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Abstract

Data-driven Approaches to Spectral Gamma-ray Source Detection and Identification

by

Kyle James Bilton

Doctor of Philosophy in Nuclear Engineering

University of California, Berkeley

Professor Kai Vetter, Chair

The ability to detect and identify gamma-ray sources by means of analyzing gamma-
ray spectra is essential for nuclear safety and security, and accurately performing these
tasks in environments with varying background radiation remains a challenge. One com-
mon approach to enhancing detection capabilities is directing research and development
at novel detection materials and systems. Alternatively, detection sensitivity can be en-
hanced by making use of more sophisticated data processing methods on existing detec-
tion systems. Leveraging advances in data analysis methods, this dissertation introduces
and characterizes novel data-driven approaches to spectral detection and identification.
An emphasis is made on methods that can potentially be augmented with complementary
non-radiological data (e.g., video streams), with the objective of enhancing performance
by constraining models using information about the local environment.

Two general data analysis methods are examined for both detection and identification:
non-negative matrix factorization (NMF) and neural networks. When applied to gamma-
ray spectra, NMF yields accurate and interpretable models of background and sources
using relatively few parameters. Neural networks are considered for their flexibility in
design, the significant amount of active research in the area, and the ease with which
models can be augmented with additional data sources. For both the NMF and neural
network models, detection and identification methods are introduced, the performance
of each is evaluated relative to benchmarks from the literature, and an assessment on
tradeoffs, specifically as they relate to practical considerations, is discussed. The methods
introduced in this work provide improvements over the examined benchmarks, and each
method can be applied to existing systems. Additionally, discussion is provided on the
potential to extend each method further using complementary non-radiological data.
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Chapter 1

Introduction

Technologies involving nuclear reactions and radioactive decay continue to serve human-
ity in numerous ways, such as generating electricity, enabling the diagnosis and treatment
of disease, and enhancing crop yields [1]. Radiological materials and radiation-producing
machines do, however, pose a risk to human health, especially when precautions are not
taken or if materials are misused. These potential hazards present the need for technolo-
gies to detect and localize sources of radiation. This dissertation introduces novel meth-
ods which serve to aide in the detection of radioactive sources by means of gamma-ray
spectral analysis, specifically by building mathematical models which attempt to discern
anomalous sources from benign gamma-ray background radiation. The remainder of this
chapter introduces the foundation for this work, including a detailed description of the
source search problem, general remarks about current approaches, and the introduction
of new concepts that may enhance detection capabilities of radioactive sources outside of
regulatory control.

1.1 Nuclear Safety and Security
The concepts and methods introduced in this work are discussed in the context of nu-
clear safety and nuclear security. The International Atomic Energy Agency (IAEA) Safety
Glossary [2] defines nuclear safety as

"The achievement of proper operating conditions, prevention of accidents and mitiga-
tion of accident consequences, resulting in protection of workers, the public and the
environment from undue radiation risks."

This glossary also defines nuclear security as

"The prevention and detection of, and response to, criminal or intentional unautho-
rized acts involving nuclear material, other radioactive material, associated facilities
or associated activities."
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While nuclear safety and security differ on their focus, one common facet between
the two is the need for the ability to detect radioactive sources. Regarding nuclear safety,
detection is essential to activities such radiation contamination remediation following a
radiological incident. For example, following the 2011 accident at the Fukushima Daiichi
Nuclear Power Plant [3], spectroscopic radiation detectors were used to characterize dose
rates and geospatial distributions of particular radionuclides released in the accident. A
wide variety of sensors and analyses were used to measure these quantities in the air
and ground [4], and to even detect radiological anomalies on sea floor [5]. In each of
these cases, the measurements can be used to inform actions, for example, by providing
information on areas to avoid.

Though nuclear safety includes the safe use of radiation and limiting risks to public
health, nuclear security is focused on reducing the possibility of misuse of radiological
materials. There are a number of ways to approach the goals of nuclear security. In ad-
dition to safeguarding radiological materials at their point of intended use (e.g., nuclear
power plants), measures are taken to detect the transit or presence of such materials out-
side of these places. For instance, radiation detection systems are sometimes deployed
at high-risk events, such as sport matches or political events. Prior to UEFA EURO 2012
football championship in Kiev, the IAEA transferred ownership of a mobile radiation
detection system to Ukraine [6] in order to "strengthen the country’s nuclear security ef-
forts." At the time of this writing, the National Nuclear Security Administration (NNSA)
is conducting aerial radiation detection surveys in Washington, D.C. to establish back-
ground levels prior to the Presidential Inauguration scheduled for January 20, 2021 [7].
In both of these examples, mobile systems enable the detection of anomalous sources,
providing a line of defense to attendees and important public figures. Such efforts by the
NNSA are considered to be part of the broader Global Nuclear Detection Architecture [8],
an effort by the U.S. government to detect illicit radioactive material in three domains: the
U.S. interior, U.S. borders, and exterior regions (e.g., points of origin in foreign territories).

Though some may question the necessity of such approaches, especially considering
the costs and effort involved, it is an unfortunate reality that nuclear material has been
accessible outside of regulatory control in the recent past. The IAEA Incident and Traf-
ficking Database is a record of interdictions of Special Nuclear Material (SNM), which is
nuclear material that can, in sufficient quantities, be used in a weapon. While the entire
database is restricted to all but a few at IAEA and certain government agencies, a number
of incidents are publicly known to some degree, for example, one involving the confisca-
tion of nearly 3 kg of highly-enriched uranium in St. Petersburg, Russia in 1994 [9]. More
recently, a 3000-curie 60Co source, considered by the IAEA to be in the most dangerous
class of sources due to its strength, was stolen from a truck in Mexico City [10]. While the
theft is not believed to have been intended as part of a terrorist act, a source of that magni-
tude presents a potentially lethal hazard to those near it. As unlikely as such threats may
seem, the potential impact of the distribution of SNM and other radiological material is
severe enough to consider approaches for mitigating these risks.
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1.2 Radiation Signatures for Nuclear Safety and Security
With nuclear safety and security in mind, the possible signatures that can be used to
detect radiological sources are examined. Broadly speaking, there are two classes of tech-
nologies used for detecting radioactive sources: active and passive detection systems.
In active methods [11], such as radiography, an external radiation source (e.g., an x-ray
generator) is used to interact with potential radiation sources, generating an output sig-
nal that indicates the presence or absence of a source. Passive systems instead detect
and measure ionizing radiation emitted directly from radiological materials. Due to the
cost, complexity, and potential hazards presented by active interrogation methods, pas-
sive systems are often more appropriate in many practical situations and are exclusively
considered in this work, though the methods presented here could be augmented for use
in some active methods. Though the process of nuclear decay often results in a variety of
particles, including photons, electrons, neutrons, and heavy charged particles, due to at-
tenuation effects, photons and neutrons are the only particles which can be detected at the
distances required for safety and security purposes (i.e., up to tens of meters). Neutrinos
and antineutrinos are currently being considered as a candidate for nuclear proliferation
detection [12] but because of the low probability of interaction, neutrino detection re-
quires massive detection volumes (e.g., kilotons of detection material) and reactor-scale
sources, making them infeasible for most applications. Due to neutron emission in spon-
taneous fission seen in SNM, the detection of neutrons is particularly useful in the de-
tection of SNM. However, because of the rich information they provide for performing
source identification, gamma-ray spectra are exclusively examined in this work.

The aim of gamma-ray detection for nuclear safety and security is to detect and iden-
tify as weak sources as possible, and to do so using sensors that are relatively simple to
operate and are also relatively inexpensive in order to increase the accessibility to sys-
tems. A common approach to enhancing sensitivity to weak gamma-ray sources is to im-
prove the spectrometers themselves. In particular, more advanced materials and detector
electronics are often developed, promising enhanced detector properties (e.g., energy res-
olution and efficiency) relative to standard fielded instruments. While many promising
candidates for novel detection materials have been introduced in recent years, thallium-
activated sodium iodide (NaI(Tl)), remains the standard in most applications. As a result,
it is worth considering how existing systems can be improved by means of sophisticated
data processing. This dissertation introduces concepts and methods for enhancing detec-
tion performance by means of improved spectroscopic gamma-ray data processing.

1.3 Detection Systems for Nuclear Safety and Security
To achieve the objectives of nuclear safety and security by means of gamma-ray spec-
troscopy, complete systems for detecting and analyzing gamma radiation measurements
are used. A broad distinction is made between stationary and mobile gamma-ray de-
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tection systems, both of which are have their own use cases and challenges. Stationary
systems are generally placed at locations such as international border crossings and ship-
ping ports [13, 14]. Mobile detection systems can be managed to fit a wide range of scales,
ranging from handheld [15], to van-based [16, 17], up to helicopters [18], each having its
own set of tradeoffs. The methods introduced in this work apply to both stationary and
mobile detection systems, however, mobile detection is emphasized in this work, as it is
more general.

Detecting radioactive sources for safety and security purposes means detecting these
sources in the presence of background radiation, discussed further in Section 2.3. While
stationary systems face a relatively constant background, neglecting temporal variations,
mobile systems encounter a wide range of radiation background environments. Detec-
tion methods must then be able to adapt to new environments, particularly being able
to estimate the background in a region that has not been previously surveyed. Failing
to adapt to new environments may result in ineffective detection algorithms, as the sys-
tem may produce false positives on benign background, reducing the effectiveness of an
algorithm.

Existing gamma-ray detection and identification methods only consider spectral fea-
tures within gamma-ray spectra, meaning no relationship is made between measure-
ments and the local environment. There is, however, information that could potentially be
useful in interpreting measurements in an automated algorithm. Ref. [19] shows the back-
ground count rate of a mobile detection system dramatically drop as the vehicle crosses a
steel bridge over a channel of water, presumably due to a decrease in terrestrial gamma-
ray background sources in the area. While this phenomenon can be understood in the
context of the local environment, current spectroscopic algorithms are incapable of ac-
counting for this variation automatically, and to adjust operating parameters accordingly.
Computer vision methods, for example, semantic segmentation [20], allow for automatic
identification of visual features that could be fed into spectroscopic algorithms. For in-
stance, visual features can be used to adjust predictions of the gamma-ray background,
and detection thresholds can be adjusted accordingly. This work introduces novel spectral
detection and identification methods that can potentially be coupled to complementary
contextual sensors with the intention of improving performance. In developing these de-
tection methods, procedures for assessing algorithm performance are established, which
may serve as useful guidelines for quantifying enhancements from algorithms enhanced
with data from complementary sensors.

1.4 Dissertation Outline
To achieve the objectives described above, the remainder of this dissertation is outlined
as follows:

- Chapter 2 reviews relevant physics, radiation detection principles, and mathemati-
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cal frameworks used in the introduction and analysis of detection and identification
algorithms.

- Chapter 3 describes the methods and metrics used to evaluate the performance of
detection and identification algorithms, as well as a detailed description of the data
used later in this work.

- Chapter 4 introduces the use of non-negative matrix factorization for gamma-ray
spectral modeling, detection, and identification, as well as a comparison of the
method to existing algorithms.

- Chapter 5 examines and evaluates the performance of novel methods for neural-
network based detection and identification.

- Chapter 6 concludes the dissertation, along with a review of future research direc-
tions enabled by the methods introduced here.
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Chapter 2

Elements of Spectral Gamma-ray Source
Detection and Identification

Gamma-ray spectra are measurements that provide a snapshot of the local gamma-ray
environment. This chapter sets the stage for a detailed discussion on the design and anal-
ysis of advanced spectral analysis methods, including a review of the relevant physics,
detection instrumentation, and providing a concise description of the gamma-ray data life
cycle, from data collection to preparation for further analysis. Additionally, the mathe-
matical frameworks in which source detection and identification algorithms are analyzed
are reviewed. Using these fundamental concepts, this chapter outlines general principles
for spectral detection and identification approaches, which are useful in discussing the
advanced methods described in chapters 4 and 5.

2.1 Gamma-ray Physics
Most radiation sources of interest for nuclear safety and security undergo a nuclear decay
(beta, alpha, or spontaneous fission) that, some fraction of the time, leaves the daughter
nucleus in an excited state. The relaxation of this excited state, to a lower-energy state,
results in emission of a gamma-ray. Neglecting the small uncertainties in energy levels of
nuclear states, the resulting gamma rays are treated as discrete particles of a characteristic
energy. See ref. [21] for a more detailed treatment of gamma-ray emission.

A gamma-ray source S produces gamma rays from a set of one or more discrete en-
ergies. For example, 60Co, a commonly-used laboratory source, undergoes a β− decay
to 60Ni, which primarily de-excites by emitting a pair of gamma rays at 1173 keV and
1332 keV with emission probabilities 99.85 % and 99.9826 %, respectively [22]. The iden-
tity of a source S is then inferred by the detection of the characteristic gamma rays asso-
ciated with S.

An ideal gamma-ray detector would be able to measure the exact energy of each
gamma-ray, resulting in a spectrum of discrete energies. In practice, however, gamma-
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ray spectra depart from the ideal case. For one, gamma rays can undergo interactions be-
tween emission and detection. Additionally, detection systems are fundamentally noisy
instruments, providing additional varibility in the measured energy. This section reviews
interactions between gamma radiation and matter in order to understand their effect on
measured spectra, and ultimately detection and identification algorithms.

2.1.1 Gamma-ray Interactions with Matter

Between emission from the nucleus and interacting with a detector, a gamma ray may
undergo one or more interactions with intervening material1. Most of these interactions,
including with the detection material itself, affects the measured gamma-ray energy. This
section reviews interactions between gamma rays and matter, specifically, the interactions
most relevant to gamma-ray spectroscopy – the photoelectric effect, Compton scattering,
and pair production. When occurring within detector material, each of these interactions
liberates electrons which produce signals that act as the basis for generating spectra, de-
scribed further in Section 2.2.

Photoelectric Effect

In photoelectric interactions, the energy of an incident gamma ray is transferred directly
to an atomic electron. To be liberated from the nuclear electrostatic potential, the electron
must gain a nonzero amount of energy φ from the incident gamma-ray. For a gamma ray
with energy Eγ , the energy Ee of the resulting electron is

Ee = Eγ − φ. (2.1)

The photoelectric cross section as a function of energy, σPE(E), for a given absorber
material with atomic number Z scales as

σPE(E) ∝ Zn

Em
, (2.2)

where n and m range from 3 to 5 [22]. The probability of photoelectric absorption de-
creases drastically with incident gamma ray energy, and the photoelectric effect is often
dominant over other effects in the low-energy regime (i.e., less than around 250 keV).

In gamma-ray spectroscopy, the photoelectric effect offers a best case scenario for en-
ergy deposition, as the electron energy is simply a constant offset φ from the true gamma-
ray energy. For a source emitting gamma rays with energy E, in the ideal case, the cal-
ibrated energy spectrum would be a peak centered at E with a width dependent on the
detector energy resolution. However, due to Compton scattering, the measured distribu-
tion forms a continuum of energies in addition to peaks.

1Strictly speaking, a new gamma ray is produced in Compton interactions, not simply the original
gamma ray with reduced energy.
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Compton Scattering

In Compton scattering, an incident gamma ray interacts with an atomic electron, how-
ever, the gamma ray does not fully impart its energy to the electron. This interaction
results in a gamma ray with reduced energy E ′ and an electron with kinetic energy Ee,
given by

Ee = Eγ

(
1− 1

1 + Eγ
mec2

(1− cos θ)

)
(2.3)

where θ is the angle of the scattered photon relative to the incident photon, andmec
2 ≈ 511 keV

is the rest energy of an electron. The scattering angle θ resulting from the interaction is
a random variable sampled from a distribution described by Klein-Nishina formula [23].
The cross section as a function of energy for Compton scattering goes as [22]

σCS(E) ∝ Z

E
. (2.4)

This cross section decreases with energy at a lower rate than that of the photoelectric
effect, meaning that Compton scattering becomes the more dominant interaction as the
incident gamma ray energy increases. Note that at low photon energies, such a colli-
sion corresponds to Thomson scattering, in which only the direct of the incident photon
changes.

With the inclusion of Compton scattering, the distribution of detected gamma-ray en-
ergies now departs from the peak resulting from the photoelectric effect, resulting in a
continuum of energies. In particular, gamma rays emitted from a source can Compton
scatter with the detector material, or intervening materials between the source and detec-
tor detector, adding variability to the measured spectrum.

Pair Production

Pair production occurs when a high-energy photon, specifically with energy higher than
twice the electron rest energy (1022 keV), enters the Coulomb field of a high-Z mate-
rial. In this scenario, the gamma ray imparts momentum on the nucleus, allowing the
electron-positron pair to separate, as opposed to annihilating, by momentum conserva-
tion. This effect results in a number of observable features in gamma-ray spectra. Sup-
pose an incident gamma-ray interacts with a detector via pair production, and that the
resulting positron annihilates with an electron within the detector material, resulting in
two 511 keV photons at 180◦ apart. If both 511 keV photons are detected, the entire in-
cident energy E will be reconstructed. If one or both of those photons exit undetected,
this results in spectral features known as single and double escape peaks, in which peaks
appear at E −mec

2 and E − 2mec
2, respectively.

The cross section for pair production goes as

σPP(E) ∝ Z2 ln(E − 2mec
2). (2.5)
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Relative to the previous two interactions discussed, pair production dominates at higher
energies, typically on the MeV scale. This effect is not as significant as the others with
respect to mobile detection, however. In particular, short measurements (e.g., 1 s) are
generally used, which is often insufficient for observing phenomena source as single and
double escape peaks. However, this effect, in part, explains the presence of 511 keV pho-
tons often seen in background spectra, explained further in Section 2.3.

2.1.2 Attenuation

It is useful to describe these gamma-ray interactions on a macroscopic scale, and to con-
sider their combined effect. One concept used to describe these effects together is atten-
uation, specifically, the reduction in amplitude of a gamma-ray signal by an attenuating
material. Suppose that the source flux at a reference point on one side of an 1-dimensional
attenuating material with thickness ∆x is I0. The flux on the other side of the material will
be exponentially attenuated as

I(∆x) = I0e
−µ∆x, (2.6)

where µ is the attenuation coefficient for the material. The coefficient µ is the sum of
attenuation coefficients for each type of interaction between the incident radiation and
the material, each of which can be estimated using their cross sections [23]:

µ = µPE + µCS + µPP. (2.7)

Attenuation is particularly important for understanding the effects of source shield-
ing. Specifically, Equation (2.6) suggests that the gamma ray flux can be significantly
reduced for certain combinations of µ and ∆x, meaning that sources can be shielded us-
ing a moderately thin but dense material (e.g., a layer of steel or lead). Note that the
attenuation coefficient µ is a function of photon energy, and that photons are attenuated
at different rates depending on energy. This means that in addition to reducing the am-
plitude of a detected signal, shielding affects the shape of a source spectrum. Though
attenuation fundamentally limits what can be detected, knowing how shielding affects
measurements can potentially be used to improve identification performance, described
later in Section 4.6.

2.2 Gamma-ray Detection and Measurement
There are two main types of detectors used in practical applications: scintillation detec-
tors and semiconductor detectors. Due to having a lower cost per volume and fewer oper-
ational constraints than semiconductor detectors, scintillation detectors are more widely
used in fielded applications, and in this work, scintillation detectors are exclusively con-
sidered. Note, however, that the methods developed in this work can readily be applied
to data from semiconductor detectors. A brief description of gamma-ray detection in
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scintillation detectors, from gamma ray interactions to data preprocessing, is given in
this section. Refs. [22, 23] provide thorough treatments of the conceptual and practical
elements of gamma-ray detection and measurement.

2.2.1 Scintillation Detection

A scintillation crystal is a material that, when struck with charged particles, emits pho-
tons, generally in the visible range. These secondary photons are converted to electrons,
and the resulting current is used to infer the energy of the incident gamma ray. Sup-
pose an incident photon interacts with a scintillation crystal via one of the three interac-
tions previously discussed, producing an electron in the detector volume. The resulting
electron has sufficient energy to ionize other atoms in the crystal, producing additional
charges as it traverses the detector. In terms of energy states, electrons which are orig-
inally in the valence band are promoted to the conduction band. Instead of de-exciting
directly back to the valence band, scintillation materials generally rely on intermediate
activation states between the valence and conduction bands. For instance, Tl is included
in forming the crystal NaI, yielding the material NaI(Tl), which is widely used in practi-
cal applications. During de-excitation, electrons can temporarily occupy the intermediate
state, allowing for the emission of a lower-energy photon once it decays down to the va-
lence band. This process produces many visible photons for an incident gamma ray, for
example, approximately 38,000 photons per MeV for NaI(Tl) [23].

