UCSF UC San Francisco Electronic Theses and Dissertations

Title

Genetic, biochemical and genomic analyses of RNP biogenesis in Saccharomyces cerevisiae

Permalink

https://escholarship.org/uc/item/59k637hd

Author

Inada, Maki,

Publication Date

2004

Peer reviewed|Thesis/dissertation

Genetic, Biochemical and Genomic Analyses of RNP Biogenesis in S. cerevisiae

by

Maki Inada

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Biochemistry and Biophysics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Date

University Librarian

Degree Conferred

Genetic, biochemical and genomic analyses of RNP biogenesis in S. cerevisiae

Maki Inada

ABSTRACT

The assembly of noncoding RNAs into ribonucleoprotein particles (RNPs) is a complex, multistep process required for many steps in gene expression. The spliceosomal small nuclear RNPs (snRNPs) must bind common core proteins and undergo 5' cap and 3' processing steps in the cytoplasm of mammalian cells in order to re-enter the nucleus for function in splicing. To examine whether biogenesis of the spliceosomal snRNPs similarly occurs in the cytoplasm in yeast, we developed an *in situ* hybridization assay for examining snRNA localization and transport. However, we did not observe any evidence for a cytoplasmic phase, suggesting that snRNP biogenesis is restricted to the nucleus in *S. cerevisiae*.

To investigate the interphase between snRNP biogenesis and splicing, we conducted genetic and biochemical analyses of the snRNP biogenesis factor Brr1p for a role in splicing; *brr1* mutant cells display defects both in levels of newly synthesized snRNAs and also in splicing. We observed *in vitro* splicing defects in *brr1* mutant extracts, but since snRNP levels were also decreased, we could not assign a direct role for Brr1p in splicing. However, we identified genetic interactions between *BRR1* and factors involved in triple snRNP addition during spliceosome assembly (Sad1p, Snu66p, Snu114p, Sub2p), suggesting either Brr1p is playing a direct role in splicing or these splicing factors play a role in biogenesis. Thus, steps involved in assembling snRNPs and assembling the spliceosome may be common and require similar factors. Lastly, to broaden our understanding of the function of RNP biogenesis factors, we used a genomics approach to examine the complete RNA binding profile of Lhp1p, a factor involved in stabilizing precursors of multiple noncoding RNAs. We confirmed Lhp1p association with

ii

multiple noncoding RNAs and identified nearly class-wide association with multiple tRNAs and snoRNAs. Intriguingly, we identify Lhp1p association with a subset of mRNAs, such as ribosomal protein genes and HAC1 mRNA. Our analysis suggests that Lhp1p may play a novel role in the translation of one or more cellular mRNAs.

ŧ

TABLE OF CONTENTS

Prologue		1
Chapter I	snRNP biogenesis may be restricted to the nucleus in S. cerevisiae	5
Chapter II	The snRNP biogenesis factor Brr1p may play a role in pre-mRNA splicing	29
Chapter III	Identification of Lhp1p-associated RNAs by microarray analysis in <i>S. cerevisiae</i> reveals association with coding and noncoding RNAs	67
Epilogue		103
References		109

LIST OF FIGURES

Chapter I

Figure 1	snRNA transport and biogenesis in mammalian cells	21
Figure 2	U2 snRNA is localized to the nucleus in S. cerevisiae	22
Figure 3	U1 and U2 snRNAs are localized to the nucleus in transport mutant strains	23
Figure 4	ssr1-1 cells display bright whole cell signal at nonpermissive temperatures	24-25
Figure 5	Nuclear localization becomes apparent after treatment with zymolyase	26
Figure 6	U2 snRNA is not transferred in binucleate cells	27

Chapter II

Figure 1	In vitro splicing efficiency is decreased in $brr1-1$ and $brr1\Delta$ extracts	56
Figure 2	Spliceosome assembly is decreased in $brr1\Delta$ extracts	57
Figure 3	Kinetics of spliceosome assembly are similar in WT and $brr1\Delta$ extracts	58
Figure 4	snRNP levels during spliceosome assembly are decreased in $brr I\Delta$ extracts	59
Figure 5	snRNP levels are decreased in $brr I\Delta$ extracts by native gel analyses	60
Figure 6	snRNP levels are decreased in $brr1\Delta$ extracts by glycerol gradient sedimentation	61
Figure 7	In vitro snRNP assembly with T7 transcripts is similar in WT and $brr1\Delta$ extracts	62
Figure 8	In vitro U4 snRNP assembly using U4 depleted extracts is similar in WT and	63
	brr1∆ extracts	
Figure 9	In vitro splicing efficiency during multiple rounds is decreased in brr/Δ extracts	64

Chapter III

Figure 1	Schematic of Lhp1p immunoprecipitation microarray assay	83
Figure 2	Histograms of RNA classes	84
Figure 3	Chromosomal maps of Lhp1p IP microarray enrichment	85

Figure 4	Lhp1p IP microarray data and QPCR data are highly correlated	86
Figure 5	LHP1 is required for growth during UPR at 37°C	87
Figure 6	HAC1 RNA levels are unaffected, but Hac1 protein levels are reduced in an	88
	<i>lhp1</i> Δ strain upon induction of the UPR at 37°C	

.

LIST OF TABLES

Chapter I

Table 1	Strains examined for snRNA transport	28
---------	--------------------------------------	----

Chapter II

Table 1	snRNP and snRNP levels in $brr1-1$ and $brr1\Delta$ extracts	65
Table 2	BRR1 genetic interactions	66

Chapter III

Table 1	Oligos used in this study for QPCR	89
Table 2	Lhp1p IP microarray primary data	90
Table 3	Previously known Lhp1p-associated noncoding RNAs	91
Table 4	Lhp1p IP microarray tRNAs	92
Table 5	Lhp1p IP microarray snoRNAs	93-94
Table 6	Lhp1p-encriched intergenic regions (approximately 50 in the top 400)	95
Table 7	Lhp1p-enriched coding mRNAs (approximately 300 in the top 500)	96-101
Table 8	Microarray and QPCR data for 18 chosen RNAs	102

ACKNOWLEDGEMENTS

Many a time, I thought this day would never come. I have many people to thank for it. First and foremost, I would like to thank my advisor Christine Guthrie for all that she has bestowed upon me while I have been in the lab. She is an excellent communicator of science both written and oral who sets very high standards for us all. She is also a great gatherer of a group of really fantastic people. But beyond all of the vital traits that have made her a highly successful scientist, what I've valued most is Christine's totally honest and candid opinions. At times they were not always easy to swallow, but they have really pushed me to be a better scientist. I have really valued her insights. Thank you for making the trip out to Mission Bay with your broken hip.

I also want to thank Christine and John for their generosity in taking their entire labs up to Priest Lake in Idaho for RNA camp every summer. Some of my fondest memories are swimming and hiking around the lake, all of the amazing meals and of course, the excellent scientific discussions. One time at the airport, we were sitting around with various cookbooks and recipes and Karen on her PDA making a shopping list. Mette turned and said, 'It should be renamed Food Camp.' Thanks for bringing us into your homes.

Next, I would like to thank my Thesis Committee – Peter Walter, Erin O'Shea, and Liz Blackburn. They have always been very encouraging every single time I switched projects. Even though I was at times totally dismayed, they just kept smiling and said keep on going. So, I did. I particularly would like to thank Peter and members of the Walter Lab - Jess Leber and Tomas Aragon for their UPR reagents and expertise.

It's fair to say that I wouldn't have been able to complete the last project of my thesis if it hadn't been for Joe DeRisi. He has been a fantastic and incredibly generous resource for so many of us at UCSF and really got this microarray project off the ground. He has contributed to this project throughout. On top of that, although he looks very serious in the news, his fun laid back attitude has helped make working really fun. I have had the fortune to overlap with many talented and stimulating people in the Guthrie lab and just want to say a few words of thanks to a few of them. Because I have worked on several different projects during my tenure in the Guthrie lab, I've had the opportunity to migrate through all three clubs at one time or another. In Transport Club, Anne de Bruyn Kops was the first person to introduce me to the microscope. The first time I looked at cells in the microscope, I managed to get motion sickness, which was not a very auspicious beginning. But somehow I worked through it and Anne was instrumental in this process. Karen Kim and I have both worked on the IP microarray assay. It has been great being able to work through various challenges with her. Thanks to Mette Lund and Anders for taking Jeff out for fun when I was too busy. Wendy Gilbert's articulateness has kept many lively discussions going. Pascal Preker uses fewer words and sometimes adds some amusing sounds, but is also very insightful in discussions.

In Splicing Club, although Tamara Brenner is very calm and cool on the surface, she is quietly moving mountains of data, and for the most part without any complaints. I would like to say special thanks to Tamara for discussions about our work at the exciting interface between snRNP biogenesis and splicing. I also want to thank Tamara and her fiancé Mike for all the fun times enjoying the great outdoors and organic vegetables. I've never seen Tommaso Villa as happy as he was in Rome. He and Samia brought us one of the best meals ever, which is apparently just everyday food in Italy – prosciutto and ricotta sandwiches on fresh foccaccia, caprese and wine. Thanks to Tomasso for sharing his Italian cooking and love of all things European with us. It has also been great talking with him and Alan Kutach about various career directions. From the few past members, Cathy Collins and I used to go running together in Golden Gate Park, which invariably turned into therapy sessions that really helped keep me going. Amy Kistler is a great cheerleader. She would always say 'You go girl!' which also kept me going. Stephen Rader was my partner in crime in willingness to not only try, but also enjoy just about anything. I have to thank Kent Duncan, because I seem to have been sufficiently traumatized in

ix

the experience of staying up all night to help finish Kent's thesis, that I have been able to avoid doing so for mine!

Although I've only nominally been a member of Chip Chat, since it started after I finished doing experiments, I've really enjoyed listening in on all of Gregg Whitworth and Megan Bergkessel's discussions with Jeff when they come by. You can always count on Gregg for a sunny positive attitude and a smile, which does wonders. Megan who just passed her orals, has lots of energy, which is really inspirational. There is always lots to learn from the young.

From my friends outside of lab, the crazy crew that I play Underwater Hockey with every week has helped keep my sanity, even though most people think it's totally insane. There's nothing like going underwater to forget about everything and regroup with a fun group of people. Thanks to Jack Whiteford my fun and faithful carpool for all the laughs. Also thanks to Becky Jaffe, one of my best and oldest friends from high school, and our friend Mark Siegal, who have helped to keep everything in perspective.

Thanks to my family - my mom, my dad, my brother Tetsu and his wife Susan, who has also just defended her thesis. They have been very, very patient with me, working away and being so far away from home. Thanks for always being there.

Last but not least, I want to thank Jeff Pleiss. He is a big believer of the process and the journey being most important rather than the end goal. While I agree, it sure is nice to be done. A few summers ago we did this epic fourteen hour hike up Long's Peak in Colorado. Just like during my graduate work, for a lot of the way I wasn't quite sure I was going to make it all the way, but I kept going with his calm encouragement and somehow made it to the top. When we got to the peak, there was a guy there who said 'Whoo that was hard. That was the hardest thing I have ever done. The only thing harder than climbing Long's Peak is marriage, because its everyday.' First of all I can't be sure, but I don't think this guy has worked on a Ph.D. Second of all, one of the best parts of being with Jeff is the fun and challenges we have together everyday. Thank you.

X

PROLOGUE

The goal of this thesis work was to gain deeper understanding into how the cell insures proper assembly of ribonucleoprotein particle (RNP) machinery, the workhorses of the cell. The central dogma describes gene expression as a linear path from DNA to mRNA to protein. However, in order to achieve this, many noncoding or functional RNAs must be transcribed, processed, assembled with their associated proteins and targeted to their correct cellular compartment for function at nearly every step in gene expression. Known RNPs include ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) as integral components of the translational apparatus; small nucleolar RNAs (snoRNAs), RNaseP and RNase MRP guide modifications of the rRNAs and tRNAs; SRP RNA promotes protein translocation; telomerase RNA is involved in complete DNA replication and small nuclear RNAs (snRNAs) are required for splicing pre-mRNAs to mature mRNAs.

The spliceosome is a highly dynamic machine that undergoes multiple RNP assembly events, requiring the energy of ATP for rearrangements at multiple steps (Staley and Guthrie 1998). Not only do the five snRNAs (U1, U2, U4, U5 and U6), with their associated proteins, together known as small nuclear ribonucleoprotein particles (snRNPs), come together to form an active spliceosome, but they must also be released and reassembled on each new mRNA substrate. At the time I joined the lab, progress towards understanding the roles of the snRNAs was being made (Madhani and Guthrie 1994), but much less was known about how the individual snRNPs are initially formed, a complex process known as snRNP biogenesis.

The first studies of snRNP biogenesis, shown to consist of multiple steps and bidirectional nucleocytoplasmic transport, were carried out in vertebrate cells where microinjection manipulations and cell fractionation were possible (Mattaj et al. 1993). These experiments demonstrated that snRNAs are transcribed in the nucleus and exported to the cytoplasm where core Sm proteins bind. This is then the signal for trimethylation of the cap, which together with

the Sm core constitute a bipartite nuclear localization signal. The snRNAs are trimmed at their 3' end, assembled with their associated proteins and delivered to their site of function, the nucleus (Will and Luhrmann 2001). At the time I began my thesis research, while these snRNP biogenesis steps had been identified, none of the mediating factors were known. Moreover, the field of nucleocytoplasmic transport was in its infancy. A few factors involved in protein transport had been identified, setting up a new paradigm. Carrier proteins bound to adaptors were shown to mediate transport of signal-containing cargo through nuclear pores with the assistance of the Ran GTPase (Gorlich and Mattaj 1996). Very little was known about RNA transport and while no RNA transport factors had been identified, it was hypothesized to occur via a similar, carrier-mediated mechanism (Jarmolowski et al. 1994).

The genetically tractable budding yeast (*S. cerevisiae*) was our amenable system of choice for identifying novel snRNP biogenesis and transport factors. Its cytological properties compared to mammalian cells are somewhat limited due to its small size, but progress with *in situ* hybridization techniques for visualizing bulk polyA+ mRNA using an oligo dT50 probe (Amberg et al. 1992; Kadowaki et al. 1994) suggested that visualizing specific RNAs such as snRNAs were potentially within reach.

Additionally, factors involved in snRNP biogenesis in yeast were beginning to be identified. Homologs of two mammalian Sm proteins were identified in yeast and were shown to affect snRNA stability and cap hypermethylation, indicating a role in snRNP biogenesis (Rymond 1993; Roy et al. 1995). Also, Brr1p, the first non-Sm snRNP biogenesis factor, was characterized in our laboratory (Noble and Guthrie 1996). Brr1p was shown to specifically affect the stability of newly synthesized snRNAs (Noble and Guthrie 1996). While its exact function was still unknown, Brr1p was also shown to affect 3' end trimming of U2 snRNA (Noble and Guthrie 1996). Although it was not yet known if snRNP biogenesis in yeast similarly consisted of a cytoplasmic phase, since the major landmarks of Sm core binding, cap hypermethylation and 3' end trimming were conserved, this was a likely scenario.

Chapter I of this thesis describes the development of *in situ* hybridization assays for localizing snRNAs designed to ask whether snRNP biogenesis occurs in the cytoplasm in yeast and to identify mediating factors. While we successfully localized yeast snRNAs to the nucleus, we did not observe any evidence for snRNA transport. We examined a battery of mutants and assayed for snRNA transfer in a binucleate system, but were unable to detect a cytoplasmic phase, suggesting that snRNP biogenesis is restricted to the nucleus in yeast. Indeed, subsequent work from others identifying metazoan snRNP transport factors has found that there are no known yeast homologs, suggesting a divergent pathway. One consequence of such a pathway is that snRNP synthesis, function and regeneration all take place within the nucleoplasm, suggesting that mechanisms for insuring proper RNP assembly before splicing may exist.

Chapter II describes an investigation at the interface between snRNP biogenesis and splicing via biochemical and genetic analyses of the role of Brr1p in splicing. Brr1p was shown to be involved in the stability of newly synthesized snRNAs (Noble and Guthrie 1996), but was also originally isolated as a factor defective in pre-mRNA splicing (Noble and Guthrie 1996). We examined splicing in brr/Δ extracts to ask whether Brr1p played a direct role in splicing. Since snRNP levels were also compromised, it remained difficult to determine whether the defects we observed were due to Brr1p function or an indirect effect of decreased snRNP levels. However, brr1 alleles displayed genetic interactions with spliceosome assembly factors integral to the splicing pathway. There are several possible explanations for these observations: 1) factors such as Sub2p, Snu66p, and Snu114p may play roles in snRNP biogenesis, 2) Brr1p is playing a role in splicing, and/or 3) snRNP biogenesis and spliceosomal reassembly are closely related processes and may utilize similar factors.

Chapter III describes our investigation of RNP biogenesis on a global scale. To broaden our understanding of the function of RNP biogenesis factors, we used a genomics approach to identify the complete RNA binding profile of Brr1p and Lhp1p, another known RNP biogenesis factor involved in the processing of multiple noncoding RNAs (Wolin and Cedervall 2002).

While Brr1p was too low in abundance for analysis, we confirmed Lhp1p interaction with many noncoding RNAs and identified new Lhp1p interactions with multiple tRNAs and snoRNAs, suggestive of class-wide recognition. Strikingly, we also identified Lhp1p interaction with a subset of mRNAs. Specifically, we observe Lhp1p association with HAC1 mRNA, which encodes a transcription factor required for the unfolded protein response (Cox and Walter 1996). Contrary to our original hypothesis that Lhp1p may be involved in the processing of this unusual tRNA-like RNA, which is spliced by tRNA machinery (Sidrauski et al. 1996), we describe evidence for a novel role for Lhp1p in translation. Lastly, we observed Lhp1p interaction with many ribosomal protein genes. While this had been observed in mammalian systems, it was unexpected in yeast since yeast ribosomal protein genes lack the 5' terminal oligo pyrimidine binding sequence of metazoans (Powers and Walter 1999; Cardinali et al. 2003). Our data suggest that the function of RNP biogenesis factors is not restricted to noncoding RNAs, but is also important for mRNAs. Moreover, our data suggest an intriguing connection among Lhp1pinteracting RNAs. Coordinated regulation of gene expression by RNP assembly may be carried out by factor(s) involved in the biogenesis of noncoding RNAs and by modulation of translation of their associated proteins.

<u>Chapter I</u> - snRNA biogenesis may be restricted to the nucleus in S. cerevisiae

Abstract

Small nuclear ribonucleoprotein particles (snRNPs) must be properly assembled and processed in order to function in pre-mRNA splicing. In metazoan cells, snRNP biogenesis is a complex, multi-step process, which requires a cytoplasmic assembly phase and subsequent import to the nucleus. At the outset of this work, it was not known whether snRNP biogenesis in yeast also involved a cytoplasmic phase. In addition, none of the metazoan factors involved in mediating nucleocytoplasmic transport of snRNAs were known. To ask whether snRNP biogenesis occurred similarly in yeast and to identify factors involved in snRNA transport, we developed a fluorescence in situ hybridization assay for snRNAs in S. cerevisiae. We observed nuclear localization for snRNAs, but we did not observe any evidence for transport. We examined a battery of mutant strains defective in nucleocytoplasmic transport of both protein and RNA cargo, such as nucleoporins, protein transport factors, RNA export factors and all known importin β homologs. However, we were unable to detect mislocalization of snRNAs, either cytoplasmic accumulation for snRNA import mutants or an increase in nuclear signal for snRNA export mutants. We also developed an assay to examine U2 snRNA localization in a binucleate cell, but we were unable to detect U2 snRNA transfer from one nucleus to the other, again suggesting that snRNAs are not transported in yeast. Taken together with the finding that there are no known yeast homologs of the snRNA transport factors that have been identified by others in mammalian systems, these data suggest that snRNA biogenesis in S. cerevisiae may be restricted to the nucleus.

Introduction

The biogenesis and assembly of small nuclear ribonucleoprotein particles (snRNPs) is necessary to produce the proper machinery for pre-mRNA splicing and hence for gene expression. In

metazoan cells, snRNP biogenesis is a multi-step process shown to require nucleocytoplasmic transport for cytoplasmic assembly and for return of the snRNPs to the nucleus where splicing occurs (Mattaj et al. 1993; Will and Luhrmann 2001). Briefly, snRNAs are first transcribed in the nucleus and exported to the cytoplasm where Sm core proteins bind in order for trimethylation of the cap to occur (Mattaj 1986; Hamm et al. 1987). The Sm core and trimthylated cap then act as a bipartite signal for reimport into the nucleus (Fischer and Luhrmann 1990; Hamm et al. 1990). Finally, although it is not known whether the final steps occur before, during or after reimport, 3' end trimming and snRNP specific protein binding occurs for final assembly of the mature snRNP (Neuman de Vegvar and Dahlberg 1990). While the steps of snRNP biogenesis had been thus characterized, none of the factors involved in mediating snRNA transport were known. In fact, very little was known about RNA transport. But a paradigm for protein transport was emerging; a receptor, importin β /importin α , that binds basic nuclear localization signal sequences (NLSs) on protein cargo and directs their transport had been discovered (Gorlich and Mattaj 1996). Subsequently, a family of homologous receptors such as importin/transportin that bind to other signal sequences (M9) on other protein cargo (hnRNPA1) had also been identified (Pollard et al. 1996). These receptors continuously shuttle between the nucleus and the cytoplasm, modulating their affinity for cargo based on the nucleotide-bound state of Ran GTPase (Kuersten et al. 2001). All nucleocytoplasmic transport occurs through large channel structures called nuclear pore complexes (NPC), whose many components were also being identified (Rout and Wente 1994). As for RNA transport, the first competitive inhibition studies by microinjection of RNAs into oocyte nuclei, suggested that different classes of RNAs have separable carriers involved in mediating their export (Jarmolowski et al. 1994), and that perhaps RNA transport was analogous to protein transport in that it utilized cargo carriers and import/export receptors.

To identify factors involved in snRNA transport we developed an *in situ* hybridization assay to localize snRNAs in *S. cerevisiae*. Although it had never been demonstrated that snRNAs undergo

a similar bidirectional transport during biogenesis in yeast cells, the major landmark steps of Sm core assembly, trimethylation of the cap and 3' end trimming are conserved between yeast and mammals, suggesting that other aspects are also conserved. With the assay in hand we were poised to characterize the yeast snRNP biogenesis pathway.

Materials and Methods

Yeast strains

See Table 1 for yeast strains used in this study.

ssDNA probe preparation

To make ssDNA probes, PCR reactions were performed using sense strand primers phosphorylated at their 5' end and incorporating digoxygenin-dUTP (4:1 dTTP:digoxygenindUTP) (Roche). Sense strands were subsequently specifically digested with lambda exonuclease (Pharmacia Biotech).

In situ hybridization assay

Yeast cells were grown, fixed, washed and placed on polylysine treated glass slides as previously described (Takizawa et al. 1997). Cells were incubated in hybridization mix (5µg/ml each probe, 50% formamide, 20% dextran sulfate, 2xSSC, 0.4% BSA, 1mg/ml tRNA) overnight at 37°C and then washed in 2xSSC/50% formamide, 2xSSC, 1xSSC and equilibrated in PBST. Cells were then incubated with anti-digoxygenin antibody conjugated with FITC (Roche) diluted 1:100 in PBST for 1hr at 37°C. Cells were washed in PBS and mounted for visualization with a Zeiss Axioscope microscope using a 100x/1.3 NA lens. Images were captured using a Sensys CCD camera (Photometrics).

Heterokaryon assay

Heterokaryons were made as previously described (Flach et al. 1994), mating a strain containing wildtype U2 snRNA (yES18) or a strain deleted for the U2 fungal domain (yES77) (Shuster and

Guthrie 1988) with $kar1-\Delta 13$ (Vallen et al. 1992). Fixation and *in situ* hybridization procedures were performed as described above.

Results

In situ hybridization of specific RNA LacZ

Our first goal was to visualize the subcellular localization of snRNAs. While bulk polyA+ mRNAs had been successfully localized using an oligo dT50 probe against their polyA tail (Amberg et al. 1992; Kadowaki et al. 1994), less was known about the requirements for localizing specific RNAs. We attempted to visualize abundant endogenous mRNAs such as PGK1, TUB1 and ACT1. However, signal was low and without a negative control strain lacking the target RNA for these essential genes, we could not tell if the observed signal was significantly above background. We also attempted to visualize the localization of CUP1 and SSA4 mRNAs that are respectively nonessential and inducible, but again signal was weak and difficult to discern. To develop this assay we examined a highly expressed exogenous mRNA, LacZ. A strain lacking the LacZ expressing plasmid served as a negative control (Legrain and Rosbash 1989). Since signal strength was a limiting factor for specific RNAs, we started with enzymatic signal amplification of a diffusible substrate (alkaline phosphatase and BCIP/NBT). We observed specific whole cell staining of LacZ that was absent with the negative control strain (data not shown). However, in an mRNA export mutant such as brr3-1 where polyA+ mRNAs were accumulated in the nucleus (data not shown, Awabdy and Guthrie personal communication), we also observed whole cell staining, most likely due to diffusion of the substrate (data not shown). As these results were promising, we decided to turn directly to snRNA targets for assay optimization.

ssDNA probes were developed for in situ hybridization of snRNAs

At this time, others had begun to develop both short DNA probes and long RNA probes generated by T7 transcription for localizing specific RNAs. Singer and colleagues had used a highly light sensitive microscope and short DNA probes to visualize ASH1 mRNA to the bud tip (Long et al. 1997). Conversely, Vale and colleagues had used a standard microscope and long RNA probes to visualize the same ASH1 mRNA (Takizawa et al. 1997). While RNA probes form stronger hybrids with their targets than DNA probes, they are often unstable. Since amplification of the entire target sequence for maximum signal coverage was possible by PCR and DNA probes were more reliably stable than RNA probes, we developed single stranded DNA (ssDNA) probes by eliminating the competing sense-strand to maximize signal. We initially used biotin-labeled sense-strand oligos in the PCR reactions and attempted to purify the probe strands by streptavidin pull-downs, but the separation and purification steps were inefficient (data not shown). Instead we utilized the ability of lambda exonuclease to specifically cleave DNA strands terminated with 5' phosphates. By including sense-strand 5' phosphate-containing oligos in our PCR reactions, we could efficiently synthesize the desired ssDNA probes (data not shown). In addition, rather than using diffusible substrates for visualization, we incorporated digoxygenin labeled nucleotides during the PCR reactions and visualized the probes by fluorescently labeled antibodies against digoxygenin.

A strain deleted for the fungal domain of U2 snRNA serves as a negative control for *in situ* hybridization assays

Since *in situ* hybridization signal for specific RNAs is often low, it was critical to have a strain lacking the target RNA in order to assess background levels. However, the snRNA genes are essential in *S. cerevisiae*. Interestingly, while core sequences are conserved between yeast and human snRNAs, some yeast snRNAs have up to 1kb long intervening sequences that were found to be nonessential for growth and were dubbed 'fungal domains' (Shuster and Guthrie 1988; Roiha et al. 1989; Liao et al. 1990; Siliciano et al. 1991). We designed *in situ* hybridization

probes to the 945 nucleotide nonessential fungal domain of U2 snRNA and used a strain deleted for this region as our negative control (Shuster and Guthrie 1988). We used five tandem ~190 nucleotide ssDNA probes covering the entire length of the fungal domain. We initially found that a tertiary antibody signal amplification setup using mouse anti-digoxygenin, rabbit anti-mouse, and Rhodamine-conjugated goat anti-rabbit was required for visualization (Figure 2B). After further optimization of hybridization and fixation procedures we were able to use a single antidigoxygenin Fluorescein-conjugated antibody for snRNA localization (Figure 3).

snRNAs are localized to the nucleus in S. cerevisiae

Using ssDNA probes for the U2 snRNA fungal domain (Figure 2A), we were able to localize U2 snRNA to the nucleus in yeast cells (Figure 2B). A similar strategy for U1 snRNA using the fungal domain, which is considerably shorter (315nt) than the U2 fungal domain (Liao et al. 1990; Siliciano et al. 1991), also localized U1 snRNA to the nucleus (Figure 3A). However, detection of U1 snRNA required tailing of the PCR products with DIG labeled nucleotides for further signal amplification. For the snRNAs without sizeable fungal domains, we were able to visualize dim nuclear signal for U4, U5 and U6 snRNAs using full length probes (160, 214, and 112 nucleotides respectively) (Figure 4B and data not shown). Using probes that covered the full length of U3 snoRNA (334 nucleotides), we were also able to localize U3 snoRNA to a crescent shaped structure overlapping, but not fully concomitant with DAPI signal, which we presume to be the nucleous (Figure 4B).

Transport mutants do not display any defects in snRNA localization

To identify factors involved in snRNA transport, we examined a battery of mutant strains previously shown to be defective in transport processes, looking for either increased nuclear signal (snRNA export mutants) or increased cytoplasmic signal (snRNA import mutants). We first examined mutant strains known to block general nucleocytoplasmic transport – nucleoporin components of the nuclear pore complex, Ran GTPase effectors and importin α/β protein import factors (see Table 1). Mutant strains we examined were *nup116* (blocked pores by EM), *nup49*- 313 (protein import), rna1-1 (Ran GAP), prp20-1 (Ran guanine nucleotide exchange factor), srp1-49 (importin α), kap95-1 (importin β) (Figure 3 and data not shown). In each of these mutant strains, U1 and U2 snRNA remained nuclear even after shift to nonpermissive temperatures (Figure 3B). Nuclear accumulation of polyA+ mRNA was confirmed by *in situ* hybridization with the dT50 assay for those strains with mRNA export defects (data not shown). With some nucleoporin mutant strains, nup116 Δ , nup49-313, nup188 Δ , and cse1-1, an importin β homolog (see below) we believe we observed a slight increase in nuclear signal (Figure 3B and data not shown). However, it was unclear if this observation was significant in the absence of quantitative methodologies, which were unavailable at the time.

