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Abstract

From Stability to Low-regret Algorithms in Stochastic Multi-Armed Bandits

by

Kuan-Sung Huang

Multi-armed bandits (MAB) problem is a basic setting for sequential decision-making problems

with partial information. To get a good algorithm for MAB, we must balance the trade-off

between exploitation and exploration, i.e., whether we should take the action that works well

before or take other actions to gain more information.

Differential privacy (DP) is a common notion for protecting the privacy of individuals

by ensuring that the output distribution of the algorithms will not change a lot if we manipulate

the data point from an individual. Therefore, the adversary cannot identify an individual by

looking at the outputs of a DP algorithm. In other words, the outputs are ”stable” if we perturb

the inputs. It implies that DP learning algorithms are slow learners, but they are more robust

than their non-DP siblings. We can use this property to balance the trade-off in MAB problems.

In this work, we define a notion of stability motivated by DP, called Distributional

Stability, for randomized MAB algorithms. We study this stability in the Stochastic MAB

problems. We prove that if a randomized MAB algorithm has the stability and the output of this

algorithm satisfies some accuracy guarantee, it attains regret bounds polynomial in log(T ).
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Chapter 1

Introduction

1.1 Motivation

Multi-armed bandits (MAB) is a basic problem setting for sequential decision-making

with partial information. Suppose that there are k slot machines in the casino, and we have T

rounds to play. For any time step t ∈ [T ] = {1, 2, . . . , T}, a player chooses one machine it

to play and receives the reward rt[it] from machine it. However, he or she cannot observe the

rewards rt[i] for any i 6= it. From the convention of MAB problems, we call the machines

”arms,” and the player/algorithm ”pulls” one arm at every time step t. The goal of MAB is to

find a strategy such that the total reward the player receives after T rounds is not too far from the

total reward of the best machine in hindsight. The difference between these two total rewards is

called regret.

There are two basic settings of MAB: Stochastic MAB and Adversarial MAB. In this

work, we focus on Stochastic MAB, which assumes that for every arm, the rewards are i.i.d.
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sampled from a fixed distribution. The optimal expected regret bound for Stochastic MAB is

O (log(T )) if we consider the difference between the means of the underlying distributions

of the best and the second based arm as a constant. Typically, if we have an algorithm for

Stochastic MAB that attains O (polylog(T )) regret 1, we say that it is a low-regret algorithm.

For simplicity, we only consider the cases where the distributions are Bernoulli distributions,

i.e., the rewards are binary. We formalize the Stochastic MAB problem as below:

Definition 1.1.1 (Stochastic Multi-armed bandit problem). Consider a set of k arms {1, · · · , k}.

At any time step t ∈ [T ], the environment generates the reward rt[i] for each arm i by i.i.d. sam-

pling from a Bernoulli distribution with mean 0 < µi < 1. Based on the history of observations

{(it′ , rt′ [it′ ])}t−1
t′=1, the player chooses an arm it ∈ [k] to pull and then observes the reward

rt[it].

To achieve good regret bound, we must balance the trade-off between choosing the

current best arm (exploitation) and selecting the arm with less information (exploration). We

found that this trade-off can be related to the trade-off faced in the study of Differentially Private

algorithms.

Differential Privacy(DP) is one of the standard schemes for privacy-preserving algo-

rithms. The main idea of DP is that the output distribution of a DP algorithm should not change

much if we remove/swap an input data point. That is, the distribution of the output is stable. DP

learning algorithms need to balance the trade-off between privacy and utility (accuracy). The

DP learning algorithm outputs a sub-optimal solution, which would be close enough to the op-

timal one if the input data is large. By the definition of DP, DP algorithms must be randomized.
1O (polylog(T )) means it is polynomial in log(T ).
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The trade-off for DP algorithms is quite similar to the one for MAB. One can see

the accuracy objective shares the same goal with the exploitation in MAB. The privacy, which

introduces the algorithms’ stability to the input data points, enforces the algorithms to explore

when it collects only a few data points. Thus, we study the possibility of obtaining low-regret

algorithms for Stochastic MAB with DP-style stability. In this work, we aim to prove a theorem

that has the same idea as the following informal theorem:

Theorem 1.1.2. (Informal Main Theorem) A randomized Stochastic MAB algorithm attains

low-regret if it satisfies accuracy and stability guarantees at every time step t.

Before we go to the details of the definitions of accuracy and stability guarantees for

the main theorem (Theorem 3.1.1), we should start with the high-level ideas for these guar-

antees. The accuracy guarantee is that the algorithm would output an arm i with probability

based on the difference between its empirical mean and the empirical mean of the current best

arm. This probability decays when these two arms get pulled more times. The decay assures

that after every arm gets pulled enough times, the algorithm would pull the arm with the best

empirical mean (exploitation). We will define the stability in the next chapter. The stability we

defined is motivated by DP, which would explore when an arm has not got pulled enough times.

We can use this idea to develop a class of randomized MAB algorithms with regret

O(polylog(T )). The key to our regret analysis is that if the empirical mean of the best arm

is large enough, the algorithm will pull the best arm with high probability if it satisfies the

accuracy requirement. We can replace the rewards for the best arm to increase the empirical

mean of it. By the stability, we know that the change of the rewards will not affect the output
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distribution too much. We then have a constant lower bound p for the probability of pulling the

best arm. Therefore, in expectation, for every 1/p time steps, the algorithm pulls the best arm.

After every arm gets enough pulls, the algorithm would pull the best arm with high probability.

1.2 Contribution

In brief, our results are listed below:

1. A theorem that relates stability and accuracy to low-regret stochastic MAB algorithms.

(a) Main idea: Stability implies exploration, and accuracy implies exploitation.

(b) Proof technique: Use differential privacy style analysis to show anti-concentration.

DP style stability allows arms to change the rewards.

2. Application to the regret analysis on FTPL with Laplace noise and Thompson sampling,

and a hybrid algorithm combining these two algorithms.

1.3 Comparison to Prior Works

To the best of my knowledge, this work is the first to analyze the randomized Stochas-

tic MAB algorithms via the stability defined with the intuition from differential privacy.

The most related work is from Kim and Tewari [7]. They analyze the Follow the

perturbed leader (FTPL) algorithms, which add noise to the empirical mean for every arm.

While part of their motivation is also from Differential Privacy, our approach can be applied

to a larger class of randomized MAB algorithms. In the application chapter, we will show the
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same regret bound as in [7] for FTPL with the Laplace noise.

There are several works, e.g., [9] and [11] focused on developing differentially private

MAB algorithms. Our approach is the opposite. We do not provide a privacy guarantee. We

only use the DP-style stability to prove the regret bounds on randomized MAB algorithms.

