
UNIVERSITY OF CALIFORNIA, MERCED

Characterization and Modeling of Error Resilience in HPC Applications

by

Luanzheng Guo

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

Committee in charge:

Professor Dong Li, Chair
Professor Mukesh Singhal

Professor Florin Rusu
Dr. Ignacio Laguna

Summer 2020

Copyright
Luanzheng Guo, 2020
All rights are reserved.

The dissertation of Luanzheng Guo is approved:

Professor Mukesh Singhal Date

Professor Florin Rusu Date

Dr. Ignacio Laguna Date

Professor Dong Li (Chair) Date

University of California, Merced

Summer 2020

iii

To the ones I love.

iv

Contents

Signature Page iii

Dedication iv

List of Figures ix

List of Tables xi

Acknowledgments xii

Curriculum Vitae xiv

Abstract xvi

1 Introduction 1
1.1 Research Problems and Challenges . 2

1.1.1 Characterization of Error Resilience in HPC Applications . . . 2
1.1.2 Modeling Error Resilience in HPC Applications 2
1.1.3 Modeling Fault Tolerance to Process/Node Failures 4

1.2 Research Objectives . 5
1.3 Research Contributions . 6
1.4 Organization of the Dissertation . 7

2 Background and Literature Survey 8
2.1 Background . 8

2.1.1 Transient Fault Model . 8
2.1.2 MPI Failure Recovery Model 9

2.2 Related Work . 10

3 Understanding Natural Error Resilience in HPC Applications 14
3.1 Introduction . 14
3.2 Design of FlipTracker . 15

3.2.1 Application Code Region Model 15
3.2.2 Tracing Code Region Data . 16
3.2.3 Analyzing Corrupted Variables 17
3.2.4 Identifying Resilience Patterns from Code Regions 18

3.3 Implementation . 19
3.3.1 Parallel Tracing . 19

v

3.3.2 DDDG Generation and Usage 19
3.3.3 Fault Injection and Statistical Significance 20

3.4 Evaluation . 20
3.4.1 Experimental Setup . 20
3.4.2 Parallel Tracing Overhead . 21
3.4.3 Code Region Fault Injection Results 22

3.5 Resilience Computation Patterns . 24
3.6 Case Studies . 27

3.6.1 Use Case 1: Resilience-Aware Application Design 27
3.6.2 Use Case 2: Predicting Application Resilience 28

3.7 Conclusions . 32

4 Modeling Application Resilience to Transient Faults on Data Objects 33
4.1 Introduction . 33
4.2 Error Tolerance Modeling . 34

4.2.1 General Description . 35
4.2.2 aDVF: A New Metric . 36
4.2.3 Operation-Level Analysis . 38
4.2.4 Error Propagation Analysis . 39
4.2.5 Algorithm-Level Analysis . 41

4.3 Implementation . 41
4.4 Evaluation . 43

4.4.1 Evaluating Application Resilience to Transient Faults on Data
Objects Using aDVF . 44

4.4.2 Model Validation . 47
4.4.3 Comparing aDVF Calculation with the Traditional Random Fault

Injection (RFI) . 48
4.5 Case Study . 49
4.6 Discussions . 51

4.6.1 Program Optimization by aDVF 51
4.6.2 Beyond Single-Bit Errors . 51
4.6.3 Impact of Input Problems . 52

4.7 Conclusions . 52

5 Predicting Application Resilience Using Machine Learning 53
5.1 Introduction . 53
5.2 Overview . 54
5.3 Design . 56

5.3.1 Feature Construction . 56
5.3.2 Introducing Instruction Execution Order (IEO) 60
5.3.3 Feature Selection . 61
5.3.4 Model Construction . 62

5.4 Implementation . 62
5.5 Evaluation . 63

5.5.1 Prediction Accuracy . 64
5.5.2 Feature Selection and Analysis 68

vi

5.5.3 Evaluation of Model Tuning and Feature Construction Opti-
mization . 70

5.5.4 Efficiency Study–Comparing PARIS to Random Fault Injection
and Trident . 71

5.6 Discussions . 72
5.7 Conclusions . 73

6 Evaluating the Performance of Global-Restart Recovery Methods For
MPI Fault Tolerance 74
6.1 Introduction . 74
6.2 Overview . 74

6.2.1 Existing Approaches for MPI Recovery 74
6.3 Reinit++ . 75

6.3.1 Design . 75
6.3.2 Implementation . 78

6.4 Experimentation Setup . 81
6.5 Evaluation . 83

6.5.1 Comparing total execution time on a process failure 83
6.5.2 Comparing pure application time under different recovery ap-

proaches . 84
6.5.3 Comparing MPI recovery time recovering from a process failure 85
6.5.4 Comparing MPI recovery time recovering from a node failure . 86

6.6 Conclusion . 86
6.7 Acknowledgment . 87

7 A Benchmark Suite to Characterize and Model MPI Application Resilience 88
7.1 Introduction . 88
7.2 Overview . 89

7.2.1 MATCH . 89
7.2.2 Workloads . 89
7.2.3 Checkpointing Interface - FTI 90

7.3 Design . 90
7.3.1 Find Data Objects for Checkpointing 90

7.4 Implementation . 92
7.4.1 FTI Implementation . 92
7.4.2 FTI with Reinit Implementation 93
7.4.3 FTI with ULFM Implementation 93
7.4.4 Fault Injection . 94

7.5 Evaluation . 95
7.5.1 Artifact Description . 95
7.5.2 Experimentation Setup . 96
7.5.3 Performance Comparison on Different Scaling Sizes 96
7.5.4 Performance Comparison on Different Input Sizes 101

7.6 Conclusions . 103

8 Conclusion and Future Work 104
8.1 Conclusion . 104

vii

8.2 Future Work . 105
8.2.1 Next-Generation Fault Tolerance Mechanisms for Big Data Frame-

works . 105
8.2.2 Application-Aware AVF Analysis 106

Bibliography 107

viii

List of Figures

1.1 System failures caused by transient faults. 1
1.2 The overview diagram of my dissertation works. 6

3.1 An example HPC application (CG) with iterative structures. 16
3.2 An example of the ACL table. 17
3.3 LLVM parallel tracing performance (64 processes on 8 nodes) 21
3.4 Fault injection results for code region instances at iteration 0. 22
3.5 Fault injection results for individual iterations of the main loop. 23
3.6 A real case of ACL table. It shows the number of ACL-s in LULESH after

a fault is injected into the last third iteration of the main loop. 24
3.7 Example of the Dead Corrupted Locations in LULESH 25
3.8 Example of the Repeated Additions pattern in MG 25
3.10 Example of the shifting pattern in IS. 26
3.9 Example of the Conditional Statement pattern in KMEANS 26
3.11 A code excerpt from the function sprnvc() in CG for the Use Case 1. (a) shows

the original code excerpt before patterns are applied; (b) shows the code excerpt
when dead corrupted location and data overwriting are applied. 29

3.12 A code excerpt from the function conj_grad() in CG for the Use Case 1. (a)
shows the original code excerpt before the truncation pattern is applied; (b) shows
the code excerpt when the truncation is applied. 30

4.1 The example code to show error masking that happens to a data object, par_A. 35
4.2 A code segment from LU. 38
4.3 MOARD, a tool for modeling application resilience to transient faults on

data objects . 41
4.4 The breakdown of aDVF results based on the three level analysis. The x

axis is the data object name. 44
4.5 The breakdown of aDVF results based on value overwriting, value over-

shadowing, and logic and comparison operation at the levels of operation
and error propagation. The x axis is the data object name. zeta and elemBC
in LULESH are m_delv_zeta and m_elemBC. 45

4.6 Model validation against exhaustive fault injection. The x axis shows the
data object name. 47

4.7 The RFI results with the margin of error (the confidence level 95%) and
aDVF results. The results are for three data objects (m_x, m_y, and m_z)
from CalcMonotomicQRegionForElems() of LULESH. 48

ix

4.8 Using aDVF analysis to study application resilience to transient faults on
C in matrix multiplication (MM). Notation: [C] is MM without applying
ABFT on C; ABFT_[C] is MM with ABFT taking effect. 50

4.9 Using aDVF analysis to study the effectiveness of ABFT for a data object
xe in PF. [xe] has no protection of ABFT; ABFT_[xe] has ABFT taking
effect on xe. 50

5.1 Overview of PARIS and the workflow of the training process in our ML
method. 55

5.2 An example to detect repeated additions. 59
5.3 An example to show that the instruction execution order matters to error

propagation. 60
5.4 Applying the N-gram technique to introduce instruction execution order

information. 61
5.5 Histogram of the three fault manifestation rates. 64
5.6 The ablation study result: the average prediction error for predicting the

rates of success and interruption when the best k features are selected (k
ranges from 2 to 30). 68

5.7 Evaluating the impact of model tuning and feature construction optimiza-
tion on the prediction error for the two fault manifestation rates. FCO =
“feature construction optimization”. In terms of MAPE, Lower is better. . . 70

6.1 The programming interface of Reinit++ 76
6.2 Sample usage of the interface of Reinit++ 76
6.3 Application deployment model . 77
6.4 Total execution time breakdown recovering from a process failure 84
6.5 Scaling of pure application time . 85
6.6 Scaling of MPI recovery time recovering from a process failure 86
6.7 Scaling of MPI recovery time recovering from a node failure 87

7.1 A sample implementation of FTI. 92
7.2 A sample implementation of Reinit. 93
7.3 A sample implementation of ULFM non-shrinking recovery. 94
7.4 A sample implementation of fault injection. 95
7.5 Execution time breakdown recovering in different scaling sizes with no pro-

cess failures . 97
7.6 Execution time breakdown recovering from a process failure in different

scaling sizes . 98
7.7 Recovery time for different scaling sizes 99
7.8 Execution time breakdown in different input problem sizes with no process

failures . 100
7.9 Execution time breakdown recovering from a process failure in different

input problem sizes . 101
7.10 Recovery time for different input problem sizes 102

x

List of Tables

3.1 Resilience computation patterns in code regions of the HPC programs. DCL,
RA, DO represent dead corrupted locations, repeated additions and data
overwriting, respectively. 20

3.2 The repeated additions pattern takes effect in MG 25
3.3 Results after applying resilience patterns to CG. 27
3.4 The quantification of resilience patterns and the prediction accuracy. SR=success

rate, OW=overwrite. 31

4.1 Benchmarks and applications for the study 43

5.1 Four groups of instruction types and four resilience computation patterns
as features to build our ML model. 57

5.2 The detailed prediction results for 16 big benchmarks. Notation: SR=Success
Rate; SDCR=SDC Rate; IR=Interruption Rate; Pred.=Prediction; Meas.=Measured.

. 65
5.3 Feature voting scores for each dimension of the feature vector Fave

30 67
5.4 The efficiency comparison between FI, Trident, and PARIS. The table in-

cludes breakdown of execution time for the PARIS workflow and speedup
(using FI as the baseline). 72

6.1 Proxy applications and their configuration 82
6.2 Checkpointing per recovery and failure . 82

7.1 Experimentation configuration for proxy applications (default scaling size:
64 processes; default input problem: small) 95

xi

Acknowledgments

Foremost, I want to express my sincere gratitude to my Ph.D. advisor Professor Dong
Li. First, I want to thank him for bringing me to the University of California-Merced.
Professor Dong Li has been a great advisor in the past years. Without his consistent
guidance and generous help, I cannot imagine how I could work out these projects, cul-
tivate these publications, and prepare these presentations all by myself. Professor Dong
Li has offered me the freedom to explore new research ideas and encouraged me to
become an independent researcher. I am always inspired by his continuing motivation,
persistence, dedication, diligence, and enthusiasm for science and his humility. I still
remember these long and short free rides Professor Dong Li shared with me in these
early days and these unforgettable conversations we had in the 50th Celebration of the
Turing Award.

I would also like to thank my dissertation committee—Professor Mukesh Singhal,
Professor Florin Rusu, and Dr. Ignacio Laguna for serving in my dissertation committee,
for their time and effort on reviewing my dissertation and attending my defense, and
for their continuous help, constructive comments, and immense knowledge that help
significantly advance the quality of this dissertation.

I want further to thank my mentor at Lawrence Livermore National Laboratory, Dr.
Ignacio Laguna for always being nice to me. I have been a student summer intern at
the Center for Applied Scientific Computing, Lawrence Livermore National Labora-
tory for four times since 2016. I have learned a lot from Dr. Ignacio Laguna during the
past years. I have learned not only how to choose an interesting but essential research
problem, how to conduct excellent research, and how to write a good research paper in
computer science, but also learned from his patience, kindness, humility, intelligence,
and faith in science. Dr. Ignacio Laguna is an example to me, where I can always draw
strength to continue my research when feeling frustrated. I also thank Dr. Ignacio La-
guna for his generous help in my job hunting and for writing countless recommendation
letters.

Furthermore, I would like to thank other colleagues at the lab. My sincere thanks go
to Dr. Martin Schulz, my host at the lab and a co-author of my first paper. I have learned
good writing styles through his amending to my manuscripts. I appreciate Dr. Martin
Schulzs patience and generous help in the past years, for writing recommendation letters
for me, for introducing me to his friends, and for his encouragement. I also want to
thank Dr. Kathryn Mohror for being my host at the lab, and for passing my resume
around for my job hunting. My sincere appreciation goes to Dr. Giorgis Georgakoudis,
who is a co-author of my most recent paper, and has helped me a lot for reviewing my
code, and for providing insightful comments to my proposals and manuscripts. I am
always inspired by his extensive knowledge and constructive considerations. I am very
grateful to Dr. Kento Sato for being a good friend who is always nice and offers me
many good opportunities, and for sharing research ideas and insights with me. I want to
thank Dr. Murali Emani for sharing research insights with me and passing my resume
around. I thank Dr. Naoya Maruyama for his help and support on my application to
the Livermore Graduate Scholar Program and his help with my job hunting. I thank Dr.
Stephanie Brink for her help and support on my application to the Livermore Graduate
Scholar Program. I also want to thank my sincere friends and roommates—Dr. Stephen
Herbein, Dr. Michael Wyatt, Dr. Dylan Chapp, Dr. William Killian, Dr. Johannes Brust,

xii

and Dr. Qunwei Li for these memorable days having fun together and biking to work.
Also, I want to thank my officemates at Lawrence Livermore National Laboratory. They
are Dr. Teng Wang, Dr, Lai Wei, Dr. Yue Zhu, Dr. Furong Sun, Dr. Jiyuan Zhang, Dr.
Cuiyu He, Dr. Zhimin Li, Dr. Christopher Wright, Mr. Duong Hoang, Mr. Ayush
Patwari, Ms. Hui Guo, and Mr. Mano Rm.

I want to thank my labmates and friends at UC Merced. Many thanks for these
exciting moments and frustrating days we get together. They are Mr. Yingchao Huang,
Mr. Himanshu Pillai, Ms. Hanlin He, Mr. Wei Liu, Mr. Kai Wu, Mr. Jing Liang, Ms.
Ying Ding, Ms. Wenqian Dong, Ms. Jie Ren, Mr. Letian Kang, Mr. Jiawen Liu, Mr.
Jie Liu, Mr. Zhen Xie, Mr. Xin He, Mr. Andrés Torres García, Mr. Jun Hyung Shin,
Dr. Tom Kim, Mr. Shattik Rubaiyat Muhammad, Dr. Mina Naghshnejad, Dr. Yijun Li,
Mr. Zhixun He, Ms. Belinda Braunstein, Mr. Xin Zhang, Dr. Maryam Shadloo, and
Ms. Mahshid Montazer, and many others. I am so grateful to have them in my life in
the past five years.

Moreover, I want to thank my mentors, colleagues, and friends I made in confer-
ences for their friendship, inspiration, encouragement, and memorable moments. They
are Dr. Christine Harvey, Dr. Jay Lofstead, Dr. Joel Fuentes, Professor Dorian Arnold,
Professor Michela Taufer, Mrs. Jenett Tillotson, Dr. Xin Liang, Dr. Sihuan Li, Mr. Tony
Liu, Professor Jack Dongarra, Dr. James Rome, Dr. Christian Engelmann, Dr. Hal Fin-
kle, Mr. Mike Lee, Barbara Horner-Miller, Dr. Sean Peisert, Dr. Min Si, Dr. Zhengji
Zhao, Professor Sunita Chandrasekaran, Dr. Hongzhang Shan, Dr. Guido Juckeland,
Professor Jon Calhoun, Professor Suzanne McIntosh, Dr. Dana Bruson, Dr. Patrick
Widener, Professor Ewa Deelman, Dr. Patrick McCormick, Mr. Kevin Walsh, Profes-
sor Vladimir Getov, Mr. Eugene Miya, Ms. Tiffany Trader, Dr. Dana Freiburger, Ms.
Anna Loup, and many others.

Special thanks go to my advisors during my Master’s study who inspired and en-
lightened my interests in doing research. They are Professor Jun Chu, Professor Chun-
hong Pan, Professor Shiming Xiang, Professor Guimei Zhang, Professor Jiexian Zeng,
Professor Lingfeng Wang, Professor Huaiyu Wu, Professor Gaofeng Meng, Professor
Jun Bai, Professor Yin Wang, and Professor Bin Fan. It is my pleasure to begin my
journey in academia with them.

Last but not least, I want to express my gratitude to my family for their constant
source of inspiration. They are my parents Qiying Lu and Yaohua Guo, my adopted
parents Patricia Hachten and Brad Hachten, my paternal grandparents Qiuxiang Xu and
Maohuan Guo, and my maternal grandparents Xuemei Huang and Keli Lu. Special
thanks to my partner, Qijun Zhang, for the support and love in the past years.

xiii

Curriculum Vitae

Education

2015-2020 Ph. D. in Electrical Engineering and Computer Science, University of
California-Merced, USA

2011-2014 M. S. in Computer Science, Nanchang Hangkong University, China

2007-2011 B. S. in Computer Engineering, Nanchang Hangkong University, China

Publications

Conference Papers:

Giorgis Georgakoudis, Luanzheng Guo, and Ignacio Laguna. Practical MPI Resilience:
A Performance and Correctness Evaluation. ISC HPC Conference (ISC), Frankfurt
2020

Luanzheng Guo and Dong Li. MOARD: Modeling Application Resilience to Transient
Faults on Data Objects. The 33rd IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), Rio, Brazil 2019

Luanzheng Guo, Dong Li, Ignacio Laguna, and Martin Schulz. FlipTracker: Under-
standing Natural Error Resilience in HPC Applications. The 30th ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis
(SC) 2018

Papers In-submission:

Luanzheng Guo, Dong Li, and Ignacio Laguna. PARIS: Predicting Application Re-
silience Using Machine Learning. Submitted to Journal of Parallel and Distributed
Computing 2020

Luanzheng Guo, Dong Li, and Ignacio Laguna. Cross-Architecture Resilience Charac-
terization: Predicting GPU Resilience Using CPU Code. Submitted to XXX20

Luanzheng Guo, Giorgis Georgakoudis, Ignacio Laguna, Dong Li. MATCH: An MPI
Fault Tolerance Benchmark Suite. Submitted to IISWC’20

Ph.D. Forum Papers:

Luanzheng Guo, Dong Li. Characterization and Modeling of Error Resilience in HPC
Applications. The 31st ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), Denver, CO 2019

Luanzheng Guo, Dong Li. Characterization and Modeling of Error Resilience in HPC
Applications. The 33rd IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), Rio, Brazil 2019

xiv

Posters:

Lawrence Livermore National Laboratory Summer Poster Symposium Posters:

Understanding Use of ULFM in MPI Resilience, 2019

Which Fault Injection Tool Should We Use for GPU Programs? 2018

Understanding the Resilience of Fundamental Data Types, 2017

Understanding Resilience Patterns of Algorithms via Application-Level Fault In-
jection, 2016

Luanzheng Guo, Jing Liang, and Dong Li. Understanding Ineffectiveness of Application-
Level Fault Injection. The 28th ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC) 2016

Honors

2020 Trusted CI Fellow by the NSF Cybersecurity Center of Excel-
lence

2019 UC Merced GSA Travel Award for SC19

2019 IEEE CS TCHPC Travel Award for SC19

2019 UC Merced Graduate Dean’s Dissertation Fellowship

2019 UC Merced Graduate Fellowship Incentive Program Award

2019 IEEE TCPP Travel Award for IPDPS19

2018 Research highlighted by HPCwire in its Whats new in HPC re-
search?

2018 SC18 Outstanding Student Volunteer

2018 SC18 Outstanding Lightning Talk

2018 Outstanding reviewer award by Elsevier

2017 ACM SIGHPC Travel Award to attend the 50th celebration of
the Turing Award

2016 Best poster finalist in SC16

2015-2017 Bobcat Fellowship at UC Merced

xv

Abstract

Characterization and Modeling of Error Resilience in HPC Applications
by

Luanzheng Guo
Doctor of Philosophy

in
Electrical Engineering and Computer Science

University of California, Merced
Professor Dong Li, Chair

HPC systems are widely used in industrial, economical, and scientific applications,
and many of these applications are safety- and time-critical. We must ensure that the
application execution is reliable, and the scientific simulation outcome is trustworthy.
As HPC systems continue to increase computational power and size, next-generation
HPC systems are expected to incur a higher failure rate than contemporary systems.
How to ensure scientific computing integrity in the presence of an increasing number
of system faults is one of the grand challenges (also known as the resilience challenge)
for large-scale HPC systems.

This dissertation focuses on characterizing, modeling, developing, and advancing
resilience strategies and tools in HPC systems to allow scientific applications to sur-
vive system failures better. In particular, in this dissertation we systematically charac-
terize HPC applications to find reasons accounting for nature error resilience of HPC
applications by tracking error propagation and also by capturing application properties
according to their significance to application error resilience using machine learning.
We further model application error resilience at different granularities, including indi-
vidual data objects, small computation kernels, and the whole application. Also, we
develop an error resilience benchmark suite to comprehensively evaluate and compar-
atively study different error resilience designs in the presence of MPI process or node
failures. With the knowledge learned from characterization and modeling of applica-
tion error resilience, we propose a collection of new methodologies and tools that can
guide HPC practitioners to find the most effective and efficient error resilience designs,
provide helps to advance effectiveness and efficiency of the existing error resilience
designs, and build inspiration foundations to future error resilience designs aiming at
higher effectiveness and efficiency of HPC systems.

xvi

Chapter 1

Introduction

The continued growth of large-scale high-performance computing (HPC) systems is fu-
eled by two trends: continued integration of additional functionality onto system nodes,
and the increased number of nodes (and components) in the systems. As a result, these
large-scale systems are jeopardized by potentially increasing faults in hardware and
software [143, 132, 140, 77, 142, 139]. Ensuring scientific computing integrity and cor-
rectness of application execution in the presence of faults remains one of the grand chal-
lenges (also known as the resilience challenge) for large-scale HPC systems [31, 32].

We focus on transient faults and the cascading failures caused by transient faults [62,
49]. Transient faults [14] due to high energy particle strikes, wear-out, and other fac-
tors are expected to become a critical contributor to in-field system failures of high-
performance computing (HPC). As illustrated in Figure 1.1, transient faults can lead to
not only interruptions, but also silent data corruption (SDC), which can impact scientific
results without users realizing it. Furthermore, transient faults are considered a critical
contributor to system process/node failures according to a recent investigation [62]. As
the number of transient faults grows, it becomes increasingly necessary to develop more
efficient and effective fault tolerance mechanisms to protect application execution from

Figure 1.1: System failures caused by transient faults.

1

2

transient faults and system failures caused by transient faults.
In this dissertation, we propose a composition of techniques, algorithms, and tools to

characterize and model error resilience in HPC applications by analytical and machine
learning models from a variety of aspects, and at different granularities.

1.1 Research Problems and Challenges
We face a range of challenges on characterization and modeling of application error
resilience in HPC applications. We discuss the research problems and challenges below.

1.1.1 Characterization of Error Resilience in HPC Applications
Previous work on fault tolerance, which typically focused on individual applications,
demonstrates that a number of applications can transparently tolerate transient faults
before they affect the application’s numerical output. Examples of such applications
are algebraic multi-grid solvers (AMG) [34], Conjugate Gradient (CG) solvers [129],
GMRES iterative solvers [55], Monte Carlo simulations [11], and machine learning
algorithms, such as clustering [94] and deep-learning neural networks [9, 123].

While previous work attributes this natural resilience at a high-level to either the
probabilistic or iterative nature of the application, the community still lacks the fun-
damental understanding of the program constructs that result in such natural error re-
silience. Fundamentally, we do not have clear answers to questions, such as: Are there
any common computation patterns (i.e., combinations or sequences of computations)
that lead to natural error resilience? If so, how can these patterns be found? How can
future application design benefit from patterns exhibiting natural resilience?

Finding answers to these questions is critical for error detection and recovery to
avoid overprotecting regions of code that are naturally resilient.

1.1.2 Modeling Error Resilience in HPC Applications
Analytical modeling: Understanding Resilience on Data objects

If transient faults manifest in architecturally visible states (e.g., registers and the
memory) and those states hold values of a data object, then we have transient faults on
the data object. Transient faults on a data object impact application outcome correct-
ness. Understanding application resilience to transient faults on data objects is critical
to ensure computing integrity in future large-scale systems.

Furthermore, many common application-level fault tolerance mechanisms focus on
data objects. Understanding application resilience to transient faults on data objects
can be helpful to direct those mechanisms. Application-level checkpointing is an exam-
ple of such an application-level fault tolerance mechanism. By periodically saving the
correct values of some data objects into persistent storage, application-level checkpoint
makes application resumable when a failure happens. Some algorithm-based fault toler-
ance methods [39, 45] are other examples. They can detect and locate errors in specific
data objects. However, those application-level fault tolerance mechanisms can be expen-
sive (e.g., 35% performance overhead in [53]). If data corruptions of a data object are
easily tolerable by the application, then we do not need to apply those mechanisms to

3

protect the data object, which will improve performance and energy efficiency. Hence,
understanding application resilience to transient faults on data objects is useful to direct
those application-level fault tolerance mechanisms.

However, we do not have a method or a tool to quantify application resilience to
transient faults on data objects. The current common practice to understand application
resilience to transient faults in HPC is application-level random fault injection [28, 96,
97, 34, 156, 153, 40, 28, 150, 61, 88, 79]. Although random fault injection is useful,
it makes it difficult to study application resilience to transient faults on data objects
because of the following two reasons.

First, random fault injection loses application semantics (data semantics). Random
fault injection randomly selects instructions and triggers random bit flip in input or out-
put operands of the instructions. Typically, random fault injection performs a large
amount of random fault injection tests, and then calculates that among all fault in-
jection tests, how many of them succeed (i.e., having correct application outcomes).
However, random fault injection gives us little knowledge of how and where errors are
tolerated [69]. Understanding “how” and “where” is necessary to identify why the appli-
cation is vulnerable to the value corruption of some data objects, and provides feedback
on how to apply application-level fault tolerance mechanisms effectively and efficiently.

How can we model and measure application resilience to transient faults on data
objects without doing fault injection? How can we model the application resilience to
data objects at individual operations? How can we model the application resilience to
data objects during the error propagation? Can we track the error propagation on data
objects to the end of the execution?

Machine learning modeling: Predicting Application Resilience
While random fault injection works in practice and is widely used in resilience

studies, a key problem of this approach is that it is highly time consuming, and as a
result, it is usually applied to limited scenarios, for example, on applications that run for
a short period of time and/or single-threaded codes. To illustrate the problem, consider
an application that runs for 6 hours—a typical execution time for a large-scale scientific
simulation. Using statistical analysis (e.g., using [95]), the number of random fault
injections to obtain a low margin of error (e.g., 1%-3%) is in the order of thousands of
injections. Thus, the total fault injection campaign could last several days. For multi-
threaded or multi-process applications, this time is much higher since random faults
must be injected in different threads or processes.

To address the limitations of FI, researchers have built error-propagation analytical
models [98], which are faster than FI in estimating application resilience. However, they
lack accuracy as they estimate application resilience to errors based on the analysis of
possible errors in individual instructions. The analysis inaccuracy at individual instruc-
tions is accumulated, causing low accuracy to estimate the whole application resilience.
Furthermore, these models do not consider the effects of resilience computation patterns
(e.g., dead corrupted locations and repeated addition [65]). Studying those patterns de-
mands analyzing multiple instructions together, while most existing analytical models
analyze instructions in isolation. In summary, the community lacks a fundamental ap-
proach that enables fast and accurate evaluation of application resilience.

Can we propose an approach to predict application resilience that can solve above
problems efficiently and effectively? Is machine learning a solution to these problems?

4

If yes, what characteristics can we use as features to make the prediction? What ma-
chine learning model can fit into our case?

1.1.3 Modeling Fault Tolerance to Process/Node Failures
Next-generation HPC systems are expected to incur a much higher failure rate than
contemporary systems. For example, the Sequoia supercomputer located in Lawrence
Livermore National Laboratory (LLNL) reported a mean time between node failures to
be 19.2 hours in 2013 [51]. After that, in 2014 the Blue Waters supercomputer reported
a mean time between node failures to be 6.7 hours [49]. Most recently, the Taurus
system located in TU Dresden reported a mean time between node failures to be 3.65
hours [62].

This trend raises concerns in the HPC community for MPI applications running
on tens of thousands of processes and nodes to fail when facing an increasing number
of process and node failures. An MPI application execution can fail on node failures
because of a variety of reasons, such as transient faults and Byzantine faults [62]. These
underneath faults may not directly make the application execution fail, whereas they can
cause a process or node failure to the node where the application is running. The process
or node failure can further cause the entire MPI application to fail.

These crucial facts lead to an increasing importance of and challenges for devel-
oping efficient and effective fault tolerance designs for scaling HPC systems. There
are numerous fault tolerance techniques proposed to protect MPI application execution
from system failures. Checkpointing [84, 71, 23, 8, 89], commonly used in HPC appli-
cations, is one type of fault tolerance technique that saves application execution states
periodically. Checkpointing helps MPI applications to quickly restore application states
from the latest checkpoints. The other type of MPI fault tolerance technique focuses on
restoring MPI states in the occurrence of MPI process and node failures. Restarting is a
baseline solution for restoring MPI states, which immediately restarting an application
after execution collapses due to a failure. Later, researchers realize the inefficiency of
restarting an application, and propose MPI process recovery mechanisms to restore MPI
states in real-time. User-Level Fault Mitigation (ULFM) [19] and Reinit [91, 35, 60]
are the two pioneer MPI process recovery frameworks in this effort. ULFM provides ex-
tended MPI interfaces to programmers to detect failures and restore MPI states, which
enables the execution to continue with the same number of processes or only with the
survivor processes. Reinit also supports real-time MPI recovery, but transparently im-
plement detecting failures and fixing MPI states to the MPI runtime.

Although there has been a large bibliography [19, 35, 91, 20, 102, 120, 73, 84, 71,
23, 89] discussing the programming model and prototypes of those MPI recovery ap-
proaches, no study has presented an in-depth performance evaluation of them–most
previous works either focus on individual aspects of each approach or perform limited
scale experiments. Can we design an extensive evaluation framework to fairly com-
pare the two leading MPI recovery approaches? Can we understand the fault tolerance
behavior difference in ULFM and Reinit recovery?

Furthermore, there is not a standard paradigm to follow for developing efficient MPI
fault tolerance. The traditional practices [19, 35, 91, 20, 102, 120, 73] in MPI fault toler-
ance either focus on only checkpointing mechanisms or only MPI recovery techniques.
Later, researchers realize the efficiency of combining the two aspects to achieve higher

5

efficiency of MPI fault tolerance. For example, FENIX [57] and CRAFT [134] both
design and develop a checkpointing interface that supports data recovery for ULFM
shrinking and non-shrinking process recovery. However, they request developers to
explicitly manage and redistribute the restored data among survivor processes in case
of a non-shrinking recovery. This can easily cause load imbalance problems. Also,
they only evaluate their frameworks on two applications, and do not compare their fault
tolerance frameworks to other fault tolerance designs. For example, using Reinit for
process recovery, and testing different checkpointing interfaces. In conclusion, there is
not a structured way in existing works that either benchmark the design and implemen-
tation of MPI fault tolerance, or comprehensively compare the performance efficiency
of different combinations or configurations of fault tolerance designs. Can we develop a
comprehensive evaluation framework which enables an effective comparison of distinct
MPI fault tolerance configurations?

1.2 Research Objectives
The dissertation seeks to characterize representative fault tolerance frameworks to re-
search and identify fundamentally new ways to design and build effective and efficient
fault tolerance theorems, mechanisms, and tools for HPC by leveraging domain-specific
characteristics at both the system- and application-level.

The objectives of this research are multi-folds: (1) to design a code structure model
that enables separation of applications into code regions, which enables a divide-and-
conquer approach, to have a framework that allows us to do a fine-grained analysis of
error propagation and resilience properties, and to propose a methodology and develop
an analytical framework that can help reason the natural resilience of code segments;
(2) to propose an effective measurement for error resilience on data objects by counting
error masking events, which avoids non-deterministic measurement by random fault
injection, and to develop a hierarchical error propagation model in order to efficiently
model error masking events on data objects; (3) to develop an effective machine learn-
ing model that can accurately estimate application error resilience, to avoid the ineffi-
ciency by doing fault injection, and to characterize the implicit relationship between
program properties and application error resilience; (4) to characterize and compare
the efficiency and effectiveness of existing MPI recovery interfaces, and to advance
the efficiency and effectiveness of existing MPI recovery with lessons learned from the
characterization and comparison; (5) to come up with an MPI benchmark suite aim-
ing at fault tolerance, where a comparison framework is developed, which allows us to
effectively compare distinct MPI fault tolerance techniques under the framework.

The dissertation consists of five works. The relationship between the five works is
addressed in Figure 1.2. First, we characterize error resilience of HPC applications to
transient faults, in which we develop a code structure framework to help understand
application natural error resilience. Furthermore, we seek to model error resilience to
transient faults from different perspectives, where we model error resilience on data ob-
jects, and predict application error resilience using machine learning models. Lastly, we
attempt to study application fault tolerance to process/node failures, where we compre-
hensively evaluate the start-of-the-art MPI global-restart recovery methods, and develop
an MPI fault tolerance benchmark suite.

6

Figure 1.2: The overview diagram of my dissertation works.

1.3 Research Contributions
We summarize the main contributions of this dissertation in this section.

Natural Error Resilience: We present FlipTracker, a framework designed to
extract resilience computation patterns using fine-grained tracking of error propagation
and resilience properties, and we use it to present a set of computation patterns that
are responsible for making representative HPC applications naturally resilient to errors.
This not only enables a deeper understanding of resilience properties of these codes, but
also can guide future application designs towards patterns with natural resilience. The
technical details are presented in Chapter 3.

Error Resilience on Data Objects: We introduce a method and a tool (called
“MOARD”) to model and quantify application resilience to transient faults on data ob-
jects. Our method is based on systematically quantifying error masking events caused
by application-inherent semantics and program constructs. We use MOARD to study
how and why errors in data objects can be tolerated by the application. We perform
a comprehensive evaluation and a case study to demonstrate tangible benefits of using
MOARD to direct a fault tolerance mechanism to protect data objects. We describe the
solution details in Chapter 4.

Prediction of Application Error Resilience: We present PARIS, a machine-learning
method to predict application resilience that avoids the time-consuming process of ran-
dom FI and provides higher prediction accuracy than analytical models. PARIS captures
the implicit relationship between application characteristics and application resilience,
which is difficult to capture using most analytical models. We overcome many technical
challenges for feature construction, extraction, and selection to use machine learning in
our prediction approach. Our evaluation on 16 HPC benchmarks shows that PARIS
achieves high prediction accuracy. PARIS is up to 450x faster than random FI (49x
on average). Compared to the state-of-the-art analytical model, PARIS is at least 65%
better in terms of accuracy and has comparable execution time on average. We describe

7

the design details in Chapter 5.
A New Design of MPI Recovery: We present Reinit++, a new design and imple-

mentation of the Reinit approach for global-restart recovery, which avoids application
re-deployment. We extensively evaluate Reinit++ contrasted with the leading MPI fault-
tolerance approach of ULFM, implementing global-restart recovery, and the typical
practice of restarting an application to derive new insight on performance. Experimen-
tation with three different HPC proxy applications made resilient to withstand process
and node failures shows that Reinit++ recovers much faster than restarting, up to 6×, or
ULFM, up to 3×, and that it scales excellently as the number of MPI processes grows.
The implementation details are discussed in Chapter 6.