Brr1p was shown to play a role in snRNP biogenesis since brr1 mutant strains are defective in producing mature snRNPs from newly synthesized snRNAs (Noble and Guthrie 1996). Because Brr1p could potentially play a role in snRNP transport during biogenesis, we also examined U1 and U2 snRNA localization in both brr1-1 and $brr1\Delta$ strains, but we did not observe U1 or U2 snRNA mislocalization (data not shown).

Although data from mammalian systems suggested that different classes of RNAs are exported by separable pathways (Jarmolowski et al. 1994), factors involved in mRNA export could also be involved in snRNA transport. Therefore, we examined mRNA export mutants shown by accumulation of polyA signal in the nucleus via the dT50 assay (de Bruyn Kops and Guthrie personal communication). We examined *brr3-1*, *brr4-1*, *brr6-1*, *brr6-2*, *brr7-1* and *brr8-1* under conditions with nuclear accumulation of bulk mRNAs (data not shown), but we only observed nuclear localization for U1 and U2 snRNAs (data not shown).

Importin β homologs are not involved in snRNA transport in yeast

In 1997, the entire yeast genome was sequenced and we and others were able to perform genomewide searches for homologous proteins (Cherry et al. 1997). Using BLAST, 14 yeast homologs of importin β were identified (Altschul et al. 1990). To examine whether the cargoes of any of these putative carrier proteins were in fact carriers for snRNAs, we assayed snRNA localization with 11 of the 14 importin β homologs for which mutant strains were available, namely *kap95-1*, *kap104* Δ , *pse1-1*, *kap123* Δ , *pse1-1/kap123* Δ , *cse1-1*, *sxm1* Δ , *los1-1*, *mtr10* Δ , *crm1-1*, *nmd5* Δ and *msn5* Δ (see Table 1). However we did not observe any changes in U1 or U2 snRNA localization (Figure 3 and data not shown). We constructed deletion strains of the three remaining importin β homologs (*pdr6* Δ , *yg1241* Δ , and *lph2* Δ), which were nonessential and assayed for mislocalization of U1 and U2 snRNAs. We did not observe any changes in snRNA localization for the eight candidate deletion strains we tested for each homolog (data not shown). This data suggested that importin β homologs are not required for the transport of snRNAs in yeast.

Crm1p is not involved in snRNA export in yeast

During the course of this work, the mammalian importin β homolog CRM1 was shown to be involved in export of protein cargo containing leucine-rich nuclear export signals (Fornerod et al. 1997). Moreover, it had been shown in mammalian cells that Leptomycin B, a cytotoxin that binds specifically to CRM1, inhibited U snRNA export, suggesting that snRNA export may be mediated by an NES-containing factor bound to CRM1 (Fornerod et al. 1997). To test whether this was also true in yeast, we examined U1 and U2 snRNA localization in a *crm1-1* mutant strain under conditions previously shown to block mRNA export (Stade et al. 1997). However, we did not observe any increase in nuclear snRNA signal or any change in snRNA localization (Figure 3B and data not shown), suggesting that Crm1p is not required for snRNA export in yeast. During snRNP biogenesis in metazoan cells, some steps of 3'end trimming have been shown to occur in the cytoplasm (Neuman de Vegvar and Dahlberg 1990). Therefore, as an alternative to *in situ* hybridization assays, we attempted to use 3' end processing as a biochemical marker for export of snRNAs. To assay 3' end processing of newly synthesized U2 snRNA, we induced expression of a U2 snRNA with altered mobility due to a short deletion, under the control of the GAL4 promoter in galactose-containing media (Noble and Guthrie 1996). To assay U2 3' end

formation in a strain predicted to block snRNA export, we examined newly synthesized U2 snRNA 3' end formation in a *crm1-1* strain upon shift to nonpermissive temperature (37°). However, we did not observe accumulation of a pre-U2 snRNA species, (data not shown). We observed that the total levels of U2 snRNA were decreased in the *crm1-1* strain, but the ratios of pre-U2 to mature U2 snRNA and the kinetics of U2 3' end trimming were similar to that of wildtype. This suggested that either 3' end trimming is not a true marker for snRNA export to the cytoplasm (see Discussion) or that Crm1p is not involved in snRNA export in yeast as predicted from mammalian studies.

Cell wall morphology may confound the *in situ* hybridization assay

Most mutant strains we examined with our snRNA in situ hybridization assay displayed no change in U1 or U2 snRNA localization (Figure 3, data not shown). However, one mutant, ssr1-1, displayed striking whole cell signal of snRNAs when shifted to the nonpermissive temperature (Figure 4A), suggesting a role for Ssrlp in snRNP import. The ssrl-1 mutant was found to suppress the temperature sensitivity of a U1 snRNA deletion mutation, but only in combination with another mutant tom1-1 (Umen and Guthrie 1995), suggesting that these factors could indeed be playing a role in snRNA metabolism. Interestingly, mutants in toml, encoding a ubiquitin ligase, had been previously shown to be defective in mRNA export (Duncan et al. 2000). The tom1-1 mutant displayed nuclear U1 and U2 snRNA localization, while ssr1-1 displayed whole cell signal, and the double mutant displayed an intermediate phenotype (Figure 4A). We also examined the localization of U3 snoRNA and U6 snRNA, which unlike U1 and U2 snRNAs are restricted to the nucleus and are not predicted to accumulate in the cytoplasm (Vankan et al. 1990; Speckmann et al. 1999). We observed both U3 snoRNA and U6 snRNA to display similar whole cell signal (Figure 4B), suggesting that either U3 snoRNA and U6 snRNA undergo a previously undescribed cytoplasmic phase or that the whole cell signal we observed under these conditions was an artifact.

To determine if the whole cell signal was U2 snRNA-dependent, we constructed an *ssr1-1* strain also deleted for the fungal domain of U2 and conducted U2 snRNA *in situ* hybridization experiments. We observed partial whole cell signal even in the absence of U2 snRNA target (data not shown), suggesting that the signal we observed was an artifact and not a true indication of snRNA localization. At this time Ssr1p was shown to be a factor involved in cell wall biosynthesis, Kre6p, a 1,4 β glucan synthase (Duncan and Guthrie personal communication). Identifying Ssr1p as a factor involved in cell wall metabolism was consistent with a model whereby changes in cell wall composition could cause nonspecific interactions between the probe and the outside of the cell, mimicking whole cell signal. We observed that *ssr1-1* cells also displayed abnormally bright whole cell signal with a dT50 probe when shifted to the nonpermissive temperature (37°) (data not shown), suggesting that the *in situ* hybridization assay is not robust under these conditions.

Another mutant strain *prp40-10* also displayed whole cell signal of U1 and U2 snRNA upon shift to the nonpermissive temperature (37°) (Figure 5). Prp40p is a U1 snRNP protein, which contains two leucine-rich NES sequences (Murphy et al. 2004). Intriguingly, mutants of *prp40* with deletions of either of the NES sequences are synthetically lethal with *crm1* mutations (Murphy et al. 2004). Siliciano and colleagues have proposed that Prp40p may be exported in a Crm1p-dependent manner and that U1 snRNA may be exported via its interaction with Prp40p (Murphy et al. 2004). However, we observed that increasing digestion of the cell wall by zymolyase reduced U1 and U2 snRNA whole cell signal and increased nuclear signal (Figure 5, data not shown), suggesting that the state of the cell wall can have profound effects on apparent *in situ* hybridization signal.

Overexpressing U2 snRNA or depleting SmD1p did not increase U2 snRNA signal in the cytoplasm

In addition to examining a battery of mutant strains for snRNA mislocalization, we attempted to find evidence for snRNA transport by two other means. First, we attempted to visualize

cytoplasmic snRNA signal by overexpressing U2 snRNA and increasing overall levels of U2 snRNA through the biogenesis pathway. We induced U2 snRNA from a plasmid containing fulllength U2 snRNA under control of the GAL4 promoter in both a wildtype and a strain lacking the fungal domain grown in galactose media. With the wildtype strain, we observed no change in nuclear signal (data not shown). With the strain lacking the fungal domain, we observed appearance of full-length U2 snRNA in the nucleus upon induction. However, we did not observe any increase in cytoplasmic signal despite an increase in total U2 snRNA levels as assayed by Northern analysis (data not shown).

Second, we attempted to visualize cytoplasmic snRNA signal by depleting Sm protein SmD1p. In mammalian cells, Sm proteins bind to snRNAs in the cytoplasm and are required for reimport (Hamm et al. 1990). To test if depleting Sm proteins could lead to accumulation of precursor snRNAs in the cytoplasm, we examined U1 and U2 snRNA localization in a strain containing SmD1 under the control of a GAL4 promotor grown in the presence of glucose. Although we did not independently confirm depletion of Smd1p, we did not observe an increase in cytoplasmic signal (data not shown).

In situ hybridization of U2 snRNA in binucleate heterokaryon cells suggest that snRNAs are not transported in yeast

To assay for snRNA transport, we developed an alternative *in situ* hybridization assay using binucleate cells. It had been previously demonstrated that strains defective in nuclear fusion, karyogamy mutants, can still mate to produce a yeast cell with shared cytoplasm and two nuclei called a heterokaryon (Conde and Fink 1976). These mutants had been used to demonstrate nucleocytoplasmic shuttling of certain proteins (Flach et al. 1994). To see if U2 snRNA could be transferred by export from one nucleus and import into a second nucleus, we mated a *kar1-\Delta13* strain containing wild type U2 snRNA with a strain containing U2 snRNA lacking the fungal domain and asked whether U2 snRNA signal could be detected in both nuclei of the resulting heterokaryons (Figure 6A). While we observed rapid NPL3-GFP protein shuttling within 1 hour

of heterokaryon formation (data not shown), when we fixed the heterokaryons and performed *in situ* hybridization, we consistently observed U2 snRNA localization in only one of two nuclei (Figure 6B). In the event that accumulation of snRNAs into the second nucleus required further incubation, we examined heterokayrons 5 hours after mating, but we nonetheless only observed U2 snRNA localization in one of two nuclei (data not shown). Even after 24 hrs, when the heterokaryon nuclei were replicating and budding multiple nuclei, we were still unable to observe heterokaryons without at least one unlabeled nucleus (data not shown). Although it is conceivable that snRNA transport may be coupled to the originating nucleus and may not be released into the cytoplasm allowing for import into a second nucleus, this data suggests that snRNAs are not transported in *S. cerevisiae*.

Discussion

While snRNAs undergo a cytoplasmic assembly and biogenesis phase in metazoan cells (Figure 1), we and others have accumulated increasing evidence for the conclusion that yeast snRNAs are not transported during biogenesis. First, we detect no evidence for a cytoplasmic phase for yeast snRNAs using a fluorescence *in situ* hybridization assay. We looked for mislocalization of U1 and U2 snRNAs in a battery of transport mutants including nucleoporins, Ran GTPase, effectors, protein import factors, mRNA export factors and all 14 known importin β homologs, but we only observed nuclear localization (Figure 3, data not shown). It is possible that our *in situ* hybridization assay is not sensitive enough to detect subtle increases in already nuclear signal for export mutants or low levels of cytoplasmic pre-snRNA signal for import mutants. Development of quantitative measurements combined with microscopic localization may elucidate subtle changes in signal (Brendt personal communication).

We also did not detect U2 snRNA transfer in heterokaryon yeast cells containing two nuclei fused with a common cytoplasm (Figure 6), suggesting a solely nuclear biogenesis pathway. In a recent

analogous study, Siliciano and colleagues have observed transfer of U1 snRNA in heterokaryon cells (Olson and Siliciano 2003). Their finding that Prp40p, a U1-associated protein, contains two NES sequences that genetically interact with CRM1, suggests that Prp40p may be exported in a Crm1p-dependent manner (Murphy et al. 2004). They propose that U1 snRNA may be uniquely exported in association with Prp40p as no other snRNP proteins with NES sequences have been characterized (Olson and Siliciano 2003; Murphy et al. 2004). Contrary to our data, they observed that U2 snRNA is also transferred (Olson and Siliciano 2003; Murphy et al. 2003). However, they observed that U6 snRNA and several snoRNAs not known to be transported to the cytoplasm (Vankan et al. 1990; Speckmann et al. 1999) were also transferred (Olson and Siliciano 2003), suggesting leakage of RNAs. Further work is required to understand the differences in our results, but their longer fixation procedure is a possible explanation.

Second, as further evidence for a nuclear biogenesis pathway in yeast, some of the recently identified biogenesis factors involved in 3' end trimming of snRNA precursors and trimethylation of the cap have been localized to the nucleolus and/or the nucleus. Rnt1p, the yeast homolog of RNase III, which has been shown to cleave 3' end stem loop structures in snRNA and snoRNA precursors (Chanfreau et al. 1997; Abou Elela and Ares 1998), has been localized to the nucleus and nucleolus (Huh et al. 2003), suggesting that this cleavage step occurs within the nucleoplasm. The Parker and Tollervey groups have shown that nuclear exosome factors (Rrp6p and Mtr4p) are involved in 3' end trimming of U4 and U5 snRNAs (Allmang et al. 1999; van Hoof et al. 2000; van Hoof et al. 2000). In addition, the snRNA and snoRNA trimethylating enzyme, Tgs1p, has been recently identified and localized to the nucleolus (Mouaikel et al. 2002). Intriguingly, deletion of *tgs1* causes U1 snRNA to accumulate in the nucleolus, suggesting that trimethylation of the snRNA cap occurs in the nucleolus and the precursors become blocked or trapped in the absence of trimethylation (Mouaikel et al. 2002). These data suggest that major snRNA biogenesis steps may occur specifically in the nucleolus in yeast.

Lastly, since the time of our work, progress toward identifying the metazoan factors involved in snRNA transport has been significant (Figure 1). Both the snRNP import and export receptors have been identified as snurportin and PHAX respectively (Huber et al. 1998; Ohno et al. 2000). Snurportin binds the trimethyl G cap structure of snRNPs cooperatively with importin β to mediate snRNP import and PHAX contains an NES sequence bound by CRM1/XPO1, which together bind the cap binding complex of newly transcribed snRNAs and mediates snRNA export (Huber et al. 1998; Ohno et al. 2000). Strikingly, there are no yeast homologs for either snurportin or PHAX despite conservation of both the recognition elements on the snRNAs, the trimethylated cap and the cap binding complex, and the transport receptors, Kap95p and Xpo1p. This indicates that the yeast biogenesis pathway may either undergo transport via different factors from mammalian cells or alternatively, snRNAs may remain restricted to the nucleus. Moreover, a large complex called the survival of motor neurons complex (SMN) involved in cytoplasmic snRNP assembly in mammlian cells, is not present in S. cerevisiae (Fischer et al. 1997), suggesting that budding yeast lack machinery required for cytoplasmic snRNP assembly. SMN is a critical cellular component as it has been identified as the disease gene for Spinal Muscular Atrophy (SMA), a common neurodegenerative disease (Meister et al. 2002). Specifically, the SMN complex has been shown to bind to newly exported snRNAs associated with PHAX in the cytoplasm (Massenet et al. 2002). SMN binds directly to dimethylargininemodified domains of certain Sm proteins, which do not exist in yeast Sm proteins, and are believed to modulate cytoplasmic Sm core assembly (Friesen et al. 2001). Interestingly, SMN has also been shown to function in the nucleus in recycling of snRNPs during pre-mRNA splicing (Liu et al. 1997). While no SMN homologs have been identified in S. cerevisiae, SMN interacting protein, SIP1 was believed to have distant homology to S. cerevisiae snRNP biogenesis factor, Brr1p (Liu et al. 1997). Subsequent work in S. pombe has identified homologs for SMN and SIP1 in fission yeast as YAB8 and YIP1 respectively (Hannus et al. 2000). However, YIP1 bears no resemblance to BRR1 (Hannus et al. 2000). While Brr1p and SIP1 may

not be closely related by sequence homology, they may nonetheless be functional homologs. Brr1p has been shown to be involved in the biogenesis of newly synthesized snRNAs and also in snRNP recycling during splicing in *S. cerevisiae* (Noble and Guthrie 1996) (see Chapter II). One difference between yeast and metazoan cells that may offer an explanation for the divergence in nuclear and cytoplasmic snRNP assembly is that budding yeast undergo closed mitosis whereas mammalian cells undergo open mitosis in which the nuclear envelope is dissolved and all nuclear components must be subsequently reimported. Mammalian cells require mechanisms for reimporting snRNPs during mitosis that they may have adapted to compartmentalize snRNP biogenesis. The fission yeast *S. pombe* also undergo closed mitosis, but unlike *S. cerevisiae*. *S. pombe* have SMN complex homologs (Hannus et al. 2000). It has yet to be determined if snRNAs are transported to the cytoplasm during biogenesis in *S. pombe*, but since pombe snRNP biogenesis is more closely related to metazoan biogenesis mediated by SMN (Hannus et al. 2000), it is therefore likely to be cytoplasmic. This suggests that snRNP assembly in the cytoplasm is not necessarily dictated by open mitosis. If so, then what does determine the localization of the snRNP assembly pathway?

Another striking and provocative difference between budding yeast U snRNAs and both the mammalian and *S. pombe* snRNAs is the presence of elongated 'fungal domains' in *S. cerevisiae* (Roiha et al. 1989). The fungal domains may act as chaperones or as binding sites for chaperones in assisting RNA folding for proper snRNP assembly and biogenesis and bypass the need for an SMN-mediated cytoplasmic assembly phase. Further investigation is required to dissect the function of the fungal domains.

Whatever the reason(s) for a nuclear assembly phase may be, if biogenesis occurs in the same subcellular compartment as splicing, mechanisms to insure proper biogenesis has occurred before entry into splicing may exist. The localization of the yeast trimethylating enzyme to the nucleolus suggests that at least some biogenesis steps are shunted to the nucleolus (Mouaikel et al. 2002) and may serve to compartmentalize snRNP assembly from snRNP activity.

Interestingly, it has been observed that 3' elongated pre-snRNAs can be assembled into spliceosomal complexes that are functional (Abou Elela and Ares 1998; Xue et al. 2000), indicating that some snRNA precursors can enter the splicing pathway. However, other snRNAs are targeted for degradation as in the case of newly synthesized snRNAs in a *brr1-1* mutant strain (Noble and Guthrie 1996), suggesting that there may be factors involved in quality control. Intriguingly, *brr1* mutant strains also display defects in splicing (Noble and Guthrie 1996; Noble and Guthrie 1996). In *S. cerevisiae*, the steps involved in snRNP biogenesis and the steps involved in regenerating or recycling snRNPs during pre-mRNA splicing presumably occur in the nucleus and may share common steps. Investigation of the mechanistic links between snRNP recycling and snRNP biogenesis may elucidate steps required for insuring completion of snRNP assembly before entry into splicing.

Figure 1 snRNA tranport and biogenesis in mammalian cells. 1) snRNAs are transcibed in the nucleus, 2) exported to the 7) splicing. The mediating factors were identified after our studies (blue and red). Factors in red have no yeast homolog. cytoplasm, 3) bound by Sm proteins, 4) trimethylated at the cap, 5) 3' end trimmed and 6) reimported into the nucleus for

Α

B

Figure 2 U2 snRNA is localized to the nucleus in *S. cerevisiae*. A) U2 snRNA probes designed to target the nonessential fungal domain (red) B) specifically localize U2 snRNA to the nucleus (stained with DAPI) in cells containing full length U2 (U2 WT), but not in cells with U2 deleted for the fungal domain (U2 Δ).

B

Figure 4A *ssr1-1* cells display bright whole cell U2 snRNA signal upon shift to the nonpermissive temperature. *ssr2-1* cells display nuclear U2 snRNA localization, while *ssr1-1/ssr2-1* double mutant cells display an intermediate phenotype.

Figure 5 Nuclear localization of U1 snRNA becomes apparent in *prp40-10* cells with 60 minutes of zymolyase treatment. *prp40-10* cells were shifted to 37° for 1hr, fixed, digested with zymolyase for the indicated times and hybridized with probes targeted for U1 snRNA.

Figure 6 U2 snRNA is localized to only one nucleus in heterokaryon experiments. A) A karyogamy mutant strain (karl) is crossed with another strain containing either full length U2 snRNA (U2 WT) or U2 deleted for its fungal domain (U2 Δ) to form heterokayrons and B) are subsequently hybridized with probes for U2 snRNA.

1	2		
1	Ē	5	
•	ì	í	
٩	2	1	
1	1	ų	
	ľ	ļ	
è		ż	
1	l	1	
1	ļ	Į	
1	ç	3	
1	1	٢	
	ì	ì	
9	ļ		
í	1	Ľ	
1	f		
i	1	î	
j	2	2	
1	ł	2	
٩	l	3	
I	đ	D	
4	ì	į	
(l	l	
1	ą	J	
¢	•		
1	Y	þ	
1	č	č	
	i	i	
ļ	1	1	
į	l		
Ś	è	ć	
l	1	1	
	l	Ľ	
	ľ		
٩		l	
1	c	n	
	1		
	f	2	
1	ſ	ī	
ľ		í	
-			

Table 1 - Strains	tested for snR	tNA localization
function	mutant	source
nucleoporin	nup116 Δ	Wente and Blobel 1993
	nup49-313	Doye and Hurt 1994
	nup188Δ/brr7	1 Zabel & Hurt 1996, Nehrbass & Wozniak 1996, de Bruyn Kops & Guthrie
Ran effector	prp20-1	Amberg and Aebi 1993
	rna1-1	Hopper and Dunst 1990
snRNA biogenesis	brr1-1/brr1A	Noble and Guthrie 1996 a,b
mRNA export	brr3-1	de Bruyn Kops and Guthrie personal communication, Awabdy & Guthrie
	brr4-1	de Bruyn Kops and Guthrie personal communication
	brr6-1	de Bruyn Kops and Guthrie personal communication
	brr6-2	de Bruyn Kops and Guthrie personal communication
	brr8-1	de Bruyn Kops and Guthrie personal communication
protein import	srp1-49	Yano and Nomura 1994
	kap95-1	Iovine and Wente 1997
importin beta	kap104Δ	Aitchison, Blobel and Rout 1996
	psel-1	Seedorf and Silver 1997
	kap123Δ	Seedorf and Silver 1997
	pse1-1/kap123.	2 Seedorf and Silver 1997
	cse1-1	Xiao and Fitzgerald-Hayes 1993
	sxm1Δ	Rosenblum and Blobel 1997
	los1-1	Hopper and Shapiro 1980
	mtr10Δ	Kadowaki and Tartakoff 1994
	crm1-1	Stade and Guthrie 1997
	nmd5Δ	Ferrigno and Silver 1998
	msn5∆	Kaffman and O'Shea 1998
	pdr6∆	this study
	yg 241Δ	this study
	lph2Δ	this study

Chapter II - The snRNP biogenesis factor Brr1p may play a role in pre-mRNA splicing

Abstract

The *brr1-1* mutant was originally isolated as a strain defective in pre-mRNA splicing. However, Brr1p was subsequently characterized as a factor involved in the production of mature spliceosomal snRNP levels. This raised the question of whether Brr1p was playing a direct or indirect role in splicing. We found that extracts made from *brr1* mutant cells display *in vitro* splicing and spliceosome assembly defects. However, *brr1* mutant extracts also contained decreased snRNP levels even at permissive temperatures. Intriguingly, our genetic analyses with snRNP biogenesis factors (LHP1, LSM5, LSM6, LSM7, SAD1) and splicing factors (PRP24, SAD1, SNU66, SNU114, SUB2) suggest a role for Brr1p in splicing, specifically U4/U6 snRNP assembly and/or triple snRNP addition. In addition, interactions with SUB2 suggest other possible roles for Brr1p in recombination, transcription and/or export. These data suggest that some splicing factors play a role in snRNP biogenesis or Brr1p plays a role in splicing and thus, step(s) in biogenesis are likely to be in common with step(s) required for the regeneration of snRNPs.

Introduction

The process of pre-mRNA splicing requires five small nuclear RNAs (snRNAs) and approximately 100 associated proteins (Jurica and Moore 2003), together comprising a macromolecular machine called the spliceosome. The spliceosome is highly dynamic; it must be assembled, activated and disassembled upon each new mRNA substrate (Staley and Guthrie 1998). The spliceosome carries out two consecutive transesterification reactions to remove an intervening intronic sequence and to ligate the 5' and 3' ends of RNAs to supply the cell with mature mRNAs. The spliceosomal components - the snRNAs and their associated proteins together called small nuclear ribonucleoproteins (snRNPs) - have been demonstrated to assemble

in a highly ordered and stepwise manner (Staley and Guthrie 1998). First U1 and then U2 snRNAs base pair to and identify the 5' splice site and the branch site, respectively. U4 and U6 snRNAs come together by an extensive base pairing interaction to form the U4/U6 disnRNP. Together with U5 snRNP, they form the triple snRNP, which adds to the pre-mRNA. U1 and U4 snRNAs are unwound, catalysis occurs, and the snRNPs must be released, rearranged and reassociated for the next mRNA. While studies investigating the activities of the snRNPs are imperative for our understanding of the mechanics of this essential biological process, examining the steps requisite for *de novo* production of proper snRNPs as well as those required for regeneration is also an essential part of understanding this highly iterative operation. As testament to the importance of assembling proper snRNPs, survival of motor neurons (SMN), the disease gene for spinal muscular atrophy (SMA), is required for spliceosomal snRNP assembly in higher eukaryotes (Mattaj 1998; Terns and Terns 2001; Meister et al. 2002; Paushkin et al. 2002). The biogenesis of snRNPs in metazoans is a complex process involving many steps including transit to and from the cytoplasmic compartment (Mattaj et al. 1993; Will and Luhrmann 2001). In short, snRNAs are transcribed in the nucleus and exported to the cytoplasm where a common set of proteins called Sm proteins bind in order for trimethylation of the cap to occur, which together constitute a bipartite nuclear localization signal (Mattaj 1986; Hamm et al. 1987; Fischer and Luhrmann 1990; Hamm et al. 1990). The snRNPs are then trimmed at their 3' end and reimported into the nucleus, during which time snRNP specific proteins associate in final preparation for splicing (Neuman de Vegvar and Dahlberg 1990). While snRNP biogenesis may be restricted to the nucleus in S. cerevisiae (See Chapter I), the major landmarks of Sm core assembly, trimethylation of the cap and 3' end trimming are conserved, suggesting that other steps may also be conserved.

At the time of onset of this work, Brr1p was the only known snRNP biogenesis factor in S. *cerevisiae* (Noble and Guthrie 1996). It had been demonstrated that in *brr1-1* cells the levels of snRNAs were compromised (Noble and Guthrie 1996). Pulse-chase analysis further

demonstrated that only newly synthesized snRNAs were affected, suggesting a function in biogenesis rather than maintenance of mature snRNP stability (Noble and Guthrie 1996). Further dissection of specific biogenesis steps showed that 3' end trimming of U2 snRNA was slowed in *brr1-1* cells (Noble and Guthrie 1996). However, Brr1p's exact role in biogenesis remained unclear.

Since Brr1p was first identified in a screen for factors involved in splicing by searching for mutants with *in vivo* splicing defects (Noble and Guthrie 1996), it remained an open question if the decreased snRNA levels in *brr1-1* cells subsequently led to a defect in splicing or if Brr1p had an independent role in splicing. Notably, snRNA levels in *S. cerevisiae* are believed to be in great excess over levels necessary for splicing, because depletion of snRNPs is not detrimental until levels are reduced to 10% (Patterson and Guthrie 1987; Liao et al. 1990; Seraphin et al. 1991), suggesting the possibility for an alternative or additional role for Brr1p. To determine whether Brr1p could be playing a direct role in splicing we conducted biochemical and genetic analyses and provide evidence for Brr1p function in steps integral to the splicing pathway.

Materials and Methods

In vitro splicing assays

Splicing extracts from wildtype (YPH399), brr1-1 (ySN186) and brr1∆::LEU (ySN226) yeast strains (Noble and Guthrie 1996; Noble and Guthrie 1996) grown at permissive temperature (30°C) were prepared (Umen and Guthrie 1995). In vitro spliceosome assembly assayed by native gel analysis was performed (Cheng and Abelson 1987). In vitro snRNP status was assayed in the absence of spliceosome assembly by an alternative native gel system (Raghunathan and Guthrie 1998). Velocity sedimentation analysis of spliceosomal complexes was performed (Madhani et al. 1990). snRNA levels assayed by primer extension and Northern analysis were

performed (Noble and Guthrie 1996; Staley and Guthrie 1999). In vitro snRNP recycling assays were also performed (Raghunathan and Guthrie 1998).

