
UCLA
UCLA Previously Published Works

Title
Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System 
Optimization.

Permalink
https://escholarship.org/uc/item/59k8714x

Journal
ACS Energy Letters, 7(10)

ISSN
2380-8195

Authors
Li, Man
Dai, Lingyun
Hu, Yongjie

Publication Date
2022-10-14

DOI
10.1021/acsenergylett.2c01836
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59k8714x
https://escholarship.org
http://www.cdlib.org/


Machine Learning for Harnessing Thermal Energy: From 
Materials Discovery to System Optimization

Man Li,
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los 
Angeles, California 90095, United States

Lingyun Dai,
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los 
Angeles, California 90095, United States

Yongjie Hu
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los 
Angeles, California 90095, United States

Abstract

Recent advances in machine learning (ML) have impacted research communities based on 

statistical perspectives and uncovered invisibles from conventional standpoints. Though the 

field is still in the early stage, this progress has driven the thermal science and engineering 

communities to apply such cutting-edge toolsets for analyzing complex data, unraveling abstruse 

patterns, and discovering non-intuitive principles. In this work, we present a holistic overview 

of the applications and future opportunities of ML methods on crucial topics in thermal energy 

research, from bottom-up materials discovery to top-down system design across atomistic levels 

to multi-scales. In particular, we focus on a spectrum of impressive ML endeavors investigating 

the state-of-the-art thermal transport modeling (density functional theory, molecular dynamics, 

and Boltzmann transport equation), different families of materials (semiconductors, polymers, 

alloys, and composites), assorted aspects of thermal properties (conductivity, emissivity, stability, 

and thermoelectricity), and engineering prediction and optimization (devices and systems). We 

discuss the promises and challenges of current ML approaches and provide perspectives for future 

directions and new algorithms that could make further impacts on thermal energy research.
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Thermal energy is the main form for energy conversion, storage, and thermal management: 

It converts to 90% of total electricity generation,1 represents 80% of residential energy 

consumption,2 and consumes 50% of the electricity used in computers and data servers 

for thermal management.3 Efficient utilization of thermal energy, including conversion, 

storage, and thermal management, plays a key role in global sustainability while relying 

critically on innovations in thermal materials systems. Over the past decades, tremendous 

efforts have been devoted to modeling materials’ structures with designed thermal properties 

and improved energy efficiency. Those computational approaches, from empirical to first-

principles, atomistic to microscopic and multi-scales, diffusive to non-equilibrium, have 

made exciting progress in all aspects of thermal properties and performance. However, the 

significantly expanded materials database not only provides new materials with extreme 

properties and energy efficiency beyond the state of the art,4–22 but also poses challenges 

on further analysis and development through multi-dimensional big data. In the meantime, 

machine learning (ML) has gained its visibility in dealing with big data such as image 

recognition, social media, and game contests between human and artificial intelligence 

and has manifested its applicability in autonomous driving, real-time language translation, 

and new materials discovery.23–26 The power of ML mainly comes from its statistical 

analysis of big data, which also exists in thermal energy materials research such as 

experimental results, ab initio calculations, and molecular dynamics (MD) simulations. 

Therefore, our thermal energy community actively embraces the rising and development of 

ML approaches to accelerate the research, from the bottom-up materials design to top-down 

system optimizations.
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The applications of ML in energy research can be indicated by the exponential growth of 

publication numbers with energy and energy materials focus illustrated in Figure 1. The 

combination between ML and energy research observed its onset around 2011, when IBM’s 

Watson competed on Jeopardy against the two human champions and won,27 and took its 

rocket around 2016 when Google’s AlphaGo finally beat the top human players in the board 

game Go.28 Nowadays, ML has been implemented in almost every aspect of thermal energy 

study. At the fundamental level, the Schrödinger equations of quantum systems are solved 

with the assistance of ML algorithms, such as training artificial neural networks (ANNs) 

for the exchange-correlation functional of density functional theory (DFT), which helps 

the calculation of electronic structures and interatomic interactions.29 The thermodynamic 

properties such as thermal stability, entropy, and enthalpy of materials can be predicted 

from the quantum mechanics calculations.30 Combined with the MD and/or Boltzmann 

transport equation, where ML can also play a role, the transport properties such as thermal 

conductivity, thermal boundary conductance, thermal emissivity, thermoelectric properties, 

and others can be predicted.18,31–35 Most importantly, with the accumulation of atomistic 

modeling data, the high-throughput discovery of thermal materials becomes possible using 

ML as the key tool. The philosophy of material discovery will be revolutionized from the 

traditional and slow trial and error strategy to modern efficient high-throughput screening 

from millions of candidate materials. On the other hand, the structure and composition 

of materials are also decisive to their thermal performance, such as the porous structure 

of thermal insulation materials and components of composite materials.36–40 It is labor-

intensive and time-consuming to scan all the compositional or structural parameters to find 

the optimal material synthesis and manufacturing recipes. By taking advantage of the ML’s 

power on optimization problems with limited knowledge, the efforts on material design can 

be significantly reduced. The structural optimization of thermal energy devices is another 

challenge for engineers. For instance, the fin shape and size are important factors in the 

performance of heat exchangers, the thermal barrier coating layer thickness to turbines, 

and the diameter and arrangement of pipes to boilers in power plants. It has become an 

emerging trend to use ML to design thermal devices. On the other hand, the instant response 

to real-time sensor reading is important in different applications, especially in thermal 

energy fields, like the ventilation, cooling and heating power control in response to the 

real-time temperature, and humility reading in buildings. The decision-making power of ML 

is suitable for these scenarios, considering their big success in games like Go.

This emerging interdisciplinary area is still expanding rapidly and should be reviewed 

promptly regarding the state-of-the-art development, existing opportunities, and challenges. 

First, we provide a brief introduction to ML concepts and several common algorithms 

for thermal energy research. Then we discuss the intrinsic thermophysical properties 

prediction of homogeneous materials, including thermodynamic properties, thermal 

transport properties, and thermoelectric properties. The implementations of ML in structural 

and compositional optimization of heterogeneous materials are also discussed from porous 

structures to composite materials. In addition, the applications of ML in the design of 

thermal devices and operation of energy systems will be highlighted, including heat 

exchangers and heating, ventilation, and air conditioning (HVAC) systems in buildings. We 
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hope that this review can serve as an inspirational reference to the thermal energy research 

community and encourage them to integrate ML into their own research.

MACHINE-LEARNING CONCEPTS, ALGORITHMS, AND IMPLEMENTATION: 

WHAT AND WHY?

Machine learning is a concept in applied statistics and was initially defined by Tom M. 

Mitchell as a computer program to learn from experience (E) with respect to some class 

of tasks (T) and performance measures (P) if its performance at tasks improves with 

experience.41 Considering the continuing expansion of ML methods and our focus on 

its applications for scientific research, we are not ambitious to make a comprehensive 

discussion of ML algorithms here. Instead, we summarize the most representative and 

popular algorithms in Figure 2 at the balancing point of completeness and conciseness. 

ML can be mainly categorized into supervised, unsupervised, and reinforcement learning, 

depending on the computer program’s interaction with humans or certain feedback designed 

by humans. Supervised learning is to learn a relationship between the input X = {X1, X2, …, 

XN} and output Y = {Y1, Y2, …, YN} from a labeled training set of observations of (X, Y) 

under human guidance. Each element in the X is a D-dimensional vector Xi = [Xi,1, Xi,2, …, 

Xi,D] representing D features. For materials science, the features are usually called material 

descriptors. The mathematical function f(Xi) to map input to output is given by humans 

no matter if it is explicit or implicit. Supervised learning is mainly used for classification 

and regression, conducted through various algorithms including the basic linear regression 

method and the more recent methods like ANNs and random forest. Unsupervised ML 

can develop learning without human guidance and the machine needs to capture certain 

patterns from untagged data, such as the probability density. The dimension of X in 

unsupervised learning can be much higher than that in supervised learning. This type of 

learning is usually used for clustering and dimensionality reduction, for example, searching 

for the principal variation directions of data in a high-dimensional space, or called principal 

component analysis. Reinforcement learning is to let machines learn how to interact with 

an environment dynamically instead of understanding the patterns or mappings behind the 

static data. In the reinforcement learning process, the machine can earn an immediate reward 

once it takes a certain action to make state transition happen. It suits decision-making to 

achieve optimal performance for dynamically active scenarios, like robot control and game 

theory. With the recent improvement of computational resources and rapid data expansion in 

many areas such as commercial behaviors, industrial operations, and academic research, ML 

has been successfully applied to handle complex and high-dimensional problems during the 

past decade. In the following context, we are going to introduce several popular ML methods 

for materials discovery.

Linear Regression.

