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Abstract

Background

Schistosomiasis is one of the world’s most common NTDs. Successful control operations

often target snail vectors with the molluscicide niclosamide. Little is known about how niclo-

samide affects snails, including for Biomphalaria pfeifferi, the most important vector for

Schistosoma mansoni in Africa. We used Illumina technology to explore how field-derived

B. pfeifferi, either uninfected or harboring cercariae–producing S. mansoni sporocysts,

respond to a sublethal treatment of niclosamide. This study afforded the opportunity to

determine if snails respond differently to biotic or abiotic stressors, and if they reserve

unique responses for when presented with both stressors in combination. We also exam-

ined how sporocysts respond when their snail host is treated with niclosamide.

Principal findings

Cercariae-producing sporocysts within snails treated with niclosamide express ~68% of the

genes in the S. mansoni genome, as compared to 66% expressed by intramolluscan stages

of S. mansoni in snails not treated with niclosamide. Niclosamide does not disable sporo-

cysts nor does it seem to provoke from them distinctive responses associated with detoxify-

ing a xenobiotic. For uninfected B. pfeifferi, niclosamide treatment alone increases

expression of several features not up-regulated in infected snails including particular cyto-

chrome p450s and heat shock proteins, glutathione-S-transferases, antimicrobial factors

like LBP/BPI and protease inhibitors, and also provokes strong down regulation of prote-

ases. Exposure of infected snails to niclosamide resulted in numerous up-regulated

responses associated with apoptosis along with down-regulated ribosomal and defense
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functions, indicative of a distinctive, compromised state not achieved with either stimulus

alone.

Conclusions/Significance

This study helps define the transcriptomic responses of an important and under-studied

schistosome vector to S. mansoni sporocysts, to niclosamide, and to both in combination. It

suggests the response of S. mansoni sporocysts to niclosamide is minimal and not reflective

of a distinct repertoire of genes to handle xenobiotics while in the snail host. It also offers

new insights for how niclosamide affects snails.

Author summary

Schistosomaisis control programs often employ the use of chemical molluscicides, such as

niclosamide, to control the obligatory intermediate snail hosts. Despite its widespread use,

we know little about how niclosamide affects snails like Biomphalaria pfeifferi, the most

important vector Schistosoma mansoni in Africa. Following sequencing the transcrip-

tomes of uninfected and S.mansoni-infected B. pfeifferi treated with niclosamide, we ana-

lyze the snail’s response to both biotic and abiotic stressors. We can also examine the

response of S.mansoni to niclosamide exposure during intramolluscan development.

Biomphalaria pfeifferi snails exposed only to niclosamide showed unique up-regulation of

stress and defense-related transcripts not seen in snails infected with a biotic stressor like

S.mansoni infection. Schistosoma mansoni-infected B. pfeifferi treated with niclosamide

were clearly unable to regulate normal metabolic and detoxification processes. Cercariae-

producing sporocysts within snails treated with niclosamide are largely unaffected and

continue to produce transcripts required for cercariae production.

Introduction

Schistosomiasis control remains elusive in many of the world’s hyperendemic foci of infection

in sub-Saharan Africa, jeopardizing the goals of diminishing schistosomiasis as a public health

concern, or of eliminating transmission where possible by 2025 [1]. Several recent papers have

called for the need to adopt more integrated control approaches instead of relying on chemo-

therapy alone to achieve eventual elimination [2–3], and there has been a resurgence in inter-

est in methods to control the snails that vector human schistosomiasis [4–5]. Although the

practical options available for use in snail control remain limited, molluscicides have been

advocated because there are several recorded instances where their use has been associated

with successful control [4,6].

Following the discovery of niclosamide’s molluscicidal properties in the 1950s, it has been

incorporated into the commercial preparation known as Bayluscide [7] and is the only mollus-

cicide approved for use in schistosomiasis control by the WHO Pesticide Evaluation Scheme

(WHOPES). Use of niclosamide has enjoyed a modest resurgence and its focal application in

snail control is advocated by WHO [8]. It has been used widely in Egypt and China as a main-

stay for control operations, and it is used in both experimental [9–10] and in new control con-

texts, most notably recently as part of the S. haematobium elimination program in Zanzibar