In vitro snRNP assembly assays

snRNP assembly was assayed by incubating T7-transcribed radioactively labeled snRNAs of mature length with 4nM cold actin pre-mRNA and 2mM ATP in splicing extracts at 16°C or on ice for 30 minutes and separated by native gel (Cheng and Abelson 1987). To prepare U4 snRNA-depleted extracts, extracts were incubated with a mixture of U4 specific oligos for 1hr at 16°C to digest endogenous U4 snRNA by endogenous RNase H activity (Kim et al. 1997). Depletion of U4 snRNA levels was assayed by Northern analysis and loss of splicing activity was assayed by *in vitro* splicing assays (data not shown, Rader and Guthrie personal communication). snRNP assembly with Sm RNA oligos was performed with yeast splicing extracts (Raker et al. 1999).

Genetic interactions

To examine genetic interactions, *brr1* mutant strains containing wildtype BRR1 on a CEN plasmid (pSN185) (Noble and Guthrie 1995) were mated with various mutant strains, sporulated, dissected and analyzed by standard techniques (Guthrie and Fink 1991).

Results

I. Biochemical Analyses of Brr1p's Role in Splicing

brr1-1 and brr1 dextracts display in vitro splicing defects

The *brr1-1* strain was first identified in a bank of cold sensitive strains screened for defects in pre-mRNA splicing (Noble and Guthrie 1996). When the *brr1-1* strain was grown and shifted to nonpermissive temperature (16°C), U3 snoRNA precursor accumulated as determined by primer extension and Northern analysis (Noble and Guthrie 1996). Subsequent analysis determined that *BRR1* was a nonessential gene and that the *brr1* Δ strain also displayed cold sensitivity (Noble and

Guthrie 1995). To assess whether the *in vivo* splicing phenotype could be recapitulated *in vitro*, we examined splicing efficiency by assaying formation of spliced products of radioactively labeled ACT1 pre-mRNA incubated in wildtype, *brr1-1* and *brr1* Δ extracts. We observed that splicing efficiency in *brr1-1* and *brr1* Δ extracts was modestly, but reproducibly decreased compared to that in wildtype extracts (Figure 1A). Although *brr1-1* and *brr1* Δ strains are cold sensitive for growth, the splicing phenotype was not significantly exacerbated at the nonpermissive temperature of 16°C (Figure 1B). Since *brr1-1* and *brr1* Δ were both cold sensitive and displayed similar *in vitro* splicing phenotypes, this suggested that the *brr1-1* mutant was a null mutation. Although this has not been formally demonstrated, since the *brr1-1*

$brr1 \Delta$ extracts display decreased levels of spliceosome assembly, but kinetics were

unchanged

To further dissect a potential cause for the decrease in splicing efficiency, we examined whether the spliceosome was being properly assembled onto radioactively labeled ACT1 pre-mRNA, by assaying spliceosomal complex formation using native gel analysis (Cheng and Abelson 1987). In *brr1* Δ extracts, the levels of spliceosomal complexes were decreased compared to those in wildtype extracts at either the permissive (Figure 2A) or nonpermissive (Figure 2B) temperatures. Addition of increasing amounts of heparin to the formed complexes before native gel electrophoresis caused a small increase in mobility of the A1 complex (U2, U5, U6) in the *brr1* Δ extract (Figure 2A and B) and at 16°C there appeared to be proportionally less A2 complex (U2, U4, U5, U6) in *brr1* Δ extracts (Figure 2B), suggesting that some *brr1* Δ complexes may be less stable than those formed in wildtype extracts. However, since mobility differences are difficult to resolve and assessing levels of complexes is not quantitative by this assay, further analysis is required to assess the Brr1p-dependent stability of the spliceosomal complexes. Alternatively, the observed decrease in A2 complex could be due to a block in formation. To examine whether the decrease in spliceosome assembly levels resulted from a defect in the kinetics of complex

formation, we observed the kinetics of spliceosome assembly during a 1 hour time course at 16° C (Figure 3). The similar rates of assembly we observed for both wildtype and brr/Δ extracts suggested that there were no blocks to any particular assembly steps and that the existing snRNPs were functional.

snRNP levels are decreased in $brr1\Delta$ extracts

The decreased levels of spliceosome assembly despite normal kinetics of formation (Figure 3) suggested that the snRNP levels may be decreased in brr/Δ extracts. To examine snRNP levels, we conducted additional spliceosome assembly experiments using unlabelled ACT1 pre-mRNA and assaying the mobility and levels of the snRNP complexes by snRNA Northern analysis. Indeed, we observed that although the mobilities of snRNPs in brr/Δ extracts were similar to wildtype, there were dramatic decreases in the levels of all snRNP complexes (Figure 4). We quantitated the levels of U2-containing complexes to be decreased approximately 10-fold in brr/Δ extracts compared to wildtype extracts. Notably, the snRNP levels did not decrease during a 90 minute time course, suggesting that this was not a defect in snRNP stability, but a defect in snRNP levels originally present in extract (Figure 4). We next examined snRNP levels by native gel and Northern analysis in the absence of spliceosome assembly on exogenous ACT1 premRNA via a different native gel system (Raghunathan and Guthrie 1998). We again observed decreases in individual snRNP levels, but normal snRNP mobilities for brr/Δ extracts (Figure 5). Lastly, in case the snRNP complexes were unstable to migration through the matrix of native gels, we examined snRNP levels by velocity sedimentation analysis in a glycerol gradient (Madhani et al. 1990), and again observed similar mobilities, but decreased overall snRNP levels in $brr1\Delta$ extracts (Figure 6). These results indicated that the snRNPs were of normal mobility, but confirmed our suspicion that they were decreased in overall levels.

snRNA levels in extract are not indicative of stable snRNP levels

We observed dramatic decreases of snRNPs in brr/Δ extracts by native gel analyses, on the order of 10-fold for U2 snRNP complexes (Figure 4). To more precisely quantify snRNA levels, we

obtained total RNA from extracts with or without incubation in the presence or absence of ATP as we had for splicing and assembly assays, and separated them by denaturing gel electrophoresis. We analyzed snRNA levels by Northern or primer extension analyses and found that all snRNA levels in $brr1\Delta$ extracts were indeed decreased compared to wildtype extracts (see Table 1). However, the defects were more dramatic for in vitro snRNPs by native gel analyses (~10-fold) than the decreased levels of snRNAs in extracts (Figure 4, Figure 5, Table 1). The snRNA levels did not significantly decrease during incubation, suggesting that they are stable in extracts during the course of the experiments. However, our data suggested that the levels of snRNPs are compromised in $brr1\Delta$ extracts. Discrepancies between snRNA levels in vivo and snRNP levels in extracts have been previously observed by Wolin and colleagues with two other snRNP biogenesis factors, smd1-1 and lsm8-1 (Pannone et al. 1998; Xue et al. 2000). Since they observed that the levels of snRNAs in extracts is decreased from those extracted directly from cells, they conclude that the reason for their observed decrease of snRNP levels in extracts was that a subset of the snRNAs are unstable during their extract preparation (Xue et al. 2000). Since we observed a difference in levels between snRNAs in extracts and snRNPs on native gels, this suggested that a subset of the snRNAs may not form snRNPs stable to native gel electrophoresis. Previously, it had been shown that the snRNA levels were decreased in vivo, 10-fold for U4 snRNA and approximately 2-fold for the other snRNAs (U1, U2, U5 and U6), in a br1-1 mutant (Noble and Guthrie 1996). Since U4 snRNA was the most decreased and is believed to be limiting because there is very little free U4 snRNP (Li and Brow 1993), we asked whether GAL induction of U4 snRNA could suppress the cold sensitive growth phenotype of brr1-1 or $brr1\Delta$. Interestingly, while we did not independently assess the levels of U4 snRNA, we observed that conditions under which we induced expression of U4 snRNA did not suppress the cold sensitive growth phenotype of brrl-l or $brrl\Delta$ (data not shown). One possibility is that other snRNAs also need to be overexpressed for restoration of wildtype growth. A recent study demonstrated that overexpression of U1 and U4 snRNAs were sufficient to suppress smd1-1 cold sensitive growth

phenotype (Xue et al. 2000). Alternatively, our *brr1-1* and *brr1* Δ extracts did not display a 10fold decrease in U4 snRNA and we observed stronger decreases with the levels of U1, U2 and U6 snRNAs (Table 1), suggesting that U4 snRNA levels may not be limiting and that there may be other essential role(s) for Brr1p.

Our studies indicate that snRNA and snRNP levels in $brr1\Delta$ extracts are compromised and at least a subset of snRNPs may be unstable either during extract preparation or during native gel electrophoresis. Although we observed a splicing defect *in vitro* in brr1-1 and $brr1\Delta$ mutant extracts, we could not attribute this solely to a defect in Brr1p function since the levels of snRNAs, and more dramatically the levels of snRNPs were also decreased.

snRNP assembly assays revealed no differences between wildtype and $brr1\Delta$ extracts

Since snRNP levels were compromised in brr/Δ extracts, we hypothesized that perhaps not all of the required snRNP proteins were being properly bound during assembly and that this was affecting snRNP stability. To assay snRNP formation we developed three in vitro snRNP assembly assays using gel shift mobility to test if Brr1p was required for the association of factors with snRNAs. First, we incubated radioactively labeled T7 transcribed U snRNA transcripts in extracts at 16°C for 30 minutes and assayed snRNP complexes by native gel mobility shift analyses. While we did observe complex formation as deduced by the appearance of shifts of U snRNA transcripts to higher mobility complexes, we did not observe any differences in brr/Δ extracts compared to wildtype (Figure 7). Second, to control for the possibility that free snRNP factors may be limiting for new assembly, we examined gel mobility shifts of exogenously added T7-transcribed snRNAs in extracts depleted of endogenous snRNAs. Indeed, although the mobility of U4 snRNA decreased in extracts depleted of endogenous U4 snRNA (Figure 8, Complex B) versus untreated extracts (Figure 8, Complex A), there were no differences in mobility between wildtype and $brr I\Delta$ extracts incubated either on ice (Figure 8) or at 16°C (data not shown). Titration experiments to determine U4 anti-sense oligo concentrations required for endogenous U4 snRNA depletion by RNaseH and for U4 snRNA addition for reconstitution

were performed (data not shown). Excess cold U4 snRNA was added to demonstrate U4 complex specificity by the ability to compete for any assembled complexes (Figure 8). Third, at this time Luhrmann and colleagues demonstrated that an RNA nonamer with an Sm site sequence was sufficient for Sm core assembly when incubated with partially purified human snRNP proteins (Raker et al. 1999). We attempted to take advantage of this minimal system and examine Sm core assembly by incubating Sm site sequence RNA oligos in yeast extract and similarly assay for gel shift mobility. Unfortunately, the wildtype Sm RNA oligo (AAUUUUUUGG) was degraded both in wildtype and brr/Δ extracts despite addition of RNase inhibitors (data not shown), perhaps due to the lack of additional purification of snRNP proteins in yeast whole cell extracts.

Since we did not characterize the composition of the observed snRNP complexes, we do not know if they were *bona fide* snRNP complexes. However, these results suggest that there were no gross Brr1p-dependent changes in *in vitro* association of factors on various snRNA transcripts.

In vitro splicing analysis suggests that $brrl \Delta$ extracts are more sensitive to multi-round conditions

Since we could not detect a snRNP assembly defect by the available assays, we decided to examine Brr1p's role in splicing in a more demanding, multi-round assay. Conceivably, steps at the beginning of a snRNP lifecycle during biogenesis are related or may even be common to steps required for snRNP recycling for each new round of splicing. Since Brr1p is known to be involved in snRNP biogenesis, we examined its role in snRNP recycling by an assay developed to examine later rounds of splicing by challenging the extracts with excess cold precursor during a preincubation (Raghunathan and Guthrie 1998). We observed that $brr1\Delta$ extracts were modestly, but reproducibly more sensitive to the addition of excess cold precusor than wildtype extracts (Figure 9), suggesting a defect in the recycling of snRNPs. This phenotype was the same whether splicing was assayed at permissive (25°C) or nonpermissive (16°C) temperatures (Figure 9, data not shown). However, since snRNP levels are decreased in $brr1\Delta$ extracts, the decrease in

splicing could be due to titration of lower levels of spliceosomal components. Therefore, although these results suggest a role for Brr1p in recycling, we again cannot rule out an indirect effect of the decreased levels of snRNPs.

II. Genetic Analysis of BRR1 with Biogenesis and Splicing Factors

To further investigate Brr1p function we tested for genetic interactions with different subclasses of factors to implicate a role for Brr1p in specific processes. During the course of this work, additional factors involved in steps of snRNP biogenesis in yeast were discovered and characterized by others. Since Brr1p was shown to be involved in snRNP biogenesis (Noble and Guthrie 1996), but a specific function was not yet identified, we examined snRNP biogenesis mutants for genetic interactions with *BRR1*.

brr1 Δ is not synthetically lethal with *lhp1* Δ , a factor involved in stabilizing snRNA precursors

While our work was in progress, Lhp1p, the yeast La homologous protein, was characterized to bind and stabilize newly synthesized 3' extended snRNA precursors with 3' UUU-OH sequences and was proposed to act as a chaperone for facilitating proper biogenesis (Pannone et al. 1998; Kufel et al. 2000; Xue et al. 2000; Wolin and Cedervall 2002). Previously, *LHP1* was identified as an overexpression suppressor of *brr1-1*'s cold sensitive growth phenotype (Noble and Guthrie 1995). To investigate the mechanism of suppression, we examined the effect of *LHP1* overexpression on snRNA levels in the *brr1-1* strain by Northern analysis. We found that *LHP1* overexpression not only rescued the decreased levels of snRNAs in the *brr1-1* strain but also accumulated high levels of mature and 3' extended precursors of snRNAs (Kistler and Guthrie 2001). Overexpression of *LHP1* appeared to bypass the requirement of Brr1p by maintaining snRNA levels in a *brr1-1* strain.

Previously, the *brr1-1* strain had also been shown to slow the kinetics for U2 snRNA 3' end processing (Noble and Guthrie 1996), suggesting that Brr1p may play a role in 3' end processing

of snRNAs. To further investigate a role for Brr1p in 3' end processing of snRNAs, we examined genetic interaction between *LHP1* and *BRR1*. However, we observed that *brr1* Δ is not synthetically lethal in combination with *lhp1* Δ (Table 2). This is in contrast to two other mutant strains found to be defective in snRNP stability, *smd1-1* and *lsm8-1*, which have been shown to be synthetically lethal with *lhp1* Δ (Pannone et al. 1998; Xue et al. 2000). While the role of Brr1p in 3' end processing is still unclear, our data suggests that Brr1p is not directly involved in stabilization of 3' extended precursors of snRNAs with Lhp1p.

Rnt1p, the yeast homolog for RNase III, has been shown to cleave a stem-loop structure in the 3' extended precursors of snRNAs en route to a proper mature end (Chanfreau et al. 1997; Abou Elela and Ares 1998; Seipelt et al. 1999; Kufel et al. 2000). Since *brr1-1* was shown to slow kinetics for U2 3' end processing (Noble and Guthrie 1996), we attempted to test a genetic interaction between *rnt1* Δ and *brr1* Δ . However, the *rnt1* Δ strain was very sick, thwarting any analysis. We did not observe any additional evidence for an interaction between Brr1p and the 3' end processing machinery.

BRR1 has genetic interactions with Sm core protein SMD1

The Sm proteins are a set of seven proteins that bind a common Sm sequence in U1, U2, U4 and U5 snRNAs as one of the first steps in snRNP biogenesis that acts to stabilize snRNAs from degradation (Rymond 1993; Roy et al. 1995; Will and Luhrmann 2001). Previously, the gene encoding one Sm protein, *SMD1*, was identified as both a low and high copy suppressor of *brr1-1's* cold sensitive growth phenotype (Noble and Guthrie 1995). Since Sm proteins have been shown to stabilize snRNAs (Rymond 1993; Roy et al. 1993; Roy et al. 1995) and snRNA levels have been shown to be compromised in the *brr1-1* mutant strain (Noble and Guthrie 1996), a likely mechanism of suppression was stabilization of snRNAs via increased Sm core assembly. To examine the effect of *SMD1* overexpression on the levels of snRNAs in a *brr1-1* strain we conducted Northern analysis. However, we observed that *SMD1* overexpression did not rescue the decreased levels of snRNAs in the *brr1-1* strain (Kistler and Guthrie 2001). Our data suggest that Br1p may be

involved in an Sm core function other than in stabilizing snRNAs. It has been shown previously that depletion of SmD1p and SmD3p led to decreases specifically in the Sm site containing snRNAs (U1, U2, U4, U5) but not U6 snRNA (Rymond 1993; Roy et al. 1995). However, the levels of all snRNAs are decreased in *brr1* mutant strains (Noble and Guthrie 1996) (Figure 4, 5 and 6, Table 1). Moreover, it has been proposed that Sm proteins may play roles directly in splicing (Zhang et al. 2001). These data suggest that Brr1p may be involved in functions other than maintenance of snRNA stability.

BRR1 has weak genetic interactions with U6 snRNA associated LSM proteins

In 1999, during the course of our analyses, a set of like <u>Sm</u> proteins (LSM) homologous to the Sm proteins were identified and were found to bind specifically to U6 snRNA (Mayes et al. 1999; Salgado-Garrido et al. 1999). Lsm proteins were shown to be involved in U6 snRNA stability and biogenesis (Pannone et al. 1998; Pannone et al. 2001), and also in annealing of U4/U6 snRNAs (Achsel et al. 1999; Mayes et al. 1999). We looked for genetic interactions between *brr1* Δ and the nonessential *lsm* deletion strains, *lsm5* Δ , *lsm6* Δ , and *lsm7* Δ . Work from others demonstrated that deletions of each of *lsm5*, *lsm6*, and *lsm7* were synthetically lethal with *lhp1* Δ , presumably due to their common function in U6 snRNA stability and biogenesis (Pannone et al. 1998). In contrast, we observed only weak interactions with each combination of mutant strains with *brr1* Δ . Brr1p had previously been shown to be physically associated with Sm-site containing snRNAs (U1, U2, U4, U5) and to be only associated with U6 snRNA via its interaction with U4 snRNA (Noble and Guthrie 1995). These results suggest that while Brr1p is unlikely to be involved directly in U6 snRNA biogenesis, Brr1p may play a role in U4/U6 assembly via its interaction with U4 snRNA.

In addition, we examined genetic interactions with $lsm I\Delta$, the one Lsm protein that has been shown to be uniquely part of a cytoplasmic mRNA decapping and degradation complex (Bouveret et al. 2000; Tharun et al. 2000), in contrast to Lsm5p, Lsm6p, and Lsm7p, which are part of both the degradation complex and U6 snRNP (Mayes et al. 1999; Salgado-Garrido et al.

1999). However, we find that $lsm1\Delta$ and $brr1\Delta$ are not synthetically lethal, suggesting that the genetic interactions between $lsm5\Delta$, $lsm6\Delta$, $lsm7\Delta$ and $brr1\Delta$ are likely to be specific for the U6-associated Lsm complex and not related to function of the Lsm complex in mRNA degradation.

BRR1 has genetic interactions with U4/U6 annealing factor PRP24

While Prp24p is often categorized as a splicing factor, in vitro it is only required under conditions where recycling of snRNPs is necessary (Raghunathan and Guthrie 1998). Prp24p is involved in annealing U4/U6 snRNAs (Raghunathan and Guthrie 1998), which occurs after every round of splicing for regeneration, but is also likely to occur during biogenesis. To see if Brr1p might play a role in recycling of snRNPs, we examined genetic interactions between brr1 and prp24 alleles. We observed that $brr1\Delta$ is synthetically lethal with prp24 mutations in RNA recognition motifs (RRM) 1 and 3 (See Table 2, Rader and Guthrie personal communication), believed to be involved in U4/U6 annealing activity (Shannon and Guthrie 1991; Vidaver et al. 1999; Rader and Guthrie 2002). This genetic interaction suggested that Brr1p may play a role in U4/U6 annealing. In addition, we have observed that *PRP24* overexpression suppresses the cold sensitive growth defect of $brr 1\Delta$ (Rader and Guthrie personal communication). The deletion of a conserved Cterminal motif in PRP24 ($prp24\Delta 10$) (Rader and Guthrie 2002) believed to play a role in U4/U6 association abolishes the suppression, suggesting that U4/U6 annealing activity is important for this interaction (Rader and Guthrie personal communication). Increased annealing of U4/U6 snRNAs may compensate for the lack of proper U4 levels (Noble and Guthrie 1996). Alternatively, Brrlp may function in steps involved in recycling of snRNPs and perhaps in U4/U6 reannealing.

$brr1\Delta$ is not synthetically lethal with brr2-1, a factor involved in U4/U6 release

Since we identified genetic interactions between *BRR1* and factors involved in U4/U6 assembly, namely Lsm proteins and Prp24p, we were interested to examine whether Brr1p was also involved in disassembly. To investigate a role for Brr1p in this process we looked for genetic interactions with Brr2p, a factor involved in U4/U6 release during activation of the spliceosome

(Raghunathan and Guthrie 1998). However, we observed that $brr1\Delta$ was not synthetically lethal with brr2-1 (See Table 2), suggesting that Brr1p may be specifically involved in the annealing of U4/U6 snRNP, but not the release.

BRR1 has genetic interactions with snRNP biogenesis factors that are also integral to splicing – SAD1 and SNU66

Sad1p was identified as a snRNP biogenesis factor in S. cerevisiae (Lygerou et al. 1999). The sad1-1 strain was identified in a screen devised to identify mutants blocked for assembly of newly synthesized U4 snRNA into U4/U6 snRNP by pulse-chase analysis of a tagged U4 snRNA under inducible control (Lygerou et al. 1999). While prp3-1, prp4-1 and prp24-1 showed defects in converting both nascent and recycled U4 snRNA into U4/U6 snRNP. sad1-1 specifically affected assembly of newly synthesized U4 snRNA (Lygerou et al. 1999). We examined genetic interactions between SAD1 and BRR1 and found that the combination of sad1-1 and brr1 Δ was synthetically lethal. Intriguingly, although sad1-1 specifically affects newly synthesized U4 assembly, sad1-1 also displays a strong block to splicing both in vivo and in vitro, suggesting a role integral to splicing (Lygerou et al. 1999). Subsequent mammalian studies with hSad1 revealed that depletion of hSad1p blocked splicing at the first step and that triple snRNP addition was impaired (Makarova et al. 2001). This was the first example of a snRNP biogenesis factor playing a role in splicing. Sad1p was identified as part of the penta-snRNP, a complex of all five snRNPs believed to associate with pre-mRNA as a whole (Stevens et al. 2002), suggesting that Sad1p is in active spliceosomes, consistent with the model that Sad1p is required during splicing. In the same study investigating hSad1, the human homolog of Snu66p, hSnu66, was also demonstrated to be required for splicing and specifically block triple snRNP addition in mammalian extracts (Makarova et al. 2001). In yeast, Snu66p has been shown to be required for splicing in vivo and in vitro by immunoinhibition and complementation studies (Gottschalk et al. 1999; Stevens et al. 2001). Also, Snu66p has been identified as part of triple snRNP complexes (Gottschalk et al. 1999; Stevens and Abelson 1999; Stevens et al. 2001) and to be involved in U5

snRNP particle stability (Stevens unpublished data). We examined genetic interactions between *SNU66* and *BRR1* and found that the combination of *snu66* Δ and *brr1* Δ was also synthetically lethal. Although snRNP biogenesis assays have not been performed with Snu66p to test if Snu66p like Sad1p functions in both splicing and snRNP biogenesis, these data suggest that Brr1p may function in steps required for splicing and perhaps more specifically in triple-snRNP addition.

Discussion

While traditional screens for splicing mutants and subsequent biochemical analysis have been fruitful methods for characterizing many splicing factors (Hartwell et al. 1970; Vijayraghavan et al. 1989; Noble and Guthrie 1996), dissecting a role for snRNP biogenesis factors in splicing remains a challenge. Mutations in snRNP biogenesis factors such as Brr1p cause defects in snRNP levels making it difficult to determine whether any downstream defects in splicing are just an indirect consequence of decreased levels or if they indicate a separate role. However, our genetic analyses indicate that Brr1p is playing a direct role in splicing and that other factors may also perform dual functions in splicing and snRNP assembly.

Brr1p role in splicing: genetic evidence

We identified a synthetic lethal interaction between $brr1\Delta$ and sad1-1 (see Table 2). Since Sad1p was identified as a snRNP biogenesis factor specifically involved in assembly of newly synthesized U4 snRNA into U4/U6 snRNP (Lygerou et al. 1999), this interaction was not unexpected. However, subsequent analysis of both Sad1p and Snu66p, another factor whose deletion we found to be synthetically lethal with $brr1\Delta$ (see Table 2), identified them as splicing factors. Sad1p and Snu66p were found to be required for splicing in yeast and in mammalian extracts, specifically in triple snRNP addition in mammalian extracts (Gottschalk et al. 1999;

Lygerou et al. 1999; Makarova et al. 2001). This suggested that Brr1p may also be involved in triple snRNP addition.

Other genetic interactions we found with $brr1\Delta$ suggested a role for Brr1p in recycling of snRNPs, specifically U4/U6 annealing. We found $brr1\Delta$ to be synthetically lethal with several RRM mutations in prp24, known to be involved in RNA annealing for U4/U6 snRNP formation (Raghunathan and Guthrie 1998). Interestingly, $brr1\Delta$ did not show genetic interactions with brr2-1, involved in U4 release from the spliceosome (Raghunathan and Guthrie 1998), suggesting a specific role for Brr1p in the annealing or assembly aspects of the splicing cycle. We also identified weak synthetic interactions with deletions of lsm5, 6, and 7 (see Table 2), which are known to be involved in U4/U6 annealing in addition to U6 snRNP biogenesis and stability (Pannone et al. 1998; Achsel et al. 1999; Mayes et al. 1999; Pannone et al. 2001). Intriguingly, a recent study has shown that the Lsm proteins may also be destabilized from the end of U6 snRNA during spliceosomal activation, suggesting a role for Lsm proteins in spliceosome activation (Chan et al. 2003). Since our genetic interaction suggest that Brr1p is involved in Lsm protein function, Brr1p may be involved in U4/U6 annealing during recycling and/or steps integral to splicing.

Since the completion of our work, a number of genetic interactions with other splicing factors have been identified which further implicate Brr1p in splicing (see Table 2). Brenner and Guthrie find genetic interactions between $brr1\Delta$ and a specific allele of snu114-60, a U5 snRNP GTPase required for splicing (Bartels et al. 2003). Interestingly, snu114-60 has allele-specific interactions both with factors implicated in snRNP biogenesis and a number of DEAD box helicases, namely sad1, snu66, prp24, brr2, prp28 and prp8 (Brenner and Guthrie personal communication). Moreover, $brr1\Delta$ is not synthetically lethal with snu114 alleles with mutations in the GTPase domain, which display defects in triple snRNP levels, suggesting that the genetic interaction observed is not simply due to decreased snRNA levels (Brenner and Guthrie personal communication). In addition, $brr1\Delta$ has been shown to be synthetic in combination with prp8-

brr (Collins and Guthrie 2000), another U5 snRNP component believed to function in the catalytic core (Collins and Guthrie 1999). Taken together, these data either suggest that factors believed to play roles primarily in splicing may actually participate in snRNP biogenesis or that Brr1p may play a role in splicing. Alternatively, but not mutually exclusively, snRNP biogenesis and snRNP recycling may utilize equivalent pathways or factors, which ultimately are required for splicing. Notably, a block to triple snRNP addition is a common phenotype for many of the splicing factors genetically linked with *BRR1* – namely *sad1*, *snu66*, *snu114* and *sub2*. A block to triple snRNP addition may be a broad indicator of many spliceosomal, recycling and/or biogenesis defects.

Brr1p has been further implicated in splicing: genomic and proteomic evidence

Comprehensive studies identifying protein-protein interactions by 2-hybrid analyses and immunoaffinity purification followed by mass spec identification have applied 'guilt by association' to identify genome-wide relationships (Fromont-Racine et al. 2000; Gavin et al. 2002). In addition, genomic expression studies under a battery of environmental conditions have used 'guilt by expression' to similarly identify functional relationships (Ball et al. 2001). While 2-hybrid and genomic expression studies have not yet yielded any Brr1p interactions or related BRR1 expression profiles (Fromont-Racine et al. 2000; Ball et al. 2001), comprehensive TAP tagged affinity pull-downs have identified at least two complexes containing Brr1p with a number of spliceosomal factors that correspond to U1 snRNP and penta-snRNP-like complexes (Gavin et al. 2002; Jurica and Moore 2003). Intriguingly, the complexes contain many proteins that have been implicated by genetic interactions with Brr1p such as Smd1p, Snu66p, Snu114p, and Prp19p (Gavin et al. 2002). Curiously, however, other studies purifying spliceosomal complexes have not identified Brr1p as a stable component (Stevens and Abelson 1999; Stevens et al. 2001; Ohi et al. 2002; Stevens et al. 2002), suggesting weak or transient interactions between Brr1p and the spliceosome. However, the presence of integral splicing factors suggests that Brr1p may be

associated with active spliceosomes, consistent with our hypothesis that Brr1p may play an integral role in splicing.