As the most traditional supervised learning method, linear regression assumes the output Y 
is a linear function of the input data X, as shown in Figure 3a. Mathematically, the linear 

function can be expressed as
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f xi = wTXi + w0 (1)

where wT, w0 are the weight vector for the D features and offset from zero point. In the 

case that the Y values cannot be approximated by a linear function of the initial set of 

input data X, a new set of input data can be constructed from X to fulfill the linearity 

requirement, such as f(Xi) = wTG(Xi) + w0, where G(Xi) is a nonlinear function of Xi. To 

determine the weighting parameters, the residual sum of squares should be minimized, i.e., 

min∑i = 1
N Y i − wTXi − w0

2. Due to the model’s simplicity, these mathematical equations can 

usually be analytically determined. For simple problems, linear regression can provide fast, 

robust, and physically interpretable fitting results. In thermal transport, it is exemplified by 

the linear relationship between heat flux and temperature gradient in solids, i.e., Fourier’s 

law. However, materials science is a complex subject, which can pose challenges to linear 

regression so sometimes it may not work well and cause issues, for example, overfitting, for 

determining materials properties.

Kernel Methods.

Under the kernel trick,42 a kernel function is used to transform nonlinear regression 

problems by mapping the input data to a higher dimensional space (feature space) so that 

they become linear or separable. In this way, computational efficiency can be improved by 

using a kernel function, rather than explicitly specifying the mapping function G(Xi). The 

most common kernel functions include radial basis function kernels, Matern kernels, Fisher 

kernels, String kernels, and others.43 The kernel functions can easily calculate the inner 

products of data in the feature space K (Xi, Xj) = G(Xi)G(Xj) without knowing the explicit 

form of G(Xi), which essentially is the distance or similarity of two data points in the feature 

space. The distance can be input to various ML methods, including support vector machines, 

Gaussian processes, principal components analysis, relevance vector machines, and so on. 

The kernel methods were initially designed for pattern recognition, and recently they have 

been applied for calculating thermal transport properties.44–46

Artificial Neural Networks.

The development of ANNs is inspired by the signal transmission and processing in 

biological neural networks that constitute animal brains. ANNs consist of a collection of 

stimulating units or nodes, called artificial neurons. Each neuron receives, processes, and 

transmits signals to adjacent neurons. The neurons are connected to each other in various 

patterns via links, which determine the strength of one neuron’s influence on another, 

mimicking the biological axon–synapse–dendrite connections. One representative ANN is 

the feed-forward neural network, as shown in Figure 3b, consisting of one input layer (Xi), 

multiple hidden layers (Zi), and one output layer (Yi). The input layer neurons process 

the input data and feed the output data into the hidden layers. After several layers are 

processed, until the processing of the last hidden layer is achieved, the output layer neurons 

generate the output data. Mathematically, the output of a certain neuron at the hidden 

layer can be calculated as Zi = σ(wTXi + w0), where σ is an activation function, defining 

if the neuron can be activated by the excitation. Another ANN is reservoir computing 

as shown in Figure 3c, by passing the input signals to the neurons reservoir, where the 
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neurons are not distinguished by layers but form a reservoir and readout layer which is 

similar to the hidden layer in the feed-forward ANN to generate a useful output data set. 

The distinguishing feature of reservoir computing is the recurrent behavior; i.e., the current 

response of a neuron is affected by the stored historical information on all neurons, with 

different strengths. Since reservoir computing only requires training the readout layer under 

fixed reservoir dynamics, it can largely reduce the computational cost for time-dependent 

thermal operations considering the recurrent behaviors. For example, reservoir computing 

can be applied to design a building heating or cooling system that can automatically 

adapt itself by temperature and humidity mapping between room and environment or to 

optimize the cleaning strategy of a home robot cleaner by deep-learning image processing 

and recognition.

Decision Trees.

A decision tree is a flowchart-like decision-making process, where the root receives the 

input data, each internal node is a logical question with possible answers represented by 

the branches, and each leaf node is the final answer to the series of questions. The decision 

trees can deal with classification and operation problems accurately with explicit logic. To 

avoid overfitting results, a random forest of decision trees (Figure 3d) can be applied: Each 

decision tree receives a random sample of the input training data set, different from each 

other, called bagging. The trained decision trees will generate a distribution of predictions, 

from which the final output can be computed, for example by averaging or voting. Random 

forest decision trees usually require much less computational resources than the ANN while 

could be accurate enough for simple regression problems. One advantage of using decision 

trees in thermal energy materials is to evaluate the key important material descriptors to 

determine thermal transport properties.

WHY AND HOW TO IMPLEMENT MACHINE LEARNING INTO THERMAL 

SCIENCE

The implementation of ML into thermal science spans from the most fundamental ab initio 

modeling of thermal transport to the prediction of thermal performance and optimized 

operation of thermal energy systems. ML-assisted methods provide new opportunities in 

addressing complex systems or mathematically high-dimensional problems, which include 

the many-body problems at the electron level, the atomic arrangement at the lattice 

level, the imperfection and structural complexity at the nano/microscale, geometric factors 

at the device level and variable working conditions at the system level. Although the 

application potential of ML in some areas has yet to be fully demonstrated, the promise 

has been underscored by recent progress. For example, as illustrated in Figure 4, supervised 

learning finds its niche in high-throughput thermal materials screening by establishing 

the relationship between various materials descriptors and thermal conductivity, while 

unsupervised learning can function as a differential equation solver, which helps efficiently 

solve equations including the Schrodinger equation, Boltzmann transport equation (BTE), 

heat conduction equation, Navie–Stokes (NS) equation, and radiative transfer equation. In 

the following, we discuss in detail how ML plays an increasingly significant role in DFT, 

MD, and BTE.
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Machine-Learning-Assisted Density Functional Theory.

In thermal materials modeling, DFT often serves to provide first-principles atomic 

interactions by calculating the energy and force using quantum mechanics, which can be 

input parameters for further calculations such as lattice dynamics, MD, and BTE. For 

better discussion on machine-learning-enabled DFT solutions, the basic idea of DFT is 

briefly revisited here. To begin with, the many-body Schrodinger equation, which is the 

foundation of quantum theory, in most cases is notoriously difficult to solve in practical 

applications. Simplification efforts have been made, with the central idea of describing an 

interacting electronic system via its electron density. Remarkably, Hohenberg and Kohn 

related ground-state properties to electronic density, which can further be explored based 

on the self-consistent variational method, and thus laid the foundation for a so-called 

orbital-free DFT (OF-DFT) method or pure DFT due to there being no need to solve the 

Schrodinger equation.49To overcome the critical shortcoming in OF-DFT methods that no 

accurate orbital-free kinetic energy functional can be found, Kohn and Sham proposed to 

study a non-interacting electronic system with the same electronic density of the original 

system, invoking solutions based on single-electron wave functions, so-called Kohn–Sham 

DFT (KS-DFT).50 All these milestones make quantum mechanical calculations become 

tractable and accurate to a great extent. The core challenges for current DFT methods 

include the expensive computational cost for iterative calculations and the accuracy of 

functionals. Although commonly used approximations such as local density approximation 

or generalized-gradient approximation exchange correlations have been shown to work well 

for a broad range of materials, the form of the exact functional remains undiscovered, 

and these exchange-correlation approximations often fail for strongly correlated systems in 

particular.

The major expectation of expediating DFT calculations with ML is to reduce the 

computational resources required and enable simulations of larger systems. Different from 

the most current approximations beginning from local density approximation and failing 

miserably when there is a poor starting point, ML produced functionals that do not 

suffer the same problems if it has good examples to train on. Some strategies have 

been put forward to circumvent the expensive Schrodinger equation calculations and 

optimize computational resources without sacrificing accuracy. These strategies can be 

divided into two groups:51 one is using ML to predict novel density functionals, such 

as exchange-correlation functionals and kinetic energy functionals, which can be used 

in traditional KS-DFT apparatus; the other is bypassing KS-DFT to implement OF-DFT 

or predicting electron density by direct mapping. Aiming to improve KS-DFT methods, 

Nagai et al.52,53 developed ML mapping using an ANN from electron density to an 

exchange-correlation potential for a one-dimensional, two-body model system trained using 

accurate reference data from exact KS equations and applied their approach to small 

molecules. The ML-trained functions exhibited performance comparable or superior to 

that of the representative standard and hold promise for modeling systems that cannot be 

treated using existing functionals, such as those with dispersion interaction, self-interaction 

error, and strong correlation. On the other hand, the computational bottleneck of solving 

large-scale KS equations induces great interest in investigating OF-DFT. This demands 

accurate construction of a universal Hohenberg–Kohn functional of electrons, especially 
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a kinetic energy functional considering its magnitude comparable to the total energy 

of the system. Synder et al.54 employed Gaussian kernel ridge regression on a kinetic 

energy functional and principal component analysis on functional derivatives using exact 

solutions at several discretized grid points as training data for non-interacting spinless 

fermions in a 1D box and predicted accurate results for other points that exceeded, by 

far, any present approximations. The same approach was demonstrated for calculating 

molecular-stretching and bond-breaking processes and modeling highly correlated and 

infinite hydrogen atom chains.55,56 However, the aforementioned ML methods for OF-DFT 

are limited by sacrificed accuracy of finding functional derivatives in the Euler equation, 

which is important to solve for ground-state electron density and energy. Hence, to further 

improve the prediction accuracy for these quantities, Brock-herde et al.57 replaced the 

iterative-solution-needing Euler equation by direct-learning potential–density and density–

energy mapping and performed it on malonaldehyde, showing that intermolecular proton-

transfer processes could be well captured. Similar works on sulfur-cross-linked carbon 

nano-tubes,58 aluminum,59 and non-covalent systems60 demonstrated the potential of such a 

direct mapping method from the atomic local environment.