[11–12].
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Although some work on the effects of molluscicides on oxygen consumption and carbohy-

drate metabolism of snails has been undertaken [13–14], there have been relatively few studies

employing modern techniques to assess the impacts of molluscicide exposure on schistosome-

transmitting snails. Zhao et al. [15], working with the amphibious snail Oncomelania hupensis,
the intermediate host for Schistosoma japonicum, undertook an Illumina-based de novo tran-

scriptome study to show this snail responded to two novel niclosamide-based molluscicides by

up-regulating production of two cytochrome p450 (CYPs) genes, and one glutathione-S-trans-

ferase. Zhang et al. [16] examined the effects of three different sublethal concentrations of

niclosamide (0.05, 0.10, and 0.15 mg/L for 24 hours) on the transcriptional activity of Biom-
phalaria glabrata as examined using an oligonucleotide microarray and noted up-regulation

of several genes associated with biotransformation of xenobiotics (CYPs and glutathione-S-

transferase), drug transporters, heat shock proteins (HSP 20, 40 and 70 families) and vesicle

trafficking. Down-regulated hemoglobin production was also noted. Niclosamide is able to kill

schistosome miracidia and cercariae [17–18] and field experiments in China have shown that

niclosamide is effective at reducing the number of viable S. japonicum cercariae in streams and

downstream infection of sentinel mice [19].

With respect to the effects of niclosamide on schistosome-infected snails, or on the schisto-

some sporocysts within them, there has been remarkably little study. Sturrock [20] investigated

the effects of sublethal concentrations of niclosamide on infections of S.mansoni on Biompha-
laria sudanica tanganyicensis and noted that: 1) snails treated with molluscicide that survived

were still susceptible to infection; 2) snails with prepatent infections were not initially more

susceptible to molluscicide but had slightly delayed rate of parasite development and produc-

tion of cercariae and did eventually exhibit higher mortality as they entered patency; and 3)

survivorship of snails exposed during the patent period was less, although it takes some time

for the effect to occur. Sturrock [20] commented that the combined stress of producing cercar-

iae and exposure to molluscicide likely contributed to the higher mortality rate in patent snails.

He also noted that doses sufficiently high to kill schistosome sporocysts in snails were probably

above the lethal doses needed to kill the snails themselves.

In this study, building on the microarray results of Zhang et al. [16] with B. glabrata, we

sought to obtain a more in-depth view of the transcriptome of molluscicide-exposed snails by

using the Illumina platform to examine the responses of Biomphalaria pfeifferi to a sublethal

dose (0.15 mg/L) of niclosamide. Biomphalaria pfeifferi is widely distributed in streams, ponds

and impoundments in Africa and is probably responsible for transmitting more cases of Schis-
tosoma mansoni than any other Biomphalaria species [21–22]. In addition, we examined the

transcriptional responses to the same dose of molluscicide of B. pfeifferi harboring cercariae-

producing S.mansoni infections. We were able to compare the responses of the above snails to

both uninfected and infected B. pfeifferi not treated with molluscicides (see companion studies

[23,24]). For both the previous and present studies, we chose to examine the responses of snails

recently removed from field habitats and therefore considered to be more representative of

what might be expected of snails comprising natural populations actually treated with mollus-

cicides. The approach taken enables us to ascertain if and how the transcriptional responses of

snails already coping with a massive S.mansoni infection can be further altered by simulta-

neous exposure to a toxic xenobiotic. For example, might snail genes up-regulated following

exposure to S.mansoni trend towards down-regulation if the snail is treated with niclosamide

and required to produce increased quantities of molecules involved in detoxification?

With respect to the sporocysts of S.mansoni residing in snails treated with niclosamide, do

they exhibit any tendency to express genes that are not normally expressed during intramollus-

can development, and if so, do the ensuing proteins favor survival of the sporocysts or of the

stressed snail in which the sporocysts reside? Three possible scenarios for S.mansoni
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transcriptional response to molluscicide exposure can be considered: 1) We see an overall

absence of S.mansoni transcripts indicating suspension of activity; 2) Cercariae-producing S.

mansoni sporocysts express unique features that are absent in response to molluscicide expo-

sure; and 3) Shedding S.mansoni stages treated with molluscicide show unique transcriptional

responses suggestive of a hitherto unseen ability to protect the host-parasite unit in which they

reside from a xenobiotic.