With the advancement of microarray analysis, one now has the ability to examine the splicing efficiency of the approximately 200 known spliced mRNAs in the yeast genome in a single experiment (Clark et al. 2002) (Pleiss and Guthrie personal communication). In such a study with 18 nonessential splicing factors, those implicated in related steps of splicing such as Prp17 and Prp18 have been shown to have similar splicing profiles, while unrelated factors show more distant profiles (Clark et al. 2002). Intriguingly, $brr1\Delta$, $snu66\Delta$, and $snt309\Delta$, a Prp19 complex protein, were shown to display similar splicing defect profiles, suggesting a cooperative function for Brr1p, Snu66p, and the Prp19 complex in splicing (Clark et al. 2002). The Prp19 complex is known to associate with the spliceosome during activation (Makarov et al. 2002) and more recently has been shown to be involved in Lsm protein dissociation from U6 snRNA during spliceosome activation (Chan et al. 2003), while Snu66p is known to be required for triple snRNP addition (Gottschalk et al. 1999; Stevens et al. 2001). Further study is required to dissect a potential common role for these factors, but these results strongly suggest that Brr1p plays a direct role in splicing.

SMN suggests a mechanistic link between splicing and snRNP assembly

Recent studies of the human disease gene SMN have elucidated a large complex of proteins involved in the assembly of snRNPs that are also involved in splicing (Mattaj 1998; Matera 1999), adding to accumulating evidence for the existence of factors with dual roles in snRNP assembly and splicing. In human cells, a dominant negative form of SMN (SMN Δ N) was shown to cause a dramatic mislocalization of snRNPs in both the nucleus and the cytoplasm, consistent with SMN's role in Sm core assembly in the cytoplasm, but implicating SMN function in the nucleus (Pellizzoni et al. 1998). Strikingly, when SMN Δ N was added to splicing extracts, a detrimental effect was observed only when the mutant protein was preincubated in the extract prior to assaying splicing, suggesting that SMN may be involved in snRNP recycling (Pellizzoni

et al. 1998). Lastly, *in vitro* spliceosome assembly assays revealed that SMN Δ N also caused a block to spliceosome assembly (Pellizzoni et al. 1998). Intriguingly, there is no clear homolog of SMN in *S. cerevisiae*. SMN has been shown to mediate Sm core assembly via dimethylarginine modifications (Friesen et al. 2001), which do not exist in *S cerevisiae* Sm proteins. It was originally thought that an SMN interacting protein (SIP1) had distant homology to Brr1p (Liu et al. 1997). However, this is likely to have been a red herring in that *S. pombe* does have SMN and SIP1 homologs, but *pombe* SIP1 is not related to BRR1 (Hannus et al. 2000). Although the exact machineries may be different between yeast and mammals, there may be functionally similar factors involved in snRNP assembly and recycling that directly impact steps during splicing.

Brr1p role in splicing: biochemical evidence and implications for Brr1p's role in biogenesis We characterized the *in vitro* splicing phenotypes of brr1-1 and $brr1\Delta$ extracts and observed decreased levels of splicing, spliceosome assembly and recycling (Figure 1, 2, 9). However, further analysis revealed that all snRNP levels were also dramatically decreased in $brr1\Delta$ extracts (Figure 4, 5, 6). Mutations in brr1 cause defects in snRNP levels making it difficult to determine whether Brr1p function is 'upstream' of splicing simply in decreasing the levels of splicing components, or if Brr1p may play a role during splicing.

Notably, unlike other splicing factors where complete blocks to specific splicing or assembly steps have been observed in mutant extracts, for *brr1* the kinetics of both splicing and spliceosome assembly were primarily unaffected (Figure 1 and 3), suggesting that the existing snRNPs were of normal composition and function. What is then the role for Brr1p in biogenesis? One possibility is that Brr1p is involved in proper association of snRNP components. We did not observe any major snRNP assembly defects by various gel mobility shift assays (Figure 7, 8, 9), which may simply reflect insufficient sensitivity of our assays. Indeed, the stability of some spliceosomal complexes was perhaps compromised in *brr1* Δ mutant extracts (Figure 2) and may be the reason why we observe fewer snRNPs by native gel (Figure 4, 5, 6). Another possibility is that Brr1p is acting as a chaperone by stabilizing snRNAs during snRNP biogenesis. Indeed, the

levels of newly synthesized snRNAs are specifically affected (Noble and Guthrie 1996). However, while Lhp1p interacts with 3' extended pre-snRNAs (Pannone et al. 1998; Xue et al. 2000), Brr1p has been found to associate with 3' end mature species (Noble and Guthrie 1995), suggesting that Brr1p is not exclusively associated with snRNA precursor species. To ask whether Brrlp may be associated with RNAs other than snRNAs, we attempted to identify the complete RNA binding profile of Brr1p by whole genome IP microarray analysis (see Chapter III). However, we found that Brr1p-associated RNAs were too low in abundance to identify even after PCR amplification. Further assay optimization was impeded by the inability to readily detect Brr1p levels due to low levels of protein. Since previous analysis found that the levels of SCR1, U3 snoRNA, SNR5 and U14 were unaffected in the brr1-1 strain (Noble and Guthrie 1996), it is likely that Brr1p function is primarily limited to spliceosomal snRNAs. Our genetic analyses with BRR1 and snRNP biogenesis factors did not reveal specific roles in biogenesis, but additional factors have been identified that remain to be examined. Although previous data suggested a role for Brr1p in 3' end trimming (Noble and Guthrie 1996), we found that brr Δ is not synthetically lethal with $lhp \Delta$, and Rrp6p, an exosome component involved in 3' end trimming of snRNAs to their mature end (Allmang et al. 1999), has yet to be examined. Previously, brr1-1 was shown to display normal U4 snRNA trimethylation kinetics (Noble and Guthrie 1996), suggesting that Brr1p is not likely to play an essential role in snRNA trimethylation. However, the yeast snRNA (and snoRNA) trimethylating enzyme has been identified as Tgs1p (Mouaikel et al. 2002). Interestingly, deletion of tgs1 confers a cold sensitive growth phenotype and a defect in in vivo splicing, but displays normal snRNP mobilities (Mouaikel et al. 2002), reminiscent of brr1 phenotypes. But unlike brr1, tgs1 cells display normal snRNP profiles by velocity sedimentation analysis (Mouaikel et al. 2002). A genetic interaction with tgs / has yet to be examined. Further work to determine the role that Brr1p plays in snRNP biogenesis and whether/how it may impact splicing is required.

Summary of genetic interactions between BRR1 and SUB2: a Brr1p perspective

Genetic interaction between BRR1 and SUB2 suggest a role for Sub2p in snRNP biogenesis

Sub2p, the yeast homolog of UAP56, is a highly abundant DEAD box helicase factor. Sub2p has been shown to be required for stable binding of U2 snRNP to the pre-mRNA (Kistler and Guthrie 2001: Libri et al. 2001: Zhang and Green 2001). Intriguingly, SUB2 was originally isolated as a high copy suppressor of brr1-1 cold sensitive growth phenotype (Noble and Guthrie 1995), suggesting a role for Sub2p in biogenesis or a role for Brr1p in splicing. Further analysis demonstrated that SUB2 overexpression can also bypass the requirement for BRR1 at low temperatures (data not shown) (Kistler and Guthrie 2001). Since Sub2p plays a role in splicing, the effect of overexpressing SUB2 on splicing in the brr1-1 strain was examined. SUB2 overexpression only partially suppressed the brr1-1 splicing defect at nonpermissive temperatures and exacerbated the brr1-1 splicing defect at permissive temperatures (Kistler and Guthrie 2001). This suggested that the mechanism of suppression was by another means than splicing. Further analysis demonstrated that SUB2 overexpression in the brr1-1 strain partially suppressed the decreased U5 snRNA levels, but not U4 snRNA levels, suggesting that Sub2p may play a role in maintaining snRNA levels (data not shown) (Kistler and Guthrie 2001). Intriguingly, sub2-1 extracts, but not sub2-5 extracts, phenocopy decreases in snRNP levels seen with brr/Δ extracts (Kistler and Guthrie 2001). This suggested that Sub2p may play a role in snRNP biogenesis. Additionally, the sub2-1 temperature sensitive phenotype is suppressed by $brr1\Delta$ (Kistler and Guthrie 2001), suggesting antagonistic functions between Sub2p and Brr1p. However, the sub2-1 and sub2-5 cold sensitive phenotype is exacerbated by $brr1\Delta$ (Kistler and Guthrie 2001), suggesting a complex relationship between brrl and sub2 alleles. As further evidence for an antagonistic relationship between Sub2p and Brr1p, BRR1 overexpression exacerbated the sub2-1 temperature sensitive growth phenotype and SUB2 overexpression growth phenotype was partially suppressed by $brr1\Delta$ at 37°C (data not shown) (Kistler and Guthrie 2001). The nature of the antagonistic relationship between Brr1p and Sub2p is still unknown.

Various phenotypes for Sub2 suggest other roles for Brr1

In addition to Sub2's role in splicing, Sub2p is a ubiquitous DEAD box ATPase family member that has been implicated in a wide range of biological processes throughout gene expression, starting with DNA recombination followed by transcription, splicing, and export of mRNAs. Sub2p is implicated in recombination as SUB2 was identified as a high copy suppressor of both the growth and genome instability defects conferred by $hpr I\Delta$, as assayed by maintenance of directed repeats and plasmid loss (Fan et al. 2001; Merker and Klein 2002). Sub2p is also implicated in transcription as sub2 alleles have been shown to have defects in transcribing GC rich or long mRNAs (Jimeno et al. 2002; Rondon et al. 2003). Sub2p has also been implicated in mRNA export since sub2 mutants accumulate mRNAs in the nucleus as detected by a dT50 probe (Jensen et al. 2001; Strasser and Hurt 2001). In addition, Sub2p/UAP56 is a component of the spliced mRNP and is believed to be involved in recruiting the exon junction complex for facilitating export of mRNAs (Gatfield et al. 2001; Keys and Green 2001; Luo et al. 2001; Gatfield and Izaurralde 2002). Lastly, Sub2p is part of the THO/TREX complex (Strasser et al. 2002), that functions at the interface of transcription and mRNA metabolism (Aguilera 2002). Since $brr1\Delta$ suppresses the growth phenotype conferred by SUB2 overexpression (Kistler and Guthrie 2001), which itself displays defects in mRNA export and affects genome stability and transcription elongation (Fan et al. 2001; Strasser and Hurt 2001; Jimeno et al. 2002; Merker and Klein 2002), deletion of brr1 may relieve defects in export, recombination and/or transcription. We have observed that brrl-1 and $brrl\Delta$ strains do not display mRNA export phenotypes by the dT50 assay on their own (data not shown), but $brr I\Delta$ may be relieving the mRNA export defects conferred by overexpression of SUB2 and warrants examination. While a role of Brr1p in recombination and transcription has not been directly investigated, there are a number of interesting links. Another high copy suppressor of brr1-1, identified in the same screen as SUB2, is the TFIIH component, TBF4 (Noble and Guthrie 1995), involved in basal level transcription and recombination repair (Zurita and Merino 2003). Since snRNA levels were decreased in a

brr1-1 mutant, it was hypothesized early on that Brr1p could be a transcription factor for snRNAs (Noble and Guthrie 1996). Interestingly, it has recently been shown in mammals that U1 snRNA associates with TFIIH and modulates transcription initiation (Kwek et al. 2002). However, pulsechase analysis indicated that transcription rates of U2 snRNA were unaffected in the *brr1-1* mutant (Noble and Guthrie 1996), suggesting that Brr1p did not directly affect transcription of snRNAs. Intriguingly, mutations in another TFIIH component, *rad3*, involved in DNA repair, have genetic interactions with *sub2* alleles (Jensen et al. 2001). Lastly, SMN which has been shown to be involved in snRNP assembly in mammalian cells has been shown to interact with RNaseA and the RNA pol II transcription machinery (Pellizzoni et al. 2001). The links between Brr1p and transcription are particularly intriguing since transcription is upstream, but perhaps coupled to a role in pre-mRNA splicing. It will be interesting to investigate the connections between Brr1p, transcription and splicing.

Future Directions

Splicing Biochemistry

The role that Brr1p plays in splicing in addition to its role in biogenesis still remains unclear. There are a number of biochemical assays that have yet to be tested. For example, examining conditions where snRNA levels start at wildtype levels would greatly improve these analyses. Immnodepletion of Brr1p from BRR1-HA-tagged extracts to examine splicing defects in 'wildtype' extracts would be a good starting point. Although Brr1p has been shown to be associated with snRNAs, the associated levels are a small fraction (<1%) and the association has been shown to be salt sensitive (Noble and Guthrie 1995). To deplete Brr1p without depleting snRNAs, it may be possible to immunodeplete Brr1p in high salt conditions and then dialyze the extracts to physiological salt conditions for subsequent splicing analysis. Also, one could genetically deplete *BRR1 in vivo* by glucose depletion, since pGAL-BRR1 constructs were isolated in the screen for high copy suppressors of *brr1-1*. If the kinetics of Brr1p depletion are faster than the destabilization of snRNAs, then this could be a fruitful means for examining the effects of Brr1p on splicing before depletion of snRNAs. It has been previously observed that the half-life of snRNPs is on the order of hours (Patterson and Guthrie 1987; Liao et al. 1990; Seraphin et al. 1991).

Another useful tool for assigning a function for Brr1p would be recombinant Brr1 protein. With the ability to add back Brr1p to either mutant or immunodepleted extracts to test for restoration of splicing or snRNA level activity one could begin to assign functions for Brr1p. It would be informative to see if adding Brr1p to even the current mutant extracts is sufficient for restoration of wildtype levels of splicing or spliceosome assembly, or if other factors or snRNAs are required. In the absence of such a tool, one could start with mixing $brr1\Delta$ extracts with micrococcal nuclease snRNA depleted extracts to see if Brr1p alone and not the presence of additional snRNAs can complement splicing activity of $brr1\Delta$ extracts in order to assign a splicing role for Brr1p.

snRNP Biogenesis Biochemsitry

The role that Brr1p plays in biogenesis is also still unknown. Subsequent to our studies, Wolin and colleagues have utilized two different methods to examine snRNP biogenesis and integrity in vitro, which may prove to be useful for Brr1p snRNP biogenesis analyses. First, they in vitro transcribed U6 snRNA in extracts in the presence of radiolabelled nucleotide and examined U6 snRNA stability (Pannone et al. 1998). They found that the stability of newly transcribed U6 snRNA in $lsm8-1/lhp1\Delta$ extracts was enhanced by the presence of additional Lhp1p (Pannone et al. 1998). A similar analysis could be tried with snRNAs such as U4 in brr/Δ extracts examining effects of addition of Brr1p. Second, they added in vitro transcribed 3' extended precursors of U4 and U5 snRNAs to extracts and assayed their biogenesis status by examining their immunoprecipitability with anti-SmD1, anti-trimethyl G cap, and anti-Lhp1p antibodies (Xue et al. 2000). If Brr1p is affecting Sm core assembly, trimethylation or Lhp1p association to presnRNAs, it may be possible to dissect specific roles in this pathway by such immunological methods in $brr l\Delta$ extracts. While the effects of adding Lhp1p to mutant extracts on the immunoprecipitability of pre-U snRNAs were modest, this assay is likely to be more sensitive than gel mobility shift assays. Such biochemical methods may prove to be useful for identifying a role for Brrlp in biogenesis.

Brr1 Genetic Analysis

Genetic analyses proved to be very fruitful for identifying interactions with Brr1p. Extending these analyses would continue to pinpoint the steps in which Brr1p function is involved. Directed genetic interactions with snRNP biogenesis factors not yet tested are those with *smd1-1*, *rnt1-1*, *rrp6* Δ , and *tgs1* Δ for investigating Brr1p function in Sm core assembly, 3' end trimming and trimethylation (See Table 2). Given the genetic interaction web that is forming with Brr1p and a number of splicing factors involved in triple snRNP addition and penta-snRNP factors, additional genetic analysis with the *snu114-60* interacting factors such as *prp28*, as well as other splicing factors would elucidate the strength and specificity of our identified interactions. Alternatively,

an open-ended synthetic lethal screen, which has proven to be fruitful for Lhp1p (Pannone et al. 1998; Xue et al. 2000), may be an efficient method for identifying factors connected with Brr1p to elucidate a role in splicing or other processes such as transcription. Current methods for high-throughput genome-wide screening of factors, while only investigating nonessential deletions that may miss allele specific interactions, are nonetheless rapid and broad reaching (Tong et al. 2001). In fact, a synthetic lethal screen starting with a number of known mitotic and structural factors with nonessential deletion strains identified an interaction between $brr1\Delta$ and cdc45-1, a DNA replication initiation factor (Tong et al. 2004)..

Splicing Microarrays

Another recent technological development has allowed for a large advancement in the simultaneous analysis of all of the ~230 yeast introns in a single experiment by microarray analysis (Clark et al. 2002). This global analysis is in stark contrast to previous splicing analyses that usually examined only a single message from a handful of working choices (ACT1, RP51, U3) by Northern or primer extension analyses. Intriguingly, by splicing microarray analysis Ares and colleagues detected defects in the splicing of many introns in a *brr1* Δ strain compared to a wildtype strain. Moreover, they also observed that the splicing profile clustered with *snu66* Δ , for which we have observed a genetic interaction with *brr1* Δ , and also with *snt309* Δ a component of the PRP19 complex, amongst the ~20 nonessential splicing factors they examined (Clark et al. 2002). As we now have the technology to conduct such experiments in our lab (Pleiss and Guthrie personal communication), repeating the examination of *brr1* Δ splicing profiles with other nonessential and conditional splicing mutants as well as a battery of other factors involved in multiple aspects of RNA metabolism could identify relationships between Brr1p and factors in splicing and/or other metabolic processes.

Investigation of SUB2 related phenotypes

Splicing and biogenesis are processes in which Brr1p and Sub2p are known to interact. Further biochemical analysis of the snRNA and snRNP profiles in various mutant combinations may

elucidate the nature of the antagonistic relationship previously observed. However, while SUB2 was originally isolated as a high copy suppressor of brr1-1's and subsequently $brr1\Delta$'s cold sensitive growth phenotype (Noble and Guthrie 1995; Kistler and Guthrie 2001), upon further analysis, it has been found that *SUB2* overexpression is toxic and displays phenotypes in mRNA export, recombination and transcription (Strasser and Hurt 2001; Jimeno et al. 2002; Merker and Klein 2002; Rondon et al. 2003). These data suggest that a hypomorphic allele of brr1 could be relieving the toxicity of *SUB2* overexpression. It would be elucidating to examine the mechanism of *SUB2* overexpression in brr1-1 and $brr1\Delta$ strains with regards to mRNA export (by dT50 assay), recombination (by 6-azauracil sensitivity), and transcription (by LacZ/GC rich reporter assays). While both Brr1p and Sub2p were identified to be involved in splicing, their primary defect may be in one of these other processes. Given the range of processes that Sub2 is involved, further dissection of their relationship may be required to identify the primary role of Brr1p.

Figure 1 - *In vitro* splicing of ACT1 pre-mRNA incubated in *brr1-1* and *brr1* Δ mutant extracts from 0 to 90 minutes is decreased compared to wildtype (WT) extracts at both A) permissive (25°C) and B) nonpermissive (16°C) temperatures.

Figure 2 - Spliceosome assembly levels on ACT1 pre-mRNA are decreased in $brr1\Delta$ extracts compared to wildtype (WT) extracts at both A) permissive (25°C) and B) nonpermissive (16°C) termperatures. After A) 15 minutes at 25°C or B) 60 minutes at 16°C, 1 to 4 ug heparin/ul extract were added.

Figure 3 - Kinetics of spliceosomal complex formation in wildtype (WT) and $brr1\Delta$ extracts are similar, although levels are decreased in the $brr1\Delta$ extract. Complex formation was carried out at 16°C with radioactively labelled ACT1 pre-mRNA and 1ug heparin /ul extract was added before gel electrophoresis.

denaturing gel and B) snRNP levels were assayed by native gel both followed by Northern analysis. (+) lanes are + ATP. extracts compared to wildtype extracts (WT) (lanes 1 and 4) in duplicate samples. A) snRNA levels were determined by Figure 5 - A) snRNA and B) snRNP levels are decreased in *brr1-1* (lanes 2 and 5) and *brr1*A (lanes 3 and 6) mutant

Northern analysis. Input RNA (1/20th total extract (T)), snRNAs, and the approximate mobility of snRNP complexes velocity sedimentation analysis. RNA from odd numbered fractions of 10-30% glycerol gradients were analyzed by Figure 6 - The levels of snRNP complexes are reduced in brr 1A extracts compared to wildtype extracts (WT) by are indicated.

WT

Figure 7 - In vitro snRNP assembly with T7 transcribed snRNAs. The mobilities of radioactively labelled U snRNA transcripts (~1-10nM) were similar whether incubated in wildtype (WT) or brr1 Δ extracts at 16°C for 30 minutes.

Figure 8 - In vitro snRNP assembly with U4 depleted extracts.

The mobility of radioactively labelled U4 snRNA decreased in extracts depleted of endogenous U4 snRNA (complex B) compared to untreated extracts (complex A). However, the mobilities of U4 snRNA were simlar with both wildtype (WT) and $brr1\Delta$ extracts that were incubated on ice.

Figure 9 - In vitro splicing in $brr1\Delta$ extracts is more susceptible to the challenge of multi-round splicing than wildtype extract (WT). Unlabelled ACT1 pre-mRNA was added to the indicated fold excess amounts during a 30 minute preincubation at 16°C and then splicing of radioacitvely labelled ACT1 was assayed at 25° for 30 minutes.

gel	denaturing	denaturing	denaturing	denaturing	denaturing	denaturing	native
strain	brr1-1	brr1-1	brr1-1	br1Δ	brr1Δ	$br1\Delta$	br10
Incubation	•	+	+	1	+	+	+
ATP	-	•	+	1	1	+	+
U1	37	29	30	29	22	23	
U2	65	49	64	41	30	37	10
U4	49	6 6	61	50	79	58	
US	75	73	81	81	79	06	
N6	57	56	54	25	28	28	

Table 1 - snRNA and snRNP levels in brr1-1 and brr1 Δ extracts as a percentage of wildtype levels

.

		brr1-1 c.s.	br1A c.s.	brr1-1	BRR1
Factor	Function	interaction	interaction	snRNAs	×/o
hp1∆	3' end stabilization	n/a	none		
mt1d t.s. c.s.	3' cleavage	n/a	n/a		
lsm1Å t.s. c.s.	mRNA degradation	n/a	none		
lsm5Δ	U6 biogenesis and mRNA degradation	n/a	sick		
lsm6∆ t.s.	U6 biogenesis and mRNA degradation	n/a	sick		
lsm7∆ t.s.	U6 biogenesis and mRNA degradation	n/a	sick		
¹ prp24 rrm1-sub	U4/U6 annealing	none	none		
¹ prp24 rrm1-B4 c.s.	U4/U6 annealing	lethal	lethal		
¹ prp24 rrm1-B5 c.s.	U4/U6 annealing	sick	sick		
¹ prp24 rrm3-sub t.s	. U4/U6 annealing	lethal	lethal		
¹ prp24 Δ10 c.s.	U4/U6 annealing	none	none		
brr2-1 c.s.	U4/U6 release	n/a	none		
sad1-1 c.s.	snRNP biogenesis and triple snRNP	none (?)	lethal		
snu66d c.s.	triple snRNP	n/a	lethal		
² snu114-60	U5 snRNP, recycling	n/a	sick		
³ sub2-1 t.s. c.s.	splicing, export, recombination, transcription	sick	suppr/sick		sick
³ sub2-5 c.s.	splicing, export, recombination, transcription	sick	sick		
* prp8-brr c.s.	US snRNP, splicing	n/a	sick		
⁵ cdc45-1	DNA replication	n/a	sick		
SMD1 o/x	Sm core	suppression	none	none	
LHP1 o/x	3' end stabilization	suppression	none	suppression	
SUB2 o/x	splicing, export, recombination, transcription	suppression	suppression	partial (U5)	
TFB4 o/x	TFIIH trxn factor	suppression	suppression	n/a	
¹ PRP24 o/x	U4/U6 annealing	n/a	suppression	n/a	
¹ prp24 Δ10 o/x	U4/U6 annealing	n/a	none	n/a	
1 Rader and Guthrie p	ersonal communication				
2 Brenner and Guthrie	personal communication				
3 Kistler and Guthrie P	h. D. Thesis				
4 Collins and Guthrie F	h. D. Thesis				
5 Tong et al.					

Table 2 - BRR1 Genetic Interactions

<u>Chapter III</u> - Identification of Lhp1p-associated RNAs by microarray analysis in S. cerevisiae reveals association with coding and noncoding RNAs

ABSTRACT

La is a conserved eukaryotic RNA-binding protein best known for its role in the biogenesis of noncoding RNAs transcribed by RNA polymerase III. To broaden our understanding of the function of the La homologous protein (Lhp1) in S. cerevisiae we have taken a genomics approach. Lhp1 RNP complexes were immunoprecipitated and bound RNAs examined by hybridization to whole genome microarrays that include over 6000 ORFs, documented noncoding RNAs and the intervening intergenic regions. Demonstrating the validity of this approach, associations with previously known Lhp1p-associated RNAs were detected and associations with additional noncoding RNAs, including multiple tRNAs and snoRNAs, were revealed. Indicating that this approach provides a robust method for discovering new RNAs, the data also identify associations between Lhp1p and several intergenic regions, three of which encode the recently annotated putative snoRNAs - RUF1, RUF2 and RUF3. Unexpectedly, we find that Lhp1p is also associated with a subset of coding mRNAs. These include many ribosomal protein transcripts as well as the mRNA encoding Haclp, a transcription factor required during the unfolded protein stress response (UPR). In cells lacking Lhp1, Hac1p levels are decreased two- to three-fold, while no changes are detected in the levels of spliced or unspliced HAC1 mRNA or in the stability of Haclp. Finally, although LHP1 is dispensable for growth under standard conditions, we find that it is required when the UPR is induced at elevated temperatures. These results suggest that Lhp1p may play a novel role in the translation of one or more cellular mRNAs.

INTRODUCTION

La is an abundant eukaryotic RNA binding protein implicated in multiple steps of RNA metabolism, including transcription and 3' end processing of RNA polymerase III (RNA pol III) transcripts, as well as translation of certain viral and endogenous mRNAs containing internal ribosome entry sites (IRES) sequences (Wolin and Cedervall 2002). The best characterized role of La is in the biogenesis and processing of a variety of noncoding RNAs (Wolin and Cedervall 2002). La binds the 3' terminal UUU_{OH} sequences of newly synthesized RNA pol III transcripts such as pre-tRNAs and pre-5S rRNA and protects them from degradation (Rinke and Steitz 1982; Yoo and Wolin 1994). In yeast, La homologous protein (LHP1) is nonessential, which is surprising given that its metazoan counterparts are involved in processing such a wide range of essential, noncoding RNAs. Nevertheless, genetic and biochemical analyses in S. cerevisiae have confirmed that Lhp1p is involved in the processing of newly synthesized RNA pol III transcripts (Yoo and Wolin 1997; Pannone et al. 1998), and revealed a similar role with noncoding RNAs generated by RNA pol II, spliceosomal snRNAs (Xue et al. 2000) and U3 snoRNA (Kufel et al. 2000). Lhp1p is known to bind these noncoding RNA precursors and is thought to facilitate their maturation by stabilizing them from digestion. Since Lhp1p is not required for maintaining normal levels of mature RNPs, it has been suggested that Lhp1p acts as an RNA chaperone, enhancing the efficiency of biogenesis (Pannone et al. 1998; Xue et al. 2000).

Additional metazoan studies (Wolin and Cedervall 2002) have indicated that La may function at the 5' end of some RNAs to play a role in translation. By *in vitro* studies, La has been shown to stimulate translation and influence IRES selection of some viral RNAs (Meerovitch et al. 1993; Ali et al. 2000) and of some cellular RNAs containing IRES elements (Holcik and Korneluk 2000; Kim et al. 2001). However, it remains unclear if La plays these roles *in vivo*. More recently La has been proposed to influence the translation of mRNAs containing 5' <u>terminal</u> oligopyrimidine (TOP) sequences, which include mRNAs encoding ribosomal proteins that are translationally regulated in a growth-dependent manner (Meyuhas 2000). However, one study

68

examining La's effect on TOP mRNA translation by *in vivo* transfection experiments observed modest positive effects (Crosio et al. 2000), while another group has observed inhibitory effects of La on TOP mRNA translation (Zhu et al. 2001). Although La has recently been demonstrated to be associated with TOP mRNAs *in vivo* and in active polysomes (Keene and Tenenbaum 2002; Cardinali et al. 2003; Intine et al. 2003), La's specific role with TOP mRNAs remains unclear. To gain a comprehensive view of Lhp1p function, we set out to characterize the complete binding profile of Lhp1p using a genomics approach. We have immunoprecipitated Lhp1p and identified associated RNAs by microarray analysis. We find that Lhp1p is associated not only with a large number of noncoding RNAs but with coding RNAs as well. Thus, Lhp1p may have a broader function than previously thought.

MATERIALS AND METHODS

Oligos

See Table 1.

Strains

The following yeast strains were used: *LHP1-myc*₃ and its isogenic wildtype (Noble and Guthrie 1995), *lhp1* Δ ::*LEU* and its isogenic wildtype (Yoo and Wolin 1994), *lhp1* Δ ::*KAN* and its isogenic wildtype (Invitrogen).

