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ABSTRACT OF THE DISSERTATION
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On one side, symbolic methods represent our knowledge of the world, and when coupled with

probabilistic reasoning, one can infer the uncertainty of unknown facts conditioned on the knowl-

edge of known evidence. On the other side, statistical machine learning finds and infers a predic-

tive function from vast amounts of data. To automate complex decision making, both are crucially

needed. While their unification has been long pursued, the two up to now still largely remain dis-

parate from one another. This dissertation demonstrates circuit representations are a promising

symbolic-statistical synthesis. In particular, we study circuit representations across the dimensions

of tractable probabilistic reasoning with and without logical constraints, structure learning from

data, and classifying on image domains, namely, the main tasks across symbolic and statistical

methods. And more importantly, we show those dimensions are unified for circuit representations

by leveraging the same syntactic properties.
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CHAPTER 1

Introduction

In every era of human history, people have innovated all sorts of tools to reduce manual labor. Since

the dawn of the Information Revolution, scientists and engineers have begun to be not satisfied with

inventing custom tools, but in their earnest belief develop autonomous agents with minimum hu-

man supervision that could potentially simulate general intelligence. To date, advances in artificial

intelligence (AI) have remarkably improved the productivity and spurred new breakthroughs in

many domains.

However, no one can give a precise and exact definition about what is intelligence. To be honest,

intelligence is a very broad concept. Quantifying uncertainties and making appropriate planning

is an embodiment of intelligence; reasoning about unknown facts based on current observations is

also an embodiment of intelligence; perceiving and classifying different objects certainly is another

embodiment of intelligence. The examples can go on and go on. Partly due to this reason, for most

of its history, AI research has been naturally divided into different subfields, each with their own

technical considerations, potentially philosophically-different pursuing goals, and use of varying

tools.

On one side, in the past decade, we have witnessed tremendous progress and success in data-

driven models, such as deep neural networks [LBH15]. Fueled by the concurrent advances in com-

putation power and collection of large-scale datasets [DDS09], machines’ performance in assorted

high-profile challenges (e.g., Atari games, Go, object detection, etc.) have been elevated to or even

surpassing human level [SZ14, MKS15, LMT16, SHM16, HGD17, SSS17]. Those success stories

collectively demonstrate a competitive paradigm to approach learning in unstructured environ-

1



ments. On the other side, researchers have not stopped their relentless development of knowledge-

driven or reasoning-driven models, such as different variants of probabilistic graphical models and

arithmetic circuits [Dar09, PD11, KAD14]. Their success demonstrates a tractable approach in

quantifying uncertainties and inferring knowledge of hidden facts in both unstructured and struc-

tured domains.

This dissertation sees the opportunity to blend the two paradigms together, such that potentially

benefits and advances from both sides can be enjoyed simultaneously. Yet, with years of develop-

ments, even these two paradigms alone have each become an umbrella to cover assorted topics.

To put this dissertation into context, we would like to start with clarifying what exactly we try to

unify here. First of all, it is no surprise one cannot represent all sorts of knowledge, as knowledge

exists in different forms as well. Some knowledge may even not suit any explicit form. In this

dissertation, we focus on symbolic knowledge represented as logical sentences. Logic is natural

to use when describing rule-based knowledge bases. For example, one can straightforwardly use

logical sentences to describe courses’ prerequisite requirements, such as the following [KAD14].

P ∨ L

A =⇒ P

K =⇒ (A ∨ L)

This knowledge base describes three requirements: (i) Must take at least Probability (P ) or Logic

(L); (ii) Probability (P ) is a prerequisite for AI (A); (iii) To take Knowledge Representation (K),

one must have taken either AI (A) or Logic (L) before. This knowledge base compactly describes

the relationship between different courses and dictates what course sequence is allowed and what

is not allowed. Relationships and what is valid are the two main aspects of a problem’s structure.

And across this dissertation, we will repeatedly leverage logic to tackle problems with structures.

With existing logical knowledge, one can deduce new knowledge. We want to be clear that this

dissertation is not focused on this type of reasoning. Instead, we focus on probabilistic reasoning.

In any realistic domains, knowledge rarely holds for 100% of the time. In fact, the very act of

2



preparing knowledge can involve leaving some facts unchecked and many facts crudely summa-

rized. This means rules will often have exceptions. For example, professors can grant permissions

to override prerequisites. To deal with exceptions and quantify our uncertainties of knowledge, one

needs to introduce probability into knowledge. Now, instead of deducing new knowledge, how to

infer the probability of other facts conditioned on the knowledge of some observed facts is imper-

ative. Roughly speaking, probabilistic reasoning is dedicated to this. How observing the evidence

of some facts affects the probabilities of other facts defines a joint distribution. In this dissertation,

all reasoning is done with respect to a given distribution. However, introducing probability into

knowledge alone has nothing to say about how we can do probabilistic reasoning efficiently. An

implicit theme behind our unified representations is that they must be tractable, such that com-

monly used probabilistic reasoning can all be computed in polynomial time with respect to the size

of the representations.

Guaranteeing tractability is not enough. Not any given distribution is desirable, as quantifying

probabilities itself is tricky. Unless one has a justified (prior) belief of the uncertainties, capturing

probabilities based on the occurrences in the observed data is favored. This leads to the second and

third dimension of this dissertation, learning and classification. Here, learning specifically refers

to generative learning (i.e., learning a joint distribution over some input features) and classification

refers to discriminative learning (i.e., learning the conditional probability of a class given some

input features). These are the two main approaches of statistical machine learning. To achieve

both efficient probabilistic reasoning and competitive statistical machine learning, representations’

structure now not only needs to encode logical knowledge but also needs to induce complex distri-

butions that are close to the data when coupled with parameters. This imposes a unique challenge

about how to leverage the representations’ syntactic properties that guarantee their tractability in

probabilistic reasoning to make structure learning amenable to data.

In short, this dissertation focuses on the synthesis of logic knowledge and its accompany-

ing probabilistic reasoning with data-driven statistical machine learning. By unifying probabilistic

reasoning, learning, and classification, one now has a straightforward pipeline that starts from
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encoding complex spaces’ domain-specific structural constraints, and ends with a competitive sta-

tistical model fitting the data well. Moreover, the resulting representations could still retain the

flexibility to manipulate and answer assorted fundamental questions regarding the learned distri-

bution. Considering logic knowledge is commonly captured by a representation’s structure, to do

this symbolic-statistical synthesis, we start from circuit representations with strong syntactic prop-

erties that can compactly encode logical constraints and extend their frontier to do well in machine

learning tasks. This dissertation is also structured in response to our direction of synthesis (i.e.,

from probabilistic reasoning to more machine learning). In particular, this dissertation is presented

as the following.

In Chapter 2, we review circuit representations. We first show how they naturally encode logical

sentences, and then demonstrate how they can be converted into a probabilistic model by param-

eterizing their edges. We end this chapter with a brief discussion about probabilistic circuit repre-

sentations’ unique advantage in representing distributions that are subject to logical constraints.

In Chapter 3, we consider the probabilistic reasoning tasks for circuit representations. We start

with walking through examples about how probabilistic circuits can be transformed into a com-

putation graph to efficiently compute some common probabilistic reasoning queries. After this

warm-up, we push the frontier of probabilistic circuits’ tractable reasoning. In particular, we are

the first to study the tractability of circuit representations from the point view of information mea-

sure, and propose a polynomial-time recursion algorithm to efficiently compare the probabilistic

distributions captured by two circuit representations.

In Chapter 4, we switch the gear and start focusing on the learning aspect of circuit repre-

sentations. In particular, we propose the first structure learning algorithm for a particular dialect

of probabilistic circuit representations, called probabilistic sentential decision diagrams (PSDD).

With our proposed learning algorithm, we show circuit representations are amenable to learning

from data. Furthermore, we also demonstrate that this learning algorithm retains circuit represen-

tations’ ability to disallow possible worlds that are not consistent with structured spaces’ inherent

logical constraints, which is beyond the reach of other representations.
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In Chapter 5, we continue our efforts in advancing the learning capacity of circuit represen-

tations. Unlike the previous chapter which is about generative learning, this one investigates the

other dominant learning type, namely discriminative learning. We assign new semantics to our

circuit representations and call them logistic circuits, forming a a discriminative counterpart to

probabilistic circuits. We show that parameter learning for logistic circuits is convex optimization,

and that a simple local search can induce strong logistic circuit structures from data as well.

In Chapter 6, we revisit the knowledge encoding and probabilistic reasoning aspect of circuit

representations. However, this time, instead of focusing on structured space over input features, we

focus on leveraging constraints on representations’ output space. In particular, we develop a novel

circuit-based methodology for using symbolic knowledge in deep learning.

We conclude with a summary of this dissertation in Chapter 7.
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CHAPTER 2

Probabilistic Circuits

In this chapter, we review a tractable deep representation of probabilistic distribution, called Prob-

abilistic Circuits. In particular, we will go through not only its semantics (i.e., how a probabilistic

distribution is represented), its syntax (i.e., how tractability is guaranteed by its structural prop-

erties), but also the motivation behind its invention and its connection with symbolic knowledge

representation as well.

2.1 Background

Modeling usually involves representing a problem’s structure. And probabilistic graphical models

(PGMs) are invented to capture structures [Dar09]. For example, during this difficult time with

a pandemic raging around the globe, a person with fever would potentially need to go through

several different tests to figure out the true cause. A simplified probabilistic model that captures

conditional independence could illustrate why this is the case; consider Figure 1.1. The figure is a

directed acyclic graph (DAG). To be more specific, it shows a Bayesian network, probably the most

famous probabilistic graphical model, over five variables, IA (influenza A), IB (influenza B), S

(strep throat), C (Covid-19), and F (fever). Most PGMs are represented as DAGs. A line between

two entities on the figure indicates their conditional dependence relationship. As the figure shows,

influenza A and influenza B, along with strep throat and Covid-19 can all independently infect

a person. Furthermore, they all can cause fever. There is slight difference in terms of symptoms

between them. Yet the difference tends to be too subtle that even medical experts may not be able

to tell. Given this, the only reliable option is to do several independent tests. Although in the figure
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Influenza A Influenza B Strep Throat Covid− 19

Fever

Figure 2.1: Conditional Independences between Fever and Potential Causes

we use solid lines, the dependence is by nature stochastic, such as whether having a fever is also

correlated to many other hidden factors (e.g., sensitivity of individuals’ immune systems). With

the conditional independence, the joint probability can be decomposed into a multiplication over

five pieces as follows.

Pr(IA, IB, S, C, F ) = Pr(IA) Pr(IB) Pr(S) Pr(C) Pr(F | IA, IB, S, C)

Granted that PGMs are effective in representing structures, a key limitation in PGMs’ learning

and inference is the difficulty to calculate the partition function or the probability of evidence.

What is a partition function or the probability of evidence? Extending from the previous equation

from, more generally speaking, a PGM represents a joint probability distribution as a normalized

product of factors:

Pr(X = x) =
1

Z

∏
k

θk(X{k}).

Those factors are conditionally independent from one another. Z is the partition function; its pur-

pose is to normalize all the computed probabilities, such that the sum of the probabilities of every

possible event is one.

If one is careful in observing, letters are bold, different from the previous equation. And this is

done on purpose to distinguish a single variable and a set of random variables. The rule of thumb

for notation is as follow. An uppercase letter X denotes a random variable and a lowercase letter x

denotes an assignment to X . Literals X or ¬X respectively assign true or false to variable X . Sets

of variables X and joint assignments x are denoted in bold. An assignment x that satisfies logical
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Table 2.1: A summary of important notations.

Notations Meaning

Uppercase letters (e.g., X) A random variable

Literals X and ¬X True or False assignment to the Boolean variable X

Lowercase letters (e.g., x) An assignment to X

Bold uppercase letters (e.g., X) A set of random variables

Bold lowercase letters (e.g., x) Joint assignments to X

x |= α x satisfies the logical sentence α

XY or X ∪Y The union of sets X and Y

sentence α is denoted x |= α. A complete assignment to all considered variables is called a pos-

sible world, or interchangeably an example/sample. Concatenations of sets represent their union.

A summary of notations is also provided in 2.1 for easy reference. Sometimes those notations can

be overloaded and denote other things. When this happens, we will make sure their overloaded

meaning is clarified.

To refocus on this specific equation, X{k} is a subset of variables and θk is a potential function

over it. For most PGMs, Z is computationally difficult to obtain:

Z =
∑
x

∏
k

θk(X{k}).

As this equation shows, a partition function potentially enumerates an exponential number of terms

with respect to the number of input variables: X{k} first already has an exponential number of

possible combinations, and secondly every possible joint assignment x needs to be enumerated

which is again an exponential number. What makes the matter even worse is that, depending on

the specific probabilistic query, this Z-function needs to adapt. For example, when some variables

are already observed and we are interested in the probability over another subset of variables, then

this Z only needs to sum over all x then are consistent with the observation. Given what is observed
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can be referred to as evidence, in this setting Z is more commonly referred to as the probability of

evidence. This means, we even could not try to settle on pre-computing one Z. In fact, what we

need is a model that is either directly in an easy-to-compute form or can be easily transformed into

such a form.

2.2 A General Circuit Language

The assorted reasons outlined above spur the development of tractable probabilistic models. Cur-

rent advances stem from two lines of work. First, probabilistic graphical model learning has long

targeted sparse models [MJ00, NB04, CG07]. Second, the field of knowledge compilation studies

tractable representations, such as arithmetic circuits (ACs) for probability distributions [Dar03],

and NNF circuits for Boolean functions [DM02]. The superior tractability of these circuits derives

from their ability to capture local structure and determinism [BFG96], which makes compilation

to circuits a state-of-the-art technique for probabilistic inference [DDC08, CKD13].

Circuits have long been used to represent logical sentences. A logical circuit is a directed

acyclic graph (DAG) representing a Boolean function, as depicted in Figure 2.2 (ignoring parame-

ters for now). Each inner node is either an AND gate or an OR gate.1 A leaf (input) node represents

a Boolean literal, that is, X or ¬X , where the node can only be satisfied if X is set to 1 (true) re-

spectively 0 (false). Boolean literals are combined into logical sentences through those inner AND

and OR gates. For example, the right most OR gate represents the logical sentence C xor D.

Recently, circuits have also become the chosen target representation for tractable learners [LD08,

LR13, GD13, BDC15], spurring innovation in arithmetic circuit dialects such as sum-product net-

works (SPNs) [PD11, PGD14] and cutset networks [RKG14]. In recent years, a large number of

tractable probabilistic models have been proposed as a target representation for generative learn-

ing of a joint probability distribution: arithmetic circuits [LD08], weighted SDD [BDC15], PSDD

[KAD14], cutset networks [RKG14] and sum-product networks (SPNs) [PD11]. These representa-

1We consider negation-normal-form circuits where no negation is allowed except at the leafs/inputs [DM02].
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Figure 2.2: An example probabilistic circuit over 4 variables. The parameters on the hot wires are

used to compute the joint probability of example A = 0, B = 1, C = 1, D = 0. The probability

for this particular examples is 0.0096.

tions have various syntactic properties. Some put probabilities on terminals, others on edges. Some

use logical notation (AND, OR), others use arithmetic notation (×,+). While closely related, these

representations differ significantly in the types of tractable queries and operations they support.

Nevertheless, they are all circuit languages built around the properties of decomposability, and/or

smoothness and/or determinism.

To summarize their similarities, we propose a simple probabilistic circuit language, where now

the parameters are assumed to be normalized probabilities. For our purpose, only presenting the

definition of probabilistic circuits is enough here. For a detailed survey over probabilistic circuits,

we refer readers to [CVB].

Definition 1 (Probabilistic Circuit). A probabilistic circuit node n defines the following joint dis-

10



tribution.

– If n is a leaf/terminal (input) node, then Prn(x) = [x |= n].2

– If n is an AND gate with children c1, . . . , cm, then

Pr n(x) =
m∏
i=1

Pr ci(x).

– If n is an OR gate with (child node, wire parameter) inputs (c1, θ1), . . . , (cm, θm), then

Pr n(x) =
m∑
i=1

Pr ci(x) · θi.

This definition has several advantages. First, it makes a clear correspondence between logical no-

tation (AND, OR), and arithmetic notation (×, +). Based on this definition, it is straightforward

to figure out that AND gates are exchangeable with product node, and OR gates are exchange-

able with sum nodes. Second, it highlights the computation graph aspect of probabilistic circuits;

it is written in an induction manner starting from the bottom leaf (input) node, abstracting away

the delicacies that are irrelevant to the represented joint distribution. With this definition, one can

easily plug in an example and with a few steps of computation in head arrive at the probability of

that example. We encourage everyone to try this process and check whether given the probabilistic

circuit presented in Figure 2.2, example A = 0, B = 1, C = 1, D = 0 indeed has a probability of

0.96%. We will elaborate more about this computation procedure in Chapter 3 and discuss about

how this procedure handles partial assignments and other more complicated situations.

This definition can also be extended to float-value inputs; the change is also straightforward.

Instead of checking whether the input example x satisfies the leaf node (i.e., a literal), we make

every leaf node represent a single-variable distribution[CVB]; for example, a univariate Gaussian

distribution is a popular choice [PD11]. However, doing so will inadvertently break probabilistic

circuits’ inherent connection with logic and symbolic knowledge representation. Given this, we

2Every leaf node is a literal, which corresponds to a specific true/false assignment to a variable. For examples,
Literal ¬X assigns false (i.e., 0) to variable X . Prn(x) = 1 if x satisfies the literal node n, otherwise Prn(x) = 0.
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will not explore this extended definition here. There does exist an alternative interpretation about

what the parameters mean in the context of logic when the inputs are float values, and we will

discuss this alternative interpretation in Chapter 5.

Still, this definition does not directly expose the important syntactic properties (i.e., decompos-

ability, smoothness, and determinism) that guarantee probabilistic circuits’ tractability. To prop-

erly introduce them in detail, in the next section we specifically target one dialect of probabilistic

circuits, called probabilistic sentential decision diagrams (PSDDs), and use this specific represen-

tation to take a deep dive into properties.

2.3 A Specific Tractable Representation

We choose probabilistic sentential decision diagrams (PSDDs) [KAD14] out of two considerations.

First, PSDDs make use of all three properties mentioned above (i.e., decomposability, smoothness,

and determinism) and hence are the perfect candidate to illustrate what those properties are and

how they impact a representation. Second, owing to those intricate structural properties, PPSDDs

are perhaps the most powerful circuit proposed to date. PSDDs support closed-form parameter

learning, MAP inference, complex queries [BDC15], and even efficient multiplication of distribu-

tions [SCD16], which are all instrumental to fundamentally understanding complex data yet are all

increasingly rare.

There exist some syntactic and semantic differences between PSDDs and the earlier prob-

abilistic circuit definition. Some of them are trivial and can be reconciled with straightforward

transformation. We will also go through the transformation steps when we encounter the differ-

ences in the following discussion. Figure 2.3c shows an example probabilistic sentential decision

diagram (PSDD). As the figure shows, similar to many probabilistic graphical models, a PSDD is

a parameterized directed acyclic graph (DAG). Each inner node is either a logical AND gate with

two inputs, or a logical OR gate with an arbitrary number of inputs. The types of nodes usually

alternate from layer to layer, but it is not a requirement. Each terminal (input) node is a univariate
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0 otherwise

(b) Conditional probabilities
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(c) Equivalent PSDD circuit
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(d) In probabilistic circuit form
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Figure 2.3: A Bayesian network and its equivalent PSDD.
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distribution, which could either beX whenX is always true, ¬X when it is always false, or (θ : X)

when it is true with probability θ. A decision node is the combination of an OR gate with its AND

gate inputs. We refer to the left input of an AND gate as its prime (denoted p) and the right one

as its sub (denoted s). The n wires in each decision node are annotated with a normalized proba-

bility distribution θ1, . . . , θn. Alternatively, we refer to a decision node’s labeled AND gates as its

elements and represent the decision node itself as a set of elements {(p1, s1, θ1), . . . , (pn, sn, θn)}.