An MPI Fault Tolerance Benchmark Suite: MPI has been ubiquitously deployed
in flagship HPC systems aiming to accelerate distributed scientific applications running
on tens of hundreds of processes and compute nodes. Maintaining the correctness and
integrity of MPI application execution is critical, especially for these safety-critical sci-
entific applications. Therefore, a collection of effective MPI fault tolerance techniques
have been proposed to enable MPI application execution to efficiently resume the ap-
plication execution and states in the occurrence of system failures. However, there is
not a structured way to study and compare different MPI fault tolerance designs, and to
guide the selection and development of efficient MPI fault tolerance techniques in dis-
tinct scenarios. To solve this problem, we design, develop, and evaluate a benchmark
suite MATCH to characterize, research, and comprehensively compare different combi-
nations and configurations of MPI fault tolerance designs. Our investigation derives
useful findings: (1) Reinit recovery achieves better performance efficiency than ULFM
recovery; (2) Reinit recovery is independent of the scaling size and the input problem
size, however ULFM recovery is not; (3) using Reinit recovery with FTI checkpointing
is a highly efficient fault tolerance design. We give the technical and design details in
Chapter 7.

1.4 Organization of the Dissertation
We present the organization of the dissertation below. Chapter 2 describes the technical
terms and terminologies used in the dissertation, and discusses the literature related
to works in the dissertation. Chapter 3 aims at the characterization of error resilience
in HPC applications. Chapter 4 and Chapter 5 model application error resilience in
HPC analytically and using machine learning. Chapter 6 and Chapter 7 investigate fault
tolerance techniques for the MPI process and node failures. Chapter 8 is the conclusion
of the dissertation and thoughts for future work.

Chapter 3 is developed from [65]; Chapter 4 includes content from [63]. Chapter 5
is revised from [64]. Chapter 6 is based on [60]. Chapter 7 derives from a manuscript
in submission.

Chapter 2

Background and Literature Survey

2.1 Background
This section introduces the terminologies and technical terms used in the dissertation.

2.1.1 Transient Fault Model
We consider transient faults in computation units of processors. For example, transient
faults in the Arithmetic Logic Unit (ALU) and the address computation for loads and
stores. We do not consider transient faults in memory components, such as caches,
because these components are usually protected by Error Correcting Code (ECC) or
parity at the architecture level. Similar assumptions are made in existing work [153, 98].

Furthermore, we consider single bit-flip model, not multiple bit-flip model. Because
single bit-flip model is the de-facto fault model commonly adopted by existing work to
emulate errors propagated to applications [153, 98, 93]. Despite transient faults can
manifest as single and multiple bit-flips in applications, existing studies have demon-
strated that multi-bit errors can have a similar impact on the application as single-bit
errors [98]. Therefore, we use single bit-flip model in this chapter.

Fault Injection. We use PINFI [153] to perform fault injections into programs.
PINFI triggers a single bit-flip into the destination register or memory location of a
randomly chosen instruction to emulate the effect of transient faults. The registers or
memory locations are chosen as the injection targets by PINFI, because any error in
the computation/data paths of the processor shows up in the results of the executed
instruction. PINFI’s fault model is the same as ours. Comparing with other common
fault injection tools (e.g., LLFI [148] and REFINE [61]), PINFI is very accurate and
user-friendly. In our study, the number of fault injections is determined by using a
statistical approach [95] with the confidence level of 99% and the margin of error 1%.

Fault Manifestation Model. We run fault injection campaigns to measure the ap-
plication resilience. A fault injection campaign contains many fault injections. In each
fault injection, a single-bit error is injected into an input/output operand of an instruc-
tion. We classify the outcome, or manifestation, of programs corrupted by bit flips into
three classes: success, SDC, and interruption:

• Success: the execution outcome is the same as outcome of fault-free runs. The
execution outcome can also be different from outcome of fault-free runs, but the

8

9

execution passes the result verification phase of the application.

• SDC: the program outcome is different from the outcome of the fault-free execu-
tion, and the execution does not pass the result verification phase of the applica-
tion.

• Interruption: the execution does not reach the end of execution, i.e., it is inter-
rupted in the middle of the execution, because of an exception, crash, or hang.

Rates. To quantify the application resilience in a fault injection campaign, we mea-
sure the rate of each of the three classes of manifestations. In particular, we use the
formula:

#Manifestations/N (2.1)

where #Manifestations is the number of times a given class of manifestation occurs, and
N is the number of fault injections in a fault injection campaign. We consider the rates
of success, SDC and interruption as metrics to quantify application resilience. The rates
are real numbers between 0.0 and 1.0. Since they are mutually exclusive, the addition
of them for a given application is 1.0.

Error Masking. Error masking can happen at the application level and hardware
level. The application-level error masking happens because of application inherent se-
mantics and program constructs. The hardware-level error masking happens because a
fault does not corrupt the precise semantics of hardware [111].

The key of our error tolerance modeling is the application-level error masking. We
particularly study error masking that happens to individual data objects. We consider
that when an error happens in a data object (other data objects remain correct before
the error happens) how the error impacts the application outcome correctness. A data
object can be an array or other data structures with many data elements. Other than
data objects, we do not consider the corruption of other application components (e.g.,
computing logic). Hence, we do not aim to model the error tolerance of all application
components but focus on data objects. In addition, we focus on errors happening in data
objects and directly consumed by the application. Latent errors in data objects (i.e., the
errors not consumed by the application) are not considered because they do not matter
to the application outcome correctness.

2.1.2 MPI Failure Recovery Model
MPI failure recovery has multiple modes including global, local, backward, forward,
shrinking, and non-shrinking.

Global: The application execution must roll back to a global state to fix a failure.
Local: The application can continue the execution by repairing the failed compo-

nents such as a failed code block locally without starting over the execution.
Backward: The application execution must go back to a previous state in order to

survive a failure.
Forward: The failure can be fixed with the current application state, and the execu-

tion can continue.
Non-shrinking: The application manages to bring all failed processes back to re-

sume execution.

10

Shrinking: The application execution is able to continue with the remaining sur-
vivor processes.

The global, backward, non-shrinking recovery best fit into the Bulk Synchronous
Parallel (BSP) paradigm of HPC applications. This dissertation focuses on global, back-
ward, non-shrinking recovery.

There are two leading MPI failure recovery frameworks–ULFM and Reinit.
ULFM. User-level Fault Mitigation (ULFM) [19] is an MPI failure recovery frame-

work providing shrinking recovery and non-shrinking recovery. ULFM develops new
MPI operations to add fault tolerance functionalities at the application level. These
functionalities include fault detection, communicator repairing, and failure recovery. In
particular, ULFM leverages the MPI error handler to notify process failures. Once a
failure is detected and notified, ULFM uses an operation MPI_Comm_revoke() to re-
voke processes in the communicator. This operation interrupts communication pending
on the communicator at all processes. ULFM then reduces the failed processes us-
ing an operation MPI_Comm_shrink(), which also creates a new communicator with
survivor processes. ULFM then makes an agreement among processes of the new com-
municator. The shrinking recovery is done using the above steps. The other recovery
mode is non-shrinking recovery. For non-shrinking recovery, ULFM further uses the
MPI_Comm_spawn() operation to spawn new processes and create a new communi-
cator. ULFM then uses the MPI_Intercomm_merge() operator to merge the communi-
cator of survivor processes and the communicator of spawned processes, and create a
new communicator. We provide an example implementation of ULFM non-shrinking
recovery in the Appendix. Please see it for more details.

Reinit. Reinit [35, 92, 60] is an alternative recovery framework designed partic-
ularly for global backward non-shrinking recovery. Reinit implements the recovery
process into the MPI runtime, which is transparent from users. Therefore, the program-
ming effort of using Reinit is much less than using ULFM. Programmers only need to
set a global restarting point; the remaining recovery is done by Reinit. Also, Reinit is
much more efficient than ULFM because of running at the MPI runtime level [60].

2.2 Related Work
Resilience Computation Patterns. A limited number of previous studies reveal the ex-
istence of resilience patterns [97, 43]; these efforts, however, lack a systematic method
to identify these patterns. In [97], Li et al. identify conditional statement and trun-
cation for error masking in GPU programs. In [43], Cook and Zilles identify shift,
conditional statement and truncation. Those research efforts manually examine fault
tolerance cases, while our work is different in several aspects. First, we introduce a
novel framework and methodology to systematically identify patterns. For complex ap-
plications, manual identification of those patterns is unfeasible. Second, we identify
more complex patterns (e.g., DCL and repeated additions). Those new patterns require
multiple instructions to take effect. Finding those patterns must be based on a complete
picture on error propagation. The existing work identifies patterns based on the analy-
sis of individual instructions without sufficient considerations of interactions between
instructions, hence lacking a complete picture to identify patterns.

11

Error Detector Placement. Existing research uses compiler static and/or dynamic
instruction analysis to enable application-level fault tolerance by detecting code vul-
nerabilities. For example, Pattabiraman et al. use static analysis [119] and a data-
dependence analysis [118] to determine the placement of error detectors in applications.
Their work determines the critical variables that are likely to propagate errors based on
metrics, such as highest dynamic fan-out. Different from us, their work cannot locate
resilience patterns.

Visualization. Recently, techniques that allow visualization of corrupted applica-
tion data across loop iterations and MPI processes have been developed. For example,
Calhoun et al. [29] replicate instructions to track and visualize how errors propagate
within the application. However, their approach can be expensive when analyzing com-
plex applications. Our approach, based on the abstract code structure model, can accel-
erate tracking error propagation.

Resilience Metrics. Architectural vulnerability factor (AVF) is a hardware-oriented
metric to quantify the probability of an error in a hardware component resulting in
incorrect application outcomes. It was first introduced in [18, 111] and then attracted
a series of follow-up work. This includes statistical modeling techniques to accelerate
AVF estimate [54], online AVF estimation [100], Yu et al. [158] introduce a metric,
DVF. DVF captures the effects of application and hardware on error tolerance of data
objects. In contrast to AVF and DVF, aDVF is a highly application-oriented metric.

Using Machine Learning to Address Resilience Problems. Recent research starts
to use ML to address resilience problems [93, 44, 11, 114, 80, 108, 151]. Mitra et
al. [108] build a regression model to predict anomaly output of an application, given
a certain combination of input parameters to the application. Laguna et al. [93] train
an ML classifier IPAS. IPAS learns which instructions can have a high likelihood of
leading to a silent output corruption. IPAS duplicates those instructions to mitigate the
effect of silent output corruption. Vishnu et al. [151] use attributes including system
and application states to predict whether a multi-bit error will lead to corrupted output.
Desh [44] predict node failures by training a recurrent neural network model using sys-
tem logs. Nie et al. [114] use system characteristics as features to predict the occurrence
of GPU errors. PRISM [80] predicts resilience for GPU applications using application
properties. However, different from PARIS, PRISM focuses on GPU applications, and
PRISM does not consider instructions execution order and resilience weights for feature
design.

Error Propagation Analysis. Application level error propagation has been widely
studied. Li et al. [97] implement a fault injection tool to study error propagation in GPU
applications. They also propose Trident [98], a three-level error propagation model to
predict SDC probabilities of programs. Calhoun et al. [29] study how corruption states
change across instructions because of error propagation at the instruction and applica-
tion variable levels. Ashraf et al. [11] propose an error propagation model to study error
propagation for MPI applications. Our work does not focus on error propagation, but in-
cludes an N-gram based technique to embed the instruction execution order information
into the feature vector to consider the effect of error propagation.

Random Fault Injection. This is the most common method to study application re-
silience [40, 88, 47, 117, 83, 103]. Typically, application-level fault injection has to be
performed many times to ensure statistical significance. Some research prunes unnec-
essary fault injections to reduce fault injection efforts. Hari et al. [69] and Kaliorakis

12

et al. [79] explore fault equivalence for selective fault injection by grouping instruc-
tions that have the similar effects on program execution at the same static instruction.
They further reduce fault injection positions by leveraging the equivalence of interme-
diate states in execution and instruction-level approximate computing [130, 150]. Al-
though they use instruction grouping, their method is different from ours. They group
static instructions at the program level, while we group dynamic instructions based on
their functionality and our instruction grouping is independent of the program. Nie et
al. [115] prune fault injection sites by only analyzing a subset of threads and a subset
of registers that are representative for GPGPU applications. Our work tries to address
the inefficiency of using fault injection to study application resilience by circumventing
performing fault injections. But the above existing work is complementary to our work
for model training.

Data Recovery. Checkpointing [68, 128, 4, 144, 152, 30, 3, 87] is the commonly
used approach to restart an MPI application when a failure occurs. Programmers need
to have a good sense of the application algorithm and the code structure before they can
pinpoint which date objects for checkpointing. On the other hand, writing checkpoints
to the file system typically brings at least 20% percent performance overhead. There are
many works trying to make checkpointing easier-to-use and to improve checkpointing
efficiency.

Hargrove et al. [68] develop a system-level checkpointing library–the Berkeley Lab
Checkpoint/Restart (BLCR) library–to run checkpointing at system-level using the Linux
kernel. Furthermore, Adam et al. [4], SCR [109], and FTI [15] propose multi-level
checkpointing aiming to significantly advance checkpointing efficiency. CRAFT [134]
provide a fault tolerance framework that integrates checkpointing to ULFM shrinking
and non-shrinking recovery. In this work, we choose FTI for checkpointing for data
recovery because the high efficiency and well documenting of FTI. We attempt to inte-
grate and evaluate more checkpointing mechanisms in addition to FTI in future work.
Furthermore, different than existing works, we also provide a data dependency analytics
tool to aid programmers to identify data objects for checkpointing.

MPI Recovery. ULFM [19, 20] is the leading MPI recovery framework that is
in progress with the MPI Fault Tolerance Working Group. ULFM provides new MPI
interfaces to remove failed processes and add new processes to communicators, and to
agree between processes. ULFM requests programmers to implement shrinking- or non-
shrinking recovery using these interfaces. ULFM provides flexibility to programmers,
but there is a great effort of learning before programmers can correctly use ULFM
interfaces to implement ULFM recovery. A large number of works [102, 120, 73, 84,
71, 23, 89] have explored and extended the applicability of ULFM. Teranishi et al. [147]
replace failed processes with spare processes to accelerate ULFM process recovery.
Bosilca et al. [21, 22] and Katti et al. [85] propose a series of efficient fault detection
mechanisms for ULFM. Fenix [57] provides a user-friendly abstraction layer on top of
ULFM. Fenix reduces the effort to implement ULFM recovery, but it does not solve the
scalability problems of ULFM reported by previous works [147, 58], also demonstrated
in our evaluation.

Reinit [90, 60] is a more efficient solution for global recovery. Reinit hides the
process recovery from programmers by implementing it to MPI runtime. Reinit pro-
vides only one interface to programmers which sets up the global restart point, protects
the target function, and returns the state of spawned and survivor processes. The early

13

versions [35, 92, 90, 145] of Reinit have limited usage because these versions are not
compatible with common job schedulers. Most recently, Georgakoudis et al. [60] fix
the design and reimplement Reinit into the OpenMPI runtime.

MPI Fault Tolerance Benchmarking. There have been many benchmark suites [26,
104, 5] developed for performance modeling of programming models using MPI. For
example, SKaMPI [124] is an early benchmark suite that evaluates different implemen-
tations of MPI. Bureddy et al. [27] develop a benchmark suite to evaluate point-to-point,
multi-pair, and collective MPI communication on GPU clusters. Dosanjh et al. [52] pro-
pose the first micro benchmark suite to study the multi-threading Remote Memory Ac-
cess performance in MPI. However, there is not an MPI benchmark suite that focuses on
fault tolerance and evaluates fault tolerance designs in MPI. This dissertation proposes
a benchmark suite MATCH for benchmarking MPI fault tolerance.

Chapter 3

Understanding Natural Error
Resilience in HPC Applications

3.1 Introduction
In this chapter, we characterize application natural resilience using common HPC pro-
grams and identify six common resilience computation patterns. Examples of such pat-
terns are dead corrupted variables, where sets of corrupted temporal variables are not
used afterwards, and repeated additions, a pattern that amortizes the effect of incorrect
data values.

To capture and extract these patterns, however, a new method is required. While
some methods exist to inject faults and statistically quantify their manifestation, such as
random fault injection [34, 28, 96, 97, 138], and to use program analysis [69, 130, 119,
118, 29] to track errors on individual instructions, these methods miss the fine-grained
information on error propagation as well as the context needed to explain, at a fine
granularity, how errors propagate and consequently how natural resilient computations
occur. In other words, these approaches do not provide the needed reasoning about
how multiple computations work together to make an error disappear or to diminish its
impact.

To address the above problems, we design FlipTracker, a framework to analyt-
ically track error propagation and to provide fine-grained understanding of the prop-
agation and tolerance of errors in HPC applications, and then apply it to a series of
representative HPC applications to extract the patterns that provide natural resilience.

Our framework has three key features. First, we introduce an application model
that partitions the application into code regions. Such a model allows us to build a
high-level picture on how an error propagates across code regions, or is tolerated with
the combination of multiple code regions. Second, using data dependency analysis,
we identify the input and output variables of each code region, which allows us to
perform isolated fault injections at the entry of code regions to study their resilience
in an isolated fashion. Further, it allows us to quickly track how the corrupted values
change across code regions as caused by their resilience computation patterns. Third,
we track how the number of live, yet corrupted locations change within code regions,
an approach that reveals resilience patterns that cannot be easily found by traditional
high-level fault propagation approaches.

14

15

We present two use cases to demonstrate how resilience computation patterns can
be used to (1) improve application resilience during programming and (2) predict the
degree of application resilience.

In summary, the contributions of this chapter are (1) an abstract code structure
model that enables us to reason about the natural resilience properties of code segments;
(2) the design of a framework that enables fine-grained and comprehensive analysis of
error propagation to capture application natural resilience; (3) an implementation of the
framework, FlipTracker, using the LLVM compiler and a study of a set of representa-
tive HPC programs on which FlipTracker is demonstrated; (4) an analysis and formal
definition of six resilience computation patterns that we discover in these programs; (5)
two use cases that demonstrate the usage of resilience computation patterns.

3.2 Design of FlipTracker
In this section, we introduce our method to identify resilience computation patterns.

FlipTracker takes as input an HPC program, creates a dynamic execution trace
generated using LLVM instrumentation, and then uses our novel analysis techniques
to provide a fine-grained representation of error propagation and error tolerance. This
analysis allows us to easily identify the resilience computation patterns that may exist
in the program, possibly in different code regions of the program.

Our method is based on a top-level characterization of HPC applications, which
we then use to track error propagation and tolerance at a low level. In particular, we
model an application as a chain of code regions, which work together to produce the
final result of the application. Each of these code regions can have input, output, and
internal variables. Errors can propagate at any point in time to any of these variables.

Based on the above application model, we build a dynamic data dependency graph
(DDDG) from an instruction trace collected at runtime that allows us to check the value
variation of corrupted variables across code region instances (i.e., the top level). Using
the DDDG, we then build a table, which we call the alive corrupted locations (ACL)
table, that keeps track of the corrupted locations for each dynamic instruction. This
table allows us to examine the variation of the number of alive, corrupted variables
to identify fault tolerance at the instruction level (i.e., the bottom level). In the next
sections we give more details of each of these steps (see Figure 4.1).

3.2.1 Application Code Region Model
We characterize HPC applications as sets of iterative structures or loops. In an HPC
application, a main computation loop usually dominates the application execution time.
Within this main loop, there are a number of inner loops that are typically used to
update large data objects (e.g., a mesh structure in computational fluid dynamics), and
iterative computations are performed to compute properties of these objects, such as
energy of particles. Figure 3.1 shows an example of such loop program abstractions
corresponding to CG [12].

Code Regions. Since HPC applications are typically composed of combinations of
loops, we model an application as a chain of code regions delineated by loop structures
(Step (a) in Figure 4.1). A code region can be either a loop or any block of code

16

1 s t a t i c vo id c o n j _ g r a d () { / / c a l l e d from the main loop
2 . . .
3 f o r () { / / a f i r s t l e v e l inner loop
4 f o r () { / / a second l e v e l inner loop
5 f o r () { . . . } / / a th ird l e v e l inner loop
6 }
7 }
8 f o r () { . . . } / / a f i r s t l e v e l inner loop
9 }

Figure 3.1: An example HPC application (CG) with iterative structures.

between two neighboring loops. An application can have multi-level nested loops. We
allow the user to decide at which loop level, code regions are defined. Note that code
regions defined at different loop levels only affect the analysis time (not the analysis
correctness) to identify resilient code regions and patterns. Code regions defined at
the level of innermost loop tend to be small and easy for fine-grained instruction level
analysis. However, we can have many of such small code regions, which increases our
exploration space. On the other hand, code regions defined at the level of outermost
loop tend to be large and we have a smaller exploration space of code regions, but it
would be time-consuming for fine-grained instruction level analysis. In our work, we
define each of the first-level inner loops as a code region.

Code Region Variables. Given a code region, we classify the variables within the
code region as input variables, output variables, and internal variables. Input variables
are those that are declared outside of the code region and referenced in the code region.
Output variables are those that are written in the code region and read after the code
region. Other variables that the code region writes to or reads from are internal variables.
A code region can have many dynamic instances, each of which corresponds to one
invocation of the code region at runtime. The values of input, output, and internal
variables can vary across multiple instances of a code region.

Rationale Behind the Model. Our loop-based model follows the natural way in
which HPC programs are coded and analyzed; HPC programs are composed of a hand-
ful of high-level loops where the program spends most of its time. Our loop-based
model also enables a divide-and-conquer approach, where we can identify application
subcomponents that may or may not have resilience patterns. For example, in the error
propagation analysis, if the input variables of a code region are not corrupted, one can
infer that the region is not impacted by an error and we can skip propagation analysis
on it.

3.2.2 Tracing Code Region Data
The DDDG allows us to identify input, output, and internal variables of a code region.
We construct a DDDG for each code region from a dynamic instruction trace of the
application using an algorithm inspired by the construction of a program dependence
graph [56], except that our graph is dynamic rather than static: vertices are the values of
variables obtained from registers or memory; edges are operations transforming input
values into output values of variables. Using the DDDG as a code region representation,
we identify the input and output variables of the code region: root nodes represent inputs

17

Corrupted	
Locations

Dynamic	Instructions
1 2 3 4 5 6

Loc_1 1	 1 1 1 0 0
Loc_2 1 1 1 0
… 0

Loc_M 0
Total	No.	of	Alive	

Corrupted	 Locations 1 1 2 2 1 0

Start: Loc_1 is
affected by the
injected error

These instructions 2 and 4
do not influence (or are not
affected by) the corrupted
location Loc_1

Instruction 3 reads the
corrupted location
Loc_1, which then
corrupts Loc_2

End: Loc_1 and Loc_2
are then either written by
an uncorrupted value or
not used later

1: alive
0: dead

0

1

2

3

1 2 3 4 5 6

Nu
m
be
r	o

f	A
liv
e	

Co
rr
up
te
d	
Lo
ca
tio

ns

Dynamic	Instructions

ACL	Variation

X

Figure 3.2: An example of the ACL table.

and leaf nodes represent outputs. Other nodes are internals.
Within the corresponding DDDG of each code region, we inject an error into either

the input, output, or internal variables (Steps (b)–(c) in Figure 4.1). A DDDG allows
us to compare data propagations in regions with and without fault occurrence, which
allows us to detect control flow divergence by comparing operations. Further, the values
of variables are embedded in the DDDG, which helps us to track how specific variables
change their values across operations; such value change reveals whether, how, and
where fault tolerance occurs.

3.2.3 Analyzing Corrupted Variables
We identify variables that, once corrupted, return to their non-corrupted state and in
which dynamic instruction. This is key in identifying resilience computation patterns
since we need to identify the point in time where the error is tolerated and its location
in the code region (Step (d) in Figure 4.1).

Using the DDDG, our analysis of corrupted variables gives us a low-level repre-
sentation in terms of instructions of how data propagates in the code region. Since
program abstractions, such as variables, are not explicitly represented at this level, we
need a different way of tracking variable values. We introduce a method that tracks
alive corrupted locations, discussed as follows. In the following discussion, since a
variable value can be either in a register location or in a memory location, we use the
term location to cover both options.

Alive Corrupted Locations. Traversing through the collected instruction trace, we
use the DDDG to build and dynamically update a table of the alive corrupted locations,
or ACL. Generally speaking, the ACL table stores the number of alive, corrupted lo-
cations after each dynamic instruction. We call a location “alive” if the value in that
location will be referenced again in the remainder of the computation.

Each row of the table shows whether a specific location is alive or not after each
dynamic instruction, as instructions are encountered in the trace. Each column of the
table shows, for a specific corrupted location, whether it is alive or not after a dynamic
instruction. Based on the column information, we can determine the total number of
alive, corrupted locations after each traced instruction.

Figure 3.2 gives an example of the ACL table. Each table element has a value of 1
or 0, which indicates whether a corrupted location after a specific dynamic instruction

18

is alive or not. We use the first row as an example to explain the table. The location
Loc_1 is corrupted by a fault after instruction 1. Loc_1 then becomes an alive, corrupted
location. Next, Loc_1 remains alive until instruction 5 where the location is updated and
the fault in the location is overwritten by a clean value. The number of alive, corrupted
locations are counted after each dynamic instruction, shown in the last row of the table.

3.2.4 Identifying Resilience Patterns from Code Regions
As we traverse the instruction trace, the DDDG and ACL table contain the necessary in-
formation to detect resilient code regions. Resilience patterns are extracted from them.

When the DDDG is used to identify resilient code regions, we compare the values
of input and output locations in a DDDG between faulty and fault-free runs. An input
location can be corrupted directly—an error was directly injected into the location—or
indirectly—an error was injected in a previous code region, but the error propagates to
the input location of the code region in question. Given a code region, there are two
possible cases when fault tolerance occurs:

• Case 1: the value of any input location in the code region’s DDDG in a faulty run
is incorrect (with respect to the DDDG from a matching fault-free run), i.e., there
is at least one corrupted input location; however, the values of all output locations
are correct.

• Case 2: at least one of the input locations and one of the output locations in a
faulty run are incorrect (with respect to the DDDG from a matching fault-free
run), but the error magnitude in at least one corrupted input or output location
becomes smaller after the code region instance. The error magnitude is defined
as

error_magnitude =
|valuecorrect − valueincorrect|

|valuecorrect|
. (3.1)

In Case 1, it is reasonable to infer that the code region in question has natural fault
tolerance—the corruption of the input location is directly masked within the code re-
gion, and does not impact the output correctness.

In Case 2, the error still exists, i.e., there is some amount of error in the code region
locations; however, the impact of the error, measured by its magnitude in the input or
output locations, becomes smaller, as a function of the code region. This means that
the target code region may result in an application outcome that is numerically different
from that of the fault-free executions. However, when such a different outcome passes
the application verification and is acceptable as a valid result, we say that Case 2 has
fault tolerance.

When the ACL is used to identify resilient code regions, the algorithm to detect
resilience patterns given an ACL is as follows. We identify first if in any column, an
alive corrupted location becomes dead for a given instruction i, where i < N and N is
the last instruction before the application outputs its result. If this occurs, we mark i as
a potential member of resilience computation patterns. In Figure 3.2, the instruction 5
consuming the location Loc_1 is a potential member of resilience computation patterns.
Once all of such instructions are found, we identify their source code locations (file and
line of code) and provide them to the user for further analysis.

19

3.3 Implementation
We implement FlipTracker as a two-step process: first we use a parallel tracer built
on top of LLVM (in particular, LLVM-3.4) to extract the instruction traces, and then
use these traces to dynamically generate and update the DDDGs and the matching ACL
tables. We do this for both fault-free runs as well as faulty runs.

3.3.1 Parallel Tracing
FlipTracker uses an LLVM instrumentation tool, LLVM-Tracer [136], to generate a
dynamic instruction trace. In this trace we store metadata for each instruction, such as
the the instruction type, names of registers, and operand values. In our case, instructions
refer to LLVM instructions, which are generated at the intermediate representation (IR)
of the program and instrumented by LLVM-Tracer. This approach does not support
MPI programs out-of-the-box, which we need to support our HPC workloads. Thus we
extend LLVM-Tracer to instrument Message Passing Interface (MPI) programs, so that
traces are saved into a file for each MPI process.

Since trace generation is a per-process task, no synchronization is required to gener-
ate and save per-process traces into different files. Note also that, in our study, LLVM-
Tracer only instruments program instructions—instructions from the MPI runtime are
not instrumented as we expect that most errors arise from application computations.
This however, is not a limitation per se—our approach can easily be directed to also
instrument instructions in any parallel runtime. Furthermore, our current implementa-
tion can identify errors that propagate through MPI communications and then happen
in computation, even though we do not instrument MPI runtime.

Trace Splitting. Traces for an HPC program can be quite large for processing.
Although there is a number of approaches that handle the problem of large traces (e.g.,
trace compression [78, 116]), we take a simple approach that splits a trace into smaller
pieces. Each of small pieces corresponds to an instance of a code region, which reduces
the scope for each analysis and further allows us to parallelize the analysis.

3.3.2 DDDG Generation and Usage
Once the trace is generated, FlipTracker takes the dynamic trace as input, and gener-
ates a DDDG by examining the data dependency of the operands in each operation. Our
technique is based on the work of Holewinski et al. [72], who proposed a methodology
to generate DDDG from a dynamic trace. The generated DDDG is then used to identify
the input, internal, and output locations for the code region instance using Graphviz
[59]. The DDDG is also used to determine corrupted locations by dynamically building
the ACL table.

ACL Table Generation. The algorithm to generate an ACL table is motivated by
dynamic taint analysis in the security research [113, 7, 160], which focuses on compu-
tations affected by contaminated sources. The difference between taint analysis and our
approach is that we exclude tainted locations that are never used as well as those that
are overwritten by an uncorrupted value from the untainted location set. In other words,
we only consider alive corrupted locations in application execution. We use a DDDG
to acquire the dynamic data dependence to track the error propagation, and, simultane-

20

ously, we count the number of alive corrupted locations after each dynamic instruction
in the input trace.

3.3.3 Fault Injection and Statistical Significance
We implement a fault injection framework based on FlipIt [28], which allows us to
inject a bit flip in the user-specified population of instructions and operands. Injections
are performed randomly into input and internal locations of code region instances. Our
fault injection uses a uniformly distributed fault model, similar to [61, 95]. Given an
input or output location for a code region instance, we calculate the number of fault
injection sites by analyzing the dynamic LLVM instruction trace. Then, we follow the
statistical approach in [95] to calculate the number of fault injection tests for a target at
95% confidence level and 3% margin of error.

3.4 Evaluation

Table 3.1: Resilience computation patterns in code regions of the HPC programs. DCL,
RA, DO represent dead corrupted locations, repeated additions and data overwriting,
respectively.

Program Code
re-
gion

Line No. #instr in an
iteration

Pattern
Found?

DCL RA CS Shifting Trunc DO

CG cg_a 434-439 21017 NO
cg_b 440-453 14002 YES

√ √

cg_c 454-460 31755757 YES
√ √

cg_d 461-574 1196022 NO
cg_e 575-584 18202 NO

MG mg_a 425-429 606145 YES
√ √

mg_b 430-437 719 YES
√ √

mg_c 438-456 1019509 YES
√ √

mg_d 457-462 3313305 YES
√ √ √

KMEANS k_a 131-142 1647 NO
k_b 144-153 62 NO
k_c 156-187 2185944 YES

√ √

k_d 190-194 36 YES
√ √

IS is_a 435-472 792630 NO
is_b 473-478 983040 YES

√ √

is_c 500-638 741367 YES
√ √

LULESH l_a 2652-
2693

297376 YES
√ √ √

We apply FlipTracker to representative HPC programs to study their resilience
properties and ultimately to extract naturally resilient patterns that other programs can
use.

3.4.1 Experimental Setup
We use ten representative HPC programs in our experiments, including eight HPC
benchmarks (CG, MG, IS, LU, BT, SP, DC, and FT from the NAS Parallel Benchmarks
in C [12, 133] with input Class S), an HPC proxy application (LULESH [82] with in-
put “-s 3"), and a benchmark from the machine learning domain (KMEANS from the

21

Rodinia benchmark suite [36] with input “100.txt"). We run experiments on an HPC
cluster having 3,018 nodes. Each node is equipped of two Intel Xeon E5-2695 CPUs,
and has 36 cores and 128 GB shared memory.

Trace Partitioning and Code Region Selection. HPC programs can have several
static loop structures, and depending on program input, each static loop can generate
several dynamic instances. To keep the number of loop instances manageable for anal-
ysis, we focus on high-level loop structures. Particularly, we define a code region as
a section of the program that is either (a) a first-level inner loop (if there is any inner
loop), or (b) a code block between two neighbor inner loops.

We list the code regions that we analyzed and their corresponding line numbers and
the number of instructions within one iteration of the main loop in Table 3.1.

3.4.2 Parallel Tracing Overhead
We measure the overhead of trace gathering for MPI programs to study the feasibility
of our approach. Figure 3.3 shows that our approach incurs modest overhead: 45% on
average when using 64 processes on 8 nodes, comparing to an uninstrumented baseline.
It is therefore feasible to gather traces at small/medium scales. For large scales, one can
selectively collect traces for individual functions or use techniques such as [41]. We
leave the challenge of efficiently gathering traces at very large scale for future work.

Since the resilience computation patterns that we are interested in occur in the com-
putation code regions of the program (not in the communication part), we focus on the
single process where the fault is injected.

Nondeterminism. MPI nondeterminism can bring difficulty to match code regions
between faulty and fault-free runs. While in many MPI programs, nondeterminism can
be controlled by eliminating application sources of nondeterminism, such as calls to
rand() and/or time(), in other programs this is difficult because of nondeterminism in-
troduced by MPI point-to-point communication patterns. To address these applications,
we rely on record-and-replay tools [131, 157], on which a fault-free run is recorded and
it is then replayed in all subsequent faulty executions.

54.581

5.012

3.61

134.25

70.238

72.218

8.183

6.71

159.112

87.421

0 50 100 150 200

LULESH

IS

KMEANS

MG

CG

Execution	Time	(s)

M
PI
	A
pp

lic
at
io
ns

with	LLVM	parallel	tracing
without	LLVM	parallel	tracing

Figure 3.3: LLVM parallel tracing performance (64 processes on 8 nodes)

22

3.4.3 Code Region Fault Injection Results
We inject faults in input or internal locations of code regions and measure success rate.
We perform experiments in two dimensions: (a) across code regions in a given iteration
(See “per-code-region” results); (b) in a given code region across all iterations (See
“per-iteration” results).

Per-Code-Region Results. Since different code regions could have different num-
bers of instances, to be consistent, we perform the analysis on the first instance of each
code region, i.e., in the iteration 0 of the main loop (see Figure 3.4).

0

0.3

0.6

0.9

cg_a cg_b cg_c cg_d cg_e

Su
cc

es
s R

at
e CG

Code Region

(a) CG

0

0.3

0.6

0.9

mg_a mg_b mg_c mg_d

Su
cc

es
s R

at
e MG

Code Region

(b) MG

0

0.3

0.6

0.9

k_a k_b k_c k_d

Su
cc

es
s R

at
e KMEANS

Code Region

(c) KMEANS

0

0.3

0.6

0.9

is_a is_b is_c

Su
cc

es
s R

at
e IS

Code Region

(d) IS

0

0.3

0.6

0.9

l_a

Sc
ce

ss
 R

at
e LULESH

internal input

Code Region

(e) LULESH

Figure 3.4: Fault injection results for code region instances at iteration 0.