The scintillation photons must be converted to an electrical signal to produce use-
ful measurements, for example, by means of a photocathode and photomultiplier tube
(PMT). The photocathode, commonly made of alkali metals, converts the secondary pho-
tons to electrons via the photoelectric effect, and the PMT applies a high voltage to a
chain of elements called dynodes, each of which provides a multiplication factor to the sig-
nal current. Resulting from the detector-photocathode-PMT chain is an analog electronic
signal which must be processed further before it produces useful measurements. Specif-
ically, an electronic circuit is used to convert a charge signal produced by the PMT to a
voltage. It is assumed that the magnitude of the raw voltage signals are proportional to
the gamma-ray energy – higher energy incident radiation results in more secondary pho-
tons, which in turn generates a large current through the PMT. A calibration using sources
of known energies is then performed, providing a mapping between voltage signals and
gamma-ray energies.

One of the key characteristics of gamma-ray spectrometers is the energy resolution.
Energy resolution is influenced by several factors in the detection system, including sta-
tistical fluctuations in the number of scintillation photons, inefficiencies (e.g., in conver-
sion at the photocathode), and electronic noise. Ultimately, all these effects are manifested
as spectral blurring, which is seen as a spread of energies with variance σ2(E) for a full-
energy peak with energy E. More commonly, the energy resolution is described using
the full-width at half max (FWHM), more specifically, the percent resolution at a given
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energy E:
FWHM(E)

E
=

2
√

2 ln 2

E
σ(E). (2.8)

2.2.2 Spectral Binning

A calibrated spectroscopic detector produces a stream of energiesEi occurring at a time ti,
referred to as list-mode data. It is common to aggregate list-mode data to form a gamma-
ray spectrum out of a collection of measurements {(E0, t0), (E1, t1), . . . , (En, tn)}. Creating
a gamma-ray spectrum can be thought of as discretizing gamma-ray energies – the detec-
tion of a gamma ray with energy Ei < E < Ei+1 is reduced to a single count in the energy
range between Ei and Ei+1. When forming spectra out of many events, recognizable fea-
tures begin to appear – full-energy peaks (i.e., peaks corresponding to the photoelectric
effect) begin to appear for nearby sources, along with Compton continua, as well as back-
ground radiation, described in Section 2.3.

One common approach to performing the energy discretization described above is
linear binning, in which the gamma-ray energy range [Emin, Emax] is evenly divided into d
energy bins. In general, detector energy resolution increases with the square root of en-
ergy, meaning for linear binning, peaks span a number of bins proportional to the square
root of the peak energy. Square root binning, which is used throughout this work, linearly
divides the square root of gamma-ray energy range, resulting in bins with widths that in-
crease with energy. Square root binning is useful for spectral analysis, as it puts spectral
features on a similar scale.

Detected gamma-ray events are aggregated over some time interval, referred to as the
integration time. Increasing the integration time has the effect of reducing statistical uncer-
tainties in count rate per energy bin as more counts are accumulated. However, in mobile
detection, there is generally relative motion between the detector system and sources of
interest, meaning a longer integration time would reduce the signal-to-background ratio.
As a result, a relatively short integration time (e.g., 1 s) is used and spectral are frequently
processed, resulting in a higher signal-to-background ratio.

2.3 Sources of Gamma Radiation
A given gamma-ray spectrum consists of photons from naturally-occurring background
radiation and potentially additional sources in the area. This section introduces key con-
tributing factors to background gamma radiation, as well as an overview of sources of
interest and sources commonly seen by fielded instruments.

2.3.1 Gamma-ray Background

Background gamma radiation, referred to hereafter simply as background, results primar-
ily from terrestrial radionuclides and radiation of a cosmic origin [24], and is virtually
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Table 2.1: Prominent gamma-ray energies of primordial radionuclides [24]

Parent Radionuclide Child Radionuclide Gamma-ray Energy
40K N/A 1460 keV
235U 231Th 185.7 keV
238U 214Pb 351.9 keV

214Bi 609 keV
214Bi 1120.3 keV
214Bi 1764.5 keV
214Bi 2204.2 keV

232Th 212Pb 238.6 keV
208Tl 2614.5 keV
228Ac 911.2 keV

always present in gamma-ray spectra, though it can be reduced with specialized instru-
mentation setups (e.g., a detector housed in a lead structure). Since gamma-ray spectra
invariably contain background, the ability to detect and identify gamma-ray sources then
relies on separating naturally-occurring radiation from other sources.

The primordial radionuclides observed are 40K, 235U, 238U, and 232Th, as well as the
daughter nuclides of the uranium and thorium isotopes [22, 24]. The most commonly-
observed gamma-ray energies from these are listed in Table 2.1. Cosmic background
radiation, however, primarily consists of a 511 keV peak from positron annihilation fol-
lowing pair production and a power law continuum [23, 24]. The abundance of each
of these radionuclides, as well as the local environment for gamma-rays to lose energy
via Compton scattering, varies with location, meaning observed gamma-ray background
vary substantially.

Gamma-ray background can also vary with time, for example, following changes in
weather patterns. 222Rn, which is produced in the 238U decay chain, and its progeny in
the atmosphere are "scavenged" by clouds and re-deposited in the ground during rain,
resulting in higher emissions from these radionuclides at the surface [25]. The effect of
this is that even a stationary detection system, which does not measure any spatial vari-
ability in the gamma-ray background, will occasionally experience temporal variability
due to radon decay.

A background spectrum measured by a NaI(Tl) system is shown in Figure 2.1, an-
notated with the gamma-ray lines in Table 2.1. Overlaid on this spectrum is the mean
spectrum resulting from a collection of 10,000 randomly-sampled spectra, which shows
background peak features more clearly. Note that there are more counts at the low-energy
end of the spectrum due to Compton downscattering as previously described.
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Figure 2.1: Example gamma-ray background spectrum from an array of NaI(Tl) scintilla-
tor detectors on the RadMAP mobile detection system, introduced in Section 3.2. Overlaid
is the mean spectrum from 10,000 randomly-sampled spectra, and the most prominent
background lines from Table 2.1 are annotated. The spectrum was formed using a 1-s
integration time and 128 square root bins between 50 and 3000 keV. Additional details on
how the spectrum was formed are given in Section 3.2.

2.3.2 Gamma-ray Sources of Interest

The remainder of this section discusses sources of interest for nuclear safety and security,
and sources commonly seen in the field.

Special Nuclear Material

Special Nuclear Material (SNM), a term defined by the Nuclear Regulatory Commission
in Title I of the Atomic Energy Act of 1954 [24], refers to material consisting of uranium
enriched in 233U and 235U, and any isotope of plutonium. SNM is of particular interest
to nuclear security, as these materials are capable of producing nuclear explosions when
sufficient quantities are assembled. Though SNM is of significant interest to practical
detection systems, it is neither measured nor simulated here, and is not discussed further
in this work.
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Medical and Industrial Gamma-ray Sources

One class of sources that is commonly seen by fielded detectors are those used in nuclear
medicine. Several types of sources are used for medical imaging [26], namely Positron
Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT),
as well as other sources for therapeutic purposes [27]. In each of these cases, patients that
have recently undergone imaging or treatment give off gamma rays from sources injected
for the procedures. Additionally, gamma-ray sources show up in diverse applications
such as equipment sterilization, oil well logging, and leak detection in plumbing [1]. A
table of medical and industrial sources, along with their gamma-ray energies, is later pro-
vided in Chapter 3 in Table 3.2.

2.4 Model for Spectral Detection and Identification
This section is meant to act as a bridge between the discussion on physical processes and
the mathematical models used for anomaly detection and source identification. To begin,
note that a gamma-ray spectrum with d energy bins can be viewed as a vector x ∈ Rd

+.
From this perspective, a source detection algorithm, of which the output indicates the
presence or absence of an anomalous source, can be thought of as a function providing
a mapping from Rd

+ to {0, 1}. Similarly, an identification algorithm, which identifies the
sources present in a spectrum using a library of N known sources, transforms an input
spectrum from Rd

+ to {0, 1}N . The remainder of this section outlines properties for both
detection and identification, and relates these properties to existing approaches.

2.4.1 Anomaly Detection

Generally speaking, anomaly detection aims to determine whether or not measured data
is consistent with expected behavior. Common use cases of anomaly detection include
bank fraud detection [28], network security [29], and manufacturing [30]. In gamma-ray
spectroscopy, anomaly detection is used establish whether or not a spectrum is consistent
with background without attempting to identify radiological sources.

One common approach to spectral anomaly detection is to generate an estimate x̂ of
the gamma-ray background contained in a measurement x, and computing a metric to
quantify the difference D(x, x̂) between the two. Anomaly detection, and identification
as we will see next, can then be thought of as a two-part processes, referred to here as
feature extraction and classification.

Feature extraction refers to the process of drawing salient information contained in a
spectrum needed to perform detection or identification. In the approach outlined above,
the process of generating the background estimate x̂ can be considered feature extraction.
Methods for generating the background estimate x̂ is a central issue examined in this
dissertation, and is explored further in Section 4.2 and Section 5.3.



15

Classification refers to the process of taking extracted features and making predictions.
In this context, features extracted from gamma-ray spectra are used to predict the pres-
ence or absence of sources. As mentioned above, the primary element of this classification
procedure is defining a detection metric. Examples of the metric D(x, x̂) are based on the
L2 norm [31, 32] and Mahalanobis distance [13, 33]. With a metric defined, a threshold
for when to consider a spectrum anomalous or not must then be set, which is the topic
of Section 2.6.

2.4.2 Identification

In this work, identification generally refers to simultaneous detection and identification, which,
for N different sources of interest, can be thought of as N simultaneous detection prob-
lems. As a result, identification operates in a similar fashion to the detection approach
outlined above. The primary difference is that instead of searching for any anomalies
in a spectrum, identification attempts to find spectral features corresponding to particu-
lar radionuclides. In this approach, an identification algorithm must then know spectral
features about the sources which it aims to identify. This approach to feature extraction
is often done by defining spectral regions of interest [34], providing the algorithm with
spectral source templates, or by learning representations of the source spectra [35]. Sim-
ilar to anomaly detection, metrics are defined to indicate the presence or absence of a
particular source.

2.5 Maximum Likelihood Estimation
To distinguish weak sources from background, detection and identification algorithms
must be robust to the variability seen in spectral measurements. Additionally, the decay
of a radionuclide is an inherently random process, meaning gamma-ray spectra x are
subject to statistical fluctuations. Accurate models for detection and identification must
then be able to account for variability in spectra. In this work, variability is modeled
using parameterized probabilistic models, and using the statistical principle of Maximum
Likelihood Estimation (MLE) is used to estimate model parameters. This section provides
a brief overview of MLE, and derives an expression used for modeling Poisson processes,
which is later used for accurately modeling gamma-ray spectra.

Suppose a process resulting in a random variable x can be described by a probability
distribution p(x|θ), parameterized by θ ∈ Θ for some parameter space Θ. The probability
p(x|θ), a function of the parameters θ, is referred to as a likelihood. The true parameters
θ∗ of the data-generating distribution are not known, however, an estimate of the param-
eters, denoted by θ̂, is found by a set of measurements D of random variable x. MLE [36]
is the process of finding estimate parameters θ̂ that maximize the likelihood of the data
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D. Concretely, θ̂ is defined as
θ̂ = arg max

θ∈Θ
p(D|θ). (2.9)

In practice, the log-likelihood, which increases monotonically with the likelihood, is used
as it often simplifies calculations and prevents numerical underflow. The likelihood (and
equivalently, log-likelihood) can be thought of as a measure of how well a dataset fits to
a model. It is common to define error functions between data and models, and thus it is
typical to instead minimize the negative log-likelihood, which is a convention used for
the remainder of this work. Using this convention, MLE is equivalently described as

θ̂ = arg min
θ∈Θ

{
− ln p(D|θ)

}
. (2.10)

The number of gamma rays x ∈ Z+ measured over some interval of time ∆t is a
random variable from a Poisson process with rate λ ∈ R+:

x ∼ Poisson(λ). (2.11)

The likelihood of x under this model is then

p(x|λ) =
e−λλx

x!
. (2.12)

A gamma-ray spectrum x can then be thought of as a d-dimensional random vector from
a d-dimensional Poisson distribution with rate λ ∈ Rd

+, with likelihood

p(x|λ) =
d∏
j=1

p(xi|λi), (2.13)

where the product rule of probability is used, as the number of counts in each bin is
independent. Now suppose that the Poisson rate in a given bin across spectra is not
assumed to be equal, meaning each spectrum xi is associated with a rate λi forming a
matrix Λ ∈ Rn×d

+ . An example of when this behavior would be seen is a moving detector,
in which background rates vary with location. The likelihood of a collection of n gamma-
ray spectra in a matrix X ∈ Rn×d

+ is then

p(X|Λ) =
n∏
i=1

d∏
j=1

p(xij|λij). (2.14)

The associated negative log-likelihood is

− ln p(X|Λ) = −
n∑
i=1

d∑
j=1

ln p(xij|λij) =
n∑
i=1

d∑
j=1

λij − xij lnλij + lnxij!. (2.15)
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Section 4.2 and Section 5.3 model gamma-ray spectra by introducing methods to estimate
the Poisson rate Λ in Equation (2.14). Using these models of spectra, additional operations
can be performed to detect and identify sources.

One aspect of MLE is that it conveniently allows for the incorporation of model con-
straints, known as prior probabilities, often referred to simply as priors. In particular, pri-
ors, formed on the basis of Bayes’ Theorem [37], are probability distributions on model
parameters. These prior probabilities then influence the parameter estimates, giving a
modified version of MLE known as maximum a posteriori. Note that the use of priors gen-
erally has the same effect as the concept of regularization used in optimization. In this
work, regularization is used to enforce model behavior such as sparsity, primarily seen
in Chapter 5.

2.5.1 Deviance

Likelihood values can be used to compute a goodness-of-fit statistic, for example, the
deviance statistic [38]. The deviance between data y ∈ Rd and corresponding model θ ∈ Rd

is computed as

D(y,θ) = 2
(

ln p(y|y)− ln p(y|θ)
)

= 2
d∑
i=0

ln p(yi|yi)− ln p(yi|θi). (2.16)

In essence, the deviance gives a measure of the difference between an ideal model p(y|y)
where each parameter is known exactly, and the given model ln p(y|θ). In this work, the
Poisson deviance between a measured spectrum x and corresponding modeled spectrum
x̂ is computed using

D(x, x̂) = 2
d∑
i=1

x̂i − xi + xi ln
xi
x̂i
. (2.17)

Because of its foundation in MLE, deviance is a natural choice for anomaly detection
using likelihood-based models, and is examined further in Chapter 5.

2.6 Decision Theory
A spectrum x is equal to the sum of both the source and background spectra, (i.e., x =
xs + xb), and an ideal algorithm would be able to exactly attribute the counts in the spec-
trum belonging to both source and background. One fundamental limitation preventing
the realization of ideal algorithms such as this is statistical variability and limited statis-
tics from sources. Suppose a weak source is nearby, and it contributes very few counts
to the spectrum, less than the statistical variations in background. Though a source is
present, the relative contributions of source and background cannot be decomposed over
the integration times relevant to this work. Fundamentally, there are limits on what can be
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detected, and this section discusses the tradeoffs involved with setting detection thresh-
olds, knowing that ideal detection algorithms cannot be realized in practice.

Suppose a detection method fd performs operations on x yielding a scalar metric
D(x, x̂) that measures how anomalous a spectrum is. A threshold T can be set on the
value of D(x, x̂), and any spectra resulting in a metric greater than T would indicate the
presence of a source. The choice of T is then related to the desired accuracy of the detec-
tion method; if T is too high, sources can go undetected, and if T is too low, the method
will attribute benign background to anomalous sources. This behavior is quantitatively
described using the following measures:

– True positive rate: proportion of tests that correctly detect a source that is present

– True negative rate: proportion of tests that correctly identify background spectra as
not containing a source

– False positive rate: proportion of tests that incorrectly detect a source being present

– False negative rate: proportion of tests that incorrectly miss a source that is present

An ideal system would have high true positive and negative rates, and low false positive
and negative rates. Practical systems are not ideal, and a value of T is chosen that pro-
vides a favorable tradeoff between these measures. In practice, one of these measures is
held constant, and the threshold T is solved for using this constraint. In particular, the
False Alarm Rate (FAR), which is proportional to the false positive rate, is often held at a
fixed value. This choice is rooted in the fact that there is a certain FAR that operators can
tolerate – too many false alarms, and the output may be disregarded. As a result, low lim-
its are usually placed on FAR, for example, one alarm in eight hours, which for 1 second
spectra translates to 3.5 × 10−5, a rate much lower than considered in many applications
of statical analysis and machine learning.

Due to variability in the expected range of background spectra, there is a wide range
of values of D, characterized by the probability distribution p(D). Setting T based on
the desired FAR requires knowing p(D) for background spectra. If the functional form of
p(D) is known, T can be solved for analytically. By definition, any background spectrum
x with metricD(x, x̂) higher than T is a false positive, meaning the area under p(D) above
T is equal to the probability of false alarm:

pFA =

∫ ∞
T

p(D)dD. (2.18)

The probability of false alarm pFA is equal to the false alarm rate (e.g., 1/8 hr−1) multiplied
by the measurement interval (e.g., 1 s). Since p(D) integrates to unity, Equation (2.18) can
be rewritten as ∫ T

0

p(D)dD = 1− pFA. (2.19)



19

The threshold can then be expressed as

T = F−1(1− pFA), (2.20)

where F−1 is the inverse Cumulative Distribution Function (CDF) of p(D).
If the functional form of p(D) is not known, the distribution can be approximated

empirically using measured data. In the empirical case, the resulting distribution can be
fit to a model, and the threshold can be computed from this model, or a threshold can be
chosen based on samples using an expected number of false alarms.
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Chapter 3

Spectroscopic Data Sources for
Algorithm Development and Evaluation

A quantitative evaluation of a detection or identification algorithm is essential in under-
standing the utility of the approach. As discussed in Chapter 2, detection algorithms must
operate in a wide range of gamma-ray background environments, and be able to detect
and identify sources that span the energy range roughly of 40 to 3000 keV. Algorithm per-
formance is assessed using data consisting of known sources in a variety of background
environments in a process referred to as source injection. This chapter introduces the vari-
ous elements of source injection, and describes two urban radiation data sources that are
used later in this work for quantitative algorithm analysis.

3.1 Source Injection
The performance of a detection or identification algorithm is determined by several fac-
tors, which are summarized in Table 3.1. Broadly speaking, the ability to detect radioac-
tive sources is determined by variables related to the source (e.g., activity), detector pa-
rameters, coupled source-detector variables (e.g., distance between source and detector),
the environment that the detector system is operating in, and operational parameters. Of
these, detector and operational parameters are generally fixed, meaning for a given sce-
nario, the most important variables are related to the source and the local environment.
Despite having many parameters influencing the performance of an algorithm, perfor-
mance can be assessed by varying the signal-to-background ratio. As a result, all but one
of these parameters can be held fixed, and performance can quantified as a function of
this single variable.

In this work, algorithm performance is evaluated by analyzing many sequences of
spectra, referred to as runs. To form spectra X for a given run, source spectra Xs are
injected into background spectra Xb (i.e., X = Xb + Xs). The number of background runs,
which are either measured or simulated, is generally fixed due to the amount of effort
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Table 3.1: Parameters affecting gamma-ray source detection

Source parameters Source type

Source activity

Source shielding

Detector parameters Detector type

Detector size

Integration time

Source-detector variables Source-detector distance

Relative motion

Obstructions between source and detector

Environmental variables Background energy distribution

Background radiation flux

Gamma-ray scatterers

Operational parameters False alarm rate

Library of sources of interest

required to produce the data. The source spectra Xs, however, can easily be re-generated
for a new set of parameters, providing an efficient way to estimate the performance of
algorithms. One limitation of this approach is that the source data are decoupled from
the background environment, meaning effects such as environmental scattering, which
are observed in practice, are not captured by this procedure.

By injecting variable sources, detection methods can be assessed on a wide range of
parameters without requiring to take extensive measurements. The remainder of this
section details how both Xb and Xs are generated, either from measured or simulated
data.

3.1.1 Background Data for Source Injection

The background spectra Xb ∈ Rn×d
+ , having nmeasurements with d bins, can either consist

of sequential measurements or be time-independent, depending on injection scenario. For
time-independent background, Xb is a random sample of n background spectra, and the
source injected corresponds to the peak signal-to-background measurement in the run.
This approach is useful in cases where the algorithm has no time-dependence, meaning
each input spectrum is treated independently. In the sequential approach, the rows of
Xb correspond to a time series of measurements, which is essential for algorithms that
have dependence on recent measurements, such as a moving average of the background
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Figure 3.1: Diagram showing the processing steps to produce training and testing spectra
for use in source injection. Background events, spectral bin edges E , and the integration
time ∆t are used as inputs to generate background spectra, which are then split into data
for model training and evaluation.

estimate.
Suppose X is a dataset produced by a detection system. Based on the discussion

from Section 2.2, spectra are formed using list mode gamma-ray data from X by spec-
ifying an integration time ∆t and energy binning structure E . The resulting background
data can then be separated into training and testing sets. The training set is used to learn
model parameters and set values such as thresholds, and the test set is used to perform
source injection on. This split is performed to to assess the performance of algorithms on
previously-unseen data. Figure 3.1 gives a graphic summary of the procedure for pro-
ducing background data for both training and evaluation.