At present, the development of these methods is still at an early stage where only proof-of-

principle works have been done. However, as they mature, solving of DFT problems could 

become much more efficient and enable faster force extraction and also computation on 

large unit cell materials which have been rarely explored hitherto, owing to the extremely 

high computational cost.

In addition to the DFT methods discussed above, an increasingly important effort has 

been made recently to develop post-DFT methods that aim to handle weak interactions, 

strong correlations, phase transitions, and excited-state properties in many-body systems. 

These include, to name a few, quantum Monte Carlo (QMC), time-dependent DFT, 

and GW approximations.61 It has been reported that, through the combination with 

convolutional neural networks, lattice QMC can be accelerated by more than an order of 

magnitude,62 and QMC can correctly identify both continuous and discontinuous quantum 

phase transitions, even the intermediate phases.63,64 GW convergence with respect to basis 

completeness can be reached by solely relying on fast preliminary calculations with an 

unconverged basis set using linear regression.65 On the other hand, statistical learning 

makes it possible to predict excited-state properties, such as bandgaps, directly without 

performing expensive quantum mechanical calculations. Na et al.66 predicted the bandgap 

of a crystalline compound using tuple graph neural networks at an accuracy level of hybrid 

functionals and GW approximations with largely reduced computational expense; Rajan et 

al.67 computed bandgaps of MXene crystals based on kernel ridges, a support vector, a 

Gaussian process, and bootstrap aggregating regression methods, bypassing time-consuming 

GW approximations; Knøsgaard et al.68 trained a gradient boosting model and accurately 

predicted full GW band structures. Although relevant applications have not been extensively 

demonstrated in the thermal transport community yet, further efforts should be devoted 

to enabling calculations of phonon and electronic band structures for complex systems 

(i.e., strongly correlated materials) and better predicting energy carriers’ coupling strengths 

involving excited states.
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Machine-Learning-Assisted Molecular Dynamics.

MD is a widely used atomistic modeling approach to simulate the dynamical motion of 

atoms and molecules, including the thermodynamic and thermal transport properties. MD 

has the capability of modeling disordered materials such as polymers and amorphous 

structures,69 defects-contained materials,70,71 and high-temperature transport72,73 using 

the interatomic potential that naturally incorporates all orders of anharmonicity and 

requires no lattice periodicity. Empirical MD applies Newtonian mechanics to evolve the 

dynamics of particles governed by forces of specific potential forms. Assorted macroscopic 

material properties can be further deciphered from atomic trajectories invoking statistical 

correlations. The key ingredient determining its simulation accuracy is the interatomic 

potential. Conventionally, the potential is fitted to various analytical expressions in an 

empirical way, such as the well-known Lennard-Jones potential, the Stillinger–Weber 

potential, the Buckingham potential, etc. These potentials, of simple functional forms, 

however, often are not able to capture the actual complicated interactions among atoms 

and molecules under enormous configurations. Hence, the aspiration for formalizing high-

fidelity and configurationally widely held potentials necessitates new paths, where ML is 

one of the candidates. It does not require a rigid functional form and could adaptively 

learn the embedded knowledge from the ab initio energy landscape corresponding to a vast 

space of atomic configurations, thus improving the accuracy when computing energies and 

forces (error estimates: 0.1 meV/atom for energies and 0.01 eV/A for forces) in later MD 

simulations.

We summarize a general strategy for using machine-learning potential (MLP) to facilitate 

MD simulations, as shown in Figure 5: To begin with, proper descriptor vectors (i.e., 

Smooth Overlap of Atomic Positions descriptors,74 moment tensor,75 atomic orbital 

matrices,76 etc.) are constructed to uniquely fingerprint atomic configurations and 

incorporate many-body interactions; then, a training database of energies, forces, and 

atomic descriptors is collected by performing ab initio MD or applying a perturbation 

to crystals; furthermore, the MLP is fitted employing various ML algorithms (Gaussian 

process regression,77 support vector machines,78 etc.); last, MLP is used as input to run 

MD in a conventional way. As MLP became available, its practicability on heat-transfer 

modeling started to become a hot topic among the thermal engineering community. Studies 

using MLP-based MD simulations on graphene, CN, MoS2, SiP, Si, SnSe, MoS2(1−x)Se2x, 

diamond, BAs, Ga2O3, BaAg2Te2, the graphene/borophene interface, and the Ge/GaAs 

interface have been reported in the literature, showing a promising agreement with 

experiments or first-principle calculations.70,73,79–86

As we are pleased to see MLP-enabled high-accuracy calculations on these crystalline 

materials and interfaces, it is more impressive to see its promising potential to unlock 

prediction power that is prohibited in conventional methods owing to either high 

computational cost or low prediction reliability.87 Some notable works using MLP for 

MD simulations in thermal transport areas include high-temperature simulations,72,73,88 

phonon–defect interactions,70,71 and amorphous materials.80,89 Specifically, MD can tackle 

high-temperature simulation by directly tracking atomic trajectories, whereas DFT based 

on ground-state force knowledge cannot give dynamically stable information. Second, MLP 
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could also contribute to thermal transport modeling on defects-included materials by fitting 

potential energy surfaces over a vast landscape of atomic configurations due to flexibility, 

disregarding conventional mean-field assumptions. Third, MLP can also be applied to 

amorphous materials where heat carriers are propagons, locons, and diffusons rather than 

phonons.

Machine-Learning-Assisted Boltzmann Transport Equation and Other Partial Differential 
Equations.

ML can be used to assist in solving governing thermal transport equations, for example 

BTE. BTE is an essential tool to bridge microscopic phonons or electrons transport to 

macroscopic properties. It provides the quantification of a distribution function evolving in 

the spatial and temporal spaces, as well as an external force, collisions and scattering, and 

drifting terms. Solving the phonon BTE has been widely used to determine temperature 

distribution, heat flux, and other thermal properties; however, it can be challenging due to its 

nonlinearity and high dimensionality. In the past, gray models assuming all modes have the 

same properties have always been used, which suffers inaccuracy, for example, due to the 

fact that different modes could have a wide span of mean free paths and, therefore, behave 

differently at a given physical length scale. Recent progress in numerical schemes like 

the Monte Carlo method, lattice Boltzmann methods, and deterministic discretization-based 

methods has been proposed to solve mode-resolved BTEs, but with increased computational 

challenges such as slow convergence and large memory requirements, as well as induced 

uncertainties and accuracy issues. This dilemma calls for easier and more efficient high-

dimensional solvers.

According to the universal approximation theorem that a deep neural network possesses 

the potential to accurately approximate any continuous functions, it is natural to apply ML 

for solving partial differential equations (PDEs) such as BTEs. The incorporation of the 

governing PDEs’ residuals and initial/boundary conditions with a regularization term into 

the cost function converts the problem from solving PDEs to neural network optimization. 

The parameters that minimize such a cost function correspond to a solution in the form 

of a physics-informed neural network. In this way, a solution can be learned in a physics-

constrained unsupervised manner, with small uncertainty and less computational cost of 

discretization. Progress has been made to use ML for solving phonon BTEs. For example, 

a physics-informed neural network framework has been developed by Li et al. to predict 

phonon energy distribution with improved calculation speed under a steady state90 and 

temperature gradient.91 With preliminary success, such an early-stage physics-informed 

neural network framework can be augmented for capturing transient thermal transport, 

solving phonon and electron BTEs simultaneously, and modeling complex structures. Some 

works also deal with BTEs to tailor to other systems (entropy closure of the momentum 

system, fluids, etc.) and properties.92–95 Moreover, the framework of using ML to solve 

BTEs can be readily extended to other macroscopic PDEs in thermal transport (i.e., heat 

conduction equation,96 NS equation,97 radiative transfer equation98) and replace the current 

slow trial-and-error finite element methods as well. ML has been shown to efficiently 

provide accurate results in contrast to conventional methods.
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THERMAL ENERGY MATERIALS GENEALOGY

The family of thermal energy materials consists of countless members, which can hardly 

be exhaustively reviewed. Here, we aim to discuss several representative categories of 

materials that form the principal components of thermal energy systems like electronics 

thermal management, thermoelectrics, solar cells, high-temperature engineering, and so on. 

The common materials descriptors for machine-learning thermophysical properties of these 

materials are summarized in Figure 6.

Semiconductors.