One may immediately notice two differences from this description and Definition 1. To start from

the simpler one, PSDDs require AND gates to always have two child inputs, whereas probabilistic

circuits do not impose restrictions on the number of children an AND gate can have. This restric-

tion is largely inherited from the knowledge compilation tradition adopted by sentential decision

diagrams (SDDs). When representing a probabilistic distribution, PSDDs are not affected by this

in terms of expressiveness. An AND gate with multiple children can be simulated by several AND

gates with two children stacked together. Speaking of the trickier difference, PSDDs’ terminal

nodes represent a univariate distribution instead of a particular assignment to the corresponding

variable. Yet, this difference can also be reconciled by adding an additional OR gate. When the

leaf node is either X or ¬X , no transformation is required, as the meaning is consistent with our

definition 1. When it is (θ : X), as illustrated in Figure 2.3d, we can replace it with an OR gate.

This OR gate has two child inputs, one representing the true assignment X and the other the false

assignment ¬X . Their corresponding wires are assigned with the parameters θ and 1 − θ respec-

tively. Now this new OR gate represents a univariate distribution, identical to the original terminal

node (θ : X).

2.3.1 Syntactic Properties

According to the semantics we will detail later, each PSDD node represents a probability distri-

bution over the random variables that appear below it. To identify what random variables a PSDD

node is defined with respect to, we need a variable tree (vtree), which is omitted in the proba-

bilistic circuit definition. A vtree is a full binary tree, whose leaves are labeled with variables;
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see Figure 2.3e. Besides identifying random variables, it is also critical to enforce the decompos-

ability property every AND gate must respect. An AND gate is decomposable, meaning that its

inputs represent a distribution over disjoint sets of variables. The internal vtree nodes split vari-

ables into those appearing in the left subtree X and those in the right subtree Y. This implies that

the corresponding PSDD decision nodes (i.e., OR gates) must have primes (i.e., left input nodes)

ranging over X and subs (i.e., right input nodes) over Y. We say the corresponding PSDD nodes

are normalized for the vtree node. Figure 2.3c labels decision nodes with the vtree node they are

normalized for.

Each decision node must be deterministic, meaning that for any single possible world (i.e., an

joint assignment over all considered variables), it can have at most one prime assign a non-zero

probability to that world. In other words, the supports of all distributions represented by primes

must be disjoint within the same decision node. We further assume that all elements assign a non-

zero probability to at least one world.3

2.3.2 Semantics and Interpretability

Each PSDD node represents a probability distribution, starting with the terminal nodes’ univariate

distributions. This inductive property is clearly demonstrated in our probabilistic circuit definition

(Definition 1) as well: an AND gate (i.e., product node) combines two context-specific indepen-

dent distributions over two disjoint sets of variables, and an OR gate (i.e., sum node) constructs a

mixture of distributions over the same set of variables. To be more specific, each decision node n

(i.e., an OR gate) normalized for a vtree node with X and Y in its left and right subtrees respec-

tively, represents a distribution over XY as Prn(XY) =
∑

i θi Prpi(X) Prsi(Y). Note an OR gate

is always over the same set of variables as every one of its child input node. Under these semantics,

the PSDD in Figure 2.3c represents the same distribution as the Bayesian network in Figure 2.3a.

3In the original definition this was not required. In fact, primes were required to be exhaustive, which can neces-
sitate a zero-probability element [KAD14]. This is an artifact from defining PSDD as an extension of SDDs, which
require exhaustiveness to support negation or disjunction. These logical operations are not used for our (probabilistic)
purpose.
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Each PSDD node’s distribution has an intricate support over which it defines a non-zero prob-

ability. We refer to this support as the base of node n, written [n]. The base of a node can alter-

natively be defined as a logical sentence using the recursion [n] =
∨
i[pi] ∧ [si], where [X] = X ,

[¬X] = ¬X , and [θ : X] = true.

From a top-down perspective, a decision node presents a choice between its prime bases [pi]: at

most one is true in each world. Thus, the PSDD is a decision diagram branching on which sentence

[pi] is true. This generalizes decision trees or binary decision diagrams which only branch on the

value of a single variable. To reach node n, all the primes on a path to n must be satisfied; they are

the sub-context of n. The disjunction of all n’s sub-contexts is its context γn. This notion lets us

precisely characterize PSDD parameter semantics and make each parameter interpretable: they are

conditional probabilities in root node r’s distribution:

θi = Prr([pi] | γn).

Note this also means the independence relationship assumed between X and Y (such that

we can directly multiply the two’s distribution together) for every AND gate is indeed context-

specific independence. Context-specific independence is a more refined concept than conditional

independence: conditional independence requires X to be independent from Y given all possible

assignments to Z, whereas context-specific independence only requires X to be independent from

Y given a particular assignment to Z (i.e., a context).

2.3.3 Distributions in the Presence of Logical Constraints

PSDDs are the probabilistic extensions to sentential decision diagrams (SDDs), which are a target

representation to compactly represent logical constraints. Given this, PSDDs can naturally repre-

sent complex probabilistic distributions in structured spaces that are subject to complex logical

constraints, disallowing large numbers of possible worlds [KVC14]. In this context, knowledge

compilation algorithms can build PSDD structures without looking at the data; the structure is

obtained when compiling the constraints as a SDD. To provide a concrete example of a struc-
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tured space, consider the Boolean variables Aij for i, j ∈ {1, ..., n}. Here, i represents an item

and j represents its position in a total ranking of n items. The unstructured space consists of 2n
2

possible worlds of the n2 Boolean variables. The structured space of interest only consists of the

subset that corresponds to total rankings over n items. The size of this structured space is only n!

as the remaining assignments do not correspond to valid, total rankings (e.g., an assignment that

places two items in the same position, or one item in two different positions) [CVD15a]. When

structures are large enough, parameter estimation is shown sufficient to learn distributions over

game traces [CTD16], configurations, and yield state-of-the-art results learning preference distri-

butions [CVD15b].
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CHAPTER 3

Tractable Reasoning with Probabilistic Circuits

This chapter addresses this first big question in this dissertation — how to do exact probabilistic

reasoning about distributions in polynomial time using probabilistic circuits.

3.1 Background

Tractability is a vague concept; to make it concrete, one has to specify for which specific type of

probabilistic reasoning a probabilistic representation is tractable. In practice, when a representa-

tion is tractable for a reasoning query, it means the exact answer to that query can be computed

in polynomial time complexity with respect to the the size of the representation (which is often

measured in terms of the number of parameters, nodes or edges). This also means a representation

can be tractable for one type of probabilistic reasoning query, but not for another. However, one

almost always pursues a probabilistic representation that supports the most number of tractable

probabilistic reasoning queries, as this gives users a certificate to use this representation flexibly

for assorted applications without worrying about the computational overhead.

As mentioned in the last chapter, probabilistic circuits are perhaps the most powerful tractable

probabilistic representations proposed to date, as they support the most number of tractable prob-

abilistic reasoning queries. Because of this, probabilistic circuits are commonly used as the com-

pilation targets of intractable graphical models[SCD16]. Given an arbitrary graphical model (e.g.,

a Bayesian network or a Markov network), one can first construct a probabilistic circuit that rep-

resents the same joint distribution as the given graphical model. One usually refers to this step
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as compilation. After the probabilistic circuit is obtained, probabilistic queries that are originally

NP-hard or even #P-hard to compute for the intractable graphical model, can now be answered

exactly in polynomial time. Note this does not mean we have found a systematic solution to reduce

NP-hard problems to the P space, as the compilation step itself can be NP-hard.

To demonstrate that probabilistic circuits are indeed one of the most powerful tractable repre-

sentations, in the following sections, we start with reviewing some most commonly used proba-

bilistic reasoning queries and watching in action with examples how probabilistic circuits compute

them. We do not intend to be exhaustive here. For readers who are interested in learning more

details about all the probabilistic reasoning queries that have been proved to be tractable for proba-

bilistic circuits, we kindly refer them to articles [KAD14, SCD16, CSD17, CVB]. After this gentle

warm-up, we switch the gear and explore the first study of probabilistic circuits’ tractability prop-

erty in information measure, a new frontier of tractable reasoning.

3.2 A Straightforward Bottom-Up Pass for Query Computation

In this section, we demonstrate the procedure that computes the most commonly used probabilistic

queries, namely, joint, marginal, conditional probabilities, and most probable explanation (MPE).

To efficiently compute each query, we need to first convert a probabilistic circuit to a computation

graph. Recall that our definition of probabilistic circuits (i.e., Definition 1) essentially already

summarizes how this computation graph works; it is a bottom-up evaluation pass starting from the

leaf (input) nodes and the output of the root node tells us the computed query result. For the 4 types

of probabilistic queries mentioned above, their time complexity is linear in terms of the size of the

given probabilistic circuits.

The only slightly tricky and less obvious part in Definition 1 is the output values of the leaf

(input) nodes, especially when the input is a partial assignment to the considered variables. The

general rule is that the output of a leaf (input) node is 1, if the literal this leaf node represents

is consistent with the (partial) assignment; otherwise, the output of that leaf (input) node is 0. In
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(a) The output values of leaf nodes. The

leaf nodes whose variables do not appear

in the partial assignment are color in red.

(b) The output values of OR gates are computed by sum-

ming the output values of their input nodes. This OR-to-

summation transformation is colored in red.

(c) The output values of AND gates are computed by mul-

tiplying the output values of their input nodes. This AND-

to-multiplication transformation is colored in red.

(d) The output value of the root node (col-

ored in red), which is the exact answer to

our particular marginal query.

Figure 3.1: An illustration of the bottom-up procedure to compute the marginal probability for the

partial assignment A = 0, B = 1, C = 1. The probability for this particular query is 0.032.
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the following, we will observe in action with examples about this and how the computation graph

works after setting the output values of the leaf (input) nodes. Note in this section, we focus on the

computation aspect of probabilistic circuits. Proving this computation procedure is correct involves

a lot more work and needs to leverage some other properties not introduced in this dissertation. We

do not tend to go into detail about this and refer the readers with interest to [KAD14].

3.2.1 Joint, Marginal and Conditional Probability

Joint probabilities are the most straightforward ones to compute, as we are always given a complete

assignment to all considered variables. The leaf (input) nodes’ output values equal the correspond-

ing variables’ values in the assignment, if the leaf nodes represent a true literal (i.e., X); the leaf

nodes’ output values equal one minus the corresponding variables’ values in the assignment, if the

leaf nodes represent a false literal (i.e., ¬X).

When asked to compute marginal probabilities, we are given a partial assignment, which means

some considered variables have assignments and others do not. Given the partial assignments re-

flect what we can observe, they are also commonly called as evidence. For the leaf nodes whose

variables appear in the partial assignments, their output values are computed the same as if we

were given a complete assignment. For the leaf nodes whose variables do not appear in the partial

assignments, their output values are always one. An intuitive explanation for this is that, since we

do not observe any evidence (i.e., partial assignments) that refutes the literal situations represented

by those leaf nodes, they are always consistent and hence their output values equal one. After

obtaining the output values of leaf nodes, one just needs to straightforwardly follow the AND-to-

multiplication, and OR-to-summation transformation to finish the computation. The whole process

is also illustrated in Figure 3.1.

One can further easily compute conditional probabilities by first computing the marginals:

Pr(x | e) =
Pr(x ∪ e)

Pr(e)
.

Note both the numerator and the denominator are marginal probabilities, computing a conditional
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probability is as tractable as computing a marginal probability, except now we need to run this

bottom-up evaluation procedure twice.

3.2.2 Most Probable Explanation

Most Probable Explanation (MPE) is a query that computes the most likely complete assignment

that is consistent with the observed evidence. To compute MPE using probabilistic circuit involves

one different transformation step compared to the computation of joint, marginal and conditional

probabilities. To be specific, OR gates are transformed into weighted max nodes. In other words,

the output values of an OR gate corresponds to the maximum product of the output values of

its input nodes and the associated wire parameters. Other aspects of the bottom-up computation

procedure remain the same. After having evaluated the probability of the MPE, we can obtain the

MPE assignment by reversely traversing the probabilistic circuit. For each OR gate, one follows

the input wire which results in the weighted max. For each AND gate, one follows all of the input

wires. The traversal stops when it hits leaf nodes. The concatenation of literals in the leaf nodes is

the MPE assignment. Figure 3.2 illustrates this process under the observed evidence A = 1. The

computed MPE probability is 0.4032 and the computed MPE assignment is A = 1, B = 1, C =

0, D = 1.

3.3 More Complex Reasoning: A Case Study of Intersectional Divergence

The previous section only considers probabilistic reasoning queries with respect to one single prob-

abilistic circuit. In this section instead, we advance the frontier and study probabilistic reasoning

queries with respect to two probabilistic circuits. In particular, we study the question about how to

compare two probabilistic circuits’ represented distributions.
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Figure 3.2: An illustration of maximum probable explanation (MPE) query under the evidence

A = 1. Each OR gate is transformed into a weighted-maximum computation node. The hot wires

are visited in the reverse traversal that obtains the MPE assignment.

3.3.1 Intersectional Divergence

Inspired by the Kullback-Leibler divergence (KL-divergence) between two distributions, we aim

to calculate the divergence between two probabilistic circuits. As the two probabilistic circuit may

not share the same base or even the same set of variables, we have to impose more restrictions for

the divergence to be well defined. To be specific, the new proposed divergence is only calculated

with respect to the joint assignments that have non-zero probabilities induced by both probabilistic

circuits, otherwise the inherent logarithm operation carries no mathematical merit. Intuitively, we

can consider it as the KL-divergence computed only on the intersection between the distribution

supports of the two probabilistic circuits. Given this intuition, we call it intersectional divergence.
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(b) A probabilistic circuit with variable order X , Y , Z.
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(c) A vtree with variable

order Z, X and Y .
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.7 .3

Y ¬Y
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(d) A probabilistic circuit with variable order Z, X , Y .

Figure 3.3: An illustration of two probabilistic circuits over the same set of variables but are nor-

malized with respect to different vtrees.
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Definition 2. (Intersectional Divergence DI) The intersectional divergence between two distribu-

tions p and q is defined as the following.

DI(p ‖ q)
def
=

∑
x|=[p]∧[q]

p(x) log
p(x)

q(x)

Here, [p] represents the base of the distribution p. Note that this definition is independent from

probabilistic circuits and hence can also be used between any two distributions. For distribu-

tions with the same base, intersectional divergence is equivalent to KL-divergence. Note that

DI(p ‖ q) = DKL(p ‖ q) when [p] |= [q] and [p] ≡ [q] in particular. In general, the relation

between intersectional divergence and KL divergence is as follows.

Corollary 1. The general relation between intersectional divergence and Kullback-Leibler diver-

gence (KL-Divergence) is as follows. Note that this relation is generally applicable and is not

restricted to distributions represented by probabilistic circuits.

DKL (p(.|[q]) ‖ q) =
DI(p ‖ q)
p([q])

− log p([q])

DKL (p(.|[q]) ‖ q(.|[p])) =
DI(p ‖ q)
p([q])

− log
q([p])

p([q])

From this corollary, it is obvious that the computation of intersectional divergence between a

pair of arbitrary distributions over the same set of variables cannot be tractable. Then what about

between a pair of arbitrary probabilistic circuits? It turns out that vtree plays a critical role here. To

get some valuable intuition and insights, let us consider the two example probabilistic circuits in

Figure 3.3. Both probabilistic circuits represent a joint distribution over the same three variables,

X , Y , and Z. Yet, they are normalized for different vtrees and hence having different variable

orderings. Because of this, starting from the roots’ input nodes and downwards, the two proba-

bilistic circuits’ intermediate nodes do not represent distributions over the same set of variables.

Intersectional divergence is obviously and should be non-applicable between those intermediate

nodes. This means that the computation of intersectional divergence between these two example
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probabilistic circuits cannot be decomposed into smaller cases using the intermediate results from

non-root nodes. And on the root level, to do the computation, one has to enumerate all possible

joint assignments. Given the number of possible joint assignments is exponential to the number of

considered variables, this computation process cannot be tractable.

3.3.2 A Quadratic Recursion Algorithm

As demonstrated earlier, the intersectional divergence definition itself does not necessarily help us

compute it efficiently. From our observation of computing intersectional divergence between two

probabilistic circuits respecting different vtrees, we notice that this computation can only become

tractable if we can “break it down” to the leaf nodes, where it reduces to trivial computation.

As shown in the following derivation steps, two probabilistic circuits sharing the same vtree is

indeed the key property that enables a recursive decomposition, as it ensures that the pairs of nodes

considered by the algorithm depend on exactly the same set of variables.

Theorem 1. Given two probabilistic circuits which are normalized with respect to the same vtree

m : {(p1, s1, θ1), (p2, s2, θ2)...(pk, sk, θk)}, n : {(r1, t1, β1), (r2, t2, β2)...(rl, tl, βl)}, the intersec-

tional divergence between m and n can be computed efficiently in a recursive manner:

DI(m ‖ n) =
∑
i,j

si([tj])pi([rj])DKL(θi ‖ βj) + θisi([tj])DI(pi ‖ rj) + θipi([rj])DI(si ‖ tj)

where DKL(θi ‖ βj) = θi log θi
βj

.
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Proof.

DI(m ‖ n)
def
=

∑
xy|=[m]∧[n]

m(xy) log
m(xy)

n(xy)

=
∑
i,j

∑
x|=[pi]∧[rj ]

∑
y|=[si]∧[tj ]

pi(x)si(y)θi log
pi(x)si(y)θi
rj(x)tj(y)βj

=
∑
i,j

∑
x|=[pi]∧[rj ]

∑
y|=[si]∧[tj ]

pi(x)si(y)θi

{
log

pi(x)θi
rj(x)βj

+ log
si(y)

tj(y)

}

=
∑
i,j

∑
x|=[pi]∧[rj ]

pi(x)θi

log
pi(x)θi
rj(x)βj

∑
y|=[si]∧[tj ]

si(y) +
∑

y|=[si]∧[tj ]

si(y) log
si(y)

tj(y)


=
∑
i,j

∑
x|=[pi]∧[rj ]

pi(x)θi

{
log

pi(x)θi
rj(x)βi

si([tj]) +DI(si ‖ tj)
}

=
∑
i,j

∑
x|=[pi]∧[rj ]

pi(x)θisi([tj])

{
log

θi
βj

+ log
pi(x)

rj(x)

}
+ pi(x)θiDI(si ‖ tj)

=
∑
i,j

θisi([tj])

log
θi
βj

∑
x|=[pi]∧[rj ]

pi(x) +
∑

x|=[pi]∧[rj ]

pi(x) log
pi(x)

rj(x)


+ θiDI(si ‖ tj)

∑
x|=[pi]∧[rj ]

pi(x)

=
∑
i,j

θisi([tj])

{
log

θi
βj
pi([rj]) +DI(pi ‖ rj)

}
+ θiDI(si ‖ tj)pi([rj])

=
∑
i,j

si([tj])θi log
θi
βj
pi([rj]) + θisi([tj])DI(pi ‖ rj) + θiDI(si ‖ tj)pi([rj])

=
∑
i,j

si([tj])pi([rj])DKL(θi ‖ βj) + θisi([tj])DI(pi ‖ rj) + θipi([rj])DI(si ‖ tj)

Corollary 2. Let m and n be the root nodes of two different probabilistic circuits with the same

vtree. Let em and en be their respective number of edges. Then, the intersectional divergence be-

tween the distributions captured by n and m respectively can be computed exactly in time com-

plexity of O(emen).

This decomposition process is also visualized in Figure 3.4. To make sure this recursion al-

27



X Y

(a) A vtree.

p1 s1 p2 s2

· · ·

pk sk

· · ·

m

θ1

θ2

θk

r1 t1 r2 t2

· · ·

rl tl

· · ·

n
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(b) Two different probabilistic circuits.

Figure 3.4: An illustration of two probabilistic circuits that are normalized with respect to the same

vtree. AND gates are colored in orange as the vtree node they correspond to.

gorithm can run in linear time complexity, we need to cache many intermediate results and this

process is formalized in Algorithm 1.