Immunoprecipitation and Microarray Analysis of Lhp1p-Associated RNAs

Isogenic wildtype and *LHP1-myc*₃ genomically epitope-tagged cells were grown to saturation in rich media at 30°C overnight, diluted to $OD_{600}=0.1$ in 1 liter, grown to exponential phase $(OD_{600}=0.75-1.0)$, and harvested by centrifugation for extract preparation and immunoprecipitations as previously described (Takizawa and Vale 2000) with minor modifications. Immunoprecipitated RNAs were reverse transcribed into cDNA as previously described (Takizawa et al. 2000), but without PCR amplification, in the presence of aminoallyl-

dUTP (Sigma-Aldrich) using random sequence nonamers as primers (0.25mg/ml). The cDNA samples were labeled with either Cy3 or Cy5 fluorescent dyes (Amersham Biosciences) and purified. Fluorescently labeled cDNAs were hybridized to whole genome microarrays as previously described (DeRisi et al. 1997). See also <u>http://microarrays.org/</u> for microarray printing and preparation protocols. Whole genome primer sets and sequences are available upon request from Invitrogen. The microarrays were scanned with a GenePix 4000a scanner and analyzed with GenePixPro 3.0 software (Axon Instruments). Cy3 and Cy5 fluorescent signals were normalized so that the total signal ratio for all good quality features was equal to one. Therefore, the fluorescence signal intensity from the relatively low abundance untagged control is artificially inflated and the data do not necessarily reflect true enrichment values. For each feature we calculated an average log₂ transformed ratio from two independent experiments by which we determined an overall rank order. See Table 2, which is published as Supporting Information on the PNAS website for primary Lhp1p IP microarray data.

QPCR

Cell equivalent fractions of isolated RNA from *LHP1*-myc₃ tagged and untagged samples were reverse transcribed with a sequence specific cocktail of reverse primers (250nM each) (see Table 1). We found that quantitative PCR (QPCR) results were more linear with input template when reverse transcription was done with sequence specific primers, rather than with random primers (data not shown). The cDNA was ethanol precipitated twice and used as template for QPCR. The QPCR reactions contained 250nM primer concentration and 0.75x SYBR Green (Sigma-Aldrich) for fluorescent detection of product formation. Standard curves were generated by making a dilution series of template cDNA, which was reverse transcribed from total RNA. Fold enrichments between tagged and untagged samples were calculated based on standard curves when the data were within the linear range. The presence of single PCR products was confirmed both by analyzing melting curve transitions and by electrophoresing completed QPCR on 2.2%

96-well agarose gels (Amersham Biosciences). All QPCR reactions were carried out and analyzed with Opticon Detection Systems (MJ Research).

UPR Growth Assays

Wildtype and $lhp 1\Delta$ strains were grown in rich or synthetic media. Five-fold serial dilutions were made in 96-well plates and spotted on SD complete plates lacking inositol and top spread with 0 to 1.5µg/ml tunicamycin, equilibrated for 5 hours. The plates were incubated at room temperature, 30°C and 37°C.

HAC1 Northern and Western Analysis

Wildtype and $lhp1\Delta$ strains were grown in synthetic media at room temperature and then shifted to 37°C with addition of 1.0µg/ml tunicamycin or in a *sec14-3*^{ta} strain background to induce the UPR. Aliquots were harvested at time points from 0 to 3 hours. Total RNA was prepared and Northern analysis was carried out as described (Ruegsegger et al. 2001). For Western analysis, protein was prepared as described (Ruegsegger et al. 2001). Samples were separated by SDS-PAGE and transferred to nitrocellulose and immunodetected using anti-Hac1pⁱ (a gift from P. Walter, UCSF), anti-Npl3p mAb 1E4 (a gift from M. Swanson, U. of Florida), ECL and ECF detection systems (Amersham Biosciences).

RESULTS

To identify Lhp1p-associated RNAs, we performed immunoprecipitation (IP) assays followed by microarray analysis (see Materials and Methods). Lhp1p-associated RNAs were immunoprecipitated by anti-myc antibodies from *LHP1-myc3* genomically epitope-tagged cell extracts under native conditions. They were then extracted and converted to cDNA by reverse transcription without PCR amplification, which had been required in other studies (Takizawa et al. 2000; Hieronymus and Silver 2003). In our hands this step decreased data reproducibility (data

not shown) and was eliminated because we found it to be unnecessary. The cDNA from Lhp1p myc-tagged and untagged control IPs were fluorescently labeled with Cy5 and Cy3 dyes respectively and analyzed by simultaneous hybridization to *S. cerevisiae* whole genome microarrays (Fig. 1). These microarrays were designed to cover the entire genome according to the Saccharomyces Genome Database (SGD) annotation in May 1999 with approximately 13,000 unique features, corresponding to over 6000 ORFs, known noncoding RNAs and their intervening intergenic regions (Iyer et al. 2001). Although SGD annotation has been constantly updated since the time of design, newly annotated genes are nonetheless represented on the microarray, because they are encoded within the PCR fragments of intergenic region features.

For each microarray feature we obtained a Cy5 to Cy3 fluorescence signal ratio, representing the relative abundance of each RNA in the Lhp1p versus control IP. Since the data are normalized so that the total signal ratio is equal to one, the intensity in the relatively low abundance control IP is artificially inflated. Therefore the normalized data do not necessarily reflect true enrichment values. Data from two independent IP experiments were linearized by log₂ transformation, averaged, and found to be highly correlated (Pearson Correlation R=0.85) (data not shown). The dynamic range of the average \log_2 ratios spanned from +4.4 to -4.6 and defined a rank order of Lhp1p IP enriched features (see Table 2 Supplementary Information). The data displayed a roughly Gaussian distribution centered around -1.2 (mean), with an extended tail comprising approximately 100 of the most highly enriched features or the top 1% of the dataset (Fig. 2A). Moreover, since most known Lhp1p-associated RNAs appeared reproducibly in the top 100 (see Table 3), we interpreted this subset as highly likely to be associated with Lhp1p. While distinguishing between true associations and false positives becomes more difficult further down the list, we have arbitrarily classified the top 10% or 1000 features as significantly enriched. For ease of discussion, we will present our results for three classes of Lhp1p-associated RNAs: noncoding, intergenic and coding mRNAs (Fig. 2A).

72

Class I – Noncoding RNAs

In accordance with previous results that all mammalian RNA pol III transcripts are believed to interact with La (Wolin and Cedervall 2002), we find several yeast RNA pol III transcripts are also highly enriched in Lhp1p IPs. Three known Lhp1p-associated RNA pol III transcripts are among the 10 most highly enriched RNAs. These are U6 snRNA, SCR1, the RNA component of the signal recognition particle, and RPR1, the RNA component of RNase P (see Table 3). Lhp1p has been shown to bind and stabilize newly synthesized U6 snRNA (Pannone et al. 1998). Lhp1p has also been shown to associate with SCR1 (Yoo and Wolin 1994). The feature corresponding to SCR1 itself was not included on the microarray, but the intergenic region immediately downstream was identified with high enrichment (Fig. 3A). We infer that this reflects association of Lhp1p with a pre-SCR1 species elongated at its 3' end. Previous work has indicated that Lhp1p binds and may function to stabilize pre-RPR1 (Calvo et al. 1999; Kufel et al. 2002). We observe an interaction with the adjacent intergenic region directly downstream of RPR1 and believe this to be an association with 3' extended pre-RPR1.

There are 42 unique tRNA features on the microarray, representing at least one tRNA for 38 of 41 total anticodon isoacceptor types. In addition, because of tRNA gene duplication events and the high level of homology between tRNA isoacceptors, the 42 tRNA features on the microarray represent the vast majority of the 274 total tRNA genes present in the *S. cerevisiae* genome. We find that 22 of the 42 tRNA features appear in the 100 most highly enriched RNAs, with 33 in the top 1000 (see Table 4). Significantly, tRNA^{Ser}(CGA), previously shown to be associated with Lhp1p (Yoo and Wolin 1997), is in the top 100. Of the11 other tRNAs previously suggested to be associated with Lhp1p, based on the observation that aberrant pre-tRNA processing was observed in strains deleted for *LHP1* (Yoo and Wolin 1997; Calvo et al. 1999), 10 are in the top 100 and one was undetected. Interestingly, tRNA^{Leu}(CAA), which was not shown to require *LHP1* for processing (Yoo and Wolin 1997), is Lhp1p-associated. In addition to the tRNA features, Lhp1p is associated with 8 intergenic regions directly 5' or 3' of tRNAs. While unannotated RNAs

73

encoded within these intergenic regions may be responsible for the observed enrichment (see Class II: Intergenic Regions), it is equally plausible that although yeast tRNA leader and trailer sequences are generally short, these associations reflect interaction with the 5' and/or 3' extended pre-tRNA species. Also, since the microarray consists of double-stranded PCR products, we believe we detect three tRNAs by way of ORF features residing on the opposite strand or overlapping with the tRNAs. For example, the microarray feature for YNL017c is highly enriched, most likely because tl(AAU)N2 is located on the opposite strand (Fig. 3B). All three of these ORFs were recently annotated as Dubious ORFs by comparative genomic analysis (Brachat et al. 2003; Cliften et al. 2003; Kellis et al. 2003), strongly suggesting that the associations detected are with the tRNAs. Finally, our failure to see significant enrichment of Lhp1p with the remaining nine tRNAs on the microarray may indicate low binding, low signal from low abundance, or low reverse transcription efficiency of a highly structured RNA.

The feature corresponding to 5S rRNA shows only a relatively modest enrichment compared to other RNA pol III transcripts, even though an association of Lhp1p with pre-5S rRNA has been previously observed (Yoo and Wolin 1994; Kufel et al. 2002). We find 5S rRNA and two other intergenic regions encoding highly homologous 5S rRNA variants (Johnston et al. 1997) within the 700 most highly enriched RNAs (Fig. 3C and Table 3).

In addition to RNA pol III-transcribed noncoding RNAs, we also detect association with RNA pol II-transcribed noncoding RNAs, including U2, U4 and U5 snRNAs (see Table 3). Lhp1p has been shown to bind and stabilize 3' extended precursors of RNA pol II-transcribed spliceosomal snRNAs (U1, U2, U4 and U5) (Xue et al. 2000), as well as U3 snoRNA (Kufel et al. 2000). While the genes encoding U1 snRNA and U3 snoRNA were not included as unique features on our microarray due to incomplete noncoding RNA annotation, we detect enrichment with the intergenic regions encoding these RNAs. We have not excluded the possibility that other unannotated RNAs within these regions may contribute to the high enrichment ratios, but the most likely explanation is Lhp1p association with the snRNAs. Whereas U3 was the only snoRNA previously shown to be associated with and its processing facilitated by Lhp1p (Kufel et al. 2000), we find a large number of snoRNAs associated with Lhp1p. There are currently 66 total known snoRNA genes in the *S. cerevisiae* genome. Approximately one-third (20) are found in the 100 most enriched RNAs with more than half (38) in the top 1000 (see Table 5). On the microarray, the snoRNAs are represented as unique features, encoded within intergenic regions, or for 7 intronically-encoded snoRNAs are included within host ORF PCR products. For example, *SNR18* is encoded in the intron of *YAL003w*, which is highly enriched (Fig. 3D). For the 5 out of 7 intronically-encoded snoRNAs found in the top 1000 via their host ORF feature, we have not determined if the enrichment is due solely to the snoRNA, the host ORF (see Class III: Coding mRNAs) or both.

Class II – Intergenic Regions

An advantage of the whole genome microarray is the potential to discover new, uncharacterized RNAs within intergenic regions. Indeed, 11 intergenic regions in the top 100 do not contain any known RNAs. Notably, the immediately surrounding features are not significantly enriched, suggesting that the signal in the intergenic region is not due to hybridization from the 5' or 3' UTR of a neighboring feature. Remarkably, the three most highly enriched intergenic regions encode genes annotated only after our analysis was completed. They are *RUF1*, *RUF2* and *RUF3*, which correspond to three putative H/ACA snoRNAs identified computationally by phylogenetic analysis and confirmed by Northern analysis (McCutcheon and Eddy 2003). The convergence of discovering these new genes within Lhp1p-enriched intergenic regions strongly suggests that the other intergenic regions may also contain novel RNAs (see Table 6).

Class III – Coding mRNAs

Unexpectedly, 26 coding mRNAs appear in the 100 most Lhp1p-enriched RNAs with up to 300 in the top 500 (see Table 7). Previous descriptions of La interactions with mRNAs have been restricted to virally encoded RNAs or endogenous mRNAs with IRES sequences or mRNAs with

75

TOP sequences, which have not been documented in S. cerevisiae (Lascaris et al. 1999; Zhou et al. 2001).

We used QPCR as an independent method for assessing RNA association, by reverse transcribing cell-equivalent fractions of immunoprecipitated RNA from tagged and untagged cells (see Materials and Methods). We then determined fold enrichments for 18 RNAs from the microarray data list (see Table 8). The values determined by QPCR generally correlated well with the ratios generated from the microarray results (Pearson Correlation R=0.8) (Fig. 4). As expected, as a result of data normalization (see Materials and Methods), the enrichment ratios obtained from the microarray data generally underestimated fold enrichments determined by QPCR. Nevertheless, although not as highly enriched as many of the noncoding RNAs, the QPCR data confirmed significant association between Lhp1p and coding mRNAs.

Ribosomal Protein Genes

The predominant highly enriched class of coding mRNAs in the microarray data set is the ribosomal protein genes (RPGs) (Fig. 2B). Of the 130 RPGs, 14 are in the 100 most highly enriched RNAs and 100 are in the top 1000. Although RPGs encode some of the most abundant transcripts, we did not observe a general bias for Lhp1p association with highly expressed genes (data not shown) (Velculescu et al. 1997; Holstege et al. 1998). Moreover, there does not seem to be any bias for Lhp1p association with the most abundant RPGs, the small versus large subunit or intron-containing versus nonintron-containing RPGs (data not shown).

HAC1 mRNA

One of the most intriguing mRNAs we found to be associated with Lhp1p was HAC1 RNA, which encodes a transcription factor required for induction of the unfolded protein stress response (UPR). We sought to demonstrate a functional link between Lhp1p and HAC1 mRNA by examining the cellular response to unfolded proteins in the absence of Lhp1p. We plated serial dilutions of wildtype and *lhp1* Δ yeast cells on yeast media supplemented with tunicamycin (0 to 1.5µg/ml), which impairs protein folding by inhibiting glycosylation (Cox et al. 1993), to induce

the UPR. Whereas $lhp 1\Delta$ cells grew like wildtype at 30°C, LHP1 is essential for growth upon induction of the UPR at 37°C (Fig. 5). Although we cannot rule out indirect effects, these results suggest that Lhp1p is required for proper induction of the UPR at elevated temperatures. Interestingly, HAC1 mRNA is spliced only upon induction of the UPR by a novel mechanism that does not use the spliceosome (Sidrauski et al. 1996). Rather, the HAC1 transcript is cleaved by an endonuclease and ligated by tRNA ligase (Sidrauski and Walter 1997). Since the mechanism of HAC1 mRNA splicing partially resembles that of pre-tRNA splicing (Gonzalez et al. 1999), this raised the possibility that HAC1 RNA processing could likewise be facilitated by Lhp1p. To determine if Lhp1p is involved in the splicing of HAC1 mRNA, we examined HAC1 RNA levels by Northern analysis in an lhp/Δ strain at time points from 0 to 3 hours after induction of the UPR. Two methods of induction were used: addition of lug/ml tunicamycin (data not shown), and shifting to 37°C in a sec14-3^{is} mutant background, which arrests the secretory pathway (Ruegsegger et al. 2001; Chang et al. 2002). We observe no LHP1-dependent change in either the HAC1 total mRNA levels or the ratio of spliced to unspliced HAC1 RNA (Fig. 6A). Thus, Lhp1p has no detectable effect on the processing of HAC1 RNA. To determine if Lhp1p is involved in post-processing steps of HAC1 gene expression, we examined Haclp levels by Western analysis. In an $lhp 1\Delta$ strain, upon induction of the UPR by $l\mu g/ml$ tunicamycin (data not shown) or shifting to 37°C in a sec 14-3th mutant background we observe a reproducible two- to three-fold reduction in Haclp levels (Fig. 6B and data not shown). This observation is consistent with a role for Lhp1p either in Hac1p translation or posttranslational stability of Haclp. By Western analysis, we examined the decay of Haclp levels (Kawahara et al. 1997) in an *lhp*/ Δ strain after addition of cycloheximide to inhibit new protein synthesis and found no LHP1-dependent change in Hac1p stability (data not shown). Taken together, these data suggest a role for Lhp1p in translation of HAC1 mRNA.

77

DISCUSSION

We have employed a genomics approach to identify Lhp1p-associated RNAs. By exploiting the whole genome microarray, which includes intergenic regions and noncoding RNAs in addition to ORFs (Iyer et al. 2001), we were able to survey Lhp1p association with the entire transcribed yeast genome in a single experiment. The wealth of available genetic and biochemical evidence for Lhp1p association with many noncoding RNAs provided robust positive controls for our study. Indeed, we detected association with many known Lhp1p substrates, including tRNA^{Ser}(CGA), U6 snRNA, SCR1, RPR1 and 5S rRNA as well as the RNA pol II-transcribed spliceosomal snRNAs and U3 snoRNA.

It is important to note that some RNAs that are Lhp1p-associated may not be identified by our assay as a consequence of insufficient signal due to low abundance, inadequate hybridization from a short RNA, or poor reverse transcription efficiency of a structured RNA. Moreover, only associations stable during the course of the IP assay will be detectable. Therefore, the absence of significant enrichment by our assay does not necessarily indicate lack of an association. For example, at least one RNA predicted to be associated with Lhp1p, NME1 (Calvo et al. 1999), the RNA component of ribonuclease MRP, was not significantly enriched in our IPs. Furthermore, some genes, such as TLC1, which encodes the RNA component of telomerase, were omitted either as unique features or within intergenic regions on the microarray. With these caveats we were able to survey nearly the whole genome for Lhp1p-association to gain a broader view of its binding profile.

Discovery of new noncoding RNA binding partners

While previous work had demonstrated that 3' end processing of multiple tRNAs is facilitated by Lhp1p (Yoo and Wolin 1997; Calvo et al. 1999), it remained an open question whether the interaction with U3 snoRNA (Kufel et al. 2000) was unique or indicative of class-wide recognition for snoRNAs. Our detection of Lhp1p interaction with the majority of tRNAs and snoRNAs by the IP microarray assay suggests a class-wide role for Lhp1p in the processing of these stable, noncoding RNAs. Interestingly, although no changes in the pre-tRNA patterns were previously detected for tRNA^{Leu}(CAA) in *lhp1* Δ strains (Yoo and Wolin 1997), we nonetheless detected association with this tRNA by the IP microarray assay. While 3' processing defects may simply not be rate-limiting under the conditions assayed, another possibility is that Lhp1p plays a role in step(s) further downstream. One such possible role is the facilitation of proper pre-tRNA folding for aminoacylation (Chakshusmathi et al. 2003). While our work has expanded the number of RNAs associated with Lhp1p, it remains to be determined if Lhp1p plays similar or different roles for all tRNAs and snoRNAs.

Our approach provides the unique opportunity to explore uncharacterized regions in the S. cerevisiae genome in search of novel RNAs on a genomic scale. The discovery of novel RNAs by probing unusually large intergenic regions (Olivas et al. 1997), underscored the fact that our current annotations are incomplete. Subsequently, others have employed computational approaches to look for new members of specific classes of RNAs by consensus sequences (Lowe and Eddy 1999) or to find novel noncoding RNAs within structurally conserved intergenic sequences among related species (McCutcheon and Eddy 2003). In contrast, the whole genome microarray approach is unbiased for sequence information. Recent studies have productively utilized a combination of computational and biochemical methods using similar microarrays in prokaryotes (Wassarman et al. 2001; Li et al. 2003). To our knowledge, however, ours is the first search for new RNAs using a complete eukaryotic genome array. Because the SGD noncoding RNA annotation was deficient at the time of design of the whole genome microarray, a number of known snRNAs and snoRNAs were omitted as specific features. Nonetheless, intergenic regions encoding these RNAs were detected as Lhp1p-associated by the microarray assay. As further validation of the utility of this approach for gene discovery, we identified three intergenic regions, which were independently found to encode novel snoRNA genes (McCutcheon and Eddy 2003). We are currently mapping the other Lhp1p-associated intergenic regions to look for novel RNAs.

Interestingly, we find some of the intergenic regions are highly conserved among fungal species (data not shown).

Lhp1p is associated with coding mRNAs

Our data indicate that Lhp1p is associated with coding mRNAs in addition to noncoding RNAs. In particular, we detect an interaction with HAC1 mRNA, which encodes an activating transcription factor for the UPR. Importantly, we demonstrate that Lhp1p is required for growth under UPR conditions at high temperature (Fig. 6). Most simply, Lhp1p could be involved in facilitating processing of HAC1 mRNA as it is with many noncoding RNAs. However, we did not observe an effect on HAC1 RNA levels or HAC1 mRNA splicing due to deletion of LHP1 (Fig. 5A). Moreover, HAC1 mRNA is polyadenylated (Cox and Walter 1996) and although HAC1 mRNA splicing is carried out in part by tRNA ligase (Sidrauski et al. 1996), HAC1 RNA is not believed to be acted upon by other 3' end tRNA processing enzymes. As the steady state levels of many RNAs whose processing are known to be facilitated by Lhp1p remain unaffected in an *lhp1* Δ strain (Pannone et al. 1998; Xue et al. 2000), it is still possible that Lhp1p plays a role in HAC1 RNA processing, but its effects are undetected by our assays. However, we consistently observe a two- to three-fold decrease in Hac1p levels in the absence of LHP1 (Fig. 5B and data not shown), suggesting a role for Lhp1p in Hac1p production. Since La has been implicated in enhancing the translation rates of certain mRNAs in mammals (Crosio et al. 2000; Kim et al. 2001), it is intriguing to speculate that Lhp1p may be involved in formation of a structure required for efficient Haclp translation. Notably, translation of HACl is attenuated by way of a base-paired interaction between the 5'UTR and the intron (Ruegsegger et al. 2001). Thus Lhp1p could influence translation by destabilization of an inhibitory interaction such as between the 5'UTR and intron or by stabilization of a competing alternative structure. The latter mechanism would be consistent with Lhp1p's proposed role in stabilizing the anticodon stem of tRNA^{Ser}(CGA) (Yoo and Wolin 1997). Similarly, loss of Lhp1p may destabilize such a structure in HAC1 RNA and compromise Hac1p translation.

As the vast majority of mRNAs in S. cerevisiae are not believed to include IRES elements (Zhou et al. 2001), and yeast RPGs lack 5' TOP sequences (Lascaris et al. 1999), we were surprised to identify Lhp1p association with multiple mRNAs, particularly RPGs. Although yeast RPGs lack 5' TOP sequences, they are nonetheless regulated in a growth dependent manner (Powers and Walter 1999). However, unlike mammalian RPGs that are primarily translationally regulated via polysome association (Meyuhas 2000), yeast RPGs are primarily regulated at the level of transcription (Planta 1997). While future experiments are required to determine how association with yeast RPGs may affect their regulation, our data suggest an intriguing connection among Lhp1p-interacting RNAs. These RNAs are not only components of the translational apparatus (5S rRNA and tRNAs) and involved in processing the RNA components of the translational apparatus (snoRNAs and RNase P RNA), but include transcripts encoding the protein components of translational machinery (RPGs). Thus, Lhp1p may contribute to the coordination of both RNA and protein components of translation for general cell metabolism. Intriguingly, LHP1 mRNA is expressed during logarithmic growth but repressed during diauxic shift and stationary phase (DeRisi et al. 1997; Gasch et al. 2000), suggesting that Lhp1p function may only be utilized during times of rapid growth, which is particularly suggestive in the case of RPGs. Moreover, Lhp1p function may only become critical during challenging growth situations as we have uncovered in the case of the unfolded protein stress response. Further experiments are required to assess the functional relationship between Lhp1p and coding mRNAs.

ACKNOWLEDGMENTS

This chapter was published as Inada, M. and C. Guthrie. 'Identification of Lhp1p-associated RNAs by microarray analysis in *Saccharomyces cerevisiae* reveals association with coding and noncoding RNAs,' *Proc Natl Acad Sci USA* (2004) 101(2): 434-439.

Copyright 2004 National Academy of Sciences, USA.

We are grateful to E. Blackburn, J. DeRisi, J. Steitz, P. Walter and S. Wolin for their critical reading of the manuscript. We wish to thank S. Wolin for reagents and helpful discussions, H. Ou, J. Wilhelm and J. DeRisi for microarray expertise and initial experiments, J. Leber and P. Walter for UPR reagents and assistance, and J. Pleiss and other members of the Guthrie Lab for helpful advice, encouragement and discussions throughout the course of these experiments. This work is supported by NIH Grant GM21119. C.G. is an American Cancer Society Research Professor of Molecular Genetics.

...

Figure 1 Schematic of Lhp1p IP microarray assay. Features enriched in the Lhp1p IP versus the untagged control appear as red, while others appear yellow or green.

Figure 2 Histograms of RNA classes. Different RNA classes are depicted on scaled y-axes. A) The distribution of all features is shown in blue, the noncoding RNAs in orange, the intergenic regions in green and the coding mRNAs in black. B) The ribosomal protein gene transcripts (red) are more enriched in the Lhp1p IP compared to the distribution of all ORFs (black).

Figure 3 Chromosomal maps of Lhp1p IP microarray enrichment. Feature boundaries and corresponding average log2 ratios are indicated. A) While the feature corresponding to SCR1 is absent from the microarray (X), the intergenic feature iSCR1 immediately 3' of SCR1 shows high enrichment. B) The feature representing YNL017c shows high enrichment, most likely because tI(AAU)N2 is located on the opposite strand. C) The intergenic region encoding a highly homologous 5S rRNA variant, iYLR159w, shows modest enrichment. D) The snoRNA SNR18 lies within the intron of YAL003w, which shows high enrichment.

Figure 4 Lhp1p IP microarray data and QPCR data are highly correlated (Pearson Correlation R=0.8). A subset of eighteen genes was chosen (see Table 8).

,,

Figure 5 LHP1 is required for growth during the unfolded protein response at 37°C. Serial dilutions of wildtype (WT) and lhp1 Δ ::KAN strains (or lhp1 Δ ::LEU, data not shown) were grown at 30°C and 37°C on yeast media plates containing 0.0, 0.75, and 1.0 µg/ml tunicamycin (TM) to induce the UPR.

Α	sec14-3 se	c14-3/lhp1∆	
	0 0.5 1 2 3 0	0.5 1 2 3	h
	** ** ea		- HAC1P - HAC1m
		1972 v v v 19 19	— SCR1
В	$\frac{\sec(14.3)}{0} \frac{\sec(14.3)}{2} \frac{3}{0} \frac{0}{2} \frac{2}{2}$	<i>flhp1∆</i> 3 h • — — Npl3p	
		-Hac1p	

Figure 6 A) HAC1 RNA levels and rate of splicing are unaffected in an lhp1 Δ ::LEU strain upon induction of the UPR by shifting to 37°C in a sec14-3ts mutant strain background. HAC1 precursor (HAC1p) and HAC1 mature (HAC1m) were detected, and SCR1 served as a loading control. B) Hac1p levels are consistently reduced by at least two-fold. Npl3p served as a loading control. Similar results were seen with an lhp1 Δ ::KAN strain and with 1µg/ml tunicamycin induction of the UPR (data not shown).

Table	1	-	Oligos	used	in	this	study	for	QPC	R
-------	---	---	--------	------	----	------	-------	-----	-----	---

Oligos		
Gene	Forward	Reverse
CUP1	GTTCAGCGAATTAATTAACTTCC	CATTTCCCAGAGCAGCATGAC
HAC1	CGTCAACCTTGAAAAACTGGCTGACC	GGCTCCATTGTACAGTTCAGAGGTGAA
NOG2	CAGCTTGGGTCAAACATTTGTC	AAGAGTTGGTAATAGATGCGTG
PGK1	CAAAGGCTAAGACCATTGTC	CACCAGTAGAGACATGGGAG
RPC11	TGATGTTCTTGGTGGTGGTTGGG	TCGGCTCATCAGCTGACCTAATTTGTA
RPL11A	CTATGTCGTCATGAACAGACC	CTTTTGCTTGAACCAAGAGACG
RPL31	CCGATGTTTTTGGCGTGATGCT	GCATCTTCTTCAACGACAACGGTTTGT
RPS22A	GAAAAATGGACTGCCAACTTGTTG	CTTTCTTCTGGCTTCTTCATGG
RPS4B	GAAGCATCTAAAGAGATTAGCAGC	GCAATTTGTGTGGACCAGCAG
SCR1	GAGGCGGGAGAGTCCGTTCTGAAGTG	AAACTCCCCTAACAGCGGTGAAGG
SEC14	CAACAAGAAAAGGAATTTTTAGAATCC	TGCCTTCTCTTGAGCGCTGTC
SNR189	AGGGGATTTGTGACTTTCAAGGCAA	TGTCAGGCCCGTGTGAAGTACTTGA
U2	CTCGGTTTGAGGGGGGTGTAG	TATTCTCACAAACACATCTCCTC
U3	TAGGATCATTTCTATAGGAATCG	ATAGATGGCCGAACCGCTAAG
U4	ATCCTTATGCACGGGAAATACG	AAAGGTATTCCAAAAATTCCCTAC
U5	CAAGCAGCTTTACAGATCAATGG	AGTTCCAAAAAATATGGCAAGCC
U6	GTTCGCGAAGTAACCCTTCG	AAAACGAAATAAATCTCTTTGTAAAAC
UBC5	GTTCAGCAGGACCTGTAGG	GTGAATAGACAAAAAGAAAACGCC

. .