Semiconductors are materials with large electrical conductivity tunability under field 

and the foundation of our modern technologies, including computers, mobiles, electric 

vehicles, robots, and everything with programmable electrical circuits. For example, silicon, 

germanium, and gallium arsenide are the most common semiconductors, while gallium 

nitride and gallium oxide are rising stars. During the past decades, the number of 

transistors per area on chips has been doubled about every 2 years, famous as Moore’s 

law, unintentionally introducing the thermal management challenge due to the increased 

power density.99,100 Developing new semiconductors with high thermal conductivity is the 

most straightforward way to overcome the heat management challenge and save a large 

amount of energy for device cooling. On the other hand, semiconductors are the energy 

conversion materials in solar cells and thermoelectric power generators, where the bandgap, 

charge carrier lifetime, electrical conductivity, Seebeck coefficient, thermal conductivity, and 

thermal stability are the key properties. All these properties are essentially determined by the 

atomic structures, regardless of the defect and boundary effects, and can be predicted from 

ab initio calculations with only lattice structure and atom types as input, as illustrated in 

Figure 6. Computation-guided development of new semiconductors can be best exemplified 

by boron arsenide, which was experimentally synthesized with thermal conductivity up 

to 1300 W/mK, 5 years later after the initial motivation from ab initio calculations.4,15 

ML approaches have been recently applied to accelerate the computational prediction 

process. Fast and accurate materials screening of different types of semiconductors has 

been demonstrated with various ML algorithms for both thermal conductors and thermal 

insulators.101–103 The electronic properties of semiconductors, including bandgap and 

carrier mobility, can be efficiently predicted with ML methods,104,105 which are critical to 

quickly evaluate their potential applications in electronics, thermoelectrics, and solar cells. 

Moreover, the dynamical evolution of structure and properties of semiconductors under 

extreme conditions can be modeled with ML-assisted atomistic simulations, for example, the 

insulator-to-metal transition of amorphous silicon under high pressure.106 Semiconductors 

in solar cells have also benefited from ML methods, including the accelerated search for 

stable, efficient, and eco-friendly perovskites.107–109 In addition, the manufacturing of 

semiconductors is another area where ML has played a role for decades. By training the 

process-to-product data set with decision-making trees, the manufacturing parameters for 

semiconductors can be optimized.110
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Polymers.

Polymers consist of macromolecules with huge numbers of repetitions of monomers and 

have the highest volume of manufacture in modern society due to their light weight and 

low-cost advantages for packaging applications.111 The properties of polymers vary a lot 

with the atomic structure, functional groups, and morphology, exemplified by the complex 

functions of numerous proteins in biological system. The high-dimensional structure–

property relationship has been partially learned by living beings during evolution and 

stored in our genes, now waiting for explicit interpretation and smart utilization with the 

help of ML.112,113 A recent breakthrough is the successful prediction of protein folding 

with unprecedented accuracy by Deep Mind’s AlphaFold2.114 The major challenge for 

polymer informatics comes from the coupling between long-range, van der Waals, or 

Coulombic forces and the complicated morphologies, resulting in countless hierarchical 

materials descriptors from the atomic information on the polymer units and the molecular 

information such as topological polar surface area, ring numbers, and functional groups, 

to structural information like alignment, twisting, branching, and others. For example, Kim 

et al. constructed a platform for a polymer genome using a collection of 229 polymer 

descriptors and predicted the variation of properties over a large range, e.g., band gap from 

0.7 to 10.2 eV and dielectric constant from 2.61 to 9.09.115 Polymers can also be encoded 

into sequences of tokens regardless of their morphology, such as the simplified molecular 

input line entry system,116,117 which is similar to the genetic code system of life. The 

genetic algorithm could be a powerful tool for predicting polymers’ properties and behaviors 

in the future.118

The major limitations of polymers in thermal management applications are the low thermal 

conductivity (usually ~0.2 W/mK) and relatively low melting temperature (usually less than 

400 °C), partially due to the weak intermolecular interactions. Additionally for thermal 

conductivity, due to the competition between the conformational entropy and chemical 

potential,118 the structure of the polymer is much more disordered (than crystals) and forbids 

the collective thermal transport of lattice waves (phonons). Therefore, it is expected that 

improvement of the polymer chain’s alignment can increase its thermal conductivity,119,120 

which had been experimentally verified by mechanical stretching, electrical spinning, and 

other methods.121–123 The design of polymeric materials with dynamically tunable and 

enhanced thermal conductivity can be the next research opportunity in this area. In addition, 

the ML approach may help search for polymers that are useful for organic photovoltaic, 

radiative cooling, and other energy systems. For instance, Sahu et al. learned the power 

conversion efficiency from experimental results of 300 molecules using a gradient boosting 

regression tree and ANN and applied the ML model to screen 32 structures from ~10 

000 molecules in the Harvard Clean Energy Project.124,125 The hierarchical structural 

polymers are promising radiative cooling materials due to their spectrally selective emission 

properties,126,127 which could be optimized with ML in the future.

Alloys.

Alloys are one type of important materials in high-temperature machines such as turbines, 

engines, and boilers due to their high mechanical strength and thermal stability. Alloys also 

represent several top thermoelectric materials.20,128,129 The current design of alloy systems 
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usually relies on phase diagrams to characterize the phase–composition relationships. 

Therefore, multi-alloy systems, or high-entropy alloys, which are proposed as single-phase 

multi-component alloys of five or more elements in approximately equal proportions,130 and 

later to include intermetallics, nanoprecipitation, ceramic compounds, and non-equiatomic 

materials,131–133 have provided high-dimensional composition and tenability.134 However, 

a complete experimental scan of concentrations of more than 10 different elements is 

challenging, severely impeding the construction of a phase diagram of high-entropy alloys. 

Similar to semiconductors, the structural homogeneity of alloys enables relatively clean 

and simple material descriptors for ML training, mainly including atomic information and 

some easy-to-access proproteins, especially the molar concentration of each element.135 The 

Al-Ni-Zr glass-forming ability phase diagram was predicted using the ML method with 

descriptors derived from stoichiometric ratio, elemental property, orbital information, and 

ionic bonding.136 The ANN was proven to have a test accuracy of ~75% for phase prediction 

of high-entropy alloys with a training data set of 401 alloys.137 The calculation of phase 

diagrams using thermodynamic theory, also known as CALPHAD, is one of the widely used 

tools. CALPHAD gives geometric descriptions of the system at thermal equilibrium, which 

can further be used for compositional design. With the development of various ML methods, 

researchers are able to seek help from data science and try to use limited data and ML 

algorithms to predict the alloy phase at any compositional combination, which is essentially 

a classification problem. For example, Zeng et al.138 combined CALPHAD calculations and 

the XGBoost method to predict 213 new single-phase BCC and FCC high-entropy alloys 

and established new high-fidelity phase selection rules; Liu et al.139 integrated a support 

vector machine with CALPHAD to quickly locate two new eutectic compositions in Ni-Co-

Cr-Al high-entropy alloy systems and confirmed their designs by experiments. In addition 

to the phase diagram prediction, other properties of alloys can also be predicted from the 

stoichiometric ratio−properties relationships trained from ML, including formation enthalpy, 

hardness, toughness, thermal conductivity, electronic conductivity, Seebeck coefficients, 

etc.107,140,141 The hardness of Al-Co-Cr-Cu-Fe-Ni alloys can be calculated from a ML 

model trained with experimental data using molar concentration and elemental information 

as descriptors.142 The ML approach can also help optimize the catalytic efficiency of 

high-entropy alloys for CO2 and CO reduction reactions by learning the results from ab 

initio calculations.143 A more detailed discussion of ML-driven high-entropy alloys studies 

can be found elsewhere.144

Composites.

Composites are heterogeneous materials with a wide range of energy applications, from 

thermal interface materials19,145 to electrodes and electrolytes in batteries.146 Different from 

alloys, where the elements are soluble in the matrix, the component materials in composites 

are insoluble in the matrix. The intrinsic properties of the component materials are often 

known. The properties of composites are determined by the percentage, shape, size, and 

arrangement of each component, and sometimes the interface interaction between them, as 

illustrated in Figure 6. For porous structures like aerogels, the key descriptors are porosity, 

pore size, wall thickness, pore arrangement, pore shape, and so on.38–40 Effective medium 

approximation was the most used tool to predict the thermal conductivity of composites, but 

unsatisfied due to the lack of consideration of the detailed fillers’ structures. Finite element 
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analysis of the heat diffusion equation is a common tool to consider the exact structures 

of composites. For instance, by including the shape, loading, and alignment of fillers in 

the finite element analysis, Cui et al. illustrated the heat-transfer mechanism of their boron 

arsenide/polymer thermal interface composites with thermal conductivity up to 21 W/mK 

and elastic compliance less than 100 kPa.19 However, the rigorous numerical calculations 

based on finite element analysis, lattice Boltzmann method, or others usually take too much 

time for material design, which undoubtedly can benefit from the ML approach to speed 

up the computations for composites. By taking the structure–properties relationships from 

experiments and/or rigorous numerical calculations, multiple algorithms have been applied 

to learn the thermal conductivity of composites, such as support vector regression, Gaussian 

regression, and neural networks.45,46 In addition, ML methods have also been applied to 

design functional composites for thermal cloaking,147 energy storage,148,149 and additive 

manufacturing.150

THERMOPHYSICAL PROPERTIES OF MATERIALS

The ideal performance of thermal energy systems is essentially limited by key materials 

properties, such as thermal conductivity, critical temperatures, emissivity, and so on. During 

the past 2 decades, numerous materials properties have been measured and accumulated, 

especially computational results from different simulation approaches. The ML methods 

start to manifest their power in searching for materials with desired properties. In this 

section, we will focus on the efforts and progress regarding ML applications in the study of 

thermal stability, thermal conductivity, thermal boundary resistance, thermal emission, and 

thermoelectrics.