Methods

Ethics statement

This project was undertaken with approval of Kenya’s National Commission for Science,

Technology, and Innovation (permit number NACOSTI/P/15/9609/4270), National Environ-

ment Management Authority (NEMA/AGR/46/2014) and an export permit has been granted

by the Kenya Wildlife Service (0004754).

Biomphalaria pfeifferi used in Illumina sequencing were collected from Kasabong stream in

Asembo Village, Nyanza Province, western Kenya (34.42037˚E, 0.15869˚S) and transferred to

our field lab at The Centre for Global Health Research (CGHR) at Kisian, western Kenya.

Snails sized 6-9mm in shell diameter were placed under natural light to check for shedding of

digenetic trematode cercariae [25]. Snails shedding only S.mansoni cercariae and uninfected,

non-shedding snails were held in aquaria for one day. After cleaning shells with 70% EtOH,

whole shedding and uninfected snails (the two control groups) were placed individually into

1.5ml tubes with 1ml of TRIzol (Invitrogen, Carlsbad CA) and stored at -80˚C until extraction.

Additional B. pfeifferi confirmed to be uninfected and S.mansoni-shedding (patent infections)

snails were treated with a concentration of 0.15 mg/L niclosamide (Sigma-Aldrich, St. Louis

MO) with final DMSO concentrations at 1/1000 (v/v) for 24 hours at 26-28˚C with aeration

[16]. Previous 24 hour exposure of B. glabrata to varying doses of niclosamide (0.05mg/L,

0.10mg/L, and 0.15mg/L) found that the 0.15mg/L dose produced the most robust transcrip-

tional response, as assessed by microarray analysis [16]. All snails treated with 0.15mg/L niclo-

samide were alive and responding after the 24 hours dosage period. Therefore, a 0.15mg/L

dose was also selected for this study as the sublethal dose administered to B. pfeifferi. Our pre-

vious paper using a microarray on B. glabrata treatment with niclosamide contained control

snails with DMSO at 1/000 (v/v) and there was no noticeable effect on transcriptional levels

attributable to DMSO. Also, control assays with DMSO showed no effects to B. truncatus
snails, the intermediate host of Schistosoma haematobium [26]. For these reasons, we did not

include an additional group of control snails treated to DMSO.

Three snails from each of the four sample groups were chosen as biological triplicates for

Illumina Hi-Seq sequencing performed at the National Center for Genome Resources

(NCGR) in Santa Fe, NM. RNA extraction, library preparation, and sequencing procedures

can be found in Buddenborg et al. [23,24]. Illumina RNA sequencing reads underwent exten-

sive processing in order to separate host, parasite, and potential symbiont reads. Biomphalaria
pfeifferi read quantification and differential expression analyses for snail CDS (coding

sequences; the coding region of a gene) were performed using RSEM (RNA-Seq by expectation

maximization) [27] and EBSeq [28]. Biomphalaria pfeifferi with a posterior probability of dif-

ferential expression (PPDE) > = 0.95 were considered significant. Read counts acquired from

RSEM S.mansoni and TPM (Transcripts Per kilobase Million) values were used for down-

stream analyses. TPM is calculated by normalizing for transcript length and then by sequenc-

ing depth ultimately allowing us to compare the proportion of reads that mapped to a specific

transcript [29]. The raw and assembled sequence data are available at NCBI under BioProject

ID PRJNA383396. Raw read counts and normalized read counts can be found in S1 File and

Transcriptional response of Biomphalaria pfeifferi and Schistosoma mansoni to niclosamide
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S2 File. In one snail, uninfected replicate 3 (Bp replicate 3) we recovered platyhelminth reads

consistent with Ribeiroia (described at length in [23]). It is likely this snail had been exposed to

Ribeiroia, and as such, we removed this sample for our current analysis as its effects on com-

parisons with B. pfeifferi treated with molluscicide could not be determined. MDS (multidi-

mensional scaling) plots for each pairwise comparison performed in our analyses are provided

in S1 Fig.

