we have

∂tρi +∇ ·mi −
η2
i

2
∆ρi −

δQ
δφi

= 0, (t, x) ∈ (0, T )× Ω, i = S, I, R.
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Using integration by parts, we reformulate the Lagrangian function (A.1) as follows.

L((ρi,mi, φi)i∈{S,I,R})

=E(ρI(T, ·)) +

∫ T

0

∫
Ω

c

2
(ρS + ρI + ρR)2 +

∫ T

0

∫
Ω

Q((ρi, φi)i∈{S,I,R}) dx dt

+
∑

i=S,I,R

∫ T

0

∫
Ω

αi|mi|2

2ρi
+mi · ∇φi +

η2
i

2
ρi∆φi dx dt+

∑
i=S,I,R

∫ T

0

∫
Ω

ρi∂tφi dx dt

+
∑

i=S,I,R

∫
Ω

ρi(0, x)φi(0, x)− ρi(T, x)φi(T, x)dx.

From δL
δρi

= 0 (i ∈ {S, I, R}),

c(ρS + ρI + ρR) +
δQ
δρi

((ρi, φi)i∈{S,I,R})−
αi|mi|2

2ρ2
i

+
η2
i

2
∆φi + ∂tφi = 0 (t, x) ∈ (0, T )× Ω

From δL
δρI(T,·) = 0,

δE

δρI(T, ·)
(ρI(T, ·)) = φI(T, ·).

From δL
δmi

= 0 (i ∈ {S, I, R}),

αimi

ρi
= −∇φi (t, x) ∈ (0, T )× Ω, i ∈ {S, I, R}.

By replacing αimi
ρi

= −∇φi in δL
δρi

= 0 and δL
δφi

= 0, we derive the result.

Proof of Lemma 3.3.2. Let q = (u, p). By the definition of M (k), we have

〈q,M (k)q〉 =
1

τ (k)
‖u‖2

L2 +
1

σ(k)
‖p‖2

H(k) − 2〈u,ATu(k)p〉L2 .

Using Young’s inequality and Lemma 3.3.1,

≤
(

1

τ (k)
+ 1

)
‖u‖2

L2 +

(
1

σ(k)
+ 1

)
‖p‖2

H(k)

≤
(

1

τ (k)
+ 1

)
‖u‖2

L2 + C2

(
1

σ(k)
+ 1

)
‖p‖2

L2 ≤ Θ2‖q‖2
L2 .

We are left to show the lower bound. Let ε > 0 be such that τ (k)σ(k) = (1− ε)2. Then using

Hölder’s inequality,

〈q,M (k)q〉 ≥ 1

τ (k)
‖u‖2

L2 +
1

σ(k)
‖p‖2

H(k) − 2‖u‖L2‖p‖H(k)

=
1

τ (k)
‖u‖2

L2 +
1

σ(k)
‖p‖2

H(k) −
2(1− ε)√
τ (k)σ(k)

‖u‖L2‖p‖H(k) .
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Again, using Young’s inequality and Lemma 3.3.1,

≥ ε

τ (k)
‖u‖2

L2 +
ε

σ(k)
‖p‖2

H(k) ≥
ε

τ (k)
‖u‖2

L2 +
c2ε

σ(k)
‖p‖2

L2 ≥ θ2‖q‖2
L2 .

This proves the claim.

A.2 Chapter 4 supplementary materials

Proof of Lemma 4.3.1.

Step 1: Derivation of the Hessian. In order to obtain the Hessian of F let us start with

the first derivative. We have

F (φ+ h)− F (φ) =

∫
Ω

[
(φ+ h)c(x)− φc(x)

]
µ(x)dx.

Assume that φ is c-convex. Then Proposition 4.2.2 tells us how to differentiate the c-transform,

so that we may write∫
Ω

[
(φ+ h)c(x)− φc(x)

]
µ(x)dx =

∫
Ω

h(Tφ(x))µ(x)dx+ o(h).