Thermal Stability.

Thermal stability is a major consideration for high-temperature applications, like thermal 

barrier coating of turbines and sharp leading-edge materials of hypersonic vehicles, and 

an important factor for the lifetime and performance of most devices, also involved in the 

high-throughput prediction of other physical properties as a prerequisite screening process. 

Experimentally, the thermal stability of materials is usually characterized by differential 

scanning calorimetry and thermal gravimetric analysis, measuring critical temperatures such 

as the phase change temperature and decomposition temperature. However, in materials 

with high-dimensional variations, like numbers of monomers and conformational variations 

of organic materials and alloys with multiple components, the complete measurement of 

overall variable dimensions is almost impossible, leaving much space for ML methods. 

Many molecular features can serve as descriptors for ML training for organic materials, 

including molecular mass, atom types, topological charge, and so on. For example, Zhao 

et al. applied a light gradient boosting algorithm to construct a prediction platform of 

the critical temperatures of organic light-mitting materials using the existing experimental 

results of 1944 molecules and revealed that the hydrogen bonding, molecular polarity, and 

size were the most important features for these molecules’ thermal stability.151 Sifain et 

al. used a group of group-constitutive and gradient boosting decision trees to predict the 

melting temperature of over 47k organic molecules.152 The other properties coupled with 

thermal stability can also be analyzed with ML. Shen et al. studied the stability of polymer 
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dielectric materials at different temperatures and electric fields using dielectric constant, 

electrical conductivity, and Young’s modulus as descriptors and least-squares regression.149 

The light output degradation of Eu3+-substituted phosphors with temperature can also 

be predicted using support vector regression training of reported experimental data.153 

Phase diagram construction of alloy systems traditionally requires substantial experimental 

efforts along three dimensions, i.e., temperature, pressure, and element concentration, 

which can also be significantly reduced with ML. Balachandran et al. accelerated the 

experimental search for high-temperature ferroelectric perovskites by using classification 

learning methods to identify the perovskite phase in the phase diagram and regression 

methods to predict the Curie temperature, as illustrated in Figure 7.154 On the other hand, 

the atomistic modeling with MLPs helps reveal new fundamental insights on the phase 

change of materials, such as the discovery of a transient phase during the amorphous-to-

crystalline silicon transition.106,155

Thermal Conductivity.

Thermal conductivity is a phenomenological metric defined by Fourier’s law to relate heat 

flux and temperature gradient in a medium and is probably the most important thermal 

transport property for thermal engineering. As mentioned before, ab initio calculation 

of thermal conductivity has been standardized as the most accurate prediction method; 

however, it requires much computational resources, only possible for case-by-case modeling 

but formidable for an exhaustive search for thermal materials. With the rise of ML 

algorithms, so-called high-throughput thermal transport prediction has become popular 

during the past decade, which can be hardly defined as more than a purpose efficiently 

realized with the assistance of ML methods, instead of any specific workflow, framework, or 

even protocol.

The most straightforward strategy to integrate ML algorithms into the prediction of thermal 

transport properties is to design physically insightful descriptors and take advantage of 

the existing database of materials’ properties as training data to develop accurate and 

computation affordable correlations for thermal conductivity. conductivity from the atoms’ 

mass, Debye temperature, Gruneisen number, bond length, and atom numbers in the unit 

cell of materials.156 The physical understanding of thermal transport plays a much heavier 

role than statistical analysis, and the accessible descriptors were quite limited in the early 

attempts. Nowadays, with the rapid growth of computing power, more and more calculations 

have been accumulated of materials’ properties such as formation enthalpy, bond strength, 

phonon dispersion, and specific heat. Millions of material compounds have been recorded 

on open databases like AFLOW, Materials Project, NOMAD, and so on, making ML over a 

large volume of input data possible together with the existing experimental results, as shown 

in Figure 4. Carrete et al. predicted 10 promising low-thermal-conductivity half-Heusler 

semiconductors from 79 000 initial entries in the AFLOW database by combining random 

forest regression and ab initio calculations of 32 compounds using a group of descriptors 

including chemical information, compound information, and accessible thermal information 

like specific heat and scattering phase space, as shown in Figure 8.101 A similar approach 

was also performed using different input data such as entries in Materials Projects and 

different ML algorithms like Gaussian process regression, random forest, transfer learning, 
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and principal component analysis to map thermal conductivity with different descriptor 

sets.47,102,103,157,158 Different from inorganic crystals, the descriptors for ML training of the 

thermal conductivity of polymers are more complicated, for example, the vectors of binary 

digits representing the chemical units. The search for high-thermal-conductivity polymers 

is underway but far from satisfactory considering the current progress.120,159 The thermal 

conductivity of alloys can also be predicted by adding composition as another dimension 

for ML training.160,161 In addition, ML can also assist the ab initio calculations of thermal 

conductivity, especially for high-temperature calculations, which are usually much more 

computationally expensive than ab initio calculation at 0 K. By performing principal 

component analysis and regression analysis, a correlation between 0 K force constants and 

1000 K force constants can be built to accelerate the phonon scattering calculations.48

In addition to homogeneous materials, the effects of compositional and structural factors 

on thermal conductivity can also be efficiently predicted with ML algorithms, mainly for 

nanostructures, composites, and porous materials. By using period and layer thickness as 

material descriptors and MD simulation results as training data for ANN, the thermal 

conductivity of superlattice can be minimized.162,163 The thermal transport in a porous 

medium can be modeled with the finite element method and heat diffusion equation once 

the porous structure size is much larger than the heat carriers’ mean free path. By training 

a limited data set of finite element method simulation results with appropriate structural 

features like shape and bottleneck thickness, the structure−thermal conductivity relationship 

can be found.46 Similarly, the thermal conductivity of composites can also be predicted 

from ML methods and training data from finite element method simulations with properties 

and geometric factors of fillers.45,164 When the grain size or pore size approaches the heat 

carriers’ mean free path, the solutions to BTEs are obtained first as training data.165 Thermal 

resistance at the interface in heterogeneous materials is another important consideration, 

which will be discussed later.

Thermal Transport Physics.

ML methods can also be applied to study fundamental thermal transport physics. 

Hydrodynamic phonon transport is a heat-transfer regime much less studied than ballistic 

and diffusive heat conduction, existing only in limited materials at appropriate temperature 

windows. Torres et al. determined promising materials for hydrodynamic thermal transport 

by training the ab initio calculated hydrodynamic length of 131 materials using neural 

networks.82 Thermal transport in amorphous materials is another long-standing problem due 

to the complicated structures with short-range, medium-range, and long-range disorders. Ab 

initio modeling of amorphous materials is extremely challenging because of the lack of 

symmetry. MLPs from ab initio calculation of small systems (less than 1000 atoms) can 

be used for MD simulations of large systems (more than 10 000 atoms), approximating the 

real amorphous structure.80,88,166 On the other hand, the thermal transport of materials such 

as zirconium compounds at high temperatures can also be modeled with MLPs.72,167,168 

Otherwise, the ab initio calculation of high-order force constants to include anharmonicity 

requires too many computational resources.
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Thermal Boundary Resistance.

Thermal resistance is not only contributed by the intrinsic thermal properties of 

component materials but also contributed by their interfaces, especially in heterogeneous 

structures, known as thermal boundary resistance (TBR).169 TBR is a decisive factor 

in the performance failure of high-power electronics, the efficiency of nanostructured 

thermoelectric materials, and the thermal properties of composites, to name a few. TBR 

results from the breakdown of coherent vibrational waves at the interface. The physical 

process can be pictured as wave transmission and reflection, as illustrated in Figure 

9a and mathematically described by the Laudaur formula.145,170 Due to the lack of 

symmetry at the interface, the modeling of TBR requires a large atomic system, making 

first-principles calculations computationally challenging, compared to the widely used 

methods such as acoustic mismatch models, diffuse mismatch models, and molecular 

dynamics simulations.145 On the other hand, classical MD simulation is an ideal approach 

to deal with interface thermal transport by modeling the exact interface structure, defects, 

and anharmonicity, though the output mainly relies on the accuracy of empirical potentials. 

One of the major examples of progress comes from the MD simulations with MLPs, 

which provides a balance between modeling accuracy and cost. For example, Kang et al. 

constructed a potential for boron arsenide by training the force and energy data from DFT 

calculations using linear regression and calculated the TBR between boron arsenide and 

gallium nitride, which was in good agreement with their experimental measurements, as 

shown in Figure 9b.18 Following their work, Wu et al. applied the deep-learning method to 

build another potential to study the thermal transport of this heterostructure.171 A similar 

approach was also applied to the thermal resistance at the grain boundary of silicon and 

hence the thermal conductivity of polycrystalline silicon.172

On the other hand, the high throughput of TBR is also under development and has 

already achieved better prediction accuracy at least than mismatch models. Since phonon 

waves’ transmission is related to the intrinsic phonon properties of interface materials, 

multiple physical properties can serve as descriptors for ML training of TBR data, such 

as specific heat, thermal conductivity, Debye temperature, melting temperature, sound 

speed, bulk modules, and so on. Wu et al. used these descriptors and three different 

ML algorithms—regression tree ensembles of LSBoost, support vector machines, and 

Gaussian regression process—to train 1317 data entries from experimental measurements 

and achieved coefficients of determination around 0.9.44 Even for the same pair of interface 

materials, ML can also be applied to study the dependence of interface conditions such as 

temperature, defects, bonding strength, etc. Vu et al. constructed the mapping between the 

TBR of a glass/steel interface and descriptors including temperature, pressure, and surface 

roughness by using linear regression, decision tree, and random forest algorithm to train 

their own experimental results and achieved a coefficient of determination up to 0.99, as 

illustrated in Figure 9c.173 In addition, ML algorithms can also be combined with classical 

MD simulations to accelerate the optimization of fine structure at the interface for thermal 

transport.174–176
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Thermal Emission.