3.1.2 Source Injection using Background-Subtracted Data

When a time series of background spectra are used in source injection, the source spec-
tra Xs are produced in such a way to simulate the effect of the detector moving past a
source. Using a mobile detection system, a source can be set in a particular configuration
(i.e., standoff distance, shielding, etc.), and the system can be driven past this source, col-
lecting spectral data along the way. Of course, the system measures the combination of
background and source, and the background needs to be removed to produce an estimate
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of the source contribution. To get a reliable estimate of the source contribution to mea-
sured spectra, and in order to later downsample to a wide range of activities, a source
with a high-activity A (e.g., several mCi) is used.

Suppose measurements of background were collected around the same time as the
source data collection, meaning the background in both sets are likely to be consistent.
The spectra containing sources can be background-subtracted, yielding noisy estimates of
the source contributions. The resulting spectra can be averaged over many runs, resulting
in relatively smooth source spectra Λs.

Using Λs, binomial downsampling is used to achieve a particular source activity A′.
The binomial probability of success g is computed as the ratio between A′ and A, and
random samples Xs can be generated as

Xs ∼ B(Λs, g), (3.1)

where B refers to the binomial distribution.
One major drawback to this approach is that it is subject to many sources of uncer-

tainty, such as the vehicle speed and time alignment of spectra between runs. Further-
more, this approach requires many repeated measurements even for a single source, re-
quiring a significant amount of effort. Though simple in design, this approach does not
easily scale to many types of sources and source configurations such as shielding. To
assess algorithm performance on a wide range of source types and configurations, simu-
lated data is more commonly used.

3.1.3 Source Injection using Simulated Data

Monte Carlo simulations are capable of generating accurate source spectra that can be
used in source injection. In this context, source simulation refers to the process of sim-
ulating spectra from arbitrary gamma-ray sources using known physical values, partic-
ularly, gamma-ray energies and branching ratios. A detector response function η(E,Ω)
at gamma-ray energy E and source-detector angle Ω is computed from simulated events,
and η(E,Ω) can be used to generate source spectra. This section describes the procedure
to generate η(E,Ω), and in turn, generate source spectra Xs.

To make the discussion here concrete, a 2"×4"× 16" NaI(Tl) crystal covered in a 1 mm
thick aluminum case is used to demonstrate the concepts in this section. Figure 3.2 il-
lustrates the setup of the simulation, with the NaI(Tl) detector in the center, and photons
from a distant monoenergetic source originating at an angle Ω = θ with respect to the
x-axis. The popular framework Geant4 [39] is used to carry out simulations.

Detector Response Simulations

The detector response η(E, θ) can be thought of as the effective area of a detector as a
function of incident photon energy E from an angle θ. In this work, η(E, θ) is computed
using a Monte Carlo simulation of N particles with energy E incident to the detector at
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Figure 3.2: Detector and source setup for angular response simulations. A 2" ×4" × 16"
NaI(Tl) bar is centered at the origin, while monoenergetic photons from a distant source,
drawn as parallel lines, make an angle θ with the x-axis. Note that by symmetry, angular
points only need to be sampled in the range θ ∈ [0, 90◦].

an angle θ. For each simulated photon, the simulation returns the deposited energy E ′

in the detector. In these simulations, N = 108 photons were simulated for each pair of
energy E and angle θ. The initial position of the simulated photon is randomly drawn
from a simulation volume which encompasses the entire detector, which in this case was
a cylinder with a radius of 30 cm.

The detector response simulations do not take into account detector energy resolution,
and detected events must be manually blurred. To blur spectra, a detected event with
energy E ′ is sampled from a Gaussian distribution with mean E ′ and variance σ(E ′)2,
resulting in a blurred energy E ′′:

E ′′ ∼ N (E ′, σ(E ′)2). (3.2)

For this particular model of the NaI(Tl) bar, the standard deviation as a function of energy,
σ(E), takes the functional form [40]

σ(E) =
FWHM(E)

2
√

2 ln 2
=

10−2 ∗ w0E0

2
√

2 ln 2

(
E

E0

)w1

, (3.3)

where w0 = 7.5, w1 = 0.7, and E0 = 661 keV. Following blurring, a low-energy threshold
of 30 keV was applied, discarding all events with energies below this.

A spectrum is then generated for all events at the given incident energy and angle.
When normalized, this spectrum can be thought of as a probability distribution p(E ′|E),
which is read as the probability of measuring a deposition with energy E’ given an incident
photon with energy E. The quantity p(E ′|E) does not take into account the probability of
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Figure 3.3: Detector response η(E, θ) for four different energies and two incident angles.
The response is slightly lower at θ = 75◦ due to having a lower effective area from this
incident angle.

an incident photon interacting with the detector, which is described by the effective area
Aeff.. The effective area is computed as

Aeff. =
Nint.

N
A, (3.4)

where Nint. is the total number of simulated source photons that interacted with the de-
tector and A is the area of the simulation volume in which photons were generated. The
quantity Aeff. can be thought of as the product between the surface area of the detector,
as seen from angle θ, and the probability of an incident photon with energy E interacting
with the detector. Using these values, the detector angular response is computed as:

η(E, θ) = Aeff.p(E
′|E) (3.5)

Figure 3.3 shows the detector response computed for five different energies at two differ-
ent incident angles. At each photon energy, an associated full-energy peak and Compton
continuum is observed.

Detector Response Interpolation

Figure 3.2 shows that there is symmetry about the z-axis for this particular simulation
setup, meaning only a quarter of the angular space needs to be simulated. Within this
parameter space, sampling points must be chosen, as simulations are performed at dis-
crete angles θj and incident gamma rays are simulated at discrete energies Ei. However,
gamma-ray sources result in a wide variety of energies, meaning the detector response
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at arbitrary energies is needed. One approach to meet this need is to simulate a set of
angles Θ and a set of energies E, and interpolate between simulated values to obtain
the response at an arbitrary pair of energy and angle. In this context, spectral interpola-
tion can be thought of as an approach to generating a function f(E; θ) which returns the
detector response η(E, θ). Using the known incident energies E and the corresponding
detector responses η(E, θ) for a fixed θ, the function f(E; θ) is approximated using linear
interpolation.

Generating Source Templates

A given source s (e.g., 60Co) can be described by pairs (Ei, Bi) of gamma-ray energies Ei
and associating branching ratios Bi. A source template ψs(θ) is the sum of the detector
response η(Ei, θ) for each gamma-ray line at energy Ei, weighted by the branching ratio
Bi:

ψs(θ) =
∑
i

Biη(Ei, θ). (3.6)

The values Ei and Bi for a particular source are queried from the National Nuclear Data
Center (NNDC) [41, 42] via the Python package becquerel [43]. When multiplied with
an appropriate scaling factor, described in the following section, these spectra can be
used to generate spectral samples. Figure 3.5 shows templates for 131I at θ = 0◦ and
θ = 85◦. Though both templates show roughly the same shape, primarily full-energy
peaks at the source gamma-ray energies, the magnitude of the template is lower at θ = 85◦

due to a lower effective area. The entire procedure from generating source templates from
simulation data is summarized in Figure 3.4. Note that this approach does not include
scattering within the source material or in the nearby environment, and a more thorough
treatment would include these factors.

Mean Rate Calculations

The mean Poisson rate λs(θ) (i.e., the full spectral response at angle θ) for a given source
is a sum over the mean rate λi(θ) from each gamma-ray line at energy Ei:

λs(θ) =
∑
i

λi. (3.7)

The rate λi is the contribution to the rate from the gamma-ray line at Ei alone, and can be
expressed in terms of the source activity As, source-detector distance ‖r‖, effective area
η(Ei, θ), and branching ratio Bi. For a spectral integration time ∆t, the mean rate takes
the form

λi =
Asη(Ei, θ)Bi∆t

4π‖r‖2
. (3.8)
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Figure 3.4: Diagram summarizing the procedure used to create source angular templates
ψs(θ) for arbitrary radionuclide types using simulated list mode data. List mode data
from Monte Carlo simulation, along with other parameters, are fed into the processing
chain, ultimately resulting in source templates.

Note that air attenuation between the source and detector, which would take the form
e−µi‖r‖ for an attenuation coefficient µi, is neglected here. The total mean rate is then

λs(θ) =
∑
i

Asη(Ei, θ)Bi∆t

4π‖r‖2
(3.9)

=
As∆t

4π‖r‖2

∑
i

η(Ei, θ)Bi (3.10)

= Sψs(θ). (3.11)
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Figure 3.5: Source templates ψ(θ = 0◦) and ψ(θ = 85◦) for 131I. There is a noticeable
difference in the magnitude of the two templates due to the lower effective area at higher
angles.

The mean rate λs(θ) is then the product of a scaling factor S and the source template
ψs(θ), and it is used to generate a spectrum s ∼ Poisson(λs(θ)). This concludes the proce-
dure for generating spectra for arbitrary radionuclides. However, for injection scenarios
using temporal modeling, the kinematics of the detection system past the source must be
included, which is examined next.

Kinematic Modeling

Suppose the detector system moves in a straight path at a fixed speed v, has a distance
of closest approach d with the source, and aggregates gamma rays at an integration time
of ∆t. Figure 3.6 provides a diagram illustrating the scenario. For a given run, a time
of closest approach, denoted by t∗, is randomly sampled in the range [δ, ttot. − δ], where
ttot. is the total length of the run, and δ is a number chosen to prevent too few source
spectra from being present in the run. Given t∗, v, and d, the source-detector distance ‖r‖
is computed for each time step in the run as

‖r(ti)‖2 = v2(ti − t∗)2 + d2, (3.12)



29

�

Figure 3.6: Diagram showing the kinematics of a source pass. The detector system,
represented by the small rectangle, moves in the direction of the arrow and passes the
source, represented by the circle. During the pass, the source spectrum is computed at
each time step ti based on the angle θi and source-detector distance ‖ri‖.

where the discrete time steps ti are defined by the spectral integration time ∆t. This dis-
tance is computed at each time step, and used in computing the mean rate given by Equa-
tion (3.9). Additionally, the source-detector angle θi is computed at each time step as

θi = arctan

(
|x(ti)− x(t∗)|

d

)
. (3.13)

This concludes the discussion on procedures for generating source injection data. Spe-
cific details about datasets produced using these procedures are discussed next.

3.2 Source Injection using RadMAP Data
The Radiological Multi-sensor Analysis Platform (RadMAP) [16], shown in Figure 3.7 was
an experimental mobile detection system comprised of a suite of radiation detectors and
non-radiological contextual sensors, including Global Positioning System (GPS) and cam-
eras, among others. RadMAP was operated by Lawrence Berkeley National Laboratory
between 2011 and 2017, during which the system was used in several data collection cam-
paigns around the San Francisco Bay Area. The availability of highly variable gamma-ray
background data in urban environments makes RadMAP an excellent candidate for algo-
rithm development and evaluation. Of particular interest to this work is a 10×10 array of
10 cm × 10 cm × 5 cm NaI(Tl) scintillation detectors. While such a large detection array
is not common in operational scenarios, it can be assumed that the relative performance
across algorithms will likely remain constant between NaI(Tl) detectors of varying sizes.
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Figure 3.7: Figure from [16]. The RadMAP mobile detection system and its various
radiological and contextual sensors. In this work, data from the 10× 10 NaI(Tl) array and
the GPS sensor are used.

3.2.1 Background Data Preparation

This section describes the preprocessing steps performed in preparing background data
for model training and evaluation. This work makes use of RadMAP data, consisting
of calibrated NaI(Tl) data and GPS coordinates, collected between December 2011 and
December 2013. Detected events from the 10 × 10 NaI array were aggregated using a
1-s integration time, and binned in energy using 128 "square root" bins (see Section 2.2)
50 keV and 3000 keV. Due to low-energy noise, the first three bins were removed, resulting
in 125 bins between 67 keV and 3000 keV.

Source Encounter Removal

Due to the uncontrolled nature of spectral measurements in urban environments, the
dataset contains several source encounters. In order to be able to build accurate models
of the gamma-ray background, these source encounters must be removed. This presents
a challenge – how can anomalies be confidently removed without knowing the distribu-
tion of background? This section briefly provides heuristics to remove source encounters
from the dataset.

The first, and simplest, method used for removing source encounters is using the to-
tal number of counts per spectrum. As a first pass, a histogram of the total number of
counts in each spectrum is generated, obvious outliers were manually inspected, and
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Figure 3.8: (Left pane) A "waterfall" plot of a sequence of spectra past a source during
data collection in Berkeley. The source, seen as a spot in the low-energy region of the
spectrum, appears shortly after the 20 s mark. (Right pane) The mean spectrum over the
waterfall plot compared to the mean spectrum over the entire background dataset. The
measured spectrum is consistent with a 99mTc source, which is used in SPECT imaging.
Note that this sequence was measured near Alta Bates Hospital in Berkeley, consistent
with the hypothesis that these anomalous gamma-ray events were emitted from a patient.

measurements close to the anomaly in time were removed. To remove nearby measure-
ments, which may contain the same source but are not as pronounced, measurements are
divided into segments that are contiguous in time. The system was often times not mea-
suring continuously, and as a result, there are breaks in data collection, which were used
to define these contiguous segments. When an anomalous spectrum is found, the entire
contiguous segment is then removed, which is admittedly conservative. Figure 3.8 shows
an example segment containing a source encounter. The segment of data, measured near
Alta Bates Hospital in Berkeley, appears to contain a 99mTc source, used in SPECT imaging.

Following the removal of gross count anomalies, source encounters are found and
removed using a spectral-based method, namely, an approach based on Non-negative
Matrix Factorization (NMF) described in Chapter 4. The procedure is as follows:

1. Draw a random sample of spectra from the dataset and fit an NMF model with this.

2. Analyze all spectra in the entire set for spectral anomalies. Specifically, as discussed
later in Chapter 4, an anomaly detection metric is defined for NMF-based spectral
models, and this metric is used here.

3. Inspect anomalies and remove entire segments containing the anomalies.
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One issue with this approach is that sources are possibly being included in the train-
ing set, thus reducing the ability to detect anomalies of that source type. As a result,
this procedure is repeated several times, each time taking a new sample into the training
set. After performing this several times, most obvious anomalies are removed, though
many benign spectra are removed as well. An automated approach for simultaneously
identifying spectral anomalies while learning background models is an important area of
research, but is not examined further in this work.

3.2.2 Source Injection Data Preparation

Two sources of data are used to perform source injection with RadMAP: background-
subtracted 137Cs spectra, and simulated 133Ba spectra. For both radionuclide types, list
mode source data was provided by ref. [44].

Background-subtracted Data

Following the procedure described in Section 3.1.2, background-subtracted spectra were
generated from a set of 10 drive-bys past a 4 mCi 137Cs source. In this measurement sce-
nario, RadMAP moved on a straight path at a speed of approximately 15 mi/h (6.7 m/s),
while the source was positioned 20 m off the road on the starboard side of the vehicle.
The 10 runs were aligned in time using the background-subtracted count rate. That is,
the time at which the background-subtracted count rate was highest was assumed to be
the time at which the vehicle was closest. Using the time of closest approach, three spec-
tra before and after the maximum were kept, yielding a sequence of seven spectra for
each drive-by. The mean spectrum for each of the seven spectra is computed over all 10
drive-bys, yielding a matrix Λs ∈ R7×125

+ , representing the mean rate over a run.

RadMAP Simulations

Simulations of 133Ba were performed using a toolkit known as SoftWare for Optimization
of Radiation Detectors (SWORD) [45]. As with the 137Cs background-subtracted measure-
ments, the simulations used seven sampling points, three on each side of the position at
the distance of closest approach. The simulated spectra correspond to 1 s measurements
of a 133Ba source with 101.4 mCi activity. The resulting spectra at each of the seven posi-
tions are linearly scaled down to the maximum source used in measured data, 4 mCi. As
with 137Cs, this procedure results in a matrix of mean spectra Λs ∈ R7×125

+ .
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Figure 3.9: Figure from [46]. The left panel of the figure represents a top view of a
single street in the simulated URSC environment. The rectangles in this figure represent
buildings, each of which has a unique geometry and background emission signature,
resulting in a highly variable sequence of measurements as the system moves down the
street. The right three panels of the figure show the effect of placing a source at three
different locations on the same street, where the color indicates the source intensity as a
function of position. These three panels illustrate the variation in spectral measurements
due to environmental scattering.

3.3 Source Injection using Urban Radiation Search
Competition Data

A public data competition for detecting radiation sources in urban environments, spon-
sored by the United States Department of Energy, was held between March 8th, 2019 and
April 24th, 2019. The objective of this competition, referred to here as the Urban Radiation
Search Competition (URSC), was to detect, identify, and localize gamma-ray sources in
a series of runs of spectral gamma-ray data. Each run consisted of simulated list-mode
data produced by a 2" ×4" × 16" NaI(Tl) gamma-ray detector moving through an urban
environment in a straight path at a fixed speed. Each run also provided a unique envi-
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ronment, similar to how streets in an urban environment vary in both building materials
and shapes, as well as the presence of open spaces. Variation in building materials re-
sults in variation in background radiation emissions, while variation in geometries yields
variable scattering environments for gamma rays. The result is highly variable back-
ground data, and when a source is present, a complex scattering environment that varies
with source position. Figure 3.9 shows an example street consisting of different buildings
drawn as rectangles, along with a source placed at three different locations, illustrating
variability resulting from source positioning.

The training dataset provided for the competition consisted of list mode data and la-
bels which indicated the source type and time of closest approach, if applicable. A sepa-
rate testing dataset was provided for perform predictions on, though it is not used in this
work. A given run either contains no source, or one of the following possibilities: 60Co,
131I, 99mTc, WGPu, highly-enriched uranium (HEU), or a combination of HEU and 99mTc,
each of which can be shielded or unshielded. While the dataset is useful for comparing
algorithms in challenging variable environments, there is a dearth of source information
(e.g., activity, shielding type) makes it difficult to use in performing a quantitative eval-
uation of algorithms. However, source can be injected into background data provided
with the URSC dataset, making it an excellent resource for analyzing algorithms. In this
work, background data from the URSC dataset is used as the basis for source injection,
and simulations are performed using the procedure described in Section 3.1.3.

3.3.1 URSC Background Data

The URSC training data consists of 9700 runs, 4900 of which only contain events resulting
from background radiation. In this work, only the 4900 background runs are utilized for
source injection. The background runs provide a total of 170 h of list mode data, with
the mean run being 125 s in length. Of this data, a random sample of 90% of the runs
(4410 runs) are used for training data, and the remaining 10% (490 runs) are used for
evaluation. Note that in this work, all spectra are formed using energy bins with edges
between 30 keV and 3000 keV, using 128 bins with "square root" bins.

Figure 3.10 illustrates the variability in the count rate in the dataset by showing the
count rate of the first 60 seconds of three randomly-sampled runs, and compares this to a
histogram of gross counts across the entire URSC dataset. To show the variability in spec-
tral information, Figure 3.11 shows a two-dimensional histogram of background spectra.
The the contour of spectra alone does not convey information about the relationship be-
tween different spectral bins, so the right pane of Figure 3.11 shows the correlation matrix
computed over the entire background dataset. Both of these confirm that, despite being
simulated, the URSC dataset contains high variability, and makes it useful for developing
and assessing detection and identification algorithms.
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Figure 3.10: (Left pane) Gross count rate as for the first 30 seconds of three randomly-
sampled background-only runs from the URSC training set. Transient peaks are seen,
resulting from the detector system passing a building or environmental feature with el-
evated emission rate. In addition to variability in gross count rate, there is temporal
variation in each spectral bin, reflecting variability of the type of radionuclide emission
encountered as a function of time. (Right pane) Probability density function of gross
counts across all background spectra in the URSC training dataset compared to the prob-
ability mass function of a Poisson distribution having a mean equal to the mean from
background samples. Due to the variability in background environments, the variance of
gross counts from samples greatly exceeds that of a Poisson distribution with the same
mean.

3.3.2 Source Simulations

The procedure and detector model described in Section 3.1.3 is used here for simulating
source spectra to be used in source injection. Specifically, the detector response for the
NaI(Tl) bar is simulated and used to generate source templates for arbitrary gamma-ray
sources. The kinematics for a specific setup are then used to model the motion of the
detector past the source. In particular, this work uses a standoff distance of 10 m and a
vehicle speed of 5 m/s.

Table 3.2 lists the sources simulated, along with their most prominent gamma-ray en-
ergies, specifically, gamma-ray energies with intensities over 1%. In Chapter 5, these
source templates are used for both training and assessing detection and identification
models.
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Figure 3.11: (Left pane) Normalized two-dimensional histogram of background spectra
from the URSC dataset, illustrating the variability in spectra encountered in the URSC
dataset. A high degree of variability is seen around the mean spectrum, drawn as a solid
black line. (Right pane) Correlation matrix of background dataset, illustrating the rela-
tionship between energy bins that is not captured in the figure in the left pane.