In KMEANS we find that, for faults on internal locations the code region k_d is
more resilient than others because many memory free operations free temporal cor-
rupted locations, while for faults on input locations, many segmentation faults cause
almost zero success rate. We find a relatively high success rate in MG—we find cases
of repeated addition and dead corrupted location patterns that account for the fault toler-
ance (Section 3.5 explains these patterns in details). In IS we find that a bit-shift opera-
tion that occurs on input locations masks faults in the is_b code region, which increases

23

0

0.3

0.6

0.9

1 2 3 4 5 6 7 8 9 10

Su
cc

es
s R

at
e CG

Iteration Number

(a) CG

0

0.3

0.6

0.9

1 2 3 4

Su
cc

es
s R

at
e MG

Iteration Number

(b) MG

0

0.3

0.6

0.9

1

Su
cc

es
s R

at
e KMEANS

Iteration Number

(c) KMEANS

0

0.3

0.6

0.9

1 2 3 4 5 6 7 8 9 10

Su
cc

es
s R

at
e IS

Iteration Number

(d) IS

0

0.3

0.6

0.9

1 2 3 4 5 6 7 8 9 10

Su
cc

es
s R

at
e LULESH

internal input

Iteration Number

(e) LULESH

Figure 3.5: Fault injection results for individual iterations of the main loop.

its success rate. In CG, we find two code regions (b and c) that have higher success
rates than others because the error magnitudes in variables (particularly p[]) become
smaller due to a computation pattern that repeatedly adds values. In LULESH, there is
only one code region—faults frequently cause application crashes, which explains the
low success rate.

Per-Iteration Results. We focus on a single code region and examine its fault tol-
erance on several loop iterations. In particular, we treat the main loop of each program
as a single code region and each iteration of the main loop as one instance of the code
region. Figure 3.5 shows the results. We find that the success rates of different iterations
can be similar. MG (internal locations) and CG exemplify this conclusion. The success
rates over multiple iterations can also be very different, e.g., in IS and LULESH. After
examining the DDDGs, we find that control flow differences between the iterations of
the main loop are the main reason accounting for this difference.

24

3.5 Resilience Computation Patterns
We present a formal description of the resilience computation patterns. Table 3.1 sum-
marizes them in applications.

Pattern 1: Dead Corrupted Locations (DCL)
In this pattern, the values of several corrupted input locations are aggregated into fewer out-
put locations, with aggregations being a combination of multiple operations (e.g., additions
and multiplications). While the errors in the corrupted input locations can propagate to one
(or a few) locations, many of these corrupted input locations are not used anymore (they
become dead locations) and the total number of corrupted locations decreases.

We frequently find Pattern 1 in LULESH. Figure 3.7 shows the code excerpt ex-
tracted from LULESH that accounts for the decrease of the number of alive corrupted
locations within the routine LagrangeNodal (see 1 and 2 in Figure 3.6). The array
hourgram[][] is a temporal corrupted location that is dead after the sample code snippet.
The error has propagated to its elements before the example code. Although the error
propagates from hourgram to temporal variables hxx[], which are then aggregated into
hgfz[], the number of alive, corrupted variables decreases since the corrupted elements
of hourgram[][] become dead after this code. We also find this pattern in the MG code.

 0

 50

 100

 150

 200

 250

 1x107 1.02x107 1.04x107 1.06x107 1.08x107 1.1x107 1.12x107 1.14x107 1.16x107

LULESH ACL Matrix

"lulesh_acl_matrix_213"

N
um

be
r	o

f	A
liv
e	
Co

rr
up

te
d	
Lo
ca
tio

n

Dynamic	Instructions	(×10$)
0										1.00									1.02							1.04								1.06										1.08									1.10						1.12						1.14

LagrangeNodal()

Iteration IterationIteration

LagrangeElements()

0

Figure 3.6: A real case of ACL table. It shows the number of ACL-s in LULESH after
a fault is injected into the last third iteration of the main loop.

Pattern 2: Repeated Additions
In this pattern, the value of a corrupted location is repeatedly added by other correct val-
ues. Those correct values amortize the effect of the incorrect value. This pattern does not
necessarily cause a decrease of alive, corrupted locations (as in Pattern 1), but over time
the corrupted value approaches the correct value such that the application execution can be
successful.

25

1 f o r (I n d e x _ t i = 0 ; i < 4 ; i ++) {
2 hxx [i] = hourgam [0] [i]∗ xd [0] + hourgam [1] [i]∗ xd [1] +
3 hourgam [2] [i]∗ xd [2] + hourgam [3] [i]∗ xd [3] +
4 hourgam [4] [i]∗ xd [4] + hourgam [5] [i]∗ xd [5] +
5 hourgam [6] [i]∗ xd [6] + hourgam [7] [i]∗ xd [7] ;
6 }
7 . . .
8 f o r (I n d e x _ t i = 0 ; i < 8 ; i ++) {
9 hg fz [i] = c o e f f i c i e n t ∗

10 (hourgam [i] [0] ∗ hxx [0] + hourgam [i] [1] ∗ hxx [1] +
11 hourgam [i] [2] ∗ hxx [2] + hourgam [i] [3] ∗ hxx [3]) ;
12 }

Figure 3.7: Example of the Dead Corrupted Locations in LULESH

1 f o r (i 3 = 1 ; i 3 < n3 1 ; i 3 ++) {
2 f o r (i 2 = 1 ; i 2 < n2 1 ; i 2 ++) {
3 . . .
4 f o r (i 1 = 1 ; i 1 < n1 1 ; i 1 ++) {
5 u [i 3] [i 2] [i 1] = u [i 3] [i 2] [i 1]
6 +c [0]∗ r [i 3] [i 2] [i 1]
7 +c [1] ∗ (r [i 3] [i 2] [i1 1] + r [i 3] [i 2] [i 1 +1]
8 + r1 [i 1])
9 +c [2] ∗ (r2 [i 1]+ r1 [i1 1] + r1 [i 1 + 1]) ;

10 } } }

Figure 3.8: Example of the Repeated Additions pattern in MG
Table 3.2: The repeated additions pattern takes effect in MG

original value corrupted value error magnitude
itr1 0 0.000000059604645 ∞
itr2 -0.004373951680278 -0.004373951059397 6.20880999391282E-10
itr3 -0.004816104396391 -0.004816104262613 1.33777999962448E-10
itr4 -0.004664456032917 -0.004664455968072 6.48450000292899E-11

We observe Pattern 2 in the iterative solvers MG and CG. Figure 3.8 shows a code
excerpt covering this pattern in MG. Here, we inject a fault in an element of the array u
and then the array element u[i3][i2][i1] is added with new data values (Lines 6-9). This
code is repeatedly executed in the main computation routine (mg3P). As a result, the
array element u[i3][i2][i1] is repeatedly added along with new data values.

We examine the value of the array element (u[10][10][10]) where a single bit-flip
happens on the 40th bit in the first invocation of the function mg3P . This function is
iteratively called four times. We examine error magnitude (as defined in Equation 3.1,
recalling that error magnitude is the relative error of a faulty value). Table 3.2 shows
that the error magnitude becomes increasingly smaller as mg3P is repeatedly called,
reducing the effect of data corruption. Note that although the error magnitude at the
second invocation of mg3P is very small, it is still not acceptable for the verification
phase of MG. However, as the corrupted value is closer to the correct value at the fourth
invocation of mg3P , the corrupted value is acceptable by MG and regarded as a correct
solution.

26

1 /∗ Determine the number of keys in each bucket ∗ /
2 f o r (i =0 ; i <NUM_KEYS; i ++)
3 b u c k e t _ s i z e [k e y _ a r r a y [i] >> s h i f t] + + ;

Figure 3.10: Example of the shifting pattern in IS.

1 /∗ f i n d c l u s t e r c e n t e r id with min d i s t to pt ∗ /
2 f o r (i =0 ; i < n p t s ; i ++) {
3 f l o a t d i s t ;
4 d i s t = e u c l i d _ d i s t _ 2 (pt , p t s [i] , n f e a t u r e s) ;
5 i f (d i s t < m i n _ d i s t) {
6 m i n _ d i s t = d i s t ;
7 i n d e x = i ;
8 }
9 }

Figure 3.9: Example of the Conditional Statement pattern in KMEANS

Pattern 3: Conditional Statements
In this pattern, a conditional statement such as an if condition, which tolerates a fault as long
as the result of the statement in a faulty case remains the same (true/false) as in a fault-free
case, consequently avoiding a control-flow divergence that otherwise could have occurred.
The conditional statement can cause a decrease in the number of alive corrupted locations.

Although Pattern 3 is simple, it can become a major reason for fault tolerance in
applications. KMEANS exemplifies this case: Figure 3.9 shows a code segment where
a condition statement (Line 5) plays a major role to tolerate faults in the array feature.
In essence, the code tries to find the minimum distance between a target data point and
the center data point of each cluster based on the feature values of data points. This
conditional statement tolerates errors that happen in the array feature, which takes most
of the memory footprint of KMEANS. As long as the code segment can find the correct
cluster with the minimum distance to the target point, the application outcome remains
correct.

Besides the above example, we often find Pattern 3 in the program verification
phases of MG and CG, where the final computation result is compared with a threshold
to determine the result validity and/or to terminate execution.

Pattern 4: Shifting
In this pattern, bits are lost due to bit shifting operations. If the lost bits are corrupted, fault
tolerance occurs and we say that the pattern completely masks (or eliminates) the faulty bit.

We find Pattern 4 in IS—we show an example in Figure 3.10. IS is a benchmark
that implements bucket sorting for input integers (called “keys” in the benchmark). The
input integers are placed into multiple buckets based on their significant bits. To decide
into which bucket a key will be placed, IS applies a shift operation on the key (Line
3 in Figure 3.10). If the data is corrupted in the least significant bits of the key, the
shift operations can still correctly place the key into the corresponding bucket, hence
tolerating faults in the key.

27

Pattern 5: Data Truncation
In this pattern, corrupted data is not presented to the user when used as a final result, or
corrupted data is truncated.

We find Pattern 5 in LULESH, where in its last execution phase the computation
results of a double data type are reported in “%12.6e” format (using the printf C
function). In this format, the mantissa of the computation result is partially cut-off and
not fully presented to the user; thus if the cut-off mantissa is corrupted by a fault, the
erroneous value will not be seen by the user.

Pattern 6: Data Overwriting
In this pattern, corrupted data is overwritten by a correct value, and the data corruption is
consequently eliminated.

We find Pattern 6 in all benchmarks, as it is commonly found in the output of many
instructions. This occurs in particular when the value of a corrupted location is over-
written by an instruction that generates a clean uncorrupted value.

Discussion. The effectiveness of some patterns (repeated additions, conditional
statement, shifting, and data truncation) depends on the program input. For example,
the effectiveness of the shifting pattern is dependent on the number of shifted bits—the
more bits are shifted, the more random bit-flip errors can be tolerated. This is different
from software design patterns that are general and independent of program input.

3.6 Case Studies
Resilience computation patterns have many potential uses. We give two use cases. Here,
whenever we use fault injection, we use 99% confidence level and 1% margin of error
to decide the number of fault injection tests based on [95].

Table 3.3: Results after applying resilience patterns to CG.

Resi. Pattern Applied App. Resi. Exe time (s)/Average (s)
None 0.59 158.659-159.468 / 159.010
DCL and overwrt. 0.78 158.859-159.457 / 159.167
Truncation 0.614 158.605-159.338 / 158.835
All together 0.782 158.574-159.457 / 158.859

3.6.1 Use Case 1: Resilience-Aware Application Design
We apply resilience patterns to the CG benchmark, aiming to improve its resilience. We
successfully apply three patterns: dead corrupted location (DCL), data overwriting,
and truncation. The results are shown in Table 3.3, where the first column shows
the resilience pattern(s) applied; the second column is the application resilience—the
success rate measured by doing fault injection; the third column is the execution time for
one run with or without applying resilience pattern(s). We report the average execution
time for 20 runs in Table 3.3.

Figure 3.11 and Figure 3.12 show two code excerpts extracted from CG, where
dead corrupted location, data overwriting and truncation are applied, respectively. For

28

the case of dead corrupted location and data overwriting, the original code is shown in
Figure 3.11(a) and the new code is shown in Figure 3.11(b) (we include some comments
to explain the difference). In particular, we use two temporal arrays v_tmp and iv_tmp
to replace two global arrays v and iv. We then copy values in the arrays v_tmp and
iv_tmp back to the arrays v and iv after the computation.

To apply DCL and data overwriting, we introduce two temporal arrays at the begin-
ning of sprnvc() to replace two global arrays v[] and iv[] referenced in sprnvc() (see
Figure 12). Furthermore, to ensure the program correctness, the updated values of the
two temporal arrays are copied back to v[] and iv[] at the end of sprnvc(). Because of
the copy-back, errors occurring in v[] and iv[] during the execution of sprnvc() can be
overwritten. Moreover, errors that might occur in the two temporal arrays become dead
(not accumulated as in the global arrays), after the copy-back. Overall, we improve ap-
plication resilience by 32.2% with less than 0.1% performance loss (caused by a small
amount of data movement).

Figure 3.12 shows how we apply the truncation. In particular, we replace 64-bit
floating-point multiplications to 32-bit integer multiplications (see Lines 11-12 in Fig-
ure 3.12.b). To apply the truncation pattern, we select 10 iterations (340-350th itera-
tions) of a loop within the function conj_grad(), which is used to calculate p · q (see
Figure 13). We replace 64-bit floating-point multiplications with 32-bit integer multi-
plications (particularly lines 508-510 in the source code). After applying the pattern,
the precision loss (64 bit vs. 32 bit) does not affect the correctness of the final output.
The reason is as follows. As an iterative solver, CG gradually averages out the precision
loss across iterations. Furthermore, CG uses a conditional statement that compares the
CG output with a threshold to verify the output correctness. Such conditional statement
can further tolerate the precision loss. Table 3.3 shows that we improve application
resilience by 4.1% with no performance loss. We apply the three patterns together and
improve the application resilience by a total of 32.5% with less than 0.1% performance
loss.

3.6.2 Use Case 2: Predicting Application Resilience
The current common practice to quantify the resilience of an application is to use ran-
dom fault injection. However, random fault injection misses the application context
that can explain how errors propagate and consequently are tolerated. In this case study,
we are exploring a way alternative to random fault injection to quantify application re-
silience. Since resilience computation patterns explain application resilience, we may
estimate the resilience of an application by counting the number of instances of such pat-
terns in the application. This approach can quantify the contribution of each resilience
pattern to application resilience, which demonstrates the effectiveness of resilience pat-
terns.

Model Construction. We build a Bayesian multivariate linear regression model [107]
to predict the resilience (i.e., success rate) of an application. The model uses the num-
ber of pattern instances for each resilience computation pattern as input, and outputs a
single value Psuc_rate, the predicted success rate. We model the above idea as follows:

29

1 s t a t i c vo id s p r n v c (i n t n , i n t nz , i n t nn1 , double v [] , i n t i v []) {
2 i n t nzv , i i , i ;
3 double v e c e l t , v e c l o c ;
4 nzv = 0 ;
5 whi le (nzv < nz) {
6 v e c e l t = r a n d l c (& t r a n , amul t) ;
7 v e c l o c = r a n d l c (& t r a n , amul t) ;
8 i = i c n v r t (vec loc , nn1) + 1 ;
9 i f (i > n) co n t i n u e ;

10 l o g i c a l was_gen = f a l s e ;
11 f o r (i i = 0 ; i i < nzv ; i i ++) {
12 i f (i v [i i] == i) {
13 was_gen = t r u e ;
14 break ;
15 }
16 }
17 i f (was_gen) co n t i n u e ;
18 v [nzv] = v e c e l t ;
19 i v [nzv] = i ;
20 nzv = nzv + 1 ;
21 }
22 }

(a)

1 s t a t i c vo id s p r n v c (i n t n , i n t nz , i n t nn1 , double v [] , i n t i v []) {
2 i n t nzv , i i , i ;
3 double v e c e l t , v e c l o c ;
4 double v_tmp [NONZER+ 1] ; / / d e f i n e a temp array
5 i n t iv_ tmp [NONZER+ 1] ; / / d e f i n e a temp array
6 f o r (i =0 ; i <=NONZER; i ++) {
7 v_tmp [i] = v [i] ; / / i n i t i a l i z a t i o n
8 iv_ tmp [i] = i v [i] ; / / i n i t i a l i z a t i o n
9 }

10 nzv = 0 ;
11 whi le (nzv < nz) {
12 v e c e l t = r a n d l c (& t r a n , amul t) ;
13 v e c l o c = r a n d l c (& t r a n , amul t) ;
14 i = i c n v r t (vec loc , nn1) + 1 ;
15 i f (i > n) co n t i n u e ;
16 l o g i c a l was_gen = f a l s e ;
17 f o r (i i = 0 ; i i < nzv ; i i ++) {
18 i f (iv_ tmp [i i] == i) { / / r e p l a c e i v with iv_tmp
19 was_gen = t r u e ;
20 break ;
21 }
22 }
23 i f (was_gen) co n t i n u e ;
24 v_tmp [nzv] = v e c e l t ; / / r e p l a c e v with v_tmp
25 iv_ tmp [nzv] = i ; / / r e p l a c e i v with iv_tmp
26 nzv = nzv + 1 ;
27 }
28 f o r (i =0 ; i <=NONZER; i ++) {
29 v [i] = v_tmp [i] ; / / copy back
30 i v [i] = iv_tmp [i] ; / / copy back
31 }
32 }

(b)

Figure 3.11: A code excerpt from the function sprnvc() in CG for the Use Case 1. (a) shows
the original code excerpt before patterns are applied; (b) shows the code excerpt when dead
corrupted location and data overwriting are applied.

30

1 s t a t i c vo id c o n j _ g r a d (i n t c o l i d x [] ,
2 . . .
3 double p [] ,
4 double q [])
5 {
6 . . .
7 / / Obtain p . q
8 d = 0 . 0 ;
9 f o r (j = 0 ; j < l a s t c o l f i r s t c o l + 1 ; j ++) {

10
11 d = d + p [j]∗ q [j] ;
12
13 }
14 . . .
15 }

(a)

1 s t a t i c vo id c o n j _ g r a d (i n t c o l i d x [] ,
2 . . .
3 double p [] ,
4 double q [])
5 {
6 . . .
7 / / Obtain p . q
8 d = 0 . 0 ;
9 f o r (j = 0 ; j < l a s t c o l f i r s t c o l + 1 ; j ++) {

10 i f (j <=350&&j >=340) {
11 i n t tmp = p [j] ; / / t r u n c a t i o n
12 i n t tmp1 = q [j] ; / / t r u n c a t i o n
13 d = d + tmp∗ tmp1 ;
14 } e l s e {
15 d = d + p [j]∗ q [j] ;
16 }
17 }
18 . . .
19 }

(b)

Figure 3.12: A code excerpt from the function conj_grad() in CG for the Use Case 1. (a)
shows the original code excerpt before the truncation pattern is applied; (b) shows the code
excerpt when the truncation is applied.

Psuc_rate =

#patterns∑
i=1

βixi + ϵ. (3.2)

In Equation 3.2, xi is the number of pattern instances for a specific pattern i normalized
by total number of instructions within the application. We name xi the pattern rate (e.g.,
condition rate, shift rate, and truncation rate). We normalize the number of pattern
instances to enable a fair comparison between applications with different number of
instructions. In total, there are #patterns patterns (#patterns is six in our modeling).
βi is the model coefficients and ϵ is the intercept.

Experiments and Model Validation. We perform two experiments. In the first
experiment, we build the model using all the patterns from the ten benchmark programs
(Section 3.4.1) to show that the data fits the model well. This experiment requires

31

Table 3.4: The quantification of resilience patterns and the prediction accuracy.
SR=success rate, OW=overwrite.

App. Cond.
Rate

Shift
Rate

Trunc.
Rate

Dead
Loca-
tion
Rate

Repeat
Addi-
tion
Rate

OW
Rate

Measured
SR

Pred.
SR

Pred.
Err.
Rate

CG 0.088 2.45E-
08

2.185 0.298 2.61E-
07

0.999 0.739 0.652 11.8%

MG 0.037 2.74E-
03

1.145 0.314 0.000 0.999 0.879 0.810 7.8%

LU 0.022 8.11E-
06

0.188 0.319 0.000 0.999 0.575 0.642 11.7%

BT 0.015 0.000 0.074 0.334 0.000 0.999 0.656 0.573 12.7%
IS 0.040 2.86E-

02
0.001 0.311 0.000 0.985 0.653 0.712 9.0%

DC 0.139 0.174 0.078 0.302 9.22E-
07

0.994 0.578 0.204 64.6%

SP 0.042 0.000 0.428 0.389 4.15E-
08

0.999 0.385 0.466 21.0%

FT 0.038 1.99E-
03

1.591 0.338 0.000 0.999 0.876 1.000 14.2%

KMEANS0.079 7.18E-
07

2.484 0.375 7.87E-
05

0.979 0.843 1.000 18.6%

LULESH 0.048 2.60E-
03

0.550 0.378 6.88E-
06

0.937 0.926 0.725 21.7%

running the ten benchmarks, collecting the number of pattern instances for each pattern,
and performing random fault injection to obtain success rates for each benchmark.

In the second experiment, we train the model using data from different combina-
tions of nine of the ten benchmarks, and make a prediction for success rate for the one
remaining benchmark. We then validate the model prediction by measuring its accu-
racy (i.e., relative error) with respect to the success rate that is obtained by doing fault
injection. This experiment is to see how accurate the model is in predicting the success
rate of an unseen program.

Experimental Results. For the first experiment, we calculate the “R − square”
value of the model. R − square is used for measuring the fitness of a statistic model.
The R − square value in our experiment is 96.4%, which is close to 1. A value close
to 1 indicates that the model explains the variability of the prediction result around its
mean. The model therefore fits and explains the data very well.

For the second experiment, the prediction results are shown as the prediction error
rate in Table 3.4. The average prediction error excluding the prediction error on DC
is 14.3%. The prediction error on DC is large (64.6%), because the model does not
distinguish error tolerance capabilities of different instances of repeated additions and
conditional statement (see the limitation discussed below), thus predictions for DC are
affected by this limitation.

Importance of Resilience Patterns: Feature Analysis. We use standardized re-
gression coefficient [25], an indicator that presents the importance of predictors, to un-

32

derstand which resilience patterns are the most important. We compute the standardized
regression coefficients for the model trained in the second experiment.

On average, the averaged standardized regression coefficients of Shifting, Trunca-
tion, Dead Location, Repeated Addition, Overwriting, and Conditional Statement are
1.48, 1.73, 0.38, 0.25, 0.92, and 1.69, respectively. We conclude that Truncation (1.73),
Shifting (1.48), and Conditional Statement (1.69), that have the largest coefficients, con-
tribute the most to resilience. On the other hand, patterns such as Repeated Addition
and Dead Location have less impact.

Limitation and Future Work. Different instances of a pattern can have different
weight into application resilience. For example, considering different cases of shifting
where the value is shifted to right/left x times. Depending on the value of x, the error
may or may not be masked. While simply counting the number of pattern instances
limits the prediction accuracy (one should also take into account the value of locations),
this demonstrates a simple but practical use case of the patterns.

3.7 Conclusions
Understanding natural error resilience in HPC applications is important in creating ap-
plications that can naturally tolerate errors. However, our knowledge on natural error
resilience has been quite limited, mainly because of a lack of systematic methods to
identify resilience computation patterns. Our framework, FlipTracker, exposes these
patterns by enabling fine-grained tracking of error propagation and fault tolerance to en-
able users to pinpoint resilience computations in HPC programs. By tracking data flows
and value variations based on a code region model, we identify and summarize six com-
mon resilience patterns, which increase our understanding of how natural resilience
occurs. We also present two case studies of practical applications of these resilience
patterns.

Chapter 4

Modeling Application Resilience to
Transient Faults on Data Objects

4.1 Introduction
In this chapter, we introduce a method to model and quantify application resilience to
transient faults on data objects. Our method is based on an observation that, application
resilience to transient faults on data objects is mainly because of application-inherent
semantics and program constructs. For example, a corrupted bit in a data structure
could be overwritten by an assignment operation, hence does not cause an outcome cor-
ruption; a corrupted bit of a molecular representation in a Monte Carlo method-based
simulation may not matter to the application outcome because of the statistical nature
of the simulation. Based on the above observation, the quantification of application
resilience to transient faults on data objects is equivalent to quantifying error masking
events caused by application-inherent semantics and program constructs, and associat-
ing those events with data objects. By analyzing application execution information (e.g.,
the architecture-independent, LLVM [101] IR trace), we can accurately capture those
error masking events, and provide insightful analysis on how and where an error toler-
ance happens. Furthermore, analyzing application execution information, we can use
memory addresses of data objects and track register allocation to associate data values
in registers and memory with data objects. Such a method introduces data semantics
into the analysis.

Quantifying application resilience to transient faults on data objects must address a
couple of research problems. First, we have little knowledge of the characteristics of er-
ror masking events. This creates a major obstacle to recognize those events and achieve
analytical quantification. Second, we do not have a good metric to make the quantifica-
tion. Simply counting the number of error masking events cannot provide a meaningful
quantification, because the number can be accumulated throughout application execu-
tion. The fact that a data object has many error masking events does not necessarily
mean that the application is resilient to the value corruption of the data object because
those events may be only a small portion of the total operations on data objects. Third,
determining the impact of an error occurrence on the correctness of application outcome
is challenging. The error can propagate to many data objects. Tracking all of those er-
rors for analysis is prohibitive. In addition, an error may not impact the correctness of

33

34

application outcome because of algorithm semantics in the application. However, rec-
ognizing algorithm semantics requires detailed application domain knowledge, which
is prohibitive for common users.

Based on the method of quantifying error masking events, we systematically model
and quantify application resilience to transient faults on data objects, and address the
above problems. We first characterize error masking events and classify them into
three classes: operation-level error masking, error masking when error propagation,
and algorithm-level error masking. We further introduce a metric. The metric quanti-
fies how often error masking happens. Based on the metric, the comparison of appli-
cation resilience to transient faults between different data objects is more meaningful
than based on simply counting error masking events. Our classification of error mask-
ing events and the proposed metric are fundamental, because they lay a foundation not
only for modeling application resilience to transient faults on data objects, but also for
other research, such as the placement of error detectors [118] and application check-
point [110].

Based on our classification and metric, we introduce a model. Given a data object,
our model examines operations in the dynamic instruction trace. For each operation that
consumes elements of the data object, the model makes the following inference: if an
element consumed by the operation has an error, will the application outcome remain
correct? The inference procedure of the model includes three practical techniques to
recognize the three classes of error masking events: (1) detecting operation-level error
masking based on operation semantics, (2) tracking error propagation by limiting prop-
agation length for analysis, and (3) detecting algorithm-level error masking based on
deterministic fault injection. For (2), limiting propagation length is a technique based
on the characterization of error propagation. This technique does not impact our conclu-
sion on error masking while avoiding expensive analysis; for (3), the deterministic fault
injection treats the application as a black box without requiring detailed application
domain knowledge.

In summary, this chapter makes the following contributions: (1) a systematic method
and a metric to analytically model application resilience to transient faults on data
objects, which is unprecedented; (2) a comprehensive classification of error masking
events, and methods to recognize them; (3) an open-sourced system tool, MOARD [63],
to model application resilience to transient faults on data objects. (4) an evaluation of
representative, computational algorithms and two scientific applications to reveal how
application-level error masking typically happens on data objects; (5) a case study to
demonstrate the benefit of using a model-driven approach to direct error tolerance de-
signs.

4.2 Error Tolerance Modeling
We start with a classification of application-level error masking and then introduce a
modeling metric.

35

1 void func (double ∗par_A , double ∗par_b ,
2 double ∗ pa r_x)
3 {
4 double c = 0 ;
5
6 / / Pre p r o c e s s i n g par_A
7 par_A [0] = s q r t (i n i t I n f o) ;
8 c = par_A [2] ∗ 2 ;
9 i f (c>THR)

10 par_A [4] = (i n t) c >> b i t s ; / / b i t s h i f t i n g
11
12 / / Using the a l g e b r a i c mult i gr i d s o l v e r
13 AMG_Solver (par_A , par_b , pa r_x) ;
14 }

Figure 4.1: The example code to show error masking that happens to a data object,
par_A.

4.2.1 General Description
Error masking that happens to data objects has various representations. Listing 4.1
gives a synthetic example to illustrate those representations. In this example, we focus
on a data object, par_A, which is an array. We study error masking that happens to this
data object. We examine every statement in the example code. For each statement, we
examine if any element of the data object is involved. If yes, we examine if there is a
data corruption in the element, how the data corruption impacts the result correctness
of the statement, and how the data corruption propagates to the successor statements
which in turn impact the application outcome correctness.

par_A is involved in 4 statements (Lines 7, 8, 10 and 13). The statement at Line 7
has an error masking event: if an error happens at par_A(in particular, the data element
par_A[0], which is consumed by the statement), the error can be overwritten by an
assignment operation, no matter which bit is flipped in par_A[0]. The statement at
Line 8 has no explicit error masking happen. If an error at par_A[2] occurs, the error
propagates to c by multiplication and assignment operations. If the error propagates to
Line 10 (bit shifting), depending on which bit is corrupted at Line 8 and how many bits
are shifted at Line 10, the corrupted bit can be thrown away or remain. If the corrupted
bit is thrown away, then the error in par_A[2] propagating from Line 8 to Line 10 is
indirectly masked at Line 10 (not directly masked at Line 8).

Line 13 is an invocation of an algebraic multi-grid solver (AMG) taking par_A as
input. AMG treats par_A as a multi-dimensional grid and can tolerate certain data cor-
ruptions in the grid, because of the algorithm semantics of AMG (particularly, AMG’s
iterative structure that mitigates error magnitude and tolerates incorrectness of numeri-
cal results [34]).

This example reveals many interesting facts. In essence, a program can be regarded
as a combination of data objects and operations performed on the data objects. An oper-
ation (defined at LLVM instruction level) refers to arithmetic computation, assignment,
logical and comparison instructions or an invocation of an algorithm implementation.
An operation may inherently come with error masking effects, exemplified at Line 7
(error overwriting); an operation may propagate errors, exemplified at Line 8. Differ-
ent operations have different error masking effects, and hence impact the application

36

outcome differently. Based on the above discussion, we classify application-level error
masking into three classes.

(1) Operation-level error masking. An error that happens to the target data object
is masked because of the semantics of the operation. Line 7 in Listing 4.1 is an example.

(2) Error masking when error propagation. Some error masking events are im-
plicit and have to be identified beyond a single operation. In particular, a corrupted bit
in a data object is not masked in the current operation (e.g., Line 8 in Listing 4.1) but
the error propagates to another data object (e.g., the variable c) and masked in another
operation (e.g., Line 10). Note that simply relying on isolated operation-level analysis
without the error propagation analysis is not sufficient to recognize these error masking
events.

(3) Algorithm-level error masking. Identification of some error masking events
must include algorithm-level information. The identification of these events is beyond
the first two classes. Examples of such events include the multigrid solver [34] and cer-
tain sorting algorithm [138]. The algorithm-level error masking can tolerate errors that
happen to many variables. For example, the multigrid solver can tolerate low-significant
bit-flip errors in multiple iterations [34]. The essence of algorithm-level error masking
is typically due to algorithm specific definition on execution fidelity and specific pro-
gram constructs that mitigate error magnitude during application execution [126]. Lim-
ited analysis at individual operations or error propagation is not sufficient to build up a
big picture to capture the algorithm-level fault tolerance.

Our modeling is analytical and relies on the quantification of the above error mask-
ing events on data objects. We create a metric to quantify those events.

4.2.2 aDVF: A New Metric
To quantify application resilience to transient faults on a data object, the key is to quan-
tify how often error masking happens to the data object. We introduce a new metric,
aDVF (i.e., the application-level Data Vulnerability Factor), to quantify application re-
silience to transient faults on data objects. aDVF is defined as follows.

For an operation with the participation of the target data object (maybe multiple data
elements of the target data object), we reason that if an error happens to a participating
data element of the target data object, the application outcome could or could not remain
correct in terms of the outcome value and algorithm semantics. If the error does not
cause an incorrect application outcome, then an error masking event happens to the
target data object. A single operation can operate on multiple data elements of the target
data object. For example, an ADD operation can use two elements of the target data
object as operands. For a specific operation, aDVF of the target data object is defined
as the total number of error masking events divided by the number of data elements of
the target data object involved in the operation.

For example, an assignment operation a[1] = w happens to a data object, the array a.
This operation involves one data element (a[1]) of the target data object a. We calculate
aDVF for a in this operation as follows. If an error happens to a[1], we reason that the
erroneous a[1] does not impact correctness of the application outcome and the error in
a[1] is always masked (no matter which bit of a[1] is flipped). Hence, the number of
error masking events for the target data object a in this operation is 1. Also, the total

37

number of data elements involved in the operation is 1. Hence, the aDVF value for the
target data object in this assignment operation is 1/1 = 1.

Based on the above discussion, the definition of aDVF for a data object X in an
operation (aDV FX

op) is formulated in Equation 4.1, where xi is a data element of the
target data object X involved in the operation and m is the number of data elements
involved in the operation; f is a function to count error masking events that can happen
to a data element.

aDV FX
op =

m−1∑
i=0

f(xi)/m (4.1)

To calculate aDVF for a data object in a code segment, we examine operations in
the code segment one by one; For each operation that involves any element of the target
data object, we consider that if a transient fault happens to the element, how many error
masking events can happen. In general, the definition of aDVF for a data object in a
code segment is similar to the above for an operation, except that m is the number of
data elements of X involved in all operations of the code segment. 1 According to the
above definition, a higher aDVF value for a data object indicates that the application is
more resilient to transient faults on the data object; Also, an aDVF value should be in
[0, 1].

To further explain it, we use a code segment from LU benchmark in SNU_NPB
benchmark suite 1.0.3 (a C-based implementation of the Fortran-based NAS benchmark
suite [12]), shown in Listing 4.2.

An example from LU. We calculate aDVF for the array sum[]. Statement A has
an assignment operation involving one data element (sum[m]) and one error masking
event (i.e., if an error happens to sum[m], the error is overwritten by the assignment).
Considering that there are five iterations in the first loop (iternum1 = 5), there are five
error masking events happening to five data elements of sum[].

Statement B has two operations related to sum[] (i.e., an assignment and an addi-
tion). The assignment operation involves one data element (sum[m]) and has no error
masking because the new value is added to sum[m] (not overwriting it); The addition
operation involves one data element (sum[m]) and may have one error masking (i.e.,
certain corruptions in sum[m] can be ignored, if (v[k][j][i][m] ∗ v[k][j][i][m]) is sig-
nificantly larger than sum[m]). This error masking is counted as r′ (0 ≤ r′ ≤ 1),
depending on the corrupted bit position in sum[m] and the error propagation result (see
Sections 4.2.3 and 7.4 for further discussion). In the loop structure where Statement B
is, there are (r′ ∗ iternum2) error masking events that happen to (2 ∗ iternum2) elements
of sum[], where “r′” comes from the addition operation 2, and iternum2 is the number
of iterations in the second loop.

Statement C has two operations related to sum[] (i.e., an assignment and a division)
but only the assignment operation has error masking (overwriting). In the loop structure
where Statement C is, there are five iterations (iternum3 = 5). Hence, there are five error

1If a data element is referenced multiple times in the code segment, this data element is counted
multiple times in m.

2The addition operation with the corrupted sum[m] can propagate the error to the assignment. This
error propagation effect is included in r′.