Our proof is similar to the analysis on Thompson sampling in [1]. We calculate the

expected interval between two pulls on the best arm until it got enough pulls. This approach is

slightly different from the conventional analysis on Stochastic MAB algorithms, which usually

analyze the probability of pulling sub-optimal arms. (See [3].)
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Chapter 2

Background and Preliminaries

2.1 Notations

Since the underlying distribution of every arm does not change over time, the algo-

rithm only needs to consider the accumulated reward and number of pulls of each arm. At each

time step t, the algorithm A takes a data set Dt as an input, which contains the total number of

pulls nt[i] =
∑t−1

t′=1 1[it′ = i] before time step t, and the total reward st[i] =
∑

t′<t,it′=i
rt′ [i]

for every arm i. After receiving the input, the algorithm A pulls an arm it, and then it get the

corresponding reward rt[it]. The true mean of arm i is µi, and the empirical mean of arm i

before time step t is µ̂t[i] = st[i]/nt[i].1 We denote i∗ as the index of the best arm. We also

assume that in our MAB problem, the best arm is unique. The gap between the true mean of the

best arm and the second best one is ∆ = µi∗ −maxi 6=i∗ µi. When the analysis statements are

only related to a single arm i at a single time step t, we would ignore the subscripts for i and t
1We can assume that the algorithm pulls every arm once at the beginning. Therefore, we don’t need to worry

about the cases when nt[i] = 0.
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if it doesn’t cause any ambiguity. The logarithm (log) we use in this paper is with base e. For

brevity, we will write how the strategies choose it at every single time step t.

2.2 Backgrounds on Stochastic Multi-armed Bandits

Here we introduce three different popular stochastic MAB strategies: Upper Confi-

dence Bound, Thompson Sampling, and Follow the Perturbed Leader. We will discuss these

algorithms further in the application chapter (Chapter 4).

Upper Confidence Bound (UCB, see [2] and [3]) is one of the most well-known strate-

gies for stochastic MAB problems. At every time step t, it pulls the arm i with the highest upper

confidence bound. In other words, it pulls the arm with the highest possible mean. The UCB

algorithm is deterministic. It is known that UCB achieves optimal regret bound (O (log T )).

Thompson Sampling (TS, see [10]) is a class of randomized MAB algorithms. In the

Bernoulli MAB setting, it first samples a value from a Beta distribution for each arm, and then

it pulls the arm with the highest corresponding value. The Beta distribution for every arm is

constructed based on the number of pulls on the arm in the previous time steps and the rewards

we observed for these pulls. While Thompson Sampling was first proposed in 1933, the first

optimal regret analysis was presented by Agrawal and Goyal [1] in 2011.

Follow the Perturbed Leader (FTPL, see [6]) is a class of algorithms for various on-

line learning problems. It calculates every arm’s mean, adds some noise (perturbation), and

then pulls the arm with the highest perturbed mean. The perturbation leads to exploration. For

stochastic MAB, Kim and Tewari [7] analyze both sub-Weibull2 perturbation and bounded per-
2A random variable Z with mean µ is sub-Weibull(p) if Pr [|Z − µ| ≥ t] ≤ Ca exp (−tp/(2σp)) for all t ≥ 0
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turbation. They proved that these families of algorithms are low-regret MAB algorithms. The

bound would depend on the the shape of the perturbation.

2.3 Differential Privacy and Distributional Stability

Here we formally define the notions of stability we use. To do so, we use the following

helper definition of stability function for any algorithm A : D → S , where D is a domain of

possible input data sets, and S be the output range. The stability function measures how much

the algorithm’s output would change when we change the input data set. 3

Definition 2.3.1 (Stability function). The stability function fA for A at two neighboring data

sets D,D′ ∈ D is defined as follows:

fA(D,D′) = sup
x∈S

∣∣∣∣log
PrA[A(D) = x]

PrA[A(D′) = x]

∣∣∣∣ , (2.1)

If the algorithmA is stable, for two similar data setsD andD′, the outputsA(D) and

A(D′) should be similar as well. In other word, fA(D,D′) should be close to zero.

The distance function we will use The stability that we will use is defined as follows:

Definition 2.3.2 ((ε, δ, i, I)-Stability for randomized MAB algorithms). At any time step t and

an arm i, a randomized MAB algorithm A is (ε, δ, i, I)-distributionally stable if it satisfies the

following: For any data set Dt = {(st[j], nt[j])}kj=1 and the arm i such that µ̂t[i] = st[i]
nt[i]
∈

I . Let D′t = {(s′t[j], n′t[j])}
k
j=1 which is a copy of D except |st[i]− s′t[i]| ≤ 1. Then with

probability at least 1 − δ over the randomness of A, the stability function fA (Dt, D
′
t) ≤ ε.

3We abuse the notations a little bit throughout this work. The outputs of a randomized algorithm may be random
variables or the realizations of the random variables. It should be clear from the contexts.
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Moreover, if A is (ε, δ)-distributionally stable for any interval I and any arm i, we say A

is universally (ε, δ)-distributionally stable. Notice that here we allow st[i] > nt[i] if A can

handle the case. We call the interval I the stable interval.

The distributional stability is motivated by the concept of differential privacy:

Definition 2.3.3 (ε-differential privacy [4, 5]). A randomized algorithm A is ε-differentially

private if the following holds:

∀D,D′ ∈ D satisfies dH(D,D′) ≤ 1, fA(D,D′) ≤ ε,

where dH(D,D′) ≤ 1 means these two data sets differ in at most one data point.

Differential privacy (See [5]) is a common tool to preserve the privacy of individual

information. From Definition 2.3.3, one can see that the distribution of output is stable if we

change a data entry. Definition 2.3.2 is equivalent to the definition of differential privacy (Def-

inition 2.3.3), if the stability guarantee holds over all possible intervals I and we consider the

reward received at any time step as a data point. Hence, we can have the following corollary:

Corollary 2.3.4. If at every time step t, an MAB algorithm A is (ε, δ)-differentially private

with respect to a single reward received at previous time step, and it can handle the case when

st[i] > nt[i], it is also universally (ε, δ)-distributional stable.

One of the major class of MAB algorithms which can handle the case st[i] > nt[i] is

Follow the Perturbed leader (FTPL) MAB algorithm. It first calculates the empirical means for

every arm. Add some noise on the empirical means, then select the arm with the largest noisy

empirical mean. It has no restriction the range of the noisy empirical means.
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The restriction we have in Definition 2.3.2 would help us to apply the concept to a

broader class of algorithms. Notice that here we only consider per-iteration stability, which

would not guarantee the privacy for the whole time horizon of the MAB problem.
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Chapter 3

Low-regret MAB via Stability

In this chapter, we will prove that for a randomized MAB algorithm A with distribu-

tional stability and if in every time step t, it outputs an arm with empirical mean close to the

best current one, then the regret of A is O (polylog(T )).