Results and discussion

Overall B. pfeifferi and S. mansoni transcriptomic responses to molluscicide

exposure

Relative to uninfected and untreated control B. pfeifferi, the overall differential gene expression

responses were measured for snails i) with shedding S.mansoni infections only, ii) treated for

24 hours to a sublethal dose of niclosamide only, or iii) harboring shedding S.mansoni infec-

tions and treated to niclosamide (Fig 1A). The responses of shedding snails relative to

untreated uninfected controls is discussed extensively by Buddenborg et al. [23] and the S.

mansoni intramolluscan response is reported in Buddenborg et al [24]. With respect to mollus-

cicide exposure, this is the first Illumina-based view of the transcriptomics response for any

species of planorbid snail, and supplements and extends the view provided by the microarray

study for uninfected B. glabrata of Zhang et al. [16]. Zhao et al. [15] undertook an Illumina-

based study of the molluscicide-induced transcriptome of Oncomelania hupensis, the poma-

tiopsid snail host of S. japonicum. The response of B. pfeifferi to simultaneous exposure to

schistosome infection and niclosamide treatment is the first glimpse we have for how snails

respond transcriptionally to simultaneous exposure to these two relevant stressors.

For each of the three groups noted, the number of up-regulated snail features exceeded the

number of down-regulated features. For both up- and down-regulated features, it was remark-

able that over half of the transcripts proved to be distinctively represented in the combined S.

mansoni-infected and molluscicide-exposed group (Fig 1B). Over 4,000 genes were distinc-

tively up-regulated in the snails receiving the combination of stressors. This was the largest

number found in any single group of either venn diagram. It was surprising to us that larger

numbers of genes were not found in the cells of either venn diagram that represented two or

all three of the groups. It was also evident that although the response of niclosamide-exposed

snails had features in common to those evoked by S.mansoni exposure, many genes were also

uniquely differentially expressed by exposure to just niclosamide. Further inspection of the

pattern in expression levels exhibited by genes uniquely expressed in the combined S.man-
soni-infected and molluscicide-treated group revealed that in comparison to genes represented

in other cells, they were modest in the degree of their differential expression. The specific

nature of the genes responsive to either molluscicide alone, or to molluscicides and S.mansoni
are discussed further below.

The transcriptomic responses of intramolluscan stages of S.mansoni, including those from

snails actively shedding cercariae are described by Buddenborg et al. [24], and are supple-

mented here by responses of shedding snails treated with niclosamide (S2 Fig). Schistosoma
mansoni from shedding snails shared 80.6% of expressed transcripts with S.mansoni from

shedding snails treated with sublethal niclosamide at similar expression levels. Schistosoma
mansoni treated with niclosamide expressed 19% more transcripts, but this response was vari-

able among replicates, and>90% of these extra transcripts were expressed less than 2 log2 nor-

malized counts when replicate counts were averaged.
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Responses of S. mansoni cercariae-producing sporocysts within B. pfeifferi
exposed to sublethal niclosamide treatment

Sturrock [20] noted that the lethal dose of niclosamide for intramolluscan schistosomes is

higher than what is needed to kill the host snail. This may be the case because S.mansoni spo-

rocysts are protected both by their own syncytial tegument [30] and by being embedded in the

host snail’s tissues. At least with respect to a 24 hour treatment to a sublethal niclosamide dose

Fig 1. (A) Number of B. pfeifferi CDS (protein-coding sequences) up- and down-regulated in S.mansoni-infected snails untreated (Shedding), uninfected but

molluscicide-treated snails (Molluscicide), and snails with both S.mansoni-infected and molluscicide treatment (Shedding + Molluscicide) when compared to

uninfected untreated snails. (B) Venn diagrams showing shared and unique B. pfeifferi CDS between differentially expressed groups.

https://doi.org/10.1371/journal.pntd.0006927.g001
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for B. pfeifferi, we did not see extensive and broad down-regulation or absence of S.mansoni
transcripts involved in the following processes that would indicate a direct affect to niclosa-

mide: nutrient uptake across the tegument, cercariae production, or germ ball development

and proliferation.

Defense and stress responses were sustained in niclosamide-treated sporocysts relative to

untreated sporocysts. Peroxiredoxins like glutathione peroxidase and thioredoxin peroxidase,

which may be responsible for elimination of potentially lethal hydrogen peroxide produced by

the snail [31–33], were stably maintained, as were protective responses like planarian-like bac-

terial defense homologs, heat shock proteins, and SODs (S3 Fig). Particularly noteworthy is

the lack of an obvious response of the single S.mansoni cytochrome p450 gene to niclosamide

presence. As noted by Ziniel et al. [34] and by us previously [24], parasitic helminths in general

lack extensive cytochrome p450 repertoires, quite unlike B. pfeifferi which does deploy cyto-

chrome p450 responses upon exposure to molluscicides (see below). Drug efflux transporters

like ABC transporters, known to be up-regulated in adult schistosomes expose to praziquantel

[35–36], are expressed in cercariae-producing S.mansoni sporocysts [24] but do not show any

conspicuous change in their expression pattern following exposure to niclosamide (S4 Fig).