38

1 void l2norm (i n t ldx , i n t ldy , i n t ldz , i n t nx0 , \
2 i n t ny0 , i n t nz0 , i n t i s t , i n t i end , i n t j s t , \
3 i n t j end , double v [] [l d y / 2∗2 + 1] [l d x / 2∗ 2 + 1] [5] , \
4 double sum [5])
5 {
6 i n t i , j , k , m;
7 f o r (m=0;m<5;m++) / / The f i r s t loop
8 sum [m] = 0 . 0 ; / / Statement A
9

10 f o r (k =1; k<nz0 1 ; k ++) / / The second loop
11 f o r (j = j s t ; j < j e n d ; j ++)
12 f o r (i = i s t ; i < i e n d ; i ++)
13 f o r (m=0;m<5 ,m++)
14 sum [m]= sum [m]+ v [k] [j] [i] [m] \
15 ∗v [k] [j] [i] [m] ; / / Statement B
16
17 f o r (m=0;m<5;m++) { / / The t h i r d loop
18 sum [m]= s q r t (sum [m] / ((nx0 2) ∗ \
19 (ny0 2) ∗ (nz0 2))) ; / / Statement C
20 }
21 }

Figure 4.2: A code segment from LU.

masking events that happen on five data elements of the target data object. In summary,
the aDVF calculation for sum[] is

aDV F sum
op =

1 ∗ iternum1 + r′ ∗ iternum2 + 1 ∗ iternum3

1 ∗ iternum1 + (1 + 1) ∗ iternum2 + (1 + 1) ∗ iternum3

, (4.2)

where each term in the numerator is the number of error masking events in the first,
second, and third loop, respectively; each term in the denominator is the number of
target data elements involved in each loop; iternum1 = 5, iternum3 = 5 and iternum2 =
(nz0− 2) ∗ (jend− jst) ∗ (iend− ist) ∗ 5.

To calculate aDVF for a data object, we must rely on effective identification and
counting of error masking events (i.e., the function f). In Sections 4.2.3, 4.2.4 and
4.2.5, we introduce a series of counting methods based on the classification of error
masking events.

4.2.3 Operation-Level Analysis
To identify error masking events at the operation level, we analyze all possible opera-
tions. In particular, we analyze architecture-independent, LLVM instructions and char-
acterize their error tolerance based on operation semantics. We classify the operation-
level error masking as follows.

(1) Value overwriting. An operation writes a new value into a data element of
the target data object and the error in the data element (no matter where the corrupted
bit is in the data element) is masked. For example, the store operation overwrites the
error in the store destination. We also include trunc and bit-shifting operations into this
category because the error could be truncated or shifted away in those operations.

(2) Logical and comparison operations. If an error in the target data object does
not change the correctness of logical and comparison operations, the error is masked.

39

Examples of such operations include logical AND and the predicate expression in a
switch statement.

(3) Value overshadowing. If the corrupted data value in an operand of an addition
or subtraction operation is overshadowed by the other correct operand involved in the
operation, then the corrupted data can have an ignorable impact on the correctness of
application outcome. For example, the data value “10” in an addition operation (“10e+6
+ 10”) is corrupted and the addition operation becomes “10e+6 + 11”. But such data
corruption may not matter to the application outcome because the operand “10e+6” is
much larger than the magnitude of the data corruption. We further discuss how the
overshadowing effect is determined in Section 7.4.

The above three operation-level error masking impacts the application outcome dif-
ferently. Error masking based on value overwriting and logic and comparison opera-
tions can make the application outcome numerically the same as the error-free case.
Error masking based on value overshadowing can make the application outcome nu-
merically different from or the same as the error-free case.

For value overshadowing, if the application outcome is numerically different, the
application outcome can still be acceptable because of algorithm semantics; if the ap-
plication outcome is numerically the same, operations after the value overshadowing
must help tolerate corrupted bits. For the above two cases, we do not attribute error
masking to the algorithm level or error propagation level. Instead, we attribute it to
operation-level value overshadowing because value overshadowing initiates error mask-
ing. Without value overshadowing, algorithm or error propagation may not mask errors.

The effectiveness of the above error masking heavily relies on the error pattern. The
error pattern is defined by how erroneous bits are distributed within a corrupted data
element (e.g., single-bit vs. spatial multiple-bit, least significant bit vs. most significant
bit). Depending on where the erroneous bit is, the error in the data object could or
could not be masked. Take as an example the bit shift operation (Line 10) in Listing 4.1.
Depending on the error pattern, the shift operation can remove or keep the corrupted
bit.

To determine the existence of the above (2) and (3) error masking, we must consider
error patterns (i.e., the spatial aspect of errors [151]). In the practice of our resilience
modeling, given an operation to analyze, we enumerate possible error patterns for the
target data object. Then, we derive the existence of error masking for each error pattern
without application execution. Suppose there are n error patterns and m (0 ≤ m ≤ n)
of which have error masking. Then the number of error masking events is calculated as
m/n, which is a statistical quantification of possible error masking. In the example of
the bit shift (Line 10 in Listing 4.1), assuming that c is 64-bit and we consider single-bit
errors, then there are 64 error patterns. For each error pattern, we decide if the corrupted
bit is shifted away. If 10 of the 64 fault patterns have the corrupted bit shifted, then the
number of error masking events for the data object c in this shift operation is 10/64.

4.2.4 Error Propagation Analysis
If we analyze a specific error pattern in an operation (named “target error pattern” and
“target operation” in the rest of this section) and determine that the error cannot be
masked in the target operation, then we use error propagation analysis to capture error
masking (i.e., the temporal aspect of errors [151]). Using a dynamic instruction trace

40

as input, the error propagation analysis tracks whether the errors (including the origi-
nal one and the new ones because of error propagation) are masked in the successor
operations based on the operation-level analysis without application execution. If all
of the errors are masked and hence the application outcome remains numerically the
same as the error-free case, then we claim that the original error in the target operation
is masked.

For the error propagation analysis, a big challenge is to track all contaminated data
which can quickly increase as the error propagates. Tracking all the contaminated data
significantly increases analysis time and memory usage. A solution to this challenge
is deterministic fault injection. Different from random fault injection, the deterministic
fault injection injects an error at the target operation using the target error pattern and
then run the application to completion. If the application outcome is numerically the
same as the error-free case, then the original and the new errors are masked, and the
error masking based on error propagation takes effect. If the application outcome is
numerically different but still accepted, then the algorithm-level error masking takes
effect.

Because of the deterministic fault injection, we do not need to analyze operations
one by one to track data flow and error contamination. Hence it is faster. However, the
deterministic fault injection can still be time-consuming, if application execution time
is long. To improve the efficiency of the error propagation analysis, we optimize the
analysis based on the characteristics of error propagation.

Optimization: bounding propagation path. We observe that tracking a limited
number of operations (k operations) after the target operation is often sufficient to de-
cide the existence of the propagation-based error masking. Our observation is based
on 1000 random fault injection tests on 16 data objects from eight benchmarks (see
Table 4.1 for benchmark details). We observe that 87% of the fault injection tests that
cannot mask errors within 10 operations (k = 10) after fault injection lead to numeri-
cally incorrect application outcomes; 100% of the fault injection tests that cannot mask
errors within 50 operations (k = 50) after fault injection lead to numerically incorrect
application outcomes. This fact indicates that errors that are not masked within a limited
number of operations have little chance to be masked by further error propagation.

The rationale to support the above observation is as follows. An error in a data
object typically propagates to a large amount of data (objects) quickly. After a certain
number of operations, it is very unlikely that all errors are able to be masked by further
error propagation and making a conclusion of no error masking by error propagation is
correct in most cases.

Based on the above observation, we only need to track the first k operations after
the target operation to determine the existence of the propagation-based error masking.
In particular, after analyzing k operations (k = 50 in our evaluation), (1) If not all errors
due to error propagation are masked at the operation level, we conclude that the errors
will not be masked at the operation level by further error propagation. But those errors
may be masked by algorithm (if the user wants to do algorithm-level analysis), pending
further investigation; (2) If all errors due to error propagation are masked and based on
the operation-level analysis we can derive that the application outcome remains numer-
ically correct, then we claim error masking due to error propagation happens.

41

Figure 4.3: MOARD, a tool for modeling application resilience to transient faults on
data objects

4.2.5 Algorithm-Level Analysis
Identifying the algorithm-level error masking demands domain and algorithm knowl-
edge. In our modeling, we want to minimize the usage of that knowledge, such that the
modeling methodology can be general across different domains. The traditional random
fault injection treats the program as a black-box. Hence, using the traditional random
fault injection could be an effective tool to identify the algorithm-level error masking.
However, to avoid the randomness, we use the deterministic fault injection again.

In particular, when we analyze a specific error pattern in a target operation and
decide that the error cannot be masked in the target operation and next k operations,
we inject an error using the error pattern in the target operation and run the application
to completion. If the application outcome is numerically different from the error-free
case but acceptable in terms of algorithm semantics, then algorithm-level error masking
takes effect. If the application outcome is numerically the same, then error masking due
to error propagation happens, which should be rare based on the above discussion on
“bounding propagation path”.

Discussion: Although we employ the deterministic fault injection, it cannot replace
our modeling because of two reasons. First, the fault injection space without our mod-
eling is typically huge (trillions of fault injection sites [69]), which is prohibitive for
implementation. Second, the deterministic fault injection tells us little about how an
error is tolerated.

4.3 Implementation
To calculate the aDVF value for a data object, we develop a tool, named MOARD (stand-
ing for MOdeling Application Resilience to transient faults on Data data objects). Fig-
ure 4.3 shows the tool framework and its algorithm. MOARD has three components:
an application trace generator, a trace analysis tool, and a deterministic fault injector.

The application trace generator is an LLVM instrumentation pass to generate a
dynamic LLVM IR trace. LLVM IR is architecture independent and each instruction in
the dynamic IR trace corresponds to one operation. We extend a trace generator [136]
to enable trace generation for MPI applications. During the trace analysis, we consider
error propagation by MPI communication, but do not consider those cases where errors
happen in the communication.

The trace analysis tool is the core of MOARD. Using an application trace as input,
the tool can calculate the aDVF value of any data object with known memory address
range. In particular, the trace analysis tool conducts the operation-level and error prop-

42

agation analysis. For those unresolved analyses, the trace analysis tool will output a
set of fault injection information for the deterministic fault injection. Such information
includes dynamic instruction IDs, IDs of the operands that reference the values of the
target data object, and the bit locations of the operands that correspond to those error
patterns with undetermined error masking. After the fault injection results (i.e., the
numerical values of application outcome and whether the outcome is acceptable) are
available from the deterministic fault injector, we re-run the trace analysis tool, and
use the fault injection results to address the unresolved analyses and update the aDVF
calculation.

For the error propagation analysis, we associate data semantics (the data object
name) with the data values in registers, such that we can identify the data of the target
data object in registers. To associate data semantics with the data in registers, MOARD
tracks the register allocation when analyzing the trace, such that we can know at any
moment which registers have the data of the target data object.

To determine the existence of value overshadowing in an addition or subtraction
operation, we use the deterministic fault injection. Particularly, given a target operand
in an addition or subtraction operation for value overshadowing analysis, we enumerate
all error patterns for deterministic fault injection tests. If the following two conditions
are true, then we derive that the value overshadowing happens in the operation:

• Some error patterns result in small magnitudes of the operand (smaller than the
magnitude of the other operand in the operation); the application outcome is ac-
ceptable.

• The other error patterns result in larger magnitudes of the operand (larger than
those in the first condition) but the application outcome is not acceptable.

The error masking of the value shadowing is quantified as x/y, where x is the number
of error patterns in the first condition and y is the number of all error patterns. For
example, suppose we have an addition operation (a + b, a = 1000 and b = 1) and b
is our target data object. We enumerate error patterns in b (assuming 32 single-bit-flip
error patterns). If five patterns result in the values of b as 0, 3, 5, 9 and 17, which are
smaller than a and the application outcome is acceptable, and the other 26 patterns result
in larger b (larger than 0, 3, 5, 9, and 17) but the application outcome is not acceptable,
then the value overshadowing happens (the corrupted b is overshadowed by a), and is
quantified as 5/32.

The deterministic fault injector is a tool to resolve those error masking analyses
undetermined by the trace analysis tool. The input to the deterministic fault injector
is a list of fault injection sites generated by the trace analysis tool. Similar to the ap-
plication trace generation, the deterministic fault injector is also based on the LLVM
instrumentation. We use the LLVM instrumentation to count dynamic instructions and
trigger bit flips. The application execution will trigger bit flip when a fault injection site
is encountered.

To accelerate the calculation of aDVF, we leverage the existing work [69, 130] that
explores “error equivalence” based on the similarity of intermediate execution states
to avoid repeated analysis and fault injections on instructions. During our evaluation,
MOARD calculates aDVF for 16 data objects in eight benchmarks within one day on a

43

Table 4.1: Benchmarks and applications for the study

Name Benchmark description Code segment for
evaluation

Target data
objects

CG (NPB) Conjugate Gradient, irreg-
ular memory access (input
class S)

The routine conj_grad
in the main loop

The arrays r
and colidx

MG (NPB) Multi-Grid on a sequence
of meshes (input class S)

The routine mg3P in
the main loop

The arrays u
and r

FT (NPB) Discrete 3D fast Fourier
Transform (input class S)

The routine fftXYZ in
the main loop

The arrays
plane and
exp1

BT (NPB) Block Tri-diagonal solver
(input class S)

The routine x_solve in
the main loop

The arrays
grid_points,
u

SP (NPB) Scalar Penta-diagonal
solver (input class S)

The routine x_solve in
the main loop

The arrays
rhoi and
grid_points

LU (NPB) Lower-Upper Gauss-
Seidel solver (input class
S)

The routine ssor The arrays u
and rsd

LULESH [81] Unstructured Lagrangian
explicit shock hydrody-
namics (input 5x5x5)

The routine Cal-
cMonotonicQRegion-
ForElems

The arrays
m_elemBC
and
m_delv_zeta

AMG2013 [70] An algebraic multigrid
solver for linear systems
arising from problems on
unstructured grids (we
use GMRES(10) with
AMG preconditioner).
We use a compact version
from LLNL with input
matrix aniso.

The routine
hypre_GMRESSolve

The arrays
ipiv and A

cluster of 256 cores, which is comparable to the execution time of existing fault injec-
tion work [69, 130].

4.4 Evaluation
In this section, we use aDVF as an metric to evaluate application resilience to transient
faults on data objects with a set of benchmarks. Furthermore, we validate the accuracy
of our aDVF calculation. We also compare aDVF calculation with the traditional fault
injection to show the power and benefits of aDVF calculation.

44

0

0.5

1

r colidx

aD
V

F

Data Object

CG

The algorithm level

The error
propagation level
The operation level

(a) CG

0

0.5

1

u r

aD
V

F

Data Object

MG

(b) MG

0

0.5

1

grid_points u

aD
V

F

Data Object

BT

(c) BT

0

0.5

1

exp1 plane

aD
V

F

Data Object

FT

(d) FT

0

0.5

1

u rsd

aD
V

F

Data object

LU

(e) LU

0

0.5

1

zeta elemBC

aD
V

F

Data Object

LULESH

(f) LULESH

0

0.5

1

ipiv A

aD
V

F

Data Object

AMG

(g) AMG

0

0.5

1

grid_points rhoi

aD
V

F

Data Object

SP

(h) SP

Figure 4.4: The breakdown of aDVF results based on the three level analysis. The x
axis is the data object name.

4.4.1 Evaluating Application Resilience to Transient Faults on
Data Objects Using aDVF

We study 12 data objects from six benchmarks of the NAS parallel benchmark (NPB)
suite and four data objects from two scientific applications. Those data objects are
chosen to be representative: they have various data access patterns and participate in
different execution phases. Table 4.1 gives details on the benchmarks and applications.
The maximum error propagation path for aDVF analysis is 50, for which we do not lose
analysis accuracy as we discuss in Section 4.2.4. Similar to [69, 130, 150], we only
study single-bit errors because they are the most common errors.

Figure 4.4 shows the aDVF results and breaks them down into the three levels (i.e.,
the operation level, error propagation level, and algorithm level).

Error masking happens commonly in data objects across benchmarks and applica-
tions including those scientific applications (e.g., LULESH and AMG) that are highly
sensitive to data correctness. Several data objects (e.g., r in CG, and exp1 and plane
in FT) have aDVF values close to 1 in Figure 4.4, which indicates that most opera-
tions working on these data objects have error masking. Those data objects are double-

45

0

0.5

1

r colidx

aD
V

F

Data Object

CG

Logic and comparison
operations
Value overshadowing

Value overwritting

(a) CG

0

0.5

1

u r

aD
V

F

Data Object

MG

(b) MG

0

0.5

1

grid_points u

aD
V

F

Data Object

BT

(c) BT

0

0.5

1

exp1 plane

aD
V

F

Data Object

FT

(d) FT

0

0.5

1

u rsd

aD
V

F

Data object

LU

(e) LU

0

0.5

1

zeta elemBC

aD
V

F

Data Object

LULESH

(f) LULESH

0

0.5

1

ipiv A

aD
V

F

Data Object

AMG

(g) AMG

0

0.5

1

grid_points rhoi

aD
V

F

Data Object

SP

(h) SP

Figure 4.5: The breakdown of aDVF results based on value overwriting, value over-
shadowing, and logic and comparison operation at the levels of operation and error
propagation. The x axis is the data object name. zeta and elemBC in LULESH are
m_delv_zeta and m_elemBC.

precision floating-point and their error masking mainly comes from value overshadow-
ing and overwriting (Figure 4.5). However, a couple of data objects have much less
intensive error masking. For example, the aDVF value of colidx in CG is only 0.28
(Figure 4.4). Further study reveals that colidx is an integer array to store indexes of
sparse matrices and there is few operation-level or error propagation-level error mask-
ing (Figure 4.5). Its corruption can easily cause segmentation error caught by the deter-
ministic fault injection. grid_points in SP and BT also have a small aDVF value (0.06
and 0.38 for SP and BT respectively in Figure 4.4). Further study reveals that the array
grid_points defines input problems for SP and BT. An error in grid_points can easily
cause major changes in computation caught by the error propagation analysis.

Evaluation conclusion 1: The above aDVF-based analysis reveals the variation of
application resilience to transient faults on data objects and provides insights on whether
the corruption on a data object impacts application outcomes, which is useful to direct
fault tolerance mechanisms.

We further notice that the data objects colidx and r in CG have 2.19e+09 and

46

4.54e+07 error masking events (not shown in Figure 4.4), respectively. Although colidx
has more error masking events, CG is not more resilient to errors on colidx than on r. In
particular, 75% bit flips that happen in the elements of colidx involved in the operations
of CG causes incorrect application outcome or segmentation faults, while less than 1%
in r. The above observation provides a strong support to introduce the metric, aDVF.

Evaluation conclusion 2: Simply counting the number of error masking events is
not sufficient to evaluate application resilience to errors on data objects.

We further look into the results based on the analysis of the three levels. Operation-
level error masking is very common. Figure 4.4 shows that there are 12 data objects
whose operation-level error masking contributes more than 70% of the aDVF values.
For exp1 in FT and rhoi in SP, the contribution of the operation-level error masking is
close to 99%.

We further notice that the contribution of error masking at the error propagation
level to the aDVF result is very limited. For most of the data objects, the contribution
is less than 10% (Figure 4.4). For five data objects (colidx in CG, grid_points and u
in BT, and grid_points and rhoi in SP), there is no such error masking. Note that our
analysis at the error propagation level is valid even if we increase the error propagation
length. We discuss the impact of error propagation length in Section 4.2.4.

Different from error masking at the error propagation level, the contribution of the
algorithm-level error masking to the aDVF result is relatively large. For example, the
algorithm-level error masking contributes 19% to the aDVF value for u in MG and 27%
for plane in FT (Figure 4.4). The large contribution for u in MG is consistent with the
existing work [34]. For FT (particularly 3D FFT), the large contribution of algorithm-
level error masking in plane comes from frequent transpose and 1D FFT computations
that average out the data corruption. CG, as an iterative solver, is known to have the
algorithm-level error masking because of the iterative nature [135]. Interestingly, the
algorithm-level error masking in CG contributes most to application resilience to tran-
sient faults on colidx which is a vulnerable integer data object (Figure 4.4).

Evaluation conclusion 3: The aDVF analysis gives us deep information on how
errors are tolerated. This may be useful for refactoring application (e.g., using different
algorithms or different data structures and data types) to improve error tolerance of data
objects.

We further break down the aDVF results based on classifications of the value over-
writing, logical and comparison operations, and value overshadowing) based on the
analysis at the operation and error propagation levels, shown in Figure 4.5. We have the
following observation.

The value overshadowing is very common, especially for (double-precision) float-
ing point data objects (e.g., u in BT, zeta in LULESH, and rhoi in SP in Figure 4.5).
This finding has an important indication for studying application-level error tolerance.
We have the following conclusion: the impact of data corruption can be correlated with
the input problem, because different input problems can have different values of the
data objects, which in turn have different effects of value overshadowing. Hence, the
existing conclusions on application-level fault tolerance [28, 96, 97, 138, 99] with sin-
gle input problems must be re-examined with different input problems to validate the
conclusions of application resilience.

47

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

rowstrcolidx a p q m_z m_x m_y

CG LULESH

Success rateaD
V

F

aDVF success rate (exhaustive fault injection)

La
rg

er
is

be
tte

r

Figure 4.6: Model validation against exhaustive fault injection. The x axis shows the
data object name.

4.4.2 Model Validation
In this section, we aim to (1) validate the accuracy of our approach to calculate aDVF,
and (2) demonstrate that aDVF correctly quantifies application resilience to transient
faults on data objects.

We validate our modeling approach by comparing the aDVF result with the result
of exhaustive fault injection (particularly, the success rate of exhaustive fault injection
tests). The exhaustive fault injection is different from the traditional random fault injec-
tion. With an exhaustive fault injection campaign, we inject faults into all valid fault
injection sites. A valid fault injection site is a bit in an instruction operand or output
that has a value of the target data object. We use those fault injection sites, because we
quantify application resilience to transient faults on data objects. The exhaustive fault
injection is accurate to quantify application resilience to transient faults on data objects,
because of its full coverage of all fault sites. However, the number of valid fault injec-
tion sites can be very large (e.g., trillions of sites in CG (Class A)). Hence, although the
exhaustive fault injection is accurate and good for model validation in this section, this
method is not practical, compared with aDVF.

Note that the aDVF result cannot be exactly the same as the exhaustive fault injec-
tion result, because the definitions of aDVF and exhaustive fault injection are different.
Hence, we validate the modeling accuracy by quantifying application resilience to tran-
sient faults for multiple data objects, and then ranking them based on the quantification.
Ideally, the rank order of data objects based on the aDVF calculation should be exactly
the same as that based on the exhaustive fault injection. A correct order of data ob-
jects in terms of application resilience to transient faults is critical to decide which data
objects should be protected by fault tolerance mechanisms.

We focus on a function (conj_grad()) from CG and a function (CalcMonotomic-
QRegionForElems()) from LULESH. We study major data objects in the two functions
(those data objects take most of memory footprint). We use single-bit flip in fault injec-
tion. The results are shown in Figure 4.6. We notice that the aDVF and exhaustive fault
injection rank the data objects in the same order. aDVF correctly reflects application
resilience to transient faults on data objects.

48

0.
27 0.

28
0.

25

0.1

0.2

0.3

500 1000 1500 2000 2500 3000 3500 aDVF

m_x m_y m_z

The number of fault injection tests

Su
cc

es
s r

at
e

Figure 4.7: The RFI results with the margin of error (the confidence level 95%) and
aDVF results. The results are for three data objects (m_x, m_y, and m_z) from
CalcMonotomicQRegionForElems() of LULESH.

4.4.3 Comparing aDVF Calculation with the Traditional Random
Fault Injection (RFI)

We compare aDVF calculation with RFI. We aim to reveal the limitation of this tradi-
tional approach, and demonstrate the predictive power of aDVF, compared to RFI.

RFI

We use the following method for RFI. We use valid fault injection sites, as defined in
Section 4.4.2, for RFI. In each fault injection test, we randomly trigger a single-bit flip
in a valid fault injection site. The number of fault injection tests is determined by a
statistical approach [95] using confidence-level of 95% to ensure statistical significance.
We do seven sets of fault injection tests, and the number of fault injection tests in the
seven sets ranges from 500 to 3500 with a stride of 500. We use three equal-sized,
floating-point arrays (m_x, m_y, and m_z) in the function CalcMonotomicQRegion-
ForElems() of LULESH for study.

Figure 4.7 shows the results of RFI (the success rate). The figure also shows the
margin of error (shown as small red bars in the figure). The results reveal that the
results of RFI are sensitive to the number of fault injection tests. For example, for m_z,
the success rates of RFI are 0.28 and 0.19 for 1000 and 3000 random fault injection
tests, respectively. There is 49% difference between the two results. Furthermore, in
terms of application resilience to transient faults on data objects, we cannot rank the
three target data objects in a consistent order across the seven test sets. For example,
the success rate of RFI for m_x is lower than that for m_z, when the number of fault
injection tests is 500, 1000, and 1500. However, the observation is opposite, when the
number of fault injection tests is 2000 and 3500. In other words, using RFI, we cannot
make any conclusion that LULESH is more resilient to transient faults on a data object
than on another data object (even through the margin of error is considered). The reason
is three-fold: randomness of RFI, limited confidence level, and inability to capture error
masking events.

49

aDVF

We measure aDVF of the three data objects. Figure 4.7 shows the results (see the last
group of bars). We rank the three objects in a determined order (i.e., no inconsistence
in the aDVF calculation results, no matter how many times we calculate aDVF). The
order is also verified by the accurate, exhaustive fault injection (see Section 4.4.2 for
discussion). Having a determined order is important for guiding error tolerant designs
(e.g., deciding which data object should be protected by a fault tolerance mechanism).

Evaluation conclusion 4: The calculation of aDVF is deterministic, meaning that
we can deterministically rank data objects in terms of application resilience to transient
faults on the data objects. Using the traditional RFI, we cannot do so. RFI can be
ineffective for guiding error tolerant designs.

4.5 Case Study
In this section, we study a case of using aDVF to help system designers decide whether
a specific application-level fault tolerance mechanism is helpful to improve application
resilience to transient faults on data objects.

Application-level fault tolerance mechanisms, such as algorithm-based fault toler-
ance [38, 155, 76], are extensively studied as a means to increase application resilience
to transient faults on data objects. However, those mechanisms can come with big per-
formance and energy overheads (e.g., 35% performance loss in [53]). To justify the
necessity of using those mechanisms, we must quantify the effectiveness of those mech-
anisms. With the introduction of aDVF, we can evaluate if application resilience to
transient faults on data objects is effectively improved with fault tolerance mechanisms
in place.

We focus on a specific application-level fault tolerance mechanism, the algorithm-
based fault tolerance (ABFT) for general matrix multiplication (C = A×B) [155]. This
ABFT mechanism encodes matrices A, B, and C into a new form with checksums. If an
error happens in an element of C, leveraging the checksums, we are able to correct and
detect the erroneous element. We apply the aDVF analysis on this ABFT and the matrix
C is the target data object. We compare the aDVF values of C with and without ABFT.
Figure 4.8 shows the results. The figure shows that ABFT effectively improves error
tolerance of C: the aDVF value increases from 0.0172 to 0.82 (the larger is better). The
improvement mostly comes from the value overwriting during error propagation. This
result is expected because a corrupted element of C is not corrected by ABFT right
away. Instead, it will be corrected in a specific verification phase of ABFT during error
propagation.

Given the effectiveness of this ABFT, we further explore whether this ABFT can
help us improve resilience to transient faults on a data object in an application, Particle
Filer (PF) from Rodinia [36], without knowing the application resilience of PF. PF has
a critical variable, xe, which is repeatedly used to store vector multiplication results.
Given the fact that a vector can be treated as a special matrix, we can apply ABFT
to protect xe for those vector multiplications. Using xe as our target data object, we
perform the aDVF analysis with and without ABFT. We want to answer a question:

50

0

0.2

0.4

0.6

0.8

1

ABFT_[C] [C]

aD
V

F

The algorithm level
The error propagation level
The operation level

0

0.2

0.4

0.6

0.8

1

ABFT_[C] [C]

aD
V

F

Logic and comparison operations
Value shadowing
Value overwritting

La
rg

er
is

be
tte

r

Figure 4.8: Using aDVF analysis to study application resilience to transient faults on
C in matrix multiplication (MM). Notation: [C] is MM without applying ABFT on C;
ABFT_[C] is MM with ABFT taking effect.

0

0.2

0.4

0.6

0.8

1

ABFT_[xe] [xe]

aD
V

F

The algorithm level
The error propagation level
The operation level

0

0.2

0.4

0.6

0.8

1

ABFT_[xe] [xe]

aD
V

F
Logic and comparison operations
Value shadowing
Value overwritting

La
rg

er
 is

 b
et

te
r

Figure 4.9: Using aDVF analysis to study the effectiveness of ABFT for a data object
xe in PF. [xe] has no protection of ABFT; ABFT_[xe] has ABFT taking effect on xe.

Will using ABFT be an effective fault tolerance mechanism for protecting xe in
PF?

Figure 4.9 shows the results. The figure reveals that using ABFT does not improve
much application resilience to transient faults on the data object xe: there is only lit-
tle change to the aDVF value (0.48 vs. 0.475). We find two reasons for it: (1) The
operation-level error masking accounts for a large part of error masking, no matter
whether we use ABFT or not; (2) Most errors corrected by ABFT are also correctable
by PF. The second reason is demonstrated by the following fact: with ABFT, the num-
ber of error masking events increases at the error propagation level but decreases at the
algorithm level. But in total, the number of error masking events at the both levels with
ABFT is almost the same as without ABFT. This case study is a clear demonstration of
how powerful the aDVF analysis can direct error tolerance designs.

51

4.6 Discussions

4.6.1 Program Optimization by aDVF
aDVF has many potential usages. We discuss two cases that use aDVF to optimize
programs.

Code optimization: Programmers have been working on code optimization to im-
prove performance and energy efficiency. However, the impact of code optimization on
application resilience is often ignored. There are cases where optimizing code to im-
prove application resilience is necessary (e.g., [48] and [105]). The code optimization
(including common compiler optimization on applications) can change memory access
patterns and runtime values of data objects, which in turn impacts error propagation
and value shadowing. aDVF and its analysis give programmers a feasible tool to study
and compare application resilience (from the perspective of data objects) before and
after code optimization. The aDVF analysis is also helpful to pinpoint which part of the
application code is vulnerable from the perspective of data objects, and hence demands
further optimization.

Algorithm choice: To solve a specific computation problem, we can have multiple
algorithm choices. For example, to solve the Poisson’s equation on a 2D grid, we
could use direct method (Cholesky factorization), Multigrid, or red-black successive
over relaxation. Different algorithms have different implications on data distribution,
parallelism, and blocking [10]. Which algorithm should be employed depends on users’
requirements on performance, energy/power efficiency and resilience. aDVF and its
analysis can help users (especially those users working on HPC) make the algorithm
choice from the perspective of application resilience. It would be also interesting to
integrate the aDVF analysis with programming language and compiler for algorithm
choice, such as PetaBricks [10].

4.6.2 Beyond Single-Bit Errors
MOARD and aDVF calculation are general, meaning that they can be used for ana-
lyzing single-bit errors and multi-bit errors. In our study and evaluation, we focus on
single-bit errors for two reasons: (1) Multi-bit errors rarely occur in HPC systems, and
most of the existing studies on application resilience focus on single-bit errors; (2) Ex-
isting work reveals that multi-bit errors can have similar effects as single-bit errors on
applications [127].

To use MOARD and aDVF for analyzing multi-bit errors, we need to make the
following extension. (1) Define multi-bit error patterns. For example, for two-bit errors,
the error pattern could be spatially contiguous; it could also be spatially separated (the
spatial separation is four bits, for example). (2) Re-implement the function f (defined
in Equation 4.1) in MOARD. This indicates that we must re-examine error masking.
For the operation-level analysis, the effects of logical and comparison operations and
value overshadowing will be different from that for single-bit errors; the effect of value
overwriting may be the same as that for single-bit errors. For the error propagation
analysis, we can use the same method as for single-bit errors to track error propagation,
but the empirical bound of error propagation (i.e., the parameter k in Section 4.2.4)
must be reset using fault injection tests. For the algorithm-level analysis, we use the

52

same fault injection-based method as for single-bit errors, but the injected errors must
follow the defined error pattern.

4.6.3 Impact of Input Problems
The aDVF analysis is input dependent. This means that an application with different in-
put problems may have different aDVF values for a data object. Such input dependence
is because of multiple reasons. First, the effectiveness of operation-level error masking
is input dependent. For example, a bit shifting operation for integers, x >> y, can
tolerate a single bit error in the least significant bit of x if y = 1, but can tolerate three
single bit errors in the three least significant bits of x if y = 3. Second, different input
problems can result in different control flows, which in turn results in different error
propagation. Third, different input problems can result in the employment of different
algorithms. Different algorithms can result in different algorithm-level error masking.

Because of input dependence nature of the aDVF analysis, we must do the aDVF
analysis whenever the application changes its input problem. This is a common limi-
tation for many resilience study, including fault injection, AVF [18, 111], PVF [141],
DVF [158] and [151]. However, a static analysis-based method cannot address the lim-
itation because of unresolved branches and data values. Fortunately, MOARD allows a
user to easily leverage hardware resource to parallelize the analysis (e.g., deterministic
fault injection and trace analysis), making the analysis easy and efficient, even if the
user has to repeatedly do the aDVF analysis. Furthermore, leveraging common iterative
structures of HPC applications, analyzing a small trace of the application instead of the
whole trace is often enough. This makes the repeated aDVF analysis even more feasible.
Nevertheless, studying the sensitivity of aDVF analysis to input problems is our future
work.

4.7 Conclusions
Understanding application resilience (or error tolerance) in the presence of hardware
transient faults on data objects is critical to ensure computing integrity and enable ef-
ficient application level fault tolerance mechanisms. The traditional methods (such as
random fault injection) cannot help because of losing data semantics and insufficient
information on how and where errors are tolerated. This chapter introduces a fundamen-
tally new method to quantify application resilience to transient faults on data objects. In
essence, our method measures error masking events at the application level and asso-
ciates the events with data objects. We perform a comprehensive classification of error
masking events and create a series of techniques to recognize them. We develop an
open source tool to quantify application resilience from the perspective of data objects.
We hope that our method can make the quantification a common practice. Currently,
the deployment of fault tolerance mechanisms is often a problem because of a lack of
a method to quantify its effectiveness on protecting data objects. Our work provides a
tangible solution to address the problem.

Chapter 5

Predicting Application Resilience
Using Machine Learning

5.1 Introduction
In this chapter, we present a novel framework called PARIS1, which avoids the time-
consuming process of randomly selecting and executing many injections (as in FI), and
provides higher prediction accuracy than analytical models, making it a unique solution
to the problem. In essence, PARIS uses a machine learning model to predict appli-
cation resilience, which provides several advantages. First, machine learning models,
once trained, can be repeatedly used for any fault manifestations—silent data corrup-
tion (SDC), interruptions, and success cases—for new, previously unseen applications.
Therefore, PARIS avoids a large amount of repeated fault injection tests, which leads
to high efficiency in comparison to FI. Second, machine learning models can capture
the implicit relationship between application characteristics (e.g., intensity of resilience
computation patterns) and application resilience, which is difficult to capture by analyt-
ical models.

The most challenging part of using the machine learning approach is to efficiently
build effective features that can cause high prediction accuracy. We use the follow-
ing methods to construct features. First, we count the number of instruction instances
within each instruction type as a feature; instruction instances are dynamic execution
of instructions. We characterize instructions in such a way because different instruction
types show different resilience to errors [29, 75]. To reduce the number of features, we
classify instruction types into four representative and discriminative groups in terms of
the functionality of instructions. This reduction of features reduces the training com-
plexity and avoids undertraining.