3.4 Performance Metrics
Algorithms that are evaluated using source injection must be compared on a common set
of metrics in order to understand relative performance. This section introduces metrics
that are used in the remainder of this work for evaluating performance.

Detection algorithms result in a binary output (i.e., a source is detected or not), and
as a function of the signal-to-background ratio, or in this case, activity, there exists a tran-
sition between these two binary states. The quantitative assessment of algorithm perfor-
mance then includes characterizing this transition. Averaging the outputs of a detection
algorithm over several trials as a function of activity results in the probability of detection
p̂D(A). At a given false alarm rate, the probability of detecting a particular source at ac-
tivity A is the proportion of times the source was detected k out of n trials:

p̂D(A) =
k

n
. (3.14)

In this context, a trial can either refer to the number of spectra analyzed or the number
of source passes analyzed, depending on how the analysis is defined. Note that this pro-
cedure ideally defines a binomial process with true probability of success (i.e., detection)
p∗, and that p̂D(A) is the maximum likelihood estimate of p∗.
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Table 3.2: Simulated gamma-ray sources and their most prominent gamma-ray energies

Source Energies (keV) Source Energies (keV)
198Au 411.8 111In 171.3, 245.4
133Ba 81.0, 276.4, 302.9, 356.0, 383.8 192Ir 296.0 , 308.5, 316.5, 468.0

82Br 554.3, 619.1, 698.4, 776.5,
827.8, 1044.0, 1317.5, 1474.9

54Mn 838.8

57Co 122.0, 136.5 124Sb 602.7, 722.8, 1691.0
60Co 1173.2, 1332.5 46Sc 889.3, 1120.5

137Cs 661.7 75Se 121.1, 136.0, 264.6, 279.5,
400.6

152Eu 121.8, 344.3, 778.9, 964.1,
1085.8, 1112.0, 1408.0

113Sn 255.1, 391.7

123I 159.0 , 529.0 201Tl 68.9, 70.8, 80.2, 167.4
131I 284.3, 364.5, 637.0, 722.9

At low activities, p̂D(A) tends to 0, and as source activity is increased, p̂D(A) ap-
proaches 1. This behavior can be modeled using a sigmoid function of the form

q(A;µ, σ) =
1

1 + e−(A−µ)/σ
, (3.15)

where mu and sigma are parameters that determine the shape. Equation (3.15) is fit to
empirical values of p̂D(A) using a binomial likelihood function of the form

p(k|n, q(A;µ, σ)) =
N∏
i=1

(
n

ki

)
qkii (1− qi)n−ki , (3.16)

where k refers to a collection of N detections made at corresponding activities A, and
qi is an abbreviation for q(Ai;µ, σ) for activity Ai. In particular, MLE is used to estimate
values of µ and σ which result in the sigmoid function that best models the measured data
points. Appendix A provides a full derivation of the objective function used in estimating
µ and σ.

Figure 3.12 shows an example of a sigmoid function representing a "true" detection
process with parameters µ∗ = 155 µCi, σ∗ = 15 µCi. This distribution is sampled at ac-
tivities between 10 µCi and 270 µCi in steps of 10 µCi. At each sampled activity Ai, ki
detections are made, and the entire collection of points are fit using the model in Equa-
tion (3.16), and the resulting model is also shown in the figure.

The probability of detection curve for a given algorithm under a particular detection
scenario can be summarized using a single statistic, the Minimum Detectable Activity
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Figure 3.12: Sigmoid functions used for modeling probability of detection as a function
of source activity. At each activity, 100 samples are drawn from the true distribution with
parameters µ∗ = 155 µCi, σ∗ = 15 µCi and fit to the model in Equation (3.16), resulting
in estimated parameters µ̂∗ = 154.6 µCi, σ∗ = 16.5 µCi. In characterizing detection algo-
rithms for particular source scenarios, the underlying parameters µ∗ and σ∗ are unknown
and are estimated by fitting Equation (3.16) to measured points. Using Equation (3.17),
this example would result in an MDA of 203.2 µCi using the estimated parameters µ̂∗ and
σ∗.

(MDA), which is the activity at which a source can be detected with a given probability
(e.g., 95%). With all other parameters are held fixed, including false alarm rate, an al-
gorithm with a lower MDA than other candidate algorithms is preferred, as it is able to
detect weaker sources. From the analytical model given by Equation (3.15), the MDA at
probability of detection q (e.g., 95%) can be found by solving for A:

MDA(q) = µ− σ ln(q−1 − 1) (3.17)

and the standard error on the MDA is estimated as

σ2
MDA = σ2

µ + σ2
σ

(
ln(q−1 − 1)

)2
, (3.18)

where σµ and σσ are the uncertainties of parameters µ and σ, respectively. The parame-
ter uncertainties are estimated from the diagonal elements of the inverse Hessian matrix
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computed during optimization. Using Equation (3.17), the example shown in Figure 3.12
would result in an MDA of 203.2 µCi using the estimated parameters µ̂∗ and σ∗.

When computing the probability of detection, a set of sampling activities must be cho-
sen. In the simplest form, sample points can be linearly spaced, covering some wide
range of activities that is likely to contain the transition point from the source being un-
detected to detected. This approach is computationally expensive when the transition is
unknown, for example, in a new data injection configuration for an algorithm. Adaptive
approaches, which are able to pinpoint the transition region and sample activities around
the transition can also be used for sampling. See Appendix B for a comparison of adaptive
sampling techniques that are introduced in this dissertation.
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Chapter 4

Non-negative Matrix Factorization of
Gamma-ray Spectra

Gamma-ray spectra contain rich information about the local radiological background,
nearby gamma-ray sources, and even the surrounding environment from which gamma
rays scatter. Ideally, spectral models used for detection and identification capture this
information in an interpretable manner, possibly allowing for introspection into these
physical processes. This chapter introduces the use of Non-negative Matrix Factorization
(NMF) for approximating gamma-ray spectra. NMF models of gamma-ray spectra often
have a clear physical interpretation, extracting spectral features that can be understood in
terms of the local gamma-ray environment. Furthermore, this approach generally yields
accurate spectral models using relatively few parameters, and these models can be used
as the basis for anomaly detection and source identification.

This chapter begins with a brief discussion on dimensionality reduction, a concept
which underlies NMF, then follows with a detailed description of NMF is given, along
with procedures for detecting and identifying gamma-ray sources using these models.
NMF-based detection and identification algorithms are then evaluated, and generally
show improvements over the benchmark methods. The chapter closes with a discussion
on how NMF-based models can potentially enable more sophisticated detection capabil-
ities which leverage additional, non-radiological data streams.

Much of the content in this chapter originally appeared in the following publications:

- K. J. Bilton, T. H. Joshi, M. S. Bandstra, J. C. Curtis, B. J. Quiter, R. J. Cooper, and K. Vetter, "Non-
negative Matrix Factorization of Gamma-Ray Spectra for Background Modeling, Detection, and
Source Identification." In: IEEE Transactions on Nuclear Science vol. 66, no. 5 (May 2019), pp. 827-
837. doi: 10.1109/TNS.2019.2907267 [47].

- K. J. Bilton, M. S. Bandstra, T. H. Joshi, J. C. Curtis, R. J. Cooper, and K. Vetter, "Modeling Shielded
Gamma-ray Source Spectra using Non-negative Matrix Factorization." 2019 IEEE Nuclear Science
Symposium and Medical Imaging Conference (NSS/MIC), Manchester, United Kingdom, 2019, pp. 1-
7, doi: 10.1109/NSS/MIC42101.2019.9059733 [48].
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4.1 Dimensionality Reduction
Dimensionality reduction is a procedure for encoding a vector x ∈ Rd as a vector a ∈ Rk,
where k is typically much less than d, yielding a compact representation of the original
data. For linear dimensionality reduction techniques, a data matrix X ∈ Rn×d consisting
of n d-dimensional vectors can be approximated as the inner product of two low-rank
matrices:

X̂ = AV (4.1)

where A ∈ Rn×k are weights encoding the data samples X in the low-dimensional space,
and V ∈ Rk×d is a set of k basis vectors spanning a subspace of Rd. This allows measure-
ments to be approximated as a linear combination of the rows of V, which are components
that capture structure in the data. One use of dimensionality reduction is data visualiza-
tion [49], in which high-dimensional data X are projected to two or three dimensions
using k = 2 or k = 3, respectively. The coordinates A in the low-dimensional subspace
can then be visualized, possibly allowing one to see patterns in the data captured by the
components in V that may not have been transparent at the full dimensionality. Before
examining NMF more closely, two dimensionality reduction methods that have been pre-
viously applied to gamma-ray spectral analysis are discussed.

4.1.1 Principal Component Analysis

The underlying idea of Principal Component Analysis (PCA) [50] is to find an orthogonal
basis V for representing data, where the vectors in V are ordered by the amount of vari-
ance in the data accounted for by each vector. Initially, d basis vectors are produced, and
the top k basis vectors are kept, reducing the dimensionality.

In standard PCA, basis vectors are found by computing the Singular Value Decompo-
sition (SVD) on the covariance matrix Σ ∈ Rd×d computed from samples of data X. Due
to a higher number of counts, and thus variance, in the low-energy region of gamma-
ray spectra, the standard PCA approach will result in basis vectors that correspond to
low-energy bins, disregarding valuable information at higher energies. To address this
behavior, it is more appropriate to perform the SVD on the correlation matrix C, which is
found by dividing each feature (i.e., energy bin) by the variance of the feature. The PCA
formalism used in gamma-ray spectroscopy is presented in detail in Appendix C.

PCA can also be understood from a maximum likelihood perspective. Specifically,
PCA can be treated as a latent variable model with negative log-likelihood [51]

− ln p(X|µ,W, σ2) =
nd

2
ln(2π) +

n

2
ln det(S) +

1

2

n∑
i=1

(xi − µ)>S−1(xi − µ) (4.2)

where S = σ−2I− σ−2WM−1W>, M = W>W + σ2I, and µ,W, and σ2 are model param-
eters. Note that Equation (4.2) is consistent with a Gaussian likelihood model, suggesting
that PCA implicitly assumes a Gaussian statistical model. As previously discussed in
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Section 2.5, gamma-ray spectroscopy, particularly at low count rates, is appropriately de-
scribed using Poisson statistics.

Figure 4.1 shows PCA weights and components computed from background data. The
basis vectors V resulting from PCA are orthogonal, and thus contain both positive and
negative elements. Although the first several components may resemble spectra from
known background contributions such as 40K and uranium and thorium series radioiso-
topes, the orthogonality of the components rules out true physical solutions, which must
be non-negative.

Previous work has used PCA as the basis for anomaly detection and identification [13,
52]. The PCA-based Spectral Anomaly Detection (SAD) alarm metric [32, 53, 31] uses
the first k PCs Ṽ found from PCA to measure deviations between a spectrum and its
low-dimensional PCA approximation

SAD(x) =
‖x− x̂‖2√
‖x‖1

, (4.3)

where x̂ is the PCA reconstruction of the input spectrum x. The normalization in the de-
nominator is included to account for larger residuals at higher count rates. See Section C
for additional details about the SAD method.

4.1.2 Poisson Principal Component Analysis

More recently, Poisson PCA (PPCA) has been used to accurately model the underlying
Poisson statistics of photon detection [53]. PPCA is a specific case of Exponential fam-
ily Principal Component Analysis [54], and it has shown an improvement over stan-
dard PCA in source detection at low signal-to-noise, presumably due to more accurately
modeling the statistics at low counts [55]. Although PPCA assumes the correct statis-
tical model and generates non-negative spectral components, the components still lack
an intuitive, physical interpretation because they are defined in logarithmic space and
are therefore multiplicative, not additive. While PCA and PPCA often result in models
containing features that one may recognize as resulting from physical processes (e.g., a
component containing a 1460 keV peak from 40K), these methods do not fully capture the
additive, non-negative nature of gamma-ray spectra.

4.2 Non-Negative Matrix Factorization
Non-negative Matrix Factorization (NMF) [56, 57] is a linear dimensionality reduction
technique that approximates a matrix X in terms of the matrices A and V, where all three
matrices are constrained to have non-negative entries. Prior to performing NMF, the rank
k must be specified, which is in contrast to PCA, where one can vary k without recomput-
ing the decomposition. The factorization in Equation (4.1) can be performed using MLE,
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and given the discrete nature of gamma-ray spectra, the Poisson log-likelihood in Equa-
tion (2.15), which relates the measured data xij in X and the low-rank approximation x̂ij
in X̂, is used in the optimization. From an MLE perspective, each element x̂ij can be
thought of as the mean rate per energy bin per spectrum.

Maximizing the log-likelihood in Equation (2.15) is equivalent to minimizing the Kullback-
Leibler (KL) divergence between X and X̂. The KL divergence is a quantity from infor-
mation theory [58] that measures how well a given "true" probability distribution is ap-
proximated by an estimate of the distribution. Here, the "true" distribution is given by
the measured data X, while the estimate is X̂. Though performing NMF is generally a
non-convex problem with no exact solution, meaning solutions tend to be local minima,
the error between the data X and the estimate X̂ = AV, as measured by the KL diver-
gence, has been shown to be monotonically non-increasing under repeated application of
the following iterative update rules [59]:

ail ← ail

∑
j vljxij/x̂ij∑

j vlj
(4.4)

vlj ← vlj

∑
i ailxij/x̂ij∑

i ail
(4.5)

vlj ←
vlj∑
m vlm

(4.6)

ail ← ail
∑
m

vlm (4.7)

Equation (4.4) is used to update each element ail of A, then Equation (4.5) is used to
update each element vlj of V. The rows of V are then normalized using Equation (4.6),
and the weights are updated again using Equation (4.7) based on the normalization of
V. The procedure of using the update rules in Equation (4.4) – Equation (4.7) to perform
NMF is hereafter referred to as Poisson NMF (PNMF).

As a comparison to PNMF, NMF performed using a least squares objective function,
referred to as L2NMF, is also examined. The objective function for L2NMF takes the form:

L(X, X̂) = ‖X− X̂‖2
F (4.8)

where F denotes the Frobenius norm. From an MLE perspective, the objective function in
Equation (4.8) implicitly assumes a Gaussian distribution in each bin with mean x̂ij and
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having equal variance. The iterative update rules for L2NMF [59] are given by:

ail ← ail
(XV>)il

(AVV>)il

vlj ← vlj
(A>X)lj

(A>AV)lj

vlj ←
vlj∑
m vlm

ail ← ail
∑
m

vlm

(4.9)

As with the PNMF update rules, the L2NMF update rules are used to sequentially up-
dates weights A, components V, then a normalization of bases is performed.

Given a data matrix X, a desired rank k, and initial values for A and V (e.g., using ran-
dom initialization), Equation (4.4) – Equation (4.7) and Equation (4.9) yield approximate
NMF solutions using generalized KL divergence and least squares objective functions,
respectively. After initializing A and V, both matrices are updated in an alternating fash-
ion by applying the multiplicative rules on one while the other is held constant, which
is referred to as training. Similar to other iterative methods, the multiplicative updates
on A and V are typically repeated for a fixed number of steps, or until the value of the
reconstruction error, as measured by Equation (2.15) or Equation (4.8), converges within
some specified tolerance.

As a result of the iterative nature, NMF is more computationally intensive than tech-
niques such as PCA. Additionally, the non-convexity of NMF means that solutions may
yield different combinations of weights and basis vectors for different initializations. For
the applications described in this work, however, these drawbacks have not been pro-
hibitive. For example, while the training procedure generally requires significantly more
time to complete than for PCA, training is typically performed offline, meaning it does
not present an operational burden. Given a trained model V, the procedure for encoding
a single spectrum with NMF weights is carried out in near real-time, meaning anomaly
detection and identification can be performed as spectra are being collected.

In performing dimensionality reduction, the rank k of the low-dimensional subspace
must be specified. In general, increasing k will result in enhanced fits. For complete
decomposition methods such as PCA and NMF, as k → d, the reconstruction error will
vanish, resulting in the loss of ability to detect anomalies. As a result, the aim is to choose
a value of k that allows models to describe background variations in data sufficiently
well, but not at the cost of losing the ability to detect anomalies within spectra.

The Akaike Information Criterion (AIC) [60] is used for determining the number of
components used, and is defined as:

AIC = 2κ− 2 ln p(X|X̂) (4.10)
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where κ = kn+ kd− k is the total number of free parameters in the model X̂ = AV, with
k degrees of freedom being removed due to the normalization constraint on V. The value
of k that results in the lowest AIC on the training data is used, as it yields the best fit with
the fewest parameters.

4.3 NMF for Background Modeling
To perform background modeling, the process of generating the basis V that captures
background variation, a matrix X ∈ Rn×d

+ of n d-dimensional spectra is constructed. For
the factorization X̂ = AV, the rows of V are normalized, such that the weights A can be
interpreted as the number of gamma-ray counts in the spectrum from the corresponding
NMF component.

The left side of Figure 4.1 shows three components and the associated weights re-
sulting from performing 30,000 PNMF fitting iterations on 86,400 one-second RadMAP
NaI(Tl) spectra randomly-sampled from various locations around the San Francisco Bay
Area. Note that the ordering of resulting NMF components is arbitrary, unlike PCA where
lower component numbers capture more variance in the data. However, the NMF com-
ponents in Figure 4.1 were numbered to match the ordering of the corresponding PCA
components shown on the right side of Figure 4.1. To address the non-uniqueness of
solutions described in Section 4.2, note that in this section, each NMF decomposition
is initialized using non-negative double singular value decomposition (NNDSVD) [61],
which allows for deterministic NMF approximations. NMF solutions generated using
NNDSVD-initialized matrices do not necessarily result in optimal performance, with re-
spect to detecting and identifying sources of interest, but these solutions have found to
work sufficiently well for the analyses performed in this work.

The NMF components in Figure 4.1 capture features that have physical meaning.
Component 1 appears to be the mean spectral shape. Component 2 has a higher mag-
nitude than the other two at energies below 125 keV, which may be indicative of distant
sources or multiple scatters. Component 3 is a combination of the 40K 1460 keV line and
the 208Tl 2615 keV line, among others, and generally shows more pronounced peaks than
Component 1. As a result of the physical interpretation, when encoding a spectrum using
NMF, the component weights yield insight to the composition of the gamma-ray back-
ground. This interpretation is particularly of interest for the integration of gamma-ray
detectors with other environmental sensors, where the latter could potentially provide
information about the composition of the local gamma-ray background.

As a comparison with components formed using NMF, the upper right panel of Fig-
ure 4.1 shows the first three principal components (PCs) found by performing PCA using
the correlation matrix generated from X, using the procedure described in Section 4.1.1.
The comparison of components V and distributions of weights A from both NMF and
PCA shows that there are similarities in the structure that is captured within components.
The distributions of weights for component 1 for NMF and PCA, which contain the mean
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Figure 4.1: Three Poisson NMF basis vectors V formed from background spectra col-
lected by the RadMAP mobile detection system (upper left) and histograms of weights
A corresponding to each component (lower left). The first three principal components
formed from background spectra (upper right) and histograms of weights corresponding
to each component (lower right). For both NMF and PCA, models were formed using
86,400 randomly-sampled spectra, each with one-second integration time, and for NMF,
training was done over 30,000 fit iterations. Note that there is no significance in the num-
bering of NMF components, unlike in PCA, however, NMF components were numbered
to match the order of corresponding PCs.

spectral shape, are similar both in shape and also in that both capture the most variance.
Differences in spectral shapes are also apparent, the most obvious being that components
2 and 3 from PCA capture both positive and negative spectral features.

4.4 Anomaly Detection using NMF
The NMF formulation described above can be used for anomaly detection by finding the
reconstructed low-rank approximation x̂ = a>V of a spectrum x, and treating x̂ as the
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mean rate per energy bin per spectrum. First, the p-value pi is calculated in each bin i.
The intuition behind using a p-value is to estimate how consistent the measurement xi is
with the background model x̂i. To account for measurements that are either much higher
or lower than the mean rate, consider the two-tailed p-value

pi = 2 min(F (xi; x̂i), 1− F (xi; x̂i)) (4.11)

where F (xi; x̂i) is the Cumulative Distribution Function (CDF) of the Poisson distribution
with mean rate x̂i. P-values are aggregated to form the NMF anomaly detection score:

AD{P,L2}(x) = −1

d

d∑
i=1

ln pi. (4.12)

Using the procedure described in Section 2.6, a threshold for a given model at a set
false alarm rate can be produced by evaluating the metric over a set of background data.
Two existing methods, Gross Counts Kσ, referred to here simply as Kσ, and the PCA-
based anomaly detection SAD, are compared to ADP and ADL2.