3.1 Main theorem

We define excess empirical risk at time t ∈ [T ]: EmpRisk(Dt) = max
i∈[k]

st[i]
nt[i]
− st[it]

nt[it]
,

where it is the output ofA at time step t. The following theorem provides a template procedure

to bound the regret of any stochastic bandit algorithm A.

Theorem 3.1.1 (Regret bound via stability). Suppose that we have a randomized MAB algo-

rithm A, such that at every time step t ∈ [T ], it takes Dt = {(nt[i], st[i]) : ∀i ∈ [k]} as the

input and outputs an arm it ∈ [k]. IfA satisfies the following over the randomness of itself with

some constant c ≥ 1:

1. Accuracy: Suppose that arm i∗t has the largest empirical mean. Then with probability at

11



least 1 − β, EmpRisk (Dt) ≤ ξt[i
∗
t ] + ξt[it], where ξt[i] = c log(2/β)√

nt[i]
is the risk budget

for arm i.

2. Stability: A is (εt, δ, i
∗, I)-distributionally stable, where the stable interval

I =
[
st[i∗]
nt[i∗]

, µi∗ + ξt[i
∗]
]
, and the pair (εt, δ) satisfying one of the following cases:

(a) εt ≤ c/
√
nt[i∗] and δ = 0,

(b) εt ≤ c
√

log(1/δ)/nt[i∗] for δ = ∆2

72c2 log2(2kT/β)
.

Then the regret of Algorithm A is
O
(
k (log T )2

∆

)
, when δ = 0. pure case

O

(
k (log T )100c

2+1

∆100c2

)
, when δ 6= 0.

(3.1)

When the algorithm only satisfies the non-pure distributional stability, i.e., δ 6= 0, we

usually get a trade-off between εt and δ. For this theorem, we only need to ensure that we can

take δ = ∆2

72c2 log2(2kT/β)
such that the algorithm is (εt, δ, i

∗, I)-distributionally stable.

Proof. For the convenience of our analysis, we assume that every arm gets pulled once at the

beginning as in [1]. In order to bound the regret, we bound the number of pulls on the wrong

arms (i.e., the arms which are not i∗). We first analyze the 2-arm case with only arm i∗ and

some other arm i 6= i∗. We then extend the analysis to k arms.

Analysis for two arms: For the 2-arm case, we say that an arm j is concentrated if

nj [t] ≥ X = max


9 log(2T/β1)

2∆2︸ ︷︷ ︸
X1

,
36c2 log2 (2T/β1)

∆2︸ ︷︷ ︸
X2

 .
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X1 is for the confidence bound of the empirical mean on arm j to be small. X2 is related to

the accuracy guarantee of A. β1 is the failure probability for both terms. The role of β1 will be

further explained later. Since we assume that c ≥ 1, we know that X2 ≥ X1. Hence we can set

X = X2. Notice that if δ 6= 0, we take δ = 1/2X .

First, we split the time horizon [T ] = {1, . . . , T} into three phases:

– Phase 1: When both arm i and i∗ are not concentrated.

– Phase 2: When arm i is concentrated, but i∗ isn’t.

– Phase 3: Both arms are concentrated.

It is easy to see that the total expected regret is E (nT [i]) ·∆. If arm i∗ becomes concentrated

first, the empirical mean for arm i∗ is close to its true mean, which is higher than the true mean

of arm i. Hence the algorithm is less likely to pull arm i. With this observation, we can assume

that arm i becomes concentrated first, which will provide us an upper bound of the regret for

either case.

Now we bound the expected number of pulls on arm i in each phase. For Phase 1, the

number of pulls on arm i is exactly X . By the definition of X , we can have the following claim

for Phase 3:

Claim 3.1.2. With probability at least 1− 3β1, the algorithm always pulls arm i∗ in Phase 3.

Proof. By Hoeffding’s Inequality, we have that for any arm j, if nt′ [j] ≥ X1 for some t′, then

with probability at least 1− β1, for all t ≥ t′, |µ̂t[j]− µj | ≤ ∆
3 . Moreover, if nt′ [j] ≥ X2, then

by the accuracy assumption of Theorem 3.1.1, with probability at least 1− β1/2, for all t ≥ t′,

the risk budget ξt[j] is less than or equal to ∆
6 .
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µi µi∗

< ∆
3 < ∆

3

ξt[i] + ξt[i
∗] < ∆

3 : error due to suboptimality of AConfidence bounds

µ̂t[i] µ̂t[i
∗]0 1

Figure 3.1: Illustration of the arms in Phase 3. Since both empirical means of the arms lie in
the corresponding confidence (blue) regions, even with the suboptimality of A, it will output
the best arm i∗

For any time step t in Phase 3, we have that both nt[i] and nt[i∗] are greater than

max {X1, X2}. Hence, we have that with probability at least 1 − 3β1, for any t in Phase

3, all of the following bounds hold: (1)
∣∣∣ st[i]nt[i]

− µi
∣∣∣ ≤ ∆

3 , (2)
∣∣∣ st[i∗]nt[i∗]

− µi∗
∣∣∣ ≤ ∆

3 , and (3)

EmpRisk (Dt) ≤ ∆
3 . The bound on EmpRisk is followed by a union bound of the bounds on

risk budgets ξt[i] and ξt[i∗]. Combining these three bounds and the definition of ∆, the proof is

complete. (See Figure 3.1)

In Phase 2, arm i is concentrated but arm i∗ isn’t. We need to pull arm i∗ for at most

X times in Phase 2. We will bound the number of pulls on arm i by calculating a constant upper

bound on the number of iterations we need to pull arm i∗ again.

Here we use a strategy similar to [1]. Instead of calculating the probability of pulling

arm i∗ per round, we calculate the expected number of iterations between two pulls on arm i∗.

Let N s
n be the random variable of the number of iterations between the n-th and (n + 1)-th

pull on arm i∗ in Phase 2, given that the first n pulls has s successes, i.e., there are s pulls with

reward 1. Since there would be at most X pulls, and we already pull arm i∗ at least once before

14



entering Phase 2, the regret we suffered in Phase 2 can be bounded by

X−1∑
n=1

Es∼Binomial(n,µi∗ ) [EA [N s
n]] , (3.2)

where the inner expectation is taking on the randomness of the algorithm A.