Second, we count resilience computation patterns as features. Guo et al. [65] dis-
cover six resilience computation patterns from HPC applications. Those patterns are
considered the fundamental reason for application resilience. Four of those patterns
are based on individual instructions, and can be included as features using the above
instruction type-based approach. The remaining two (“dead locations” and “repeated
addition”) contain more than one instruction and cannot be captured by examining in-
structions individually. To efficiently count the two patterns, we introduce optimization

1PARIS: Predicting Application ReSilience.

53

54

techniques to avoid repeatedly scanning the instruction trace and find correlation be-
tween instructions.

Third, we introduce instruction execution order information into features to improve
modeling accuracy. Execution order information is important to application resilience,
because error propagation is highly correlated to the order and type of operations. In-
spired by “N-gram” technique [122, 37] in computational linguistics, we embedded the
sequence of instruction chunks into features to introduce execution order of instructions.
Our evaluation shows that having execution order information decreases prediction er-
ror by up to 30%.

Fourth, we introduce resilience weight when counting instruction instances. Dif-
ferent instruction instances, even though they have the same instruction type, can have
different capabilities to tolerate faults. Resilience weight quantify the resilience differ-
ence of those instruction instances. Introducing resilience weight decreases prediction
error by 13% on average when predicting the rate of some fault manifestation (particu-
larly, the interruption rate).

Based upon the above features, we use feature selection techniques to sort and fur-
ther reduce features. We perform ablation study to understand the sensitivity of features
to prediction accuracy. We reveal significance of memory-related instructions and data
overwriting to application resilience.

In summary, our contributions are three folds. (1) We present PARIS, a machine
learning-based approach to predict application resilience. Our method breaks the funda-
mental tradeoff between evaluation speed and accuracy in the existing common practice
to estimate application resilience. (2) We develop a framework and overcome a series of
technical challenges for feature construction, extraction and selection. We reveal how
to use machine learning to effectively and efficiently model application resilience. (3)
We test our model on 16 benchmarks. We find that our approach is up to 450x faster
than random FI (49x on average). The model has high prediction accuracy: a prediction
error of 8.5% and 22% on average for predicting success rate and interruption rate (ex-
cluding two obvious outliers) respectively. We compare PARIS with Trident [98] (the
state-of-the-art analytical model): PARIS can predict any fault manifestation rate (SDC,
interruptions, and success), while Tridentonly predicts SDC rate; PARIS is at least 63%
better than Tridentin terms of accuracy for predicting SDC rate, and has comparable ex-
ecution time (but faster for 12 out of the 16 benchmarks with 15x speedup on average).

5.2 Overview
Our problem to predict application resilience is naturally a regression problem. More
formally, we aim to find a model f(), such that given an feature vector v corresponding
to an application A, f(v) gives us the rates of SDC, interruption, and success for A. We
give a high-level overview of PARIS. Figure 5.1 depicts the workflow of the training
process of PARIS. The most challenging part of the training process is to construct
features relevant to application resilience that can produce high modeling accuracy.

Features Construction. We use instruction type and number of instruction in-
stances for each type as a feature. A static instruction in a program has an instruction
type (opcode), and can be executed many times, each of which is an instruction in-
stance. Using the number of instruction instances for each instruction type as a feature

55

Figure 5.1: Overview of PARIS and the workflow of the training process in our ML
method.

will result in too many features, which demands a large training dataset. To reduce the
number of features, we group all instruction types (65 in total) into four groups: control
flow instructions, floating point instructions, integer instructions, and memory-related
instructions. For each instruction group, we count the number of instruction instances
as a feature.

Furthermore, we use six resilience computation patterns proposed in [65] as fea-
tures. Among the six patterns, four of them (conditional statement, shifting, data trun-
cation, and data overwriting) are individual instructions that are not grouped into the
four instruction groups, because of the significance of these instructions to applica-
tion resilience. Two of them (dead corrupted locations and repeated additions) include
multiple instructions, where these instructions all together contribute to application re-
silience.

Counting dead corrupted locations and repeated additions from the dynamic instruc-
tion trace as features is challenging, because we must repeatedly search within the trace
to find correlation between instructions. To detect dead corrupted locations, we cache
intermediate results of trace analysis to avoid repeated trace scanning. To detect re-
peated additions, we build a data dependency graph for addition instructions. Such
graph enables easy detection of repeated additions.

Because different instruction instances can have different capabilities to tolerate
errors, even though those instruction instances have the same instruction type (or the
same resilience computation pattern), we introduce resilience weight when counting
instruction instances. The resilience weight gives each instruction instance a weight
quantifying the possible number of single-bit errors tolerable by the instance.

Furthermore, we introduce IEO information as a feature. We demonstrate that a
small change in IEO can affect the application resilience using an example illustrated
in Figure 5.3 and described in Section 5.3.2. However, representing the execution

56

order information of all instruction instances as a feature is a challenge. We use N-
gram [122, 37], a technique commonly used for processing speech data, to capture the
order information.

Training and Testing Phases. The modeling process of ML includes training and
testing. We use a set of representative applications to train the model—once it is trained,
the model is used to predict, or test, the manifestation rates on new applications. We
call the applications used for training and testing the training dataset and the testing
dataset, respectively.

Prediction Accuracy. To evaluate the trained model, we compare the Mean Abso-
lute Percentage Error (MAPE) [46] of the predicted application resilience against the
ground-truth application resilience measured by performing FI. Equation 5.1 gives the
definition of MAPE. MAPE is often used for regression model evaluations because it
can interpret modeling accuracy in terms of relative errors [46]. A low MAPE means a
better accuracy. The lowest MAPE is zero.

MAPE =
Measured− Predicted

Measured
. (5.1)

5.3 Design

5.3.1 Feature Construction
For feature construction, we have the following requirements: (1) features should be
relevant to application resilience; (2) the number of features should be small enough
(smaller than the number of applications used for training) to avoid under-determination
of the model; (3) we should avoid redundant and irrelevant features since these features
can increase prediction error. Following the above requirements, we introduce instruc-
tions, resilience computation patterns, resilience weight, and Instruction Execution Or-
der (IEO) as features. We describe why and how we collect these features in following
subsections.

Instruction Groups

The primary features are instruction types and number of instruction instances in each
type. These features are highly relevant to application resilience. For example, recent
studies [106, 98] reveal that floating point instructions are highly related to resilience
because the faults in mantissa bits of floating-point numbers can be negligible by the ap-
plication (especially HPC applications). Load/store instructions also have a significant
impact on application resilience, because computations following load/store instruc-
tions can take those loaded/stored values.

We use the following method to construct instruction-based features. We use LLVM-
Tracer [136], an LLVM pass to compile the application and generate a dynamic LLVM
instruction trace. The LLVM instructions are architecture independent, allowing us to
build a more general and reusable model. We enumerate all LLVM IR instructions and
get 65 instruction types.

We could add all 65 instruction types as features. However, this significantly in-
creases the number of features. With the introduction of IEO as features (See Sec-

57

Table 5.1: Four groups of instruction types and four resilience computation patterns as
features to build our ML model.

Group Name Instruction types
Control Flow Instructions (CFI) Br, Indirectbr, Select, PHI, Fence, DMAFence, Call
Floating Point Instructions (FPI) Fadd, Fsub, Fmul, Fdiv, Frem, Cosine, Sine
Integer Instructions (II) add, sub, mul, Udiv, Sdiv, Urem, Srem
Memory-related Instructions
(MI)

Load, Store, DMAStore, DMALoad, Getelementptr,
ExtractElement, InsertElement, ExtractValue, Insert-
Value, FPToUI, FPToSI, UIToFP, SIToFP, PtrToInt, Int-
ToPtr, AddrSpaceCast

Pattern name Instruction types
Conditional Statements ICmp, FCmp, Switch, And, Or, Xor
Shifting Shl, LShl, AShl
Data Truncation Trunc, ZExt, Sext, FPTrunc, BitCast, FPExt
Data Overwriting (DO) All instructions having at least one output operand

tion 5.3.2 for why and how we introduce IEO into features), the number of features will
be more than 195, larger than the number of training samples, which makes the training
under-determined.

To address the above problem, we group 65 instruction types into four groups based
on the functionality of instructions to reduce the number of features. For example, we
group control flow related instructions (e.g., Br and Select) into a group. Table 5.1 lists
the four groups, including control flow instructions, floating point instructions, integer
instructions, and memory-related instructions. For each instruction group, we count the
number of instruction instances from the dynamic instruction trace, and then normalize
the number by the total number of instruction instances. We use the normalized number
as a feature to make the feature value independent of the size of the dynamic instruc-
tion trace. This enables us to fairly compare application resilience of applications with
different trace sizes.

Using Resilience Computation Patterns as Features

Recent work [65] finds six resilience computation patterns (dead corrupted locations, re-
peated additions, conditional statements, shifting, data truncation, and data overwriting)
the fundamental reason for application resilience. A resilience computation pattern is
defined as a combination of computations that affect application resilience. The reason
we introduce dead corrupted locations and repeated additions as features is that the two
patterns are composed of multiple instructions that together contribute to application re-
silience [65]. The other four patterns (conditional statements, shifting, data truncation,
and data overwriting) are individual instructions shown in Table 5.1. We use them sep-
arately as features because of their especial significance to application resilience [65].

To count the six patterns as features, we cannot use the method in [65], because
it tracks error propagation after fault injection and leverages error masking to discover
unknown patterns, whereas they do not provide a method to count patterns from the
application. We must propose our own method to count resilience patterns from ap-
plications to construct features. To efficiently count patterns, we must address below

58

challenges.
First, counting the number of pattern instances2 for dead corrupted locations and

repeated additions is time-consuming, because we must find correlations between in-
structions to determine if the location is dead or if addition repeatedly happens to the
same variable. Doing so requires repeatedly scanning dynamic instruction trace. We
discuss how to efficiently count pattern instances for the two patterns in Section 5.3.1
and Section 5.3.1, respectively.

Second, for the patterns that are represented as individual instructions (see the last
four rows in Table 5.1 for these instructions), simply counting the number of pattern
instances cannot discriminate resilience capabilities of different pattern instances. For
example, the resilience capability of the “shifting” pattern (a pattern involving a shift
instruction) depends on how many bits are shifted. A shift instruction instance shifting
three bits can tolerate three single-bit errors, while a shift instruction instance shifting
one bit can only tolerate one single-bit error. To distinguish fault tolerance capabilities
of different instruction instances, we introduce weights (named resilience weight) when
counting instances of the patterns.

Besides introducing weights for the four patterns, we also introduce weights to in-
structions of instruction groups whose instances can also have different fault tolerance
capabilities. We describe the relevant details in Section 5.3.1.

Extracting the Feature of Dead Corrupted Locations

A combination of operations (e.g., additions and multiplications) aggregate the values
of corrupted input locations into fewer output locations. Meanwhile, many of these
corrupted input locations are not used anymore (they become dead corrupted locations),
which leads the total number of corrupted locations to decrease. A code region with a
higher percentage of locations that are dead corrupted locations has higher resilience.

To efficiently detect dead corrupted locations and calculate the percentage of dead
corrupted locations, we split the dynamic instruction trace into chunks and pre-process
the chunks before detecting dead corrupted locations. A chunk of instructions is the
dynamic instruction trace of a first-level inner loop or the code region between two
neighbor first-level inner loops. During the trace pre-processing, we analyze instruc-
tions in each chunk and save locations of each chunk into an array. To determine if a
location in a chunk is dead, we check whether the location is further used in any future
chunks by examining the sequence of arrays. If the location is not used in any future
chunks, then the location is a dead corrupted location. In essence, the arrays for chunks
save instruction analysis results to avoid repeatedly scanning the trace. For each chunk,
we compute the percentage of locations that are dead corrupted locations for the chunk.
We use the average percentage of dead corrupted locations across all chunks (named
“dead corrupted location rate” or DLR) as a feature.

Extracting the Feature of Repeated Additions

Repeated additions (RA) refers to the addition operations repeatedly happening to the
same variable, such that the corruption in the variable can be amortized. To decide if

2A pattern is repeatedly executed in application execution. We name the dynamic execution of a
specific pattern the pattern instance.

59

a

cb

zy

e d

a4

We use a data
dependency tree
to decide
repeated addition
at ‘a’.

for(i=0;i<N;i++){
…
e = a + 4;
…
y = d + e;
…
c = z + y;
…
a = b + c;
…

}

1
2
3
4
5
6
7
8
9

10
11

#0

#1 #2

#3#4

#5#6

#7#8

Figure 5.2: An example to detect repeated additions.

an addition instruction is part of repeated additions, we must first decide if the addition
instruction is involved in a self addition. The self addition is defined as that a location
adds other locations to itself. The pseudo code in Figure 5.2 is an example of self
addition.

To detect a self addition, we first build a data dependency graph for addition op-
erations, where nodes are locations; edges between nodes represent data dependency.
When given an addition instruction, we examine its output operand and decide if the
location (the output operand) is an input operand of a previous addition operation by
backward traversing the graph.

Figure 5.2 illustrates what a data dependency graph looks like and how a self addi-
tion is found. We have four addition statements (operations) in a for loop. The location
a appears as the output of the last addition statement (a = b+c in Line 9). To determine
if the addition statement is involved in a self addition, we find the node 0 corresponding
to a in the data dependency graph. We traverse the graph backward, and find a appears
in a previous node, the node 7. The node 7 corresponds to a source operand of a previ-
ous addition statement (e = a + 4). Doing so, a self addition is detected. A pattern of
repeated additions is composed of multiple self additions.

To use repeated additions as a feature, we normalize the number of repeated addi-
tions by total number of instruction instances. This makes the feature value independent
of the size of the dynamic instruction trace.

Resilience Weight

Given an instruction, all bit locations of its input and output operands are subject to
error corruption. The resilience weight (Res) of an instruction is defined below.

Res = #bit locations that tolerate errors

#ofall bit locations
(5.2)

Using the right-shift instruction as an example. The instruction has three 8-bit
operands and in total 24 locations. Assume that an instance of the instruction shifts
four least significant bits of an operand. The shifted four bits can tolerate four single-
bit errors. Also, the eight bits in the output operand of the instruction can tolerate errors

60

…
load reg1, 0x3ffffffd
…
add reg0, 0x4, reg1
…

…
add reg0, 0x4, reg1
…
load reg1, 0x3ffffffd
…

0x3ffffffd

Corrupted locations:
0x3ffffffd, reg1, reg0

Corrupted locations:
0x3ffffffd, reg1

Figure 5.3: An example to show that the instruction execution order matters to error
propagation.

because of the result overwriting in the output operand. Hence, in this example, the
resilience weight for this instruction instance is (4+8)/24 = 0.5. Consequently, the bit
locations that can constantly tolerate errors are bit locations of the output operands, be-
cause we expect errors in the output operands to be overwritten. Notably, we use the
weight in case counting the number of instruction instances or the number of pattern
instances.
Putting All Together. As a result of feature construction, we construct a feature vector
of ten features, formulated in Equation 5.3 where “DLR” and “RA” are the dead cor-
rupted locations and repeated additions, respectively. Notations for the equation can be
found in Table 5.1.

(5.3)Fave
10 = [CFI, FPI, II,MI,

Condition, Shift, T runcation,DO,DLR,RA]

We call Fave
10 the foundation feature vector and consistently call the ten features

foundation features in the rest of the chapter.

5.3.2 Introducing Instruction Execution Order (IEO)
The foundation features are not good enough to achieve high prediction accuracy. In
particular, the foundation features lack IEO information. Capturing the IEO is important
because it matters to error propagation.

We use an example shown in Figure 5.3 to depict why IEO matters. In this example,
we have a load instruction and an addition instruction. Assume that an error happens
in a memory address 0x3ffffffd. If the load instruction happens first, then the erroneous
value in the memory address propagates to the locations reg1 and reg0. But if the
addition instruction happens first, then the erroneous value in the memory address only
propagates to the location reg1. This example is a demonstration of how IEO matters
to error propagation.

To introduce IEO into the feature vector, we use the “N-gram” technique [37]. The
N-gram is a technique used in computational linguistics. It can work on a sequence
of streaming words, and predict the next word using sequences of previous words. N-
gram can capture the word order information. Particularly, every n continuous words

61

…

average

…

average

unigram bigram

…

Output: the feature vector after using N-gram

Without order introduced With order introduced

Input: Six Chunks
ℱ"#$%& ℱ'#$%&

ℱ(#$%&

Figure 5.4: Applying the N-gram technique to introduce instruction execution order
information.

compose an n-gram (n = 1, 2, 3, ...). Figure 5.4 depicts how we build the feature vector
with IEO included. Particularly, we partition the dynamic instruction trace into chunks
(each chunk is a gram). Each chunk is regarded as a “word”, and the sequence of chunks
is processed as the sequence of “words”. For each chunk, we collect the ten foundation
features and build a foundation feature vector of size ten. Then, we build an average
foundation feature vector (denoted as Fave

10) which is the average of foundation feature
vectors of all chunks.

Furthermore, we combine every two neighboring chunks to build a bigram (n=2 for
n-gram). Particularly, we concatenate two foundation feature vectors to build a bigram
feature vector of size 20. We then build an average bigram feature vector (denoted as
Fave

20) which is the average of all bigram vectors.
In consequence, we have Fave

10 of size 10 and Fave
20 of size 20. The final feature

vector with IEO information in consideration is the combination of Fave
10 and Fave

20 . The
final feature vector has a size of 30, which is denoted as Fave

30 .
We do not consider trigram (i.e., 3-gram) or higher gram, because existing re-

search [37] demonstrate that there is no need to use higher grams than bigram. In [37],
bigram achieves better accuracy than trigram while using trigram or higher grams does
not provide better prediction accuracy but dramatically increases feature vector size and
complexity of model training.

5.3.3 Feature Selection
Following the requirement of feature construction, we aim to eliminate irrelevant and
redundant features and further reduce the feature vector size. We use three filtering-
based methods to select features. Compared to other feature selection methods such as
wrappers and embedded methods, the filtering-based methods are faster because of their
simplicity and low complexity. In addition, the filtering-based methods are independent

62

of the prediction model [66]. In such a way, the selected features can be used with
different prediction models.

We use the following filtering-based methods to select features: the p-value-based
method [24], the mutual information-based method [13], and the method of calculating
variance [66]. Simply speaking, the p-value is a metric that measures the significance
level between a feature and the modeling result (i.e., the success, SDC, or interruption
rate). The mutual information measures the mutual dependency between a feature and
the modeling result. The variance measures the variance of feature values across dif-
ferent input applications. Using each of the three methods, we can rank features into a
sorted list according to the importance of features with respect to application resilience.
In total, we have three lists.

Using a voting strategy, we combine the three sorted lists of features into one list
for feature selection. This voting strategy and feature selection algorithm are common
in ML [161]. In particular, each feature has an index in each of the three lists. For each
feature, we add its three indexes to get a global index. We sort the features based on
global indexes into a single list.

We then decide how many features we want to use to construct the feature vector for
modeling. Based on the sorted features in the single list, we choose the best k (where
k = 2, 3, ..., 30) features to build a sublist of features. In total, we have 29 sublists. We
choose the features in the best sublist (in terms of the prediction accuracy) as the final
features.

5.3.4 Model Construction
Model Selection. There are tens of regression models. Each of them has pros and cons,
and can fit into different scenarios. We use scikit-learn [121] and test all regressions
models in scikit-learn (18 in total). We use cross-validation (CV) to test 18 regression
models on the training dataset to select a regression model with the best prediction
accuracy. CV partitions the dataset into p folds. q of p folds are used for training,
while the remaining p − q folds are used for testing. There are p/(p − q) rounds of
training/testing. In each round, different p − q folds are used for testing. We choose
the regression model that has the lowest prediction error on average. We use 10-fold
cross validation in our study. Based on the CV results, we choose the Gradient Boosting
Regression to predict application resilience.

Model Tuning. We use the following techniques to tune the model for better pre-
diction accuracy. (1) Whitening [42]. Whitening is used to normalize features to avoid
domination effects of any features for better generalization and to improve the model-
ing accuracy. (2) Bagging (model averaging) [50], which is often used for reducing
variation in training data. We use this technique to eliminate the effect of bad outliers.
(3) Hyperparameters tuning. Each regression model has multiple hyperparameters. We
use “grid-search” [16] to decide the values of hyperparameters for training.

5.4 Implementation
Dataset Construction. We have multiple requirements for creating training and testing
dataset. (1) The training dataset must be large to avoid model underdetermination; (2)

63

Applications used to generate training and testing dataset must have diverse computa-
tion and diverse resilience characteristics; (3) Applications used to generate training
and testing dataset must have explicit result verification phases. Having the verification
phase allows us to determine the fault manifestations.

We use representative benchmark suites and scientific applications to create the
testing dataset, including NAS parallel benchmark suite [12], PARSEC benchmark
suite [17], CORAL benchmark suite [1], Rodinia benchmark suite [36], and two sci-
entific applications (Hercules for earthquake simulation [6] and PuReMD for reactive
molecular dynamics simulation [146]). From these resources, we choose 16 applica-
tions for testing because of their diverse characteristics. The 16 applications are shown
in Table 5.2. We call the 16 applications big benchmarks in the rest of the chapter.

To train PARIS, we use 100 common computation kernels obtained from Hacker-
Rank [67]. These kernels are smaller than the big benchmarks, but these kernels all
have explicit verification phases. With these kernels, the ranges of modeling output
during training are [0.126; 0.982], [0.000; 0.656], and [0.018; 0.874], for the rates of
success, SDC, and interruption, respectively; The average values of modeling output
during training are 0.502, 0.155, and 0.348 with a variance of 0.033, 0.019, and 0.021
for the rates of success, SDC, and interruption, respectively. The above numbers show
that our training is sufficient with these kernels. Also, using the 100 computation ker-
nels is adequate for training because the training is determined when the size of training
dataset (100) is larger than the number of features (30).

Trace Generation. We use LLVM-Tracer [136], a tool to generate dynamic LLVM
IR traces based on LLVM instrumentation. The trace includes LLVM IR instructions
and their operands. We extend LLVM-tracer to generate a subtrace for each chunk of
instructions and generate traces for MPI programs.

Whitening. We use the whitening technique [42] to normalize features to avoid
domination effects of any features for better generalization and to improve the modeling
accuracy.

5.5 Evaluation
We use the trained model to predict the rate of success and interruption (two classes of
fault manifestation). We then calculate the SDC rate by subtracting the rates of success
and interruption from one (“1”). We do not directly predict the SDC rate, because the
value of SDC rates can be zero for small computation kernels, in which any variation
when predicting the SDC rate can cause unreasonable MAPE of infinite values when the
denominator in the MAPE Equation is zero. Hence, Table 5.3, Figure 5.6 and Figure 5.7
do not have results for SDC.

Using the above approach to predict the SDC rate can cause a negative SDC rate.
This is because we predict success and interruption rates independently, and there is a
chance that the sum of predicted success and interruption rates is larger than one (“1”).
For such cases, we force the value of the SDC rate to be zero. Also, we normalize the
three rates by their sum in case the sum of the three rates is larger than one.

We evaluate our model and modeling methods from two perspectives: (1) model-
ing accuracy; (2) contributions of modeling and optimization techniques to modeling
accuracy.

64

0

20

40

0.0-0.1

0.1-0.2

0.2-0.3

0.3-0.4

0.4-0.5

0.5-0.6

0.6-0.7

0.7-0.8

0.8-0.9

0.9-1.0N
um

be
r o

f P
ro

gr
am

s

Intervals of the Fault Manifestation Rate

Histogram of Fault Manifestation Rates

Success Rate SDC Rate Interruption Rate

Figure 5.5: Histogram of the three fault manifestation rates.

Artifact Description. We conduct experiments on compute nodes each equipped
with Intel(R) Xeon(R) CPU E5-2630 v3 and Ubuntu-14.04.5. Each compute node has
Clang-v3.4, OpenMP-v4.0, and scikit-learn installed.

5.5.1 Prediction Accuracy
Table 5.2 shows the prediction results. Using the results of traditional fault injection as
ground truth, MAPE for success rate and SDC rate are 8% and 45%, respectively. Our
prediction accuracy for success rate is overall good, but our prediction accuracy for SDC
rate is relatively low, but better than the state-of-the-art (see the following discussion in
“Comparison with the state-of-the-art for predicting SDC rate”). Predicting SDC rate is
challenging because SDC rate can be very small or even zero. A small deviation from
the ground truth can cause a large prediction error to MAPE.

To support the statement that the SDC rate tends to be small, we study 116 programs
from training and testing datasets. We perform random fault injection and count the his-
togram (shown in Figure 5.5) of the three fault manifestation rates of these programs.
Figure 5.5 shows that there are more than 65% of programs whose SDC rates are dis-
tributed in the range of 0.0− 0.2, while values of success rate and interruption rate are
distributed in a greater range. We further find that 40% of the programs have the SDC
rate less than 0.1.

Comparison with the State-of-the-Art for Predicting the SDC Rate. We com-
pare PARIS with Trident [98], a recent work that uses analytical models to estimate the
SDC rate. We use Trident downloaded from their github website (commit #90b38ab)
to estimate the SDC rate for the 16 big benchmarks. The 16 benchmarks include all the
benchmarks used in Trident; the number of benchmarks used in Trident is 11. For the
11 benchmarks, we use the same input as in [98]. Table 5.2 shows the prediction error
of Trident in the fourth last column.

Table 5.2 shows that the MAPE of PARIS for SDC rate is 45%, while the MAPE
of Trident for SDC rate is 680%. We notice that there are two outliers (MG and
PuReMD) that make the average prediction error of Trident very large. To make the
comparison fair, we remove the two outliers. After that, the new MAPE of Trident

65

Table 5.2: The detailed prediction results for 16 big benchmarks. Notation: SR=Success
Rate; SDCR=SDC Rate; IR=Interruption Rate; Pred.=Prediction; Meas.=Measured.

Big bench-
marks

Suite Program input Meas.
SR

Pred. SR Relative Error
for SR

IS NAS Class S 0.653 0.625 4.23%
Nn Rodinia filelist_4 5 30 90 0.980 0.910 7.16%
Myocyte Rodinia 100 1 0 4 0.741 0.764 3.11%
MG NAS Class S 0.781 0.721 7.75%
Kmeans Rodinia 100 0.843 0.749 11.12%
Libquantum SPEC 33 5 0.863 0.879 1.85%
Blackscholes PARSEC in_4.txt 0.663 0.591 10.81%
Sad Parboil reference.bin

frame.bin
0.475 0.506 6.53%

Bfs-parboil Parboil graph_input.dat 0.960 0.906 5.61%
Hercules CMU scan simple_case.e 0.580 0.646 11.36%
PuReMD Purdue

Univ.
geo ffield control 0.420 0.438 4.26%

Lulesh CORAL -s 1 -p 0.634 0.441 30.44%
Hotspot Rodinia 64 64 1 1 temp_64

power_64
0.714 0.752 5.30%

Bfs-rodinia Rodinia graph4096.txt 0.655 0.674 2.92%
Nw Rodinia 2048 10 1 0.664 0.647 2.49%
Pathfinder Rodinia 1000 10 0.623 0.759 21.89%
MAPE N/A N/A N/A N/A 8.55%

(a) Prediction results for success rate

Big benchmarks Meas.
SDCR

Pred. SDCR Relative Error
for SDCR

Relative Error for
SDCR by Trident

IS 0.083 0.092 11.14% 192.31%
Nn 0.000 0.000 0.00% 93.39%
Myocyte 0.022 0.025 14.67% 826.67%
MG 0.008 0.010 31.14% 5633.33%
Kmeans 0.045 0.098 117.93% 42.64%
Libquantum 0.034 0.000 100.00% 7.60%
Blackscholes 0.122 0.210 72.05% 12.22%
Sad 0.216 0.318 47.36% 34.95%
Bfs-parboil 0.000 0.000 0.00% 3.32%
Hercules 0.182 0.1822 0.11% 128.19%
PuReMD 0.090 0.018 80.00% 3740.00%
Lulesh 0.120 0.255 112.85% 39.01%
Hotspot 0.121 0.124 2.86% 58.97%
Bfs-rodinia 0.124 0.047 62.10% 31.31%
Nw 0.140 0.193 38.34% 20.96%
Pathfinder 0.080 0.052 35.02% 20.81%
MAPE N/A N/A 45% 108% (with out-

liers removed)
(b) Prediction results for SDC rate

66

Big benchmarks Meas. IR Pred. IR Relative Error for IR
IS 0.264 0.283 6.97%
Nn 0.02 0.090 350.95%
Myocyte 0.237 0.211 11.07%
MG 0.211 0.269 27.49%
Kmeans 0.112 0.153 36.32%
Libquantum 0.103 0.121 17.51%
Blackscholes 0.215 0.199 7.55%
Sad 0.309 0.176 42.91%
Bfs-parboil 0.040 0.094 134.54%
Hercules 0.238 0.172 27.76%
PuReMD 0.490 0.544 10.93%
Lulesh 0.246 0.304 23.69%
Hotspot 0.165 0.124 25.03%
Bfs-rodinia 0.221 0.279 26.43%
Nw 0.196 0.159 18.94%
Pathfinder 0.279 0.189 32.38%
MAPE N/A N/A 22% (with outliers removed)

(c) Prediction results for interruption rate

is 108%, which is still worse than the prediction of PARIS. We conclude that PARIS is
better than Trident in terms of the prediction accuracy on SDC.

Notably, Li et al. [98] reports Mean Absolute Error (MAE), which is different from
MAPE we report. When evaluating the SDC rate, MAE may not be as appropriate
as MAPE. A small MAE (e.g., 0.01) can cause a large MAPE. MAPE measures the
relative error. When relative variation matters and needs to be considered, MAPE is
better than MAE [46].

Even though PARIS is better than Trident in predicting the SDC rate, PARIS shows
a high relative error on some benchmarks. For example, the relative prediction error for
SDC rate for Kmeans, Libquantum, and Lulesh are 117%, 100%, and 112%, respec-
tively. After examining the prediction results closely, we find that the absolute predic-
tion error for the three benchmarks are 0.053, 0.034, and 0.135, respectively, which
are small; the ground truth of the SDC rate for the three benchmarks are 0.045, 0.034,
and 0.120, respectively, which are also small and close to zero. Accordingly, although
the absolute prediction error for SDC is smaller with PARIS comparing to Trident (on
average 0.041 with PARIS vs. 0.063 with Trident), the relative prediction error with
PARIS for SDC can be large but still smaller comparing to Trident.

Prediction of the Interruption Rate. The MAPE for predicting the interruption
rate is 50%. This prediction error seems relatively high. However, we find two out-
lier benchmarks, which contribute to the bad prediction accuracy. They are Nn and
Bfs_parboil. The MAPE for them are 350% and 134%, respectively. Excluding the two
outliers, the new MAPE for predicting interruption rate is 22% which is much accept-
able.

After we profile Nn and Bfs_parboil, we find that these codes have a relatively large
number of load instructions (19% and 44% of total instructions), which is larger than

67

Table 5.3: Feature voting scores for each dimension of the feature vector Fave
30 .

(a) Feature voting scores for predicting the success rate.

Dimension Number 4 24 8 28 17 12 14 22 18 27
Sorted voting score (Smaller is
better)

20 22 23 24 25 27 29 29 31 32

Dimension Number 2 3 23 7 20 16 6 21 13 26
Sorted voting score (Smaller is
better)

33 39 39 40 43 45 46 48 50 50

Dimension Number 11 1 30 15 5 10 25 29 9 19
Sorted voting score (Smaller is
better)

53 54 62 69 70 71 74 74 86 87

(b) Feature voting scores for predicting the interruption rate.

Dimension Number 14 18 4 8 27 24 28 7 30 16
Sorted voting score (Smaller is
better)

20 23 24 27 27 32 32 34 37 38

Dimension Number 6 17 10 26 12 13 1 3 11 2
Sorted voting score (Smaller is
better)

39 40 42 43 46 46 47 47 52 53

Dimension Number 21 19 20 23 5 15 22 25 9 29
Sorted voting score (Smaller is
better)

53 55 55 56 62 63 69 69 77 87

(c) The application characteristics that each dimension of the feature vector represents.
Dimensions larger than 9 have the information of instruction execution order using the N-gram
technique.

Dimension# 1, 11, 21 2, 12, 22 3, 13,
23

4, 14,
24

5, 15, 25

Meaning of dimension# CFI FPI II MI Condition
Dimension# 6, 16, 26 7, 17, 27 8, 18,

28
9, 19,
29

10, 20, 30

Meaning of dimension# Shift Truncation DO DLR RA

that in most of the benchmarks we study. Predicting the interruption rate accurately
depends on accurately counting load instructions because loading data from an incor-
rect address often cause segmentation faults (or interruptions). However, we do not
accurately count load instructions during feature construction, because load and other
memory-related instructions are counted together as an instruction group (see Table 5.1).
Thus using a group (as opposed to a single instruction class) for counting causes low
prediction accuracy in this case.

In summary, while the method of using instruction groups as features may cause
high prediction error, we use groups to limit the number of features to reduce train-
ing time and the necessity of using many training samples. Hence, there is a tradeoff
between training efficiency and prediction accuracy.

Discussion. We achieve a high prediction accuracy for predicting success rate in
contrast to the prediction on SDC and interruption rates. Our quick (See Section 5.5.4

68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
=2

K
=3

K
=4

K
=5

K
=6

K
=7

K
=8

K
=9

K
=1
0

K
=1
1

K
=1
2

K
=1
3

K
=1
4

K
=1
5

K
=1
6

K
=1
7

K
=1
8

K
=1
9

K
=2
0

K
=2
1

K
=2
2

K
=2
3

K
=2
4

K
=2
5

K
=2
6

K
=2
7

K
=2
8

K
=2
9

K
=3
0

M
A

PE
 (s

m
al

le
r i

s b
et

te
r)

Feature Selection with top K features for big benchmarks

Success rate Interruption rate

Figure 5.6: The ablation study result: the average prediction error for predicting the
rates of success and interruption when the best k features are selected (k ranges from 2
to 30).

for the efficiency study) and accurate prediction on success rate is valuable in practi-
cal. For example, when deciding the application-level fault tolerance mechanism for
a code, the resilience (or success rate) of the code in the presence of errors is the key
concern [33]. When the success rate is high (close to 1), which means the code has
a high resilience to errors. In this case, one would use cheap fault tolerance mecha-
nisms rather than expensive ones. Therefore, having an efficient and accurate way to
estimate resilience (or success rate) of the code is beneficial for directing fault tolerance
mechanisms.

5.5.2 Feature Selection and Analysis
Recalling that we use a voting strategy for feature selection. With the voting strategy, we
have a global index for each feature. The global index aggregates voting results of the
three feature selection methods (p-value, mutual information, and variance). Table 5.3
shows the global indexes for all 30 dimensions of the feature vector. The application
characteristics that each dimension of the feature vector represents is summarized in
Table 5.3.c. Table 5.3.a reveals that the 4th dimension (the memory-related instruc-
tions), 24th dimension (the memory-related instructions in bigram), and 8th dimension
(the pattern of overwriting) in Fave

30 rank the highest; Table 5.3.b reveals that the 14th
dimension (the memory-related instructions in bigram), 18th dimension (the pattern of
overwriting in bigram), and 4th dimension (the memory-related instructions) in Fave

30

rank the highest. Those dimensions are memory-related instructions, which seem to
matter most to the application resilience.

In addition, both tables reveal that the 9th dimension (i.e., the pattern of dead loca-

69

tion), 19th dimension (i.e., the pattern of dead location in bigram), and 29th dimension
(i.e., the pattern of dead location in bigram) rank relatively low. This result indicates
that dead location seems to have less impact to application resilience than the other
features.