4.4.1 Benchmark: Gross Counts Kσ

Kσ measures how many standard deviations σ the gross counts in a spectrum are away
from the mean number of background counts µ as:

K =
‖x‖1 − µ

σ
, (4.13)

where the 1 subscript in the denominator denotes the L1 norm of x, or gross counts. Here,
the mean µ and standard deviation σ of the total number of counts within a spectrum are
determined from the training set.

4.4.2 ADl in the Limit of Known Background

To understand the limitations of the NMF-based anomaly detection and identification
methods, the performance of each algorithm in the ideal case, where the mean back-
ground rate for each spectrum is known, is examined. That is, for each set of injected
spectra Xtest consisting of background and source contributions (i.e., Xtest = Xbkg + Xsrc),
it is assumed that the mean background rate X̂bkg resulting from performing NMF on
each spectrum is known. Note that the background used here Xbkg are the 2 h of back-
ground data referred to previously in Section 3.2, which are separate measurements from
the training data used in generating models.

In this best case scenario, algorithm performance is primarily limited by statistical
fluctuations in the background term Xbkg, referred to as the Known Background Limit
(KBL). One reason for exploring the KBL is that this procedure lends insight to how much
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performance can be improved with an enhanced understanding of the local radiological
background.

To determine KBL performance, the following procedure is used:

1. Project the measured background contribution Xbkg onto the subspace generated by
V to yield the NMF weights Abkg.

2. Estimate the mean background rate as X̂bkg = AbkgV.

3. Use X̂bkg as the reconstructed spectra to which the measured spectra X are com-
pared.

4.4.3 Performance Evaluation

To determine the number of components to use for NMF and PCA-based anomaly de-
tection models, Equation (4.10) was used using n = 86,400 1-s spectra from the RadMAP
system described in Section 3.2, and both PNMF and PCA yielded a value of k = 2 com-
ponents. The AIC for L2NMF was seen to decrease monotonically with k, and as a result
k = 2 was also used to be consistent with the other models, though additional values of
k are also considered for completeness. For readers familiar with PCA, the proportion of
variance explained as a function of k was also examined for PCA and suggested a value of
k = 2, in agreement with the AIC. Each PNMF, L2NMF, and PCA model described in the
following sections using the RadMAP dataset will then use k = 2 components trained
over a single subset of 24 hours of background data sampled from the 55-hour training
set. Each model is then evaluated over the entire 55-hour training set in empirically de-
termining thresholds.

Values for NMF-based and PCA-based anomaly detection scores Equation (4.12) and
Equation (4.3) were calculated over the background training set X, and a threshold on
scores were empirically determined using a 1/8 hr−1 (3.5 × 10−5 s−1) FAR. The same
24 hour sample of spectra used in training the NMF models was used in training PCA
models, and the entire 55-hour set of data was used for threshold setting.

Figure 4.2 shows a comparison of probability of detection curves for NMF and PCA-
based anomaly detection algorithms, each using k = 2. Table 4.1 shows the corresponding
MDA95 resulting from a fit of PD to a sigmoid for the k = 2 models, as well as models
using k = 4. Note that models with k > 4 were also examined, but performance did
not improve significantly, and results are omitted. From Figure 4.2 and Table 4.1, ADP

and ADL2 are shown to maintain an MDA near 200 µCi for both sources, while ADPC

has an increased MDA for 137Cs, which is likely resulting from the difference in anomaly
detection metrics between the NMF and PCA-based models. Note, however, that for
both sources and for both k = 2 and k = 4, ADP outperforms ADL2, which is perhaps
attributed to the use of a more accurate statistical model in ADP . Furthermore, in de-
tecting 137Cs, ADP has a similar MDA to ADPC KBL. That is, by using a more accurate
statistical model and computing a different anomaly detection score, ADP is able to detect
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Figure 4.2: Probability of detection of 133Ba (top) and 137Cs (bottom) sources at 20-m
standoff using NMF-based detection algorithms, a PCA-based detection algorithm, and
both NMF and PCA-based algorithms in the case of a known background, each model
using k = 2 components at 1/8 hr −1 FAR and 1-s integration time. Solid lines show the
measured performance, and dashed lines show performance in the KBL. Note that only
anomaly detection is performed here, meaning sources are not identified by the algo-
rithms. The 95% probability of detection is indicated by the dashed horizontal line. Error
bars indicate the 68% Jeffreys interval. Not shown is a curve for gross counts, which has
a significantly higher MDA.

weaker sources than the PCA-based method under a near-perfect understanding of the
gamma-ray background. However, ADPC offers a slight advantage over ADL2 for 133Ba,
suggesting that these performance enhancements may primarily exist for sources with
gamma-rays at higher energies.

Not shown in Figure 4.2 are curves for Kσ. As Table 4.1 shows, the MDA of Kσ is
much higher than any of the NMF and PCA-based methods. The poor performance of
Kσ reflects the background variability seen by RadMAP, as high thresholds must be set
to maintain the FAR of 1/8 hr−1.
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Table 4.1: MDA95 (µCi + statistical error) for anomaly detection

Method

Source 133Ba 137Cs

ADP KBL, k = 2 119.9 ± 0.3 132.7 ± 0.4

ADL2 KBL, k = 2 132.2 ± 0.3 150.3 ± 0.6

ADPC KBL, k = 2 131.2 ± 0.2 212.0 ± 0.5

ADP , k = 2 188.5 ± 0.7 215.9 ± 0.5

ADP , k = 4 181.3 ± 0.9 209.4 ± 0.7

ADL2, k = 2 195.9 ± 0.4 240.3 ± 0.6

ADL2, k = 4 182.4 ± 0.5 231.1 ± 0.8

ADPC , k = 2 192.9 ± 0.4 336.5 ± 0.7

ADPC , k = 4 189.1 ± 0.5 325.8 ± 0.9

Kσ 1971.0 ± 13.6 2302.2 ± 16.1

When comparing the performance of the dimensionality reduction-based anomaly de-
tection methods with their respective KBLs, it is apparent that there is room for improve-
ment. By including additional information about the local gamma-ray environment, it is
possible that these methods approach the case of the known background. However, the
NMF-based methods are better suited for coupling with environmental sensors, due to
the physical interpretation of NMF.

4.4.4 Estimating Uncertainties due to Empirical Thresholds

In using empirical thresholds, results are ultimately dependent on the data used to esti-
mate thresholds. To understand the effect that the choice of dataset used for determining
thresholds has on performance, an approach which estimates thresholds based on ran-
dom subsets of data is examined here. In particular, the data is split into many contigu-
ous segments of measurements, and a number of these segments are picked at random,
without replacement, and used for computing thresholds. Such random sampling was
performed 100 times, with each iteration having a combined measurement time of ap-
proximately 24h. Thresholds for ADP , ADL2, and ADPC were computed for each of the
100 trials, resulting in a distribution of thresholds for each anomaly detection method.
The estimated mean and standard deviation of each metric, along with thresholds gener-
ated using the entire 55-hour dataset, are given for k = 2 models in Table 4.2. This table
shows that thresholds estimated using the entire dataset fall within one standard devia-
tion of the mean of threshold generated using random subsets. The mean and standard
deviation of these thresholds are then used to generate a lower and upper estimates for



51

Table 4.2: Comparison of empirical anomaly detection thresholds

Threshold ADP ADL2 ADPC

Full dataset 1.337 1.420 1.611

Random subsets 1.341 ± 0.007 1.415 ± 0.012 1.613 ± 0.017

Table 4.3: Lower and upper estimates of MDA95 (µCi + statistical error) for anomaly de-
tection

Method

Source 133Ba 137Cs

ADP , k = 2 (187.5 ± 0.6, (214.5 ± 0.5,

191.9 ± 0.6) 220.8 ± 0.5)

ADL2, k = 2 (194.5 ± 0.4, (241.1 ± 0.7,

199.9 ± 0.4) 251.9 ± 0.8)

ADPC , k = 2 (190.4 ± 0.4, (331.4 ± 0.7,

196.3 ± 0.5) 343.4 ± 0.7)

thresholds, yielding a lower and upper estimate on MDA. Lower and upper values for
MDA using thresholds equal to a standard deviation below and above the mean, respec-
tively, are reported in Table 4.3. The range of MDA values presented in Table 4.3 suggest
that the procedure for computing ADP may result in empirical thresholds that are less
sensitive to data than ADL2 and ADPC .

4.5 Source Identification using NMF
With the additive, parts-based interpretation of NMF in mind, the background model
V can be augmented to account for contributions from gamma-ray sources of interest by
including a source template ts ∈ Rd

+ corresponding to source s (e.g., 133Ba) with the matrix
V to form a combined background and source model V′ =

[
V
t>s

]
. By fitting a spectrum to

V′, the spectrum is approximated as a linear combination of the background components
and the source. The source template, representing the detector system’s response to a
particular source, can be generated from measurements, simulation, or by performing
NMF on data containing sources.

When examining new spectra X′, the model V′ is applied and held fixed, resulting in
weights A′. Figure 4.3 shows the result of performing an NMF fit to a spectrum using
both the background-only model V and the combined source and background model V′.
The measurement is a one-second NaI spectrum of background data from RadMAP that
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Figure 4.3: Comparison of a fit to a spectrum containing 133Ba using only the background
model V (top) and using the background and source model V′. The upper pane shows
the weighted background components, as well as their sum. The lower pane shows the
sum of the background components, the weighted source template, and the sum of the
background and source components. By including the source template, the model is able
to fit the 356 keV 133Ba peak. An 85-µCi 133Ba source at 20-m standoff distance is used.

includes source contribution from an injected 85-µCi 133Ba source at 20-m standoff dis-
tance. Together, the background components generated from NMF and the 133Ba source
template perform a better approximation of the spectrum than the background model
alone.

4.5.1 Likelihood Ratio Tests

To detect and identify sources using the augmented model V′, a test statistic for deter-
mining the presence or absence of a source within a spectrum is examined. In particular,
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testing the null hypothesis that a spectrum is consistent with background, relative to the
alternate model containing source s, is done by a likelihood ratio test. A given spectrum
x is fit to both the background model V and augmented model V′, yielding the negative
log-likelihoods − lnP (x|V) and − lnP (x|V′), respectively, which are then used to form a
log-likelihood ratio test statistic

Ds(x) = −2
{

lnP (x|V)− lnP (x|V′)
}
. (4.14)

The test statisticDs(x) quantifies the amount by which the fit is improved by including
the additional source template ts; if the fit is not significantly enhanced, Ds(x) ≈ 0, and
Ds(x) increases as including the template improves the fit. Using the procedure described
in Section 2.6, a threshold Ts for source s at a given FAR is estimated by computing the test
statistic over background data. Figure 4.4 shows histograms of Ds(x) for 137Cs and 133Ba
from 55 hours of NaI spectra collected by RadMAP. The distribution peaks at Ds(x) = 0
for both sources, and decreases with increasing Ds(x). The procedure of training models
using NMF, fitting spectra using background models and source templates, and perform-
ing likelihood ratio tests to perform identification is hereafter referred to as ADIP and
ADIL2.

4.5.2 Analytical Modeling of Likelihood Ratio Test Statistics

Using such an empirical approach, one needs more than N = p−1
FA = RFA ∗ ∆t data

points per template to estimate a threshold for a single source, whereRFA is the FAR (e.g.,
1/8 hr−1) and ∆t is the integration time (e.g., 1 s). In some cases, there may be an insuffi-
cient amount of data available to estimate thresholds at a particular FAR, meaning such an
approach is not possible. While the empirical approach for threshold estimation provides
one method to account for actual variability seen by a detector system, analytical esti-
mates of test statistic thresholds are possible, and eliminate the need for a large amount
of data for threshold estimation. Specifically, Wilks’ theorem [62] states that likelihood
ratio test statistics, when the null hypothesis is true, are asymptotically (i.e., as d → ∞)
distributed as χ2

m, where m indicates the difference in the number of degrees of freedom
between the alternate and null models. In the context of this work, m is the number of
parameters used in modeling the source contributions, meaning m = 1 for the case of a
single source template. Wilks’ theorem assumes certain conditions about the parameters
involved in the MLE being performed, namely, that parameters are Gaussian-distributed
and that estimated parameters are at the interior of the parameter space, neither of which
are met in the NMF-based hypothesis testing described above. When parameters are esti-
mated on the boundary on the parameter space (i.e., close to zero), as with source weights
in NMF, the distribution of likelihood ratio test statistics, when the null hypothesis is true,
is modeled as a mixture of χ2 distributions with different degrees of freedom [63]. For m
source components added to an NMF-derived background model, the distribution of test
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Figure 4.4: Distributions of likelihood ratio test statistic Ds(x) used in testing for the
presence of 133Ba (top) and 137Cs (bottom). The distributions are formed by computing
the difference of negative log-likelihoods between source and background models Vs and
background only models V over a background dataset containing 55 hours of NaI spectra
collected by RadMAP. The distribution is used to empirically select a threshold based on
a target FAR. The vertical lines show thresholds for particular FARs, given in the legend.

statistics can be modeled as

P (D;m) =
1

2m

m∑
i=0

(
m

i

)
χ2
i . (4.15)

Figure 4.5 shows a comparison between likelihood ratio test statistics computed using
background data for both 60Co and 137Cs, as well as the distribution described by Equa-
tion (4.15) for m = 1 and m = 2. The maximum at D = 0 is accounted for by the
term 2−mχ2

0, which results from the additional parameters being estimated (i.e., the NMF
weights associated with the source components) being at the edge of the parameter space
(i.e., often times close to being 0 when the null model is true). Additionally, the increased
probability of larger test statistics for m = 2 can be understood as enhanced fitting due
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Figure 4.5: Histograms of likelihood ratio test statistics for 60Co (left column) and
137Cs (right column) computed using background data compared to the analytical model
in Equation (4.15) form = 1 (top row) andm = 2 (bottom row). The reduced χ2 goodness-
of-fit measure is reported for each fit, showing that the models fit reasonably well, sug-
gesting Equation (4.15) can be used for modeling the probability distribution of test statis-
tics for hypothesis testing. In each case, the inverse CDF of the probability distribution
can be computed and used to yield the threshold for a given probability of false alarm.

to the additional degree of freedom. Note that the m = 2 case, in which the source is
represented with two parameters, is described in Section 4.6.

Using the distribution given by Equation (4.15), thresholds associated with a partic-
ular pFA or CFAR can be computed. To maintain a given CFAR when simultaneously
performing multiple hypothesis tests, one must apply a correction factor to maintain a
constant FAR. In this work, a Bonferroni correction, which scales the significance level in-
versely by the number of hypotheses tested, is used for simplicity in analyzing the behav-
ior of thresholds. Note, however, that the Bonferroni correction results in relatively con-
servative threshold estimates, and that less stringent alternatives are available (e.g., false
discovery rate methods). The threshold T associated with an m-parameter model and N
different sources is computed from the cumulative density function of Equation (4.15):

pFA
N

=

∫ ∞
T

P (D;m)dD. (4.16)

Equation (4.16) is solved numerically to yield T . Values of T for various m and N are
shown in Figure 4.6.
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Figure 4.6: Thresholds used in likelihood ratio tests, computed using Equation (4.16). The
left column shows thresholds for m = 1, where sources are approximated with a single
vector, and the right column shows thresholds for m = 2, used for the two-component
NMF source representation. N is used to represent the effective number of independent
hypotheses being tested. In the analysis in this work, Ns = 1, meaning a single source
is tested at a time, so N represents the number of shielding configurations considered.
This plot shows that for Nc ≥ 5, a two-component NMF source model results in a lower
threshold, assuming both models are able to describe variation in the source sufficiently
well.

4.5.3 Benchmark: Region of Interest

To assess the relative performance of the ADIP and ADIL2 algorithms, a Region of Interest
(ROI) algorithm was evaluated on the same data. The ROI algorithm, as described in [34],
estimates the number of source counts within a spectral region in which gamma rays from
a particular source are expected. To estimate source counts in the ROI R, the algorithm
first uses a linear relationship between the number of background counts in the ROI and
the number of counts in neighboring regions B1 and B2. Regions B1 and B2 are chosen to
be at higher energies thanR so that they do not contain counts from downscattered source
gamma rays, while being sufficiently close to R to predict background counts in R. The
window edges defining the ROI and the background regions are shown in Table 4.4.
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Table 4.4: Energy windows (keV) used in ROI-based source identification

Source R B1 B2

133Ba 340.0 - 397.2 397.2 - 443.0 443.0 - 474.9
137Cs 632.3 - 670.4 670.4 - 749.8 749.8 - 812.2

The number of background counts in R is estimated as r̂ = b>w, where b is a vector
containing counts within the background windows B1 and B2, and w are weights found
via Poisson regression [38] on the same background training set used for training NMF
models. When evaluating spectra for the presence of the source, the difference between
the measured counts r and estimated background counts r̂, or the residual, forms the ROI
metric, defined as

ROI(x) =
r − r̂√
r̂
. (4.17)

This metric is then compared to a decision threshold to determine the presence or absence
of a source. As with the other methods described in this analysis, the decision thresholds
are computed empirically for a given FAR by calculating the residual over background
data. Spectra in which the ROI has an excess of counts are then considered anomalous.

4.5.4 ADIl in the Limit of Known Background

As with anomaly detection described in Section 4.4, the performance of the identification
algorithms is also evaluated in the case of a known background. For NMF-based identi-
fication, the background contribution X̂bkg is held fixed, and the source contribution that
best fits the source and background model to the spectra X is found.

4.5.5 Performance Evaluation

Using a FAR of 1/8 hr−1, thresholds for both sources were empirically determined, yield-
ing the values TCs = 14.1 and TBa = 14.4. Additionally, an L2NMF model was formed and
thresholds were calculated using the same training set as the PNMF model described
above, though thresholds and figures specific to L2NMF are omitted for the sake of
brevity. Note that in each case, only a single source is being searched for. In the case
of multiple sources being separately tested for, false alarm rates should be adjusted ac-
cordingly (e.g., using the Bonferroni correction), ultimately increasing thresholds and re-
ducing sensitivity.

Figure 4.7 shows the probability of detection for 133Ba and 137Cs using both NMF-
based algorithms and an ROI algorithm, and Table 4.5 shows the corresponding MDA95

for each algorithm resulting from a fit of PD to a sigmoid. Figure 4.7 shows that there is
a significant improvement in detection capabilities by using NMF-based algorithms, and
that there are additional improvements by using PNMF models over L2NMF.
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Figure 4.7: Probability of detection and identification for 133Ba (top) and 137Cs (bottom)
using the ADIP , ADIL2, NMF-based algorithms in the case of a known background, each
using, k = 2 components, and an ROI algorithm. Solid lines show the measured perfor-
mance, and dashed lines show performance in the KBL. Spectra were formed using 1-s
integration time for 99 NaI detectors on RadMAP, and source injection was performed us-
ing 20-m standoff distance and 6.7± 1.3 m/s vehicle speed. For both sources, a 1/8 hr−1

FAR was used. Both the ADIP and ADIL2 methods are able to achieve a 95% probability
of detection, indicated by the dashed horizontal line, at a much lower activity than the
ROI algorithm. Error bars indicate the 68% Jeffreys interval.

Similar to results shown in Section 4.4.3, there is a difference between measured per-
formance of the NMF-based detection and identification methods and the performance in
the case of a known background. By informing these methods with data about the local
environment, more accurate background models could potentially be created, enhancing
detection and identification performance.
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Table 4.5: MDA95 (µCi + statistical error) for simultaneous detection and identification

Method

Source 133Ba 137Cs

ADIP KBL, k = 2 38.9 ± 0.1 46.3 ± 0.2

ADIL2 KBL, k = 2 40.8 ± 0.1 29.1 ± 0.1

ADIP , k = 2 79.6 ± 0.3 82.4 ± 0.4

ADIL2, k = 2 92.7 ± 0.3 88.4 ± 0.3

ROI 168.5 ± 0.6 145.2 ± 0.8

4.6 NMF for Source Spectrum Modeling
In addition to background variation, there is variability in spectral shape due to shield-
ing and environmental scattering of source gamma rays. Interactions of source gamma
rays with materials between the source and detector (e.g., steel shielding surrounding a
source) reduces the number of gamma rays incident with the detector for a given source-
detector configuration, but will also result in a different spectral shape than in the case of
an unshielded source. Figure 4.8 illustrates the variation in spectral shape for the sources
60Co and 137Cs under four different types of shielding which are commonly used in trans-
porting industrial sources, using six 2"× 4"× 16" NaI(Tl) scintillation detectors. Gamma-
ray source identification algorithms that rely on spectral shape, especially those using
template matching, often suffer in detection sensitivity due to this modulation of spectral
shape. In this section, a method for accurate modeling of variability in spectral shape un-
der various source shielding configurations is discussed, and identification performance
using these models is quantified.