The emission and absorption of electromagnetic waves is one of major ways heat is 

exchanged, called radiative heat transfer. Any object above 0 K is emitting electromagnetic 

waves due to the movement of charge carriers. Thermal emission is extremely important 

for high-temperature objects and objects without direct contact, for example, our Earth and 

sun, between which thermal energy is transferred only through radiative heat transfer. The 

control of thermal emission properties is critical to various applications including daytime 

radiative cooling, thermophotovoltaics, metallurgy, turbines, and others. During the past 

2 decades, nanostructure engineering of surfaces has opened up new directions for light–

matter interactions, i.e., emissivity control with metasurfaces.177,178 However, the spectral 

dependence of emissivity and temperature dependence of electromagnetic waves’ emission 

complicate the inverse design of metasurfaces. Although the emissivity of metasurfaces 

can be precisely calculated with the Maxwell equation, it requires substantial efforts to 

scan different material properties and geometrical parameters to achieve desired thermal 

emission properties. For example, the emissivity of the pillar structure illustrated in Figure 

10 can be affected by the height, period, shape, length, and width of the pillars. This 

high-dimensional problem can also be addressed with ML methods. Instead of solving 

Maxwell equations case by case, the structure−property mapping can be established more 

efficiently by training a limited data set from rigorous calculations. For instance, the light 

scattering of core−shell nanoparticles can be tuned by changing the thickness of each shell 

and shell material. Peurifoy et al. applied ANN to train 50 000 rigorous calculation results 

from Maxwell equations and reduced the inverse design time by up to 2 orders,179 as shown 

in Figure 10. Dielectric and metallic particles with different shapes like spheres, cylinders, 

parallelepipeds, and triangular prisms were also studied with decision trees and random 

forests to address the inverse design of emissivity.180 The narrow-band thermal emitters with 

a quality factor higher than 200 are promising for high-performance thermophotovoltaic 

devices, making it possible to convert the broad-band solar spectrum to narrow-band light, 

where the photovoltaic cells have the maximum efficiency.181–183 Additionally, beyond 

the optimization of geometric parameters, it is also expected that the emerging ML 

approaches could be built on high-fidelity fundamental results, i.e., a database of ab initio 

calculations, to further enhance modeling capability by having a larger design space with 

much cheaper computational cost. Since ML methods have just been introduced to the 

thermal radiation, photonics, and plasmonics communities, relevant research is still deficient 

in the literature.184

Thermoelectrics.

Thermal energy can also be directly converted into electricity via thermoelectric effects 

due to thediffusion of charger carriers under a temperature gradient. Thermoelectric devices 

are regarded as ideal power generators without complicated mechanical components and 

moving parts, though they are significantly limited by the low energy conversion efficiency, 

which can be characterized with a ZT value, ZT = σS2T/κ, where σ, S, κ, and T 
are electrical conductivity, Seebeck coefficient, thermal conductivity, and temperature, 

respectively. The maximum efficiency of a thermoelectric generator working between 300 

and 400 K heat reservoirs is 4.7% and 11.3% with ZT values of 1 and 5, respectively.185 

The state-of-the-art ZT value had remained less than 1 for more than 50 years until the 

Li et al. Page 18

ACS Energy Lett. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nanoengineering of material structures was introduced,8,20,186 opening up new directions 

for improving thermoelectric performance. With the new hope accompanies new challenges, 

i.e., searching for optimal materials with additional dimensions, such as impurity, doping, 

grain boundary, and so on, especially considering the modeling complexity of electron 

and phonon transport in nanostructures. ML tools have been applied to speed up the 

search for high-performance thermoelectric materials, either by guiding the exploration 

of σ, s, and κ values separately or the overall ZT value.104 For instance, the electronic 

band structure and lattice thermal conductivity of half-Heusler compounds were analyzed 

with ML separately.101,105 The selection criteria (large lattice parameter and effective mass 

of holes) for high-ZT half-Heusler thermoelectric materials were identified by Carrete et 

al. by analyzing their ab initio calculation results from 75 compounds using decision 

trees.187 However, the family of thermoelectric materials is huge, as illustrated in Figure 

11, requiring more general material descriptors for ZT values, either physics-inspired or 

data-driven.188,189 Xu et al. applied the random forest method to train thermoelectric data 

from 204 materials and obtained coefficients of determination higher than 0.9 by using four 

descriptors from the information entropy evaluation of an ExtraTree-based model.189 Some 

better descriptors could be found from the several visualization databases for properties 

relevant to thermoelectrics.190–192 Moreover, structural design and material manufacturing 

methods such as chemical mixing and thermal processing can also be optimized with 

ML.193–195

PERFORMANCE PREDICTION AND DESIGN OPTIMIZATION OF THERMAL 

ENERGY APPLICATIONS

Beyond mechanistic modeling and high-throughput searching for materials’ properties 

as discussed in the above section, ML can also assist the design of architectures and 

performance, ranging from thermal devices to large-scale systems, which we exemplify in 

Figures 12 and 13, below.

Device Level.

On the level of thermal device optimization, ML methods could provide advantages 

for a broad range of applications, including thermophotovoltaics, thermal desalination, 

heat pumps, heat exchangers, solar water heaters, steam turbines, additive manufacturing, 

etc. Recent works employ various ML models to tune multiple geometric and physical 

parameters in a way to comprehensively search in hyper-dimensional design space, which is 

generally restrained by the formidable computational cost of conventional manual sweep. 

Numerous discoveries of unorthodox practical structures away from previous intuition 

and prior selected topologies have been made via computer algorithms, and these ML 

approaches are expected to play a vital role for device optimization in the future. For this 

review, we highlight this progress by focusing on three typical devices involving thermal 

energy, i.e., heat exchangers, thermophotovoltaics, and solar water heaters.

Several commonly used heat exchangers have been optimized using ML algorithms. The 

input parameters for these heat exchangers generally include total tube number, total 

baffle number, baffle pitch, diameter of the center tube, flow rate, Reynolds number, inlet 
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and outlet temperatures, fin dimensions, fin spacing, materials, etc., and the objectives 

are performance prediction, efficiency (and effectiveness, if applicable), and economical 

optimization.

Specifically, an early-day investigation on fin tube heat exchangers using ML was initiated 

by Zhao et al.,198 where they introduced ANN to the prediction of the performance 

of heat exchangers. The ANN model they trained based on a very limited amount of 

experimental data showed the prediction of heat rate with error in the same order as 

the uncertainty of the measurements under different operating conditions. Pacheco-Vega 

et al. later considered condensation in their ANN model in the case of humid-air flow 

and demonstrated better performance than conventional correlations.199 The promising 

prediction capability paved the way for further optimization along the map of ML. 

Besides ANN, Peng et al. used support vector regression with different hyperparameters for 

predicting the thermal-hydraulic performance of fin tube heat exchangers and claimed better 

prediction performance than using ANN with shorter computational time.200 As prediction 

becomes more accurate, design optimization based on these approaches appears naturally. 

Recently, Krishnayatra et al. studied the thermal performance of fins for a novel axial 

fin-tube heat exchanger invoking k-nearest neighbor regression, and the designed structure 

shows high efficiency, confirmed by numerical simulations of ANSYS.201 To take into 

account total cost on top of heat-transfer effectiveness, Xie et al. used a genetic algorithm 

for minimization of total annual cost and total weight.202 By combing a genetic algorithm 

design and additive manufacturing, Moon et al. fabricated a heat exchanger with optimal fin 

geometry and achieved a power density of 26.6 W/cm3, as shown in Figure 12b.196

On the other hand, based on a small set of experimental data on shell-tube heat exchangers, 

Luo et al. trained ANN using normal backpropagation and different architectures for the 

prediction of heat-transfer rates in segmental baffles and continuous helical baffles.203 Their 

results show a better prediction of heat-transfer rate than empirical correlations, which is 

the preliminary stage for ML-enabled optimization. Thanikodi et al. furthered their methods 

by incorporating teaching learning (dividing training data into a few chunks and using 

in order) to make a hybrid ANN based on the same set of training data and confirmed 

reduced learning error.204 More than ANN, Krzywanski developed an ML model using 

a genetic algorithm and ANN on a large falling-film evaporator and optimized the heat 

exchanger regarding the total heat-transfer rate by tuning the kind of tubes and tube pass 

arrangements under the specific number of tube rows and the refrigerant mass flow rate.205 

Ocłońet al. invoked particle swarm optimization and continuous genetic algorithms for 

optimizing flow distribution and effectively reducing thermal stresses.206 Explorations in 

flat-tube multi-louvered fin compact heat exchangers,207 plate-fin heat exchangers,208 and 

wavy fin-and-elliptical tube heat exchangers209 are also documented in the literature.