3.4 Parallel Computation

A linked node representation is an intuitive data structure for circuits. However, it has the drawback

that it makes computations sparse, making it harder to leverage parallelism to speed up computa-

tion. To optimize performance during inference and learning, we translate the circuit’s DAG into

a layered computational graph, starting with the input layer. Each layer only depends on the pre-

vious layers. Since the computations on the nodes in the same layer can be cached in one large

vector, we can simultaneously parallelize our computation over them on the one hand, and training

examples or inference task data on the other hand. Additionally, we can build customized kernels

to accelerate computation on both CPUs and GPUs (using SIMD and CUDA kernels respectively).

Experiments show that CPU parallelism gives significant speed-ups, which even become an order

of magnitude faster with GPU parallelism, all using the same underlying data structures [DKL21].
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Algorithm 1: intersectional-divergence(m,n)

1 input: Probabilistic circuits m and n that respect the same vtree.

2 output: Intersectional divergence DI(m,n)

3 note: pr-constraint(a, [b]) is the probability of [b] in PSDD a’s induced distribution

[CVD15b].

4 main:

1: if (m,n) ∈ in cache then

2: return cache[(m,n)]

3: else

4: ρ← 0

5: for each element (pi, si, θi) in PSDD m do

6: for each element (rj, tj, βj) in PSDD n do

7: ρ11 ← pr-constraint(si, [tj])

8: ρ12 ← pr-constraint(pi, [rj])

9: ρ13 ← θi log θi
βj

10: ρ21 ← intersectional-divergence(pi, rj)

11: ρ31 ← intersectional-divergence(si, tj)

12: ρ← ρ+ ρ11ρ12ρ13 + θiρ11ρ21 + θiρ12ρ31

13: end for

14: end for

15: cache[(m,n)]← ρ

16: return ρ

17: end if
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3.5 Discussion

We are not the only ones to consider advancing the frontier of tractable reasoning of probabilistic

circuits by leveraging the decomposition process. Multiplication of two probabilistic circuits can

also only be tractable, if the two share the same vtree. A similar “break it down” recursion algo-

rithm is proposed to support efficient multiplication [SCD16]. In Chapter 5, we will present how

probabilistic circuits can be converted into a classifier or a regressor. Sharing the same vtree will be

proved to be critical again in guaranteeing efficient probabilistic reasoning between a probabilistic

circuit and a classification/regression circuit [KCL19].
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CHAPTER 4

Structure Learning of Probabilistic Circuits

In the last chapter, we have demonstrated probabilistic circuits’ ability to support assorted complex

probabilistic reasoning queries. However, reasoning can only be done with respect to the proba-

bilistic distribution represented by the given probabilistic circuit. This means the quality of the

computed answers to those queries largely depends on how accurately the given probabilistic cir-

cuit represents the true data distribution. This chapter addresses this second big challenge in this

dissertation by introducing our proposed method to effectively learn a probabilistic circuit from

data.

4.1 Background

Tractable learning aims to induce complex, yet tractable probability distributions from data [MV16].

The learned tractable model serves as a certificate to the user that any query that arises can always

be answered efficiently. And when the learning algorithm is competitive, the learned model can

indeed represent a distribution that is close to the true data distribution. This means the answers

to the assorted reasoning queries can indeed help users analyse and fundamentally understand the

data. Efforts in tractable learning have achieved great success inducing complex joint distributions

from data without constraints, while guaranteeing efficient exact probabilistic inference; for in-

stance, by learning arithmetic circuits (ACs) or sum-product networks (SPNs). As introduced at

the end of Chapter 2, knowledge compilation algorithms can build probabilistic circuit structures

that are consistent with the logical constraints without looking at the data. In other words, in all

prior probabilistic circuit applications that are subject to logical constraints, the learner is given a
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logical sentence α that encodes domain knowledge (e.g., a constraint encoding rankings or game

traces [CTD16]). Using knowledge compilation, sentence α is first transformed into an logical cir-

cuit, and second into a probabilistic circuit by parameter learning. Prior work does not perform

data-oriented structure learning: no data is used to come up with PSDD structures.

These observations raise two questions: (i) are probabilistic circuits amenable to tractable learn-

ing when no logical constraints or compiled circuit are available a priori, and (ii) can we still learn

probabilistic circuits that are subject to logical constraints while also fitting the data well; that is,

perform true structure learning? To answer both questions, we target the most powerful dialect

of probabilistic circuits, PSDDs, and develop LEARNPSDD, which is the first structure learning

algorithm for PSDDs. It uses local operations on the PSDD circuit that maintain the desired circuit

properties, while steadily increasing model fit. LEARNPSDD is supported by a vtree learning al-

gorithm that captures the data’s independencies in a tree structure, which we empirically show to

be an essential step of the learning process. Moreover, using expectation maximization on top of

LEARNPSDD, we show competitive results on the standard tractable learning benchmarks. When

additionally performing bagging, our PSDD learner reports state-of-the-art results on six datasets.

Finally, the proposed algorithm is general and retains the ability to learn in logically constrained

probability spaces. Here, we empirically show that LEARNPSDD is able to refine the circuits

compiled from constraints, yielding superior likelihood scores.

4.2 Parameter Learning

Before tackling the hard question of structure learning, let us first review how PSDDs’ parame-

ters are learned from data when a structure is given. Thanks to PSDDs’ syntactic properties, the

maximum-likelihood estimate for each PSDD parameter is calculated in closed form by observing

the fraction of complete examples flowing through the relevant wire. More precisely, out of all the

examples that agree with the node context γn, the parameter estimate is the fraction of examples

32



that also agrees with the prime base [pi] [KAD14]:

θ̂i =
D#(γn, [pi])

D#(γn)
. (4.1)

To prevent overfitting, Laplace smoothing is used.

This maximum-likelihood guarantee gives us a great opportunity to tackle the structure learning

problem, as now it is straightforward to compare which structure is better. Without this guarantee,

we can easily fall into the trap that a competitive structure plus an ill-fitted set of parameters still

only induces a distribution that is further away from the data than an ill-fitted structure plus a

competitive set of parameters.

4.3 Vtree Learning

To learn a vtree from data, it is important to understand the assumptions that are implied by a choice

of vtree. PSDDs recursively decompose the distribution by conditioning it on the prime bases [pi].

Specifically, each decision node decomposes the distribution into independent distributions over

X and Y, guided by the vtree.

Proposition 1. [KAD14] Prime and sub variables are independent in PSDD n, given a prime

base:

Prn(XY | [pi]) = Prn(X | [pi]) Prn(Y | [pi])

= Prpi(X) Prsi(Y).

Independence given a logical sentence is called context-specific independence [BFG96]. Which

context-specific independencies can be exploited, as specified by the vtree, has a crucial impact on

PSDD size.

Prior work always obtains its vtree from compiling logical constraints into SDD circuits [CD13],

disregarding the dependencies that are implied by this choice. We propose a novel method that does

induce vtrees based on the independencies found in the data.
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A common way to quantify the level of independence between two sets of variables is their

mutual information:

MI(X,Y) =
∑
x

∑
y

Pr(xy) log
Pr(xy)

Pr(x) Pr(y)
.

Intuitively, low mutual information suggests that X and Y are almost independent, and that the

data distribution can be approximated by a PSDD that satisfies Proposition 1 using only a small

number of primes in each decision node. Therefore, we let mutual information guide the learner:

our objective is to induce a vtree that minimizes the mutual information between the X and Y

variables as they are split in each internal vtree node. Additionally, we will aim to balance the

vtrees. We observe that this tends to produce smaller PSDDs in practice.

However, estimating mutual information between large X and Y requires estimating an expo-

nential number of terms Pr(xy), each of which is hard to estimate accurately from data. Therefore,

we approximate mutual information by average pairwise mutual information:

pMI(X,Y) = avgX∈X,Y ∈Y MI({X}, {Y }).

We present two algorithms for optimizing a vtree’s pMI.

Top-down vtree induction starts with the full variable set and recursively finds splits. Every step

divides the variables into two equally-sized subsets with minimal pMI. Finding splits is reduced to

a balanced min-cut problem, for which optimized solvers exist [Kar13].

Bottom-up vtree induction starts with singleton sets of variables at the bottom of the vtree. For

each level of the vtree, it pairs two vtrees of the level below, maximizing the pMI of the pairs, in

order to minimize the pMI of future pairings at higher levels. Finding pairings of vtrees reduces to

the minimum-cost perfect matching problem, for which optimized solvers exist [Kol09].

Both methods greedily solve the same problem. The difference lies in the direction of the

greedy optimization. Top-down induction begins at the root and will therefore get the best splits at

the higher levels. Bottom-up starts from the leaves and will therefore get the best pairings at the

lower levels. Section 4.7 will present an empirical comparison showing that bottom-up induction
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outperforms the top-down approach. Intuitively, most interactions occur between small numbers

of variables, which makes the lower levels of the vtree more important.

4.4 Structure Learning Algorithm

This section presents the first algorithm to learn PSDD structure from data. The objective is to

obtain a compact structure that approximates the data distribution well.

We propose three operations, split, clone, and merge, that change the PSDD structure while

keeping the PSDD syntactically sound and the base of the root node unaltered. The soundness

criteria guarantee that the learned PSDD follows the syntactic definitions described in Chapter 2.

Not changing the root node’s base guarantees that any constraint (i.e., domain knowledge) that is

encoded in the PSDD remains intact. Our learner applies these operations greedily to optimize a

score function.

4.4.1 Structure Change Operations

Three operations are introduced to change the PSDD structure to represent a different distribution

over the same base. Those three can be roughly divided into two groups. The first two, split and

clone, belong to one group, as they both expand the PSDD structure by introducing more nodes

and their associated wires; merge forms its own group, as in contrast, it shrinks the PSDD structure

by deleting a sub-part rooted at some intermediate decision node and rewiring its parents to take

inputs from some other intermediate decision node that represents a similar distribution with a

smaller structure size.

The split operation splits an element (AND node) into multiple elements by constraining the

prime. The elements are split based on a mutually exclusive (disjoint) and exhaustive set of partial

assignments to the prime variables. This ensures that the decision node remains deterministic.

Indeed, for any assignment to the prime variables that had a non-zero probability in the element
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Algorithm 2: Split(n, i,Zs ,m)

Input: n, i: the ith element of node n to split, Zs: mutually exclusive and exhaustive set of

variable assignments, m: depth of PartialCopy

Result: The ith element of node n is split on Zs .

1 n2c = ∅ // maps nodes to copies

2 RemoveElement(n, (pi, si))

3 foreach z ∈ Zs do

4 PartialCopy(pi, z, m, n2c)

5 PartialCopy(si, true, m, n2c)

6 AddElement(n, (n2c[pi], n2c[si]))

A δ ¬A ε

β γ

α

A δ ¬A ε

β ∧ A β ∧ ¬A γ

αsplit on A

Figure 4.1: Minimal Split. Nodes labels are their base.
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Algorithm 3: Clone(n, P,m)

Input: n: node to clone, P : parent nodes and elements to redirect to clone, m: depth of

PartialCopy

Result: Parents P are redirected to the clone of n.

1 n2c = ∅ // maps nodes to copies

2 PartialCopy(n, true, m, n2c)

3 foreach (π, i) ∈ P do Update(π, (i, n, n2c[n]))

α α αclone

Figure 4.2: Minimal Clone. Base α does not change.
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Algorithm 4: PartialCopy(n, z,m, n2c)
Input: n: node to copy, z: variable assignment, m: depth of copy, n2c: map of nodes to

copy

Result: constrained copy of n in n2c

1 E = ∅

2 X and Y are the partition variables of n

3 zp = ∃Yz ; zs = ∃Xz

4 for i← 1 to n do

5 if zp � [pi] ∧ zs � [si] then

6 p′ = pi ; s′ = si

7 if m > 0 or [pi] 6⇒ zp then

8 if pi 6∈ n2c then PartialCopy(pi, zp,m− 1, n2c)

9 p′ = n2c[pi]

10 if m > 0 or [si] 6⇒ zs then

11 if si 6∈ n2c then PartialCopy(si, zs,m− 1, n2c)

12 s′ = n2c[si]

13 E = E ∪ [(p′, s′)]

14 n2c[n] = NewNode(E)

before the split, there can be at most one element after the split that assigns a non-zero probability to

it. To execute a split (Figure 4.1, Algorithm 2), a new element is created for each partial assignment,

where the new prime is a copy of the original prime constrained by the assignment. The new sub

is an unconstrained copy. The original element is removed from its decision node.

The clone operation makes a copy of a node and redirects some of the parents to the copy

(Figure 4.2, Algorithm 3).

Both operations need to make partial copies of a decision node and its descendants. Our algo-
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α

D1

α

D2

merge α

D2D1

Figure 4.3: Merge. To-be-merged probabilistic circuit nodes are normalized for the same vtree node

and have the same base α. The probabilistic circuit node with a smaller number of descendants is

retained. The parents of the bigger one are rewired to the smaller one.

rithm can perform these copies up to some specified depthm. A minimal operation (m = 0) copies

as few nodes as possible, and a complete operation copies all nodes. Any non-minimal operation

(m > 0) is equivalent to multiple minimal operations. The complete description of the partial-copy

algorithm is as the following. A copy of a node creates a new fold for that node and its descendants

up to a specified level (Algorithm 4, lines 8,11). The elements of the copy beyond the specified

level redirect to nodes of the original PSDD (line 6). Optionally, the copy can be constrained to a

partial assignment for some variables. In this case, only descendants that agree with the assignment

are kept in the copy (line 5) and nodes beyond the specified level may have to be copied to enforce

the constraint (lines 7, 10).

The merge operation takes as input two PSDD decision nodes that respect the same vtree and

have the same base. It removes the larger node and redirects its parents to the remaining one; see

Figure 4.3. The parameters of the modified substructure need to be re-estimated on the union of

the datasets D1 and D2 that flows through the original nodes.
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4.4.2 Validity of Operations

Before really making use of those operations to propose a competitive structure learning algorithm,

we first need to make sure using them will not make PSDDs invalid.

Proposition 2. Splits and clones maintain a PSDD’s syntactic properties and do not alter the base

of its root.

Definition 3 (Valid PSDD node). A PSDD node n that is normalized for a vtree node v is valid if:

(1) all primes pi are valid nodes and normalized for the left child of v; (2) all subs si are valid nodes

and normalized for the right child of v; (3) the primes are mutual exclusive: ∀i 6= j, [pi]∧ [pj] = ⊥;

(4) all elements are satisfiable: ∀i, [pi] ∧ [si] 6= ⊥.

A valid operation keeps the PSDD syntactically sound and does not alter the base of the root

node.

Lemma 1 (PartialCopy(n, z,m, n2c) is valid). If the following conditions are satisfied: (1) n is

valid; (2) n2c is valid (this means that it only contains entries n → n′ where n and n′ are nor-

malized for the same vtree, valid and [n′] = [n] ∧ zn, where zn is the projection of the assignment

z to the variables in the vtree of node n); (3) z only contains variables in the vtree of n and is

satisfiable in n: z � [n].

Proof. Proof by induction.

Note the following preconditions hold and we use them in our proof: (1) n2c includes n; (2)

n2c is valid.

Base case: m = 0 and [n]→ z. In the base case, only one decision node is added according to

n2c which is n′, the copy of n. Because n and n′ have the same elements, n′ is valid and [n] = [n′].

Because z is implied by [n], [n′] = [n] ∧ zn.

Induction step: To use the inductive assumption, we first show that the preconditions hold

for the calls of PartialCopy. Because n is valid, so are its primes and subs. By induction and
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precondition, n2c is valid. Finally, zp and zs only contain the relevant variables because the others

are forgotten using existential quantification.

The first postcondition is satisfied because n is added to n2c in line 14. In terms of the second

postcondition, we consider 3 cases: (i) The entry is already in n2c when PartialCopy is called, then

it is valid because of the precondition. (ii) The entry is added by a recursive call of PartialCopy,

then it is valid because of induction. (iii) The entry is n→ n′, where n′ has an element (p′i, s
′
i) for

every element (pi, si) ∈ n, except for those that do not agree with the assignment: pi ∧ zp = ⊥

or si ∧ zs = ⊥. p′i and s′i are normalized for the correct vtrees because they either are the original

children, or they come from n2c which is valid by the precondition and induction.

We proceed to prove the mutual exclusivity of the copied primes, the satisfiability of the copied

elements, and the correctness of the base of the copied decision node.

The primes of n′ are mutually exclusive:

[p′i] ∧ [p′j] = [pi] ∧ zp ∧ [pj] ∧ zp

= [pi] ∧ [pj] ∧ zp

= ⊥

All elements of n′ are satisfiable because all the elements of n are satisfiable and elements that

would become unsatisfied by conditioning on z are removed.

The base of n′ is the base of n constraint by z:

[n′] =
∨

i∈n:zp�[pi]∧zs�[si]

[p′i] ∧ [s′i]

=
∨
i∈n

[pi] ∧ zp ∧ [si] ∧ zs

= z ∧
∨
i∈n

[pi] ∧ [si]

= z ∧ [n]
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Proposition 3 (Split(n, i,Zs ,m) is valid). If the following conditions are satisfied: (1) n is valid.

(2) All z ∈ Zs only contain variables of the left children of n’s vtree and are satisfiable in the ith

element of n: z � [pi] ∧ [si]. (3) All z ∈ Zs are mutually exclusive and exhaustive.

Proof. Note that the following postconditions hold and we use them in our proof: (1) n is valid;

(2) the base of n is not altered: [n] = [nold].

The primes and subs of n are normalized for the correct vtree because n is valid and n2c is

valid (Lemma 1).

The primes of n are mutually exclusive if: (i) the original primes are mutually exclusive, (ii) the

new primes are mutually exclusive, and (iii) every pair of an original prime and a new prime is

mutually exclusive.

All the elements of n are satisfiable, because the precondition states that all the assignments

must be satisfiable in the split element.

The original base of n is [nold] =
∨
j[pj] ∧ [sj]. After the split, the base is:

[n] =
∨
j 6=i

[pj] ∧ [sj] ∨
∨
z∈Zs

[pi,z] ∧ [si]

=
∨
j 6=i

[pj] ∧ [sj] ∨
∨
z∈Zs

[pi] ∧ z ∧ [si]

=
∨
j 6=i

[pj] ∧ [sj] ∨
(

[pi] ∧ [si] ∧
∨
z∈Zs

z
)

=
∨
j 6=i

[pj] ∧ [sj] ∨
(

[pi] ∧ [si]
)

= [nold]

Proposition 4 (Clone(n, P,m) is valid). If the following conditions are satisfied: (1) n is valid;

(2) ∀(π, i) ∈ P , n is either pπ,i or sπ,i.
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Proof. Note the following postconditions hold and we use them in our proof: (1) ∀(π, i) ∈ P , π

is valid; (2) ∀(π, i) ∈ P , the base of π is not altered: [π] = [πold]. Because of lemma 1 and the

preconditions, n′ is a valid node with the same vtree and base as n. Redirecting the parents to this

node therefore keeps the parents valid and also remains the base as unaltered.

Proposition 5 (Merge(n,m) is valid). If the following conditions are satisfied: (1) n and m are

normalized for the same vtree node; (2)n and m have the same base.

Proof. n and m are valid nodes in the first place. Given this and the preconditions, redirecting the

parents of one node to the other keeps the parents valid.

4.4.3 Locality of Splits and Clones

Splits and clones are local operations. Only the node that is modified, the parents that are redirected

and the copied descendants are affected. Furthermore, key properties of an operation, such as the

required change in PSDD structure and the improvement in likelihood, are typically not affected

by operations elsewhere in the PSDD.

Local operations have four desirable properties. First, the complexity of executing an operation

is bounded by the number of elements it affects; cheap operations are thus possible in large PSDDs.

Second, the difference in PSDD size after an operation can be easily obtained; it is the difference

in the affected elements.

Third, the difference in likelihood can be computed by only looking at the elements that are

affected. Indeed, [KAD14, long version] proves that the log-likelihood decomposes over the PSDD

elements as follows.