Therefore δF (φ)(h) =
∫

Ω
h(Tφ(x))µ(x)dx. To derive the Hessian of F we similarly compute

δF (φ+ h)(h)− δF (φ)(h) =

∫
Ω

[
h(Tφ+h(x))− h(Tφ(x))

]
µ(x)dx.

We must now differentiate the maps Tφ with respect to φ. By Proposition 4.2.2 we know that

Tφ(x) = x− τ∇φc(x). As a consequence

Tφ+h(x)− Tφ(x) = −τ∇[(φ+ h)c − φc](x)

= −τ∇(h ◦ Tφ)(x) + o(h)

= −τDTφ(x)T∇h(Tφ(x)) + o(h).

Note thatDTφ = Id×d−τD2φc is a symmetric matrix. We deduce from the above computations
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that

δF (φ+ h)(h)− δF (φ)(h) = ∫
Ω

∇h(Tφ(x)) · (−τ)DTφ(x)∇h(Tφ(x))µ(x)dx+ o(h),

from which we conclude that

δ2F (φ)(h, h) = −τ
∫

Ω

∇h(Tφ(x)) ·DTφ(x)∇h(Tφ(x))µ(x)dx.

Since our goal is to bound this Hessian by a norm of h we do the change of variable y = Tφ(x),

or equivalently x = Sφc(y) since Sφc is the inverse of Tφ, see Proposition 4.2.2. We obtain

δ2F (φ)(h, h) = −τ
∫

Ω

∇h(y) ·DTφ(Sφc(y))∇h(y)µ(Sφc(y)) detDSφc(y)dy.

Note that DSφc is a positive semi-definite matrix and therefore no absolute value is needed

on the determinant term. Moreover we have DTφ(Sφc(y)) = DSφc(y)−1 and putting this term

together with the determinant we can form the cofactor matrix cof(DS) = det(DS)DS−1.

As a result we obtain the expression

δ2F (φ)(h, h) = −τ
∫

Ω

∇h(y) · cof(DSφc(y))∇h(y)µ(Sφc(y))dy.

Step 2: Hessian bounds. Since φ is c-convex, φ = φcc̄ and therefore Sφc(y) = y + τ∇φ(y).

The c-convexity of φ also implies that the symmetric matrix DSφc(y) = Id×d + τD2φ(y)

is positive semi-definite. Assume now that Id×d + τD2φ(y) ≤ Λ Id×d for all y ∈ Ω. Then

Id×d+τD2φ(y) is a symmetric matrix with eigenvalues between 0 and Λ. By general properties

of the cofactor matrix the eigenvalues of cof(DSφc(y)) lie between 0 and Λd−1 where d is the

space dimension. We immediately deduce

−δ2F (φ)(h, h) ≤ τΛd−1‖µ‖L∞
∫

Ω

|∇h(y)|2 dy.
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Lemma A.2.1. Suppose that E ⊂ Rd is a bounded set with C2 boundary and let R :=

Reach(∂E). Let u0 : Rd → R be a solution to the Eikonal equation |∇ui| = 1 where u0 < 0

inside E and u0 > 0 outside E and set u1 = −u0. Let

E0
r = {x ∈ Rd : u0(x) ∈ (0, r)}.

and

E1
r = {x ∈ Rd : u1(x) ∈ (0, r)}.

If g : Rd → R is a smooth function, then for i = 0, 1∫
∂E

|g(x)|ds(x) ≤ inf
0<r<R

(∫
Eir

|∇g(x)| dx+ Ci(E, r)

∫
Eir

|g(x)| dx
)

where

Ci(E, r) = inf
0<r′<r

1

r′
+ sup

x∈Ei
r′

(∆ui(x))+

Remark A.2.1. The reach of ∂E is the largest number r such that the characteristics of u0 do

not cross in E0
r ∪ E1

r . When ∂E is C2, the reach must be strictly positive and the Laplacian

∆u must be bounded on E0
r ∪ E1

r for all r smaller than the reach of ∂E.