As for thermophotovoltaic applications, Kudyshev et al. optimized a metasurface thermal 

emitter by adapting the topology optimization method with deep-learning algorithms (i.e., 

adversarial autoencoders) for unorthodox compact hyper-parametric representations and 

showed substantial improvement in the optimization process, 3 times faster with higher 

efficiency (98%) than previously used adjoint-based topology optimization design as 

shown in Figure 12c.182,210 Zhang et al. demonstrated that a highly selective aperiodic 
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thermal emitter made of silicon, silica, and tungsten can be achieved under the framework 

of Bayesian optimization and a transfer matrix method.211 Integrated with a gallium 

antimonide (GaSb) photovoltaic cell, such an optimal emitter is fabricated, and the measured 

emission spectrum shows agreement with the predicted figure of merit, notably better 

than previously designed multi-layers with similar material. Silva-Oelker et al. explored 

two structures (a planar multi-layer stack and a grating) of tungsten–hafnia (W-HfO2) 

selective thermal emitters with high hemispherical emittance.212 Through optimization 

using a genetic algorithm and rigorous coupled wave analysis, the design of high thermal 

emittance with low directional sensitivity can be obtained. On top of genetic algorithms and 

adversarial autoencoder networks which require large data sets and are based on exploitation 

only, particle swarm optimization that also includes exploration was proposed by Wang 

et al.213 They optimized solar-to-power conversion efficiency for multi-layer solar thermal 

absorber made of tungsten, SiO2 and Si3N4 multilayer thin films by theoretical design and 

experimentally demonstrated excellent spectral selectivity.

With regard to solar heaters, Kalogirou et al. first used ANN to predict useful energy 

extracted from domestic hot water systems,214 instantaneous efficiency,215 and temperature 

level216 for the storage tank by the end of the daily operation cycle. Lecoeuche et al. then 

used ANN to predict in situ outlet temperature of the collector based on solar radiation 

and thermal heat loss coefficients.217 However, accurate determination of heat collection 

rate and heat loss coefficients is difficult. Liu et al. proposed using ANN and a support 

vector machine to predict these two quantities based on portable instrument measurable 

parameters and improved their prediction accuracy of heat loss coefficients with an extreme 

learning algorithm, as shown in Figure 12d.197 Afterward, Liu et al. applied ANN-driven 

high-throughput screening for designing a promising water-in-glass evacuated tube solar 

water heater (WGET-SWH) with a high heat conduction rate using billions of combinations 

of extrinsic properties (tube length, tube numbers, center distance, tank volume, collector 

area, final temperature, tilt angle).218 Two novel designs generated by this approach were 

installed experimentally for validation and showed higher average heat collection rates 

than all existing cases in the previous measurement database. Li et al. then presented 

the predictive power of ML methods and generalized an ANN-based high-throughput 

screening framework by providing vital details about the modeling and high-throughput 

screening process.219 The success of designing a new SWH with optimized performance 

without knowing the complicated physical relationship between SWH settings and target 

performance is highlighted.

System Level.

In addition to material structure and device configuration, ML methods can also be applied 

at system level for a variety of purposes, including, to name a few, energy demand forecast, 

fault detection, and optimal control and scheduling of a system. Here we draw attention to 

ML applications in the modulation of district heating networks and indoor HVAC systems.

District heating is a widely used way to transmit thermal energy in the form of hot water 

or hot steam to end users (i.e., households, offices, shops, industry, etc.), which can be 

further employed for heating and hot water production. Central energy plants and multiple 

Li et al. Page 21

ACS Energy Lett. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



buildings in a district heating system are connected through miles of insulated underground 

pipes where the thermal energy carrier is distributed. It becomes popular in major cities 

due to its low overall economic cost and high energy efficiency. However, the long delivery 

distance and long delay time from producer to consumer are inherent problems for such 

a large transmission system. The decision to change the transmission status may come 

hours later than the relevant report is made. Some forms of forecast and prediction must be 

made, which currently are based on statistical knowledge and experience. Accurate demand 

prediction can help utilities to plan and shield against uncertainties. ML comes into the 

picture given its potential for high-fidelity forecast on energy demand. If a prediction can 

be made far in advance, then the exact amount of thermal energy can be transferred to the 

users after some distribution time. However, the prediction of energy load is not simple. It 

invokes not only weather conditions (temperature, dew points, solar radiation, wind speeds, 

etc.) but also social behaviors. Ordinary systems that only monitor the current state of 

the system fail to take into account the historical records and possible future events. The 

application of ML, on the other hand, exhibits potential for high-accuracy energy load 

prediction and further leads to the complete digitalization of tomorrow’s district heating 

systems. ML methods can learn the patterns of heating load from a large database consisting 

of previous customer data, operational data, and holiday activities as well as weather reports, 

and thus are able to schedule the heat production and storage dynamics in advance and 

correspond to evolving conditions (uncertainties in weather forecasts and human behaviors) 

so as to handle peak load properly. Even economic data, such as prices of electricity, 

natural gas, and other sustainable resources, can be integrated into the whole analysis to 

achieve higher efficiency at a broader scope. The first work invoking ML for energy load 

prediction was done by Dotzauer et al., who developed a simple heat demand prediction 

model by considering outdoor temperature and human activities.220 As the computational 

power improves, many ML models have been proposed for the sake of energy load 

prediction, such as online ML algorithms,221 ensembles of online ML algorithms,222 ridge 

regression,223 support vector machines,223 random forest,223 ANN,224 linear regression,224 

etc. Deep-learning methods,225 which are extended from ANN and capable of modeling 

complex nonlinearity, are becoming attractive and have been tested many times. Xue et al. 

investigated heat prediction using a long short-term memory model and feature fusion long 

short-term memory,226 which outperformed other models. A recursive strategy embedded 

with extreme gradient boosting for multi-step-ahead forecasting of the heat load is also 

highlighted in Figure 13.227

ML methods can be used to design optimal structures of transmit networks. Feng et al. 

used a genetic algorithm to optimize the structural design of the pipeline of a district 

heating system, with the objective of minimizing annual total cost but maintaining hydraulic 

stability.228 Similarly, Li et al. further included a variety of heating and cooling loads 

throughout a year and employed a genetic algorithm based on a least-annualized-cost global 

optimal mathematical model for a design that could avoid hydraulic unbalance, resulting 

in increased running efficiency and reduced operation cost compared with conventional 

design methods.229 ML can also help with fault detection (i.e., leakage, insufficient heating, 

malfunction of individual components) in streaming data. Such diagnosis can be achieved 

from retrieved real-time customer data and other data from the network, replacing manual 
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inspection and reducing the time needed between fault detection and repair. Given the 

universally reported fact that no single anomaly detector that is ultimately superior in 

all cases exists, Calikus et al. proposed a framework integrating separate unsupervised 

components that address the fundamental tasks as separate concerns.230 Unlike unsupervised 

methods, Bode et al. created supervised models and studied the transferability from an 

experimental training data set to a real-world building test data set.231 Abghari et al. 

further proposed a robust higher order mining approach to detect deviating and sub-optimal 

operational behaviors.232 To build a predictive model for pipe deterioration, Winkler et 

al. found that a boosted decision tree approach with random under-sampling enables 

higher precision extrapolation for the prediction of current and future states of the pipe 

network.233 What’s more, ML methods can satisfy the need for the development of 

intelligent monitoring and control frameworks for district heating systems. Current control 

systems are primarily based on manual tuning of network operators using conventional 

proportional-integral-derivative (PID) controllers, and thus automation is needed to avoid 

human errors and guarantee optimal management with reduced cost. Static models not 

capturing the time evolution of energy vectors are commonly used for control. To overcome 

the shortcoming of static optimization models, Moustakidis et al. proposed a hierarchical 

control framework that breaks the overall decision problem down to sub-problems using 

multiple decision layers: the high-level layer deals with tactical decisions and seasonally/

monthly/daily load changes; the middle-level layer is responsible for the slow time scale 

adjustment of the continuous variables at production sites; and the lower layer handles 

the fast time scale regulation of the aforementioned continuous variables at the substation/

building level.234 Reynolds et al. built up optimal scheduling of distributing heat subsystems 

using genetic algorithms and found a 44.88% increase in profit compared with a rule-based 

conventional priority order scheme.235 A multi-stage−multi-level ANN with three different 

variants has also been implemented by Arat et al. for optimum control strategy of a 

geothermal heat-pump-aided distributing heat system and yielded improved efficiency.236

HVAC is another area where ML applications make a crucial difference. It is responsible 

for continuous regulation of the artificial environment so that the indoor climate remains 

constantly comfortable while the outside weather changes. In recent years, the concept of 

smart buildings contingent on building automation has arisen. In accordance with the fast 

evolution of AI and ML techniques, smart buildings are further advanced with systems 

capable of predicting, monitoring, and adjusting in response to the dynamics of outside 

variables.