Proposition 6. The log-likelihood of PSDD r given dataD is a sum of log-likelihood contributions
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per node:1

lnL(r|D) = ln Pr
r

(D) =
∑
n∈r

∑
i∈n

ln θn,i D#(γn, [pn,i]),

where D#(γn, [pn,i]) is the number of examples that satisfy the node context of n and the base of

n’s prime pn,i.

Fourth, we would like to simulate candidate operations before committing to execute them.

Because size and likelihood changes are not affected by other operations, we can cache their values

when considering a large number of candidate operations during structure search.

Local operations support principled tractable learning, using exact estimates of likelihood and

tractability (size). Many other learners, especially traditional ones, are required to approximate the

likelihood and have no ability to reliably determine the tractability of a learned model.

4.4.4 LEARNPSDD Algorithm

We build on our split and clone operations to create the first PSDD structure learning algorithm

called LEARNPSDD2. It incrementally improves the structure of an existing PSDD to better fit the

data. In every step, the structure is changed by executing an operation. Learning continues until the

log-likelihood on validation data stagnates, or a desired time or size limit is reached. The operation

to execute is greedily chosen based on the best likelihood improvement per size increment:

score =
lnL(r′ | D)− lnL(r | D)

size(r′)− size(r)

where r is the original and r′ the updated PSDD.

The algorithm needs to be provided with an initial PSDD and vtree. It can take any PSDD,

even one that encodes domain knowledge in its base, as is done in existing applications of PSDDs.

It can also be a trivial, maximally uninformative PSDD n whose base [n] = true and whose

1This equation treats terminal nodes as degenerate decision nodes with primes X and ¬X , and subs true and false
.

2Open-source code and experiments are available at https://github.com/UCLA-StarAI/LearnPSDD.
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distribution factorizes completely over the variables. The vtree can either come from compiling

those constraints, or can be learned from data as described in Section 4.3.

In each iteration, LEARNPSDD considers one clone per node and one split per element. The

clone is the best clone for that node where at most k parents are moved to the copy. The split is

the best split with the partial assignments limited to one prime variable. Only the scores of the

operations that use nodes affected by the previous iteration’s operation need to be recalculated.

The operation depth parameter m is fixed during learning. The larger this parameter, the more

elements are added and the larger the log-likelihood improvement per operation. A large m speeds

up the learning but learns larger PSDDs, which are more prone to overfitting.

4.4.5 Implementation Details

We discuss the implementation details of LEARNPSDD.

Data In The Nodes The training data is explicitly kept in PSDD nodes during learning. Every

node contains a bitset that indicates which examples agree with the context of that node. This

speeds up parameter estimation and log-likelihood calculations, which are needed for every execu-

tion and simulation of an operation. For simulation of an operation, a bitmask is used to represent

the examples that are moved to a copy.

Unique Node Cache To avoid duplicate calculations when doing inference, PSDD should not

have duplicate nodes. This is accomplished using the unique-node technique, where a cache of the

nodes is kept and it is checked every time before creating a new node [MT12]. In general, two

nodes are considered equal if they have the same (p, s, θ) elements. During learning, however, we

adapt this by considering two nodes different if they might evolve to a different structure, based

on the training data that it contains. There are two reasons for a node not to change. First, if the

node’s base is a complete assignment, i.e., if all descendants of this node have only one element,

then there are possible LEARNPSDD operations. A clone would be useless in this case because
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all the parameters would remain as 1. Second, if the node contains no data. Such a node cannot

contribute to the log-likelihood and has therefore no reason to change.

The number of added nodes is no longer a local characteristic of an operation, as it depends

on the nodes available in the cache. To cope with this, we consider nodes that can be cached as

free nodes: they are not counted in the score. This makes sense because if the node is already in

the cache, it does not need to be added, otherwise adding it to the cache can make subsequent

operations less expensive to simulate or execute.

SDDs In The Nodes SDDs are kept in the nodes to represent their base. This is not really needed,

because the base is implied by the structure of the PSDD. However, during structure learning,

PSDDs grow bigger, while SDDs do not. Therefore, if the base needs to be checked, doing this on

the SDD is more efficient. Note that before any structure learning is done, the SDD is larger than

the PSDD because SDD’s primes need to be exhaustive and therefore the SDD may have elements

for subs that represent false. However, PSDDs are expected to grow larger than the corresponding

SDDs during structure learning.

4.5 Ensembles and Structural EM

This section extends LEARNPSDD to induce mixtures of PSDDs. A mixture of PSDDsM is a set

of pairs (ri, wi) where each ri is a component PSDD and wi is its mixture weight. A mixture of n

PSDDs must have
∑n

i=1wi = 1. We further assume that all ri are normalized for the same vtree.

A mixture of PSDDsM represents the probability distribution PrM(X) =
∑n

i=1wi Prri(X).

An ensemble of PSDDs is equivalent to a single PSDD with latent variables. More precisely, by

adding dlog(n)e Boolean variables L to the top of the vtree (encoding an n-valued latent compo-

nent identifier), and mixing between the component PSDDs with an additional decision node, one

can capture the distribution PrM(X) in a single PSDD circuit. Figure 4.4 depicts this reduction.

Because the latent variables L are not observable, the mixture weights wi cannot be learned
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(a) Mixture of two PSDDs with outline of a common vtree.
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(b) Equivalent single PSDD and vtree with latent variable L.

Figure 4.4: Representing ensembles as a single PSDD.

from data in closed form. Instead, we appeal to expectation maximization (EM) for optimizing the

likelihood L(M | D) given dataset D =
{
d(1),d(2), . . . ,d(M)

}
.

We propose EM-LEARNPSDD, a variant of the (soft) structural EM algorithm [Fri98], to learn

the structure and parameters of ensembles of PSDDs. In soft EM, each example x(j) takes part in

each component (that is, each PSDD ri) with weight αi,j , resulting in weighted datasets D̄i for

each component. Weights αi,j represent the probability that example x(j) belongs to distribution

ri, and therefore
∑

i αi,j = 1 for all j.

EM-LEARNPSDD consists of two nested learners: an outer EM for structure learning and an

inner EM for parameter learning. The outer E-step is the inner learner. The outer M-step uses

LEARNPSDD to improve the structure of all PSDD components given the weighted datasets D̄i.

It also updates the component weights as

wi =
M∑
j=1

αi,j/

n∑
k=1

M∑
j=1

αk,j.
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The inner E-step redistributes the data over components ri. For every example d(j), it updates the

weights in each component’s weighted dataset D̄i as

αi,j =
Prri(d

(j))∑n
k=1 Prrk(d

(j))
.

The inner M-step learns the parameters in ri from D̄i using closed-form estimates (employing a

weighted version of Equation 4.1). Internal EM steps alternate until convergence, or for a maxi-

mum number of iterations. We find empirically that a maximum of 3 inner EM iterations is suffi-

cient to improve the parameters and warrants moving to another iteration of the outer EM structure

learner.

The initial weighted datasets D̄i are found by k-means clustering on D. These clusters are

softened by weighting an example in the cluster with 1 − (n − 1)ε and one not in the cluster

with ε (default 0.05). K-means clustering empirically provides a better starting point for EM-

LEARNPSDD, as worlds (i.e., examples) belonging to the same component distribution tend to be

closer in Euclidean distance.

4.6 Related Work

Sentential Decision Diagrams (SDD) are tractable representations that are closely related to the

PSDD. Despite being a purely logical circuit, one can reduce statistical models to a weighted

model counting task on an SDD encoding [CKD13]. [BDC15] learn Markov networks that have a

compact SDD for weighted model counting. The learning algorithm uses bottom-up compilation

to incrementally add factors to the SDD. It selects features based on a likelihood vs. size trade-off.

Adding features is a global modification and requires all parameters to be re-learned by convex

optimization.

PSDDs can be reduced to sum-product networks (SPNs), which are a syntactic variation on

arithmetic circuits (ACs). A PSDD can be turned into an equivalent SPN by replacing AND nodes

by products and OR nodes by sums. Several learning algorithms for SPNs exist. LearnSPN induces
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an SPT (an SPN tree structure) by splitting on latent variables [GD13]. O-SPN and L-SPN improve

this algorithm by merging parts of the SPT back into a DAG [RG16b]. [VDE15] describe various

improvements to reduce overfitting in LearnSPN. SearchSPN shares with LEARNPSDD that it

uses local operators (a combination of a type of minimal split on a latent variable with a type of

minimal clone) [DV15].

Probabilistic decision graphs (PDGs) have a variable forest that defines the dependencies be-

tween variables, much like vtrees [JNS06]. To induce a variable forest, one learns small PDGs for

different forests and chooses the best one. PDG structure learning applies split, merge, and redirect

operations to the graph in a fixed order, much like L-SPN and O-SPN.

Beyond these, there is a vast literature on tractable learning algorithms that are less related to

LEARNPSDD, include ACBN [LD08], ACMN [LR13], ID-SPN [RL14] and ECNet [RG16a].

4.7 Experiments

We evaluate the performance of LEARNPSDD and EM-LEARNPSDD, and provide deeper in-

sights into PSDD learning. Section 4.7.2 evaluates how vtrees affect the learner. Section 4.7.3 to

4.7.6 demonstrate that PSDDs are amenable to learning in probability spaces without logical con-

straints. Section 4.7.7 illustrates that we can further shrink the learned PSDDs to make them more

interpretable without sacrificing the data fit. Lastly, Section 4.7.8 shows that LEARNPSDD is able

to capture a logically constrained probabilistic space while also fitting the data well.

4.7.1 Setup

We evaluate our learners on a standard benchmark suite [VD12]. This suite consists of 20 real-

world datasets. Their important attributes are summarized in Table 4.1. These datasets have been

used in various previous works for evaluating the performance of assorted tractable model learners

[GD13, LR13, ABG15, RL14, RG16a]. These datasets do not assume any prior domain knowledge,

49



Table 4.1: Important attributes of the 20 standard density estimation benchmark datasets.

Dataset |Var| |Train| |Valid| |Test|

NLTCS 16 16181 2157 3236

MSNBC 17 291326 38843 58265

KDD 64 1800992 19907 34955

Plants 69 17412 2321 3482

Audio 100 15000 2000 3000

Jester 100 9000 1000 4116

Netflix 100 15000 2000 3000

Accidents 111 12758 1700 2551

Retail 135 22041 2938 4408

Pumsb-Star 163 12262 1635 2452

DNA 180 1600 400 1186

Kosarek 190 33375 4450 6675

MSWeb 294 29441 32750 5000

Book 500 8700 1159 1739

EachMovie 500 4524 1002 591

WebKB 839 2803 558 838

Reuters-52 889 6532 1028 1530

20NewsGrp. 910 11293 3764 3764

BBC 1058 1670 225 330

AD 1556 2461 327 491

and are not associated with any logical constraints. Our experiments run for 24 hours or until

convergence on the validation set, whichever happens earlier. They run on servers with 16-core

2.6GHz Intel Xeon CPUs and 256GB RAM.

4.7.2 Impact Of Vtrees

Because a PSDD’s structure is so strongly constrained by the vtree it is normalized for, we would

expect vtrees to play a crucial role in determining the size of a PSDD, and more importantly, the
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Figure 4.5: Bottom-up-induced vtrees result in better PSDDs, with higher likelihood and fewer

parameters (bottom figure) and are learned in less time (top figure). This particular comparison

figure is generated by running experiments on the dataset Plant. A similar pattern can also be

observed in other datasets.
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quality of the probability distributions we can learn with the given data and PSDD size available.

To evaluate vtrees’ impact and the vtree learners described in Section 4.3, we generate 3 vtrees

per dataset: (i) using top-down induction, (ii) using bottom-up induction, and (iii) a balanced vtree

with a random variable ordering. We run LEARNPSDD for five hours, with the operation depth

parameterm set to 3, using these 3 vtrees. We compare the learned PSDDs in terms of their quality

(log-likelihood) as a function of learning time, and their size (number of parameters) as a function

of quality.

Figure 4.5 shows the experimental results for a representative dataset (plants). As expected,

bottom-up induction learns superior vtrees, followed by top-down and finally random. The PSDD

with a better vtree achieves a higher log-likelihood and is more tractable (smaller). Moreover, a

better vtree reduces learning time. In all three cases, LEARNPSDD starts from a trivial initial

PSDD. Hence, the log-likelihood is the same for all vtrees at the start of learning. Bottom-up vtree

induction is used for the remaining experiments.

4.7.3 Evaluation Of LEARNPSDD

As discussed in Section 4.6, the approach LEARNPSDD takes is closely related to SearchSPN.

We therefore evaluate LEARNPSDD’s performance in comparison to SearchSPN. The operation

copy depth m of LEARNPSDD is fixed to 3. As shown in Table 4.2, LEARNPSDD achieves a

better testset log-likelihood than SearchSPN (or ties) in 5 datasets while being competitive in most

of the other datasets. In general, LEARNPSDD’s performance is weaker than SearchSPN. This is

expected, because SearchSPN uses many thousands of latent variables, while LEARNPSDD uses

none, and PSDDs are necessarily more restrictive than SPNs.

4.7.4 Evaluation Of EM-LEARNPSDD

The structural EM algorithm that augments LEARNPSDD essentially decomposes the optimiza-

tion problems for parameter and structure learning. With a new layer of modeling power, EM-
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Table 4.2: Comparison among LEARNPSDD, EM-LEARNPSDD, SearchSPN, merged L-SPN

and merged O-SPN in terms of performance (log-likelihood) and model size (number of parame-

ters). Sizes for SearchSPN are not reported in the original paper. We use the following notation:

(1) LL: Average test-set log-likelihood; (2) Size: Number of parameters in the learned model;

(3) † denotes a better LL between LEARNPSDD and SearchSPN; (4) ∗ denotes a better LL be-

tween LEARNPSDD and EM-LEARNPSDD; (5) Bold likelihoods denote the best LL among

EM-LEARNPSDD, SearchSPN, merged L-SPN and merged O-SPN.

Dataset |Var|
LEARNPSDD EM-LEARNPSDD SearchSPN Merged L-SPN Merged O-SPN

LL Size LL Size LL LL Size LL Size

NLTCS 16 −6.03†∗ 3170 −6.03∗ 2147 −6.07 −6.04 3988 −6.05 1152

MSNBC 17 −6.05† 8977 −6.04∗ 3891 −6.06 −6.46 2440 −6.08 9478

KDD 64 −2.16† 14974 −2.12∗ 9182 −2.16 −2.14 6670 −2.19 16608

Plants 69 −14.93 13129 −13.79∗ 13951 −13.12† −12.69 47802 −13.49 36960

Audio 100 −42.53 13765 −41.98∗ 9721 −40.13† −40.02 10804 −42.06 6142

Jester 100 −57.67 11322 −53.47∗ 7014 −53.08† −52.97 10002 −55.36 4996

Netflix 100 −58.92 10997 −58.41∗ 6250 −56.91† −56.64 11604 −58.64 6142

Accidents 111 −34.13 10489 −33.64∗ 6752 −30.02† −30.01 13322 −30.83 6846

Retail 135 −11.13 4091 −10.81∗ 7251 −10.97† −10.87 2162 −10.95 3158

Pumsb-Star 163 −34.11 10489 −33.67∗ 7965 −28.69† −24.11 17604 −24.34 18338

DNA 180 −89.11∗ 6068 −92.67 14864 −81.76† −85.51 4320 −87.49 1430

Kosarek 190 −10.99† 11034 −10.81∗ 10179 −11.00 −10.62 5318 −10.98 6712

MSWeb 294 −10.18† 11389 −9.97∗ 14512 −10.25 −9.90 16484 −10.06 12770

Book 500 −35.90 15197 −34.97∗ 11292 −34.91† −34.76 11998 −37.44 11916

EachMovie 500 −56.43∗ 12483 −58.01 16074 −53.28† −52.07 15998 −58.05 19846

WebKB 839 −163.42 10033 −161.09∗ 18431 −157.88† −153.55 20134 −161.17 10046

Reuters-52 889 −94.94 10585 −89.61∗ 9546 −86.38† −83.90 46232 −87.49 28334

20NewsGrp. 910 −161.41 12222 −161.09∗ 18431 −153.63† −154.67 43684 −161.46 29016

BBC 1058 −260.83 10585 −253.19∗ 20327 −252.13† −253.45 21160 −260.59 8454

AD 1556 −30.49∗ 9666 −31.78 9521 −16.97† −16.77 49790 −15.39 31070
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LEARNPSDD is expected to learn more effectively. Therefore, we reduce the depth parameter m

to learn smaller PSDD components while retaining a high-quality mixture overall. This experi-

ment uses a combination of minimal operations (80%) and operations with a depth of 3 (20%).

Minimal operations get chosen most often, resulting in smaller circuits for the same number of

operations. We determine the number of components by conducting a grid search over {3, 5, 7, 9}

on validation data and report the best result for each dataset. EM-LEARNPSDD surpasses or ties

the performance of LEARNPSDD in 17 datasets and it learns smaller models in 13 datasets; see

Table 4.2. EM-LEARNPSDD is superior to LEARNPSDD in 12 datasets by being more accurate

and more tractable at the same time.

4.7.5 Comparison with SPN Learners

SPNs have been demonstrated to be quite effective for tractable learning in probability spaces that

are not subject to logical domain constraints. SPN learners have generated state-of-the-art results

in the 20 benchmark datasets [RL14, RG16b]. Specifically, merged L-SPN and O-SPN are the first

few SPN structure learners that consider a heuristic merging strategy and therefore produce SPNs

that have a significant advantage in size with no loss in performance. In fact, merging for SPNs

shows an improvement in test-set log-likelihood for most datasets [RG16b]. We will demonstrate

the effect of merging on PSDDs in Section 4.7.7. We compare our EM-LEARNPSDD with merged

L-SPN and merged O-SPN.

As shown in Table 4.2, EM-LEARNPSDD is competitive with merged L-SPN and O-SPN.

This result is surprising because PSDDs are much more restrictive than SPNs. EM-LEARNPSDD

outperforms O-SPN on likelihood in 11 datasets, learns smaller models in 14 datasets, and wins on

both measures in 6 datasets; EM-LEARNPSDD outperforms L-SPN on likelihood in 6 datasets,

learns smaller models in 14 datasets and wins on both in 2 datasets.
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Table 4.3: Comparison of test-set log-likelihood between LearnPSDD and the state of the art (†

denotes the best).

Datasets |Var|
LEARNPSDD

Best-to-Date
Ensemble

NLTCS 16 −5.99† −6.00

MSNBC 17 −6.04† −6.04†

KDD 64 −2.11† −2.12

Plants 69 −13.02 −11.99†

Audio 100 −39.94 −39.49†

Jester 100 −51.29 −41.11†

Netflix 100 −55.71† −55.84

Accidents 111 −30.16 −24.87†

Retail 135 −10.72† −10.78

Pumsb-Star 163 −26.12 −22.40†

DNA 180 −88.01 −80.03†

Kosarek 190 −10.52† −10.54

MSWeb 294 −9.89 −9.22†

Book 500 −34.97 −30.18†

EachMovie 500 −58.01 −51.14†

WebKB 839 −161.09 −150.10†

Reuters-52 889 −89.61 −80.66†

20NewsGrp. 910 −155.97 −150.88†

BBC 1058 −253.19 −233.26†

AD 1556 −31.78 −14.36†
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4.7.6 Comparison with the State of the Art

In this section, we demonstrate that we can achieve near state-of-the art performance using our

EM-LEARNPSDD algorithm. It was shown in previous studies that bagged ensembles with expec-

tation maximization can significantly improve results on many of the 20 datasets [RG16a, RG16b].

We therefore build bagging ensembles on top of EM-LEARNPSDD. The result is still equivalent

to a single PSDD, by a translation similar to the one shown in Figure 4.4 for mixture models,

except the wis for bagging represent a uniform distribution. Our goal with this experiment is to

match or exceed the state-of-the-art. This is a very strong baseline, consisting of five competitive

tractable model learners: (1) ACMN [LR13], (2) ID-SPN [RL14], (3) SPN-SVD [ABG15], (4)

ECNet [RG16a] and (6) Merged L-SPN [RG16b].