Remark A.2.2. If E is a convex set, then C1(E, r) = 1
r
.

Proof. Note that if x ∈ ∂E and n(x) is the outward facing normal at x, then ∇u0(x) = n(x).

Therefore, ∫
∂E

|g(x)| ds(x) =

∫
∂E

|g(x)|∇u0(x) · n(x) ds(x)

For some r ∈ (0, R) let αr : R→ R be a function such that

α′r(t) =


1 if t ≥ 0,

1 + t
r

if t ∈ (−r, 0),

0 if t ≤ −r.

We then have∫
∂E

|g(x)|∇u0(x) · n(x) ds(x) =

∫
∂E

|g(x)|∇
(
αr
(
u0(x)

))
· n(x) ds(x) =
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∫
E

∇ ·
(
|g(x)|∇

(
αr
(
u0(x)

)))
dx

where the last equality follows from Stokes Theorem. Expanding out the derivatives and

noting that α′r(t) ∈ [0, 1], α′′r(t) ∈ [0, 1
r
] and α′(u0(x)), α′′(u0(x)) both vanish for x outside of

E0
r , we get ∫

∂E

|g(x)|ds(x) ≤
∫
E0
r

|∇g(x)| dx+

∫
E0
r

|g(x)|
(
(∆u0(x))+ +

1

r

)
dx ≤

∫
E0
r

|∇g(x)| dx+ C0(E, r)

∫
E0
r

|g(x)| dx

Our choice of r was arbitrary, thus we can take an inf over r ∈ (0, R) to conclude the result

when i = 0.

To tackle the case i = 1, we will employ a nearly identical argument, except we will

use Stokes Theorem to convert the boundary integral into an integral over Rd \ E. Since

∇u1(x) · n(x) = −1 for x ∈ ∂E, we have∫
∂E

|g(x)| ds(x) = −
∫
∂E

|g(x)|∇
(
αr
(
u1(x)

))
· n(x) ds(x) =

∫
Rd\E
∇ ·
(
|g(x)|∇

(
αr
(
u1(x)

)))
dx

Now an identical argument to the one above gives the bound for the case i = 1.

Corollary A.2.2. Suppose that E ⊂ Ω is a set with C2 boundary and let R := min(Reach(∂E), dist(E, ∂Ω)).

Define ui, E
i
r, and Ci(E, r) as in Lemma A.2.1, and let

C(E,Ω) = min
i∈{0,1}

inf
0<r<R

Ci(E, r).

If h : Ω→ R is an H1 function, then∫
∂E

|h(x)|2 dx ≤ 1

C

∫
Ω

|∇h(x)|2 + 2C

∫
Ω

|h(x)|2 dx,

where

C = max(1, C(E,Ω)).
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Proof. Suppose first that h : Ω→ R is a smooth function. By Lemma A.2.1, we have∫
∂E

|h(x)|2 ds(x) ≤ inf
0<r<R

(∫
Eir

2|h(x)∇h(x)| dx+ Ci(E, r)

∫
Eir

|h(x)|2 dx
)

for i = 0, 1. Clearly this is bounded from above by∫
Ω

2|h(x)∇h(x)| dx+ inf
0<r<R

Ci(E, r)

∫
Ω

|h(x)|2 dx

Taking a minimum over i = 0, 1, we can conclude that∫
∂E

|h(x)|2 ds(x) ≤
∫

Ω

2|h(x)∇h(x)| dx+ C

∫
Ω

|h(x)|2 dx.

We can then use Cauchy-Schwarz to get∫
∂E

|h(x)|2 ds(x) ≤ 1

C

∫
Ω

|∇h(x)| dx+ 2C

∫
Ω

|h(x)|2 dx.

The result extends to H1 functions thanks to the continuity of the trace operator over H1.