Ablation study. In this study, we show the effect of using the best k features to
make a prediction (k = 2, 3,, 30) to prediction accuracy. This study can also help us
understand the contributions of each feature to prediction accuracy. Figure 5.6 shows
the result of the ablation study. The figure shows the prediction error for the rates of
success and interruption.

In Figure 5.6, the prediction error decreases by 17% (from 0.3 to 0.25) for predict-
ing the success rate when adding MI-related features (4th and 24th dimensions in Fave

30)
and data overwriting related features (8th and 28th dimensions in Fave

30). Moreover, the
prediction error decreases another 24% (from 0.25 to 0.19) after adding truncation in
bigram (17th dimension) into features. We then conclude that MI-related instructions,
data overwriting-related instructions and truncation have a significant impact on appli-
cation resilience in terms of the success rate. This finding is consistent with our findings
for feature voting scores for predicting the success rate in Table 5.3.a.

When predicting the interruption rate, the prediction error decreases by 20% (from
0.5 to 0.4), when adding the 2nd dimension in Fave

30 to features. The 2nd dimension is
the floating point instructions. When k is 28, the prediction error decreases 45% (from
0.55 to 0.3) when adding the 25th dimension in Fave

30 to features. The 25th dimension is
the conditional statement in bigram. This suggests that floating point instructions and
conditional statement significantly affect application resilience in terms of interruption.

On the other hand, we see an increase of MAPE after adding a new feature to the
feature vector. For example, after adding the 23rd dimension in Fave

30 to features when
k is 24 for predicting the interruption rate, the MAPE of interruption rate goes up to
0.57 from 0.51. However, this does not necessarily mean that this feature plays a less
important role to predict application error resilience. This feature together with the
successive features can make a significant contribution to application resilience with
respect to interruption. For example, we can see a significant decrease in MAPE when
k is 28 for predicting the interruption rate (the MAPE decreases to 0.31 from 0.55).
Lacking this feature, we may not achieve such a big decrease in MAPE when k is 28.

In Figure 5.6, we notice that the MAPE value is the lowest for both success rate
and interruption rate when k is 30. At this point, MAPE for predicting the success and
interruption rates are 0.19 and 0.28, respectively. In consequence, we choose k equal
to 30 for both the success and interruption rates. We also notice that the MAPE values
when k is 30 in Figure 5.6 are different from those in Table 5.2. The reason is as follows.
The MAPE when k is 30 in Figure 5.6 is the result of feature selection before applying
the two model tuning techniques: hyperparameter tuning and bagging. However, the
MAPE in Table 5.2 is the final result after applying all model tuning techniques and
feature construction optimizations. Therefore, the MAPE values in Table 5.2 is smaller
than those when k is 30 in Figure 5.6. Also note that the two results in Table 5.2
(0.08 for success rate and 0.22 for interruption rate) are consistent with the results in
Figure 5.7.

70

0.
28

0.
23

0.
16

0.
14

0.
12

0.
08

0.
33

0.
31

0.
3

0.
26

0.
23

0.
22

0

0.1

0.2

0.3

0.4

0.5

M
A

PE
 (s

m
al

le
r i

s b
et

te
r)

Feature Construction and Tuning

Small Computation Kernels

Success rate Interruption rate

no tuning
and FCO

+whitening +bigram +resilience
weight

+hyperpara-
meter tuning

+Bagging

Figure 5.7: Evaluating the impact of model tuning and feature construction optimization
on the prediction error for the two fault manifestation rates. FCO = “feature construc-
tion optimization”. In terms of MAPE, Lower is better.

5.5.3 Evaluation of Model Tuning and Feature Construction
Optimization

We study the impact of our model tuning (whitening, bagging and tuning hyperparam-
eters) and feature construction techniques (bigram and resilience weight) to prediction
accuracy. We use 100 small computation kernels (for training) for our study. We start
with the model without using any of the five techniques, and then apply them one by
one in each step.

Figure 5.7 shows the results. We can see that the prediction error continues decreas-
ing after we apply all these techniques. Overall, the MAPE of predicting success rate
decreases by 71%; the MAPE of predicting interruption rate decreases by 33%. This
demonstrates the effectiveness of all the five techniques in predicting application re-
silience. Among the five techniques, the most effective ones are bigram and bagging
for predicting success rate, and resilience weight for predicting interruption rate.

We notice that after introducing bigram, the MAPE decreases by 30% when predict-
ing success rate. Despite the MAPE reduces slightly when predicting interruption rate
after introducing bigram, we find that 58% of kernels have lower prediction error, with
up to 20% decrease in MAPE. After introducing resilience weight, the MAPE decreases
by 12% when predicting success rate and by 13% when predicting interruption rate. We
also observe that the MAPE decreases by 33% when predicting success rate after intro-
ducing bagging. After considering resilience weight, the MAPE reduces 12.5% when
predicting success rate and 13.3% when predicting interruption rate. The above results
demonstrate the effectiveness of bigram, resilience weight, and bagging in predicting
application resilience.

71

5.5.4 Efficiency Study–Comparing PARIS to Random Fault
Injection and Trident

We compare the execution time of using FI, using Trident, and using PARIS to predict
the rate of manifestations on the 16 big benchmarks. The number of FIs is determined
by using a statistical approach [95] with the confidence level of 99% and the margin
of error 1%. The number of FIs is about 3000. We measure the execution time of
3000 random FIs as the execution time of FI for each benchmark. When measuring
the execution time of using PARIS, we measure the execution time spent on the whole
workflow of predicting application resilience for a new, unseen application, including
dynamic instruction trace generation, feature extraction, and making prediction with the
trained model.

It is important to note that the model training time is not counted into the execution
time of the whole workload of predicting application resilience, because once the model
is trained, it can be reused repeatedly for an unlimited number of applications, which
amortizes the cost of training.

Table 5.4 shows the results. In general, the speedup of using PARIS over using FI is
up to 450x (see LULESH) and 49x on average. PARIS is faster than FI for all 16 bench-
marks. Furthermore, PARIS is faster than Trident for 12 out of the 16 benchmarks
with 15x speedup on average. For the four benchmarks (Sad, Bfs-parboil, PuReMD,
and Bfs-rodinia), PARIS is slower, due to the time-consuming trace generation.

We further break down the execution time for the workflow of PARIS and compute
the speedup of using PARIS over FI in Table 5.4. The execution time of FI is in the
second column. The execution time of FI can be affected by instruction profiling and
the complexity of the FI tool. Furthermore, the time can be significantly affected if the
program hangs after FI. The time breakdown of PARIS is shown in the third, fourth, and
fifth columns. The time spent on making the prediction is constant, which is always
around 0.3 seconds. The time spent on dynamic instruction trace generation changes
significantly across benchmarks, which is correlated to input problem size and com-
putation complexity of the benchmark. The time spent on feature extraction varies
significantly for different benchmarks, which is affected by instruction trace size and
complexity of computations in the application. We plan to improve performance of
trace generation by using trace compression for better performance in our future work.

72

Table 5.4: The efficiency comparison between FI, Trident, and PARIS. The table in-
cludes breakdown of execution time for the PARIS workflow and speedup (using FI as
the baseline).

Benchmarks FI (s) Trident

(s)
PARIS

(s)
Trace gen-
eration (s)

Feature
construc-
tion(s)

Predict-
ion
(s)

Speedup
over FI

IS 15740 5158 4765 712.3 4052.5 0.3 3x
Nn 8860 4820 395 16.5 378.5 0.3 20x
Myocyte 16380 1215 582 87.2 494.8 0.3 28x
MG 9270 10980 4915 1359.3 3555.9 0.3 2x
Kmeans 4680 1083 234 51.8 182.2 0.3 20x
Libquantum 4714.3 1179 558 0.4 557.6 0.3 8x
Blackscholes 4793 918 23.3 1.1 21.9 0.3 205x
Sad 58890.8 9723 13408 4187.6 9220.4 0.3 4x
Bfs-parboil 11340.4 2835 10450 553.2 9896.8 0.3 1x
Hercules 4703.2 1170 194 7.6 186.4 0.3 24x
PuReMD 1099350 4410 360947 48640.3 312307.2 0.3 3x
Lulesh 9089.3 1896 20.3 1.8 18.2 0.3 450x
Hotspot 43650 15740 10480 3749.7 6730.3 0.3 4x
Bfs-rodinia 36630 10913 15952 6051.7 9900.3 0.3 2x
Nw 16470 4618 4232 859 3373 0.3 4x
Pathfinder 102960 16509 8240 2507 5733 0.3 13x

5.6 Discussions
Use of PARIS. To use PARIS, the user only needs to train the prediction model once,
and then the trained model can be repeatedly used for predicting error resilience of
any application. Predicting application resilience is useful for improving application
resilience [34, 65] and optimizing fault tolerance mechanisms [158, 80, 98, 44]. To
train the prediction model, the user must follow the training workflow in Figure 5.1.
Given a new application, the user needs to generate a dynamic instruction trace and
feed it to PARIS, and PARIS will output three numerical values: the predicted success,
SDC, and interruption rates.

Furthermore, PARIS can work on different hardware architectures and for parallel
applications with different input problems. We discuss these scenarios as follows.

Support for Different Hardware Architectures. To use PARIS on a new architec-
ture, the user needs to generate new LLVM IR traces. Since the LLVM IR instructions
are (micro)architecture-independent, any other workflow in PARIS remains the same.
Furthermore, since PARIS users training data sets to train the prediction model and
collecting training data sets requires FI, the user is required to perform FI on the new
architecture to create training data sets. However, once the prediction model is created
and trained, FI will not be required any more. In conclusion, PARIS has no problem to
work on a different hardware architecture.

Support for Different Input Problems. PARIS can work on applications with
different input problems. Given an input problem to the application, the user is required
to run the application to generate the dynamic instruction trace and then build the feature

73

vector to feed into the prediction model in PARIS. With the traditional FI, the user has
to perform an FI campaign, which is usually slower than PARIS.

Support for Parallel Code. PARIS can work for MPI programs. This is supported
by our extension to LLVM-tracer that enables LLVM-tracer to generate a trace for each
MPI process. Also, the prediction model in PARIS has to be trained using parallel
programs, in order to capture the effects of error propagation across MPI processes. If
the user cannot train the prediction model using parallel programs, the user can still
use the prediction model to make the prediction for serial programs, and then make the
prediction for parallel programs based on recent work [154, 86].

5.7 Conclusions
Understanding application resilience to errors becomes increasingly important to en-
sure result correctness for HPC applications. The traditional method (FI) to understand
application resilience is too expensive. Analytical models are faster but they are not as
accurate as FI. This chapter introduces PARIS, a new solution based on ML to solve the
above problems. We discuss feature constructions, extraction and selection, which are
the keys to enable high-performance ML for predicting application resilience. Using a
broad spectrum of benchmarks for evaluation, we show that PARIS is much faster than
FI, and provides better accuracy (at least 63% better) than the state-of-the-art analyti-
cal model. PARIS provides comparable execution time (on average) than the analytical
model, but is faster for 12 out of the 16 evaluated benchmarks.

Chapter 6

Evaluating the Performance of
Global-Restart Recovery Methods For
MPI Fault Tolerance

6.1 Introduction
In this chapter, we present an extensive evaluation using three HPC proxy applica-
tions to contrast the two leading global-restart recovery approaches–ULFM and Reinit.
Specifically, our contributions are three folds: (1) A new design and implementation
of the Reinit approach, named Reinit++, using the latest Open MPI runtime. Our
design and implementation supports recovery from either process or node failures, is
high performance, and deploys easily by extending the Open MPI library. Notably,
we present a precise definition of the failures it handles and the scope of this design
and implementation. (2) An extensive evaluation of the performance of the possible re-
covery approaches (CR, Reinit++, ULFM) using three HPC proxy applications (CoMD,
LULESH, HPCCG), and including file and in-memory checkpointing schemes. (3) New
insight from the results of our evaluation which show that recovery under Reinit++ is up
to 6× faster than CR and up to 3× faster than ULFM. Compared to CR, Reinit++ avoids
the re-deployment overhead, while compared to UFLM, Reinit++ avoids interference
during fault-free application execution and has less recovery overhead.

6.2 Overview
This section presents an overview of the state-of-the-art approaches for MPI fault toler-
ance. Specifically, it provides an overview of the MPI recovery models.

6.2.1 Existing Approaches for MPI Recovery
ULFM

One of the state-of-the-art approaches for fault tolerance in MPI is User-level Fault Mit-
igation (ULFM) [19]. ULFM extends MPI to enable failure detection at the application
level and provide a set of primitives for handling recovery. Specifically, ULFM taps to

74

75

the existing error handling interface of MPI to implement user-level fault notification.
Regarding its extensions to the MPI interface, we elaborate on communicators since
their extensions are a superset of other communication objects (windows, I/O). Follow-
ing, ULFM extends MPI with a revoke operation (MPI_Comm_revoke(comm)) to inval-
idate a communicator such that any subsequent operation on it raises an error. Also,
it defines a shrink operation (MPI_Comm_shrink(comm, newcomm)) that creates a new
communicator from an existing one after excluding any failed processes. Addition-
ally, ULFM defines a collective agreement operation (MPI_Comm_agree(comm,flag))
which achieves consensus on the group of failed processes in a communicator and on
the value of the integer variable flag.

Based on those extensions, MPI programmers are expected to implement their own
recovery strategy tailored to their applications. ULFM operations are general enough
to implement any type of recovery discussed earlier. However, this generality comes at
the cost of complexity. Programmers need to understand the intricate semantics of those
operations to correctly and efficiently implement recovery and restructure, possibly sig-
nificantly, the application for explicitly handling failures. Although ULFM provides
examples that prescribe the implementation of global-restart, the programmer must em-
bed this in the code and refactor the application to function with the expectation that
communicators may change during execution due to shrinking and merging, which is
not ideal.

Reinit

Reinit [92, 35] has been proposed as an alternative approach for implementing global-
restart recovery, through a simpler interface compared to ULFM. The most recent im-
plementation [35] of Reinit is limited in several aspects: (1) it requires modifying the
job scheduler (SLURM), besides the MPI runtime, thus it is impractical to deploy and
skews performance measurements due to crossing the interface between the job sched-
uler and the MPI runtime; (2) its implementation is not publicly available; (3) it bases
on the MVAPICH2 MPI runtime, which makes comparisons with ULFM hard, since
ULFM is implemented on the Open MPI runtime. Thus, we opt for a new design and
implementation1, named Reinit++, which we present in detail in the next section.

6.3 Reinit++

This section describes the programming interface of Reinit++, the assumptions for ap-
plication deployment, process and node failure detection, and the recovery algorithm for
global-restart. We also define the semantics of MPI recovery for the implementation of
Reinit++ as well as discuss its specifics.

6.3.1 Design
Programming Interface of Reinit++

Figure 6.1 presents the programming interface of Reinit++ in the C language, while
figure 6.2 shows sample usage of it. There is a single function call, MPI_Reinit,

1Available open-source at https://github.com/ggeorgakoudis/ompi/tree/reinit

https://github.com/ggeorgakoudis/ompi/tree/reinit

76

1 t y p e d e f enum {
2 MPI_REINIT_NEW , MPI_REINIT_REINITED , MPI_REINIT_RESTARTED
3 } M P I _ R e i n i t _ s t a t e _ t
4
5 t y p e d e f i n t
6 (∗ M P I _ R e s t a r t _ p o i n t)
7 (i n t argc , char ∗∗ argv , M P I _ R e i n i t _ s t a t e _ t s t a t e) ;
8
9 i n t MPI_Rein i t

10 (i n t argc , char ∗∗ argv , c o n s t M P I _ R e s t a r t _ p o i n t p o i n t) ;

Figure 6.1: The programming interface of Reinit++

1 i n t foo (i n t argc , char ∗∗ argv , M P I _ R e i n i t _ s t a t e _ t s t a t e)
2 {
3 /∗ Load checkpo int i f i t e x i s t s ∗ /
4 whi le (! done) {
5 /∗ Do computation ∗ /
6 /∗ Store checkpo int ∗ /
7 }
8 }
9

10 i n t main (i n t argc , char ∗∗ a rgv)
11 {
12 MP I _ I n i t (& argc , &argv) ;
13 /∗ Appl i ca t ion s p e c i f i c i n i t i a l i z a t i o n ∗ /
14 / / Entry p o i n t o f the r e s i l i e n t f u n c t i o n
15 MPI_Rein i t (& argc , &argv , foo) ;
16 M P I _ F i n a l i z e () ;
17 }

Figure 6.2: Sample usage of the interface of Reinit++

for the programmer to call to define the point in code to rollback and resume exe-
cution after a failure. This function must be called after MPI_Init so ensure the
MPI runtime has been initialized. Its arguments imitate the parameters of MPI_Init,
adding a parameter for a pointer to a user-defined function. Reinit++ expects the pro-
grammer to encapsulate in this function the main computational loop of the applica-
tion, which is restartable through checkpointing. Internally, MPI_Reinit passes the
parameters argc and argv to this user-defined function, plus the parameter state,
which indicates the MPI state of the process as values from the enumeration type
MPI_Reinit_state_t. Specifically, the value MPI_REINIT_NEW designates a new pro-
cess executing for the first time, the value MPI_REINIT_REINITED designates a survivor
process that has entered the user-defined function after rolling back due to a failure, and
the value MPI_REINIT_RESTARTED designates that the process has failed and has been
re-spawned to resume execution. Note that this state variable describes only the MPI
state of Reinit++, thus has no semantics on the application state, such as whether to
load a checkpoint or not.

Application Deployment Model

Reinit++ assumes a logical, hierarchical topology of application deployment. Figure 6.3
shows a graphical representation of this deployment model. At the top level, there

77

Root

D1

P1 Pk

Dn

Pl Pm

· · ·

· · · · · ·

Figure 6.3: Application deployment model

is a single root process that spawns and monitors daemon processes, one on each of
the computing nodes reserved for the application. Daemons spawn and monitor MPI
processes local to their nodes. The root communicates with daemons and keeps track of
their liveness, while daemons track the liveness of their children MPI processes. Based
on this execution and deployment model, Reinit++ performs fault detection, which we
discuss next.

Fault Detection

Reinit++ targets fail-stop failures of either MPI processes or daemons. A daemon fail-
ure is deemed equivalent to a node failure. The causes for those failures may be transient
faults or hard faults of hardware components.

In the design of Reinit++, the root manages the execution of the whole applications,
so any recovery decisions are taken by it, hence it is the focal point for fault detection.
Specifically, if an MPI process fails, its managing daemon is notified of the failure and
forwards this notification to the root, without taking an action itself. If a daemon process
fails, which means either the node failed or the daemon process itself, the root directly
detects the failure and also assumes that the children MPI processes of that daemon
are lost too. After detecting a fault the root process proceeds with recovery, which we
introduce in the following section.

MPI Recovery

Reinit++ recovery for both MPI process and daemon failures is similar, except that on
a daemon failure the root chooses a new host node to re-instate failed MPI processes,
since a daemon failure proxies a node failure. For recovery, the root process broadcasts
a reinit message to all daemons. Daemons receiving that message roll back survivor
processes and re-spawn failed ones. After rolling back survivor MPI processes and
spawning new ones, the semantics of MPI recovery are that only the world communi-
cator is valid and any previous MPI state (other communicators, windows, etc.) has
been discarded. This is similar to the MPI state available immediately after an applica-
tion calls MPI_Init. Next, the application restores its state, discussed in the following
section.

78

Application Recovery

Reinit++ assumes that applications are responsible for saving and restoring their state
to resume execution. Hence, both survivor and re-spawned MPI processes should load
a valid checkpoint after MPI recovery to restore application state and resume computa-
tion.

6.3.2 Implementation
We implement Reinit++ in the latest Open MPI runtime, version 4.0.0. The implemen-
tation supports recovery from both process and daemon (node) failures. This imple-
mentation does not presuppose any particular job scheduler, so it is compatible with
any job scheduler the Open MPI runtime works with. Introducing briefly the Open MPI
software architecture, it comprises of three frameworks of distinct functionality: (i) the
OpenMPI MPI layer (OMPI), which implements the interface of the MPI specification
used by the application developers; (ii) the OpenMPI Runtime Environment (ORTE),
which implements runtime functions for application deployment, execution monitoring,
and fault detection, and (iii) the Open Portability Access Layers (OPAL), which imple-
ments abstractions of OS interfaces, such as signal handling, process creation, etc.

Reinit++ extends OMPI to provide the function MPI_Reinit. It extends ORTE to
propagate fault notifications from daemons to the root and to implement the mechanism
of MPI recovery on detecting a fault. Also, Reinit++ extends OPAL to implement
low-level process signaling for notifying survivor process to roll back. The following
sections provide more details.

Application Deployment

Reinit++ requires the application to deploy using the default launcher of Open MPI,
mpirun. Note that using the launcher mpirun is compatible with any job scheduler
and even uses optimized deployment interfaces, if the scheduler provides any. Physical
application deployment in Open MPI closely follows the logical model of the design of
Reinit++. Specifically, Open MPI sets the root of the deployment at the process launch-
ing the mpirun, typically on a login node of HPC installations, which is deemed as the
Head Node Process (HNP) in Open MPI terminology. Following, the root launches an
ORTE daemon on each node allocated for the application. Daemons spawn the set of
MPI processes in each node and monitor their execution. The root process communi-
cates with each daemon over a channel of a reliable network transport and monitors the
liveness of daemons through the existence of this channel.

Launching an application, the user specifies the number of MPI processes and op-
tionally the number of nodes (or number of processes per node). To withstand process
failures, this specification of deployment is sufficient, since Reinit++ re-spawns failed
processes on their original node of deployment. However, for node failures, the user
must over-provision the allocated process slots for re-spawning the set of MPI pro-
cesses lost due to a failed node. To do so, the most straightforward way is to allocate
more nodes than required for fault-free operation, up to the maximum number of node
failures to withstand.

79

Algorithm 1 Root: HandleFailure
Data: D: the set of daemons,
Children(x): returns the set of children MPI processes of daemon x,
Parent(x): returns the parent daemon of MPI process x
Input: The failed process f (MPI process or daemon)
// failed process is a daemon
if f ∈ D then
D ← D \ {f}
d′ ← d | arg min

d∈D
Children(d)

// broadcast REINIT to all daemons
Broadcast D message ⟨REINIT, { ⟨d′, c⟩ | ∀c ∈ Children(f) } ⟩

// failed process is an MPI process
else

Broadcast D message ⟨REINIT, { ⟨Parent(f), f⟩ } ⟩
end

Fault Detection

In Open MPI, a daemon is the parent of the MPI processes on its node. If an MPI
process crashes, its parent daemon is notified, by trapping the signal SIGCHLD, in POSIX
semantics. Implementing the fault detection requirements of Reinit++, a daemon relays
the fault notification to the root process for taking action. Regarding node failures, the
root directly detects them proxied through daemon failures. Specifically, the root has an
open communication channel with each daemon over some reliable transport, e.g., TCP.
If the connection over that communication channel breaks, the root process is notified
of the failure and regards the daemon at fault, thus assuming all its children MPI process
lost and its host node is unavailable. For both types of failures (process and node), the
root process initiates MPI recovery.

MPI Recovery

Algorithm 1 shows in pseudocode the operation of the root process when handling a
failure. On detecting a failure, the root process distinguishes whether it is a faulty
daemon or MPI process. For a node failure, the root selects the least loaded node in
the resource allocation, that is the node with the fewest occupied process slots, and sets
this node’s daemon as the parent daemon for failed processes. For a process failure, the
root selects the original parent daemon of the failed process to re-spawn that process.
Next, the root process initiates recovery by broadcasting to all daemons a message
with the REINIT command and the list of processes to spawn, along with their selected
parent daemons. Following, when a daemon receives that message it signals its survivor,
children MPI processes to roll back, and re-spawns any processes in the list that have
this daemon as their parent. Algorithm 2 presents this procedure in pseudocode.

Regarding the asynchronous, signaling interface of Reinit++, Algorithm 3 illus-
trates the internals of the Reinit++ in pseudocode. When an MPI process executes
MPI_Reinit, it installs a signal handler for the signal SIGREINIT, which aliases SIGUSR1
in our implementation. Also, MPI_Reinit sets a non-local goto point using the POSIX

80

Algorithm 2 Daemon d̂: HandleReinit
Data: Children(x): returns the set of children MPI processes of daemon x,
Parent(x): returns the parent daemon of MPI process x
Input: List {⟨di, ci⟩, · · ·}
// Signal survivor MPI processes
for c ∈ Children(d̂) do

c.state← MPI_REINIT_REINITED
Signal SIGREINIT to c

end
// Spawn new process if d̂ is parent
foreach {⟨di, ci⟩, · · ·} do

if d̂ == di then
Children(d̂)← Children(d̂) ∪ ci
ci.state← MPI_REINIT_RESTARTED
Spawn ci

end
end

Algorithm 3 Reinit++ internals
Function OnSignalReinit():

goto Rollback
end
Function MPI_Reinit(argc, argv, foo):

Install signal handler OnSignalReinit on SIGREINIT
Rollback: if this.state == MPI_REINIT_REINITED then

Discard MPI state
Wait on barrier
Re-initialize world communicator

end
return foo (argc, argv, this.state)

end

function setjmp(). The signal handler of SIGREINIT simply calls longjmp() to return
execution of survivor processes to this goto point. Rolled back survivor processes dis-
card any previous MPI state and block on a ORTE-level barrier. This barrier replicates
the implicit barrier present in MPI_Init to synchronize with re-spawned processes join-
ing the computation. After the barrier, survivor processes re-initialize the world com-
municator and call the function foo to resume computation. Re-spawned processes ini-
tialize the world communicator as part of the MPI initialization procedure of MPI_Init
and go through MPI_Reinit to install the signal handler, set the goto point, and lastly
call the user-defined function to resume computation.

Application Recovery

Application recovery includes the actions needed at the application-level to resume com-
putation. Any additional MPI state besides the repaired world communicator, such as

81

sub-communicators, must be re-created by the application’s MPI processes. Also, it is
expected that each process loads the latest consistent checkpoint to continue computing.
Checkpointing lays within the responsibility of the application developer. In the next
section, we discuss the scope and implications of our implementation.

Discussion

In this implementation, the scope of fault tolerance is to support recovery from failures
happening after MPI_Reinit has been called by all MPI processes. This is because
MPI_Reinit must install signal handlers and set the roll-back point on all MPI pro-
cesses. This is sufficient for a large coverage of failures since execution time is dom-
inated by the main computational loop. In the case a failure happens before the call
to MPI_Reinit, the application falls back to the default action of aborting execution.
Nevertheless, the design of Reinit++ is not limited by this implementation choice. A
possible approach instead of aborting, which we leave as future work, is to treat any
MPI processes that have not called MPI_Reinit as if failed and re-execute them.

Furthermore, signaling SIGREINIT for rolling back survivor MPI processes asyn-
chronously interrupts execution. In our implementation, we render the MPI runtime
library signal and roll-back safe by using masking to defer signal handling until a safe
point, i.e., avoid interruption when locks are held or data structures are updating. Since
application code is out of our control, Reinit++ requires the application developer to pro-
gram the application as signal and roll-back safe. A possible enhancement is to provide
an interface for installing cleanup handlers, proposed in earlier designs of Reinit [89],
so that application and library developers can install routines to reset application-level
state on recovery. Another approach is to make recovery synchronous, by extending the
Reinit++ interface to include a function that tests whether a fault has been detected and
trigger roll back. The developer may call this function at safe points during execution
for recovery. We leave both those enhancements as future work, noting that the existing
interface is sufficient for performing our evaluation.

6.4 Experimentation Setup
This section provides detailed information on the experimentation setup, the recovery
approaches used for comparisons, the proxy applications and their configurations, and
the measurement methodology.

Recovery approaches

Experimentation includes the following recovery approaches:

• CR, which implements the typical approach of immediately restarting an applica-
tion after execution aborts due to a failure.

• ULFM, by using its latest revision based on the Open MPI runtime v4.0.1

(4.0.1ulfm2.1rc1).

• Reinit++, which is our own implementation of Reinit, based on OpenMPI runtime
v4.0.0.

82

Table 6.1: Proxy applications and their configuration

Application Input No. ranks

CoMD -i4 -j2 -k2 16, 32, 64, 128, 256, 512, 1024
-x 80 -y 40 -z 40 -N 20

HPCCG 64 64 64 16, 32, 64, 128, 256, 512, 1024
LULESH -i 20 -s 48 8, 64, 512

Table 6.2: Checkpointing per recovery and failure

Failure Recovery

CR ULFM Reinit

process file memory memory

node file file file

Emulating failures

Failures are emulated through fault injection. We opt for random fault injection to
emulate the occurrence of random faults, e.g., soft errors or failures of hardware com-
ponents, that lead to a crash failure. Specifically, for process failures, we instrument
applications so that at a random iteration of the main computational loop, a random
MPI process suicides by raising the signal SIGKILL. The random selection of iteration
and MPI process is the same for every recovery approach. For node failures, the method
is similar, but instead of itself, the MPI process sends the signal SIGKILL to its parent
daemon, thus kills the daemon and by extension all its children processes. In experi-
mentation, we inject a single MPI process failure or a single node failure.

Applications

We experiment with three benchmark applications that represent different HPC do-
mains: CoMD for molecular dynamics, HPCCG for iterative solvers, and LULESH
for multi-physics computation. The motivation is to investigate global-restart recovery
on a wide range of applications and evaluate any performance differences. Table 6.1
shows information on the proxy applications and scaling of their deployed number of
ranks. Note LULESH requires a cube number of ranks, thus the trimmed down experi-
mentation space. The deployment configuration has 16 ranks per node, so the smallest
deployment comprises of one node while the largest one spans 64 nodes (1024 ranks).
Application execute in weak scaling mode – for CoMD we show its input only 16 ranks
and change it accordingly. We extend applications to implement global-restart with
Reinit++ or ULFM, to store a checkpoint after every iteration of their main computa-
tional loop and load the latest checkpoint upon recovery.

83

Checkpointing

For evaluation purposes, we implement our own, simple checkpointing library that sup-
ports saving and loading application data using in-memory and file checkpoints. Ta-
ble 6.2 summarizes checkpointing per recovery approach and failure type. In detail, we
implement two types of checkpointing: file and memory. For file checkpointing, each
MPI process stores a checkpoint to globally accessible permanent storage, which is the
networked, parallel filesystem Lustre available in our cluster. For memory checkpoint-
ing, an MPI process stores a checkpoint both locally in its own memory and remotely
to the memory of a buddy [163, 162] MPI process, which in our implementation is the
(cyclically) next MPI process by rank. This memory checkpointing implementation is
applicable only to single process failures since multiple process failures or a node fail-
ure can wipe out both local and buddy checkpoints for the failed MPI processes. CR
necessarily uses file checkpointing since re-deploying the application requires perma-
nent storage to retrieve checkpoints.

Statistical evaluation

For each proxy application and configuration we perform 10 independent measurements.
Each measurement counts the total execution time of the application breaking it down
to time needed for writing checkpoints, time spent during MPI recovery, time reading
a checkpoint after a failure, and the pure application time executing the computation.
Any confidence intervals shown correspond to a 95% confidence level and are calcu-
lated based on the t-distribution to avoid assumptions on the sampled population’s dis-
tribution.

6.5 Evaluation
For the evaluation we compare CR, Reinit++ and ULFM for both process and node fail-
ures. Results provide insight on the performance of each of those recovery approaches
implementing global-restart and reveal the reasons for their performance differences.

6.5.1 Comparing total execution time on a process failure
Figure 6.4 shows average total execution time for process failures using file checkpoint-
ing for CR and memory checkpointing for Reinit++ and ULFM. The plot breaks down
time to components of writing checkpoints, MPI recovery, and pure application time.
Reading checkpoints occurs one-off after a failure and has negligible impact, in the
order of tens of milliseconds, thus it is omitted.

The first observation is that Reinit++ scales excellently compared to both CR and
ULFM, across all programs. CR has the worse performance, increasingly so with more
ranks. The reason is the limited scaling of writing checkpoints to the networked filesys-
tem. By contrast, ULFM and Reinit++ use memory checkpointing, spending minimal
time writing checkpoints. Interestingly, ULFM scales worse than Reinit++; we believe
that the reason is that it inflates pure application execution time, which we illustrate in
the next section. Further, in the following sections, we remove checkpointing overhead

84

16 32 64 128 256 512 1024
Ranks

20

40

60

80

100

Ti
m

e
(s

)

CR ULFM Reinit+ +

Recovery
Application
WriteCP

(a) CoMD

16 32 64 128 256 512 1024
Ranks

100

200

300

400

Ti
m

e
(s

)

(b) HPCCG

8 64 512
Ranks

20

40

60

Ti
m

e
(s

)

(c) LULESH

Figure 6.4: Total execution time breakdown recovering from a process failure

from the analysis to highlight the performance differences of the different recovering
approaches.

6.5.2 Comparing pure application time under different recovery
approaches

Figure 6.5 shows the pure application time, without including reading/writing check-
points or MPI recovery. We observe that application time is on par for CR and Reinit++,
and that all applications scale weakly well on up to 1024 ranks. CR and Reinit++ do
not interfere with execution, thus they have no impact on application time, which is
on par to the fault-free execution time of the proxy applications. However, in ULFM,
application time grows significantly as the number of ranks increases. ULFM extends
MPI with an always-on, periodic heartbeat mechanism [22] to detect failures and also
modifies communication primitives for fault tolerant operation. Following from our
measurements, those extensions noticeably increase the original application execution
time. However, it is inconclusive whether this is a result of the tested prototype imple-
mentation or a systemic trade-off. Next, we compare the MPI recovery times among all
the approaches.

85

16 32 64 128 256 512 1024
Ranks

10

20

30

40

Ti
m

e
(s

)

CR ULFM Reinit+ +

(a) CoMD

16 32 64 128 256 512 1024
Ranks

10

20

30

Ti
m

e
(s

)

(b) HPCCG

8 64 512
Ranks

5

10

15

20

25

30

Ti
m

e
(s

)

(c) LULESH

Figure 6.5: Scaling of pure application time

6.5.3 Comparing MPI recovery time recovering from a process
failure

Though checkpointing saves applications computation time, reducing MPI recovery
time saves overhead from restarting. This overhead is increasingly important the larger
the deployment and the higher the fault rate. In particular, figure 6.6 shows the scaling
of time required for MPI recovery across all programs and recovery approaches, again
removing any overhead for checkpointing to focus on the MPI recovery time. As ex-
pected, MPI recovery time depends only on the number of ranks, thus times are similar
among different programs for the same recovery approach. Commenting on scaling, CR
and Reinit++ scale excellently, requiring almost constant time for MPI recovery regard-
less the number of ranks. However, CR is about 6× slower, requiring around 3 seconds
to tear down execution and re-deploy the application, whereas Reinit++ requires about
0.5 second to propagate the fault, re-initialize survivor processes and re-spawn the failed
process. ULFM has on par recovery time with Reinit++ up to 64 ranks, but then its time
increases being up to 3× slower than Reinit++ for 1024 ranks. ULFM requires multi-
ple collective operations among all MPI processes to implement global-restart (shrink
the faulty communicator, spawn a new process, merge it to a new communicator). By
contrast, Reinit++ implements recovery at the MPI runtime layer requiring fewer opera-
tions and confining collective communication only between root and daemon processes.

86

16 32 64 128 256 512 1024
Ranks

1

2

3

4

Ti
m

e
(s

)

CR ULFM Reinit+ +

(a) CoMD

16 32 64 128 256 512 1024
Ranks

1

2

3

4

Ti
m

e
(s

)

(b) HPCCG

8 64 512
Ranks

1

2

3

4

Ti
m

e
(s

)

(c) LULESH

Figure 6.6: Scaling of MPI recovery time recovering from a process failure

6.5.4 Comparing MPI recovery time recovering from a node
failure

This comparison for a node failure includes only CR and Reinit++, since the prototype
implementation of ULFM faced robustness issues (hanging or crashing) and did not
produce measurements. Also, since both CR and Reinit++ use file checkpointing and
do not interfere with pure application time, we present only results for MPI recovery
times, shown in figure 6.7. Both CR and Reinit++ scale very well with almost constant
times, as they do for a process failure. However, in absolute values, Reinit++ has a
higher recovery time of about 1.5 seconds for a node failure compared to 0.5 seconds
for a process failure. This is because recovering from a node failure requires extra
work to select the least loaded node and spawn all the MPI processes of the failed node.
Nevertheless, recovery with Reinit++ is still about 2× faster than with CR.