Assume that at time step t in Phase 2, arm i∗ has already been pulled n times, and

that there are s successes among these n pulls. Since arm i is concentrated in Phase 2, we have

that for all t in Phase 2 and 3,

µ̂t[i] + ξt[i] ≤ µi +
2∆

3
< µi∗ (3.3)

with probability at least 1 − 2β1. Notice that the failure probability here has already been

considered by the previous part of the analysis. Hence we can assume that the bound (3.3)

always holds in Phase 2. At any time step t in Phase 2, if the empirical mean of arm i∗ is at

least µi∗ + ξt[i], then i∗ would get pulled. Let µt[i∗]fictitious = µi∗ + c log(2/β2)√
nt[i∗]

, where β2 is

the failure probability in the accuracy guarantee. One can obtain µt[i∗]fictitious from µ̂t[i
∗] by

changing at most ` = dn · µi∗e − s + c log(2/β2) ·
√
n rewards from zero to one for arm i∗.

By the accuracy guarantee, we have that if µ̂t[i∗] ≥ µt[i
∗]fictitious, the probability of A pulling

arm i∗ in this round is at least 1− β2.

Now, recall that Algorithm A is (εt, δ, i
∗, I)-distributionally stable in the stable inter-

val I . This implies that the probability of pulling arm i∗ with the real rewards s and the number

of pulls n, is at least e−`εt (1− β2) · (1− `δ). Here we take a union bound on the failure proba-

bility δ for the ` replacements, and we need the stability for all fictitious empirical means in the

interval I = [µ̂t[i
∗], µi∗ + ξt[i

∗]].
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Let δ = 1
2X . By the setup, we know that ` < n < X . We can bound the term

1 − `δ by 1/2. Therefore, we can set the lower bound on the probability of pulling arm

i∗ as psn = 1
2 · e

−`εt (1− β2). Then EA [N s
n] is bounded by 1

psn
. For simplicity, let ω =

c ,when δ = 0

c ·
√

log(1/δ) ,when δ 6= 0

. We can bound the upper bound (3.2) as follows:

X−1∑
n=1

Es∼Binomial(n,µi∗ ) [EA [N s
n]] ≤

X−1∑
n=1

Es
[

2

1− β2
exp (`εt)

]
(3.4)

=
2

1− β2

X−1∑
n=1

Es
[
exp

((
dn · µi∗e − s+ c log(2/β2) ·

√
n
)
·
(
ω√
n

))]
(3.5)

=
2 · exp (cω log(2/β2))

1− β2

X−1∑
n=1

exp

(
ωdn · µi∗e√

n

)
· Es

[
exp

(
−ω/
√
n · s

)]
(3.6)

=
2 · exp (cω log(2/β2))

1− β2

X−1∑
n=1

exp

(
ωdn · µi∗e√

n

)
·
(
1− µi∗ + µi∗ exp

(
−ω/
√
n
))n

. (3.7)

The last equality is based on the moment-generating function of Binomial distribution. Let

us consider the term exp
(
ωdn·µi∗e√

n

)
· (1− µi∗ + µi∗ exp (−ω/

√
n))

n, which is the only one

related to n. We can bound this term by a constant with respect to n:

exp

(
ωdn · µi∗e√

n

)
·
(
1− µi∗ + µi∗ exp

(
−ω/
√
n
))n (3.8)

≤ exp

(
ω√
n

)
·
(

(1− µi∗) exp

(
ωµi∗√
n

)
+ µi∗ exp

(
ω(µi∗ − 1)√

n

))n
. (3.9)

For (3.9), we need to consider two cases: whether ωµi∗√
n

is greater than 1 or not. When

it is greater than 1, i.e., when n < (ωµi∗)
2, we have(

(1− µi∗) exp

(
ωµi∗√
n

)
+ µi∗ exp

(
ω(µi∗ − 1)√

n

))n
(3.10)

≤
(

(1− µi∗) exp

(
ωµi∗√
n

)
+ µi∗ exp

(
ωµi∗√
n

))n
≤ exp

(
(ωµi∗)

2
)
≤ exp

(
(ω)2

)
. (3.11)
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For the other case, ωµi∗√
n
≤ 1. Since exp(x) ≤ 1 + x+ x2 for all x ≤ 1, we have(

(1− µi∗) exp

(
ωµi∗√
n

)
+ µi∗ exp

(
ω(µi∗ − 1)√

n

))n
(3.12)

≤

(
(1− µi∗) ·

(
1 +

ωµi∗√
n

+

(
ωµi∗√
n

)2
)

+ µi∗ ·

(
1 +

ω(µi∗ − 1)√
n

+

(
ω(µi∗ − 1)√

n

)2
))n
(3.13)

=

(
1 +

ω2µi∗(1− µi∗)
n

)n
≤
(

exp

(
ω2µi∗(1− µi∗)

n

))n
≤ exp

(
(ω)2

)
. (3.14)

In both cases, we obtain the same bound. Now we take an upper bound exp(ω) for

the term exp(ω/
√
n) in (3.9), and combine it with (3.11) and (3.14) to get an upper bound on

(3.7). The expected number of pulls on arm i in Phase 2 is bounded by

2 · exp (cω log(2/β2))

1− β2

X−1∑
n=1

exp
(
ω2 + ω

)
.

Notice that we bound the term Es [EA [N s
n]] with a constant with respect to n. This will be

critical when we analyze the k-arm case.

Now we can combine the results of all three phases. By Claim 3.1.2, if we take

β1 = 1/T , the expected number of pulls on arm i is bounded by 3. And we take β2 = 1/10.

Then the total number of pulls on arm i is bounded by

X + 2 exp (cω log(20)) · (X − 1) · exp
(
ω2 + ω

)
+ 3 (3.15)

≤X + 2(X − 1) · exp
(
ω2 + (3c+ 1)ω

)
+ 3 (3.16)

≤X + 2X · exp
(
5ω2

)
(3.17)

By our setup, we haveX = O
(

(log T )2

∆2

)
, and ω =


c ,when δ = 0

c ·
√

log(20X) ,when δ 6= 0

.
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The regret is at most 
O
(

(log T )2

∆

)
, when δ = 0.

O

(
(log T )100c

2+1

∆100c2

)
, when δ 6= 0.

(3.18)

Analysis for k-arms: Now we extend the bound for k arms. First, we maintain two sets of arms

• weak arms: arms that have not been pulled for at least X times.

• strong arms: arms that have been pulled for at least X times.

, where X = max
{

9 log(2kT/β1)
2∆2 , 36c2 log2(2kT/β1)

∆2

}
. For example, in the analysis on the 2-arm

case, arm i can be viewed as a strong arm after Phase 1, and arm i∗ as a weak arm in Phase 2.

In the above definition of X , we use an union bound on the failure probability for each of the k

arms to extend the 2-arm argument to k arms. We say a pull is a strong/weak pull if it is a pull

on some arm in the set of strong/weak arms, respectively.