Table 2 - Lhp1p IP microarray data

Published as Supporting Information on the PNAS website www.pnas.org.

. .

•

Table 3 - Previously known Lhp1p-associated noncoding RNAs

Rank	Noncoding	Feature	Exp.1 E	Exp. 2 E	average	Feat	Feature S	Feature End
1	U6	SNR6	4.136	4.724	4.430	12	366236	366347
5	SCR1	iSCR1	3.070	3.542	3.306	5	442412	442731
8	RPR1	irpr1	2.915	3.239	3.077	5	118035	118230
43	tS(CGA)C	tS(CGA)C	1.891	1.731	1.811	3	226666	226766
615	5S rRNA	RDN5-1	0.000	0.816	0.408	12	459677	459797
527	5S rRNA	iYLR159W	-0.152	1.104	0.476	12	485690	486202
407	5S rRNA	iYLRCdelta8	0.214	0.956	0.585	12	481898	482550
56	U1	iYNL222W	1.269	1.856	1.563	14	229713	231067
48	U2	LSR1	1.373	2.057	1.715	2	680643	681817
17	U4	snR14	2.519	2.602	2.560	5	167426	167585
39	U4	iYER007C-A	1.840		1.840	5	166884	167426
34	U5	SNR7-L	1.433	2.602	2.017	7	939451	939665
13	U3A	iYOR235W	2.339	3.000	2.670	15	780182	780904
28	U3B	iYPL144W	2.546	1.860	2.203	16	280925	282121

,

,

-

Table 4 - Lhp1p IP microarray tRNAs

Rank	Feature	Exp. 1 Er	Exp. 2 E	average	Fee	Feature S	Feature End
2	tS(GCU)L	4.633	4.181	4.407	12	784353	784452
10	iYBR044C	3.318	2.339	2.828	2	326016	326749
12	tW(CCA)P	3.060	2.365	2.712	16	56169	56274
15	tP(AGG)C	2.438	2.824	2.631	3	12317 8	123249
18	tV(AAC)M3	3.216	1.880	2.548	13	586635	586708
20	tK(UUU)P	2.430	2.646	2.538	16	769204	769299
21	tS(UGA)P	2.154	2.856	2.505	16	689560	689641
22	tP(UGG)M	2.807	2.114	2.461	13	196068	196170
23	iYOR072W-1	2.348		2.348	15	463133	464450
25	tT(UGU)P	2.664	1.872	2.268	16	744281	744352
29	tR(ACG)O	2.208	2.087	2.1 48	15	340299	340371
31	tQ(UUG)L	1.580	2.483	2.031	12	448651	448722
35	tL(GAG)G	2.406	1.556	1.981	7	700669	700750
36	tR(UCU)M2	1.795	2.108	1.951	13	131825	131896
37	tY(GUA)M2	2.114	1.664	1.889	13	837928	838016
40	ti (UAU)L	1.824	1.816	1.820	12	605300	605432
43	tS(CGA)C	1.891	1.731	1.811	3	226666	2267 66
45	iYMRWdelta1	3.362	0.251	1.806	13	379197	379302
46	itH(GUG)G2	2.420	1.176	1.798	7	319850	320353
54	tF(GAA)P2	2.202	1.014	1.608	16	622535	622626
58	tV(UAC)B	2.101	1.014	1.558	2	326749	326822
59	iYLRCdelta19	1.541		1.541	12	734671	734802
64	itE(UUC)E1	1.956	0.971	1.463	5	177169	177834
67	tL(CAA)C	1.257	1.604	1.431	3	90474	90587
79	tL(CAA)N	0.986	1.736	1.361	14	443005	443118
81	tL(UAG)L2	1.239	1.465	1.352	12	732090	732190
88	tN(GUU)C	0.816	1.799	1.307	3	127317	127390
95	tR(CCG)L	0.678	1.888	1.283	12	818608	818679
103	tM(CAU)O2	1.251	1.227	1.239	15	976412	976484
108	tE(UUC)C		1.214	1.214	3	82424	82495
141	tM(CAU)P	0.782	1.339	1.061	16	338847	338918
152	tV(CAC)D	1.705	0.322	1.013	4	1075508	1075580
159	tH(GUG)M	1.220	0.766	0.993	13	363063	363134
190	YNL017C		0.911	0.911	14	602134	602472
218	tE(UUC)P	0.275	1.444	0.859	16	210191	210262
245	YDR278C	0.367	1.257	0.812	4	1016992	1017309
262	tL(UAA)N	-0.304	1.844	0.770	14	726132	726215
319	tC(GCA)P2	0.740	0.623	0.681	16	775762	775833
329	YGR164W	0.227	1.104	0.665	7	828619	828954
340	iYDR419W	1.070	0.239	0.655	4	1305106	1305664
426	tl (AAU)P2	0.057	1.091	0.574	16	880291	880364
429	itM(CAU)C	0.263	0.880	0.571	3	149697	149926
639	tN(GUU)P	0.433	0.356	0.395	16	810671	810744
972	tK(CUU)P	-0.515	0.895	0.190	16	582057	582129
1563	tT(CGU)K	-0.644	0.575	-0.034	11	46736	46807
1689	tG(GCC)P2	-0.916	0.766	-0.075	16	860374	860444
2428	tT(AGU)O2		-0.304	-0.304	15	354040	354112
2459	tG(CCC)D	0.322	-0.943	-0.311	4	1257042	1257113
2492	tD(GUC)O	-1.358	0.722	-0.318	15	571956	572027
2707	tA(UGC)O	-1.120	0.356	-0.382	15	854182	854254
2932	tG(UCC)O	-0.415	-0.474	-0.444	15	110961	111032
3366	tS(AGA)M	-1.184	0.070	-0.557	13	259158	259239
5219	tA(AGC)P	-1.089	-0.916	-1.003	16	856897	856969

,

•

.

÷

Table 5 - Lhp1p IP microarray snoRNAs

Rank	snoRN/	Feature	Exp. 1	Exp. 2	averaç	Feat	Feature	Feature End
3	SNR3	snR3	4.681	3.432	4.057	10	663437	663630
4	SNR32	iYHR140W	3.487	3.237	3.362	8	381291	381990
7	SNR43	YCL006C	2.570	3.866	3.218	3	107245	107574
9	SNR37	iYJL104W	2.755	3.014	2.885	10	227473	228122
11	SNR11	iYMR194W	2.444	3.162	2.803	13	651909	652911
13	SNR17a	iYOR235W	2.339	3.000	2.670	15	780182	780904
14	SNR46	SNR46	2.409	2.880	2.644	7	545363	545559
24	SNR5	iYOR277C	2.325	2.331	2.328	15	841818	842812
24	SNR31	iYOR277C	2.325	2.331	2.328	15	841818	842812
26	SNR34	SNR34	2.004	2.480	2.242	12	898986	899535
28	SNR17b	iYPL144W	2.546	1.860	2.203	16	280925	282121
30	SNR190	SNR190	1.316	2.842	2.079	10	139459	139648
33	SNR49	iynrosoc	2.449	1.595	2.022	14	715387	716779
38	SNR70	SNR70	1.098	2.621	1.859	16	718884	719048
47	SNR13	SNR13	1.316	2.227	1.771	4	1402953	1403076
61	SNR42	SNR42	1.322	1.646	1.484	11	558655	559005
68	SNR4	SNR4	1.163	1.664	1.414	5	424695	424880
77	SNR10	YGL088W	0.731	2.018	1.375	7	345834	346199
96	SNR128	snR128	1.138	1.428	1.283	10	139263	139390
98	SNR9	iYOR040W	0.888	1.655	1.271	15	407920	408357
128	SNR8	SNR8	0.832	1.345	1.088	15	832327	832516
137	SNR30	iYLR027C	0.642	1.496	1.069	12	198128	199541
153	SNR69	SNR69	0.496	1.531	1.013	11	364418	364518
202	SNR54	YML056C	1.566	0.214	0.890	13	162194	164176
244	SNR189	SNR189	0.895	0.731	0.813	3	177338	177526
263	SNR18	YAL003W	1.007	0.526	0.767	1	142172	143158
270	SNR24	YMR116C	0.748	0.757	0.753	13	499455	500687
363	SNR59	YPL198W	1.064	0.189	0.626	16	173151	174701
400	SNR33	SNR33	0.880	0.310	0.595	3	141963	142145
605	SNR44	SNR44	0.299	0.526	0.412	12	856708	856918
608	SNR61	SNR61		0.411	0.411	12	794485	794574
636	SNR41	iSNR70	0.411	0.379	0.395	16	719048	719555
699	SNR35	iYOR222W	0.556	0.163	0.360	15	759251	7597 8 0
786	SNR39b	iYGL076C	0.070	0.546	0.308	7	365994	366923
792	SNR45	SNR45	0.422	0.189	0.306	16	821727	821898
912	SNR52	SNR52	0.070	0.390	0.230	5	431126	431217
984	SNR57	SNR57	-0.152	0.526	0.187	12	794936	795023
991	SNR55	SNR55	-0.415	0.782	0.184	12	794696	794793
1504	SNR38	YKL081W	0.014	-0.044	-0.015	11	282533	284097
1665	SNR63	SNR63	-0.322	0.189	-0.066	4	323216	323470
2150	SNR53	SNR53		-0.218	-0.218	5	61699	61789
2151	SNR64	SNR64		-0.218	-0.218	11	38812	38912
2432	SNR62	SNR62		-0.304	-0.304	15	409764	409863
2519	SNR39	YGL076C	-0.252	-0.396	-0.324	7	364333	365994
2530	SNR76	iYMR013C-0	-0.474	-0.184	-0.329	13	296737	297802
2530	SNR77	iYMR013C-0	-0.474	-0.184	-0.329	13	296737	297802
2530	SNR78	iYMR013C-0	-0.474	-0.184	-0.329	13	296737	297802
2701	SNR72	iYMR013C-1	-0.286	-0.474	-0.380	13	297802	298867
2701	SNR73	iYMR013C-1	-0.286	-0.474	-0.380	13	297802	298867
2701	SNR74	iYMR013C-1	-0.286	-0.474	-0.380	13	297802	298867
2701	SNR75	iYMR013C-1	-0.286	-0.474	-0.380	13	297802	298867
3334	SNR66	SNR66	-0.971	-0.120	-0.546	14	586088	586173
3647	SNR48	SNR48	-0.358	-0.889	-0.624	7	609578	609690

. . ,

,

,

έ.

1 _

A 10/412-17-5 ۶.

£

4506	SNR79	iYLR105C		-0.837	-0.837	12	348181	349007
5037	SNR47	SNR47	-1.252	-0.667	-0.959	4	541641	541701
5088	SNR56	SNR56	-0.971		-0.971	2	88181	88268
5089	SNR67	SNR67	-0.971		-0.971	5	61352	61433
5953	SNR40	iYNL289w-0	1	-1.184	-1.184	14	88734	89517
5999	SNR60	SNR60	-1.286	-1.089	-1.188	10	348826	348929
6305	SNR36	iYOR184W	-1.515	-1.029	-1.272	15	680542	681442
6504	SNR51	SNR51	-1.322		-1.322	16	718697	718803
7840	SNR50	SNR50	-1.358	-1.943	-1.651	15	25 9489	25957 8
8275	SNR71	SNR71	-1.556	-2.000	-1.778	8	411228	411317
10161	SNR65	SNR65	-2.396	-2.120	-2.258	3	175907	176006
N/A	SNR58	SNR58	N/A	N/A	N/A	N/A	N/A	N/A
N/A	SNR68	SNR68	N/A	N/A	N/A	N/A	N/A	N/A

,

Rank	Feature	Exp. 1	Exp. 2	l avera	Feat	Feature	Feature End
32	iynloo6w	1.731	2.325	2.028	14	620977	621312
41	iYMR246W	1.824	1.816	1.820	13	761890	763350
42	iYEL018W	1.811		1.811	5	122310	122798
44	iYEL055C	2.094	1.521	1.808	5	51539	52721
62	iYDR342C-0	1.491	1.470	1.480	4	1155963	1157189
70	iYER030W		1.411	1.411	5	213897	214075
73	iYEL035C	1.401		1.401	5	85545	85676
78	iYGL009C	0.993	1.753	1.373	7	478648	479906
80	iYDR524C	1.536	1.183	1.359	4	1489038	1489953
89	iYJR114W	1.305		1.305	10	638740	639631
99	iYERWdelta22	1.176	1.362	1.269	5	488161	488853
102	iYOR181W	1.239		1.239	15	677838	678189
112	iYNL190W	1.362	1.007	1.184	14	283005	284256
114	iYDR439W-0	0.356	1.993	1.174	4	1340753	1341640
116	iYERComega1	0.705	1.637	1.171	5	564020	565123
118	iYER015W	1.516	0.799	1.158	5	186774	188276
143	iYGL224C	1.816	0.287	1.051	7	78855	79110
144	iYDR382W		1.050	1.050	4	1239858	1239994
156	iYEL074W	0.310	1.683	0.996	5	6464	7230
161	iYBR161W	0.934	1.043	0.988	2	562718	563157
172	iYPL146C	1.941	-0.015	0.963	16	277528	278394
178	iYEL072W-1	2.087	-0.218	0.935	5	15385	16355
183	iYER019C-A	0.926		0.926	5	194538	195167
184	iYLR166C	0.444	1.406	0.925	12	498046	498949
187	iYFLO31W	0.941	0.895	0.918	6	75780	76829
189	iyelogoc	0.333	1.496	0.915	5	419 53	42400
200	iYJR075W		0.895	0.895	10	574859	575042
208	iYMR122C-0	0. 748	1.007	0.878	13	511074	512333
214	iYJRWdelta17	0.465	1.269	0.867	10	538122	538243
220	iYER012W		0.856	0.856	5	178430	178840
225	iYAR033W	0.903	0.791	0.847	1	188806	189421
229	iYGL007W-1	0.422	1.251	0.837	7	484774	485916
236	iYJR094W-A	1.036	0.614	0.825	10	608549	609464
252	iYDR231C		0.799	0.799	4	926946	927488
257	IYELOO9C	0.782		0.782	5	139763	140512
267	iYEL073C-2	0.757		0.757	5	10019	11252
266	iYPL063W	0.757		0.757	16	431364	431890
277	iYLR035C-A-0	1.131	0.356	0.744	12	218908	219788
302	iYGR287C	0.705	0.696	0.700	7	1068987	1070289
305	iYPL087W	0.604	0.791	0.697	16	384403	384768
312	iYDR345C-0	1.021	0.356	0.689	4	1164695	1165972
316	IYLLO48C		0.687	0.687	12	46264	46671
322	IYDR033W	1.091	0.263	0.677	4	509148	509776
328	iYJR105W	0.299	1.036	0.667	10	624290	624525
357	IYLR035C-A-1	0.714	0.556	0.635	12	219788	220669
371	IYJR109C	1.422	-0.184	0.619	10	632630	633304
372	IYER161C	0.660	0.575	0.618	5	500344	500626
379	IYGR124W	0.044	0.614	0.614	1	/41656	742319
3/8	ITPRU/9W	0.614	4 000	0.614	16	/00010	700590
382	ITILI/4W-U	0.189	1.029	0.609	9	9696	10594
392	ITCRUZAC	0.740	0.465	0.602	3	100375	102053
393	ITPLIOJW-A	0.506	0.696	0.601	10	1993/5	199494
220	HUKZU/C	0.239	0.920	0.597	15	133455	122952

Table 6 - Lhp1p-enriched intergenic regions	(approximately 50 in top 400)
---	-------------------------------

Table 7 - Lhp1p-enriched coding mRNA	s (approximately	300 in the	top 500)
--------------------------------------	------------------	------------	----------

Rank	Feature	Gene	SGD De:	Exp.	Exp.	averai	Fea	Feature	Feature	End
27	YDR538W	PAD1			2.21	2.211	4	1510903	1511631	
49	YNL297C	MON2	unknown	1.7		1.696	14	71671	76581	
50	YOR352V	unknow	n		1.68	1.683	15	997204	998235	
52	YOL039W	RPP2A	ribosome	1.3	1.99	1.642	15	254295	254615	
53	YLR167W	RPS31	ribosoma	2	1.23	1.618	12	498949	499407	
55	YBR189W	RPS9B	ribosome	2.18	1.04	1.606	2	604467	605467	
57	YNR053C	NOG2	unknown	2.06	1.06	1.56	14	721117	723108	
60	YLR110C	CCW12	unknown	1.2	1.8	1.502	12	369698	370099	
63	YDR406V	PDR15			1.46	1.465	4	1279199	1283788	
66	YIL018W	RPL2B	ribosome	1.6	1.26	1.431	9	316766	317930	
69	YOR293V	RPS10A	ribosome	1.87	0.96	1.412	15	867093	867847	
72	YER131W	RPS26B	ribosome	1.34	1.46	1.402	5	423949	424308	
74	YOR063V	RPL3	ribosoma	1.62	1.17	1.396	15	444687	445850	
76	YPL048W	CAM1	translatic	1.38		1.384	16	464396	465643	
77	YGL088W	unknow	unknown	0.73	2.02	1.375	7	345834	346199	
82	YMR303C	ADH2	alcohol d	1.3	1.37	1.336	13	873291	874337	
83	YBR300C	unknow	unknown	1.83	0.83	1.332	2	808556	809053	
84	YLR170C	APS1	AP-1 con	0.64	2.01	1.324	12	500581	501051	
86	YGR118V	RPS23A	ribosome	1.7	0.93	1.317	7	726967	727724	
90	YML063W	RPS1B	ribosome	1.58	1.03	1.304	13	146482	147249	
91	YEL054C	RPL12A	ribosome	1.33	1.28	1.304	5	52721	53218	
92	YBR191W	RPL21A	ribosome	1.81	0.8	1.303	2	606229	607099	
93	YDR134C	unknow	unknown	1.17	1.42	1.296	4	721064	721474	
94	YJL052W	TDH1	glycerald	1.23	1.33	1.283	10	337967	338965	
97	YML123C	PHO84	inorganic	1.57	0.99	1.279	13	24038	25801	
100	YDR025V	RPS11A	ribosome	1.36	1.17	1.266	4	491510	492319	
101	YOL040C	RPS15	ribosome	1.16	1.35	1.254	15	253147	253575	
104	YFL031W	HAC1	transcrip	1.07	1.41	1.238	6	75178	75780	
105	YDR216V	ADR1	ADH2 an	1.39	1.08	1.237	4	895026	898997	
106	YMR075V	RCO1	(YMR075	1.23		1.227	13	413981	416035	
107	YCL043C	PDI1	protein d	1.1	1.34	1.221	3	48630	50198	
111	YKR075C	unknow	n	0	2.38	1.188	11	579463	580386	
113	YOR133V	EFT1	translatic	1.17	1.18	1.176	15	575096	577624	
115	YHR216W	PUR5	IMP dehy	1.74	0.6	1.172	8	554391	555962	
117	YMR121C	RPL15B	ribosome	1.33	0.99	1.16	13	509733	510347	
119	YOR153V	PDR5	transport	1.72	0.58	1.147	15	619838	624373	
120	YDR382V	RPP2B	ribosome	1.11	1.15	1.131	4	1239481	1239813	
122	YBL072C	RPS8A	ribosome	1.23	1.01	1.12	2	88518	89120	
123	YLR448W	RPL6B	ribosome	0.94	1.3	1.12	12	1028847	1029761	
124	YPL090C	RPS6A	ribosome	1.54	0.7	1.119	16	377286	378390	
125	YBR078W	ECM33	unknown	1.08	1.11	1.098	2	393083	394819	
126	YBR054W	YRO2	putative	1.09		1.091	2	343061	344095	
127	YARO02C	ERP1	unknown	1.44	0.74	1.089	1	154062	154721	
129	YCR021C	HSP30	plasma n	1.08	1.08	1.084	3	155817	156815	
130	YPL248C	GAL4	transcrip	1.08		1.084	16	79711	82356	
131	YPL131W	RPL5	ribosoma	0.93	1.24	1.082	16	303120	304013	
133	YDR385V	EF12	translatic	0.72	1.43	1.075	4	1243219	1245747	
134	YCL040W	GLK1	qiucokina	1.24	0.91	1.075	3	50812	52314	
135	YIRU33W	MGA2	chromati	1.44	0.7	1.074	9	416121	419462	
136	YUL130W	KPP1B	ridosome	1.45	0.7	1.072	4	229906	230527	
138	TLR249W	TEF3	translatic	1.26	0.87	1.067	12	636780	639914	
140	TGL031C	KPL24A	SUCOSOME	1.17	0.96	1.063	1	43/463	43/930	
142	TPL106C	33E1	31 U/ YCH	1.58	0.53	1.053	16	350189	352270	

146	YIL052C RP	2L34B	ribosome	1.5	0.59	1.048	9	256224	257061
147	YDR154C uni	know	unknown	1.03	1.05	1.039	4	768396	768746
148	YLR333C RP	S25B	ribosoma	0.46	1.61	1.039	12	795572	795898
149	YII 148W RP	PI 40A	ribosoma	1.41	0.66	1.036	9	68708	69528
150	VNI 2094 SS	R2	cytosolic	0.93	1 12	1 025	14	252058	253899
151	VNI 190V uni	know	unknown	1 14	0.91	1 024	14	282391	283005
154		11	unknown	0.80	1 14	1.024	8	276765	277769
155		1120	ribosoms	1 2	0.01	1.013	12	791142	791279
155	VCD202C DC		ando bot	1.2	0.01	0.004	7	1057770	1050720
157		562	tranclatic	1.00	0.93	0.995	10	152202	154200
100	TJLISOC III	Γ <u>2</u> Π2		1.37	0.01	0.993	10	153202	104309
160	TPL 1550 KI	P2	kinesin-r	0.90	1.03	0.992	10	23/213	209330
162	TBRITOWIE	.72	translatic	0.76	1.21	0.986	2	477630	479006
163	TPRU28W TH	P2	unknown	0.99		0.986	10	023522	02419/
164	YPR102C RP	111A	ribosome	1.11	0.86	0.984	16	/31221	/31/45
165	YGR192C TD	DH3	glycerald	1.12	0.85	0.983	7	882806	883804
166	YIL151C un	knonv	v		0.98	0.978	9	57338	60694
168	YCL020W tra	anspo	unknown	1.58	0.37	0.976	3	84714	86030
169	YHR080C un	know	unknown	0.92	1.02	0.97	8	262802	266839
170	YKL056C un	know	unknown	1.07	0.86	0.967	11	334054	334557
171	YLR134WPD	Ю5	pyruvate	1.03	0.9	0.966	12	410724	412415
173	YFR046C un	nknow	unknown	0.58	1.33	0.954	6	243061	244146
174	YIL053W RH	IR2	DL-glyce	0.89	1.01	0.951	9	255050	255865
175	YER165W PA	B1	cleavage	1.32	0.58	0.949	5	510369	512102
176	YPR156C TP	PO3	major fac	1.07	0.82	0.943	16	837904	839772
177	YPLO61W AL	D6	acetaldel	1.23	0.65	0.942	16	432583	434085
179	YGR293C un	know	unknown	1.38	0.49	0.935	7	1079881	1080342
180	YKL097W CW	NP2		0.96	0.9	0.933			
181	YGLOOSC PM	IA 1	olasma n	0.52	1.35	0.933	7	479906	482662
182	YNI 301C RP	N 188	ribosoma	1 29	0.58	0.931	14	63569	64561
185	VHR010W RP	27A	ribosoma	1 1	0.74	0.922	8	126513	127484
186	VOP232WMC	GF1	could che	1 20	0.56	0.022	15	774571	775257
188	VDI 110C un	know		0.96	0.00	0.021	4	246688	247611
101			alvorald	0.30	0.07	0.010	10	453370	454368
102		281	grycer alu	0.97	0.03	0.909	1	120501	141420
192			ribosomo	0.99	0.02	0.900	' 7	640277	640001
193	TGRUGOU RP			1.01	1.24	0.907	10	0403//	040901
194	YEDAOZW CP	251		0.48	1.34	0.907		97730	99400
195	YER18/WUN	IKNOW	KHS1 OVe	riap	0.9	0.903	5	500220	500001
196	YMR143V RP	2516A	ribosoma	1.02	0.78	0.902	13	552282	552902
197	YNL172W AP	7C1	anaphase	0.82	0.98	0.901	14	310633	3158/9
198	YALOO4W SS	SA1	unknown	0.92	0.88	0.899	1	140/58	141405
199	YOL098C un	know	unknown	0.79	1	0.895	15	132724	135837
201	YGL055W OL	_E1	delta-9-f	0.82	0.96	0.894	7	398625	400157
202	YML056C SN	NR54	unknown	1.57	0.21	0.89	13	162194	164176
203	YJL012C VT	rC4	unknown	0.63	1.14	0.888	10	411141	413087
204	YMR120C AD	DE17	5-aminoi	0.9	0.88	0.888	13	507501	509279
205	YGR027C RP	PS25A	ribosome	0.87	0.9	0.887	7	534126	534452
206	YGR148C RP	PL24B	ribosome	1.49	0.28	0.883	7	787306	787773
207	YPR097W un	nknow	unknown	1.82	-0.1	0.878	16	725391	728612
209	YFL039C AC	CT1	actin : cy	0.81	0.94	0.874	6	53261	54696
210	YDR368W YP	PR1	unknown	0.87		0.872	4	1213893	1214831
211	YGL189C RP	PS26A	ribosome	1.03	0.71	0.871	7	148233	148592
212	YGL123W RP	PS2	ribosome	1.09	0.65	0.871	7	277618	278382
213	YPL250C IC	Y2	unknown	1.45	0.29	0.868	16	74309	74719
215	YGL135W RP	PL1B	ribosoma	0.9	0.82	0.863	7	254644	255297
216	YLR262C un	nknow	<a targe<="" td=""><td>1.33</td><td>0.39</td><td>0.861</td><td>12</td><td>669468</td><td>669662</td>	1.33	0.39	0.861	12	669468	669662
217	YBLO3OC PE	T9	mitochor	1.47	0.25	0.86	2	163004	163960
221	YMR173V DDF	R48 induced I	0.85	0.86	0.856	13	608688	609980	
-----	----------------	----------------------	------	------	-------	----------	------------------	------------------	
222	YLR161W unk	nown	1.47	0.24	0.854	12	488998	489342	
223	YLR150W STM	11 unknown	0.79	0.91	0.851	12	440468	441289	
224	YLLO48C YBT	1 bile acid	1.26	0.44	0.85	12	41279	46264	
226	Y II 177W RPI	17B ribosome	1.04	0.64	0.842	10	90783	91654	
227	YBR181C RPS	6B ribosome	1 37	0.31	0.839	2	591671	592733	
228		11 alcohol d	0 41	1 26	0.000	15	159547	160593	
230		A8 unknown	0.41	1.20	0.007	13	608896	610080	
230	VMP085V unk	now unknown	0.01	1 24	0.033	13	437490	438788	
232	VNI 300W unk	now unknown	0.42	0.84	0.034	14	65743	66051	
232	VDD132W DDS	238 ribosoma	1 19	0.04	0.032	16	704060	795762	
234	VOD360C DDS	12 ribosome	0.45	1 2	0.023	15	1028186	1028617	
235	VI P193C unk	now unknown	1 28	0.38	0.020	12	540011	540538	
237	VBR145W ADH	15 alcohol d	1 01	0.50	0.027	2	533721	534776	
238		1A ribosoma	1 28	0.04	0.024	16	135780	136442	
230		20 ribosome	0.63	1 01	0.024	0	75409	75772	
233		Q saccharo	1 26	0.20	0.023	14	714045	715295	
241		3 Sacchard	0.49	1 16	0.023	11	502461	505024	
241		1 malonyl	0.40	0.64	0.019	15	756474	757920	
242		84 ribosoma	0.99	0.04	0.817	2	25252	36023	
246		1 histone L	0.95	0.7	0.013	4	014209	014702	
240		1 vacualar	1 02	0.07	0.009	4	126700	120002	
241	VI D201M upk		0.91	0.59	0.808	12	720025	721650	
240			U.OI	0.01	0.807	10	730025	260111	
249	VIDO20C DDI	154 ribocomo	1 21	0.01	0.007	10	205022	200111	
250		AOR ribosome	0.07	0.4	0.807	11	617620	202391 61020A	
251			1.04	0.74	0.800	7	276000	277252	
253	VDD074C TKL	1 transkot	0.44	1 14	0.790	16	570099 602701	577255	
254			0.44	0.72	0.794	10	104060	106226	
200			0.05	0.72	0.703	10	194909	190330	
250			1.04	0.53	0.704	13	079003	000232	
250		1 cytochrou	0.06	0.24	0.78	15	920309 AA7AA0	JZ1702	
209	VCD240C DEK	1 cytochiol	1 04	0.0	0.70	- 13	070766	440303	
263		1 translatic	1.04	0.51	0.774	1	1/2172	1/2159	
203			1 22	0.55	0.707		221550	222266	
204	VEDOGAC DDI	10A ribosome	1.33	0.19	0.756	3	414145	415220	
200	VI D206C CTS	1 ondochiti	0.00	0.01	0.755	12	700440	710126	
209		1 C bota li	0.99	0.52	0.754	12	400455	500607	
270	VCLO20M MOL	J G-Dela II	0.75	0.76	0.753	13	499400	500007	
2/1		12 UNKNOWN	1 10	0.0	0.75	3	122213	124172	
272	VOD155C unk		1.19	0.31	0.75	15	123227	627070	
2/3		10 sibeeoms	0.75	0.01	0.748	10	202020	02/9/0	
274	YCL147C DDU		0.50	0.91	0.740	7	202920	203333	
275	TGL147C RPL	12b upknown	1.15	0.34	0.740		1201544	1201015	
270			0.01	0.88	0.747	4	520540	521054	
2/9			0.33	1.15	0.742	10	229349	222060	
200			0.00	0.0	0.742	15	011004	332009	
201		/JI 1. translativ	0.64	0.74	0.74	15	700500	701066	
202	VI D2020 upt		0.04	0.63	0.737	10	700390 550106	550620	
203	VLDOANA DDS		0.97	0.5	0.733	12	242222	242250	
204	VDD2704 DAC		0.59	0.07	0.733	12	242233	243330	
200	VNI 2001A DOI		0.03	0.62	0.733	2 1 A	01213	102332	
200	VDI 2211AL DOD		0.73	0.2	0.731	14	122042	125422	
201			1.20	0.2	0.729	0	222724	133423	
200	VDD246M		1.10	0.20	0.729	3	333/24	JJ4JJJ 712712	
209			1.11	0.32	0.710	27	074070	076576	
291	TURZ4IL TAP		0.01	0.02	0.715	/	9/40/0	310210	

.