Our results agree with a study on the liver fluke Fasciola gigantica treated with rhodamine-

labeled niclosamide that also lacked substantial changes in ABC transporter activity [37].

S.mansoni sporocysts, and the cercariae developing within them, express a diverse array of

proteases, including elastases and leishmanolysins [24,38], with likely functions in disabling

snail defenses, dissolution of snail tissues to provide living space, facilitating intra-snail migra-

tion of sporocysts and for packaging in cercariae which use them both for exiting the snail host

and entering the mammalian definitive host. Protease inhibitors are also produced and likely

counteract proteases that the snail expresses late in infection [24,39]. The overall patterns of

expression of proteases or protease-inhibitors did not differ substantially between sporocysts

in untreated and niclosamide-treated snails (S5 Fig).

The modest increases in proteases, transporters, germinal cell proliferation factors and neu-

ropeptide or neural development markers [40–46] in niclosamide-exposed in vivo sporocysts

(S6 Fig) all serve to further highlight the fact that the 24 h niclosamide exposure we used was

certainly not lethal to the sporocysts nor did it seem to significantly curtail their transcriptional

production or to invoke transcripts associated either with enhanced efflux or processing of

niclosamide or with apoptosis or autolysis of sporocysts. Of course, more extensive exposure

of B. pfeifferi to niclosamide with attendant loss of the integrity of the snail metabolome would

inevitably result in death of S.mansoni sporocysts as well.

Shared response of two Biomphalaria species to a sublethal dose of

niclosamide

Of the 30,647 probe features on the B. glabratamicroarray used by Zhang et al. [16], 16,713

(55%) were homologous to a B. pfeifferi transcript (Blastn E-value <1e-10, percent identity

>75%). Microarray features with homologs to B. pfeifferi transcripts and that were differen-

tially expressed in both Zhang et al. [16] and the present study are shown in Table 1. These fea-

tures represent a conservative view of genes characteristic of Biomphalaria’s response to

sublethal niclosamide exposure. The entire differential expression analysis of B. pfeifferi’s
response to niclosamide showed 895 transcripts up-regulated and 604 down-regulated when

compared to uninfected control B. pfeifferi.
As a lipophilic xenobiotic, niclosamide would likely be eliminated in animals by increasing

its hydrophilicty (phase 1 reaction), conjugating the phase I product with a charged chemical

group (phase 2 reaction), and then removing it with the aid of a transmembrane transporter

Transcriptional response of Biomphalaria pfeifferi and Schistosoma mansoni to niclosamide
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(phase 3 reaction) [47]. A key enzyme superfamily of heme-thiolate proteins responsible for

initial phase I detoxification are the cytochrome p450s (CYPs). CYPs are found in all king-

doms of life and most commonly perform monooxygenase reactions adding one oxygen atom

to the xenobiotic with the other oxygen atom reduced to water [47]. Zhang et al. [16] found

that 9 of the features that were up-regulated� 2-fold change following exposure to 0.15mg/L

of niclosamide were CYPs. The B. glabrata genome has about 99 genes encoding heme-thiolate

detoxification enzymes with tissue-specific expression patterns suggesting that CYPs serve spe-

cific biological processes [48].

CYPs are also up-regulated in B. pfeifferi in response to niclosamide exposure, including

two in common with B. glabrata (Table 1) and 8 more as noted in Fig 2A, underscoring the

importance of CYP mixed function oxidases in the snail response to niclosamide. Of the CYPs

up-regulated in both snail species, one is a homolog of Cp450 3A2-like found in mouse liver

cell microsomes which is responsible for oxidizing steroids, fatty acids, and xenobiotics. The

other shared CYP is CYP 3A41-like. It is also microsomal and studies of vertebrate homologs

Table 1. All snail features shared between B. glabrata [16] and B. pfeifferi that were significantly differentially expressed after treated with 0.15mg/L niclosamide.