For the k-arm case, we split the time horizon [T ] as follows:

– Phase 1: None of the arms is concentrated

– Phase 2: Some arms are concentrated but the best arm i∗ is not

– Phase 3: Arm i∗ is concentrated, but some other arms are not

– Phase 4: All arms are concentrated

Similar to the 2-arm case, we set the failure probability β1 = 1/T to ensure that it

only causes constant pulls in expectation when the concentration bounds do not hold. From the

analysis for 2-arm case, we know that for any case of nt[i∗] < X , the expectation to get the next

pull on arm i∗ is a constant with respect to nt[i∗]. Let us denote that constant by M . In Phase

18



2, since there exist some arms that are not concentrated, all we can say is that in expectation, A

will pull arm i∗ or any other weak arm again within M rounds. In Phase 3, the algorithm will

pull arm i∗ or any of the weak arms with high probability. Similar to Claim 3.1.2, we have that

in expectation, except constant pulls, the algorithm will only pull arm i∗ in Phase 4.

Except for the pulls when the concentration bounds do not hold, the strong pulls

only happen in Phase 2. Even in the worst case, the number of strong pulls is bounded by

kXM . The number of the weak pulls is at most kX . Therefore, we only suffer k times

regret as the regret in 2-arm case if we assume that k << T . The regret is bounded by
O
(
k (log T )2

∆

)
, when δ = 0.

O

(
k (log T )100c

2+1

∆100c2

)
, when δ 6= 0.

In the next chapter, we will analyze the regret bounds of some MAB algorithms with

Theorem 3.1.1.
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Chapter 4

Modular Analysis on MAB Algorithms with

Stability

By Theorem 3.1.1, we know that if a Stochastic MAB algorithm satisfies Distribu-

tional Stability and the Accuracy guarantee in every iteration, it is a low-regret algorithm. Here

we analyze the regret bounds for several MAB algorithms that fit in our framework. We provide

a regret analysis for Follow the Perturbed Leader(FTPL) algorithm with Laplace noise. We also

analyze Thompson Sampling with our framework, which requires some assumptions on the

true means of the arms. We propose a technique to ”stabilize” Thompson Sampling to get an

assumption-free algorithm. This shows the flexibility of our framework on analying algorithms

which are mixed of several stable ones.

20



4.1 Analysis of FTPL with Laplace noise

Here we will analyze Follow the Perturbed Leader algorithm with Laplace Noise

(algorithm 1) with our framework. At every time step, the algorithm adds some noise (perturba-

tion) to the empirical mean of every arm and picks the largest one after the perturbation. Here

we use noise sampled from the Laplace distributions Lap(
√
nt[i])

1.

For any time step t and any arm i, this algorithm is the same as applying Laplace

Mechanism (See [4]) on i’s accumulated reward. Hence we can get the distributional stability

directly from DP.

Algorithm 1 Followed the Perturbed Leader with Laplace Noise (FTPL.Lap)
Input: Time step: t ∈ [T ], data set of number of pulls (nt[i]]), and successes (st[i]) for each

arm i ∈ [k] for t-steps: Dt = {(st[i], nt[i]) : ∀i ∈ [k]}.

1: for i ∈ [k] do

2: Sample ut[i] from Lap(
√
nt[i]).

3: vt[i]← µ̂t[i] + ut[i].

4: return it ← arg max
i∈[k]

vt[i].

Lemma 4.1.1 (Empirical accuracy of FTPL.Lap). If at time step t, the arm with the best em-

pirical mean is i∗t , but Algorithm 1 outputs j, then with probability at least 1 − β over the

randomness of Algorithm 1, EmpRisk(Dt) ≤ log(2/β)√
nt[i∗t ]

+ log(2/β)√
nt[j]

.

Proof. Since ut[i] is sampled from a Laplace distribution, we have that with probability at least

1 − p, |ut[i]| < log(1/p)√
nt[i]

. We can set p = β/2 and take a union bound to get EmpRisk(Dt) ≤

1The PDF of Lap(λt[i]) is

{
1
2λ
· exp (−λx) , when x ≥ 0,

1
2λ
· exp (λx) , otherwise.
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ut[j]− ut[i∗t ] ≤
log(2/β)√
nt[i∗t ]

+ log(2/β)√
nt[j]

.

Lemma 4.1.2 (Stability of FTPL.Lap). At any time step t ∈ [T ], the FTPL.Lap (Algorithm 1) is

universally
(

1√
nt[i∗]

, 0

)
-distributionally stable with respect to the rewards of i∗ for the interval

I =

[
µ̂t[i
∗], µi∗ + c log(k/β)√

nt[i∗]

]
for any nt[i].

Proof. At every time step t, the algorithm is
(

1√
nt[i∗]

, 0

)
-differentially private with respect to

a change on the total reward of any arm i regardless of the value of µ̂t[i∗]. This is basically

running the Laplace Mechanism on the rewards. Therefore, by Corollary 2.3.4, it is universally(
1√
nt[i∗]

, 0

)
-distributionally stable.

By Lemma 4.1.1, Lemma 4.1.2 and Theorem 3.1.1, we can get the following regret

bound.

Corollary 4.1.3 (Regret FTPL.Lap). The regret of FTPL.Lap (Algorithm 1) is O
(
k log2 T

∆

)
.

The result is matching the regret bound from [7]. Notice that since we only can about

one side ratio in the proof of Theorem 3.1.1, with minor modification, we can prove that FTPL

with Exponential noise will have the same regret as in Corollary 4.1.3, which can be seen as a

randomized version of Upper Confidence Bound algorithm. The perturbed mean is similar to a

random sample of UCB.

4.2 Analysis of Thompson Sampling

Here we will show that Thompson sampling (Algorithm 2) is a low-regret algorithm

with the assumption maxi {max {µi, 1− µi}} ≤ θ for some constant θ.
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Algorithm 2 Thompson Sampling
Input: Time step: t ∈ [T ], data set of number of pulls (nt[i]]), and successes (st[i]) for each

arm i ∈ [k] for the previous steps: Dt = {(st[i], nt[i]) : ∀i ∈ [k]}.

1: For every arm i, sample vt[i] from Beta(st[i] + 1, nt[i]− st[i] + 1).

2: return it ← arg max
i∈[k]

vt[i].

A single step of the Thompson sampling is shown in Algorithm 2.2 The full proofs

of the following two lemmas and one Theorem are in the appendix. To prove the regret is

O (polylog(T )), we first have to prove the accuracy and the stability guarantees of Thompson

Sampling:

Lemma 4.2.1 (Empirical accuracy of Thompson sampling). If Algorithm 2 outputs arm j at

time step t, with probability at least 1− p over the randomness of the algorithm,

EmpRisk(Dt) ≤ ξt[i∗t ] + ξt[j]

, where ξt[i] =
√

2 log(4/p)
nt[i]

.