]

292	YOR102V unknow	unknown	0.29	1.13	0.709	15	516421	516771
293	YDR077V SED1	putative	0.75	0.67	0.709	4	600787	601803
296	YLR340W RPPO	ribosoma	0.7		0.705	12	805886	806824
297	YML026C RPS18B	ribosoma	1.26	0.15	0.704	13	222987	223828
298	YKL153W unknow	unknown	0.91	0.5	0.703	11	163602	164111
300	YNLOO6W LST8	unknown	1.07	0.33	0.702	14	620064	620975
303	YNL119W unknow	unknown	1.06	0.33	0.698	14	401037	402518
304	YAR073W IMD1	unknown	1.14	0.25	0.698	1	227728	228939
306	YDR450V RPS18A	ribosoma	1.05	0.34	0.697	4	1359912	1360787
307	YML107C unknow	n		0.7	0.696	13	55265	56425
308	YBR221C PDB1	ovruvate	1.21	0.18	0.692	2	665112	666212
309	YMI 007W YAP1	transcrip	0.73	0.65	0.691	13	253848	255800
310	YOR095C RKI1	ribose-5-	1 12	0.26	0.69	15	503550	504326
311	YKI 060C FBA1	aldolase	0.55	0.20	0 689	11	326050	327129
212	VNI 067W PPI 9R	ribosoma	1 23	0.00	0.000	14	499678	500253
214			0.25	1 12	0.005	2	50110	50604
215	VDD125M unknow	CURRENCE	0.23	1.12	0.000	16	797056	790220
313	VIL 122W CIMI	Suppress	0.09	0.05	0.007	0	120151	1205320
317	TILIZOW SIMI	ribesome	0.42	0.95	0.005	3	120131 550205	1293/0
318	YMR142U RPL13B	ribosome	0.87	0.5	0.684	13	550205	551200
320	YHRUZ3W MYU1	myosin r	0.39	0.97	0.68	8	151657	15/443
321	YNL241C ZWF1	glucose-(0.77	0.58	0.679	14	196425	19/942
323	YIL039W unknow	unknown	0.67	0.68	0.674	9	2/8425	2/9846
324	YMR297V PRC1	carboxyc	1.21	0.14	0.673	13	861922	863520
325	YNL160W YGP1	unknown	0.91	0.43	0.672	14	336542	337606
326	YDL051W YLA1	RNA binc	1.03	0.31	0.669	4	363951	364778
327	YOR127V RGA1	putative	1.31	0.03	0.669	15	561168	564191
330	YLL024C SSA2	cytosolic	0.78	0.55	0.664	12	95565	97484
331	YOR122C PFY1	profilin :	1.25	0.07	0.661	15	552296	552885
332	YDR248C unknow	unknown	0.66		0.66	4	9577 49	958330
333	YER110C KAP123	beta-kar	0.66		0.66	5	378758	382099
334	YDL014W NOP1	fibrillarin	0.68	0.64	0.66	4	427360	428343
335	YOR261C RPN8	26S prot	1.24	0.07	0.658	15	815911	816927
336	YKLO80W VMA5	vacuolar	0.81	0.51	0.657	11	284672	285850
337	YPRO29C APL4	AP comp	1.43	-0.1	0.656	16	624464	626962
338	YGL215W CLG1	cyclin-lik	1.05	0.26	0.656	7	87979	89337
339	YGR234V YHB1	flavoherr	0.82	0.5	0.656	7	959897	961096
341	YIL078W THS1	tRNA svr	0.83	0.48	0.653	9	212496	214700
342	YKL181WPRS1	phosphor	0.41	0.9	0.653	11	107318	108601
343	YAL023C PMT2	dolichyl r	0.84	0.46	0.652	1	106274	108550
344	YOR317V FAA1	long chai	1.03	0.28	0.652	15	909334	911436
345	YII 105C unknow	unknown	1 18	0.12	0.65	q	167578	169638
346	VDP050C TPI1	triosenho	0 44	0.86	0.65	Ă	555721	556467
347	VIPO35C unknow	unknown	0.44	0.00	0.05	ā	A21022	A21787
240	VMD192C DCM1	outativo	0.33	1 15	0.040	12	624521	625166
340			1.00	1.15	0.044	14	24047	025100
349	TNL32/WEGIZ	UNKNOWN	1.00	0.2	0.043	14	24047	2/1/2
350	TILUSOC UNKNOW		0.64	0.00	0.042	9	200150	200458
351	VILIASE SSLZ	irin ne	0.6	0.68	0.641	9	80510	83041
352	YNLU/ IWLAI I	ainyaroiii	0.95	0.33	0.641	14	491520	492968
353	YUR312C RPL20B	ribosome	1.24	0.04	0.641	15	900241	901172
354	YILTU4C SHQ1	unknown	0.91	0.37	0.639	9	169979	171502
355	YPR181C SEC23	vesicle cr	1.1	0.18	0.637	16	897356	899662
356	YBL045C COR1	ubiquinoi	0.85	0.42	0.635	2	134106	135479
358	YMR181C unknow	unknown	0.86	0.41	0.634	13	623615	624079
359	YBR286W APE3	vacuolar	0.63		0.632	2	774580	776271
360	YPR145WASN1	asparaqii	1.01	0.25	0.629	16	822615	824333
361	YLR451WLEU3	transcrip	0.83	0.42	0.627	12	1036087	1038747

362	YLR441C R	RPS1A	ribosome	0.8	0.45	0.627	12	1018135	1018902
363	YPL198W R	RPL7B	ribosome	1.06	0.19	0.626	16	173151	174701
364	YOR326V N	AYO2	myosin, i	0.87	0.38	0.625	15	925712	930436
365	YCL037C S	SRO9	actin fila	0.87	0.38	0.625	3	57347	58747
366	YBR150C T	BS1	unknown	0.71	0.54	0.625	2	541168	544452
367	YNL104C L	EU4	2-isopror	0.85	0.4	0.624	14	424892	426751
368	YDL172C u	Inknow	unknown	1.01	0.24	0.623	4	148608	149087
369	YGR071C u	Inknowi	n		0.62	0.623	7	631475	634057
370	YPLO82C N	IOT1	putative	1.14	0.1	0.621	16	398475	404078
373	YOR187V T	UF1	translatic	1.08	0.15	0.617	15	684028	685341
375	YMR008C P	PLB1	phosphol	0.86	0.37	0.616	13	280590	2825 84
376	YMR061V R	RNA14	cleavage	0.61		0.614	13	392754	394787
377	YJR123W R	RPS5			0.61	0.614	10	651590	652267
380	YNL228W u	Inknow	unknown	0.61		0.614	14	220644	221420
381	YMR295C u	Inknow	unknown	1.11	0.11	0.611	13	858297	858890
383	YDL140C R	RPO21	RNA poly	0.57	0.65	0.608	4	205361	210562
384	YOR167C R	RPS28A	ribosome	1.1	0.11	0.608	15	648802	649005
386	YMR011V H	IXT2	hexose p	1.14	0.07	0.607	13	288078	289703
387	YCL030C H	1IS4	histidinol	1.11	0.1	0.604	3	65 906	68305
388	YPL112C P	EX25	unknown	0.93	0.28	0.604	16	337435	338619
389	YPR035W G	GLN1	glutamine	synt	0.6	0.604	16	642203	643315
390	YJL076W N	NET1	unknown	1.15	0.06	0.604	10	294941	298510
391	YOL139C 0	DC33	translatic	0.48	0.73	0.603	15	60382	61023
394	YGR124V A	SN2	asparaqii	1.06	0.14	0.601	7	739938	741656
395	YBL002WH	ITB2	histone F	1.18	0.01	0.599	2	236455	236850
397	YPRO43W R	RPL43A	ribosome	1.24	-0	0.597	16	654161	65 4842
398	YILO74C S	SER33	3-phospt	0.87	0.32	0.597	9	221078	222487
399	YBR121C G	GRS1	tRNA syr	0.94	0.25	0.596	2	481323	483326
402	YOL036W		unknown	0.42	0.77	0.594	15	256743	259028
404	YCL025C A	GP1	amino ac	1.34	-0.2	0.588	3	75985	77886
405	YDL191WR	RPL35A	ribosome	1.19	-0	0.587	4	117665	118518
406	YOL100W P	PKH2	protein k	0.82	0.36	0.586	15	129236	132481
410	YOR096V R	RPS7A	ribosome	0.58		0.585	15	505792	506765
411	YKR057WR	RPS21A	ribosoma	0.53	0.64	0.584	11	551293	551878
413	YGL036W N	ATC2	unknown	0.52	0.65	0.583	7	428597	431326
414	YPL014W		unknown	1.24	-0.1	0.582	16	527542	528687
415	YCR024C P	MP1	regulates	0.48	0.69	0.581	3	162653	162775
416	YKR042WU	JTH1	unknown	0.91	0.25	0.581	11	518909	520261
417	YGR155V C	CYS4	cystathio	0.82	0.34	0.58	7	798537	800060
421	YDL195W S	SEC31	vesicle c	1.29	-0.1	0.575	4	107209	111030
424	YJL121C R	RPE1	Ribulose-	0.99	0.16	0.574	10	190074	190790
427	YMR309C N	IIP1	unknown	1.05	0.1	0.574	13	892988	895426
428	YCLOO9C II	LV6	acetolact	0.99	0.15	0.572	3	104230	105159
430	YILO47C S	SYG1	pheromo	0.81	0.33	0.57	9	265114	267822
431	YCR048WA	RE1	acyl-CoA	0.55	0.59	0.57	3	210660	212492
432	YMR145C		unknown	0.63	0.51	0.569	13	554792	556474
433	YOR198C B	BFR1	unknown	1.3	-0.2	0.568	15	718651	720063
434	YKR059WT	TIF1	translatic	0.4	0.73	0.566	11	554623	555810
435	YDL055C P	PSA1	mannose	0.58	0.56	0.566	4	355673	356758
439	YNL178W	RPS3	ribosome	0.29	0.84	0.563	14	302677	303399
440	YNLO45W u	Inknow	unknown	1.33	-0.2	0.563	14	542959	544974
442	YLR264WR	RPS28B	ribosome	0.48	0.65	0.563	12	673131	673334
444	YPL117C	DI1	isopentei	0.56		0.556	16	327863	328729
445	YJR096W				0.56	0.556	10	610886	611734
447	YBR156C S	SLI15	unknown	0.86	0.25	0.553	2	551063	553159
448	YJLO54W T	'IM54	inner me	0.75	0.36	0.552	10	333961	335397

449	YLR293C GSP1	GTP-binc	0.49	0.61	0.549	12	720771	721430
452	YGR243W	unknown	0.55		0.546	7	977331	977771
453	YGR138C	major fai	0.99	0.1	0.545	7	763756	765600
454	YMR046C	unknown	0.72	0.37	0.545	13	361304	362626
455	YML040W	unknown	0.82	0.26	0.543	13	196628	197950
457	YBL076C ILS1	tRNA syr	0.8	0.29	0.543	2	81038	84256
458	YCLOO8C STP22	unknown	0.03	1.06	0.543	3	105307	106464
459	YGL245W	tRNA syr	0.83	0.25	0.541	7	38975	41149
460	YBL075C SSA3	cytosolic	0.82	0.26	0.539	2	84494	86443
461	YGR224W	major fac	0.89	0.19	0.538	7	942798	944639
462	YHL019C APM2	AP-2 con	0.64	0.43	0.537	8	67727	6954 4
465	YJR013W	unknown	0.54		0.536	10	460364	461281
466	YML045W	unknown	0.58	0.5	0.536	13	184461	189729
467	YFL045C SEC53	phosphoi	0.81	0.26	0.535	6	43628	44392
468	YDR408C ADE8	phosphoi	0.71	0.36	0.535	4	1288204	1288848
470	YER120W SCS2	regulator	0.82	0.25	0.533	5	401131	401865
471	YHR018C ARG4	argininos	0.86	0.2	0.533	8	140002	141393
472	YPR185W APG13	unknown	1.01	0.06	0.532	16	907213	909429
473	YOR099V KTR1	mannosy	1.06	0	0.532	15	511823	513004
474	YLR044C PDC1	pyruvate	0.55	0.52	0.531	12	232391	234082
475	YBR086C IST2	unknown	0.91	0.15	0.531	2	420160	423000
476	YBL101W-A	unknown	1.01	0.04	0.528	2	29927	31243
477	YOR230V WTM1	transcrip	0.92	0.14	0.528	15	770798	772111
478	YOL075C	putative	0.14	0.92	0.528	15	189657	193541
479	YPL281C ERR2	unknown	0.76	0.3	0.528	16	9557	10870
481	YFL022C FRS2	tRNA syr	0.86	0.19	0.523	6	93497	95008
482	YDR074W TPS2	trehalose	0.88	0.16	0.522	4	593 887	596577
483	YHLOO1W RPL14B	ribosome	0.82	0.23	0.521	8	104270	105084
484	YEL034W HYP2	translatic	0.77	0.28	0.52	5	85676	86149
485	YOR129C	unknown	1.38	-0.3	0.519	15	566875	569556
487	YLR109W AHP1	alkyl hyd	0.44	0.59	0.519	12	368782	369312
488	YJR024C	unknown	1.4	-0.4	0.518	10	469918	470652
489	YBR283C SSH1	ER prote	1.14	-0.1	0.516	2	768901	770373
490	YJR059W			0.52	0.516	10	545475	547931
491	YDL015C	unknown	0.54	0.5	0.516	4	425998	426930
492	YHR019C DED81	tRNA syr	0.85	0.18	0.512	8	141885	143549
493	YDR086C SSS1	ER prote	0.59	0.42	0.508	4	616921	617163
494	YLR413W	unknown	0.8	0.21	0.507	12	951150	953177
495	YAR075W	unknown	1.21	-0.2	0.507	1	228830	229303
496	YHL020C OPI1	negative	0.51		0.506	8	66238	67452
497	YPR021C	unknown	0.51		0.506	16	600644	603352
498	YER055C HIS1	ATP phos	0.51		0.506	5	264891	265784
499	YDR471W RPL27B	ribosome	0.78	0.23	0.504	4	1401759	1402553
500	YFR031C RPL2A	ribosome	0.24	0.77	0.502	6	220494	221405

,

;

)

j

Gene	Microarray	1 Microarray 2	QPCR 1	QPCR 2
CUP1	0.73	-0.42	6.32	2.58
HAC1	1.07	1.41	6.63	4.95
NOG2	2.06	1.06	4.91	4.25
PGK1	0.16	0.51	5.78	5.17
RPC11	-0.97	-2.56	5.00	4.64
RPL11A	1.11	0.86	6.60	5.67
RPL31	0.42	-0.10	6.64	4.81
RPS22A	0.77	0.23	5.47	5.88
RPS4B	0.41	0.42	5.21	5.25
SCR1	3.07	3.55	9.59	9.45
SEC14	0.20	-0.84	5.09	4.64
SNR189	0.90	0.73	6.02	7.85
U2	1.36	2.06	4.75	5. 78
U3	2.34	3.00	6.54	6.78
- U4	2.52	2.60	7.78	8.71
U5	1.43	2.60	6.55	8.32
U6	4.14	4.72	10.97	11.04
UBC5	-0.62	-1.22	4.01	4.49

Table 8 - Microarray and QPCR data for 18 chosen RNAs

1

-

177

ı.

₩ -# -#

]

•

;

.

EPILOGUE

This thesis work represents several different approaches for investigating the mechanisms of how cells assemble RNAs into RNPs that have broadened our understanding of RNP biogenesis with several unexpected outcomes.

Divergent snRNP biogenesis pathways

Restriction of snRNP biogenesis to the nucleus in yeast was unexpected given that the major assembly steps of Sm core binding, 5' cap hypermethylation and 3' end trimming that occur in the cytoplasm of metazoan cells all occur in yeast. Factors identified to be involved in 3' end processing in yeast, the cleavage factor Rn1p and the 3' end precursor stabilizing factor Lhp1p, both have mammalian homologs - RNase III and La (Yoo and Wolin 1994; Elela et al. 1996). The 5' monomethyl cap, the cap binding complex and the trimethyl cap recognition elements for PHAX and snurportin are present in yeast (Huber et al. 1998; Ohno et al. 2000), suggesting that processing occurs, but diverges only at nucleocytoplasmic transport. However, for Sm core assembly, the symmetric dimethylarginines in the C terminal tails of SmB/B', SmD1, SmD3 and Lsm4 are absent in yeast Sm and Lsm proteins (Brahms et al. 2000). Likewise, SMN that binds the dimethylarginines of Sm proteins to mediate Sm assembly is absent in yeast (Friesen et al. 2001). Intriguingly, the C terminal tails of SmB and SmD1 in yeast display basic nuclear localization properties (Bordonne 2000), suggesting that yeast Sm proteins can and may enter the nucleus in the absence of RNA. While metazoan Sm core assembly on U snRNAs using purified proteins occurs spontaneously in vitro (Raker et al. 1996), core assembly in vivo is mediated by SMN and may be regulated by methylation (Brahms et al. 2001). In the same way that eukaryotes have compartmentalized DNA from the translational machinery for regulation opportunities and insurance that RNA synthesis is completed before translation can occur, cytoplasmic snRNP biogenesis may be a quality control mechanism to prevent aberrant snRNPs from entering the splicing pathway. Notably, Xenopus oocytes are known to store large quantities of cytoplasmic snRNPs for developmentally regulated bursts of splicing activity.

¥

How then does yeast insure such a mechanism? One possibility is that the nucleolus is the site for snRNP assembly and biogenesis in *S. cerevisiae*. The trimethylating enzyme Tgs1p is localized to the nucleolus, and U1 snRNA precursors accumulate in the nucleolus in a $tgs1\Delta$ strain (Mouaikel et al. 2002), suggesting that unprocessed precursors may be blocked there. The 3' end processing factors Rnt1p and Lhp1p have also been localized to the nucleus and do not appear to be excluded from the nucleolus (Huh et al. 2003), suggesting that other snRNP biogenesis steps may also be shunted to the nucleolus in yeast.

Elucidation of such a pathway may broaden our understanding snRNP quality control. Current *in situ* hybridization techniques do not readily allow for visualization of nucleolar localization in the presence of intense nuclear signal. However, live visualization of RNA localization by introducing a protein binding site in the RNA and a GFP-conjugated RNA binding protein in combination with Fluorescence Resonance Energy Transfer (FRET) techniques may allow for snRNA nucleolar visualization (Brodsky and Silver 2000). By designing nucleolar snRNP processing factors such as Tgs1p as the acceptor molecule and snRNAs bound by a GFP labelled protein as the donor molecule, this may allow specific visualization of nucleolar snRNAs. In combination with snRNP biogenesis mutants, it may then be possible to identify the location and order of Sm core binding, trimethylation and 3' end trimming steps. Intriguingly, U3 snoRNA which is similarly trimethylated at its cap, but is not Sm-associated, has been shown to be targeted to the nucleolus by specific C'/D cis sequences (Narayanan et al. 1999). Finding the determinants for snRNA nucleolar localization and the requirements for return to the nucleus for splicing may reveal the steps necessary for proper quality control of snRNP assembly in *S. cerevisiae*.

The interface between snRNP biogenesis and snRNP recycling during splicing in S. cerevisiae

From our work and others, snRNA synthesis, assembly, function and regeneration may occur within the nucleoplasm in *S. cerevisiae*. One view asserts that steps required to insure proper

biogenesis of snRNPs are common with steps for regenerating snRNPs for subsequent rounds of splicing and that these processes may utilize common factors. Previously, function in snRNP biogenesis was assigned to factors affecting stability of snRNAs, such as Sm proteins (Rymond 1993; Roy et al. 1995), and recycling function was assigned to 'late' acting factors such as Prp24p involved in annealing of mature U4 and U6 snRNPs (Raghunathan and Guthrie 1998). However a new snRNP assembly and snRNP recycling prototype factor has been found. Sad1p, which was identified as a snRNP biogenesis factor involved in formation of newly synthesized U4/U6 snRNP, also displays defects in triple snRNP addition (Lygerou et al. 1999). This suggests that there are step(s) during snRNP assembly which when defective do not lead to degradation, but rather lead to dire consequences during assembly of the spliceosome. In contrast, in the absence of Brr1p, newly synthesized snRNPs that are improperly assembled are seemingly rapidly targeted for degradation masking any later function in splicing. To identify and characterize the steps during snRNP assembly required for proper spliceosome assembly, development of biochemical assays is imperative. The current methods for examining snRNP status and spliceosome assembly by native gel are crude and cannot detect subtle changes in composition or structure. Adaptation of recent advances in affinity purification and mass spec analysis may begin to identify changes in composition of snRNPs (Gottschalk et al. 1999; Stevens and Abelson 1999; Stevens et al. 2001). However, there is evidence that the spliceosome associates with pre-mRNA as a whole complex known as the penta-snRNP (Stevens et al. 2002), suggesting that the composition of such a complex may not change significantly during the course of the splicing pathway. Multiple rearrangements in snRNA:snRNA or snRNA:protein interactions occur during spliceosome assembly (Staley and Guthrie 1998) and are likely to occur during biogenesis. The fact that a GTPase (Snul14p) and an ATPase (Sub2p) genetically interact with BRR1 suggest that conformational rearrangements may be required for biogenesis. Indeed, the allele specific mutant that is synthetic with $brr1\Delta$, snul14-60, displays an aberrant U5 snRNP whose composition has yet to be determined (Brenner and Guthrie personal communication).

Other methodologies for examining spliceosome assembly include affinity purification of premRNA associated spliceosomes and probing of snRNA composition by QPCR (Staley and Guthrie 1999) (Brenner and Guthrie personal communication). However, if critical assembly steps occur when the spliceosome is not yet associated with pre-mRNA, development of new methodologies will be required to further our understanding of snRNP assembly, biogenesis and recycling steps and their impact on splicing.

Novel RNAs

The sequencing of genomes and development of computational algorithms has caused a boom in the identification of new RNAs. In the past several years, these methods have been used to identify multitudes of novel, noncoding RNAs in various organisms, many with unknown function (Eddy 2002). In contrast, we have used a biochemical approach to identify a number of intergenic regions that are likely to contain novel noncoding RNAs. Mapping the start and end sequences of these RNAs if the first step towards identification. Although we attempted to map RNAs in a few intergenic regions by making a Northern probe to the entire region and looking for stable RNAs, we observed multiple bands (data not shown). A reverse transcription primer 'walk' across the region with subsequent PCR analysis may identify the sizes of the RNAs. Identification of these novel noncoding RNAs may be particularly challenging since they may be low in abundance and/or short in length. This may explain why they have previously escaped detection by other methods in contrast to ours, which includes an enrichment step. The next step will be to knockout the identified novel RNAs and attempt to assign function.

Novel function for Lhp1p with noncoding RNAs

We observe nearly class-wide association of Lhp1p with snoRNAs and tRNAs. Directed interactions with the remaining snoRNA and tRNAs could be assayed to determine if Lhp1p association is indeed class-wide. Repeating the Lhp1p IP microarrays with lower O.D. growth conditions may reveal such interactions since Lhp1p is downregulated at diauxic shift (DeRisi et al. 1997) and Lhp1p association with tRNA^{Ser}(CGA) is only observed at O.D.s below 0.5 (Wolin

personal communication). It also remains to be seen if Lhp1p plays a universal role in stabilization of precursors or if Lhp1p harbors different roles for different snoRNAs and tRNAs. Lhp1p has been recently shown to affect the aminoacylation of some tRNAs (Chakshusmathi et al. 2003). We find association with a tRNA^{Leu}(CAA) that doesn't display processing defects, suggesting a different role for Lhp1p with this tRNA.

Function for Lhp1p in translation during the unfolded protein response

We have accumulated evidence suggesting that Lhp1p may be involved in modulating translation of Hac1p. To test this, one can examine translation rates of Hac1p in wildtype and *lhp1* Δ extracts. Both spliced and unspliced HAC1 mRNA have been shown to be associated with polysomes (Cox and Walter 1996). To see if Lhp1p impairs polysome association of HAC1 mRNA, one can examine the location of HAC1 mRNA in wildtype and *lhp1* Δ polysome profiles. Since it has been shown that the intron:5'UTR interaction attenuates translation (Ruegsegger et al. 2001) and the absence of Lhp1p causes a decrease in translation of Hac1p, this suggests that Lhp1p may be involved in release of translational inhibition upon splicing. Walter and colleagues have observed that hyperstabilization of the intron:5'UTR interaction delays the kinetics of Hac1p translation (Aragon and Walter personal communication). To see if Lhp1p is involved in unwinding of this helix, one can examine induction of the UPR in the absence of Lhp1p with the hyperstabilized HAC1 mRNA. Lastly, Lhp1p may be playing a role upstream of translation, but downstream of RNA processing/splicing, for example in HAC1 mRNA export. Localization of HAC1 mRNA in *lhp1* Δ can be examined by *in situ* hybridization (Chapman and Walter 1997).

l

N. F.

ų,

ř

Function for Lhp1p with the ribosomal protein genes and other mRNAs

Our finding that Lhp1p associates with ribosomal protein genes in yeast was unexpected, because while mammalian La is associated with 5' TOP mRNAs (Cardinali et al. 2003), which include ribosomal protein genes, TOP sequences are not believed to exist in yeast (Powers and Walter 1999). This suggests that either Lhp1p is binding ribosomal protein genes via a different element

in yeast or that Lhp1p is perhaps binding a structural element conserved between yeast and mammalian RPGs. Mapping the binding location of Lhp1p in these mRNAs would begin to address this question. One could roughly map the interaction domain by immunoprecipitating Lhp1p associated RNAs and using site directed RNase H cleavage at different locations of the mRNAs during the immunoprecipitation to crudely map whether Lhp1p is associated with the 5' UTR, the body of the message, the intron or the 3' UTR. Various HAC1 and ACT1 chimeras exist in the Walter lab for examining the Lhp1 binding site of HAC1 mRNA (Ruegsegger et al. 2001). Preliminary results examining Lhp1p association with HAC1 RNA during induction of the UPR, suggested that Lhp1p is not associated exclusively with the intron because association with both the pre-mRNA and mature mRNA is maintained (data not shown). Once a region is narrowed down, computational analysis may be used to reveal a sequence or structural motif. In addition, while La is believed to modulate translation of TOP mRNAs in mammalian systems (Cardinali et al. 2003), yeast ribosomal protein genes are known to be transcriptionally regulated (Powers and Walter 1999). Therefore, whether Lhp1p association with ribosomal protein genes reflects a novel transcriptionally related function or a translationally related function has yet to be determined.

Global regulation of gene expression by RNP assembly

Lastly, our experiments bring to light an intriguing connection between Lhp1p associated RNAs. These RNAs are not only part of the translational apparatus (5S rRNA and tRNAs) and involved in processing RNAs in the translational apparatus (snoRNAs and RNase P), but include transcripts encoding the protein components of the translational machinery (RPGs). Lhp1p may contribute to the coordination of both RNA and protein components of translation for general cell metabolism. Understanding the coordinated relationship between regulating cell growth and assembly of RNP machinery will require continued study.