Approaches for mathematically modeling the effect of source attenuation on gamma-
ray spectra have been previously introduced. For example, the multiple isotope material
basis set (MIMBS) method [64] approximates a given spectrum as a linear combination
of spectra resulting from attenuated sources. MIMBS folds attenuation in by analytically
computing the spectrum for a source under a particular activity and shielding density,
and in fitting a spectrum, source activities and the absorber densities for each material are
simultaneously solved for. Instead of an analytical approach such as the MIMBS method,
this chapter uses a data-driven approach for modeling the effects of source attenuation on
gamma-ray spectra. One reason for considering a data-driven approach over analytical
calculations is the possibility for reducing the number of parameters involved with fitting
a given spectrum.

In this section, the concept of source spectrum modeling using NMF, first introduced
in ref. [65], is studied further and discussed in the context of the identification method
introduced in Section 4.5. Instead of assuming a library of shielding types, as with meth-
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Figure 4.8: Normalized detector responses, referred to as spectral templates, for both 60Co
(left) and 137Cs (right) under five source shielding configurations: no shielding, 50 mm
of concrete, 50 mm of lead, 50 mm of steel, and 100 mm of steel. The templates were
formed by creating spectra from simulated 1 mCi sources at a 10-m standoff distance,
then normalizing the spectra to 1. For both sources, variability in spectral shape is seen to
depend on the amount and type of shielding surrounding the source. An ideal gamma-
ray source identification algorithm is able to accurately identify a gamma-ray source in
the presence of various shielding types.

ods such as MIMBS, the NMF approach learns common modes of variation from ex-
amples of shielding types. To demonstrate the concepts in this section, measured back-
ground gamma-ray spectra and simulated source spectra from a mobile detection system
equipped with six 2" × 4" × 16" NaI(Tl) scintillation detectors are used.

The general procedure for learning a representation for a source s using NMF is to
form a matrix Xs from spectral samples of s in different shielding configurations, as well
as different source positions relative to the detector, and to perform NMF on Xs. The
components Vs generated from NMF then can be understood as d-dimensional vectors
that combine linearly to approximate source spectra. Using Vs and the NMF-derived
background model Vb, new spectra are encoded with the matrix V′ =

[
Vb
Vs

]
, yielding

weights A that can then be used for identification.
For each radionuclide and shielding type considered here, the source and shielding

combination was simulated at 19 different positions in a 180◦ arc around the detector
system in 10◦ increments, each at a 10-m standoff distance and 1.3 m off the ground, and
each being measured with a 1 s integration time [17]. Due to symmetry in the detector
array, the detector response was mirrored about the axis of symmetry, resulting in 36
source positions covering 360◦ around the detector system. Spectra from all six detectors
were summed, resulting in a single spectrum for each of the 36 sample points around
the detector system. Spectra for a given source under all shielding configurations were
stacked to form matrix Xs.
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Figure 4.9: NMF components Vs generated for 60Co (left pane) and 137Cs (right pane).
For both sources, NMF generates physically-interpretable components that can be related
to the full-energy peaks and the downscattering continuum associated with shielding.
Intuitively, a source under a given shielding configuration can be thought of as a linear
combination of the full-energy peak(s) of the source, and a downscattering contributions
due to the particular shielding configuration present.

NMF was performed on Xs, using a random initialization for the matrices A and V,
with the update rules in refs. Equation (4.4) - Equation (4.7) until the mean objective func-
tion Equation (2.15) remained constant within a tolerance of 10−7. As discussed in Sec-
tion 4.2, the AIC is again computed to choose an optimal number of components, yielding
k = 2 for both sources used in this section.

Figure 4.9 shows a comparison of the two source components for 60Co and 137Cs gener-
ated using the shielding types shown in Figure 4.8. As with for background models, NMF
yields interpretable modes of variation for both source types used in Figure 4.9. For 60Co,
Component 1 primarily captures the 1173 keV and 1332 keV peaks and the high-energy
edge of the Compton continuum, while a large portion of the low-energy continuum, as
well as a downscattering feature associated with the 1332 keV peak seen between the
two peaks, is captured by Component 2. Similarly, for 60Co, Component 1 contains the
662 keV full-energy peak, and downscattering is captured by Component 2. These two
independent components can then be weighted in different amounts to closely match the
shielding configurations shown in Figure 4.8.

4.6.1 Model Comparisons

Three methods are compared using the injection scheme described above. The first ap-
proach, introduced in Section 4.5, uses a single bare source template to represent source
contributions to spectra, and is hereafter referred to as the bare approach. The second
method, referred to as the library approach, makes use of a library of shielded sources
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and fits a given spectrum to each shielding type in the library. Lastly, the learned NMF
component approach is used for representing sources. Each of the three approaches re-
sults in a different number of fitting parameters, and as a result, each has a different
threshold according to Equation (4.16).

In the discussion below, the number of sources being simultaneously searched for is
denoted by Ns, and the number of shielding configurations used in the library approach
is Nc. When each source and shielding configuration is treated as an independent hy-
pothesis test, N = NsNc. In each of these three cases, the threshold then depends on three
parameters: the number of sources being tested for Ns, the number of shielding config-
urations Nc, and the number of parameters used in representing the source m. In this
analysis, only a single source is being searched for at a time, meaning Ns = 1, and that
N in Equation (4.16) only depends on Nc. Using the two remaining parameters, Nc and
m, thresholds can be computed analytically using Equation (4.16) and compared, shown
in Figure 4.6. Assuming a source can be accurately described by a given model for partic-
ular values ofNc andm, the ordering of thresholds gives an ordering of MDA for different
values of Nc and m. Each of the three models are discussed further here.

Bare Template

In this case, only a single source shielding configuration (i.e., bare) is considered, meaning
N = Nc = 1. Also, since only a single parameter is used in modeling the source contribu-
tion to spectra, m = 1. As seen in Figure 4.6, this combination of N and m results in the
lowest possible threshold, meaning that when a bare source is present, this method will
perform better than the other two methods.

Library of Templates

Here, two or more templates form a library of templates, corresponding to different
shielding configurations. For example, Figure 4.8 shows Nc = 5 shielding configura-
tions for both 60Co and 137Cs. With respect to the number of parameters used in a specific
likelihood ratio test, m = 1 parameters are used here as well. The difference between the
library of templates approach and bare template approach is then the number of hypothe-
ses being tested for N > 1.

NMF-Derived Templates

In this case, the number of parameters associated with the likelihood ratio test is m = k,
where k is the number of NMF components used in representing the source, and thatN =
1. As previously noted, k = 2 components are used, meaning m = 2 in Equation (4.15).
Figure 4.6 shows that if sufficient variability can be captured with the learned model,
then the learned model is preferred over a five-template library with equivalent modeling
capability, as the learned model results in a lower threshold.
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Table 4.6: Comparison of MDA (µCi) for NMF-based identification using different source
approaches

Source

Method
Bare template Library of templates Learned components

60Co, bare 24.5 ± 0.3 26.0 ± 0.3 25.7 ± 0.3
60Co, 50 mm steel 154.4 ± 1.5 146.2 ± 1.9 145.0 ± 1.9
137Cs, bare 49.2 ± 0.6 51.6 ± 0.7 50.8 ± 0.7
137Cs, 50 mm steel 652.4 ± 9.4 615.4 ± 6.4 613.4 ± 6.4

For each of the three classes of source spectrum models, the same background model
Vb was used. The matrix Vb was generated by performing NMF on a collection of 6019
1 s background spectra, using the same procedure described in Section 4.6. Due to low
variability in spectral shape across samples, a single (i.e., k = 1) NMF component resulted
in the lowest AIC for the background model, and is used in the remainder of the analysis.

4.6.2 Performance Evaluation: Bare Source

While the methods discussed in this work are ultimately meant to identify shielded sources,
they must also be able to identify bare sources, which is examined here. Figure 4.10 shows
the probability of detection curves for the three models in the case of a bare source, and
the MDA for each is given in Table 4.6. Each model is able to accurately model the bare
source, however, the bare source model resulted in the lowest MDA due to the threshold
penalty for additional parameters used in the other two models, as expected from the
threshold analysis in Section 4.6.1.

4.6.3 Performance Evaluation: 50 mm Steel Shielding

The probability of detection was again computed for the two sources using the three
models, but here the source was shielded by 50 mm of steel, shown in Figure 4.11. The
MDA for both sources under each of the three methods is given in Table 4.6. Both the
learned and library approaches provide improvements over the bare model, however,
the learned and library approaches fall within error of one another.

4.7 Concluding Remarks
Detecting and identifying gamma-ray sources relies on the ability of an algorithm to dis-
tinguish source and background. Here, the use of NMF was proposed, under the as-
sumption of Poisson statistics, to model both gamma-ray background and source spectra.
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Figure 4.10: Probability of detection curves for unshielded 60Co (top) and 137Cs (bottom).
For each activity, 500 background spectra were randomly sampled, and downsampled
source spectra for a source at a 10-m standoff were injected into the background. While
each of the three models results in similar performance, there is an advantage to using
the bare source model, as it is able to accurately model the source using fewer parameters
than the other two approaches.

These models can be used to find radiological anomalies, and by using spectral tem-
plates, source identification can be performed. In addition to performing identification
for single sources, multiple sources can be simultaneously tested for by appending addi-
tional source templates to the matrix Vs. Under the given parameters, the anomaly detec-
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Figure 4.11: Probability of detection curves for 60Co (top) and 137Cs (bottom) shielded by
50 mm of steel. Both the learned and library models provide improvements over the bare
template model due to their ability to model variation in the spectral shape due to the
shielding.

tion and identification algorithms outperform standard algorithms. Note, however, that
the decomposition-based methods here were only optimized with respect to the number
of degrees of freedom, and that the performance of each method, including the bench-
mark algorithms, may be enhanced by optimizing integration time, performing spectral
smoothing, normalizing input variables, and optimizing energy windows in the case of
ROI.
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This method has also been extended to model source spectra, which is particularly
useful for modeling the effects of shielding on spectral shape. The NMF models resulting
from training on source spectra under different shielding configurations generated com-
ponents that can be understood as separately containing full-energy peaks and down-
scattering continua. Section 4.6 showed that a marginal improvement can be achieved
when using NMF-derived source components over using bare templates when detecting
shielded sources. Furthermore, the interpretable components resulting from these models
may aide in determining shielding type.

While the methods in this chapter were demonstrated using relatively large and unique
detector systems, these methods are general enough to be deployed on a wide range of
systems. Furthermore, these methods can be extended to detect and identify gamma-
ray sources other than the two studied in this analysis, albeit with additional care. One
consideration is the similarity in spectral shape between the source of interest and the
NMF components used in estimating background – sources with a high degree of simi-
larity to background components may be incorrectly attributed to background, ultimately
reducing the ability to detect the particular source. If a source is seen to exhibit such be-
havior, one may devise a means of reducing the similarity, for example leveraging the
non-uniqueness and selecting background components that are the most distinct from
the sources of interest (e.g., with respect to cosine similarity or KL divergence). Similarly,
when searching for multiple sources, one must be aware of the similarity between sources,
as source templates that contain overlapping gamma-ray lines may result in misidentifi-
cation.

Beyond anomaly detection and identification, Poisson NMF can be considered a gen-
eral framework for approaching gamma-ray spectroscopic analyses, as it lends itself to
a useful physical interpretation due to its additive, non-negative nature. For example,
the geospatial distribution of NMF weights may yield the environmental composition of
particular radioisotopes, which could potentially find use in applications such as contam-
ination mapping.

In Figure 4.2 and Figure 4.7, it is shown that there is a significant difference between
the measured performance and the performance in the limit of known background. Ad-
ditional information about the environment, for example, in the form of Bayesian priors
and regularization, may potentially enhance detection and identification performance.
Prior probabilities of background weights A, determined from previous measurements,
could be introduced to provide constraints to background models by means of maximum
a posteriori, as opposed to the MLE used here, which may allow for a more accurate back-
ground estimate. Additionally, performance can be enhanced further by aggregating test
statistics over several spectra, or by sequentially estimating weights (e.g., using a Kalman
filter) to create time-dependent models.
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Chapter 5

Neural Networks for Detection and
Identification

The NMF spectral models introduced in the previous chapter are often physically intu-
itive, provide accurate approximations, and are relatively simple to implement and de-
ploy on fielded systems. The simplicity of these models, however, can limit their extensi-
bility, specifically in performing data fusion with additional non-radiological sensors. In
attempting to leverage correlations between spectral features and image features, previ-
ous attempts using linear models have relied on ad-hoc approaches [67]. It is then worth
considering additional approaches to perform detection and identification, specifically
methods which are capable of being augmented with additional data sources. This chap-
ter explores approaches to spectral modeling using neural networks, a general class of
non-linear models which can be used for spectral detection and identification. In addi-
tion to being compelling candidate methods for spectral analysis, there is a clear path for
exploring the use of data fusion with non-radiological sensor data.

The remainder of this chapter is outlined as follows. Section 5.1 gives an overview of
neural network elements, specifically as they pertain to spectral detection and identifica-
tion. Section 5.2 provides a review of related research, as well as directions of research
following this past work. Spectral anomaly detection using neural networks is introduced
in Section 5.3, and Section 5.4 discusses networks for source identification. A description
of the data and metrics used in analyzing the performance of the methods described in
this chapter is provided in Section 5.5. Section 5.6 quantifies the performance of various
models, including benchmark methods. Lastly, Section 5.7 concludes with a discussion on
considerations when choosing between methods to use in practice, along with additional
directions of research to consider.

The content of this chapter originates from the following publication: K. J. Bilton, T. H. Joshi,
M. S. Bandstra, J. C. Curtis, D. Hellfeld, and K. Vetter, "Neural Network Approaches for Mobile Spec-
troscopic Gamma-ray Source Detection." Submitted to IEEE Transactions on Nuclear Science (under review),
2020 [66].
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5.1 Overview of Artificial Neural Networks
Artificial neural networks (ANNs), or simply neural networks, are a general data-driven
method for performing function approximation, and are capable of producing functions
for performing detection and identification. Neural networks are used to form a function
f which operates on an input x (e.g., an image or gamma-ray spectrum), producing an
output ŷ = f(x). The function f consists of a series of relatively simple operations, which
are parameterized by a set of learned model parameters P . To perform identification,
ANNs are used to determine a function which maps a given gamma-ray spectrum to the
types of radionuclides, or lack thereof, that are observed in the spectrum. This section
reviews the fundamental concepts underlying neural networks, specifically as they relate
to detection and identification.

Neural networks can generally be considered a composition of l different functions,
that is,

f(x) = fl(fl−1(. . . (f2(f1(x))))), (5.1)

where the output of the composed function up to fi is referred to as the ith layer, denoted
by h(i). Using these layers, complete networks can be created to perform a variety of
tasks. Often times, networks will have an architecture that is several layers "deep", giving
rise to the name deep learning.

For a defined functional form of f , the parameters P are estimated from examples of
pairs of inputs x and corresponding target values of output y, such that ŷ = f(x) ≈ y.
The functional form of f is one of the key elements to using neural networks, as this
determines the model capacity. With too little model capacity, the learning procedure will
fail to yield f that fits the training data well, whereas too much model capacity will cause
the model to overfit training data, meaning it learns parameters that effectively allow the
network to remember training examples.

Equation (5.1) specifically defines a feedforward neural network, which can be repre-
sented as a directed acyclic graph. This is in contrast to a recurrent neural network (RNN),
which contains cycles and is used for modeling sequential data. In addition to examining
feedforward networks for detection and identification, this chapter introduces the use of
RNNs for performing spectral identification using temporal sequences of spectra. The re-
mainder of this section provides common layer types which are useful for accomplishing
both detection and identification.

5.1.1 Fully-connected Layers

A fully-connected or dense layer connects each element, or neuron, in a given layer to each
element in the following layer. Suppose the ith layer of a network consists of k elements,
denoted by h(i) ∈ Rk, and suppose the following layer has m elements, denoted by
h(i+1) ∈ Rm. A fully-connected operation provides a mapping Rk → Rm using a ma-
trix Wi ∈ Rm×k. A bias term bi can be added, resulting in the linear transformation
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hi+1,1
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Figure 5.1: A dense connection between layer hi ∈ R4 and layer hi+1 ∈ R2, which can
be understood from left to right. The lines between element hij in the left (i.e., first) layer
and element hi+1,k in the right (i.e., second) layer are represented as a column i in the
matrix W ∈ R2×4. Not shown is an additional bias term bi ∈ R2 and nonlinear activation
function σ(·) used to create the state hi+1 = σ(Wihi + bi).

Wih
(i) + bi. Since the composition of linear operations will result in a linear model, non-

linearities are added in the form of an activation function σ(·) to increase modeling capacity.
One common activation function, used in much of this work, is the Rectified Linear Unit
(ReLU) function, which is defined as

ReLU(z) = max(0, z). (5.2)

In summary, a fully-connected operation from a layer iwith state h(i) to layer i+1 is given
by

h(i+1) = σ(Wh(i) + b), (5.3)

where the matrix Wi and vector bi are learned from data. Figure 5.1 shows an example
dense connection between two layers, illustrating connections between the neurons in
each layer.

5.1.2 Convolutional Layers

For data in which salient features are localized (e.g., images), a good approximation of f
can often be made using far fewer connections between layers than in dense connections.



70

This behavior can be accomplished by means of convolutional layers, forming a Convolu-
tional Neural Network (CNN). Convolutional layers relate local features in data by means
of applying the convolution operation to input data for a given convolutional kernel (i.e.,
a function over a limited domain). CNNs have lead to significant advances in the field of
computer vision and are at the core of many state-of-the-art approaches to tasks such as
classification, detection, and semantic segmentation [68]. As originally noted in ref. [69],
gamma-ray spectra also contain local features (e.g., peaks and continua), as do images,
and CNNs are an appropriate choice for this application.

In convolutional layers, one or more convolutional kernels, or filters, are applied to a
given layer, yielding a new set of features. The form of the convolution operation varies
slightly with the number of dimensions used, and in this work, only 1-dimensional con-
volutions are considered, treating a gamma-ray spectrum as features along a single axis.
Suppose that the ith layer contains n feature maps (i.e., n sets of elements resulting from
n different convolutional kernels from the previous layer), each of length d, represented
with a 2-dimensional tensor h(i) ∈ Rn×d. Also suppose that the convolutional operation to
be applied to h(i) consists of k different convolutional kernels, each with size l (typically
a small number), represented by a 3-dimensional tensor K ∈ Rk×n×l. The mth element of
the jth feature map of layer h(i+1) resulting from convolving h(i) with kernels K is given
by

h
(i+1)
j,m =

n∑
x=0

l∑
y=0

h
(i)
x,m+yKj,x,y. (5.4)

In addition to the number of kernels used and the size of the kernels, there are additional
hyperparameters used in configuring the convolution operation, including padding, stride,
and dilation, which affect the resulting feature map. See ref. [70] for a detailed discussion
on each of these. In this work, a stride of 1 is used, and a size padding is used such that
the resulting feature maps have the same dimension as the input feature maps.

As with dense layers, a nonlinear function is generally applied following a convolu-
tion operation. In addition, pooling operations are typically performed, which reduce the
spatial dimension of the features by summarizing a group of features with a single value.
For example, a feature map of size 128 passed through a max pooling function of size 2
will result in a feature map of size 64, where sequential groups of 2 features are replaced
by the maximum of the two.

5.1.3 Recurrent Layers

RNNs are simply networks that contain one or more recurrent layers, which are layers that
feed information from a hidden layer from one time step to another. There are a varity
of recurrent layers, such as Elman layers [71], long short-term memory modules [72], and
gated recurrent units [73]. Elman layers are among the simplest, as they are an extension
of a fully-connected layers. In addition to transforming the state h(i) to h(i+1), as done in
dense feedforward layers, Elman layers also feed the output at time t, h

(i+1)
t , as an input
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at time t+ 1:
h

(i+1)
t+1 = σ(Wh

(i)
t+1 + Uh

(i+1)
t + b), (5.5)

where W, U, and b are learned parameters, and σ is a nonlinear activation function.

5.1.4 Network Training

A given network is a combination of layers which are parameterized byP . In this chapter,
training refers to the process of using a dataset X , split into training and validation sub-
sets, to update model parameters P , generally by some variation of stochastic gradient
descent, such that the loss evaluated on X decreases with number of training iterations,
or epochs. The training set X is subdivided into a set used for updating model parame-
ters, also referred to as training data, and a validation set used for assessing model per-
formance during optimization. During each epoch, the model parameters are updated
based on each mini-batch (i.e., random sample of a fixed size) of training data, and fol-
lowing these parameter updates, the error is computed on the validation data, giving a
sense for how accurately the model is performing on data that was not used to update
model parameters. The validation set is used to assess the generalization capabilities
of the model, and in particular, it is used to indicate when the optimization procedure
should cease. Initially, the loss from both the training and validation sets will decrease,
however, there will often be a point at which the training loss continues to decrease, while
the validation loss increases – a sign of overfitting. Early stopping is the method of stop-
ping the training process once the validation loss begins to increase for some number of
iterations, referred to as the patience.