Lemma 4.2.2 (Stability of Thompson sampling). Let θ = mini∈[k] {min{µi, 1− µi}}. Sup-

pose that there exists time step t′, such that nt′ [i∗] ≥ m = 18 log(2/δ)
θ2

. Then for all t > t′,

Algorithm 2 is(
1
θ

√
18 log(2/δ)
nt[i∗]

, δ, i∗, [2θ/3, 1− 2θ/3]
)

-distributionally stable.

To prove Lemma 4.2.1, we use the property that Beta distribution is sub-Gaussian.

This leads to the lemma due to the concentration property of sub-Gaussian distribution. For

2The PDF of Beta(α+ 1, β + 1) = (α+β+1)!
α!·β! xα(1− x)β for x ∈ [0, 1]
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Lemma 4.2.2, since Beta distribution is not stable when the mean is close to the boundary, i.e.,

0 or 1, we assume that nt[i∗] is large enough to make µ̂t[i∗] close to the true mean rather than

the boundary. We then prove the stability by the concentration of Beta distribution.

Here is the regret bound of Thompson Sampling:

Theorem 4.2.3 (Regret guarantee). Assume that θ = mini∈[k] {min{µi, 1− µi}} is a constant

with respect to T . The regret for Thompson sampling (Algorithm 2) is O

(
k(log T )

( 3600
θ2

+1)

∆
( 3600
θ2

)

)
.

Since Lemma 4.2.2 needs nt[i∗] ≥ m, the proof for Theorem 4.2.3 is not as easy

as the one for Corollary 4.1.3. We first use part of the proof arguments from [1], then we use

Theorem 3.1.1 to complete the proof.

4.3 Analysis of Stabilized Thompson Sampling

In Section 4.2, we proved that Thompson Sampling is with regret O (polylog(T )),

and it is inevitable to have the instability when any of the true mean µi is too close to 0 or 1, i.e.,

θ is very small. In this section, we propose a modified version (Algorithm 3) of Thompson Sam-

pling algorithm such that we don’t need to know the true boundary mini {min {µi, 1− µi}} be-

forehand. We simply set a threshold θ. If the empirical mean violates the boundary constraints

(i.e., if min {µ̂t[i], 1− µ̂t[i]} < θ), we add the Laplace noise instead to make the algorithm

stable.

Here η is an input to the algorithm, not an unknown parameter from the data. If we set

θ = 3η
2 , we can apply Lemma 4.2.2 to get the stability for the arms in the stable case. If η is too

large for the data, Algorithm 3 would be similar to the FTPL.Lap algorithm (Algorithm 1). If
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Algorithm 3 Stabilized Thompson Sampling
Input: Time step: t ∈ [T ], a threshold η, number of pulls (nt[i]]), and successes (st[i]) for each

arm i ∈ [k] for t-steps: Dt = {(st[i], nt[i]) : ∀i ∈ [k]}.

1: ut ←
√

2 log(20k)
minj∈[k] nt[j]

.

2: for every arm i do

3: wt[i]←
√

log(2T )
2nt[i]

.

4: if µ̂t[i] < η or µ̂t[i] + ut + wt[i] > 1− η then

5: // Non-stable Case

6: zt[i] ∼ Lap(
√
nt[i]).

7: vt[i]← µ̂t[i] + zt[t].

8: else

9: // Stable Case

10: vt[i] ∼ Beta(st[i] + 1, nt[i]− st[i] + 1).

11: return it ← arg max
i∈[k]

vt[i].

we set it too small, the regret bound would not beO(polylog(T )). Algorithm 3 is a combination

of Thompson Sampling and FTPL.Lap. Depending on the cases, it samples the value vt[i] from

the same distribution in either one of the algorithms. Now we can get the following regret bound

almost for free.

Corollary 4.3.1 (Regret guarantee of Stabilized Thompson Sampling). The regret for Stabilized

Thompson Sampling (Algorithm 3) is O
(
k∆ · poly

(
log T

∆

))
if we set the threshold parameter

θ ∈ (0, 1/2] to be any constant with respect to T .
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Proof. Suppose at time step t, arm i is in the stable case, the accuracy bound and the stability

bound should be the same as in Thompson Sampling (Algorithm 2) if we take θ = 3η
2 . The

criterion for us to decide whether arm i is stable would ensure that it lies in the stable interval

after we swap the rewards. If arm i is in the non-stable case, the bounds would be the same as

in FTPL.Lap (Algorithm 1). We can take the maximum over the constants c’s from Thompson

Sampling and FTPL.Lap mentioned in the previous sections, which would satisfy all the con-

straints for c in Stabilized Thompson Sampling. It is obvious that we will take c as the one in

Thompson Sampling. Therefore, we will have the same regret bound as in Theorem 4.2.3.

In Algorithm 3, we can take any η as input. Notice that we cannot have θ = o(1) if

we want to get O (polylog(T )) regret. We can set instead θ ∈ (0, 1/2] to be any constant with

respect to T to getO
(

∆ · poly
(

log T
∆

))
regret. For instance, we can take θ = 1/10 (η = 1/15)

to get the bound O
(

(log T )360001

∆360000

)
.
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Chapter 5

Conclusion and Future Works

We showed a novel way to develop low-regret stochastic MAB algorithms via dis-

tributional stability. We can use Theorem 3.1.1 to analyze randomized MAB algorithms. The

stability is indeed a good way to balance the trade-off between exploration and exploitation in

stochastic MAB problems.

The regret bound we have is not optimal for stochastic MAB problems. It would be

interesting to see if we can reduce the bound on the non-pure case (i.e., δ 6= 0) or to get a

variation of Theorem 3.1.1 to get optimal regret bound. Another interesting question is how

much stability/accuracy we need to get a low-regret MAB algorithm, and how do we relate the

idea of stability with the analysis of existing MAB algorithms.
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Appendix A

Proof for the lemmas

Lemma. 4.2.1. If Algorithm 2 outputs arm j at time step t, with probability at least 1− p over

the randomness of the algorithm, EmpRisk(Dt) ≤ ξt[i∗t ] + ξt[j], where ξt[i] =
√

2 log(4/p)
nt[i]

.

Proof. To avoid ambiguity, we will denote p instead of β as the failure probabilities in the proof.

In Thompson Sampling, the algorithm outputs arm i if vt[i] is the largest one. In order

to prove the accuracy guarantee for Theorem 3.1.1, it is sufficient to bound
∣∣∣vt[i]− st[i]

nt[i]

∣∣∣ with

ξt[i].