6.6 Conclusion
We have presented Reinit++, a new design and implementation of the global-restart
approach of Reinit. Reinit++ recovers from both process and node crash failures, by
spawning new processes and mending the world communicator, requiring from the pro-
grammer only to provide a rollback point in execution and have checkpointing in place.

87

16 32 64 128 256 512 1024
Ranks

2

3

4

5

Ti
m

e
(s

)

CR Reinit+ +

(a) CoMD

16 32 64 128 256 512 1024
Ranks

2

3

4

5

Ti
m

e
(s

)

(b) HPCCG

8 64 512
Ranks

1.5
2.0
2.5
3.0
3.5
4.0

Ti
m

e
(s

)

(c) LULESH

Figure 6.7: Scaling of MPI recovery time recovering from a node failure

Our extensive evaluation comparing with the state-of-the-art approaches Checkpoint-
Restart (CR) and ULFM shows that Reinit++ scales excellently as the number of ranks
grows, achieving almost constant recovery time, being up to 6× faster than CR and up
to 3× faster than ULFM. For future work, we plan to expand Reinit for supporting more
recovery strategies besides global-restart, including shrinking recovery and forward re-
covery strategies, to maintain its implementation, and expand the experimentation with
more applications and larger deployments.

6.7 Acknowledgment
This work is performed when I was doing an internship at Lawrence Livermore National
Laboratory. I am one of the primary contributor to this work. I helped the design and
evaluation of Reinit++ and the development of the fault tolerance frameworks into the
three applications and collection of evaluation results.

Chapter 7

A Benchmark Suite to Characterize
and Model MPI Application Resilience

7.1 Introduction
In this chapter, we design and develop a benchmark suite MATCH aiming to study the per-
formance efficiency of a variety of MPI fault tolerance configurations. MATCH contains
six proxy applications from the Exascale Computing Project (ECP) Proxy Apps Suite
and LLNL Advanced Simulation and Computing (ASC) proxy application suite; MATCH
uses Fault Tolerance Interface (FTI) for the data recovery interface and uses ULFM and
Reinit for the MPI recovery interface. We pick a representative set of HPC applications
but our methodology is extensible to more HPC applications. In evaluation, we break
down the execution time and compare the performance overhead, when using FTI with
Restart, when using FTI with ULFM, and when using FTI with Reinit, respectively. All
the above experiments are running in four different scaling sizes (64 processes, 128
processes, 256 processes, and 512 processes on 32 nodes), in three different input sizes
(small, median, and large), and when with or without injecting process failures.

In particular, our contributions are three-fold: (1) we present MATCH, an MPI fault
tolerance benchmark suite. This is the first benchmark suite designed to evaluate mul-
tiple fault tolerance techniques for MPI. We illustrate the process and manifest the de-
tails of implementing a range of different fault tolerance designs to HPC proxy appli-
cations; (2) we develop a data dependency analysis tool for identifying the data objects
for checkpointing, which are the only data objects necessary to guarantee the restoring
of application state for the application execution correctness for the first time; (3) we
comparatively and extensively investigate the performance efficiency of different con-
figurations and different combinations of fault tolerance designs. Our evaluation reveals
that, for MPI global-restart recovery, using FTI with Reinit is the most efficient design
within the three evaluated fault tolerance designs, and Reinit recovery is 4 times faster
than ULFM recovery on average, and 16 times faster than restarting on average.

88

89

7.2 Overview

7.2.1 MATCH

There is not an existing benchmark suite aiming at benchmarking of MPI fault toler-
ance. We design, implement, and test a benchmark suite MATCH to understand, study,
and comparatively evaluate the performance efficiency of different MPI fault tolerance
designs and configurations. MATCH is composed of HPC proxy applications coming
from representative HPC benchmark suites. MATCH contains six representative HPC ap-
plications. Our fault tolerance design has two interfaces: the checkpointing interface to
preserve and protect the data, and the failure recovery interface to protect and repair the
MPI communicator. We use the Fault Tolerance Interface (FTI) for checkpointing and
ULFM and Reinit for MPI process recovery in this work.

7.2.2 Workloads
Our workloads are proxy applications getting from well-known benchmark suites: ECP
proxy applications suite [125] and LLNL ASC proxy applications suite [112]. Proxy ap-
plications are small and simplified applications that allow HPC practitioners, operators,
and domain scientists to explore and test key features of real applications with a quick
turnaround. Our workloads represent the most important HPC application domains in
scientific computing, such as iterative solvers, multi-grid, molecular dynamics, etc. We
describe the six proxy applications used in MATCH below.

AMG: An algebraic multi-grid solver dealing with linear systems in unstructured grids
problems. AMG is built on top of the BoomerAMG solver of the Hypre library which
is a large-scale linear solver library developed at LLNL. AMG provides a number of
tests for a variety of problems. The default one is an anisotropy problem in the Laplace
domain.

CoMD: A proxy application in Molecular Dynamics (MD) commonly used as a re-
search platform for particle motion simulation. Different than previous MD proxy ap-
plications such as MiniMD, the design of CoMD is significantly modularized which
allows performing analyses individual modules.

LULESH: A proxy application that solves the hydrodynamics equation in a Sedov
blast problem. LULESH solves the hydrodynamics equation separately by using a mesh
to simulate the Sedov blast problem which is divided into a composition of volumetric
elements. This mesh is an unstructured hex mesh, where nodes are points connected by
mesh lines.

miniFE: A proxy application that solves unstructured implicit finite element prob-
lem. miniFE aims at the approximation of an unstructured implicit finite element.

miniVite: A proxy application that solves the graph community detection problem
using the distributed Louvain method. The Louvain method is a greedy algorithm for
the community detection problem.

HPCCG: A preconditioned conjugate gradient solver that solves the linear system of
partial differential equations in a 3D chimney domain. HPCCG approximates practical
physical applications that simulate unstructured grid problems.

90

7.2.3 Checkpointing Interface - FTI
Fault Tolerance Interface (FTI) [15] is a multi-level checkpointing interface for efficient
multilevel checkpointing in large-scale high-performance computing systems. FTI pro-
vides programmers a number of APIs which are easy to use, and allows programmers
to choose checkpointing strategy that fits the application. FTI enables multiple levels of
reliability with different performance efficiency by utilizing local storage, data replica-
tion, and erasure codes. FTI is an application-level checkpointing. It requests users to
decide which data objects to be checkpointed. Furthermore, FTI hides data processing
details from users. Users only tell FTI the memory address and data size of the date
object to be protected to enable checkpointing of the data object. Because failures can
corrupt single or multiple nodes during the execution of an application, FTI provides
multiple levels of resiliency to recover from failures of different severities. Namely the
levels are the following:

• L1: This level stores checkpoints locally to each compute node. In case of a node
failure, the application states cannot successfully restore.

• L2: This level is built on top of L1 checkpointing. In this level each application
stores their checkpoint locally as well as to a neighboring node.

• L3: In this level, the checkpoints are encoded by the Reed-Solomon (RS) erasure
code. This implementation can survive the breakdown of half of the nodes. The
lost data can be restored from the RS-encoded files.

• L4: This level flushes checkpoints to parallel file system. This level enables
differential checkpointing.

FTI have proposed a multi-level checkpointing model, and have conducted an ex-
tensive study of correctness and reliability of the proposed checkpointing model. In our
work, we use FTI in the context of MPI recovery which is for the first time.

7.3 Design
We present the design details in this section. In particular, we describe the algorithm
that we use to find data objects for checkpointing through data dependency analysis.

7.3.1 Find Data Objects for Checkpointing
Different than many fault tolerance frameworks that request programmers to decide data
objects for checkpointing, we develop a practical analytic tool to guide programmers to
identify data objects to be checkpointed, in order to recover the application execution to
the same state as before the failure. We identify data objects for checkpointing through
data dependency analysis across iterations following three principles.

• The data objects for checkpointing across iterations must be defined before the
iterative computation. Data objects defined locally within the main computation
loop must be excluded for checkpointing.

91

Algorithm 4 Find Data Objects for Checkpointing
Input: Locs_in_loop: the set of locations used in the main computation loop;

Locs_before_loop: the set of locations defined or allocated before the main
computation loop

Output: CPK_Locs: the set of locations for checkpointing
// Check values of locations in Locs_in_loop
for l ∈ Locs_in_loop do

if The invocation values of l are not the same then
Keep l in Locs_in_loop

else
Remove l from Locs_in_loop

end
end
// Remove repetition in Locs_in_loop and Locs_before_loop
for l ∈ Locs_in_loop do

Remove repetition
end
for l ∈ Locs_before_loop do

Remove repetition
end
// Check if locations in Locs_in_loop can find a match in

Locs_before_loop
for li ∈ Locs_in_loop do

for lj ∈ Locs_before_loop do
if li matches lj then

CPK_Locs← li
end

end
end

• The data objects for checkpointing must be used (read or written) across iterations
of the main computation loop.

• The value of data objects for checkpointing must vary across iterations of the
main computation loop.

Following the three principles, we design and develop the data dependency analysis
tool. The input to the tool is a dynamic execution instruction trace generated using
LLVM-Tracer [136]. The trace contains detailed information of dynamic operations,
such as the register name and memory address, the operator, and the line number in
the source code where the operation performs. We describe the algorithm of the data
dependency analysis tool in Algorithm 4. The input to the algorithm is the set of loca-
tions used within the main computation loop, and the set of locations allocated before
the main computation loop. Here locations are registers and memory locations. We
create the two sets of locations by traversing the instruction trace once. After that, we
first check values of locations, and make sure the invocation values of the same location
within the main computation loop are different. We then remove repetitions from both

92

1 i n t main (i n t argc , char ∗ a rgv []) {
2 MP I _ I n i t (& argc , &argv) ;
3
4 / / I n i t i a l i z e FTI
5 F T I _ I n i t (a rgv [1] , MPI_COMM_WORLD) ;
6
7 / / Right be fo re the main computation loop
8 / / Add FTI p r o t e c t i o n to data o b j e c t s
9 F T I _ P r o t e c t () ;

10
11 / / the main computation loop
12 whi le (. . .) {
13 / / At the beg inning of the loop
14 / / I f the e x e c u t i o n i s a r e s t a r t
15 i f (F T I _ S t a t u s () != 0) {
16 FTI_Recover () ;
17 }
18
19 / / do FTI c h e c k p o i n t i n g
20 i f (I ter_Num % c p _ s t r i d e == 0) {
21 FTI_Checkpo in t () ;
22 }
23 }
24
25 F T I _ F i n a l i z e () ;
26 M P I _ F i n a l i z e () ;
27 }

Figure 7.1: A sample implementation of FTI.

sets of locations. Lastly, for each location in the set of the main computation loop we
search for a match in the location set before the main computation loop. If a match
is found, the matched location is used to localize data objects for checkpointing. The
output of the tool is a set of locations for checkpointing. Note that the tool only out-
puts the locations for checkpointing, runs separately, and has not supported automatic
generation of checkpointing code at this stage. We leave it for future work.

7.4 Implementation

7.4.1 FTI Implementation
The Fault Tolerance Interface (FTI) is a checkpointing library widely used by HPC
developers for checkpointing. We illustrate a sample usage of FTI in Figure 7.1. We
find a challenge while implementing FTI to MATCH workloads.

The challenge is the programming complexity of enabling FTI checkpointing to data
objects, when the number of data objects for checkpointing is large. FTI requests users
to manually add FTI checkpointing to every data object. This significantly increases
the programming effort when the number of data objects for checkpointing is large
and when the data object is a complicated data structure. This is a common issue in
application level checkpoint libraries such as FTI, VeloC, and SCR. These libraries
cannot automatically enable checkpointing to target data objects.

93

1 i n t main (i n t argc , char ∗ a rgv [])
2 {
3 MP I _ I n i t (& argc , &argv) ;
4 OMPI_Reinit (a rgc , argv , r e s i l i e n t _ m a i n) ;
5 M P I _ F i n a l i z e () ;
6 re turn 0 ;
7 }
8 / / Move the o r i g i n a l main () i n t o r e s i l i e n t _ m a i n ()
9 i n t r e s i l i e n t _ m a i n (i n t argc , char∗∗ argv , O M P I _ r e i n i t _ s t a t e _ t s t a t e) {

10 F T I _ I n i t (a rgv [1] , MPI_COMM_WORLD) ;
11 . . .
12 / / the main computation loop
13 . . .
14 F T I _ F i n a l i z e () ;
15 re turn 0 ;
16 }

Figure 7.2: A sample implementation of Reinit.

7.4.2 FTI with Reinit Implementation
Reinit is the state-of-the-art MPI global non-shrinking recovery framework. Reinit
hides all recovery implementations to the MPI runtime, which makes it ease-to-use.
We provide a sample implementation of Reinit with FTI checkpointing in Figure 7.2.
We can see that Reinit recovery only adds less than five lines of code. Line 4 and 5 are
for Reinit recovery, while Line 14 is used for other functionalities. FTI is completely
independent of Reinit. To implement FTI with Reinit, the only thing to notice is to
move the FTI_Init() and FTI_Finalize() functions into the resilient_main() function as
well.

7.4.3 FTI with ULFM Implementation
ULFM is a pioneer MPI recovery framework. ULFM provides five new MPI inter-
faces to support MPI fault tolerance. ULFM gives flexibility to programmers to use
the provided interfaces to implement the MPI recovery functionality. Also, ULFM al-
lows programmers to use both shrinking and non-shrinking recovery. However, it takes
a significant learning and programming effort before a programmer can successfully
implement ULFM process recovery. As most HPC applications follow the Bulk Syn-
chronous Parallel (BSP) paradigm, we focus on ULFM global non-shrinking recovery.
In order to implement ULFM non-shrinking recovery, we add more than 200 lines of
code for each benchmark, which is less efficient comparing to the implementing effort
(less than five lines of code) for Reinit recovery. We provide a sample implementation
of ULFM global non-shrinking recovery with FTI in Figure 7.3.

When combining ULFM global non-shrinking recovery with FTI, it is important to
notice that the MPI_COMM_WORLD at Line 4 in Figure 7.1 must be implemented as
a global variable with external declaration. Such that, the world communicator is im-
mediately updated after repaired by ULFM recovery, and FTI is able to use the repaired
world communicator for MPI communication without incurring communication faults.

94

1 /∗ world w i l l swap between worldc [0] and worldc [1] a f t e r each respawn ∗ /
2 MPI_Comm wor ldc [2] = { MPI_COMM_NULL, MPI_COMM_NULL } ;
3 i n t w o r l d i = 0 ;
4
5 / / the MPI communicator must be implemented as a g l o b a l v a r i a b l e to enable

immediate ly update a f t e r ULFM recovery f o r FTI to use
6 # d e f i n e wor ld (wor ldc [w o r l d i])
7
8 i n t main (i n t argc , char ∗ a rgv [])
9 {

10 MP I _ I n i t (& argc , &argv) ;
11 / / s e t long jump
12 i n t d o _ r e c o v e r = _ s e t j m p (s t a c k _ j m p _ b u f) ;
13 i n t s u r v i v o r = I s S u r v i v o r () ;
14 /∗ s e t an errhandler on world , so t h a t a f a i l u r e i s not f a t a l anymore

∗ /
15 MPI_Comm_set_er rhandler (wor ld) ;
16 F T I _ I n i t (a rgv [1] , wor ld) ;
17 . . .
18 / / the main computation loop
19 . . .
20 F T I _ F i n a l i z e () ;
21 M P I _ F i n a l i z e () ;
22 }
23
24 /∗ error handler : r e p a i r comm world ∗ /
25 s t a t i c vo id e r r h a n d l e r (MPI_Comm∗ pcomm , i n t ∗ e r r c o d e , . . .)
26 {
27 i n t e c l a s s ;
28 M P I _ E r r o r _ c l a s s (∗ e r r c o d e , &e c l a s s) ;
29
30 i f (MPIX_ERR_PROC_FAILED != e c l a s s &&
31 MPIX_ERR_REVOKED != e c l a s s) {
32 MPI_Abort (MPI_COMM_WORLD, ∗ e r r c o d e) ;
33 }
34
35 /∗ swap the worlds ∗ /
36 w o r l d i = (w o r l d i +1) %2;
37
38 MPIX_Comm_revoke (wor ld) ;
39 MPIX_Comm_shrink () ;
40 MPI_Comm_spawn () ;
41 MPI_Intercomm_merge () ;
42 MPIX_Comm_agree () ;
43
44 _longjmp (s t ack_ jmp_buf , 1) ;
45 }

Figure 7.3: A sample implementation of ULFM non-shrinking recovery.

7.4.4 Fault Injection
We emulate MPI process failures through fault injection. In particular, we raise a
SIGTERM signal at the selected MPI process in the selected iteration of the main com-
putation loop. We illustrate the fault injection code in Figure 7.4. Note that we choose
to evaluate different fault tolerance techniques by triggering a process failure, which
does not mean that the MPI recovery frameworks do not support recovery in a node fail-
ure. Reported in a recent study [60], Reinit can recover in a node failure, while ULFM

95

1 / / s i m u l a t i o n of proc f a i l u r e s
2 i f (p r o c f i == 1 && n u m I t e r s == S e l e c t e d _ I t e r) {
3 i f (myrank == S e l e c t e d _ R a n k) {
4 p r i n t f ("KILL rank %d \ n " , myrank) ;
5 k i l l (g e t p i d () , SIGTERM) ;
6 }
7 }

Figure 7.4: A sample implementation of fault injection.

cannot. In our case, it is sufficient to evaluate on MPI process failures to compare the
performance difference when using FTI checkpointing in ULFM and Reinit.

7.5 Evaluation
We seek for answers for a few questions in the analyses and discussion of the evaluation
results with respect to fault tolerance efficiency.

• Can fault tolerance interfaces (such as ULFM) delay the application execution or
not?

• Can the checkpointing interface and the MPI recovery interface interfere with
each other?

• Can ULFM perform better or Reinit perform better in different scaling sizes and
different input problem sizes?

Table 7.1: Experimentation configuration for proxy applications (default scaling size:
64 processes; default input problem: small)

Application Small Input Medium Input Large Input No. of processes

AMG -problem 2 -n 20 20 20 -problem 2 -n 40 40 40 -problem 2 -n 60 60 60 64, 128, 256, 512
CoMD -nx 128 -ny 128 -nz 128 -nx 256 -ny 256 -nz 256 -nx 512 -ny 512 -nz 512 64, 128, 256, 512
HPCCG 64 64 64 128 128 128 192 192 192 64, 128, 256, 512
LULESH -s 30 -p -s 40 -p -s 50 -p 64, 512
miniFE -nx 20 -ny 20 -nz 20 -nx 40 -ny 40 -nz 40 -nx 60 -ny 60 -nz 60 64, 128, 256, 512
miniVite -p 3 -l -n 128000 -p 3 -l -n 256000 -p 3 -l -n 512000 64, 128, 256, 512

7.5.1 Artifact Description
We run experiments on a large-scale HPC cluster having 752 nodes. Each node is
equipped of two Intel Haswell CPUs, 28 CPU cores, 128 GB shared memory, and 8 TB
local storage.

96

7.5.2 Experimentation Setup
This section provides the configuration details of the experimentation setup. We aim
to test, evaluate, and compare the performance efficiency of different combinations and
configurations of fault tolerance designs. In our experiments, we evaluate three fault
tolerance designs. They are FTI checkpointing only, FTI checkpointing with ULFM
recovery, and FTI checkpointing with Reinit recovery. “FTI checkpointing only" means
that we restart the execution in a process failure for MPI recovery.

For FTI checkpointing, we use the L1 checkpointing mode. FTI L1 checkpointing
allows users to store checkpoints to the local SSD or to do in-memory checkpointing. In
our evaluation, we use the faster way that saves checkpoints to the local memory asso-
ciated with the nodes in use using RAMFS through “/dev/shm". Although there are L1,
L2, L3, and L4 modes for checkpointing, we do not evaluate all of them. The efficiency
comparison between the four FTI checkpointing modes has been fully investigated in
the FTI paper [15]. We save checkpoints every ten iterations. For ULFM, we use the
latest version “ULFM v4.0.1ulfm2.1rc1" based on OpenMPI 4.0.1. For Reinit, we use
its latest version based on OpenMPI 4.0.0.

We implement all the three fault tolerance designs to the MATCH benchmarks. Each
evaluation is run on three input problem sizes with the default scaling size (64 processes)
with and without fault injection. Also, each evaluation is run on four scaling sizes (64
processes on 32 nodes, 128 processes on 32 nodes, 256 processes on 32 nodes, and 512
processes on 32 nodes) with the default input problem size (small) with and without
fault injection. We show the experimentation configuration in Table 7.1. Note that
LULESH needs to run on a cube number of processes. We can only run LULESH on
64 and 512 processes.

For fault injection, we choose a certain iteration and a certain process to inject
a fault. This enables us to fairly compare the efficiency of different fault tolerance
configurations.

Notably, we run experiment of each configuration for five times, and calculate the
average execution time to avoid any system noise. We use ‘-O3’ for mpicc or mpicxx
compilation.

7.5.3 Performance Comparison on Different Scaling Sizes
In this experiment, we run each evaluation on four scaling sizes with the default in-
put problem size (small). We seek to compare the scaling efficiency of the three fault
tolerance designs with and without process failures.

Without A Failure: Figure 7.5 shows the average execution time when no failure
occurs. We break down the execution time to the pure application execution time and
the time for writing checkpoints.

Overall, we can see that among the three fault tolerance designs, the FTI checkpoint-
ing with ULFM recovery case performs worst. The FTI checkpointing only and the FTI
checkpointing with Reinit recovery perform similar and better than “ULFM-FTI".

We first observe that FTI L1 checkpointing scales well. The time spent on writing
checkpoints gently increases with more processes. This verifies that there are a number
of collective operations implemented in FTI L1 checkpointing. The average time for
writing checkpoints is accounted for 13% of the total execution time.

97

(a) AMG (b) CoMD

(c) HPCCG (d) LULESH

(e) miniFE (f) miniVite

Figure 7.5: Execution time breakdown recovering in different scaling sizes with no
process failures

Second, we observe that Reinit has no impact to application execution when there
is no failure. We use the FTI application execution time as the baseline for comparison
because FTI is an application-level checkpointing library, whereas ULFM and Reinit
modify the MPI runtime. We can see that the application execution time of “REINIT-
FTI" is very close to the application execution time of cases using FTI checkpointing
only. However, the “ULFM-FTI" cases using ULFM recovery introduce some overhead
to the application execution time. This overhead increases as the number of processes
goes up. This is understandable. ULFM is known as a framework implemented across
MPI runtime and application levels. It can introduce memory and communication la-
tency to the application execution and further affect the application execution efficiency.
As reported in a ULFM paper [22], ULFM implements a constantly heartbeat mecha-
nism for failures detection, and also amends MPI communication interfaces for failure
recovery operations. These changes must have impact on the application execution. Dif-

98

(a) AMG (b) CoMD

(c) HPCCG (d) LULESH

(e) miniFE (f) miniVite

Figure 7.6: Execution time breakdown recovering from a process failure in different
scaling sizes

ferent than ULFM, Reinit incurs overhead only when a failure happens because it does
not perform any other background operation in the MPI runtime during execution.

Furthermore, we observe that the times for writing checkpoints in FTI checkpoint-
ing only and “REINIT-FTI" cases are close. This indicates that Reinit has no interfer-
ence on FTI checkpointing, yet ULFM has a small impact on FTI checkpointing in some
cases such as HPCCG and miniVite. This is reasonable. Reinit implements the process
recovery at the MPI runtime level, which has minimal impact on application-level op-
erations, where the FTI operations run. Whereas ULFM does a significant amount of
collective operations for periodic heartbeat in the MPI runtime, which leads to back-
ground overhead.

Conclusion 1. “REINIT-FTI" cases achieve similar performance to “FTI check-
pointing only" cases. This suggests using “REINIT-FTI" and “FTI checkpointing only"
when there is no MPI process failure.

99

(a) AMG (b) CoMD

(c) HPCCG (d) LULESH

(e) miniFE (f) miniVite

Figure 7.7: Recovery time for different scaling sizes

With A Failure: Figure 7.6 shows the breakdown of execution time recovering
from a process failure on different scaling sizes. Note that reading checkpoints only
happens once in the execution, and has values in the order of milliseconds, which is dif-
ficult to observe, and we exclude it from the figure. Figure 7.7 shows the MPI recovery
time for different scaling sizes.

Overall, we observe that “REINIT-FTI" achieves the best performance compared to
the other two cases “FTI checkpointing only" and “ULFM-FTI". There are two essential
reasons. First, “REINIT-FTI" does not affect the performance of writing checkpoints.
Second, Reinit recovery achieves the best performance for MPI recovery than restarting
and ULFM recovery. We can make the similar observations we made from Figure 7.5.
Furthermore, we can make new observations. First, we can compare the time of MPI
recovery for cases using restarting, Reinit, and ULFM. Also, we can find that restarting
and ULFM recovery are significantly slower than Reinit recovery in many cases.

ULFM recovery vs. Reinit Recovery. By observation, we find that the ULFM

100

(a) AMG (b) CoMD

(c) HPCCG (d) LULESH

(e) miniFE (f) miniVite

Figure 7.8: Execution time breakdown in different input problem sizes with no process
failures

recovery time can be up to 13 times larger than Reinit recovery time, and 4 times larger
on average. We can also see a trend that the ULFM recovery time increases as the
number of processes increases, not scaling well. Different than ULFM, after counting
numbers, we find that Reinit recovery time looks constant in many cases and is inde-
pendent of the number of processes. This makes sense. ULFM enforces a variety of
fault tolerance collective operations on all MPI processes to enable the MPI global non-
shrinking recovery. Even worse, ULFM implements these fault tolerance operations at
the application level, which needs to synchronize with other fault tolerance operations
implemented at the MPI runtime. On the contrast, Reinit is implemented at the MPI
runtime level, which requests much fewer collective operations.

Restarting vs. Reinit recovery. By calculation, we find that the restarting recovery
can be up to 22 times slower than Reinit recovery, and 16 times slower on average. This
is acceptable. Redeployment of the MPI setup and allocation of resources for restarting

101

(a) AMG (b) CoMD

(c) HPCCG (d) LULESH

(e) miniFE (f) miniVite

Figure 7.9: Execution time breakdown recovering from a process failure in different
input problem sizes

the execution is very expensive. Whereas Reinit recovery repairs the MPI state online.
Restarting vs. ULFM recovery. Restarting recovery is 2 to 3 times slower than

ULFM recovery. Similarly, ULFM recovery is online recovery, which is much more
efficient than redeployment.

Conclusion 2. “REINIT-FTI" outperforms “FTI checkpointing only" and “ULFM-
FTI" in case of a failure. This suggests using “REINIT-FTI" for MPI fault tolerance.

7.5.4 Performance Comparison on Different Input Sizes
In this experiment, we perform the performance comparison of three fault tolerance
designs on three input problem sizes with the default scaling size (64 processes), with
and without fault injection. Each configuration runs for five times, and we count the
average of the five runs to avoid any system noise.

102

(a) AMG (b) CoMD

(c) HPCCG (d) LULESH

(e) miniFE (f) miniVite

Figure 7.10: Recovery time for different input problem sizes

Without A Failure: Figure 7.8 presents the results of application execution in dif-
ferent input problem sizes with no process failures. The execution time is divided into
the time of writing checkpointing and pure application execution time. We make several
observations. Again, we use the pure application execution time of FTI as the baseline
for comparison.

First, we can see an increment on the pure application execution time and FTI check-
pointing time when running on larger input problem sizes because the amount of data
to process increases.

We can also observe the performance latency in application execution time in “ULFM-
FTI" cases using ULFM recovery. This latency increases as the input problem size
grows. This indicates that ULFM is intensively involved into the application execu-
tion, where ULFM fault tolerance operations run a large number of collective MPI
operations. These inefficient operations significantly affect the application execution,
causing a huge communication latency, especially when there is a large amount of data

103

to process and communicate. Different than ULFM, Reinit does not delay the applica-
tion execution. We can observe that the application execution time of “REINIT-FTI"
cases is very close to the execution time of the “FTI checkpointing only" cases. This is
expected as Reinit is implemented in the MPI runtime. Also, Reinit uses much fewer
collective operations than ULFM used.

With A Failure: Figure 7.9 shows the results of execution time breakdown when
recovering from a process failure in different input problem sizes. Note that we omit the
time of reading checkpoints because it is in the order of milliseconds. Also, Figure 7.10
shows the recovery time for different input problem sizes.

From the results, we can make the same observation we make through Figure 7.8
and results of the scaling experimentation. However, the new observation is that, after
counting numbers, we find that either the recovery times of ULFM or Reinit only has
a negligible change when the input problem sizes increase. This is an interesting find-
ing, but makes sense. When a failure occurs, ULFM starts collecting messages among
daemons and processes, which cannot be affected by application execution because the
application stops computing and communicating data. Reinit is fully implemented in
the MPI runtime, which is even more difficult to be affect. We find that ULFM and
Reinit process recovery are independent of input problem size.

Conclusion 3. Through the performance comparison results on different input sizes,
we again find that “REINIT-FTI" is the most efficient design within the three fault toler-
ance designs.

7.6 Conclusions
MPI fault tolerance is becoming an increasingly critical problem as supercomputers con-
tinue to grow in size and add new components. We have designed and implemented a
benchmark suite MATCH with an emphasis on MPI fault tolerance. Our benchmark suite
has six representative HPC proxy applications selected from flagship benchmark suites.
We comprehensively evaluate and compare the performance efficiency of the three fault
tolerance designs we implement into the six workloads. The evaluation results reveal
that FTI checkpointing with Reinit recovery is the most efficient fault tolerance design
within the three designs. Our analytics and insights will inspire future MPI fault toler-
ance designs.

Chapter 8

Conclusion and Future Work

8.1 Conclusion
HPC systems are widely used in industrial, economical, and scientific applications, and
many of these applications are safety- and time-critical. We must ensure that the appli-
cation execution is reliable and the scientific simulation outcome is highly trustful. My
Ph.D. research has been focusing on characterizing, modeling, developing, and advanc-
ing fault tolerance strategies and tools in HPC systems to allow scientific applications
to better survive system failures.

In this dissertation, we have systematically characterized and modeled application-
level error resilience in HPC at multiple granularities, from the data object, to the code
region, and to the entire application. The characterization and modeling have covered
a diversity of application types including serial programs, GPU applications, and MPI
applications. We have investigated a collection of fault tolerance techniques that aims at
two types of system faults–transient faults and process/node failures. With lessons and
insights we have learned through characterization and modeling of HPC fault tolerance,
we summarize the following takeaway messages which we believe would be helpful for
future HPC researchers.

• HPC systems are suffering from an increasing number of system errors as the
complexity and heterogeneity of next-generation HPC systems grows. Future
HPC systems are expected to see system errors in diverse and unseen forms. This
creates new and critical challenges for future fault tolerance design.

• Natural error resilience comes for free that we can leverage to improve the ef-
ficiency of fault tolerance designs. We have found and studied six resilience
computation patterns from serial HPC code, which we believe are generic and
can be applied to parallel HPC code as well. Natural error resilience can not only
be found in serial HPC applications, we believe we can find more and special nat-
ural error resilience patterns in parallel programming models too. In addition, we
have seen natural error resilience examples in architecture and microarchitecture
levels. We should discover and investigate these resilience patterns, and use them
in our fault tolerance designs.

• In Chapter 4, we have proposed a methodology to definitely measure application
by quantifying error masking events. Following this methodology, we develop a

104

105

metric to measure application error resilience on data objects. More importantly,
we believe this methodology is generic and can be used to measure application
resilience at a larger granularity as well.

• Machine Learning-based prediction of application resilience shows its value, which
can help filter program properties that matter most to application resilience. How-
ever, we cannot rely on the prediction results to decide the fault tolerance mecha-
nism until we achieved a persistently high prediction accuracy in practice.

• Reinit++ is so far the more efficient fault tolerance framework for global-restart
non-shrinking MPI recovery. Although many HPC applications follow the Bulk
Synchronous Parallel paradigm, it is helpful to support local-restart shrinking
MPI recovery in Reinit++ as well.

8.2 Future Work
HPC systems tend to be heterogeneous in the era of big data to have the capability to pro-
cess a variety of data resources. Emerging HPC systems are becoming domain-specific
systems with a diversity of software and architecture components adding to the system.
Examples of proceeding software include machine learning toolkits such as Google Ten-
sorFlow [2] and LLNL LBANN [149], and big data frameworks such as Spark [159].
Examples of novel hardware include GPU, FPGA, Google TPU, and emerging IoT de-
vices. HPC practitioners are developing new platforms such as RAJA [74] to advance
the portability, flexibility, and scalability of the emerging software to enable them to run
on large-scale parallel systems and also run on the emerging hardware. All these new
software and hardware components have significantly increased the complexity of the
system. More importantly, these changes bring new challenges and opportunities to sys-
tem designs with respect to fault tolerance. The out-of-date fault tolerance designs are
unlikely to fit into the emerging HPC systems. To solve the problem, we must propose
new fault tolerance techniques and designs to be able to fit into these changes.

8.2.1 Next-Generation Fault Tolerance Mechanisms for Big Data
Frameworks

Big Data (BD) is significantly changing our life and work and is becoming the key driver
for scientific research. For example, the DOE Inertial Confinement Fusion (ICF) simu-
lation is using 3.8 billion images for machine learning training, which is more than 200
times larger than ImageNet (the largest commercial dataset for visual recognition), to
advance the simulation accuracy to ensure that the current and future nuclear stockpile
is safe and reliable. Given the fact that BD has been intensively deployed and processed
in security-critical scientific applications, the primary concern is to ensure that the BD
processing outcome is highly dependable in the presence of system errors.

Existing fault tolerance designs for BD are coarse-grained and application semantics-
agnostic. For example, Resilient Distributed Datasets (RDDs) [159], which enable
distributed and parallelized checkpoint/restart in Spark—a production BD framework.
Later, Flint [137] proposes the optimized RDDs, which develop policies and mecha-
nisms for selectively checkpointing. Even though the new RDDs design saves up to

106

90% checkpointing overhead, the new design does not understand fault tolerance at a
fine granularity, such as how errors are propagated from the initial corrupted location to
other locations and to the application outcome, and how and where errors are tolerated
during error propagation. A potential research opportunity could be to research the fault
tolerance design that takes high-level application resilience into account to enable fault
tolerance at a fine granularity to enable efficient and effective data processing.

The major research challenges include how to find effective and efficient BD domain-
specific characteristics and how to efficiently apply these characteristics to fault toler-
ance designs. The goal is to characterize representative BD frameworks to research
and identify fundamentally new ways to design and build effective and efficient fault
tolerance mechanisms for BD frameworks by leveraging BD domain-specific character-
istics at both the system- and application-level. The research aims to develop theorem
and practical tools for highly dependable and substantial BD systems that can provide
rigorous and meaningful guarantees.

8.2.2 Application-Aware AVF Analysis
Architectural Vulnerability Factor (AVF) [111] measures the probability that a fault
occurring in a hardware architecture leads to a visible error in the program output. AVF
is typically used to guide the architecture-level fault tolerance design. However, AVF
does not understand high-level application resilience and therefore cannot guide the
future fault tolerance design for domain-specific architectures.