5.2 Related Work
The use of neural networks to gamma-ray spectroscopy was introduced as early as the
1990s. Since then, many advancements have been made, both in the general field of ma-
chine learning, and the application to gamma-ray spectroscopy more specifically. This
section reviews previous work in applying neural networks to this domain, and synthe-
sizes previous research to provide directions for further improvements.

5.2.1 Early Work: 1990s - 2000s

Olmos et al. (1991) [74], is the first known application of neural networks to gamma-
ray spectroscopy, specifically to perform spectral identification. The authors developed a
neural network to predict the amount of a spectrum x ∈ Rd attributed to each source in a
library of N sources. That is, the network predicted a vector c = f(x) ∈ RN . The network
used linear associative memory, giving the network the form

f(x) = Wx (5.6)
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for a set of weights W ∈ RN×d. W was computed as the pseudoinverse of the matrix
X ∈ Rd×N (i.e., W = X+). This network was separately trained on Ge(Li) and NaI(Tl)
spectra, and evaluated by predicting the amount of source present for known mixtures of
radionuclides. This work was extended by the same authors in ref. [75] by accounting for
gain drift by including derivative terms for the reference spectra in the matrix X.

Despite the encouraging results, the work by Olmos et al. did not gain traction, and
neural networks applied to gamma-ray spectroscopy did not appear again until the work
by Pilato et al. (1999) [76]. Similar to Olmos, Pilato studied a method for computing
relative contributions of different sources to a given spectrum, however, the method in-
troduced in that work was primarily aimed at quantifying gamma-ray source activities
in laboratory settings, meaning source identities were known a priori. Instead of training
the network on entire spectra, the method used multiple regions of interest (ROIs) for the
sources in question, and uses these ROIs as inputs to the network after performing PCA-
based preprocessing. Similarly, Yoshida et al. (2002) [77] used ROIs to reduce the input
size of networks, and then performed source activity estimation. The work by Yoshida
relied on a spectral peak finding routine instead of analyzing the shape of the entire spec-
trum as with Olmos et al. A similar treatment is provided in more recent work by Medhat
(2012) [78]. Lastly, Chen and Wei (2009) [79] developed an approach which applied the
Karhunen-Loève transform to spectra, and used these inputs to a linear associative mem-
ory network which performs identification.

5.2.2 Recent Work: Late 2010s - 2020

It was not until the late 2010s that neural networks for gamma-ray spectroscopy would
be revisited in the literature, beginning with Kamuda et al. (2017, 2019) [35, 80]. In these
two papers, the authors approached the source identification problem using a modern
applied neural network treatment. As with Olmos, the authors developed an approach
for predicting the relative contribution of sources to a given input NaI(Tl) spectrum. The
authors used relatively simple fully-connected architecture with two hidden layers which
passed outputs to the softmax function, defined as

softmax(zi) =
exp(zi)∑
j exp(zj)

, (5.7)

which outputs values between 0 and 1. The resulting vector contains the relative spectral
contribution from each source and background. The approach introduced by Kamuda
showed promise, and was aligned with contemporary deep learning practices, including
the use of dropout and early stopping, performing a random hyperparameter search, and
more.

Up to this point, all spectral methods using neural networks were based on fully-
connected layers. Kamuda et al. (2020) [69] introduced the use of convolutional layers
for feature extraction. The authors recognized the possible benefits using convolutional
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layers for recognizing regular patterns such as peaks and continua in gamma-ray spectra,
similar to how CNNs are successful in the computer vision domain. Despite using a
different structure, this approach was not a significant departure from the previous fully-
connected approach in refs. [35, 80], both in methodology and performance. Daniel et al.
(2020) [81] continued along the line of using CNNs for identification. The convolutional
approach used by Daniel was largely similar to the one used by Kamuda, but introduced
a few minor innovations, such as examining and interpreting spectra filtered with the
kernels found following training. Such introspection is particularly interesting, as it may
aide in understanding how a network is behaving and arriving at its outputs.

Recent work by Moore et al. (2019, 2020) [82, 83] presented a significant departure
from the other recent work. In ref. [82], the authors made use of time series of spectra
from the URSC dataset discussed in Section 3.3, treating them as monochromatic 2D im-
ages. Most notably, the authors introduced the use of successful architectures used in
image classification, including CNNs based on AlexNet [84] and VGG, ResNet [85], and
Inception modules [86], for performing identification on time series of spectra. In ref. [83],
Moore et al. then applied these trained models to measured data from another system,
demonstrating the concept of transfer learning. The introduction of transfer learning rep-
resents a significant contribution, as it demonstrates that models trained in one context
(e.g., a simulated environment) can potentially be deployed in another environment (e.g.,
with measured data), which will be crucial in the large-scale deployment of such meth-
ods.

5.2.3 Starting Points for Improvement and Innovation

Nearly all spectral detection methods using neural networks face shortcomings that need
to be addressed to be used in practical scenarios. Even the work by Kamuda et al., ar-
guably the most appropriate neural network approach for urban detection up to its time,
largely disregarded the effect of variable background, though it is briefly touched on in
ref. [69]. To address the need for models that are robust across a variety of background
environments, this chapter examines networks trained and evaluated over sets of variable
background data.

Detection for nuclear safety and security generally involves the detection of weak
sources, unlike most of the high-statistics spectra investigated by Kamuda and others
so far. Such source encounters are generally brief, meaning robust neural network ap-
proaches must be able to perform detection and identification using measurements from
short integration times. Additionally, practical systems must operate at low false alarm
rates. Previous work reported results using high false alarm rates (e.g., 5 % in ref. [35]),
which are unacceptable in practice – for spectra measured at 1 Hz, such a rate would pro-
duce an alarm every 20 s. To understand the operational relevance of these approaches,
this chapter only considers false alarm rates in the operational regime (i.e., approximately
10−5).
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Another aspect that has been largely overlooked in other approaches thus far is the
use of temporal information. As mentioned in Section 2.3, gamma-ray background varies
with position, meaning that models that learn this temporal behavior may be able to gen-
erate better estimates of the mean background rate, allowing for better source-background
separation. Section 5.4 examines the use of RNNs to learn temporal behavior of sequences
of spectra.

Lastly, all approaches that have been introduced so far have been limited to identifi-
cation, or in cases related to source search such as the work by Kamuda, simultaneous
detection and identification. So far, there are no known applications of neural network
techniques to pure spectral anomaly detection. The following section introduces neural
networks for performing anomaly detection on spectra, and identification is examined
later in the chapter.

5.3 Anomaly Detection using Autoencoders
As described in Section 2.4, spectral anomaly detection can generally be performed by
generating an estimate x̂ of the background in an input spectrum x, and computing an
error measure D(x, x̂) between the two. D(x, x̂) is chosen to measure differences between
the two inputs, and a threshold T is set, either empirically or analytically using statisti-
cal principles, to alarm on spectra that exceed this threshold. The NMF- and PCA-based
methods discussed so far use linear models to generate the estimated background spec-
trum x̂. Autoencoders [70, 87] are a type of neural network suitable for performing the
background estimation required for anomaly detection. Autoencoders are used to pro-
duce an output that is approximately equal to the input, meaning a function f is learned
such that

x̂ = f(x) ≈ x ∈ Rd
+. (5.8)

A trivial function f would map the input using an identity matrix, however, as with
NMF, we aim to learn a function f that de-noises the input spectrum. Undercomplete
autoencoders, which perform dimensionality reduction to learn salient features about the
input data, are examined in this chapter. Note that it is not expected for an undercomplete
autoencoder reproduce the input exactly, but instead that it returns a denoised copy of
the input. The general architecture for an undercomplete autoencoder is to reduce the
dimensionality using an encoder, then increase to the input dimensionality using a decoder.
For anomaly detection, the parameters of f are learned from background spectra, and
ideally, spectra containing anomalous sources are reconstructed less accurately, resulting
in higher detection metrics.

Counts in the input spectra are again assumed to be Poisson-distributed, leading to
the use of a Poisson negative log-likelihood loss function of the form

− ln p(X|X̂) =
n∑
i=1

d∑
j=1

X̂ij −Xij ln X̂ij + lnXij!, (5.9)
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for a mini-batch X ∈ Rn×d of n spectra and corresponding autoencoder output X̂. For a
spectrum x and corresponding autoencoder reconstruction x̂, the Poisson deviance, de-
fined in Equation (2.17), is used as a detection metric. As in previous chapters, a detection
threshold is produced empirically from known background data. Specifically, D(x, x̂) is
computed on background spectra, giving a distribution of test statistics, and for a given
FAR, a threshold is empirically set using this distribution.

Encoders and decoders can be built from arbitrary combinations of dense and con-
volutional layers. Both dense autoencoders (DAE) and convolutional autoencoders were
seen to perform comparably during experimentation, but only DAEs are examined here
due to their relative simplicity. In this work, only symmetric DAEs (i.e., decoders with
architectures that mirror the encoders) are considered here, as it reduces the hyperparam-
eter search space. A DAE with five hidden layers (seven layers total when including the
input and output), each using a rectified linear unit (ReLU) activation function, is used to
demonstrate spectral anomaly detection. This particular configuration was seen to per-
form sufficiently well for this initial assessment and the hyperparameter space explored.
The number of neurons in each dense layer was found via a random optimization, de-
scribed further below.

Figure 5.2 shows a diagram of an example dense autoencoder, along with a sample
input spectrum x and its corresponding reconstructed spectrum x̂. By training the auto-
encoder using the Poisson loss in Equation (5.9), x can be seen as a sample from a Poisson
distribution with mean rate x̂. As a result, x̂ contains smoothened spectral features corre-
sponding to background peaks (e.g., 40K at 1460 keV) and the associated downscattering
continuum.

5.4 Source Identification
In performing identification, an input spectrum x is mapped to an output vector ŷ indi-
cating the presence or absence of a source. In many common applications of neural net-
works for classification, the mapping from x to ŷ involves encoding one or more classes
of instances present in x as ŷ (e.g., an image x containing a dog, encoded in ŷ). In gamma-
ray spectroscopy, however, background contributions will always be present in a given
spectrum, and sources will appear in different proportions, or sources could potentially
be shielded by attenuating material. As a result, the standard method of directly pre-
dicting a vector ŷ ∈ {0, 1}N , with a 1 at element i indicating the presence of class i, is
generally not performed. Instead, the output ŷ is treated as the proportion of each source
and background to the spectrum, such that

∑
i ŷi = 1, meaning the network is perform-

ing regression. To achieve this behavior, the output of the network f(x) is passed to the
softmax function given in Equation (5.7).

A common approach to such classification problems (e.g., in the form of AlexNet [84])
is to use a series of convolutional layers followed by dense layers. Specifically, one or
more convolutional layers are used to produce convolutional feature maps, and these
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Figure 5.2: (Left panel) Diagram showing the dimensionality of features h(i) at each layer
i for an example dense autoencoder architecture with five hidden layers. A 128-bin spec-
trum is input into the autoencoder, and dense layers are computed by performing non-
linear transformations on each preceding layer. The inverse of each operation is then
performed to decode the latent features, resulting in a smoothened spectrum. (Right
panel) An input background spectrum x and corresponding autoencoder reconstruction
x̂ are shown. When trained on background, the autoencoder learns spectral features such
as background peaks and the associated downscattering continuum. Both the input and
output spectra shown here contain 128 bins that scale with the square root of energy. Note
that any apparent deviations between the input and output spectra (e.g., at the 1460 keV
peak) are due to low-statistics, as the bins of the measured spectrum x are discrete ran-
dom samples of the mean Poisson rate x̂.

feature maps are flattened into a 1-dimensional vector, as done in refs. [69, 81], which
is then transformed using dense layers. This work makes use of a network with one
convolutional layer followed by a max pooling layer and two dense layers, shown in
Figure 5.3. Additional layers did not enhance performance for the experiments performed
and hyperparameter search space used in this work. Identification networks are trained
using mini-batches of spectra X containing known proportions of source and background
Y. The cross-entropy loss function is used in optimizing network parameters, having the
form

L(Y, Ŷ) = − 1

n

n∑
i=1

N+1∑
j=1

Yij ln Ŷij, (5.10)

where Yij and Ŷij are the elements of Y and Ŷ, respectively. Minimizing cross-entropy
loss is equivalent to minimizing the Kullback-Leibler (KL) divergence, which is a mea-
sure between two probability distributions y and ŷ. The KL divergence, and thus cross-
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entropy, is appropriate in this case since the true value of fractional source and back-
ground contributions y and the corresponding estimate ŷ can be treated as probability
distributions (i.e., yi ∈ [0, 1] and

∑
yi = 1). Cross-entropy is used here over the KL diver-

gence, however, simply because it is more common for network-based applications.
Feedforward networks, which include the ANN-based identification methods from

previous studies, treat sequential measurements as independent – no information from
one measurement is passed to the following. In mobile detection, however, there is gen-
erally a relationship between sequential measurements – both background and source
contributions to spectra generally do not vary abruptly. As a result, recent measurements
can potentially be used to inform the current measurement being processed. For exam-
ple, if source si was present in a spectrum at time t, it is more likely that the spectrum
at t + 1 also contains source si than another source sj . RNNs are capable of modeling
this behavior. Due to the simple time dependence of the source models examined in this
work, dicussed in Section 3.3 and Section 5.5, this chapter only examines Elman layers
for relating sequential spectra. In this work, the first dense layer following the flattening
of convolutional features is replaced with an Elman layer, allowing for information from
previous spectra h

(i)
t+1 to be used in performing inference on new spectra (i.e., computing

h
(i+1)
t+1 ).

In training feedforward networks, mini-batches of spectra are used, where each spec-
trum contains a random radionuclide with a source activity randomly sampled uniformly
from a predefined range. To provide additional variability in training data, a random
source-detector angle θ (see Section 3.1) is used for each spectrum, but a fixed standoff dis-
tance of 10 m is used since the activity sampling provides variability in SNR. Additionally,
pure background is included for the model to appropriately learn background features in
the absence of source. RNNs, however, need to learn the temporal dynamics of sources,
meaning that mini-batches cannot simply contain random samples of spectra with differ-
ent physical parameters – the data must include series of spectral measurements of the
detector moving past the source. Instead of training the network on random mini-batches
of spectra in the form of a matrix Xi ∈ Rn×d, 3-dimensional tensors Xi ∈ Rr×n×d are used,
where r refers to a number of runs of data which model the kinematics of a detector mov-
ing past a source. With this approach, the network simultaneously learns the mapping
between input spectra and relative source contributions and also the temporal behavior
of the detector past sources.

5.5 Model Training and Evaluation
This section describes how these networks for detection and identification are trained,
evaluated, and benchmarked against the methods from Chapter 4.
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Figure 5.3: Example architecture of a convolutional identification network, in a similar
fashion to refs. [69, 81]. A 2-dimensional feature map resulting from convolutional op-
erations is flattened into a single feature vector of length 1024, and this is reduced down
to the output size of 18 (17 sources, 1 background channel). A max-pooling operation is
applied to the features resulting from the convolutional operation, reducing feature size
from 128 to 64. In the case of an RNN, the dense layer with size (1, 128) at time t is fed back
to combine with the previous layer at time t + 1. Not shown here is a softmax function
that the output is fed into.

5.5.1 Performance Evaluation and Data

As in Chapter 4, the performance of each method is evaluated using the Minimum De-
tectable Activity (MDA), computed by estimating the probability of detection as a func-
tion of source activity for a given detection scenario. In particular, the URSC dataset
from Section 3.3 is used in training and evaluating algorithms. As before, a detection
confidence p0 = 0.95 is used for defining the MDA. Seventeen source types were gen-
erated using the procedure from Section 3.3: 198Au, 133Ba, 82Br, 57Co, 60Co, 137Cs, 152Eu,
123I, 131I, 111In, 192Ir, 54Mn, 124Sb, 46Sc, 75Se, 113Sn, and 201Tl. In modeling the kinematics
of the detector past the source, a vehicle speed of v = 5 m/s, along a straight line, and
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a standoff distance d = 10 m are used. Note that the detector speed used in generating
the background data was not provided as part of the original data competition, meaning
the speed v used in modeling the source kinematics is not the same. While not ideal, this
discrepancy is not believed to affect the conclusions drawn from these analyses, as the
speed used here (5 m/s) is in the range of values used to produce the background data,
which are between 1 m/s and 13.1 m/s, according to information provided as part of the
competition.

5.5.2 Model Optimization

Data Preprocessing and Batch Normalization

Models often converge faster when performing input data preprocessing and feature
rescaling within the network [88]. During the experimentation for this work, a linear
rescaling based on the mean and standard deviation of training data, referred to as stan-
dardization, was found to perform well for both detection and identification networks.
Standardization transforms an input spectrum x to x′ as

x′ =
x− µ
σ + ε

, (5.11)

where µ and σ are the mean spectrum and standard deviation, respectively, and ε is a
small positive constant to avoid division by 0. Furthermore, features in the network’s
hidden layers can be standardized, referred to as batch normalization [89] which addition-
ally has a regularizing effect. In this work, DAEs and feedforward identification networks
use batch normalization.

Optimizer and Regularization

This work uses the Adam optimizer [89] with an initial learning rate of 10−3 for perform-
ing parameter optimization. The learning rate is reduced by a factor of 10 when the vali-
dation loss does not decrease for 5 trials, reducing the maximum step size, as the model
is presumably near a local minimum. To reduce overfitting, an L2 penalty is used, con-
trolled by a coefficient λ. Additionally, dropout [90], in which neurons are randomly set to
0 with some probability p (p = 0.5 here), is used in the identification networks following
the convolutional layer and after the first dense layer. Note that the initial learning rate
and dropout probability were deemed to work sufficiently well during manual experi-
mentation and are not optimized further.

Hyperparameter Optimization

The optimization procedure is performed for a given model architecture, dataset, and
hyperparameter configuration. Hyperparameters refer to parameters that are not learned
(i.e., they are configured prior to training), and generally determine a network’s modeling
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capacity. In the discussion so far, some hyperparameters include the number of neurons
in a layer, number of convolutional kernels in a layer, and the L2 regularization coefficient
λ. Because of the impact that hyperparameters have on model performance, care must
be taken to choose optimal values. Common methods for performing hyperparameter
optimization include grid search, random search, and Bayesian optimization. A joint
optimization of all hyperparameters is beyond the scope of this work, and instead, this
work does a partial optimization: a subset of hyperparameters for a model are fixed,
determined from manual experimentation, and a random search [91] is performed with
remaining hyperparameters.

To perform the random optimization, the following procedure is used. First, the vari-
able hyperparameters are randomly sampled from a predefined space, and the model is
trained and validated using the procedure previously described. Once a model has fin-
ished training, source injection is performed on background data from the validation set,
giving an initial MDA for each source. Many models are trained using this procedure,
and the model resulting in the lowest mean MDA across all sources is used to evalu-
ate the final test set, as the model has shown the greatest generalization capabilities on
unseen data. This optimal model is then evaluated on the test set and compared to bench-
mark algorithms. The specific hyperparameters tuned for each model are described in the
following section with the results.

5.5.3 Benchmarking

The autoencoder-based detection method is benchmarked using the NMF- and PCA-
based detection algorithms from Chapter 4. Additionally, the neural network-based iden-
tification methods are benchmarked using the NMF-based identification method from
Chapter 4. As before, for both the detection and identification methods, thresholds are
set based on distributions of metrics produced from evaluating on background data.

5.6 Results

5.6.1 Anomaly Detection

Values of λ were randomly sampled between 1 and 100 using a uniform distribution.
The number of neurons in each hidden layer (three values in total for a symmetric DAE
with five hidden layers), were randomly sampled under the constraint that each value
decreased to center of the network. The number of neurons in the outermost values was
sampled uniformly between 3 and 24. An example random configuration is (11, 7, 4),
which means the number of features for all hidden layers in the network is (11, 7, 4, 7, 11).
A total of 40 DAEs were trained using mini-batches of 512 randomly-sampled spectra.
For each model, a threshold on the deviance test statistic was set using a FAR of 1/8 hr−1.
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Figure 5.4: Histogram of mean MDA for autoencoders evaluated on the validation set.
Each model, 40 models in total, was trained using a random value of the L2 regulariza-
tion coefficient λ, and random configuration of number of neurons in the dense layers of
the network. This figure shows that despite being trained with different parameters, ini-
tial weights, and mini-batches, most were able to yield similar performance. The model
corresponding to the lowest mean MDA from this figure is examined further on the test
set.

Figure 5.4 shows a histogram of the mean MDA across all sources injected into the
validation background set for the 40 different models. From this optimization, a model
corresponding to λ = 55.53 and number of neurons per layer (7, 3, 2, 3, 7) is used for
evaluation on the test set. Both the PCA- and NMF-based models were evaluated on the
validation dataset, each indicating that a k = 1 component model was sufficient. Note
that using a single component to represent either linear models reflects a lack of true
variability in the background data for the number of spectral bins used, as many real-
world datasets have been seen to yield higher numbers of components.