In this proof, we need the following definition for sub-Gaussian random variable:

Definition A.0.1 (Sub-Gaussian random variable). A random variable X with finite mean µ =

E[X] is sub-Gaussian if there exists a positive number σ such that: E
[
eλ(X−µ)

]
≤ exp

(
λ2σ2

2

)
for all λ ∈ R.

By [8, Theorem 2.1], we know that a Beta distribution Beta(α + 1, β + 1) satisfies

the sub-Gaussian property with σ2 = 1
4(α+β+3) . Notice that in Algorithm 2, for time step t
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and arm i, we set α = st[i], and β = nt[i] − st[i]. Let X ∼ Beta(α + 1, β + 1). Since

the E[X] = α+1
α+β+2 . By combining Chernoff bound and sub-Gaussian property, we have that

|X − E[X]| ≤ σ
√

2 log(2/β) with probability at least 1− β. Therefore in Algorithm 2, for an

arm i, with probability at least 1 − p, we have
∣∣∣vt[i]− st[i]+1

nt[i]+2

∣∣∣ ≤ √2 log(2/p)
4nt[i]+3 . Moreover, we

have
∣∣∣ st[i]+1
nt[i]+2 −

st[i]
nt[i]

∣∣∣ = |nt[i]−2st[i]|
nt[i](nt[i]+2) ≤

1
nt[i]+2 . The difference between the value vt[i] and the

empirical mean st[i]
nt[i]

can be bounded as follows:

∣∣∣∣vt[i]− st[i]

nt[i]

∣∣∣∣ ≤
√

2 log(2/p)

4nt[i] + 3
+

1

nt[i] + 2
≤

√
2 log(2/p)

nt[i]
. (A.1)

By the bound (A.1), we have the following:

EmpRisk(Dt) =
st[i
∗
t ]

nt[i∗t ]
− st[j]

nt[j]
(A.2)

=
st[i
∗
t ]

nt[i∗t ]
− vt[i∗t ] + vt[i

∗
t ]− vt[j]︸ ︷︷ ︸
≤0

+vt[j]−
st[j]

nt[j]
(A.3)

≤
∣∣∣∣vt[i∗t ]− st[i

∗
t ]

nt[i∗t ]

∣∣∣∣+

∣∣∣∣vt[j]− st[j]

nt[j]

∣∣∣∣ (A.4)

≤

√
2 log(2/q)

nt[i∗t ]
+

√
2 log(2/q)

nt[j]
with probability at least 1− 2q (A.5)

Hence we can take p = 2q and ξt[i] =
√

2 log(4/p)
nt[i]

. The proof is complete.

Lemma. 4.2.2. Let θ = mini∈[k] {min{µi, 1− µi}}. Suppose that there exists time step t′,

such that nt′ [i∗] ≥ m = 18 log(2/δ)
θ2

. Then for all t > t′,

Algorithm 2 is
(

1
θ

√
18 log(2/δ)
nt[i∗]

, δ, i∗, [2θ/3, 1− 2θ/3]
)

-distributionally stable.

Proof. To get the distributional stability of Thompson sampling (Algorithm 2) with respect to

arm i = i∗, we need to ensure that the two Beta distributions Beta(st[i] + 1, nt[i] − st[i] + 1)
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and Beta(s′t[i] + 1, nt[i] − s′t[i] + 1) are close (as per Definition 2.3.2). Here s′t[i] satisfies

|s′t[i]− st[i]| ≤ 1.

Let Y be a random variable sampled from Beta (st[i] + 1, nt[i]− st[i] + 1) and Z

be a random variable sampled from Beta (s′t[i] + 1, nt[i]− s′t[i] + 1). By (A.1), we have that

Prx∼Y

[∣∣∣x− st[i]
nt[i]

∣∣∣ ≥√2 log(2/p)
nt[i]

]
≤ p. Now let us consider x ∼ Z. From (A.1), we have the

following:

∣∣∣∣x− st[i]

nt[i]

∣∣∣∣ ≤
√

2 log(2/p)

4nt[i] + 3
+

1

nt[i] + 2
+

1

nt[i]
≤

√
2 log(2/p)

nt[i]
. (A.6)

Therefore, we also have that Prx∼Z

[∣∣∣x− s′t[i]
nt[i]

∣∣∣ ≥√2 log(2/p)
nt[i]

]
≤ p. We can use the same

concentration bound for both Y and Z. That is, we have that the arguments hold for either

st[i] = s′t[i] + 1 or st[i] = s′t[i] − 1 in the remainder of the proof. Without loss of generality,

let st[i] = s′t[i] + 1.

For simplicity, let a =
√

2 log(2/δ)
nt[i]

and µ̂i = st[i]
nt[i]

. By the assumption that nt[i] > m,

we have a ≤ θ
3 . Now we can bound the point-wise ratio of the density functions of Y and Z as
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follows:

pdf (Y = x)

pdf (Z = x)
=

x

1− x
·
(

1− st[i]/nt[i] + 1/nt[i]

st[i]/nt[i]

)
(A.7)

≤ µ̂i + a

1− µ̂i − a
·
(

1− µ̂i + 1/nt[i]

µ̂i

)
(with probability > 1− δ) (A.8)

=

(
1 +

a

µ̂i

)
·

(
1 +

a+ 1
nt[i]

1− µ̂i − a

)
(A.9)

= 1 +
a

µ̂i · (1− µ̂i − a)
+

1
nt[i]
·
(

1 + a
µ̂i

)
µ̂i · (1− µ̂i − a)

(A.10)

≤ 1 +
a

µ̂i · (1− µ̂i − a)
+

a2

2 log(2/δ) · 2
µ̂i · (1− µ̂i − a)

(A.11)

≤ 1 +
a

µ̂i (1− µ̂i − a)
+

1

2

(
a

µ̂i (1− µ̂i − a)

)2

(A.12)

≤ exp

(
a

µ̂i (1− µ̂i − a)

)
(A.13)

Since a ≤ θ
3 , all the terms in the denominators are positive no matter what x we are sampling

from. Although we do not have the true ratio of these two probabilities, with the concentration

bound for both Y and Z, we can get (A.8) from (A.7) regardless of which distribution we

sampled from. By the definition of a, we have 1
nt[i]

= a2

2 log(2/δ) . Since a
µ̂i
≤ 1, we can get

(A.11). Furthermore, by the AM-GM inequality, we have µ̂i · (1− µ̂i − a) ≤ 1/4. Hence, we

get (A.12) from (A.11). Since exp(x) ≥ 1 + x+ x2/2 for any x > 0, we get the final result.
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Similarly, we can get the upper bound for the inverse ratio:

pdf (Z = x)

pdf (Y = x)
=

1− x
x
·
(

st[i]/nt[i]

1− st[i]/nt[i] + 1/nt[i]

)
(A.14)

≤ 1− µ̂i + a

µ̂i − a
· µ̂i

1− µ̂i
(with probability > 1− δ) (A.15)

=

(
1 +

a

µ̂i − a

)
·
(

1 +
a

1− µ̂i

)
(A.16)

≤ 1 +
a

(µ̂i − a) (1− µ̂i)
(A.17)

≤ exp

(
a

(µ̂i − a) (1− µ̂i)

)
(A.18)

With probability at least 1− δ, we have vt[i] ∈ [µ̂t[i]− a, µ̂t[i] + a]. Therefore, if we

take εt = max
{

a
µ̂i(1−µ̂i−a) ,

a
(µ̂i−a)(1−µ̂i)

}
, the algorithm is (εt, δ, i

∗, I)-distributionally stable.