When fixing the number of bags to 10, EM-LEARNPSDD is competitive with the state of the

art and surpasses it on 6 out of 20 datasets; see Table 4.3.

Overall, the experiments outlined so far have incrementally demonstrated that the PSDD struc-

ture learning algorithms proposed in this paper (LEARNPSDD and EM-LEARNPSDD) perform

competitively in classical probability spaces without domain constraints. This is despite the fact

that PSDDs are more tractable and have more syntactic properties than their alternatives.

4.7.7 Effects of Merging

Both the interpretability and the tractability of a learned PSDD depend critically on its size. In

LEARNPSDD, this is largely a function of the depth of splits and clones. This subsection reports

our work on controlling the size of the PSDD during learning by merging similar substructures

with an algorithm called MERGEPSDD. This helps find the right trade-off between the number of

parameters and the data fit, and eliminates the need to tune the depth parameter.

MERGEPSDD needs an initial learned PSDD. The default approach is to learn a large PSDD

using LEARNPSDD. MERGEPSDD iterates over vtree nodes bottom-up. In each iteration, all

pairwise combinations of PSDD decision nodes that respect the considered vtree node and that
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Figure 4.6: MERGEPSDD prunes away “unnecessary” PSDD structures while slightly improving

performance. Top: on dataset Jester. Bottom: on dataset MSNBC.
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Table 4.4: Number of parameters in PSDDs learned by LEARNPSDD using frugal or greedy oper-

ations, and MERGEPSDD. LL is the desired test-set log-likelihood.

Dataset Target LL
Frugal Greedy

MERGEPSDD
LEARNPSDD LEARNPSDD

NLTCS −6.08 7491 31669 23471

MSNBC −6.05 11074 17687 12943

KDD −2.19 13814 29429 18921

Plants −16.98 12021 12398 11574

Audio −44.64 5804 5494 5389

Jester −56.21 11774 16149 12349

also have the same base are the candidates for the merge operation. The pairwise combination

that yields the lowest intersectional divergence is chosen. To be more careful, the chosen merge

operation is simulated in advance and only executed if the likelihood on validation data does not

decrease. We evaluate the effectiveness of MERGEPSDD with a focus on size decrements. For

each dataset in Table 4.4, two different PSDDs are learned, one using greedy operations (complete

split) and the other using frugal operations (a mixture of 80% minimal operations and 20% depth-3

operations). Greedy LEARNPSDD aims to maximize the learning speed, but some PSDD size may

be wasted. Frugal LEARNPSDD aims to have a better balance between size and learning speed.

LEARNPSDD runs for 24 consecutive hours or until reaching the desired test-set log-likelihoods,

whichever happens earlier. As expected, the model learned by greedy LEARNPSDD is significantly

larger than the one learned by frugal LEARNPSDD.

MERGEPSDD is applied on the model learned by greedy LEARNPSDD. MERGEPSDD run

sfor 6 consecutive hours or until all potential merge operations are exhausted, whichever happens

first. As shown in Figure 4.6, MERGEPSDD effectively shrinks the gap in the size of the models

learned by greedy LEARNPSDD and frugal LEARNPSDD. A full result on all 6 datasets that

MERGEPSDD runs on is reported in Table 4.4. It shows that MERGEPSDD is able to effectively
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reduce PSDD size, making the models more tractable and interpretable, without sacrificing too

much in terms of model quality, by virtue of our KL-divergence heuristic.

4.7.8 Evaluation in Constrained Space

PSDDs pay for their desirable properties, such as their ability to encode domain knowledge into

their base, and ability to answer complex queries, by being a more restrictive representation. The

experiments so far do not directly exploit these desirable properties, to allow for a comparison with

other tractable learners. They therefore only experience the restrictiveness. However, the next ex-

periments show that in practical domains, and spaces with domain constraints in particular, having

these desirable properties can be a great advantage.

Many real-world datasets contain discrete multi-valued data, instead of being only binary. The

straightforward way to use general ACs for multi-valued domains, is to introduce a binary variable

for each value of the multi-valued variable. Unfortunately, in the learned distribution, it will then

be possible for a multi-valued variable to have multiple values simultaneously. PSDDs can easily

cope with this by encoding into the base that binary variables belonging to the same multi-valued

variable must be mutually exclusive, and at least one must be true.

To assess the advantage of PSDD in this setting, we compare three learning approaches: (i)

LEARNPSDD without domain constraints, (ii) parameter learning on an SDD that is compiled

from the constraints (as in prior work, for example [KAD14]), and (iii) applying LEARNPSDD on

the initial PSDD obtained from (ii). We use the same vtree in all settings and run LEARNPSDD

for 5 hours. We conduct the experiments on two real-world datasets from the UCI repository:

Adult and CoverType. Continuous features are discretized into four equal-sized bins. Adult has

14 original (125 binary) variables and CoverType has 12 original (84 binary) variables. Adult and

CoverType respectively contain 32,562 and 581,012 examples.

As expected, learning structure on top of the constraints yields the best models. Interestingly,

only using the constraints to come up with the SDD structure strongly outperforms unconstrained
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Table 4.5: Incorporating domain constraints improves the quality of the learned distributions. Com-

pared settings: (i) unconstrained LEARNPSDD, (ii) constrained PSDD (no LEARNPSDD), and

(iii) constrained LEARNPSDD.

Dataset No Constraint PSDD LEARNPSDD

Adult −18.41 −14.14 −12.86

CovType −14.39 −8.81 −7.32

structure learning, which shows that ignoring constraints complicates learning significantly. The

improvement is due to the fact that the probabilities of many impossible assignments (given the

multi-valued constraint) are set to 0 and hence the probabilities of the remaining assignments

correspondingly increase.

4.8 Discussion

The two questions raised at the beginning of this chapter both receive a strong positive answer.

LEARNPSDD is an effective algorithm for learning PSDD structures. It achieves some state-of-

the-art results learning classical probability distributions that are not subject to constraints. More-

over, it can just as easily induce structure over logically constrained spaces without losing any

domain-specific information.
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CHAPTER 5

Logistic Circuits: Discriminative Learning of Probabilistic

Circuits

In the last chapter, we have demonstrated that probabilistic circuits are amenable to generative

learning. However, for many applications, one is instead more interested in knowing the most

likely label for the given input. This task is commonly known as classification. To do well in

classifications, learning the complete joint distribution over the input feature variables plus the label

variable (i.e., generative learning) may not be necessary or even desirable. It is commonly believed

that directly learning the conditional probability of the label variable given the input features (i.e.,

discriminative learning) could yield better classification accuracy [NJ02]. Considering this, we

dedicate this chapter to the third big challenge in this dissertation — how to learn a competitive

classifier from data while retaining many of our circuit representations’ properties. To be specific,

this chapter proposes a novel classification representation called logistic circuits, which are the

discriminative counterpart of probabilistic circuits.

5.1 Background

As demonstrated in the last chapter, circuit representations are a promising synthesis of sym-

bolic and statistical methods in AI. They are “deep” layered data structures with statistical pa-

rameters, yet they also capture intricate structural knowledge. Besides LEARNPSDD’s success

in learning tractable joint distributions possibly subject to logical constraints, there exist other

competitive generative learning algorithms proposed for different dialects of probabilistic circuits
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[LD08, RKG14, PD11], which have also been discussed extensively in the last chapter. Collec-

tively, these approaches achieve the state of the art in discrete density estimation and vastly outper-

form classical probabilistic graphical model learners [GD13, RL14, ABG15, RG16b]. However,

we have not observed the same success when deploying circuit representations for classification or

discriminative learning. Probabilistic circuit classifiers significantly lag behind the performance of

neural networks [Ben18].

To further advance the frontier of symbolic-statistical synthesis and address this performance

lag, we propose a new classification representation called logistic circuits, which shares many syn-

tactic properties with the representations mentioned earlier. One can view logistic circuits as the

discriminative counterpart to probabilistic circuits. Owing to their elegant properties, learning the

parameters of a logistic circuit can be reduced to a logistic regression problem and is therefore con-

vex. Learning logistic circuit structure is reduced to a simple local search problem using primitives

from the probabilistic circuit learning literature introduced in the last chapter.

We run experiments on standard image classification benchmarks (MNIST and Fashion) and

achieve accuracy higher than much larger multiple-layer-perceptions (the most classic neural net-

work architecture) and even convolutional neural networks with an order of magnitude more pa-

rameters. For example, logistic circuits obtain 99.4% accuracy on MNIST. Compared to other

tractable learners on MNIST, and the state-of-the-art discriminative SPN learner in particular [PVS18],

our logistic circuit learner cuts the error rate by a factor of three and a factor of 25 compared to

the best generative learner for classification [ABG15]). Furthermore, we show our learner is highly

data efficient, managing to still learn well with limited data.

This chapter proceeds as follows. Section 5.2 introduces the syntax and semantics of logistic

circuits. Sections 5.3 and 5.4 describe our parameter and structure learning algorithms, which Sec-

tion 5.5 evaluates empirically. Section 5.6 elaborates on the connection with tractable generative

models, after which we conclude with discussion about related and future work.
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−2.6 −5.8

−1 3 42.3

−0.5 0.3 1.5 2.8
−4 1 3.9 4

A ¬A

B ¬B

C ¬C D¬D
(a) A logistic circuit

(b) Weights and classification probabilities for select examples

A B C D gr(ABCD) Pr(Y = 1 | ABCD)

1 0 1 1 −3.1 4.31%

0 1 1 0 1.9 86.99%

1 1 1 0 5.8 99.70%

Figure 5.1: A logistic circuit with example classifications.

63



5.2 Representation

This section introduces the logistic circuit representation.

5.2.1 Logistic Circuits

This paper proposes logistic circuits for classification. Syntactically, they are logical circuits where

every AND is decomposable and every OR is deterministic. However, logistic circuits further as-

sociate real-valued parameters θ1, . . . , θm with the m input wires to every OR gate. For example,

the root OR node in Figure 5.1a associates parameters −2.6 and −5.8 with its two inputs.

To give semantics to logistic circuits, we first characterize how a particular complete assign-

ment x (one data example) propagates through the circuit.

Definition 4 (Boolean Circuit Flow). Consider a deterministic OR gate n. The Boolean flow

f(n,x, c) of a complete assignment x between parent n and child c is

f(n,x, c) =


1 if x |= c

0 otherwise

For example, under the assignment A = 0, B = 1, C = 1, D = 0, the root node in Figure 5.1a

has a Boolean circuit flow of 0 with its left child and 1 with its right child. Note that the determinism

property guarantees that under every OR gate, for a given example x, at most one wire has a flow

of 1, and the rest has a flow of 0.

We are now ready to define the logistic circuit semantics.

Definition 5 (Logistic Circuit Semantics). A logistic circuit node n defines the following weight

function gn(x).

– If n is a leaf (input) node, then gn(x) = 0.
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– If n is an AND gate with children c1, . . . , cm, then

gn(x) =
m∑
i=1

gci(x).

– If n is an OR gate with (child node, wire parameter) inputs (c1, θ1), . . . , (cm, θm), then

gn(x) =
m∑
i=1

f(n,x, ci) · (gci(x) + θi) .

At root node r with weight function gr(x), the logistic circuit defines the posterior distribution on

class variable Y as

Pr(Y = 1 | x) =
1

1 + exp (−gr(x))
. (5.1)

Using Boolean circuit flow, this definition essentially collects all the parameters on wires with

flow 1 that reach the root, in order to then make a prediction. This is illustrated in Figure 5.1a by

coloring red the gates and wires whose parameters and weight function are propagated upward for

the example assignment A = 0, B = 1, C = 1, D = 0. The logistic circuit in Figure 5.1a defines

the same posterior predictions as the table in Figure 5.1b. Specifically, for the example assignment,

the weight function simply sums the parameters colored in red: −5.8 + 2.3 + 3.9 + 1.5 = 1.9. We

then apply the logistic function (Eq. 5.1) to get the classification probability

Pr(Y = 1 | x) =
1

1 + exp(−1.9)
= 86.99%.

5.2.2 Real-Valued Data

The semantics given so far assume Boolean inputs x, which is a rather restrictive assumption and

prohibits many machine learning applications. Next, we augment the logistic circuit semantics

such that they can classify examples with continuous variables.

We interpret real-valued variables q ∈ [0, 1] as parameterizing an (independent) Bernoulli dis-

tribution (cf. [XZF18]). Each continuous variable represents the probability of the corresponding

Boolean random variable X . For example, with q setting A = 0.4, B = 0.8, C = 0.2, and
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D = 0.7, the probability of ¬A∧D would be (1− 0.4) · 0.7 = 0.42. The same distribution defines

a probability for each logical sentence, and therefore each node in the logistic circuit. This allows

us to generalize Boolean flow as follows.

Definition 6 (Probabilistic Circuit Flow). Consider a deterministic OR gate n. Let q be a vector

of probabilities, one for each variable in X. The probabilistic flow f(n,q, c) of vector q between

parent n and child c is

f(n,q, c) = Prq(c | n) =
Prq(c ∧ n)

Prq(n)
=

Prq(c)

Prq(n)
,

where Prq(.) is the fully-factorized distribution where each variable in X has the probability as-

signed by q.

Logistic circuit semantics now support continuous data (after normalizing to [0, 1]), simply by

replacing Boolean flow with probabilistic flow in Definition 5. Note that probabilistic circuit flow

has Boolean circuit flow as a special case, when q happens to be binary. Furthermore, due to the

determinism and decomposability properties, the probabilities in Definition 6 can be computed ef-

ficiently, together with all probabilistic circuit flows and weight functions in the logistic circuit. We

defer the discussion of these computational details to Section 5.3.4. In the rest of this paper, we will

abuse notation and have x refer to Boolean inputs as well as continuous inputs q interchangeably.

5.3 Parameter Learning

A natural next question is how to learn logistic circuit parameters from complete data, for a fixed

given circuit structure (structure learning is discussed in Section 5.4). Furthermore, we ask whether

those learned parameters are guaranteed to be optimal, globally minimizing a loss function. We

address these questions by showing how parameter learning can be reduced to logistic regression

on a modified set of features, owing to logistic circuits’ strong properties.

66



θ0

θA θ¬A θB θ¬B θC θ¬C θD θ¬D

A ¬A B ¬B C ¬C D ¬D

Figure 5.2: Logistic regression represented as a logistic circuit.

5.3.1 Special Cases

Before presenting the general reduction, we briefly discuss two special cases that establish some

intuition.

5.3.1.1 Linear Weight Functions

Consider a vanilla logistic regression model on input variables (features) X. Does there exist an

equivalent logistic circuit with the same weight function? For sample x, logistic regression with

parameters θ would have weight function x · θ. Following Definition 5, we obtain such a simple

weight function (linear in the input variables) by placing OR gates over complementary pairs of

literals and associating a θ parameter which each wire (see Figure 5.2).1 A large parent AND gate

collects these variable-wise weights into a single linear sum. Finally, an OR gate at the root adds

the bias term regardless of the input.

Proposition 7. For each classical logistic regression model, there exists an equivalent logistic

circuit model.

1The negated variable inputs and parameters θ¬X are redundant, but we keep them for the sake of consistency.
Alternatively, we can fix θ¬X = 0 for all X to remove this redundancy.
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5.3.1.2 Boolean Flow Indicators

Next, let us consider a special case that makes no assumptions about circuit structure, but that re-

quires the inputs to be fully binary. Such a circuit would have Boolean flows through every wire.

Instead of working with the input variables X, we can introduce new features that are indica-

tor variables, telling us how the example propagates through the circuit, and which wires have a

Boolean flow that reaches the circuit root. The circuit flows (indicators) decide which parameters

are summed into the weight function; this process has been implicitly revealed in Figure 5.1a. By

introducing such indicators, we can always obtain a linear weight function of composite features

that are extracted from sample x. Next, we generalize this idea of introducing wire features to

arbitrary logistic circuits.

5.3.2 Reduction to Logistic Regression

We will now consider the most general case, with continuous input data and no assumptions on the

circuit structure.

Proposition 8. Any logistic circuit model can be reduced to a logistic regression model over a

particular feature set.

Corollary 3. Logistic circuit cross-entropy loss is convex.

To prove Proposition 8, we need to rewrite the classification distribution in Definition 5 as follows.

Pr(Y = 1 | x) =
1

1 + exp(−x · θ)
.

Here, x is some vector of features extracted from the raw example x. This feature vector can

only depend on x; not on the parameters θ. Thus, the fundamental question is whether we can

decompose gn(x) into x · θ for all nodes n. We prove this to be true by induction:

– Base case: n is a leaf (input) node. It is obvious gn can be expressed as x · θ since gn always

equals 0.
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– Induction step: assume g of all the nodes under node n can be expressed as x · θ. We need

to consider two cases:

1. If n is an AND gate having (w.l.o.g.) two children, prime p and sub s. Given gp = xp · θp

and gs = xs · θs,

gn = xp · θp + xs · θs

=

xp
xs

 ·
θp
θs

 .
2. If n is an OR gate with (child node, wire parameter) inputs {(c1, θ1), . . . , (cm, θm)}. Given

gci = xci · θci ,

gn =
∑
i

f(n,x, ci) · (xci · θci + θi)

=



f(n,x, c1) · xc1
f(n,x, c1)

...

f(n,x, cm) · xcm
f(n,x, cm)


·



θc1

θ1
...

θcm

θm


.

Note that this proof holds true regardless of whether the input sample x is binary or real-

valued. With this proof, it is obvious that learning the parameters of a logistic circuit is equivalent

to logistic regression on features x. We refer readers to [Ren05] for a detailed proof that logistic

regression is convex.

Given this correspondence, any convex optimization technique can now be brought to bear on

the problem of learning the parameters of a logistic circuit. In particular, we use stochastic gradient

descent for this task.
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5.3.3 Global Circuit Flow Features

In the proof of Proposition 8, features x are computed recursively by induction. However, it is not

clear what these features represent, and how they are connected to the input data. In this subsection,

we assign semantics to those extracted features. They are the global circuit flow of the observed

example through the circuit. Global circuit flow is defined with respect to the root of a logistic

circuit.

Definition 7 (Global Circuit Flow). Consider a logistic circuit over variables X rooted at OR gate

r. The global circuit flow fr(n,x, c) of input x between parent n and child c is defined inductively

as follows. The global circuit flow between root r and its child c is the (local) probabilistic circuit

flow: fr(r,x, c) = f(r,x, c). Then, for any node n with parents v1, . . . , vm, we have that

– if n is an AND gate, global flow from child c is

fr(n,x, c) =
m∑
i=1

fr(vi,x, n),

– if n is an OR gate, global flow from child c is

fr(n,x, c) = f(n,x, c) ·
m∑
i=1

fr(vi,x, n).

The red wires in Figure 5.1a have a global circuit flow of 1 for the given Boolean input. In

general, global circuit flow assigns a continuous probability value to each wire. Based on global

circuit flow, we postulate the following alternative semantics for logistic circuits.

Definition 8 (Logistic Circuit Alternative Semantics). Let W be the set of all wires (n, θ, c) be-

tween OR gates n and children c with parameters θ. Then, a logistic circuit rooted at node r defines

the weight function

gr(x) =
∑

(n,θ,c)∈W

fr(n,x, c) · θ.

Note that the definition of global circuit flows, as well as our alternative semantics, follow a top-

down induction. In contrast, the original semantics in Definition 5 follow a bottom-up induction.

We resolve this discrepancy next.
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Proposition 9. The features x constructed in the proof of Proposition 8 are equivalent to global

flows fr(n,x, c).

Corollary 4. The bottom-up semantics of Definition 5 and the top-down semantics of Definition 8

are equivalent.

In the following, we prove this proposition by induction.

– Base case: the inputs of the root r are either leaf nodes or AND gates whose inputs are leaf

nodes. By definition, for the root’s input wires, their local circuit flow equals their global

circuit flow. According to the decomposition matrix of gn in the proof of Proposition 8, the

features associated with the root’s input wires are equivalent to their local circuit flow. By

transitivity, we prove logistic circuits’ features are equivalent to its global circuit flow vector

in the base case.