Energy demand prediction is the essential foundation for building energy management 

and can be enhanced by employing various ML methods. Specifically, supervised ML 

algorithms, such as ANN,237 support vector machines,238 decision trees,239 and ensemble 

learning,240,241 are widely used to forecast building heating/cooling load and total energy 

consumption load. Numerous test results showed improved accuracy better than simulation 

software results. However, these methods are usually built on shallow structures and thus 

cannot extract highly complex patterns from training data. That is why deep-learning 

approaches, which feature multiple layers of structures and thus a higher order of 

sophistication, are proposed to learn greater abstraction and render higher accuracy of 

prediction. Berriel et al. showed solutions of deep-learning algorithms, such as convolutional 
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and short-term memory neural networks, that were applied to the problem of monthly 

energy consumption forecasts and outperformed the baseline reference of historical average 

consumption.242 Deep-learning models combined with ensemble techniques,243 generative 

adversarial nets,244–246 sequence-to-sequence models,247 and transfer-learning models248 

have also been explored. Recently, to couple prediction with actuation, deep learning has 

further been devised to connect with reinforcement learning to become so-called deep 

reinforcement learning (DRL),249–251 which encapsulates the perceptual power of deep 

learning and the decision-making capability of reinforcement learning. DRL controllers are 

proposed for optimally controlling space heating to achieve low-exergy buildings. Liu et 

al. compared three commonly used DRL techniques with popular supervised models and 

concluded that DRL can improve prediction performance with the cost of more computation 

time.252

In addition, ML helps detect and diagnose faulty operations and equipment (i.e., water 

valves, air dampers, filters, chillers, pumps, and fans) failures that often remain undiscovered 

for a long period due to the difficulty of manually deciphering complex information 

in building management systems. By analyzing the trends of data collected by sensors, 

statistical ML methods can deliver high-accuracy detection for complex systems and be 

easily transferred to different systems, overcoming the limitations in existing rule-based 

physical models. West et al. proposed a novel fault detection and diagnosis technique 

using hidden Markov models embedded with inter-sensor relationships from historical data 

under normal and faulty conditions.253 The comparison between real-time data stream and 

learned historical patterns yields accurate operation diagnosis for a few fault types in a 

real building. Later in the past decade, various aspects of ML methods were intensely 

explored to characterize occurrences of faults, detect abnormal operating conditions, 

and classify fault types, such as adaptive thresholds, using t-statistic approach,254 fuzzy 

logic,255 ANN,256 Gaussian process regression,257 support vector machine,258,259 gradient 

boosting regression,260 and generative adversarial network.261 However, these methods 

rarely captured temporal dependencies and dynamics of faults. To close such a loophole, 

deep recurrent ANNs, which can also learn implicit nonlinear relationships, are proposed. 

Topology optimization among diverse deep recurrent ANN configurations and relevant 

hyperparameters have been explored.262–264 The improved effectiveness and advantages of 

deep recurrent ANN compared to other non-recursive methods, namely higher accuracy, 

transparency to substantial noise, and incorporating time dependency, have been reported.265

Moreover, ML methods, especially DRL, enable automatic smart adjustments with 

continuous sensor readings and actuator controls. Gupta et al. introduced DRL heating 

controllers to a simulation model of a house to remove deviation of the indoor temperature 

from a set point to ensure thermal comfort while reducing energy consumption under 

dynamic conditions.266 Brandi et al. implemented both static and dynamic DRL to control 

supply water temperature for heating units, and they both outperformed rule-based and 

climatic-based control schemes, given a careful selection of input variables.267 Rahimpour et 

al. demonstrated the superiority of actor−critic DRL methods on tuning buildings with phase 

change materials whose nonlinearities cannot be handled by conventional controllers.268 

Beyond temperature control, Yoon and Moon considered optimizing relative humidity,269 

whereas Chen et al. further included natural ventilation.270 Zou et al. devised a framework 
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to optimally control air handling units using DRL with a training environment of long short-

term memory network approximation for historical building automation system data.271

During the past several years, the explosion of big data toolboxes and the urgent need 

for efficient and clean energy technologies have opened up a new interdisciplinary area 

focused on ML-assisted energy materials development, thermal device design, optimization, 

and operational improvement of energy systems. At the most fundamental level, atomistic 

modeling of thermal energy materials can benefit from the ML-accelerated numerical 

solution of quantum mechanics and highly accurate MLP-assisted MD simulations. High-

throughput material discovery for ideal thermal conductivity, thermoelectric coefficient, 

emissivity, and other properties will largely reduce the cost of the traditional trial-and-

error process. At the mesoscale, the transport dynamics of electrons and phonons can be 

more efficiently addressed. Inverse design of functional materials with desirable properties 

by combing nanoengineering and ML training of existing experimental and modeling 

data becomes possible. Automated design of thermal devices with ML and additive 

manufacturing will become a new industrial strategy. Moreover, the large thermal systems 

will be operated more efficiently by ML-improved energy demand forecasts, fault detection, 

and optimal control and scheduling. We expect that ML can find its future opportunities 

in different directions, including but not limited to computationally efficient first-principles 

materials modeling, materials with extreme thermal transport properties and high energy 

conversion efficiency, novel thermal materials, or devices with variable thermophysical 

properties, operation, and control of distributed energy systems.
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Figure 1. 
Number of machine learning publications per year with energy and energy materials focus 

since 2005, highlighted with the milestone achievements.
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Figure 2. 
Categories of machine-learning algorithms, including supervised, unsupervised, and 

reinforcement learning. Under each type of learning, there are multiple algorithms, 

specialized for targeted problems.
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Figure 3. 
Representative machine-learning algorithms. Examples to illustrate (a) linear regression, (b) 

feed forward neural network, (c) reservoir computing, and (d) random forest.

Li et al. Page 41

ACS Energy Lett. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
General workflow of machine-learning-assisted high-throughput thermal energy materials 

discovery. Machine-learning relationships between materials descriptors and thermophysical 

properties from the existing experimental and modeling big data in various databases can 

help predict properties of unexplored materials and distinguish the important materials’ 

descriptors. Reprinted with permission from refs 47 and 48. Copyright 2016 Elsevier and 

2016 American Physical Society.
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Figure 5. 
General workflow of atomistic modeling of thermal properties accelerated or improved by 

novel functionals for density functional calculations, accurate force fields for molecular 

dynamics, and numerical solutions for partial differential equations assisted by machine 

learning. Reprinted with permission from ref 88. Copyright 2012 American Physical 

Society.
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Figure 6. 
Common materials descriptors for machine-learning thermophysical properties of various 

materials, including semiconductors, polymers, alloys, and composites. Atomic information 

is of paramount importance for materials with simple structure, like semiconductors. 

Molecular information is indispensable for evaluation of the properties of organic systems, 

like polymers. For heterogeneous materials such as composites, the structural information 

is critical to their apparent properties. The easy-to-access properties, for instance sound 

velocity and Young’s modulus, can be correlated with thermal properties for most materials. 

Reprinted with permission from refs 19 and 34. Copyright 2021 Springer Nature and 2019 

John Wiley & Sons.
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Figure 7. 
Thermal stability prediction of perovskite crystals with variable elements such as Mo, W, 

Nb, Ta, etc. and stoichiometric ratios using classification learning and regression. Reprinted 

with permission from ref 154. Copyright 2018 Springer Nature.
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Figure 8. 
High-throughput, low-thermal-conductivity half-Heusler semiconductors discovery from 79 

000 initial entries in the AFLOW database by combining random forest regression and 

ab initio calculations. Reprinted with permission from ref 101. Copyright 2014 American 

Physical Society.
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Figure 9. 
Prediction of thermal boundary resistance by using linear regression, decision tree, random 

forest algorithm, and machine-learning potential-driven molecular dynamics simulations. 

Reprinted with permission from refs 18 and 173. Copyright 2021 Elsevier and 2021 Springer 

Nature.
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Figure 10. 
Inverse design of emissivity of materials by machine learning the structure−property 

mapping from a training data set of rigorous calculation results of Maxwell equations 

using artificial neural networks. Reprinted with permission from ref 179. Copyright 2018 

American Association for the Advancement of Science.
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Figure 11. 
Evaluation of thermoelectric properties can be accelerated with machine learning by 

selecting good material descriptors, including but not limited to the average atomic mass 

and standard deviation of Pauling electronegativity. Reprinted with permission from ref 188. 

Copyright 2015 Royal Society of Chemistry.
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Figure 12. 
Machine-learning applications in performance prediction and design optimization at the 

device levels, mainly including heat exchanger, thermal emitter, and heat collector. 

Reprinted with permission from refs 196, 182, and 197, respectively. Copyright 2021 

Elsevier, 2020 AIP Publishing, and 2015 Multidisciplinary Digital Publishing Institute.
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Figure 13. 
Machine-learning applications in performance prediction at the system level, mainly 

including the energy demand forecast, fault detection, and in situ control. Reprinted with 

permission from ref 227. Copyright 2019 Elsevier.
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