Notice that if we replace µ̂i with 1 − µ̂i in one of the terms in the max function, we get the

other term. Since both terms are concave in µ̂i, we can take the max over the two extreme cases

µ̂i = 2θ/3 and µ̂i = 1− 2θ/3 to get the bound. That is, we can take εt = 3a
θ by the following

statements:

εt = max

{
a

µ̂i (1− µ̂i − a)
,

a

(µ̂i − a) (1− µ̂i)

}
(A.19)

≤ max

{
a

2θ/3− 4θ2/9− 2aθ/3
,

a

2θ/3− 4θ2/9− a (1− 2θ/3)

}
(A.20)

=
9a

6θ − 4θ2 − 6aθ
=

9a

6θ − 6θ2 + 2θ2 − 6aθ
≤ 3a

2θ − 2θ2
≤ 3a

θ
. (A.21)

The statements above are because of 1 − θ ≥ 1
2 ≥ θ ≥ 3a. We can plug in a =

√
2 log(2/δ)
nt[i]

to

complete the proof.

Theorem. 4.2.3. Assume that θ = mini∈[k] {min{µi, 1− µi}} is a constant with respect to T .

The regret for Thompson sampling (Algorithm 2) is O

(
k(log T )

( 3600
θ2

+1)

∆
( 3600
θ2

)

)
.
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Proof. This proof comprises two parts. First we calculate the amount of iterations we need

to ensure nt[i∗] ≥ m. After that, we have the stability guarantee by Lemma 4.2.2. We can

calculate the regret of the remaining iterations by Theorem 3.1.1.

In order to apply Lemma 4.2.2, we need to ensure that nt[i∗] ≥ m = 18 log(2/δ)
θ2

.

Moreover, by the accuracy guarantee if nt[i∗] ≥ 36 log(2T )
θ2

, then µi∗ + ξt[i
∗] < 1− 2θ

3 with the

probability at least 1− 2/T 2. That is, the regret caused by the failure of the previous inequality

is at most a constant. Let m′ = max
{

18 log(2/δ)
θ2

, 36 log(20T )
θ2

}
, where δ is chosen as in Theorem

3.1.1. If nt[i∗] > m′, we have (1) the algorithm is distributionally stable and (2) the stable

interval of the algorithm contains the interval we need.

Similar to the proof of Theorem 3.1.1, we can assume that there is an arm i concen-

trated before the best arm i∗. Then we can calculate the expected number of pulls we need to

make nt[i∗] ≥ m′ by modifying the analysis in [1] and the proof of Theorem 3.1.1.

Consider the 2-arm case with arm i and i∗. Since arm i is concentrated, by (A.1) and

nt[i] ≥ X , we have that vt[i] ≤ µ̂t[i] + 2 · ∆
3 ≤ µi + ∆ ≤ µi∗ except for constant time steps

after it is concentrated. For k arms, we can use similar arguments as we have in the proof of

Theorem 3.1.1. Before nt[i∗] ≥ m′, if we have vt[i∗] > µi∗ , the algorithm pulls arm i∗ or any

weak arms for at most kX +m′ times.

We then consider the random variable X(n, s, y) from [1]. X(n, s, y) is the number

of trails for sampling v from Beta(s + 1, n − s + 1) before we have v > y. Notice that

X(n[i∗], s[i∗], µi∗) would be the upper bound of time steps before pulling arm i∗ once given

n[i∗] and s[i∗] since v[i] < µi∗ . Here X(n, s, y) plays the same role as N s
n in our proof of the

main theorem. Let FBn,p and fBn,p be the CDF and the PDF of the binomial distribution with
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parameters (n, p) respectively. We have the following lemma:

Lemma A.0.2. (Lemma 1 from [1])

For all y ∈ [0, 1], and for all integers n, s, n ≥ s ≥ 0, E [X(n, s, y)] = 1
FBn+1,y(s)

− 1.

Similar to the proof of Theorem 3.1.1, the total number of pulls on the suboptimal

arms before nt[i∗] > m′ can be bounded by
∑kX+m′

n[i∗]=1 X (n[i∗], s[i∗], µi∗). By definitions of

FBn,y and fBn,y, we have F (n + 1, y)(s) = (1 − y)F (n, y)(s) + yF (n, y)(s − 1) ≥ (1 −

y)F (n, y)(s) and FBn,y ≥ fBn,y. We can analyze the expectation on the number of suboptimal

pulls as follows:

E

kX+m′∑
n[i∗]=0

X (n[i∗], s[i∗], µi∗)

 = E

[
kX+m′∑
n=0

(
1

FBn+1,µ[i
∗](s)

− 1

)]
(A.22)

=

(
kX+m′∑
n=0

n∑
s=0

fBn,µ[i∗]
(s)

FBn+1,µ[i
∗](s)

)
− kX −m′ (A.23)

≤

(
kX+m′∑
n=0

n∑
s=0

1

1− µi∗
·
fBn,µ[i∗]

(s)

FBn,µ[i∗]
(s)

)
(A.24)

≤

(
kX+m′∑
n=0

n∑
s=0

1

θ

)
=

(kX +m′)2 − kX −m′

2θ
= O((kX +m′)2/θ). (A.25)

If we take θ as a constant, the last term is O(k
2(log T )4

∆4 ).

Now, with nt[i∗] ≥ m′, we have the stability bound in Lemma 4.2.2. By Lemma

4.2.1 and 4.2.2, we can take c = 6
θ ≥ max

{√
2 log(40k)

log(10k) , 1
θ

√
18 log(2/δ)

log(1/δ)

}
. By Theorem 3.1.1,

the regret is bounded by O

(
k(log T )

( 3600
θ2

)

∆
( 3600
θ2

)

)
. The additional regret for making nt[i∗] ≥ m′ is

dominated.
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