A collection of domain-specific hardware architectures (such as FPGA and Cloud
TPU) are developed to further drive the execution and advance the execution perfor-
mance of domain- specific applications. These architectures are merely protected by
architecture protection mechanisms such as parity and ECC code. The design (or de-
cision) of architecture protection mechanisms is directed by AVF. AVF takes microar-
chitecture and architecture level fault tolerance into consideration. However, AVF does
not consider higher-level application resilience information (e.g., resilience computa-
tion patterns), which is particularly important for directing fault tolerance designs for
domain-specific architectures.

The other research possibility is to introduce higher-level application resilience in-
formation into AVF to complement the capability of AVF to support the design of
domain-specific architectures. The research challenges include how to characterize ap-
plication resilience for domain-specific applications in different domains at system- and
application-level, how to identify unique resilience patterns in domain-specific applica-
tions, and how to apply these domain-specific application characteristics and resilience
patterns into AVF calculation and improve fault tolerance designs. The goal is to pro-
pose a systematic methodology for developing more efficient and effective architecture-
and application-level fault tolerance mechanisms for domain-specific hardware archi-
tectures.

Bibliography

[1] Coral Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks/.

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

[3] Julien Adam, Jean-Baptiste Besnard, Allen D Malony, Sameer Shende, Marc
Pérache, Patrick Carribault, and Julien Jaeger. Transparent high-speed network
checkpoint/restart in mpi. In Proceedings of the 25th European MPI Users’
Group Meeting, page 12, 2018.

[4] Julien Adam, Maxime Kermarquer, Jean-Baptiste Besnard, Leonardo Bautista-
Gomez, Marc Pérache, Patrick Carribault, Julien Jaeger, Allen D Malony, and
Sameer Shende. Checkpoint/restart approaches for a thread-based mpi runtime.
Parallel Computing, 85:204–219, 2019.

[5] Tejaswi Agarwal and Michela Becchi. Design of a hybrid mpi-cuda benchmark
suite for cpu-gpu clusters. In 2014 23rd International Conference on Parallel
Architecture and Compilation Techniques (PACT). IEEE, 2014.

[6] Hasan Metin Aktulga, Joseph C Fogarty, Sagar A Pandit, and Ananth Y Grama.
Parallel reactive molecular dynamics: Numerical methods and algorithmic tech-
niques. Parallel Computing, 2012.

[7] Farhana Aleen, Monirul Sharif, and Santosh Pande. Input-driven dynamic execu-
tion prediction of streaming applications. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP), 2010.

[8] Md Mohsin Ali, Peter E Strazdins, Brendan Harding, and Markus Hegland. Com-
plex scientific applications made fault-tolerant with the sparse grid combination
technique. The International Journal of High Performance Computing Applica-
tions, 30(3):335–359, 2016.

[9] Cesare Alippi, Vincenzo Piuri, and Mariagiovanna Sami. Sensitivity to errors in
artificial neural networks: A behavioral approach. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 42(6):358–361, 1995.

107

https://asc.llnl.gov/CORAL-benchmarks/

108

[10] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-
man, and Saman Amarasinghe. Petabricks: A language and compiler for algo-
rithmic choice. In PLDI, 2009.

[11] Rizwan Ashraf, Roberto Gioiosa, Gokcen Kestor, Ronald F. DeMara, Chen-Yong
Cher, and Pradip Bose. Understanding the propagation of transient errors in HPC
applications. In International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), 2015.

[12] D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon. NAS Parallel Benchmark
Results. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 1992.

[13] Roberto Battiti. Using mutual information for selecting features in supervised
neural net learning. IEEE Transactions on neural networks, 5(4):537–550, 1994.

[14] R.C. Baumann. Radiation-induced soft errors in advanced semiconductor tech-
nologies. IEEE Transactions on Device and Materials Reliability, 5(3), 2005.

[15] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,
Naoya Maruyama, and Satoshi Matsuoka. Fti: high performance fault tolerance
interface for hybrid systems. In International conference for high performance
computing, networking, storage and analysis (SC), 2011.

[16] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 2012.

[17] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In Proceed-
ings of the 17th international conference on Parallel architectures and compila-
tion techniques, 2008.

[18] Arijit Biswas, Paul Racunas, Razvan Cheveresan, Joel Emer, Shubhendu S.
Mukherjee, and Ram Rangan. Computing Arch. Vulnerability Factors for
Address-Based Structures. In International Symposium of Computer Architec-
ture (ISCA), 2005.

[19] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack
Dongarra. Post-failure recovery of mpi communication capability: Design and
rationale. The International Journal of High Performance Computing Applica-
tions, 27(3):244–254, 2013.

[20] Wesley Bland, Huiwei Lu, Sangmin Seo, and Pavan Balaji. Lessons learned
implementing user-level failure mitigation in mpich. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2015.

[21] George Bosilca, Aurelien Bouteiller, Amina Guermouche, Thomas Herault,
Yves Robert, Pierre Sens, and Jack Dongarra. Failure detection and propaga-
tion in hpc systems. In SC’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 312–
322, 2016.

109

[22] George Bosilca, Aurelien Bouteiller, Amina Guermouche, Thomas Herault,
Yves Robert, Pierre Sens, and Jack Dongarra. A failure detector for hpc plat-
forms. The International Journal of High Performance Computing Applications,
32(1):139–158, 2018.

[23] Aurelien Bouteiller, George Bosilca, and Jack J Dongarra. Plan b: Interruption of
ongoing mpi operations to support failure recovery. In Proceedings of the 22nd
European MPI Users’ Group Meeting, page 11, 2015.

[24] Paul S Bradley and Olvi L Mangasarian. Feature selection via concave minimiza-
tion and support vector machines. In ICML, volume 98, 1998.

[25] Johan Bring. How to standardize regression coefficients. The American Statisti-
cian, 48(3):209–213, 1994.

[26] J Mark Bull, James P Enright, and Nadia Ameer. A microbenchmark suite for
mixed-mode openmp/mpi. In International Workshop on OpenMP. Springer,
2009.

[27] Devendar Bureddy, Hao Wang, Akshay Venkatesh, Sreeram Potluri, and Dha-
baleswar K Panda. OMB-GPU: a micro-benchmark suite for evaluating MPI
libraries on GPU clusters. In European MPI Users’ Group Meeting. Springer,
2012.

[28] Jon Calhoun, Luke Olson, and Marc Snir. Flipit: An LLVM based fault injector
for HPC. In Euro-Par 2014 International Workshops, 2014.

[29] Jon Calhoun, Marc Snir, Luke N. Olson, and William D. Gropp. Towards a
more complete understanding of sdc propagation. In International Symposium
on High-Performance Parallel and Distributed Computing (HPDC), 2017.

[30] Jiajun Cao, Kapil Arya, Rohan Garg, Shawn Matott, Dhabaleswar K Panda,
Hari Subramoni, Jérôme Vienne, and Gene Cooperman. System-level scalable
checkpoint-restart for petascale computing. In 2016 IEEE 22nd International
Conference on Parallel and Distributed Systems (ICPADS), 2016.

[31] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward
exascale resilience. International Journal of High Performance Computing Ap-
plications, 23(4):374–388, 2009.

[32] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward
Exascale Resilience: 2014 Update. International Journal of Supercomputing
Frontiers and Innovations, 1(1), 2014.

[33] Franck Cappello. Fault tolerance in petascale/exascale systems: Current knowl-
edge, challenges and research opportunities. The International Journal of High
Performance Computing Applications, 23(3):212–226, 2009.

[34] Marc Casas, Bronis R. de Supinski, Greg Bronevetsky, and Martin Schulz. Fault
Resilience of the Multi-grid Solver. In ICS, 2012.

110

[35] Sourav Chakraborty, Ignacio Laguna, Murali Emani, Kathryn Mohror, Dha-
baleswar K. Panda, Martin Schulz, and Hari Subramoni. Ereinit: Scalable and ef-
ficient fault-tolerance for bulk-synchronous mpi applications. Concurrency and
Computation: Practice and Experience, 0(0):e4863. e4863 cpe.4863.

[36] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In IEEE Interna-
tional Symposium on Workload Characterization (IISWC), 2009.

[37] Xinchi Chen, Xipeng Qiu, Chenxi Zhu, and Xuanjing Huang. Gated recursive
neural network for chinese word segmentation. In ACL, 2015.

[38] Zizhong Chen. Algorithm-based Recovery for Iterative Methods without Check-
pointing. In HPDC, 2011.

[39] Zizhong Chen. Online-ABFT: An Online ABFT Scheme for Soft Error Detection
in Iterative Methods. PPoPP, 2013.

[40] C.-Y. Cher, M. S. Gupta, P. Bose, and K. P. Muller. Understanding Soft Error
Resiliency of BlueGene/Q Compute Chip Through Hardware Proton Irradiation
and Software Fault Injection. In SC, 2014.

[41] I-Hsin Chung, Robert E Walkup, Hui-Fang Wen, and Hao Yu. Mpi performance
analysis tools on Blue Gene/L. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), 2006.

[42] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer net-
works in unsupervised feature learning. In AISTATS, 2011.

[43] J. J. Cook and C. Zilles. A Characterization of Instruction-Level Error Derating
and its Implications for Error Detection. In International Conference on Depend-
able Systems and Networks With FTCS and DCC (DSN), 2008.

[44] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. Desh: deep
learning for system health prediction of lead times to failure in hpc. In HPDC,
2018.

[45] Teresa Davies and Zizhong Chen. Correcting Soft Errors Online in LU Factor-
ization. In International ACM Symposium on High-Performance Parallel and
Distributed Computing (HPDC), 2013.

[46] Arnaud De Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice Rossi.
Mean absolute percentage error for regression models. Neurocomputing, 192:38–
48, 2016.

[47] Daniel Alfonso Goncalves De Oliveira, Laercio Lima Pilla, Mauricio Hanzich,
Vinicius Fratin, Fernando Fernandes, Caio Lunardi, José María Cela, Philippe
Olivier Alexandre Navaux, Luigi Carro, and Paolo Rech. Radiation-induced
error criticality in modern hpc parallel accelerators. In HPCA, 2017.

[48] Debra Werner. HPE Supercomputer in Orbit is Ready for Researchers.
https://spacenews.com/hpe-supercomputer.

111

[49] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio Baccanico,
Joseph Fullop, and William Kramer. Lessons learned from the analysis of sys-
tem failures at petascale: The case of blue waters. In IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE, 2014.

[50] Pedro Domingos. Bayesian averaging of classifiers and the overfitting problem.
In ICML, 2000.

[51] J Dongarra. Emerging heterogeneous technologies for high performance com-
puting. In International Heterogeneity in Computing Workshop, 2013.

[52] Matthew GF Dosanjh, Taylor Groves, Ryan E Grant, Ron Brightwell, and
Patrick G Bridges. RMA-MT: a benchmark suite for assessing MPI multi-
threaded RMA performance. In 2016 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2016.

[53] Peng Du, Aurelien Bouteiller, George Bosilca, Thomas Herault, and Jack Don-
garra. Algorithm-based Fault Tolerance for Dense Matrix Factorizations. In
PPoPP, 2012.

[54] L. Duan, B. Li, and L. Peng. Versatile Prediction and Fast Estimation of Ar-
chitectural Vulnerability Factor from Processor Performance Metrics. In HPCA,
2009.

[55] J. Elliott, M. Hoemmen, and F. Mueller. Evaluating the Impact of SDC on the
GMRES Iterative Solver. In IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pages 1193–1202, 2014.

[56] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, 1987.

[57] Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky,
and Manish Parashar. Exploring automatic, online failure recovery for scientific
applications at extreme scales. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’14,
pages 895–906, Piscataway, NJ, USA, 2014. IEEE Press.

[58] Marc Gamell, Keita Teranishi, Michael A Heroux, Jackson Mayo, Hemanth
Kolla, Jacqueline Chen, and Manish Parashar. Local recovery and failure mask-
ing for stencil-based applications at extreme scales. In SC’15: Proceedings of the
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 1–12, 2015.

[59] Emden R. Gansner and Stephen C. North. Graphviz: an open graph visualization
system and its applications to software engineering. Software - Practice and
Experience, 30(11):1203–1233, 2000.

[60] Giorgis Georgakoudis, Luanzheng Guo, and Ignacio Laguna. Reinit++: Evalu-
ating the performance of global-restart recovery methods for mpi fault tolerance.
In ISC, 2020.

112

[61] Giorgis Georgakoudis, Ignacio Laguna, Dimitrios S. Nikolopoulos, and Martin
Schulz. REFINE : Realistic Fault Injection via Compiler-based Instrumentation
for Accuracy , Portability and Speed. In SC, 2017.

[62] Siavash Ghiasvand, Florina M Ciorba, Ronny Tschüter, and Wolfgang E Nagel.
Lessons learned from spatial and temporal correlation of node failures in high
performance computers. In Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing. IEEE, 2016.

[63] Luanzheng Guo and Dong Li. MOARD: Modeling Application Resilience to
Transient Faults on Data Objects. In International Parallel and Distributed Pro-
cessing Symposium, 2019.

[64] Luanzheng Guo, Dong Li, and Ignacio Laguna. PARIS: Predicting application
resilience using machine learning. arXiv preprint arXiv:1811.10379, 2018.

[65] Luanzheng Guo, Dong Li, Ignacio Laguna, and Martin Schulz. Fliptracker: Un-
derstanding natural error resilience in hpc applications. In Proceedings of the
International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC), 2018.

[66] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. JMLR, 3(Mar):1157–1182, 2003.

[67] HackRank. HackRank Home Page. https://www.hackerrank.com/ (Since 2009).

[68] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart (blcr) for
linux clusters. In Journal of Physics: Conference Series, volume 46, page 494,
2006.

[69] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ramachan-
dran. Relyzer: Exploiting application-level fault equivalence to analyze applica-
tion resiliency to transient faults. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), 2012.

[70] V. E. Henson and U. M. Yang. BoomerAMG: A Parallel Algebraic Multigrid
Solver and Preconditioner. Appl. Num. Math, 41, 2002.

[71] Thomas Herault, Aurelien Bouteiller, George Bosilca, Marc Gamell, Keita Teran-
ishi, Manish Parashar, and Jack Dongarra. Practical scalable consensus for
pseudo-synchronous distributed systems. In SC’15: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–12, 2015.

[72] Justin Holewinski, Ragavendar Ramamurthi, Mahesh Ravishankar, Naznin
Fauzia, Louis-Noël Pouchet, Atanas Rountev, and P. Sadayappan. Dynamic
Trace-based Analysis of Vectorization Potential of Applications. In ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2012.

113

[73] Atsushi Hori, Kazumi Yoshinaga, Thomas Herault, Aurélien Bouteiller, George
Bosilca, and Yutaka Ishikawa. Sliding substitution of failed nodes. In Proceed-
ings of the 22nd European MPI Users’ Group Meeting, page 14. ACM, 2015.

[74] Richard D Hornung and Jeffrey A Keasler. The raja portability layer: overview
and status. Technical report, Lawrence Livermore National Lab.(LLNL), Liver-
more, CA (United States), 2014.

[75] Kenneth Hoste and Lieven Eeckhout. Comparing benchmarks using key
microarchitecture-independent characteristics. In 2006 IEEE International Sym-
posium on Workload Characterization, 2006.

[76] Kuang-Hua Huang and J. A. Abraham. Algorithm-Based Fault Tolerance for
Matrix Operations. IEEE Transactions on Computers, C-33(6):518–528, 1984.

[77] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic Rays don’t Strike
Twice: Understanding the Nature of DRAM Errors and the Implication for Sys-
tem Design. In Proceedings of the International Conference on Architectural
Support for Programming Language and Operating Systems (ASPLOS), 2012.

[78] Andhi Janapsatya, Aleksandar Ignjatovic, Sri Parameswaran, and Joerg Henkel.
Instruction trace compression for rapid instruction cache simulation. In Proceed-
ings of the Conference on Design, Automation and Test in Europe (DATE), 2007.

[79] Manolis Kaliorakis, Dimitris Gizopoulos, Ramon Canal, and Antonio Gonzalez.
MeRLiN: Exploiting Dynamic Instruction Behavior for Fast and Accurate Mi-
croarchitecture Level Reliability Assessment. In ISCA, 2017.

[80] Charu Kalra, Fritz Previlon, Xiangyu Li, Norman Rubin, and David Kaeli. Prism:
predicting resilience of gpu applications using statistical methods. In PRISM:
Predicting Resilience of GPU Applications Using Statistical Methods, 2018.

[81] Ian Karlin, Abhinav Bhatele, and etc. Exploring Traditional and Emerging Par-
allel Programming Models using a Proxy Application. In IEEE International
Parallel and Distributed Processing Symposium, 2013.

[82] Ian Karlin, Jeff Keasler, and Rob Neely. Lulesh 2.0 updates and changes. Tech-
nical Report LLNL-TR-641973, August 2013.

[83] Johan Karlsson, Peter Liden, Peter Dahlgren, Rolf Johansson, and Ulf Gunneflo.
Using heavy-ion radiation to validate fault-handling mechanisms. IEEE micro,
1994.

[84] Amogh Katti, Giuseppe Di Fatta, Thomas Naughton, and Christian Engelmann.
Scalable and fault tolerant failure detection and consensus. In Proceedings of the
22nd European MPI Users’ Group Meeting, page 13, 2015.

[85] Amogh Katti, Giuseppe Di Fatta, Thomas Naughton, and Christian Engelmann.
Epidemic failure detection and consensus for extreme parallelism. The Inter-
national Journal of High Performance Computing Applications, 32(5):729–743,
2018.

114

[86] Gokcen Kestor, Ivy Bo Peng, Roberto Gioiosa, and Sriram Krishnamoorthy. Un-
derstanding Scale-Dependent soft-Error Behavior of Scientific Applications. In
International Symposium on Cluster, Cloud and Grid Computing, 2018.

[87] Nils Kohl, Johannes Hötzer, Florian Schornbaum, Martin Bauer, Christian Go-
denschwager, Harald Köstler, Britta Nestler, and Ulrich Rüde. A scalable and
extensible checkpointing scheme for massively parallel simulations. The Inter-
national Journal of High Performance Computing Applications, 33(4):571–589,
2019.

[88] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W. Keckler,
and Joel Emer. Sassifi: An architecture-level fault injection tool for gpu applica-
tion resilience evaluation. In ISPASS, 2017.

[89] Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, and Bronis R.
de Supinski. Evaluating user-level fault tolerance for mpi applications. In Pro-
ceedings of the 21st European MPI Users’ Group Meeting, EuroMPI/ASIA ’14,
pages 57:57–57:62, New York, NY, USA, 2014. ACM.

[90] Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, and Bronis R.
de Supinski. Evaluating user-level fault tolerance for mpi applications. In Pro-
ceedings of the 21st European MPI Users’ Group Meeting, EuroMPI/ASIA ’14,
pages 57:57–57:62, New York, NY, USA, 2014. ACM.

[91] Ignacio Laguna, David F Richards, Todd Gamblin, Martin Schulz, Bronis R
de Supinski, Kathryn Mohror, and Howard Pritchard. Evaluating and extend-
ing user-level fault tolerance in mpi applications. The International Journal of
High Performance Computing Applications, 30(3):305–319, 2016.

[92] Ignacio Laguna, David F Richards, Todd Gamblin, Martin Schulz, Bronis R
de Supinski, Kathryn Mohror, and Howard Pritchard. Evaluating and extend-
ing user-level fault tolerance in mpi applications. The International Journal of
High Performance Computing Applications, 30(3):305–319, 2016.

[93] Ignacio Laguna, Martin Schulz, David F Richards, Jon Calhoun, and Luke Ol-
son. IPAS: Intelligent protection against silent output corruption in scientific
applications. In CGO, 2016.

[94] Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A Jacobson, and Subhasish
Mitra. ERSA: Error Resilient System Architecture for Probabilistic Applications.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010.

[95] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical Fault Injec-
tion: Quantified Error and Confidence. In Conference on Design, Automation
and Test in Europe (DATE), 2009.

[96] Dong Li, Jeffrey S. Vetter, and Weikuan Yu. Classifying Soft Error Vulnera-
bilities in Extreme-Scale Scientific Applications Using a Binary Instrumentation
Tool. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2012.

115

[97] Guanpeng Li, Karthik Pattabiraman, Chen-Yong Cher, and Pradip Bose. Un-
derstanding Error Propagation in GPGPU. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), 2016.

[98] Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael Sullivan,
and Timothy Tsai. Modeling soft-error propagation in programs. In DSN, 2018.

[99] X. Li and D. Yeung. Application-level Correctness and Its Impact on Fault Tol-
erance. In International Symposium on Computer Arch., 2007.

[100] Xiaodong Li, Sarita V. Adve, Pradip Bose, and Jude Rivers. Online Estimation
of Arch Vulnerability Factor for Soft Errors. In ISCA, 2008.

[101] LLVM. LLVM Language Reference Manual. http://llvm.org.

[102] Nuria Losada, Iván Cores, María J Martín, and Patricia González. Resilient mpi
applications using an application-level checkpointing framework and ulfm. The
Journal of Supercomputing, 73(1), 2017.

[103] Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza,
Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu.
Characterizing application memory error vulnerability to optimize datacenter
cost via heterogeneous-reliability memory. In DSN, 2014.

[104] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F
Lucas, Rolf Rabenseifner, and Daisuke Takahashi. The hpc challenge (hpcc)
benchmark suite. In Proceedings of the 2006 ACM/IEEE conference on Super-
computing, 2006.

[105] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent execution
without checkpoints. Proceedings of ACM Programming Language, 2017.

[106] Harshitha Menon and Kathryn Mohror. Discvar: discovering critical variables
using algorithmic differentiation for transient faults. In PPOPP, 2018.

[107] Thomas P. Minka. Bayesian linear regression. Technical report, 2010.

[108] Subrata Mitra, Greg Bronevetsky, Suhas Javagal, and Saurabh Bagchi. Dealing
with the unknown: Resilience to prediction errors. In PACT, 2015.

[109] K. Mohror, A. Moody, G. Bronevetsky, and B. R. de Supinski. Detailed modeling
and evaluation of a scalable multilevel checkpointing system. IEEE Transactions
on Parallel and Distributed Systems, 25(9):2255–2263, Sep. 2014.

[110] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski.
Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing Sys-
tem. In Conference on High Performance Computing Networking, Storage and
Analysis (SC), 2010.

116

[111] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt,
and Todd Austin. A Systematic Methodology to Compute the Architectural Vul-
nerability Factors for a High-Performance Microprocessor. In International Sym-
posium on Microarchitecture, 2003.

[112] J Robert Neely and Bronis R de Supinski. Application modernization at llnl and
the sierra center of excellence. Computing in Science & Engineering, 2017.

[113] James Newsome and Dawn Song. Dynamic Taint Analysis for Automatic De-
tection, Analysis, and Signature Generation of Exploits on Commodity Software.
In Network and Distributed Systems Security Symposium (NDSS), 2005.

[114] Bin Nie, Ji Xue, Saurabh Gupta, Tirthak Patel, Christian Engelmann, Evgenia
Smirni, and Devesh Tiwari. Machine learning models for gpu error prediction in
a large scale hpc system. In DSN, 2018.

[115] Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. Fault site pruning for
practical reliability analysis of gpgpu applications. In Proceedings of the Inter-
national Symposium on Microarchitecture MICRO, 2018.

[116] Michael Noeth, Prasun Ratn, Frank Mueller, Martin Schulz, and Bronis R.
de Supinski. Scalatrace: Scalable compression and replay of communication
traces for high-performance computing. Journal of Parallel Distributed Comput-
ing, 69(8):696–710, 2009.

[117] Konstantinos Parasyris, Georgios Tziantzoulis, Christos D Antonopoulos, and
Nikolaos Bellas. Gemfi: A fault injection tool for studying the behavior of appli-
cations on unreliable substrates. In DSN, 2014.

[118] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K. Iyer.
Application-Based Metrics for Strategic Placement of Detectors. In Pacific Rim
International Symposium on Dependable Computing, 2005.

[119] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Auto-
mated derivation of application-aware error detectors using static analysis: The
trusted illiac approach. IEEE Transactions on Dependable and Secure Comput-
ing, 8(1):44–57, 2011.

[120] Stefan Pauli, Manuel Kohler, and Peter Arbenz. A fault tolerant implementation
of multi-level monte carlo methods. Parallel computing: Accelerating computa-
tional science and engineering (CSE), 25:471–480, 2014.

[121] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[122] Wenzhe Pei, Tao Ge, and Baobao Chang. Max-margin tensor neural network for
chinese word segmentation. In ACL, 2014.

117

[123] Vincenzo Piuri. Analysis of fault tolerance in artificial neural networks. Journal
of Parallel and Distributed Computing, 61(1):18–48, 2001.

[124] Ralf Reussner, Peter Sanders, Lutz Prechelt, and Matthias Müller. SKaMPI: A
detailed, accurate MPI benchmark. In European Parallel Virtual Machine/Mes-
sage Passing Interface Users Group Meeting. Springer, 1998.

[125] DF Richards, O Aaziz, J Cook, S Moore, D Pruitt, and C Vaughan. Quantita-
tive performance assessment of proxy apps and parentsreport for ecp proxy app
project milestone adcd-504-9. Technical report, Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), 2020.

[126] Martin Rinard, Henry Hoffmann, Sasa Misailovic, and Stelios Sidiroglou. Pat-
terns and Statistical Analysis for Understanding Reduced Resource Computing.
In OOPSLA, 2010.

[127] Behrooz Sangchoolie, Karthik Pattabiraman, and Johan Karlsson. One Bit is
(Not) Enough: An Empirical Study of the Impact of Single and Multiple Bit-Flip
Errors. In International Conference on Dependable Systems and Networks, 2017.

[128] Sriram Sankaran, Jeffrey M Squyres, Brian Barrett, Vishal Sahay, Andrew Lums-
daine, Jason Duell, Paul Hargrove, and Eric Roman. The lam/mpi check-
point/restart framework: System-initiated checkpointing. JHPCA, 19(4):479–
493, 2005.

[129] Piyush Sao and Richard Vuduc. Self-stabilizing iterative solvers. In Proceed-
ings of the Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems, ScalA, 2013.

[130] Siva Kumar Sastry Hari, Radha Venkatagiri, Sarita V. Adve, and Helia Naeimi.
GangES: Gang Error Simulation for Hardware Resiliency Evaluation. In Inter-
national Symposium on Computer Arch., 2014.

[131] Kento Sato, Dong H Ahn, Ignacio Laguna, Gregory L Lee, and Martin Schulz.
Clock delta compression for scalable order-replay of non-deterministic parallel
applications. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2015.

[132] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors in
the wild: a large-scale field study. In Proceedings of the Eleventh International
Joint Conference on Measurement and Modeling of Computer Systems, SIGMET-
RICS/Performance (SIGMETRICS), 2009.

[133] Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance characterization of the
NAS parallel benchmarks in opencl. In Proceedings of the 2011 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), 2011.

[134] Faisal Shahzad, Jonas Thies, Moritz Kreutzer, Thomas Zeiser, Georg Hager, and
Gerhard Wellein. Craft: A library for easier application-level checkpoint/restart
and automatic fault tolerance. IEEE Transactions on Parallel and Distributed
Systems, 30(3):501–514, 2018.

118

[135] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Characterizing the Impact
of Soft Errors on Iterative Methods in Scientific Computing. In International
Conference on Supercomputing (ICS), 2011.

[136] Yakun Sophia Shao and David Brooks. ISA-Independent Workload Characteri-
zation and its Implications for Specialized Architectures. 2013.

[137] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy. Flint:
Batch-interactive data-intensive processing on transient servers. In Proceedings
of the Eleventh European Conference on Computer Systems, pages 1–15, 2016.

[138] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan. Towards For-
mal Approaches to System Resilience. In Pacific Rim International Symp. on
Dependable Computing, 2013.

[139] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh
Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson,
et al. Addressing failures in exascale computing. The International Journal of
High Performance Computing Applications, 28(2):129–173, 2014.

[140] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, and
Sudhanva Gurumurthi. Mem Errors in Modern Systems: The Good, The Bad,
and The Ugly. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2015.

[141] Vilas Sridharan and David R. Kaeli. Eliminating Microarchitectural Dependency
from Architectural Vulnerability. In IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2009.

[142] Vilas Sridharan and Dean Liberty. A study of dram failures in the field. In
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC), 2012.

[143] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, and Sud-
hanva Gurumurthi. Feng Shui of Supercomputer Memory: Positional Effects in
DRAM and SRAM Faults. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 2013.

[144] Omer Subasi, Tatiana Martsinkevich, Ferad Zyulkyarov, Osman Unsal, Jesus
Labarta, and Franck Cappello. Unified fault-tolerance framework for hybrid
task-parallel message-passing applications. The International Journal of High
Performance Computing Applications, 32(5):641–657, 2018.

[145] Nawrin Sultana, Martin Rüfenacht, Anthony Skjellum, Ignacio Laguna, and
Kathryn Mohror. Failure recovery for bulk synchronous applications with mpi
stages. Parallel Computing, 84:1 – 14, 2019.

[146] Ricardo Taborda and Jacobo Bielak. Large-scale earthquake simulation: compu-
tational seismology and complex engineering systems. Computing in Science &
Engineering, 2011.

119

[147] Keita Teranishi and Michael A Heroux. Toward local failure local recovery re-
silience model using mpi-ulfm. In Proceedings of the 21st european mpi users’
group meeting, page 51, 2014.

[148] Anna Thomas and Karthik Pattabiraman. Llfi: An intermediate code level fault
injector for soft computing applications. In SELSE, 2013.

[149] Brian Van Essen, Hyojin Kim, Roger Pearce, Kofi Boakye, and Barry Chen.
Lbann: Livermore big artificial neural network hpc toolkit. In Proceedings of
the Workshop on Machine Learning in High-Performance Computing Environ-
ments, 2015.

[150] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. Approxilyzer: To-
wards a systematic framework for instruction-level approximate computing and
its application to hardware resiliency. In MICRO, 2016.

[151] A. Vishnu, H. v. Dam, N. R. Tallent, D. J. Kerbyson, and A. Hoisie. Fault Mod-
eling of Extreme Scale Applications Using Machine Learning. In IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), 2016.

[152] Zhigang Wang, Lixin Gao, Yu Gu, Yubin Bao, and Ge Yu. A fault-tolerant
framework for asynchronous iterative computations in cloud environments. IEEE
Transactions on Parallel and Distributed Systems, 29(8):1678–1692, 2018.

[153] Jiesheng Wei, Anna Thomas, Guanpeng Li, and Karthik Pattabiraman. Quantify-
ing the Accuracy of High-Level Fault Injection Techniques for Hardware Faults.
In DSN, 2014.

[154] Kai Wu, Wenqian Dong, Qiang Guan, Nathan DeBardeleben, and Dong Li. Mod-
eling application resilience in large scale parallel execution. In International
Conference on Parallel Processing (ICPP), 2018.

[155] Panruo Wu, Chong Ding, and etc. On-line Soft Error Correction in Matrix Mul-
tiplication. J. of Computational Sci., 4(6), 2013.

[156] Xin Xu and Man-Lap Li. Understanding soft error propagation using efficient
vulnerability-driven fault injection. In International Conference on Dependable
Systems and Networks (DSN), 2012.

[157] Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin
Zheng, Zheng Zhang, and Geoffrey Voelker. MPIWiz: Subgroup reproducible
replay of MPI applications. ACM Sigplan Notices, 44(4):251–260, 2009.

[158] Li Yu, Dong Li, Sparsh Mittal, and Jeffrey S. Vetter. Quantitatively Modeling
App. Resiliency with Data Vulnerability Factor. In SC, 2014.

[159] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J Franklin, et al. Apache spark: a unified engine for big data processing.
Communications of the ACM, 2016.

120

[160] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu. Obfuscation resilient binary code reuse through trace-oriented
programming. In Proceedings of the ACM SIGSAC Conference on Computer &
Communications Security (CCS), 2013.

[161] Xuegong Zhang, Xin Lu, Qian Shi, Xiu-qin Xu, E Leung Hon-chiu, Lyndsay N
Harris, James D Iglehart, Alexander Miron, Jun S Liu, and Wing H Wong. Recur-
sive svm feature selection and sample classification for mass-spectrometry and
microarray data. BMC bioinformatics, 7(1):197, 2006.

[162] G. Zheng, Xiang Ni, and L. V. Kalé. A scalable double in-memory checkpoint
and restart scheme towards exascale. In IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN 2012), pages 1–6, June
2012.

[163] Gengbin Zheng, Chao Huang, and Laxmikant V. Kalé. Performance evaluation
of automatic checkpoint-based fault tolerance for ampi and charm++. SIGOPS
Oper. Syst. Rev., 40(2):90–99, April 2006.

	Signature Page
	Dedication
	List of Figures
	List of Tables
	Acknowledgments
	Curriculum Vitae
	Abstract
	Introduction
	Research Problems and Challenges
	Characterization of Error Resilience in HPC Applications
	Modeling Error Resilience in HPC Applications
	Modeling Fault Tolerance to Process/Node Failures

	Research Objectives
	Research Contributions
	Organization of the Dissertation

	Background and Literature Survey
	Background
	Transient Fault Model
	MPI Failure Recovery Model

	Related Work

	Understanding Natural Error Resilience in HPC Applications
	Introduction
	Design of FlipTracker
	Application Code Region Model
	Tracing Code Region Data
	Analyzing Corrupted Variables
	Identifying Resilience Patterns from Code Regions

	Implementation
	Parallel Tracing
	DDDG Generation and Usage
	Fault Injection and Statistical Significance

	Evaluation
	Experimental Setup
	Parallel Tracing Overhead
	Code Region Fault Injection Results

	Resilience Computation Patterns
	Case Studies
	Use Case 1: Resilience-Aware Application Design
	Use Case 2: Predicting Application Resilience

	Conclusions

	Modeling Application Resilience to Transient Faults on Data Objects
	Introduction
	Error Tolerance Modeling
	General Description
	aDVF: A New Metric
	Operation-Level Analysis
	Error Propagation Analysis
	Algorithm-Level Analysis

	Implementation
	Evaluation
	Evaluating Application Resilience to Transient Faults on Data Objects Using aDVF
	Model Validation
	Comparing aDVF Calculation with the Traditional Random Fault Injection (RFI)

	Case Study
	Discussions
	Program Optimization by aDVF
	Beyond Single-Bit Errors
	Impact of Input Problems

	Conclusions

	Predicting Application Resilience Using Machine Learning
	Introduction
	Overview
	Design
	Feature Construction
	Introducing Instruction Execution Order (IEO)
	Feature Selection
	Model Construction

	Implementation
	Evaluation
	Prediction Accuracy
	Feature Selection and Analysis
	Evaluation of Model Tuning and Feature Construction Optimization
	Efficiency Study–Comparing PARIS to Random Fault Injection and Trident

	Discussions
	Conclusions

	 Evaluating the Performance of Global-Restart Recovery Methods For MPI Fault Tolerance
	Introduction
	Overview
	Existing Approaches for MPI Recovery

	Reinit++
	Design
	Implementation

	Experimentation Setup
	Evaluation
	Comparing total execution time on a process failure
	Comparing pure application time under different recovery approaches
	Comparing MPI recovery time recovering from a process failure
	Comparing MPI recovery time recovering from a node failure

	Conclusion
	Acknowledgment

	A Benchmark Suite to Characterize and Model MPI Application Resilience
	Introduction
	Overview
	MATCH
	Workloads
	Checkpointing Interface - FTI

	Design
	Find Data Objects for Checkpointing

	Implementation
	FTI Implementation
	FTI with Reinit Implementation
	FTI with ULFM Implementation
	Fault Injection

	Evaluation
	Artifact Description
	Experimentation Setup
	Performance Comparison on Different Scaling Sizes
	Performance Comparison on Different Input Sizes

	Conclusions

	Conclusion and Future Work
	Conclusion
	Future Work
	Next-Generation Fault Tolerance Mechanisms for Big Data Frameworks
	Application-Aware AVF Analysis

	Bibliography