REFERENCES

- Abou Elela, S. and M. Ares, Jr. (1998). "Depletion of yeast RNase III blocks correct U2 3' end formation and results in polyadenylated but functional U2 snRNA." <u>Embo J</u> 17(13): 3738-46.
- Achsel, T., H. Brahms, et al. (1999). "A doughnut-shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro." <u>Embo J</u> 18(20): 5789-802.
- Aguilera, A. (2002). "The connection between transcription and genomic instability." <u>Embo J</u> 21(3): 195-201.
- Ali, N., G. J. Pruijn, et al. (2000). "Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation." J Biol Chem 275(36): 27531-40.
- Allmang, C., J. Kufel, et al. (1999). "Functions of the exosome in rRNA, snoRNA and snRNA synthesis." <u>Embo J</u> 18(19): 5399-410.
- Altschul, S. F., W. Gish, et al. (1990). "Basic local alignment search tool." J Mol Biol 215(3): 403-10.
- Amberg, D. C., A. L. Goldstein, et al. (1992). "Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA." <u>Genes Dev</u> 6(7): 1173-89.
- Ball, C. A., H. Jin, et al. (2001). "Saccharomyces Genome Database provides tools to survey gene expression and functional analysis data." <u>Nucleic Acids Res</u> 29(1): 80-1.
- Bartels, C., H. Urlaub, et al. (2003). "Mutagenesis suggests several roles of Snu114p in premRNA splicing." J Biol Chem 278(30): 28324-34.
- Bordonne, R. (2000). "Functional characterization of nuclear localization signals in yeast Sm proteins." <u>Mol Cell Biol</u> **20**(21): 7943-54.
- Bouveret, E., G. Rigaut, et al. (2000). "A Sm-like protein complex that participates in mRNA degradation." <u>Embo J</u> 19(7): 1661-71.

- Brachat, S., F. S. Dietrich, et al. (2003). "Reinvestigation of the Saccharomyces cerevisiae genome annotation by comparison to the genome of a related fungus: Ashbya gossypii." <u>Genome Biol</u> 4(7): R45.
- Brahms, H., L. Meheus, et al. (2001). "Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein." Rna 7(11): 1531-42.
- Brahms, H., J. Raymackers, et al. (2000). "The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies." J Biol Chem 275(22): 17122-9.
- Brodsky, A. S. and P. A. Silver (2000). "Pre-mRNA processing factors are required for nuclear export." <u>Rna</u> 6(12): 1737-49.
- Calvo, O., R. Cuesta, et al. (1999). "GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae." Mol Cell Biol 19(6): 4167-81.
- Cardinali, B., C. Carissimi, et al. (2003). "La protein is associated with terminal oligopyrimidine mRNAs in actively translating polysomes." J Biol Chem 278(37): 35145-51.
- Chakshusmathi, G., S. D. Kim, et al. (2003). "A La protein requirement for efficient pre-tRNA folding." <u>Embo J</u> 22(24): 6562-72.
- Chan, S. P., D. I. Kao, et al. (2003). "The Prp19p-associated complex in spliceosome activation." Science 302(5643): 279-82.
- Chanfreau, G., S. A. Elela, et al. (1997). "Alternative 3'-end processing of U5 snRNA by RNase III." <u>Genes Dev</u> 11(20): 2741-51.
- Chang, H. J., E. W. Jones, et al. (2002). "Role of the unfolded protein response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae." <u>Genetics</u> 162(1): 29-43.

Chapman, R. E. and P. Walter (1997). "Translational attenuation mediated by an mRNA intron." <u>Curr Biol</u> 7(11): 850-9.

Cheng, S. C. and J. Abelson (1987). "Spliceosome assembly in yeast." Genes Dev 1(9): 1014-27.

- Cherry, J. M., C. Ball, et al. (1997). "Genetic and physical maps of Saccharomyces cerevisiae." Nature 387(6632 Suppl): 67-73.
- Clark, T. A., C. W. Sugnet, et al. (2002). "Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays." <u>Science</u> **296**(5569): 907-10.
- Cliften, P., P. Sudarsanam, et al. (2003). "Finding functional features in Saccharomyces genomes by phylogenetic footprinting." <u>Science</u> **301**(5629): 71-6.
- Collins, C. A. and C. Guthrie (1999). "Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome." <u>Genes</u> <u>Dev</u> 13(15): 1970-82.
- Collins, C. A. and C. Guthrie (2000). Genetic and biochemical analysis of interactions involving Prp8 and RNA at the catalytic core of the spliceosome. Ph. D. Thesis, University of California, San Francisco.

ş

ł

- Conde, J. and G. R. Fink (1976). "A mutant of Saccharomyces cerevisiae defective for nuclear fusion." <u>Proc Natl Acad Sci U S A</u> 73(10): 3651-5.
- Cox, J. S., C. E. Shamu, et al. (1993). "Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase." <u>Cell</u> **73**(6): 1197-206.
- Cox, J. S. and P. Walter (1996). "A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response." <u>Cell</u> 87(3): 391-404.
- Crosio, C., P. P. Boyl, et al. (2000). "La protein has a positive effect on the translation of TOP mRNAs in vivo." <u>Nucleic Acids Res</u> 28(15): 2927-34.
- DeRisi, J. L., V. R. Iyer, et al. (1997). "Exploring the metabolic and genetic control of gene expression on a genomic scale." <u>Science</u> 278(5338): 680-6.

Duncan, K., J. G. Umen, et al. (2000). "A putative ubiquitin ligase required for efficient mRNA export differentially affects hnRNP transport." <u>Curr Biol</u> **10**(12): 687-96.

Eddy, S. R. (2002). "Computational genomics of noncoding RNA genes." Cell 109(2): 137-40.

- Elela, S. A., H. Igel, et al. (1996). "RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site." <u>Cell</u> 85(1): 115-24.
- Fan, H. Y., R. J. Merker, et al. (2001). "High-copy-number expression of Sub2p, a member of the RNA helicase superfamily, suppresses hpr1-mediated genomic instability." <u>Mol Cell Biol</u> 21(16): 5459-70.
- Fischer, U., Q. Liu, et al. (1997). "The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis." <u>Cell</u> **90**(6): 1023-9.
- Fischer, U. and R. Luhrmann (1990). "An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus." <u>Science</u> 249(4970): 786-90.
- Flach, J., M. Bossie, et al. (1994). "A yeast RNA-binding protein shuttles between the nucleus and the cytoplasm." Mol Cell Biol 14(12): 8399-407.
- Fornerod, M., M. Ohno, et al. (1997). "CRM1 is an export receptor for leucine-rich nuclear export signals." <u>Cell</u> **90**(6): 1051-60.
- Friesen, W. J., S. Massenet, et al. (2001). "SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets." <u>Mol Cell</u> 7(5): 1111-7.
- Fromont-Racine, M., A. E. Mayes, et al. (2000). "Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins." Yeast 17(2): 95-110.
- Gasch, A. P., P. T. Spellman, et al. (2000). "Genomic expression programs in the response of yeast cells to environmental changes." <u>Mol Biol Cell</u> 11(12): 4241-57.
- Gatfield, D. and E. Izaurralde (2002). "REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export." J Cell Biol 159(4): 579-88.
- Gatfield, D., H. Le Hir, et al. (2001). "The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila." <u>Curr Biol</u> 11(21): 1716-21.

- Gavin, A. C., M. Bosche, et al. (2002). "Functional organization of the yeast proteome by systematic analysis of protein complexes." <u>Nature</u> **415**(6868): 141-7.
- Gonzalez, T. N., C. Sidrauski, et al. (1999). "Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway." <u>Embo J</u> 18(11): 3119-32.

Gorlich, D. and I. W. Mattaj (1996). "Nucleocytoplasmic transport." <u>Science</u> 271(5255): 1513-8. Gottschalk, A., G. Neubauer, et al. (1999). "Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP." <u>Embo J</u> 18(16): 4535-48.

- Guthrie, C. and G. R. Fink, Eds. (1991). <u>Methods in Enzymology</u>. Guide to Yeast Genetics and Molecular Biology. San Diego, CA, Academic Press.
- Hamm, J., E. Darzynkiewicz, et al. (1990). "The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal." <u>Cell</u> 62(3): 569-77.
- Hamm, J., M. Kazmaier, et al. (1987). "In vitro assembly of U1 snRNPs." <u>Embo J</u> 6(11): 3479-85.
- Hannus, S., D. Buhler, et al. (2000). "The Schizosaccharomyces pombe protein Yab8p and a novel factor, Yip1p, share structural and functional similarity with the spinal muscular atrophy-associated proteins SMN and SIP1." <u>Hum Mol Genet</u> 9(5): 663-74.

: .

- Hartwell, L. H., C. S. McLaughlin, et al. (1970). "Identification of ten genes that control ribosome formation in yeast." <u>Mol Gen Genet</u> 109(1): 42-56.
- Hieronymus, H. and P. A. Silver (2003). "Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery." <u>Nat Genet</u> 33(2): 155-61.
- Holcik, M. and R. G. Korneluk (2000). "Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation." <u>Mol Cell Biol</u> 20(13): 4648-57.
- Holstege, F. C., E. G. Jennings, et al. (1998). "Dissecting the regulatory circuitry of a eukaryotic genome." <u>Cell</u> 95(5): 717-28.

- Huber, J., U. Cronshagen, et al. (1998). "Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure." <u>Embo J</u> 17(14): 4114-26.
- Huh, W. K., J. V. Falvo, et al. (2003). "Global analysis of protein localization in budding yeast." Nature 425(6959): 686-91.
- Intine, R. V., S. A. Tenenbaum, et al. (2003). "Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs." <u>Mol</u> <u>Cell</u>.
- Iyer, V. R., C. E. Horak, et al. (2001). "Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF." <u>Nature</u> **409**(6819): 533-8.
- Jarmolowski, A., W. C. Boelens, et al. (1994). "Nuclear export of different classes of RNA is mediated by specific factors." <u>J Cell Biol</u> 124(5): 627-35.
- Jensen, T. H., J. Boulay, et al. (2001). "The DECD box putative ATPase Sub2p is an early mRNA export factor." <u>Curr Biol</u> 11(21): 1711-5.

Į

- Jimeno, S., A. G. Rondon, et al. (2002). "The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability." <u>Embo J</u> 21(13): 3526-35.
- Johnston, M., L. Hillier, et al. (1997). "The nucleotide sequence of Saccharomyces cerevisiae chromosome XII." <u>Nature</u> **387**(6632 Suppl): 87-90.
- Jurica, M. S. and M. J. Moore (2003). "Pre-mRNA splicing: awash in a sea of proteins." Mol Cell 12(1): 5-14.
- Kadowaki, T., S. Chen, et al. (1994). "Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants." <u>J Cell Biol</u> **126**(3): 649-59.
- Kawahara, T., H. Yanagi, et al. (1997). "Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response." Mol Biol Cell 8(10): 1845-62.
- Keene, J. D. and S. A. Tenenbaum (2002). "Eukaryotic mRNPs may represent posttranscriptional operons." <u>Mol Cell</u> 9(6): 1161-7.

- Kellis, M., N. Patterson, et al. (2003). "Sequencing and comparison of yeast species to identify genes and regulatory elements." <u>Nature</u> **423**(6937): 241-54.
- Keys, R. A. and M. R. Green (2001). "Gene expression. The odd coupling." <u>Nature</u> 413(6856): 583, 585.
- Kim, C. H., D. E. Ryan, et al. (1997). "Site-specific deoxynucleotide substitutions in yeast U6 snRNA block splicing of pre-mRNA in vitro." <u>Embo J</u> 16(8): 2119-29.
- Kim, Y. K., S. H. Back, et al. (2001). "La autoantigen enhances translation of BiP mRNA." Nucleic Acids Res 29(24): 5009-16.

ł

- Kistler, A. L. and C. Guthrie (2001). "Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for sub2, an essential spliceosomal ATPase." <u>Genes Dev</u> 15(1): 42-9.
- Kistler, A. L. and C. Guthrie (2001). Genetic and biochemical analysis of the role of the DEAD-Box protein Sub2 in pre-mRNA splicing in S. cerevisiae. Ph. D., University of California, San Francisco.
- Kuersten, S., M. Ohno, et al. (2001). "Nucleocytoplasmic transport: Ran, beta and beyond." <u>Trends Cell Biol</u> 11(12): 497-503.
- Kufel, J., C. Allmang, et al. (2000). "Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding." <u>Mol Cell Biol</u> **20**(15): 5415-24.
- Kufel, J., C. Allmang, et al. (2002). "Lsm proteins are required for normal processing of pretRNAs and their efficient association with La-homologous protein Lhp1p." <u>Mol Cell Biol</u> 22(14): 5248-56.
- Kwek, K. Y., S. Murphy, et al. (2002). "U1 snRNA associates with TFIIH and regulates transcriptional initiation." <u>Nat Struct Biol</u> 9(11): 800-5.
- Lascaris, R. F., W. H. Mager, et al. (1999). "DNA-binding requirements of the yeast protein Rap1p as selected in silico from ribosomal protein gene promoter sequences." <u>Bioinformatics</u> 15(4): 267-77.

- Legrain, P. and M. Rosbash (1989). "Some cis- and trans-acting mutants for splicing target premRNA to the cytoplasm." <u>Cell</u> 57(4): 573-83.
- Li, Y., K. Cole, et al. (2003). "The effect of a single, temperature-sensitive mutation on global gene expression in Escherichia coli." <u>Rna</u> 9(5): 518-32.
- Li, Z. and D. A. Brow (1993). "A rapid assay for quantitative detection of specific RNAs." Nucleic Acids Res 21(19): 4645-6.
- Liao, X. L., L. Kretzner, et al. (1990). "Universally conserved and yeast-specific U1 snRNA sequences are important but not essential for U1 snRNP function." <u>Genes Dev</u> 4(10): 1766-74.
- Libri, D., N. Graziani, et al. (2001). "Multiple roles for the yeast SUB2/yUAP56 gene in splicing." <u>Genes Dev</u> 15(1): 36-41.
- Liu, Q., U. Fischer, et al. (1997). "The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins." <u>Cell</u> **90**(6): 1013-21.
- Long, R. M., R. H. Singer, et al. (1997). "Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA." <u>Science</u> 277(5324): 383-7.
- Lowe, T. M. and S. R. Eddy (1999). "A computational screen for methylation guide snoRNAs in yeast." <u>Science</u> 283(5405): 1168-71.
- Luo, M. L., Z. Zhou, et al. (2001). "Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly." <u>Nature</u> 413(6856): 644-7.
- Lygerou, Z., G. Christophides, et al. (1999). "A novel genetic screen for snRNP assembly factors in yeast identifies a conserved protein, Sad1p, also required for pre-mRNA splicing." <u>Mol Cell</u> <u>Biol</u> 19(3): 2008-20.
- Madhani, H. D., R. Bordonne, et al. (1990). "Multiple roles for U6 snRNA in the splicing pathway." Genes Dev 4(12B): 2264-77.
- Madhani, H. D. and C. Guthrie (1994). "Dynamic RNA-RNA interactions in the spliceosome." <u>Annu Rev Genet</u> 28: 1-26.

- Makarov, E. M., O. V. Makarova, et al. (2002). "Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome." <u>Science</u> 298(5601): 2205-8.
- Makarova, O. V., E. M. Makarov, et al. (2001). "The 65 and 110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP are essential for the assembly of mature spliceosomes." <u>Embo J</u> 20(10): 2553-63.
- Massenet, S., L. Pellizzoni, et al. (2002). "The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway." <u>Mol Cell Biol</u> 22(18): 6533-41.
- Matera, A. G. (1999). "RNA splicing: more clues from spinal muscular atrophy." <u>Curr Biol</u> 9(4): R140-2.
- Mattaj, I. W. (1986). "Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding." <u>Cell</u> 46(6): 905-11.
- Mattaj, I. W. (1998). "Ribonucleoprotein assembly: clues from spinal muscular atrophy." <u>Curr</u> <u>Biol</u> 8(3): R93-5.
- Mattaj, I. W., W. Boelens, et al. (1993). "Nucleocytoplasmic transport and snRNP assembly." <u>Mol Biol Rep</u> 18(2): 79-83.
- Mayes, A. E., L. Verdone, et al. (1999). "Characterization of Sm-like proteins in yeast and their association with U6 snRNA." Embo J 18(15): 4321-31.
- McCutcheon, J. P. and S. R. Eddy (2003). "Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics." <u>Nucleic Acids Res</u> 31(14): 4119-28.
- Meerovitch, K., Y. V. Svitkin, et al. (1993). "La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate." J Virol 67(7): 3798-807.
- Meister, G., C. Eggert, et al. (2002). "SMN-mediated assembly of RNPs: a complex story." <u>Trends Cell Biol</u> 12(10): 472-8.
- Merker, R. J. and H. L. Klein (2002). "Role of transcription in plasmid maintenance in the hpr1Delta mutant of Saccharomyces cerevisiae." Mol Cell Biol 22(24): 8763-73.

- Meyuhas, O. (2000). "Synthesis of the translational apparatus is regulated at the translational level." <u>Eur J Biochem</u> **267**(21): 6321-30.
- Mouaikel, J., C. Verheggen, et al. (2002). "Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus." <u>Mol Cell 9(4)</u>: 891-901.
- Murphy, M. W., B. L. Olson, et al. (2004). "The yeast splicing factor Prp40p contains functional leucine-rich nuclear export signals that are essential for splicing." <u>Genetics</u> 166(1): 53-65.
- Narayanan, A., W. Speckmann, et al. (1999). "Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli." <u>Mol Biol Cell</u> 10(7): 2131-47.
- Neuman de Vegvar, H. E. and J. E. Dahlberg (1990). "Nucleocytoplasmic transport and processing of small nuclear RNA precursors." <u>Mol Cell Biol</u> 10(7): 3365-75.
- Noble, S. M. and C. Guthrie (1995). The Brr genes encode novel factors involved in RNA processing. Ph.D. Thesis, University of California, San Francisco.
- Noble, S. M. and C. Guthrie (1996). "Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations." <u>Genetics</u> 143(1): 67-80.
- Noble, S. M. and C. Guthrie (1996). "Transcriptional pulse-chase analysis reveals a role for a novel snRNP-associated protein in the manufacture of spliceosomal snRNPs." <u>Embo J</u> 15(16): 4368-79.
- Ohi, M. D., A. J. Link, et al. (2002). "Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs." <u>Mol Cell Biol</u> 22(7): 2011-24.
- Ohno, M., A. Segref, et al. (2000). "PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation." <u>Cell</u> 101(2): 187-98.
- Olivas, W. M., D. Muhlrad, et al. (1997). "Analysis of the yeast genome: identification of new non-coding and small ORF-containing RNAs." <u>Nucleic Acids Res</u> 25(22): 4619-25.

- Olson, B. L. and P. G. Siliciano (2003). "A diverse set of nuclear RNAs transfer between nuclei of yeast heterokaryons." <u>Yeast</u> 20(10): 893-903.
- Pannone, B. K., S. D. Kim, et al. (2001). "Multiple functional interactions between components of the Lsm2-Lsm8 complex, U6 snRNA, and the yeast La protein." <u>Genetics</u> **158**(1): 187-96.
- Pannone, B. K., D. Xue, et al. (1998). "A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts." <u>Embo J</u> 17(24): 7442-53.
- Patterson, B. and C. Guthrie (1987). "An essential yeast snRNA with a U5-like domain is required for splicing in vivo." <u>Cell</u> **49**(5): 613-24.
- Paushkin, S., A. K. Gubitz, et al. (2002). "The SMN complex, an assemblyosome of ribonucleoproteins." <u>Curr Opin Cell Biol</u> 14(3): 305-12.
- Pellizzoni, L., B. Charroux, et al. (2001). "A functional interaction between the survival motor neuron complex and RNA polymerase II." J Cell Biol 152(1): 75-85.

ł

- Pellizzoni, L., N. Kataoka, et al. (1998). "A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing." <u>Cell</u> **95**(5): 615-24.
- Planta, R. J. (1997). "Regulation of ribosome synthesis in yeast." Yeast 13(16): 1505-18.
- Pollard, V. W., W. M. Michael, et al. (1996). "A novel receptor-mediated nuclear protein import pathway." <u>Cell 86(6)</u>: 985-94.
- Powers, T. and P. Walter (1999). "Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae." Mol Biol Cell 10(4): 987-1000.
- Rader, S. D. and C. Guthrie (2002). "A conserved Lsm-interaction motif in Prp24 required for efficient U4/U6 di-snRNP formation." Rna 8(11): 1378-92.
- Raghunathan, P. L. and C. Guthrie (1998). "RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2." <u>Curr Biol</u> 8(15): 847-55.
- Raghunathan, P. L. and C. Guthrie (1998). "A spliceosomal recycling factor that reanneals U4 and U6 small nuclear ribonucleoprotein particles." <u>Science</u> **279**(5352): 857-60.

- Raker, V. A., K. Hartmuth, et al. (1999). "Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner." <u>Mol Cell Biol</u> 19(10): 6554-65.
- Raker, V. A., G. Plessel, et al. (1996). "The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro." <u>Embo J</u> 15(9): 2256-69.
- Rinke, J. and J. A. Steitz (1982). "Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La lupus antibodies." <u>Cell</u> **29**(1): 149-59.
- Roiha, H., E. O. Shuster, et al. (1989). "Small nuclear RNAs from budding yeasts: phylogenetic comparisons reveal extensive size variation." Gene 82(1): 137-44.
- Rondon, A. G., S. Jimeno, et al. (2003). "Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation." J Biol Chem 278(40): 39037-43.

÷

- Rout, M. P. and S. R. Wente (1994). "Pores for thought: nuclear pore complex proteins." <u>Trends</u> <u>Cell Biol</u> 4(10): 357-65.
- Roy, J., B. Zheng, et al. (1995). "Structurally related but functionally distinct yeast Sm D core small nuclear ribonucleoprotein particle proteins." <u>Mol Cell Biol</u> **15**(1): 445-55.
- Ruegsegger, U., J. H. Leber, et al. (2001). "Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response." <u>Cell</u> 107(1): 103-14.
- Rymond, B. C. (1993). "Convergent transcripts of the yeast PRP38-SMD1 locus encode two essential splicing factors, including the D1 core polypeptide of small nuclear ribonucleoprotein particles." <u>Proc Natl Acad Sci U S A</u> **90**(3): 848-52.
- Salgado-Garrido, J., E. Bragado-Nilsson, et al. (1999). "Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin." <u>Embo J</u> 18(12): 3451-62.

- Seipelt, R. L., B. Zheng, et al. (1999). "U1 snRNA is cleaved by RNase III and processed through an Sm site-dependent pathway." <u>Nucleic Acids Res</u> 27(2): 587-95.
- Seraphin, B., N. Abovich, et al. (1991). "Genetic depletion indicates a late role for U5 snRNP during in vitro spliceosome assembly." <u>Nucleic Acids Res</u> **19**(14): 3857-60.
- Shannon, K. W. and C. Guthrie (1991). "Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs." <u>Genes Dev</u> 5(5): 773-85.
- Shuster, E. O. and C. Guthrie (1988). "Two conserved domains of yeast U2 snRNA are separated by 945 nonessential nucleotides." <u>Cell</u> 55(1): 41-8.
- Sidrauski, C., J. S. Cox, et al. (1996). "tRNA ligase is required for regulated mRNA splicing in the unfolded protein response." <u>Cell</u> 87(3): 405-13.
- Sidrauski, C. and P. Walter (1997). "The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response." <u>Cell</u> 90(6): 1031-9.
- Siliciano, P. G., W. J. Kivens, et al. (1991). "More than half of yeast U1 snRNA is dispensable for growth." <u>Nucleic Acids Res</u> 19(23): 6367-72.
- Speckmann, W., A. Narayanan, et al. (1999). "Nuclear retention elements of U3 small nucleolar RNA." Mol Cell Biol 19(12): 8412-21.
- Stade, K., C. S. Ford, et al. (1997). "Exportin 1 (Crm1p) is an essential nuclear export factor." <u>Cell</u> 90(6): 1041-50.
- Staley, J. P. and C. Guthrie (1998). "Mechanical devices of the spliceosome: motors, clocks, springs, and things." <u>Cell</u> 92(3): 315-26.
- Staley, J. P. and C. Guthrie (1999). "An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p." <u>Mol Cell</u> 3(1): 55-64.
- Stevens, S. W. and J. Abelson (1999). "Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins." <u>Proc Natl Acad Sci U S A</u> 96(13): 7226-31.

- Stevens, S. W., I. Barta, et al. (2001). "Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae." <u>Rna</u> 7(11): 1543-53.
- Stevens, S. W., D. E. Ryan, et al. (2002). "Composition and functional characterization of the yeast spliceosomal penta-snRNP." <u>Mol Cell</u> 9(1): 31-44.
- Strasser, K. and E. Hurt (2001). "Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p." <u>Nature</u> **413**(6856): 648-52.
- Strasser, K., S. Masuda, et al. (2002). "TREX is a conserved complex coupling transcription with messenger RNA export." <u>Nature</u> **417**(6886): 304-8.
- Takizawa, P. A., J. L. DeRisi, et al. (2000). "Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier." <u>Science</u> 290(5490): 341-4.
- Takizawa, P. A., A. Sil, et al. (1997). "Actin-dependent localization of an RNA encoding a cellfate determinant in yeast." <u>Nature</u> **389**(6646): 90-3.
- Takizawa, P. A. and R. D. Vale (2000). "The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p." Proc Natl Acad Sci U S A 97(10): 5273-8.
- Terns, M. P. and R. M. Terns (2001). "Macromolecular complexes: SMN--the master assembler." <u>Curr Biol</u> 11(21): R862-4.
- Tharun, S., W. He, et al. (2000). "Yeast Sm-like proteins function in mRNA decapping and decay." <u>Nature</u> **404**(6777): 515-8.
- Tong, A. H., M. Evangelista, et al. (2001). "Systematic genetic analysis with ordered arrays of yeast deletion mutants." <u>Science</u> 294(5550): 2364-8.
- Tong, A. H., G. Lesage, et al. (2004). "Global mapping of the yeast genetic interaction network." <u>Science</u> **303**(5659): 808-13.
- Umen, J. G. and C. Guthrie (1995). "A novel role for a U5 snRNP protein in 3' splice site selection." <u>Genes Dev</u> 9(7): 855-68.

- Umen, J. G. and C. Guthrie (1995). The role of protein-RNA interactions in 3' splice site selection during pre-mRNA splicing. Ph.D. Thesis, University of California, San Francisco.
- Vallen, E. A., M. A. Hiller, et al. (1992). "Separate domains of KAR1 mediate distinct functions in mitosis and nuclear fusion." J Cell Biol 117(6): 1277-87.
- van Hoof, A., P. Lennertz, et al. (2000). "Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast." <u>Embo J</u> 19(6): 1357-65.
- van Hoof, A., P. Lennertz, et al. (2000). "Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs." <u>Mol Cell Biol</u> 20(2): 441-52.
- Vankan, P., C. McGuigan, et al. (1990). "Domains of U4 and U6 snRNAs required for snRNP assembly and splicing complementation in Xenopus oocytes." <u>Embo J</u> 9(10): 3397-404.
- Velculescu, V. E., L. Zhang, et al. (1997). "Characterization of the yeast transcriptome." <u>Cell</u> 88(2): 243-51.
- Vidaver, R. M., D. M. Fortner, et al. (1999). "Multiple functions of Saccharomyces cerevisiae splicing protein Prp24 in U6 RNA structural rearrangements." <u>Genetics</u> 153(3): 1205-18.
- Vijayraghavan, U., M. Company, et al. (1989). "Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae." <u>Genes Dev</u> 3(8): 1206-16.
- Wassarman, K. M., F. Repoila, et al. (2001). "Identification of novel small RNAs using comparative genomics and microarrays." <u>Genes Dev</u> 15(13): 1637-51.
- Will, C. L. and R. Luhrmann (2001). "Spliceosomal UsnRNP biogenesis, structure and function." <u>Curr Opin Cell Biol</u> 13(3): 290-301.
- Wolin, S. L. and T. Cedervall (2002). "The La protein." Annu Rev Biochem 71: 375-403.
- Xue, D., D. A. Rubinson, et al. (2000). "U snRNP assembly in yeast involves the La protein." Embo J 19(7): 1650-60.

- Yoo, C. J. and S. L. Wolin (1994). "La proteins from Drosophila melanogaster and Saccharomyces cerevisiae: a yeast homolog of the La autoantigen is dispensable for growth."
 <u>Mol Cell Biol</u> 14(8): 5412-24.
- Yoo, C. J. and S. L. Wolin (1997). "The yeast La protein is required for the 3' endonucleolytic cleavage that matures tRNA precursors." <u>Cell</u> **89**(3): 393-402.
- Zhang, D., N. Abovich, et al. (2001). "A biochemical function for the Sm complex." <u>Mol Cell</u> 7(2): 319-29.
- Zhang, M. and M. R. Green (2001). "Identification and characterization of yUAP/Sub2p, a yeast homolog of the essential human pre-mRNA splicing factor hUAP56." <u>Genes Dev</u> 15(1): 30-5.
- Zhou, W., G. M. Edelman, et al. (2001). "Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells." <u>Proc Natl</u> <u>Acad Sci U S A</u> 98(4): 1531-6.
- Zhu, J., A. Hayakawa, et al. (2001). "Binding of the La autoantigen to the 5' untranslated region of a chimeric human translation elongation factor 1A reporter mRNA inhibits translation in vitro." <u>Biochim Biophys Acta</u> 1521(1-3): 19-29.
- Zurita, M. and C. Merino (2003). "The transcriptional complexity of the TFIIH complex." <u>Trends</u> <u>Genet</u> **19**(10): 578-84.

ostones fango