Figure 5.5 shows a comparison of the optimized DAE and linear models evaluated on
each source injected into the background test set. These results show that the autoencoder-
based detection method generally outperformed both the NMF- and the PCA-based meth-
ods. Specifically, on average, the autoencoder provided a 12% and 23% improvement
over NMF- and PCA-based detection methods, respectively. The discrepancy between
the PCA-based detection method and the others is likely due to the detection metric used
for the PCA-based approach, which comes from previous literature.
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Figure 5.5: Comparison of MDA for the three detection methods across all 17 sources at a
1/8 hr−1 FAR. Sources are sorted in ascending order MDA for the baseline NMF method.
Each model was evaluated by injecting each source type across activities into each run of
the background test set and computing the MDA. The background used, the test set, was
separate from the training and validation background, and thus gives a sense of how well
each model generalizes to unseen background data. Note that the discrepancy between
the PCA-based method and the other two is likely due to the detection metric used for
the PCA-based approach, which comes from the literature. The error bars shown were
computed from Equation (3.18). Note that there is an overlap between DAE and PCA for
111In and between NMF and PCA for 75Se.

To assess timing performance, the average runtime per spectrum was computed for
each method. Specifically, 100 background runs were randomly sampled, and the average
runtime on a per-spectrum basis was computed over each run. The averages from all 100
runs were then averaged and presented here. The reason for averaging over runs is to
provide a direct comparison with the RNN-based method in the next section, which is not
evaluated on a single spectrum. Each model was evaluated on a 3.50 GHz Intel i7-5930K
CPU. The average per-spectrum runtime for the NMF-, PCA-, and DAE-based detection
methods were 0.37 ms, 0.05 ms, and 0.02 ms, respectively.
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5.6.2 Identification

Values of λ for both feedforward and recurrent identification networks were randomly
sampled between 10−3 and 10 using a log-uniform distribution. For the single convolu-
tional layer used, the number of kernels was sampled between 8 and 64, and the number
of output neurons of the first dense layer, or the recurrent layer in the case of RNNs, was
sampled uniformly between 32 and 256. Feedforward models were trained using mini-
batches of 256 spectra, and recurrent models were trained with mini-batches of 32 runs
of spectra. For a given model, thresholds for each source were set using empirical values
of outputs generated from background data to achieve an overall FAR of approximately
1/8 hr−1. Due to simultaneously testing for multiple sources, a Bonferroni correction [92]
was used to achieve the target FAR, resulting in an effective FAR for each source which is
simply the target FAR divided by the number of sources (i.e., 1/(8 × 17) hr−1).

The optimization procedure was repeated 40 times for both types of models, result-
ing in the values (λ, nkernels, nneurons) of (0.49, 64, 66) for the feedforward networks, and
(0.0013, 32, 115) for the RNNs. The distribution of MDA over the validation set for all of
the 40 trials in the optimization routine is shown for both feedforward and recurrent mod-
els in Figure 5.6. This shows that, while there are outliers, the distribution of MDA for
RNNs is generally lower than that for feedforward networks, indicating that RNNs often
perform better at the same FAR. Figure 5.7 shows a comparison of the mean MDA for op-
timized feedforward and recurrent identification networks compared to the NMF-based
identification benchmark. This figure indicates that the NMF-based detection method and
feedforward network perform roughly the same at the same FAR, while the RNN-based
identification method often provides an improvement, as expected. Specifically, the RNN
was seen to provide a 17% improvement over the feedforward network. As with the de-
tection methods, the average per-spectrum runtime was computed for the NMF-based
identification, feedforward network, and recurrent network, yielding 9.54 ms, 0.07 ms,
and 0.05 ms, respectively.

5.7 Conclusion
The goals of this chapter were to introduce spectral anomaly detection using autoen-
coders, establish a baseline of current state-of-the-art identification networks relative to
simpler methods, and improve upon the current state-of-the-art using recurrent neural
networks. In doing so, ANN-based detection showed a 12% and 23% improvement over
the NMF- and PCA-based detection models, respectively, while the current state-of-the-
art ANN-based identification was on par with the NMF-based identification method.
Furthermore, the ANN-based methods showed a reduction in computational time. The
improvement in detection performance and reduction in computation time make ANN-
based detection a compelling candidate. Regarding identification, the reduction in run-
time while achieving similar performance to NMF, an established benchmark method,
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Figure 5.6: Histogram of mean MDA for RNN and feedforward (FF) ID networks eval-
uated on the validation set. Each model, 40 in total, was trained using a random value
of the L2 regularization coefficient λ, number of kernels in the convolutional layer, and
number of neurons in the first dense layer. This distribution shows a general trend of im-
provement when using recurrent layers. The models corresponding to the lowest mean
MDA for both feedforward and recurrent networks are examined further on the test set.

makes ANN-based identification worth considering for practical applications as well.
Lastly, ANN-based identification was seen to improve, on average, with the use of re-
current layers, meaning that relatively inexpensive performance improvements can be
made by including temporal modeling.

Despite the encouraging results, the use of neural networks over linear models in-
volves tradeoffs. Networks require significantly more overhead in the form of data prepa-
ration, model design, optimization, etc. Meanwhile, methods such as NMF generally re-
quire significantly less in this regard – NMF simply needs to be performed on a matrix
of input spectra using a single hyperparameter k, the number of components. However,
much of the overhead with networks comes at a fixed cost; the computational burden of
networks at runtime is generally significantly lower than iterative methods (e.g., NMF).
For this reason, the networks examined here may be more practical than NMF-based de-
tection or identification in scenarios with limited computational resources, for example,
in low-power applications.

Though the intention here was to evaluate network-based approaches in operationally-
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Figure 5.7: Comparison of the three methods evaluated on the test set: NMF-based iden-
tification, a feedforward network (FF), and an RNN-based identification method. Sources
are sorted in ascending order MDA for the baseline NMF method. A total FAR of approx-
imately 1/8 hr−1 across all sources was achieved by setting a threshold for each source
individually set based on an effective FAR of 1/(8 × 17) hr−1. The RNN is seen to gen-
erally provide an improvement over its feedforward counterpart, though there are a few
notable examples, such as 133Ba. Note that there is an overlap of points between NMF and
FF for 60Co, 123I, 131I, and 192Ir.

relevant conditions, the performance in many realistic scenarios remains unclear. For one,
models must be able to generalize to new environments, meaning these methods should
be assessed on real-world data with higher spectral variability. While efforts were made
to provide variable background in generating the original simulated data, effects such
as elevated radon levels following rain and gain drift were not included. Additionally,
other scenarios of practical interest include having multiple sources in a run, either at the
same location or at various points in a run, and examining the effect of shielding sources.
Future efforts should then assess the impact of shielding and combinations of sources,
similar to that of ref. [35], under operationally-relevant conditions.

Due to the number of parameters and operations, neural networks are generally not
as interpretable, though this is an active area of research [93]. The nature of nuclear safety
and security, the primary application of such algorithms, warrants tools and methods for
introspection of networks to better assess behavior. For example, in the case of NMF,
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an alarm for a 137Cs source corresponds to an excess of counts associated with the 137Cs
template, which an operator can interpret and act on. However, it is not clear how the
identification networks examined here could be interpreted, due to the number of inter-
connected parameters involved in making a decision – the operator must trust that the
network is behaving correctly. Additional research is needed in the area of interpretabil-
ity of spectral models, for example, understanding convolutional kernels as with ref. [81],
or generating saliency maps which relate the most significant input features in determin-
ing a given network output. In summary, the competitive performance with established
methods and additional improvements from temporal information makes these methods
worth examining further.
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Chapter 6

Concluding Remarks

6.1 Summary
The intention of this work was to develop and analyze methods for spectral gamma-ray
anomaly detection and source identification, specifically to lay the foundation for ad-
vanced methods which are augmented with information from non-radiological sensors.
While a variety of detection and identification methods have been introduced in the past,
advances in sensor technology, portable computation, and data analysis methods have
allowed for the possibility of more sophisticated approaches which take additional in-
formation about the local environment into account. Data-driven methods for spectral
analysis provided a promising direction for detection and identification algorithms due
to their ability to model distributions of radiological background, which varies with loca-
tion and time. NMF is one such data-driven method, and in Chapter 4, it was shown to
be capable of background and source modeling, anomaly detection, and source identifi-
cation. In addition to providing improved detection sensitivity over benchmark methods
from the literature, NMF results in interpretable models, capable of learning patterns such
as downscattering and full-energy peaks. The interpretability of these models is particu-
larly of interest when considering augmentation with non-radiological data. For instance,
certain NMF background components can be related to physical features such as gamma-
ray signatures from the sky (e.g., cosmic radiation), and the weights associated with these
components can potentially be correlated with features from images collected simultane-
ously. By exploiting such correlations, algorithms may improve background estimates,
which is essential in detecting weak sources.

While NMF has been shown to be a worthwhile approach for spectral analysis, there
has not been a clear path to augmenting NMF with additional sensor, and recent ap-
proaches have relied on ad-hoc analyses to explore correlations [67]. As a result, neu-
ral networks were considered, as they are also capable of modeling entire spectra and
can easily be extended to co-learn with additional complementary data sources (e.g., via
multimodal machine learning [94]). One major limitation of neural networks applied
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to gamma-ray spectroscopy was that previous work had not provided an evaluation of
these models under operationally-relevant conditions, benchmarked against a known al-
gorithm. A goal for this research was then to establish a baseline of performance for
neural network-based detection and identification methods. Neural networked-based
detection was compared to NMF- and PCA-based detection, and the neural network
showed a modest improvement for the experiments performed. Additionally, an iden-
tification method using neural networks was compared to NMF-based identification, and
both achieved a similar MDA across sources. Identification using networks was extended
by use of recurrent neural networks, which allowed for time dependence of modeling and
further improved performance. Altogether, this work has introduced novel methods for
detection and identification, and shown that these methods outperform commonly-used
methods from the literature.

6.2 Future Work
While the approaches developed and assessed in this work are an advancement in spec-
tral processing on their own, the next step, which was a significant factor in considering
these methods, is to augment algorithms with contextual data. For example, a simple ex-
periment could be to co-learn autoencoders for anomaly detection using both spectra and
images as inputs. Specifically, training can be simultaneously performed on pairs of spec-
tra and images, giving a shared hidden representation, and detection can be performed
as before. By constraining background estimates based on learned features from images,
such a model may have improved accuracy over a model trained only using spectra,
yielding enhanced detection sensitivity.

As seen throughout this work, algorithm development and assessment relies on the
ability to train and evaluate methods under realistic conditions. Real-world data require
extensive measurements, suffer from sensor robustness issues (e.g., gain shift with tem-
perature), and involve data cleaning and curation, each of which involves significant ef-
fort. Algorithm practitioners could then greatly benefit from publicly-available, curated
data sources. An attempt at such large-scale gamma-ray data dissemination has been on-
going, with adoption from users in the community [95, 96]. This model of data collection
and sharing should be expanded further, providing rich datasets for training and evalua-
tion, and more importantly, to more effectively enable collaboration between researchers.
Not only can spectral data can be distributed, but also data from contextual sensors taken
simultaneously, allowing for exploration of data fusion approaches by algorithm devel-
opers.

In addition to reducing the burden of generating and curating datasets on algorithm
developers, standardized datasets would be useful in benchmarking methods, similar
to the common approach in computer vision benchmarks (e.g., ref. [97]). As seen with
the field of computer vision, the research community as a whole benefits through this
process, as the best-performing methods are known to all, and researchers can more ef-
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fectively determine which concepts are worth examining further. An organized effort to
data collection and dissemination has the potential to not only improve individual re-
search directions, but the field of spectral detection as a whole.
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Appendix A

Sigmoid Maximum Likelihood
Estimation Derivation

The probability of detection as a function of x, q(x;µ, σ), is parameterized using a sigmoid
function of two parameters µ and σ:

q(x;µ, σ) =
1

1 + e−(x−µ)/σ
. (A.1)

Consider a set X of N source activities X = {x1, x2, . . . , xN}. A source of type s with
activity xi is injected into n trials of gamma-ray background, each trial either being a
single spectrum or a time series of gamma-ray spectra. At activity xi, suppose ki events
are detected out of the n trials. The likelihood of detecting ki events out of n trials for the
probability of detection q(xi;µ, σ), abbreviated as qi is given by

p(ki|n, qi) =

(
n

ki

)
qkii (1− qi)n−ki . (A.2)

The total likelihood over all samples in X with corresponding number of detections
K = {k1, k2, . . . , kN} is given by

p(K|n, q) =
N∏
i=1

(
n

ki

)
qkii (1− qi)n−ki , (A.3)

meaning the negative log-likelihood is

− ln p(K|n, q) =
N∑
i=1

− ln

(
n

ki

)
− ki ln qi − (n− ki) ln(1− qi). (A.4)
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Let zi = xi−µ
σ

. The maximum likelihood estimates of µ and σ are then given by

µ̂, σ̂ = arg min
µ,σ

{
− ln p(K|n, q)

}
(A.5)

= arg min
µ,σ

{ N∑
i=1

−ki ln qi − (n− ki) ln(1− qi)
}

(A.6)

= arg min
µ,σ

{ N∑
i=1

ki ln(1 + e−zi) + (n− ki)(zi + ln(1 + e−zi))

}
(A.7)

= arg min
µ,σ

{ N∑
i=1

zi(n− ki) + n ln(1 + e−zi)

}
(A.8)

= arg min
µ,σ

{ N∑
i=1

1

σ
(xi − µ)(n− ki) + n ln(1 + e−(xi−µ)/σ)

}
(A.9)

(A.10)

This objective function can then be minimized using an optimization routine to yield
the estimates µ̂ and σ̂.
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Appendix B

Probability of Detection Sampling

This appendix introduces three different methods that can be used for sampling sources
activities for computing the probability of detection for a given detection or identification
algorithm.

B.1 Fixed Activity Sampling
In this simplest case, a fixed set of source activities A are used. At each activity A ∈ A, n
trials are performed, resulting in k detections. In this approach, the range of activities A
must be known a priori, and are often initially determined through trial-and-error. That
is, the set of activities Awhich is expected to contain the MDA for a given algorithm and
source scenario must be known. Using the source activities and detections, the probability
of detection can be computed using the method described in Appendix A.

B.2 Adaptive Sampling
In some cases, fixed activity sampling for computing MDA is impractical. Specifically, if
all of the points in A are far below or far above the MDA, the detection algorithm may
report 0% or 100% detection probability, respectively. This is particularly an issue when
there is no prior expectation on the MDA, for example, when testing an algorithm under
a new set of parameters.

To avoid this, a wide range of activities must be sampled in order to capture the sig-
moid transition region, however, this may result in many unnecessary computations. An
alternate approach is to automate finding the transition region by beginning with a set
of activity boundaries (Alow, Ahigh) which is large enough such that it is likely to contain
the MDA for the detection scenario of interest. Additionally, boundaries on the detection
probability (plow, phigh) are set (e.g., (0.01, 0.99)). A random activity Ai ∼ U(Alow, Ahigh) is
drawn, and the detection probability p̂(Ai) is estimated. If p̂(Ai) ≤ plow, Alow is updated
to Ai, and similarly, if p̂(Ai) ≥ phigh, Ahigh is updated to Ai. This procedure is repeated
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for additional activities, and the effect is a smaller sampling region which includes the
sigmoid transition. After N samples have been taken that fall in the region (plow, phigh),
the samples can be fit to a sigmoid function, and the MDA is computed.

B.3 Adaptive Bayesian MDA Estimation
An additional approach is to exploit the known functional form that probability of de-
tection curves have – a sigmoid. The probability of measuring k events is given by a
binomial distribution:

p(k|n, q) =

(
n

k

)
qk(1− q)n−k, (B.1)

where q is the detection probability from equation (3.15). The binomial probability mass
function p(k|n, q) can then be written as a function of the sigmoid parameters as p(k|n, x, µ, σ).

An adaptive approach to sampling can be performed as follows. An initial estimate for
the parameters µ0 and σ0 can be made, and using these initial estimates, prior probabilities
p(µ0) and p(σ0) can be specified. Viewing p(k0|n, x0, µ0, σ0) as a likelihood function, Bayes’
theorem can be invoked, yielding the posterior probabilities for µ and σ. Specifically,
Bayes’ theorem is invoked sequentially yielding new estimates for µ and σ as new activity
sampling points x yield new values k.

Suppose i iterations have been performed, resulting in estimates µi and σi. A new
sampling point xi+1 is taken, resulting in ki+1 detected events. New estimates of the pos-
terior distributions are computed as

p(µi+1|ki+1, n, xi+1, µi, σi) =
p(ki+1|n, xi+1, µi, σi)p(µi)

p(ki+1)
(B.2)

p(σi+1|ki+1, n, xi+1, µi+1, σi) =
p(ki+1|n, xi+1, µi+1, σi)p(σi)

p(ki+1)
. (B.3)

Note that the posterior distribution for σi+1 uses the recent update for µi+1, and that the
choice to compute the posterior of µi+1 first was arbitrary. Also note that the denominator
term p(ki+1), which represents the marginal likelihood over the entire parameter space,
is simply a normalizing constant and is disregarded. Instead, the product of the terms in
the numerator are taken and their product is normalized to unity.

For simplicity, the priors p(µ) and p(σ) are modeled using Gaussian distributions hav-
ing mean and variance (µ, ω2

µ) and (σ, ω2
σ), respectively. The mean and variance of each

prior is computed using the mean and variance of the respective posterior distribution on
the previous iteration, or initial estimate in the case of the first iteration. A new sample
xi+1 can be drawn using this p(µi), and as new samples are taken, the posterior distri-
butions of µ and σ are updated, resulting in a better estimate of the true sigmoid curve.
In summary, this approach is used to simultaneously find the sigmoid parameters and
sample activities from regions that are likely to contain samples useful for improving the
model.
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Appendix C

Spectral Anomaly Detection Derivation

This appendix derives the PCA formulation used in this work, along with an anomaly
detection metric that is used with PCA-based models.

C.1 Principal Component Analysis
Note that this section is largely based on a derivation in [53], and is included here to
reflect the specific implementation used in this work. Consider a matrix X ∈ Rn×d of
n samples, each a length-d vector. The true covariance matrix Σ ∈ Rd×d of the data-
generating process is estimated as the matrix S [36]

S = cov[X] = E
[(

X− E[X]
)>(

X− E[X]
)]

=
1

n− 1
X̃>X̃,

where X̃ = X− µ, and µ is the mean spectrum estimated from X.
Due to interactions between gamma rays and matter, described in Section 2.1, gamma-

ray spectra generally contain continua with enhanced counts at lower energies. That is,
there are generally significantly more counts in gamma-ray spectra at lower energies, and
as a result, the variance in the number of counts is also enhanced at lower energies. Due
to this high variability, PCA performed on the covariance matrix will return components
that capture variability in these high-variance low-energy bins. To capture components
from bins that vary together across the entire spectrum, PCA is performed on the correla-
tion matrix, which is computed as

C = σ−1Sσ−1
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where

σ =
(
diag(S)

) 1
2 ∈ Rd×d =


σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0
...

...
... . . . ...

0 0 0 . . . σd.


Note that the resulting matrix C has unit variance across each energy bin.

The eigen-decomposition is then performed on C as

C = VQV>.

The matrix V ∈ Rd×d is then an orthogonal basis where the rows are basis vectors of corre-
lated bins. The resulting basis vectors are ordered according to the amount of variability
in the data attributed to the vector. The first k basis vectors can then be kept, yielding a
compact matrix Vk ∈ Rk×d containing the k most important basis vectors.

The coordinates of a new set of spectra X′ ∈ Rm×d in the k-dimensional subspace can
then be found by the transformation

A =

(
X′ − µ
σ

)
V>k ∈ Rm×k.

Spectra can then be reconstructed as X̂′ by performing the inverse transformation, which
yields an approximation of X′:

X̂′ = AVkσ + µ

=

(
X′ − µ
σ

)
V>k Vkσ + µ

= (X′ − µ)σ−1V>k Vkσ + µ.

C.2 Spectral Anomaly Detection
The Spectral Anomaly Detection (SAD) method [53] uses the method in the previous sec-
tion for generating a low-dimensional reconstruction of background gamma-ray spectra.
In particular, SAD uses the L2 norm between measured spectra X′ and the reconstructed
spectra X̂′ as a measure of error:

‖X′ − X̂′‖2 = ‖X′ − (X′ − µ)σ−1V>k Vkσ − µ‖2 (C.1)

= ‖(X′ − µ)(I− σ−1V>k Vkσ)‖2 (C.2)
= ‖(X′ − µ)T‖2 (C.3)
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where T = I− σ−1V>k Vkσ ∈ Rd×d is a linear operator.
The quantity ‖(X′−µ)T‖2 scales with the magnitude of spectra (i.e., the gross counts),

and a normalization is applied to account for this scaling. The complete SAD metric is
then

SAD(X′) =
‖X′ − X̂′‖2√
‖X′‖1

=
‖(X′ − µ)T‖2√

‖X′‖1

. (C.4)
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