– Induction step: assume the proposition holds for all OR gates in a given logistic circuit except

the root r. Again, the root’s inputs can be either leaf nodes or AND gates. It is obvious that for

the root’s input wires, their associated features are equivalent to their global circuit flow, as

this has been proven in the base case. So we only need to focus on the wires of the sub logistic

circuits rooted on those AND gates. The inputs to those AND gates can either be leaf nodes

or OR gates. As the wires between AND gates and their leaf children do not have parameters,

the correctness of the proposition does not get affected by them. We can narrow our focus

again. Now let us consider an OR gate n, which is an input to some of those aforementioned

AND gates {e1, . . . , em}. By our induction assumption, its features are equivalent to the

global circuit flows defined with respect to n; in other words, xn = fn. After propagating

xn upwards to the root, we get
∑m

i=1 f(r,x, e1) ·xn. The sum of the global flow on all output

wires of n is Fr(n) =
∑m

i=1 f(r,x, e1). Since Fr(n) is propagated throughout the whole sub

logistic circuit rooted at n, the global circuit flow in this sub logistic circuit with respect

to the root r is Fr(n) · fn =
∑m

i=1 f(r,x, e1) · fn. Therefore, the constructed features are

equivalent to the global circuit flows.
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Recall that without parameters, a logistic circuit is simply a logical circuit, which means that

gates in a logistic circuit have real meaning: they correspond to some logical sentence. Hence,

the values of global circuit flow features x correspond to probabilities of these logical sentences

according to the input vector x. This provides us with a precious opportunity to assign meaning to

the features learned by logistic circuits. We will revisit this point in Section 5.5.4, where we also

visualize some global circuit flow features.

Algorithm 5: Node probabilities from a real-valued sample x.
Input: A vector of probabilities x.

Result: Prx(n): the node probability of n for x.

1 for n in the circuit’s nodes, children before parents do

2 if n is a leaf with variable X then

3 if n is X then

4 Prx(n) = x(X)

5 else

6 Prx(n) = 1− x(X)

7 else if n is an AND gate then

8 Prx(n) := 1

9 for c in inputs of n do

10 Prx(n) ∗ = Prx(c)

11 else

// n is an OR gate

12 Prx(n) := 0

13 for c in inputs of n do

14 Prx(n) + = Prx(c)
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Algorithm 6: Features x from a real-valued sample x.
Input: Node probabilities Prx(·).

Result: Real-valued feature vector x.

1 for n in all nodes, parents before children do

2 v(n) := 0

3 v(root) := 1

4 for n in all non-leaf nodes, parents before children do

5 if n is an OR gate then

6 for c in inputs of n do

7 x(n, c) := v(n) · Prx(c) / Prx(n)

8 v(c) + = x(n, c)

9 else

// n is an AND gate

10 for c in inputs of n do

11 v(c) + = v(n)

5.3.4 Computing Global Flow Features Efficiently

While logistic circuit parameter learning is convex, we would like to also guarantee that the re-

quired feature computation is tractable. This section discusses efficient methods to calculate global

flow features x (i.e., fr(n,x, c)) from training samples x offline, before parameter learning.

As is clear from Definition 6, circuit flows make extensive use of node probabilities. We design

our computation to consist of two parts, and dedicate the first part to the calculation of node prob-

abilities. The first part is a bottom-up linear pass over the circuit starting with leaf nodes whose

probabilities are directly provided by the input sample. The second part makes use of these node

probabilities to calculate the global circuit flow features in linear time. It is a top-down implementa-
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tion of the recursion in Definition 7. Note that these computations correspond to the partial deriva-

tive computations used in arithmetic circuits for the purpose of probabilistic inference [Dar03].

Our algorithm is completely compatible with fast vector arithmetic: instead of inputting one

single sample each time, one can directly supply the algorithms with a vector of samples (e.g., a

mini batch), and this yields significant speedups.

We calculate node probabilities in a bottom-up induction on the structure of the sentence; see

Algorithm 5.

– Base case: n is a leaf (input) node. The node probability is directly defined in x: Prx(n) =

x(X) if n is X; Prx(n) = 1− x(X) if n is ¬X (lines 2-6 in Algorithm 5).

– Induction step: given that the node probabilities for all the leaves have been calculated, we

move upward to intermediate nodes and the root, where there are two cases.

* n is an AND gate with inputs {c1, . . . , cm}. Since in a logistic circuit every AND gate is

decomposable, by independence of the conjuncts, Prx(n) =
∏m

i=1 Prx(ci) (lines 7-10

in Algorithm 5).

* n is an OR gate with input nodes {c1, . . . , cm}. Since every OR gate is deterministic,

the probabilistic events defined at each child within the same OR parent do not in-

tersect with each other. By mutual exclusivity, Prx(n) =
∑

i Prx(ci) (lines 11-14 in

Algorithm 5).

Node probabilities Prx(·) are used in Algorithm 6 to obtain the final feature vector.

To compute the final feature vector, We perform a top-down pass starting from the root OR

gate; see Algorithm 6. After visiting an OR gate, the method first calculates its associated global

circuit flows from its inputs; see Line 7 in Algorithm 6. These newly calculated global flows then

get passed down and are accumulated on those child gates for later use on the descendent gates

(Line 8). After visiting an AND gate, there is no new global circuit flow to be calculated. Hence,
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the algorithm directly accumulates the flows passed to those AND gates to their children (Line

10-11).

Note that instead of inputing one single sample at a time, one can directly supply Algorithm 5

and 6 with a vector of samples. Our proposed calculation method is completely compatible with

matrix operations, and by doing so, one can expect a large speedup.

5.4 Structure Learning

This section presents an algorithm to learn a compact logical circuit structure for logistic circuits

from data. For simplicity of designing the primitive operations, we assume AND gates always have

two inputs (prime and sub).

5.4.1 Learning Primitive

The split operation was first introduced to modify the structure of PSDD circuits [LBV17]. We

adopt it here with minor changes2 as the primitive operation for our structure learning algorithm.

Splitting an AND gate happens by imposing two additional constraints that are mutually exclusive

and exhaustive, in particular by making two opposing variable assignments. Executing a split cre-

ates partial copies of the gate and some of its decedents. Furthermore, one can choose to duplicate

additional nodes up to a fixed depth (3 in our experiments). We refer readers to [LBV17] for further

details on the algorithm for executing splits.

Splits are ideal primitives to change the classifier induced by a logistic circuit: they directly

affect the circuit flows (see Figure 5.3). By imposing constraints on AND gates, splits alter the node

probabilities associated with the affected AND gates. Following Definition 6, the circuit flows on

the wires out of those AND gates adapt accordingly. While Figure 5.3 focuses on the immediately

affected wires, the effect of a split on circuit flows can propagate downward for several levels,

2Compared to the splits in LearnPSDD [LBV17], we do not limit constraints to be on primes.
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f0

A ¬A

B ¬B

(a) Before split of f0 on A

f1

f2

A ¬A¬A B

¬B

(b) After split of f0 on A

A B f0 f1 f2

1 1 1 0 1

0 1 1 1 0

0.5 0.6 0.6 0.30 0.30

0.4 0.8 0.8 0.48 0.32

(c) Circuit flow before and after the split.

Figure 5.3: A split changes the circuit flow.

depending on the depth of node duplication. Still the effects of a split on both the structure of a

logistic circuit and the circuit flows are very local and contained in the sub-circuit rooted at the

OR parent of the split AND gate. However, its effect on the parameters is global. Once a split is

executed, the whole parameter set needs to be re-trained.
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5.4.2 Learning Algorithm

The overall structure learning algorithm for logistic circuits, built on top of the split operation,

proceeds as follows. Iteratively, one split is executed to change the structure, followed by parameter

learning. We only consider single-variable split constraints and first select which AND gate to split,

followed by a selection of which variable to split on.

When using gradient descent, one hopes that the parameter on the AND gate output consistently

has its partial derivatives pointing in the same direction for all training examples. This will steadily

push the parameter to a large magnitude. If this is not the case, we will use splits to alter the flow

of examples through the circuit. Specifically, those AND gates whose associated output parameter

has a large variance of its partial derivative (that is, the derivative of the loss function w.r.t. that

parameter) requires splitting for the parameters to improve. We simply select the AND gate whose

output parameter has the highest training variance.

Given an AND gate to split, we consider candidate variables X to execute the split with.

We construct two sets of training examples that affect this node: in one group, each example is

weighted by the marginal probability ofX; in the other, with the marginal probability of ¬X . Next,

we calculate the within-group weighted variances of the partial derivatives. The variable with the

smallest weighted variances gets picked, as this suggests the split will introduce new parameters

with gradients that align in one direction.

5.5 Empirical Evaluation

In this section, we empirically evaluate the competitiveness of our learner on three aspects: classifi-

cation accuracy, model complexity, and data efficiency.3 Moreover, we visualize the most important

active feature with regards to the given sample to provide local interpretation for why the learned

logistic circuit makes such classification.

3Open-source code and experiments are available at https://github.com/UCLA-StarAI/
LogisticCircuit.
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A B ¬A ¬B C D ¬C ¬D

Figure 5.4: Initial structure of logistic circuits with 4 pixels.

5.5.1 Setup & Data Preprocessing

We choose MNIST and FASHION4 as our testbeds. Since logistic circuits are intended for binary

classification, we use the standard “one vs. rest” approach to construct an ensemble multi-class

classifier such that our method can be evaluated on these two datasets. When running the binary

logistic circuit, we transform pixels that are smaller than their mean plus 0.05 standard deviation to

0 and the rest to 1. When running the real-valued version, we transform pixels to [0, 1] by dividing

them by 255. The learned structure with the highest F1 score on validation after 48 hours of running

is used for evaluation. All experiments are run on single CPUs.

All experiments in this paper start with an initial structure where every pixel has two corre-

sponding leaf nodes, one for the pixel being true and the other false. Pixels are paired up by AND

gates; an AND gate is created for every joint assignment to the pair. AND gates for the same pair

share one OR gate parent. After this, OR gates are paired with AND gates and every AND gate is

connected to its own OR gate parent until we reach the root. Figure 5.4 is an example of the initial

4A dataset of Zalando’s images, intended as a more challenging drop-in replacement of MNIST [XRV17].
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Table 5.1: Classification accuracy of logistic circuits along with commonly used existing models.

Accuracy % on Dataset MNIST FASHION

Baseline: Logistic Regression 85.3 79.3

Baseline: Kernel Logistic Regression 97.7 88.3

Random Forest 97.3 81.6

3-layer MLP 97.5 84.8

RAT-SPN [PVS18] 98.1 89.5

SVM with RBF Kernel 98.5 87.8

5-Layer MLP 99.3 89.8

Logistic Circuit (binary) 97.4 87.6

Logistic Circuit (real-valued) 99.4 91.3

CNN with 3 conv layers 99.1 90.7

Resnet [HZR16] 99.5 93.6

structure with 4 pixels. Note that our structure learning algorithm is compatible with other initial

structures and one can create ad-hoc ones tailored to different applications.

The reported kernel logistic regression is based on the pixel n-grams implemented in Vowpal

Wabbit [LLS07]. The reported random forest has 500 decision trees. The reported SVM with RBF

Kernel uses hyper-parameters C = 8, γ = 0.05 on MNIST and C = 4, γ = 25 on Fashion. The

reported 3-layer MLP has layers of size 784-1000-500-250-10 respectively. The reported 5-layer

MLP has layers of size 784-1000-500-250-2000-250-10 respectively. The reported CNN with 3

convolutional layers uses 3-by-3 padded filters in the convolutional layers.

5.5.2 Classification Accuracy

Table 5.1 summarizes the classification accuracy on test data. Learning a logistic circuit on the

binary data is on par with a 3-layer MLP; the real-valued version outperforms 5-layer MLPs and
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Table 5.2: Number of parameters of logistic circuits in context with existing SGD-based models,

when achieving the classification accuracy reported in Table 5.1.

Number of Parameters MNIST Fashion

Baseline: Logistic Regression <1K <1K

Baseline: Kernel Logistic Regression 1,521 K 3,930K

Logistic Circuit (real-valued) 182K 467K

Logistic Circuit (binary) 268K 614K

3-layer MLP 1,411K 1,411K

RAT-SPN [PVS18] 8,500K 650K

CNN with 3 conv layers 2,196K 2,196K

5-Layer MLP 2,411K 2,411K

Resnet [HZR16] 4,838K 4,838K

even CNNs with 3 convolutional layers. The fact that logistic circuits achieve better accuracy than

CNNs is surprising, since logistic circuits do not use convolutions, which are specifically designed

to exploit image invariances.

In addition, we would like to emphasis our comparison with two of the baselines. As parameter

learning of logistic circuits is equivalent to logistic regression, one can view structure learning of

logistic circuits as a process of constructing composite features from raw samples. The significant

improvement over standard logistic regression demonstrates the effectiveness of our method in

extracting valuable features; using kernel logistic regression can only partially bridge the gap in

performance, yet as shown later, it does so at the cost of introducing many more parameters.

Besides extracting informative composite features, from our experience of running the reported

experiments, the structure learning process could also impose implicit regularization on the learned

logistic circuits. To speed up the whole learning pipeline, parameter learning is early stopped before

parameters are converged to the global optimum. This means the final obtained parameters could
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Table 5.3: Comparison of logistic circuits with MLPs when trained with different percentages of

the dataset.

Accuracy % with % of Training Data
MNIST FASHION

100% 10% 2% 100% 10% 2%

5-layer MLP 99.3 98.2 94.3 89.8 86.5 80.9

CNN with 3 Conv Layers 99.1 98.1 95.3 90.7 87.6 83.8

Logistic Circuit (Binary) 97.4 96.9 94.1 87.6 86.7 83.2

Logistic Circuit (Real-Valued) 99.4 97.8 96.1 91.3 87.8 86.0

be different from what one would get through a complete parameter learning on the final struc-

ture. This implicit regularization tends to help logistic circuits generalize in unseen data points.

We hypothesize the embedded early stopping causes some subsets of the parameters less tuned

than the others, which renders the learned logistic circuits less sensitive to nuance features. Yet,

the exact mechanism of this implicit regularization remains to be fully investigated, and a clear

understanding of it could lead to a better-designed structure learning algorithm in the future.

Refocusing on logistic circuits’ classification accuracy, we also want to call attention to our

comparison with RAT-SPN, the current state of the art in discriminative learning for any dialect of

probabilistic circuits. SPN is another form of circuit representation, with less restrictive structure.

Parameter learning in SPN is not convex and generally requires other techniques such as EM or

non-convex optimization. The empirical observation that our method achieves significantly better

classification accuracy than RAT-SPN demonstrates that in structure learning, imposing more re-

strictions on the model’s structural syntax may be beneficial. The syntactic restriction of logistic

circuits requires decomposability and determinism; without them, convex parameter learning does

not appear to be possible. As structure learning is built on top of parameter learning, a well-behaved

parameter learning loss with a unique optimum can provide more informative guidance about how

to adapt the structure, leading to a more competitive structure learning algorithm overall.
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5.5.3 Model Complexity & Data Efficiency

Table 5.2 summarizes the size of all compared models when achieving the reported accuracy. We

can conclude that logistic circuits are significantly smaller than the alternatives, despite attaining

higher accuracy.

We design the next set of experiments to specifically investigate how well our structure learning

algorithm performs under the setting where the number of training samples is limited. We have two

additional sets of experiments, where only 2% and 10% of the original training data is supplied.

Table 5.3 summarizes the performance in this limited-data setting. We mainly compare against a

5-layer MLP and CNN with 3 convolutional layers, whose performance is on par with our method

under the full-data setting. As summarized in Table 5.3, except on MNIST with 10% training

samples, real-valued logistic circuits achieve the best classification accuracy. Moreover, in both

versions of logistic circuits, when the available training samples are reduced from 100% to 2%, the

accuracy only drops by around 3% when evaluating on MNIST; around 5% on Fashion. In contrast,

a much larger drop occurs for 5-layer MLP and CNN. Specifically, MLP’s accuracy drops by 5%

(9%) while CNN’s accuracy drops by 4% (7%) on MNIST (Fashion). This small magnitude of

accuracy decrease illustrates how data efficient our proposed structure learning algorithm is.

Except on MNIST with 10% training samples, real-valued logistic circuits achieve the best

classification accuracy. From a top-down perspective, each OR gate of a logistic circuit presents a

weighted choice between its wires. Hence, one can view a logistic circuit as a decision diagram.

Under this perspective, splits refine OR gates’ branching rules. As each branching rule naturally

applies to multiple samples, we hypothesize that the splits selected by our structure learning algo-

rithm reflect the general conditional feature information present in the dataset.

5.5.4 Local Explanation

Next, we aim to share some insights about how to explain the learned logistic circuit. Specifically,

we investigate the question: “Why does the logistic circuit classify a given sample x as y?” Since
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Figure 5.5: Visualization of the single compositional feature that contributes most to the classifi-

cation probability with regards to the input image. Features are marked in orange. Left: a digit 0

from MNIST. Right: a t-shirt from Fashion.

any logistic circuit can be reduced to a logistic regression classifier, we can easily find the active

global flow feature that contributes most to the given sample’s classification probability. That is,

the feature that maximizes x ·θ. We visualize one such feature for MNIST data and one for Fashion

in Figure 5.5 by marking the variables used in their corresponding logical sentences.

5.6 Connection to Probabilistic Circuits

Recall our logistic circuit definition (Definition 5) looks very similar to our probabilistic circuit

definition (Definition 1). Except from adding a logistic circuit over the output of the circuit root,

the main difference between these two definitions is that the two’s parameters clearly have different

meaning. However, is there some inherent connection between those parameters. In this section,

we study this problem.

Figure 5.6a shows a probabilistic circuit for the joint distribution Pr(Y,A,B,C,D). This

tractable circuit language is a relaxation of PSDDs [KAD14] and a specific type of SPN [PD11]
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(a) Probabilistic circuit for joint distribution Pr(Y,A,B,C,D)
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(b) Logistic circuit for Pr(Y = 1 | A,B,C,D)

Figure 5.6: A probabilistic circuit with parallel structures under class variable Y and its equivalent

logistic circuit for predicting Y .
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where determinism holds throughout. It is also a type of arithmetic circuit. We are now ready to

connect logistic and probabilistic circuits. It is well known that logistic regression is the discrim-

inative counterpart of a naive Bayes generative model [NJ02]. A similar correspondence holds

between our logistic and probabilistic circuits.

Proposition 10. Consider a probabilistic circuit whose structure is of the form (Y ∧α)∨(¬Y ∧β),

where sub-circuits α and β are structurally identical. Then, there exists an equivalent logistic

circuit for the conditional probability of Y in the probabilistic circuit. Moreover, this logistic circuit

has structure ∨α and its parameters can be computed in closed form as log-ratios of probabilistic

circuit probabilities.

We first depict this correspondence intuitively in Figure 5.6. The logistic circuit has the same

structure as the two halves of the probabilistic circuit, and its parameters are computed from the

probabilistic circuit probabilities. The distributions Pr(Y = 1 | A,B,C,D) represented by the

circuits in Figures 5.6a and 5.6b are identical.

Formal Correspondence Next, we present the formal proof of this correspondence for binary

x. Recall that in our circuits, only the input wires of OR gates are parameterized. Let Wδ be the

set that contains all these wires in circuit δ:

Wδ = {(n, c) | c is a gate with parent OR gate n} .

After expanding the equations in Definition 1 and following the top-down definition of global cir-

cuit flow (i.e., following Definition 7), one finds that the joint distribution induced by a probabilistic

circuit δ can be rewritten as

Pr δ(x) =
∏

(n,c)∈Wδ

fδ(n,x, c) · θδ(n,c).
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We will exploit this finding in the derivation of the conditional distribution induced by the proba-

bilistic circuit γ = (Y ∧ α) ∨ (¬Y ∧ β).