Proof of Theorem 4.3.4.

Recall that I(ψ) =
∫

Ω
ψ(x)µ(x)dx− U∗(ψc̄).

Step 1: formula for the Hessian of I. The derivation of the Hessian of I is similar to

the one of J (see for instance the proof of Lemma 4.3.1). Using the formulas for the first

variation of the c-transform in Proposition 4.2.2 we can check that

δI(ψ)h = −δU∗(ψc̄)(h ◦ Sψ),

for any test function h. To obtain the Hessian of I, we need to differentiate Sψ. As in the

proof of Lemma 4.3.1 we can show that Sψ+h(y)−Sψ(y) = τDSψ(y)T∇h(Sψ(y)) + o(h). This

implies

δ2I(ψ)(h, h) = −δ2U∗(ψc̄)(h ◦ Sψ, h ◦ Sψ)−

τ

∫
Ω

η(y)∇h(Sψ(y)) ·DSψ(y)∇h(Sψ(y)) dy,
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where we set η = δU∗(ψc̄). Thus as for J , the Hessian of I contains two terms which we can

bound separately, δ2I(ψ)(h, h) = −(A)− (B).

Step 2: Bound on (B). Do the change of variables x = Sψ(y), i.e. y = Tψc̄(x) in (B). We

obtain

(B) = τ

∫
Ω

η(Tψc̄(x))∇h(x) · cof DTψc̄(x)∇h(x) dx,

which can be bounded above by τ‖η‖L∞Λd−1‖∇h‖L2 in the same spirit as in the proof of

Lemma 4.3.1. Moreover ‖η‖L∞ ≤ ρmax. Indeed, assuming V (x) ≥ 0 we have for all x ∈ Ω

η(x) = δU∗(ψc̄)(x) = (u∗m)′(ψc̄(x)− V (x)) ≤ (u∗m)′(ψc̄(x)) ≤ ρmax,

by monotonicity of (u∗m)′ and by definition of ρmax. As a consequence

(B) ≤ τρmaxΛd−1‖∇h‖2
L2 .

Step 3: Bound on (A). We have

(A) = δU∗(ψc̄)(h ◦ Sψ, h ◦ Sψ) =

∫
Ω

(u∗m)′′(ψc̄(y)− V (y))|h(Sψ)|2 dy.

Do again the change of variables y = Tψc̄(x) to obtain

(A) =

∫
Ω

(u∗m)′′(p(x))|h(x)|2 det(DTψc̄(x)) dx,

where we recall that p(x) = ψc̄(Tψc̄(x))− V (Tψc̄(x)). We bound the determinant term by Λd.

Then, to go further we must distinguish between the three cases 1 ≤ m ≤ 2, 2 < m <∞ and

m =∞.

When 1 ≤ m ≤ 2, the function (u∗m)′′ is increasing and therefore

(u∗m)′′(p(x)) ≤ (u∗m)′′(M) = u′′m(ρmax)−1,

where M = supx δU(µ)(x) (see the maximum principle and the related discussion when ρmax

is defined in equation (4.32)). To sum up,

(A) ≤ u′′(ρmax)−1Λd‖h‖2
L2 .
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When 2 < m ≤ ∞, one can follow the same line of proof as in the case of J , using now

the function p(x) instead of φ(x)− V (x) which modifies the related constants accordingly.
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recherches en mathématiques. Habilitation, Université de Metz, 1995a.

[Gan95b] W. Gangbo. “Quelques problemes d’analyse non convexe.” Habilitation à diriger
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LP Distance for Signal Analysis.” J. Math. Imaging Vis., 59(2):187–210, 2017b.

[Vaz07] J. L. Vázquez. The porous medium equation: mathematical theory. Oxford
University Press, 2007.

[Vil09] C. Villani. Optimal Transport: Old and New. Number 338 in Grundlehren der
mathematischen Wissenschaften. Springer, Berlin, 2009.
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