Pr γ(Y = 1 | x)

=
Prγ(Y =1) Prα(x)

Prγ(Y =0) Prβ(x) + Pr(Y =1) Prα(x)

=
1

1 +
Prγ(Y=0)Prβ(x)

Prγ(Y=1)Prα(x)

=
1

1 +
Prγ(Y=0)

∏
(n,c)∈Wβ

fβ(n,x,c)θ
β
(n,c)

Prγ(Y=1)
∏

(n,c)∈Wα
fα(n,x,c)θα(n,c)

As stated in Proposition 10 and shown in Figure 5.6, sub-circuits α and β share the same structure.

Therefore, we can further simplify this equation as follows.

Pr γ(Y = 1 | x)

=
1

1 + Prγ(Y=0)

Prγ(Y=1)

∏
(n,c)∈Wα

f∨α(n,x, c)
θβ
(n,c)

θα
(n,c)

=
1

1 + exp [−g(x))]
= Pr ∨α(Y = 1 | x)

where

g(x) = log
Prγ(Y =1)

Prγ(Y =0)
+
∑

(n,c)∈Wα

f∨α(n,x, c) log
θα(n,c)

θβ(n,c)
(5.2)

= θ∨αroot +
∑

(n,c)∈Wα

f∨α(n,x, c) · θ∨α(n,c). (5.3)

The transformation from Equation 5.2 to 5.3 expresses the logistic circuit parameters as the log-

ratios of probabilistic circuit probabilities. For example, the class priors captured in the output

wires of α and β are now combined as a log-ratio to form the bias term for ∨α, expressed by the

root parameter.

This proof also provides us with a new perspective to understand the semantics of the learned

parameters. The parameters represent the log-odds ratio of the features given different classes. Note

that by Bayes’ theorem, a naive Bayes model would derive its induced distribution in a sequence
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of steps similar to the ones above, resulting in Equation 5.2. Given this correspondence, one can

also view our proposed structure learning method as a way to construct meaningful features for a

naive Bayes classifier. We know that after training, naive Bayes classifiers are equivalent to logistic

regression classifiers (as in Equation 5.3).

5.7 Cooperation with Probabilistic Circuits

The counterpart relationship demonstrated and proved in the previous section turns out to be critical

in improving logistic circuits’ robustness. In particular, consider we are given a trained logistic

circuit, but when predicting for new examples, some of the input features are missing. Missing

features are pervasive in real-world applications, due to assorted reasons; for example, the noisy

nature of the environment, unreliable or broken sensors, difficulty of gathering data, etc. [DSX10].

Yet, not just for logistic circuit, missing features at the prediction time can still be a challenge for

most classifiers and regressors.

The existing common approach to deal with missing features is to substitute the missing fea-

tures with one or several imputed values. However, to obtain the imputed values, one tends to make

unrealistic assumptions about the feature distribution. One popular assumption is that features are

independent from one another, which is too ideal and rarely holds. A more principled approach is

to directly compute the expected prediction of the classifier with respect to the feature distribution.

Formally, it is

E
xm∼Pr(Xm|xo)

[F(xmxo)] .

Here, F is a predictor (i.e., classifier or regressor) and we partition features into those that are

missing Xm and those are given and observed Xo. This approach is guaranteed to be unbiased,

as it considers all possible (partial) assignments to the missing features altogether. The major bot-

tleneck that prevents this principled approach to be widely adopted is its computational cost. For

most classifiers and regressors, it is intractable [KLC19]. However, when F is a logistic circuit

and we use a probabilistic circuit to represent the feature distribution, this computation becomes
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tractable under certain conditions. To be specific, two conditions need to be satisfied: (i) the logis-

tic circuit is used as a regressor (i.e., no logistic function on the top); (ii) the logistic circuit and the

probabilistic circuit share the same vtree [KCL19]. Essentially, we require a probabilistic circuit

and its discriminative counterpart. For such a pair of logistic and probabilistic circuit, this expected

prediction can be exactly computed in quadratic time with respect to the size of the circuits. It is

a recursion algorithm, and the intuition behind it and how it “breaks down” the computation to in-

termediate nodes is similar to the intersection divergence algorithm presented in Chapter 3. Indeed

and again, the two circuits sharing the same vtree is the property that enables a polynomial time

recursive decomposition.

5.8 Related Work

[GD12] proposed the first parameter learning algorithm for discriminative SPNs, using MPE infer-

ence as a sub-routine. Without the support of the determinism property, parameter learning of gen-

eral SPNs is a relatively harder question than its logistic circuit counterpart, since it is non-convex.

[ABG15] boost the accuracy of SPNs on MNIST to 97.6% by extracting more representative fea-

tures from raw inputs based on the Hilbert-Schmidt independence measure. [PVS18] further im-

proved the classification ability of SPNs by drastically simplifying SPN structure requirements and

utilizing a loss objective that hybrids cross-entropy (discriminative learning) with log-likelihood

(generative learning).

[RL16] developed a discriminative structure learning algorithm for arithmetic circuits. The

method updates the circuit that represents a corresponding conditional random field (CRF) model

by adding features conditioned on arbitrary evidence to the model. This work further relaxes de-

composability and smoothness properties of ACs for a more compact representation. However, it

targets the setting where there are a large number of output variables, not single-variable classifi-

cation.

All the aforementioned literature conforms to a common trend of abandoning properties of the
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chosen circuit representations for easier structure learning and better prediction accuracy. They

argue that those special syntactic restrictions complicate the learning process. On the contrary, this

paper chooses perhaps the most structure-restrictive circuit as the target representation. Instead of

relaxing the target representation’s syntactical requirements, our proposed method fully leverages

the valuable properties that stem from these restrictions, and in particular convexity.

5.9 Discussion

We have presented logistic circuits, a novel circuit-based classification model with convex param-

eter learning, and a simple structure learning procedure based on local search. Logistic circuits

outperform much larger classifiers and perform well in a limited data regime. Compared to other

symbolic, circuit-based approaches, logistic circuits present a leap in performance on image clas-

sification benchmarks. Promising future efforts to further improve logistic circuits’ performance

include support for convolution, parameter tying, and structure sharing.
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CHAPTER 6

Improving Semi-Supervised Learning by Reasoning about

Constraints

After demonstrating that circuit representations are amenable to both generative and discrimina-

tive learning from data in the previous two chapters, we switch gear again and revisit the symbolic

dimension of circuit representations. Again, circuit representations will be used to represent logic

constraints. However, this time constraints are not imposed on the input feature space. How to

efficiently reason and effectively learn in that type of structure space has been well discussed in

Chapter 3 and Chapter 4. In this chapter, we focus on the constraints imposed on the representa-

tions’ output space. Furthermore, instead of using circuit representations as a standalone learner,

this chapter is dedicated to the question about how we can leverage them to incorporate symbolic

knowledge into deep neural networks. We specifically choose semi-supervised image classification

as the target task to show that even a small addition of supposedly simple symbolic knowledge can

yield a significant boost to the prediction accuracy.

6.1 Background

The work that will be introduced in this chapter is largely motivated by two observations. First,

knowledge is ubiquitous, yet sometimes can be easily overlooked. For example, for classification,

people tend to dismiss the constraint embedded in the task setup: every example has one and ex-

actly one class. This is a simple constraint, yet can be surprisingly powerful in the semi-supervised

learning setting. We aim to demonstrate through this case study that regardless of how seemingly
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Figure 6.1: Outputs of a neural network feed into semantic loss functions for exactly-one constraint.

This simple yet often-overlooked constraint surprisingly yields significant improvement for semi-

supervised classification tasks.

trivial the knowledge is, it may still be able to help the learner to go a long way when used in

the right domains. Secondly, most neuro-symbolic approaches aim to simulate or learn symbolic

reasoning in an end-to-end deep neural network, or capture symbolic knowledge in a vector-space

embedding. This choice is partly motivated by the need for smooth differentiable models; adding

symbolic reasoning code (e.g., SAT solvers) to a deep learning pipeline destroys this property. Un-

fortunately, while making reasoning differentiable, the precise logical meaning of the knowledge

is often lost.

Considering these two observations, we take a distinctly unique approach, and tackle the prob-

lem of differentiable but sound logical reasoning from first principles. Starting from a set of in-

tuitive axioms, we derive the differentiable semantic loss which captures how well the outputs of

a neural network match a given constraint. This function precisely captures the meaning of the

constraint, and is independent of its syntax.

Given this is the first time we use neural networks in this dissertation, we introduce an ad-

ditional notation: the output row vector of a neural net is denoted p. Given we focus on semi-

supervised image classification tasks, we assume each value in p represents the probability of an

output and falls in [0, 1]. Figure 6.1 illustrates how exactly-one constraint is passed into a deep neu-
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ral network. The constraint states that for a set of indicators X = {X1, . . . , Xn}, one and exactly

one of those indicators must be true, with the rest being false. This is enforced through a logical

constraint α by conjoining sentences of the form ¬X1 ∨¬X2 for all pairs of variables (at most one

variable is true), and a single sentence X1 ∨ · · · ∨Xn (at least one variable is true).

6.2 Semantic Loss

In this section, we formally introduce semantic loss. We begin by giving the definition and our

intuition behind it. This definition itself provides all of the necessary mechanics for enforcing

constraints. We also show that semantic loss is not just an arbitrary definition, but rather is defined

uniquely by a set of intuitive assumptions. After stating the assumptions formally, we then provide

an axiomatic proof of the uniqueness of semantic loss in satisfying these assumptions.

6.2.1 Definition

Semantic loss Ls(α, p) is a function of a sentence α in propositional logic, defined over variables

X = {X1, . . . , Xn}, and a vector of probabilities p for the same variables X. Element pi denotes

the predicted probability of variable Xi, and corresponds to a single output of the neural net. For

example, the semantic loss between the one-hot constraint from the previous section, and a neural

net output vector p, is intended to capture how close the prediction p is to having exactly-one

output set to true (i.e. 1), and all others set to false (i.e. 0), regardless of which output is correct.

The formal definition of this is as follows:

Definition 9 (Semantic Loss). Let p be a vector of probabilities, one for each variable in X, and

let α be a sentence over X. The semantic loss between α and p is

Ls(α, p) ∝ − log
∑
x|=α

∏
i:x|=Xi

pi
∏

i:x|=¬Xi

(1− pi).

Intuitively, the semantic loss is proportional to a negative logarithm of the probability of gen-

erating a state that satisfies the constraint, when sampling values according to p. Hence, it is the
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self-information (or “surprise”) of obtaining an assignment that satisfies the constraint [Jon79].

6.2.2 Derivation from First Principles

In this section, we begin with a theorem stating the uniqueness of semantic loss, as fixed by a

series of axioms. These axioms present the semantics behind this loss function and hence justifies

its name. To be more specific, those axioms shed light into how this loss function connects to and

retains the logical semantics of the constraints, besides being computed with respect to the logical

constraint.

Theorem 2 (Uniqueness). The semantic loss function in Definition 9 satisfies all axioms in the

following and is the only function that does so, up to a multiplicative constant.

Recall logical implication intuitively describes which constraint is harder to be satisfied than

the other when presented with two logical sentences. To retain logical meaning, we first need to

guarantee that the magnitude of this loss function is related to the logical implication relationship.

Towards this, we postulate that semantic loss is monotone in the order of implication.

Axiom 1 (Monotonicity). If α |= β, then semantic loss Ls(α, p) ≥ Ls(β, p) for any vector p.

Intuitively, as we add stricter requirements to the logical constraint, going from β to α and

making it harder to satisfy, semantic loss cannot decrease. For example, when β enforces the output

of an neural network to encode a subtree of a graph, and we tighten that requirement in α to be

a path, semantic loss cannot decrease, since every path is also a tree and any solution to α is a

solution to β. A direct consequence is that if α and β are logically equivalent, they must incur

exactly the same loss for the same probability vector p.

Proposition 11 (Semantic Equivalence). If α ≡ β, then semantic loss Ls(α, p) = Ls(β, p) for any

vector p.

Given true sentences are the weakest constraints, if we do not want them to incur any loss,

semantic loss much be non-negative given its monotonicity property.
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Given semantic loss is to guide the probability vector p to more satisfy the constraint α, we

would also like to guarantee that when p satisfies the constraint, semantic loss is zero. For exam-

ple, when our constraint α requires that the output vector encodes an arbitrary total ranking, and

the vector correctly represents a single specific total ranking, there is no semantic loss. From Def-

inition 9, it is clear p can only have either 1 or 0 in this situation. Essentially, p is now a complete

binary assignment to the output vector. And to avoid confusion, we use x to highlight this fact.

Proposition 12 (Satisfaction). If x |= α, then semantic loss Ls(α,x) = 0.

As a special case, logical literals (X or ¬X) constrain a single variable to take on a value, and

thus play a role similar to the labels used in supervised learning. Such constraints require an even

tighter correspondence: semantic loss must act like a classical loss function (i.e., cross entropy).

Axiom 2 (Label-Literal Correspondence). Semantic loss of a single literal is proportionate to the

cross-entropy loss for the equivalent data label: Ls(X, p) ∝ − log(p) and Ls(¬X, p) ∝ − log(1−

p).

To retain logical meaning is not enough, it also needs to be differentiable such that it can work

well with gradient-based learning and optimization methods.

Axiom 3 (Differentiability). For any fixed α, semantic loss Ls(α, p) is monotone in each probabil-

ity in p, continuous and differentiable.

We have now presented the most important axioms of semantic loss. Yet, additional axioms are

required to allow us to prove the following form of the semantic loss for a state x. For conciseness,

those additional axioms are only presented in the next subsection.

Lemma 2. For state x and vector p, we have Ls(x, p) ∝ −
∑

i:x|=Xi
log pi−

∑
i:x|=¬Xi log(1− pi).

Lemma 2 falls short as a full definition of semantic loss for arbitrary sentences. The next sub-

section makes the notion of semantic loss precise by stating one additional axiom. It is based on

the observation that the state loss of Lemma 2 is proportionate to a log-probability. In particular,
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it corresponds to the probability of obtaining state x after independently sampling each Xi with

probability pi. We have now derived the semantic loss function from first principles, and arrived

at Definition 9. Moreover, we can show that Theorem 2 holds - that it is the only choice of such a

loss function.

6.2.3 Details of the Derivation

This subsection provides further details on our axiomatization of semantic loss. We detail here a

complete axiomatization of semantic loss, which will involve restating some axioms and proposi-

tions from the previous sections. Readers with interest are highly encouraged to continue reading.

However, skipping it would not affect the understanding of the rest of this chapter either.

The first axiom says that there is no loss when the logical constraint α is always true (it is a

logical tautology), independent of the predicted probabilities p.

Axiom 4 (Truth). Semantic loss of a true sentence is zero: ∀p,Ls(true, p) = 0.

Next, when enforcing two constraints on disjoint sets of variables, we want the ability to com-

pute semantic loss for the two constraints separately, and sum the results for their joint semantic

loss.

Axiom 5 (Additive Independence). Let α be a sentence over X with probabilities p. Let β be a

sentence over Y disjoint from X with probabilities q. Semantic loss between sentence α ∧ β and

the joint probability vector [p q] decomposes additively: Ls(α ∧ β, [p q]) = Ls(α, p) + Ls(β, q).

It directly follows from Axioms 4 and 5 that the probabilities of variables that are not used on

the constraint do not affect semantic loss. Proposition 13 formalizes this intuition.

Proposition 13 (Locality). Let α be a sentence over X with probabilities p. For any Y disjoint

from X with probabilities q, semantic loss Ls(α, [p q]) = Ls(α, p).

Proof. Follows from the additive independence and truth axioms. Set β = true in the additive

independence axiom, and observe that this sets Ls(β, q) = 0 because of the truth axiom.
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We have shown semantic loss is monotone in the order of implication in the earlier subsection,

here we finish proving it is non-negative.

Proposition 14 (Non-Negativity). Semantic loss is non-negative.

Proof. Because α |= true for all α, the monotonicity axiom implies that ∀p,Ls(α, p) ≥ Ls(true, p).

By the truth axiom, Ls(true, p) = 0, and therefore Ls(α, p) ≥ 0 for all choices of α and p.

A state x is equivalently represented as a data vector, as well as a logical constraint that enforces

a value for every variable in X. When both the constraint and the predicted vector represent the

same state (for example, X1 ∧ ¬X2 ∧X3 vs. [1 0 1]), there should be no semantic loss.

Axiom 6 (Identity). For any state x, there is zero semantic loss between its representation as a

sentence, and its representation as a deterministic vector: ∀x,Ls(x,x) = 0.

One can also use the axioms above to derive that any vector satisfying the constraint must incur

zero loss; see Proposition 12 in the previous subsection. We repeat this proposition first, followed

by our proof.

Proposition 15 (Satisfaction). If x |= α, then semantic loss Ls(α,x) = 0.

Proof of Proposition 15. The monotonicity axiom specializes to say that if x |= α, we have that

∀p,Ls(x, p) ≥ Ls(α, p). By choosing p to be x, this implies Ls(x,x) ≥ Ls(α,x). From the identity

axiom, Ls(x,x) = 0, and therefore 0 ≥ Ls(α,x). Proposition 14 bounds the loss from below as

Ls(α,x) ≥ 0.

Next, we have the symmetry axioms.

Axiom 7 (Value Symmetry). For all p and α, we have that Ls(α, p) = Ls(ᾱ, 1 − p) where ᾱ

replaces every variable in α by its negation.

Axiom 8 (Variable Symmetry). Let α be a sentence over X with probabilities p. Let π be a permu-

tation of the variables X, let π(α) be the sentence obtained by replacing variables x by π(x), and

let π(p) be the corresponding permuted vector of probabilities. Then, Ls(α, p) = Ls(π(α), π(p)).

96



The value and variable symmetry axioms together imply the equality of the multiplicative con-

stants in the label-literal duality axiom for all literals.

Lemma 3. There exists a single constant K such that Ls(X, p) = −K log(p) and Ls(¬X, p) =

−K log(1− p) for any literal x.

Proof. Value symmetry implies that Ls(Xi, p) = Ls(¬Xi, 1 − p). Using label-literal correspon-

dence, this implies K1 log(pi) = K2 log(1 − (1 − pi)) for the multiplicative constants K1 and K2

that are left unspecified by that axiom. This implies that the constants are identical. A similar

argument based on variable symmetry proves equality between the multiplicative constants for

different i.

Finally, this allows us to prove the following form of semantic loss for a state x, which has

been shown towards the end of the previous subsection as well.

Lemma 4. For state x and vector p, we have Ls(x, p) ∝ −
∑

i:x|=Xi
log pi−

∑
i:x|=¬Xi log(1−pi).

Proof of Lemma 4. A state x is a conjunction of independent literals, and therefore subject to the

additive independence axiom. Each literal’s loss in this sum is defined by Lemma 3.

The following and final axiom requires that semantic loss is proportionate to the logarithm of

a function that is additive for mutually exclusive sentences.

Axiom 9 (Exponential Additivity). Let α and β be mutually exclusive sentences (i.e., α ∧ β is

unsatisfiable), and let f s(K,α, p) = K−Ls(α,p). Then, there exists a positive constant K such that

f s(K,α ∨ β, p) = f s(K,α, p) + f s(K, β, p).

We are now able to state and prove the main uniqueness theorem.

Theorem 3 (Uniqueness). The semantic loss function in Definition 9 satisfies all axioms presented

above and is the only function that does so, up to a multiplicative constant.
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Proof of Theorem 3. The truth axiom states that ∀p, f s(K, true, p) = 1 for all positive constantsK.

This is the first Kolmogorov axiom of probability. The second Kolmogorov axiom for f s(K, ., p)

follows from the additive independence axiom of semantic loss. The third Kolmogorov axiom

(for the finite discrete case) is given by the exponential additivity axiom of semantic loss. Hence,

f s(K, ., p) is a probability distribution for some choice of K, which implies the definition up to a

multiplicative constant.

6.3 A Case Study in Exactly-One Constraint

The most straightforward constraint that is ubiquitous in classification is mutual exclusion over

one-hot-encoded outputs. That is, for a given example, exactly one class and therefore exactly one

binary indicator must be true. The machine learning community has made great strides on this task,

due to the invention of assorted deep learning representations and their associated regularization

terms [KSH12, HZR16]. Many of these models take large amounts of labeled data for granted, and

big data is indispensable for discovering accurate representations [HTF09]. To sustain this progress

and alleviate the need for more labeled data, there is a growing interest in utilizing unlabeled data

to augment the predictive power of classifiers [SE17, BBM04]. This section shows why semantic

loss naturally qualifies for this task.

6.3.1 Illustrative Examples

To illustrate the benefit of semantic loss in the semi-supervised setting, we begin our discussion

with a small toy example. Consider a binary classification task; see Figure 6.2. Ignoring the un-

labeled examples, a simple linear classifier learns to distinguish the two classes by separating the

labeled examples (Figure 6.2a). However, the unlabeled examples are also informative, as they

must carry some properties that give them a particular label. This is the crux of semantic loss for

semi-supervised learning: a model must confidently assign a consistent class even to unlabeled

data. Encouraging the model to do so results in a more accurate decision boundary (Figure 6.2b).
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Class 1
Class 2
Unlabeled

(a) Trained w/o semantic loss

Class 1
Class 2
Unlabeled

(b) Trained with semantic loss

Figure 6.2: Binary classification toy example: a linear classifier without and with semantic loss.

6.3.2 Method

Our proposed method intends to be generally applicable and compatible with any feedforward

neural net. Semantic loss is simply another regularization term that can directly be plugged into an

existing loss function. More specifically, with some weight w, the new overall loss becomes

existing loss + w · semantic loss.

Concretely, for the exactly-one constraint used in n-class classification, semantic loss reduces to

Ls(exactly-one, p) ∝ − log
n∑
i=1

pi

n∏
j=1,j 6=i

(1− pj),

where values pi denote the probability of class i as predicted by the neural net. To efficiently com-

pute semantic loss, one needs to leverage tractable reasoning; see Chapter 3 for more details about

how to efficiently evaluate a circuit representation. Tractable reasoning can reduce the time com-

plexity to compute semantic loss for the exactly-one constraint fromO(n2) toO(n); see Figure 6.3

to recall how circuits are transformed into an efficient computation graph, Since exactly-one con-

straint is simple, this computation speedup is not significantly noticeable. In general, for arbitrary

constraints α, tractable reasoning has to be deployed to make sure semantic loss does not incur

expensive computation overhead.

99



x1 ¬x2 ¬x3 ¬x1 x2 x3

(a) A compiled decomposable and deterministic circuit for the exactly-one constraint with 3 vari-

ables.

Pr(x1) Pr(¬x2) Pr(¬x3) Pr(¬x1) Pr(x2) Pr(x3)

× × ×

+

(b) The corresponding computation graph for the exactly-one constraint with 3 variables.

Figure 6.3: An illustration how to compactly represent exactly-one constraint for three output vari-

ables as circuits. To efficiently compute the likelihood to satisfy this constraint, we transform AND

gates to multiplication and OR gates to summation. Note this transformation has also been intro-

duced in Chapter 3.
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6.4 Empirical Evaluation

We evaluate semantic loss in the semi-supervised setting by comparing it with several competitive

models on three benchmark datasets, namely, MNIST, FASHION, and Cifar-10.1

6.4.1 Experiment Setup

As most semi-supervised learners build on a supervised learner, changing the underlying model

significantly affects the semi-supervised learner’s performance. For comparison, we add semantic

loss to almost identical base models used in ladder nets [RBH15], which currently achieves state-

of-the-art results on semi-supervised MNIST and CIFAR-10 [Kri09]. Specifically, the MNIST

base model is a fully-connected multilayer perceptron (MLP), with layers of size 784-1000-500-

250-250-250-10. On CIFAR-10, it is a 10-layer convolutional neural network (CNN) with 3-by-3

padded filters. After every 3 layers, features are subject to a 2-by-2 max-pool layer with strides of

2. Furthermore, we use ReLu [NH10], batch normalization [IS15], and Adam optimization [KB15]

with a learning rate of 0.002. Table 6.1 shows the slight architectural difference between the CNN

used in ladder nets and ours. The major difference lies in the choice of ReLu. Note that we add

standard padded cropping to preprocess images and an additional fully connected layer at the end

of the model, neither is used in ladder nets. We only make those slight modification so that the

baseline performance reported by [RBH15] can be reproduced.

Validation sets are used for tuning the weight associated with semantic loss, the only hyper-

parameter that causes noticeable difference in performance for our method. We perform a grid

search over {0.001, 0.005, 0.01, 0.05, 0.1} to find the optimal value. Empirically, 0.005 always

gives the best or nearly the best results and we report its results on all experiments. For the sake of

fairness, we subject ladder nets to a small-scale parameter tuning as well in case its performance

is more volatile.

1The code to reproduce all experiments in this chapter can be found at https://github.com/
UCLA-StarAI/Semantic-Loss/.
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For all our experiments, we use the standard 10,000 held-out test examples provided in the

original datasets and randomly pick 10,000 from the standard 60,000 training examples (50,000

for CIFAR-10) as validation set. For values of N that depend on the experiment, we retain N

randomly chosen labeled examples from the training set, and remove labels from the rest. We

balance classes in the labeled samples to ensure no particular class is over-represented. Images are

preprocessed for standardization and Gaussian noise is added to every pixel (σ = 0.3).

6.4.2 Experiment Results

In the following we report our results on three benchmark datasets.

MNIST The permutation invariant MNIST classification task is commonly used as a testbed

for general semi-supervised learning algorithms. This setting does not use any prior information

about the spatial arrangement of the input pixels. Therefore, it excludes many data augmentation

techniques that involve geometric distortion of images, as well as convolutional neural networks.

When evaluating on MNIST, we run experiments for 20 epochs, with a batch size of 10. Ex-

periments are repeated 10 times with different random seeds. Table 6.2 compares semantic loss to

three baselines and state-of-the-art results from the literature. The first baseline is a purely super-

vised MLP, which makes no use of unlabeled data. The second is the classic self-training method

for semi-supervised learning, which operates as follows. After every 1000 iterations, the unlabeled

examples that are predicted by the MLP to have more than 95% probability of belonging to a single

class, are assigned a pseudo-label and become labeled data.

Additionally, we construct a third baseline by replacing the semantic loss term with the entropy

regularizor described in [GB05] as a direct comparison for semantic loss. With the same amount

of parameter tuning, we find that using entropy achieves an accuracy of 96.27% with 100 labeled

examples, and 98.32% with 1000 labelled examples, both are slightly worse than the accuracies

reached by semantic loss. Furthermore, to our best knowledge, there is no straightforward method

to generalize entropy loss to the settings of complex constraints, where semantic loss is clearly
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Table 6.1: Specifications of CNNs in Ladder Net and our proposed method.

CNN in Ladder Net CNN in this paper

Input 32×32 RGB image

Resizing to 36× 36

with padding; Cropping Back

Whitening

Contrast Normalization

Gaussian Noise with std. of 0.3

3×3 conv. 96 BN LeakyReLU 3×3 conv. 96 BN ReLU

3×3 conv. 96 BN LeakyReLU 3×3 conv. 96 BN ReLU

3×3 conv. 96 BN LeakyReLU 3×3 conv. 96 BN ReLU

2×2 max-pooling stride 2 BN

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

2×2 max-pooling stride 2 BN

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

1×1 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

1×1 conv. 10 BN LeakyReLU 1×1 conv. 10 BN ReLU

Global meanpool BN

Fully connected BN

10-way softmax
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Table 6.2: MNIST. Previously reported test-set accuracies followed by baselines and semantic loss

results (± stddev).

Accuracy % with # of used labels 100 1000 ALL

AtlasRBF [PRA14] 91.9 (±0.95) 96.32 (±0.12) 98.69

Deep Generative [KMJ14] 96.67(±0.14) 97.60 (±0.02) 99.04

Virtual Adversarial [MMK16] 97.67 98.64 99.36

Ladder Net [RBH15] 98.94 (±0.37 ) 99.16 (±0.08) 99.43 (±0.02)

Baseline: MLP, Gaussian Noise 78.46 (±1.94) 94.26 (±0.31) 99.34 (±0.08)

Baseline: Self-Training 72.55 (±4.21) 87.43 (±3.07)

Baseline: MLP with Entropy Regularizer 96.27 (±0.64) 98.32 (±0.34) 99.37 (±0.12)

MLP with Semantic Loss 98.38 (±0.51) 98.78 (±0.17) 99.36 (±0.02)

defined and can be easily deployed.

Lastly, we create a fourth baseline by constructing a constraint-sensitive loss term in the style

of [HML16], using a simple extension of Probabilistic Soft Logic (PSL) [KBB12]. PSL translates

logic into continuous domains by using soft truth values, and defines functions in the real domain

corresponding to each Boolean function. This is normally done for Horn clauses, but since they

are not sufficiently expressive for our constraints, we apply fuzzy operators to arbitrary sentences

instead. We are forced to deal with a key difference between semantic loss and PSL: encodings in

fuzzy logic are highly sensitive to the syntax used for the constraint (and therefore violate Propo-

sition 11). We selected two reasonable encodings. The first encoding is:

(¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ ¬x3)

The second encoding is:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3)

Both encodings extend to cases whether the number of variables is arbitrary.
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The norm functions used for these experiments are as described in [KBB12], with the loss for

an interpretation I being defined as follows:

x1 ∧ x2 = max{0, I(x1) + I(x2)− 1}

x1 ∨ x2 = min{I(x1) + I(x2), 1}

¬x1 = 1− I(x1)

The first encoding results in a constant value of 1, and thus could not be used for semi-supervised

learning. The second encoding empirically deviates from 1 by < 0.01, and since we add Gaussian

noise to the pixels, no amount of tuning was able to extract meaningful supervision. Thus, we do

not report these results.

When given 100 labeled examples (N = 100), MLP with semantic loss gains around 20%

improvement over the purely supervised baseline. The improvement is even larger (25%) com-

pared to self-training. Considering the only change is an additional loss term, this result is very

encouraging. Comparing to the state of the art, ladder nets slightly outperform semantic loss by

0.5% accuracy. This difference may be an artifact of the excessive tuning of architectures, hyper-

parameters, and learning rates that the MNIST dataset has been subject to. In the coming experi-

ments, we extend our work to more challenging datasets, in order to provide a clearer comparison

with ladder nets. Before that, we want to share a few more thoughts on how semantic loss works.

A classical softmax layer interprets its output as representing a categorical distribution. Hence, by

normalizing its outputs, softmax enforces the same mutual exclusion constraint enforced in our

semantic loss function. However, there does not exist a natural way to extend softmax loss to un-

labeled samples. In contrast, semantic loss does provide a learning signal on unlabeled samples,

by forcing the underlying classifier to make a decision and construct a confident hypothesis for all

data. However, for the fully supervised case (N = all), semantic loss does not significantly affect

accuracy. Because the MLP has enough capacity to almost perfectly fit the training data, where the

constraint is always satisfied, semantic loss is almost always zero. This is a direct consequence of

Proposition 12.
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Table 6.3: FASHION. Test accuracy comparison between MLP with semantic loss and ladder nets.

Accuracy % with # of used labels 100 500 1000 ALL

Ladder Net [RBH15] 81.46 (±0.64 ) 85.18 (±0.27) 86.48 (±0.15) 90.46

Baseline: MLP, Gaussian Noise 69.45 (±2.03) 78.12 (±1.41) 80.94 (±0.84) 89.87

MLP with Semantic Loss 86.74 (±0.71) 89.49 (±0.24) 89.67 (±0.09) 89.81

Table 6.4: CIFAR. Test accuracy comparison between CNN with Semantic Loss and ladder nets.

Accuracy % with # of used labels 4000 ALL

CNN Baseline in Ladder Net 76.67 (±0.61) 90.73

Ladder Net [RBH15] 79.60 (±0.47)

Baseline: CNN, Whitening, Cropping 77.13 90.96

CNN with Semantic Loss 81.79 90.92

FASHION The FASHION [XRV17] dataset consists of Zalando’s article images, aiming to serve

as a more challenging drop-in replacement for MNIST. Arguably, it has not been overused and re-

quires more advanced techniques to achieve good performance. As in the previous experiment,

we run our method for 20 epochs, whereas ladder nets need 100 epochs to converge. Again, ex-

periments are repeated 10 times and Table 6.3 reports the classification accuracy and its standard

deviation (except for N = all where it is close to 0 and omitted for space).

Experiments show that utilizing semantic loss results in a very large 17% improvement over the

baseline when only 100 labels are provided. Moreover, our method compares favorably to ladder

nets, except when the setting degrades to be fully supervised. Note that our method already nearly

reaches its maximum accuracy with 500 labeled examples, which is only 1% of the training dataset.

CIFAR-10 To show the general applicability of semantic loss, we evaluate it on CIFAR-10. This

dataset consists of 32-by-32 RGB images in 10 classes. A simple MLP would not have enough
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representation power to capture the huge variance across objects within the same class. To cope

with this spike in difficulty, we switch our underlying model to a 10-layer CNN as described

earlier. We use a batch size of 100 samples of which half are unlabeled. Experiments are run for

100 epochs. However, due to our limited computational resources, we report on a single trial. Note

that we make slight modifications to the underlying model used in ladder nets to reproduce similar

baseline performance, which have been explained in Section 6.4.1.

As shown in Table 6.4, our method compares favorably to ladder nets. However, due to the

slight difference in performance between the supervised base models, a direct comparison would

be methodologically flawed. Instead, we compare the net improvements over baselines. In terms

of this measure, our method scores a gain of 4.66% whereas ladder nets gain 2.93%.

6.5 Related Work

Incorporating symbolic background knowledge into machine learning is a long-standing chal-

lenge [SMK95]. It has received considerable attention for structured prediction in natural language

processing, in both supervised and semi-supervised settings. For example, constrained conditional

models extend linear models with constraints that are enforced through integer linear program-

ming [CRR08, CSR13]. Constraints have also been studied in the context of probabilistic graphi-

cal models [MD08, GGT10]. [KVC14] utilize a circuit language called the probabilistic sentential

decision diagram to induce distributions over arbitrary logical formulas. They learn generative

models that satisfy preference and path constraints [CVD15a, CTD16], which we study in a dis-

criminative setting.

Various deep learning techniques have been proposed to enforce either arithmetic constraints

[PKD15, MSF17] or logical constraints [RSR15, HML16, DRR16, SE17, MDR17, DGS17, DSG17]

on the output of a neural network. The common approach is to reduce logical constraints into dif-

ferentiable arithmetic objectives by replacing logical operators with their fuzzy t-norms and logical

implications with simple inequalities. A downside of this fuzzy relaxation is that the logical sen-

107



tences lose their precise meaning. The learning objective becomes a function of the syntax rather

than the semantics, whereas our proposed semantic loss still retains the semantic meaning of the

constraints it captures. Moreover, these relaxations are often only applied to Horn clauses. One

alternative is to encode the logic into a factor graph and perform loopy belief propagation to com-

pute a loss function [NR17], which is known to have issues in the presence of complex logical

constraints [SG14].

Finally, the objective of semantic loss to increase the confidence of predictions on unlabeled

data is related to information-theoretic approaches to semi-supervised learning [GB05, EA10], and

approaches that increase robustness to output perturbation [MMK16]. A key difference between

semantic loss and these information-theoretic losses is that semantic loss generalizes to arbitrary

logical output constraints that are much more complex.

6.6 Discussion

The experiments so far have demonstrated the competitiveness and general applicability of our

proposed method on semi-supervised learning tasks. It surpasses the previous state of the art (lad-

der nets) on FASHION and CIFAR-10, while being close on MNIST. Considering the simplicity

of our method, such results are encouraging. Figure 6.4 illustrates the effect of semantic loss on

FASHION pictures whose correct label was hidden from the learner. Pictures 6.4a and 6.4b are

correctly classified by the supervised base model, and on the first set it is confident about this

prediction (pi > 0.8). Semantic loss rarely diverts the model from these initially correct labels.

However, it bootstraps these unlabeled examples to achieve higher confidence in the learned con-

cepts. With this additional learning signal, the model changes its beliefs about Pictures 6.4b. Even

on confidently misclassified Pictures 6.4d, semantic loss is able to remedy the mistakes of the base

model.

Indeed, a key advantage of semantic loss is that it only requires a simple additional loss term,

and thus incurs almost no computational overhead. Conversely, this property makes our method
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(a) Confidently Correct (b) Unconfidently Correct

(c) Unconfidently Incorrect (d) Confidently Incorrect

Figure 6.4: FASHION pictures grouped by how confidently and correctly the supervised base

model classifies them. With semantic loss, the final semi-supervised model predicts all correctly

and confidently.
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sensitive to the underlying model’s performance. Without the underlying predictive power of a

strong supervised learning model, we do not expect to see the same benefits we observe here.

Another unique advantage of semantic loss is that it can work with any constraints imposed on

the output space of a deep learning model, as long as the constraints can be represented as logical

sentences. In this chapter, we have downplayed this advantage, as we would like to highlight the

fact that knowledge and constraints are everywhere and can be overlooked. In deriving semantic

loss, we have repeated using “path” as an example. In fact, we have solid experiments to demon-

strate that by first encoding all valid paths as logical sentences, we can achieve an almost 10-fold

improvement in predicting the shortest path on a grid environment compared to standard MLP

neural networks. Readers with interest are highly encouraged to go through the original semantic

loss paper to have a more complete insight on how deep structured predictions for highly complex

output spaces can significantly benefit from semantic loss [XZF18].

An interesting direction for future work is to come up with effective approximations of se-

mantic loss, for settings where even the methods we have described are not sufficient. There are

several potential ways to proceed with this, including hierarchical abstractions, relaxations of the

constraints, or projections on random subsets of variables.
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CHAPTER 7

Conclusion

In this dissertation, towards the goal of symbolic-statistical synthesis, we advocate circuit repre-

sentations. Circuit representations have been extensively studied in the community of knowledge

representation, specifically as a target form to compactly represent logical sentences. This makes

them a natural candidate to encode structural knowledge of complex spaces; for example, what is

valid and what is not in a domain.

Existing efforts have laid a great foundation on how to parameterize circuits with strong syn-

tactic properties to represent a joint distribution over input features (i.e., random variables). We

follow this line and advance the frontier of tractable probabilistic reasoning with circuit represen-

tations. Specifically, we study the problem of exactly computing the KL-divergence between two

circuits. We invent a recursion algorithm whose time complexity is quadratic with respect to the

circuit size for this purpose. Variable ordering is an important syntactic property for circuits. In

deriving the algorithm, it is clear that sharing the same variable ordering is the key that makes this

computation tractable.

We next study the structure learning problem for probabilistic circuits. Structure learning is

motivated by two considerations. First, given circuit representations’ delicate syntactic proper-

ties, it is infeasible to manually design a circuit structure that induces complex data distribution.

Second, to have meaningful probabilistic reasoning that corresponds to real happenings, it is im-

perative to learn probabilistic circuits from data. With our invented algorithm, we demonstrate that

those syntactic properties are not obstructions, but rather assistance in the learning process. They

help reduce the structure learning problem to local search. Moreover, by first compiling an initial
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structure from domain-specific logical constraints, one can straightforwardly learn over structured

spaces, a unique advantage that is rendered possible by symbolic-statistical synthesis.

Given probabilistic circuits are for generative learning, to complete our studies on learning, we

further invent the discriminative counterparts of probabilistic circuits. We demonstrate that, thanks

to the inherent syntactic properties, their parameter learning is convex optimization. A simple

search can induce strong structures from data for those discriminative circuits as well, and their

performance on standard image classification benchmarks is on par with deep neural networks.

Lastly, we study a practical question about how to incorporate circuit-based symbolic knowl-

edge into the current deep learning framework. Through reasoning about how likely the deep learn-

ing’s outputs satisfy the circuit-encoded constraints, we invent a novel semantic loss. Our approach

significantly improves deep learning’s prediction accuracy in semi-supervised settings and deep

structured domains with complex output spaces.

Overall, we demonstrate probabilistic reasoning, learning, and classification are unified for

circuit representations through the same syntactic properties. We hope that this dissertation can

shine a light on the opportunities of bridging the latest advances in probabilistic reasoning and

deep statistical machine learning.
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