B. pfeifferi

Illumina transcript

Log2FC B. glabrata

array feature

Log2FC

ADP-ribosylation factor 3-like evgTRINITY_DN92963_c1_g2_i1 5.10 c13901 4.73

ADP-ribosylation factor 3-like evgTRINITY_DN92963_c1_g1_i1 4.45 c13901 4.73

Solute carrier family 28 member 3-like evgTRINITY_DN88027_c1_g1_i4 6.78 c27272 1.99

Multidrug resistance 1-like evgTRINITY_BU_DN81217_c7_g4_i1 2.72 contig_14304 1.48

Multidrug resistance 1-like evgTRINITY_DN90366_c3_g1_i2 5.26 contig_14304 1.48

HSP 12 evglcl|G0WVJSS02FHD9K 2.29 contig_7431 3.79

HSP 12 evglcl|G0WVJSS02JB97J 1.98 contig_7431 3.79

HSP 70 evgTRINITY_GG_25613_c6_g1_i1 1.09 BGC03909 3.64

Solute carrier family 28 member 3-like evgTRINITY_DN88027_c1_g1_i3 3.79 c27272 1.99

Cytochrome p450 evgTRINITY_BU_DN81631_c8_g1_i1 1.05 c14547_rc 3.10

Cytochrome p450 evgTRINITY_DN93193_c20_g1_i1 2.88 c8814 2.88

Baculoviral IAP repeat-containing 3-like evgTRINITY_BU_DN78979_c0_g1_i2 1.69 c17676_rc 2.14

Nuclear protein 1-like evglcl|HJ4YRIA01D0DSV 1.28 contig_4627 2.20

Nuclear protein 1-like evglcl|HJ4YRIA02HBZUN 1.01 contig_4627 2.20

Growth arrest and DNA damage-inducible alpha-like evglcl|G0WVJSS02G7JUO 1.85 contig_8438 1.39

Alpha-crystallin B chain evglcl|HJ4YRIA01ERORD 1.21 contig_2362_rc 1.79

Sequestosome-1-like evgTRINITY_DN29609_c0_g1_i1 1.00 BGC02302 1.57

Glycogen-binding subunit 76A-like evgTRINITY_DN70212_c1_g1_i1 0.92 c14016_rc 1.09

Methionine synthase reductase-like evgTRINITY_DN77579_c0_g1_i1 0.71 c41473 1.00

Glutathione-independent glyoxalase hsp3103 evgTRINITY_DN92822_c15_g1_i1 -1.08 contig_3480 -1.10

Thymidine kinase, cytosolic-like evgTRINITY_DN90310_c10_g1_i1 -1.29 contig_10981 -1.35

Uncharacterized evgTRINITY_DN89789_c4_g2_i1 2.39 contig_12514_rc 3.19

Uncharacterized evglcl|G0WVJSS01A5WAX 3.89 contig_6337_rc 4.16

Uncharacterized evglcl|G0WVJSS01DEUAY 1.60 contig_3100 2.29

Uncharacterized evgTRINITY_DN88565_c20_g1_i1 2.00 contig_3944_rc 1.38

Uncharacterized evgTRINITY_DN22835_c0_g1_i1 1.33 BGC02491 1.02

Uncharacterized evglcl|G0WVJSS01DKS66 1.36 c43865_rc 1.40

Uncharacterized evglcl|G0WVJSS02ITT0P 0.82 contig_7634_rc 1.16

Uncharacterized evgTRINITY_GG_16388_c0_g2_i1 0.86 c13164_rc 1.09

Uncharacterized evgTRINITY_DN84827_c0_g2_i1 -0.81 c8798_rc -1.13

Uncharacterized evgTRINITY_DN93461_c7_g1_i1 -1.49 c1870 -1.80

https://doi.org/10.1371/journal.pntd.0006927.t001
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Fig 2. (A) Biomphalaria pfeifferi CYP (cytochrome p450s) and GST (glutathione-S-transferases) and (B) B. pfeifferi heat shock proteins (HSPs) up-

regulated in response to sublethal niclosamide treatment. Data for B. glabrata from Zhang et al. [16].

https://doi.org/10.1371/journal.pntd.0006927.g002
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indicate that glucocorticoids may exert control of CYP3A41 gene expression [49]. Modest

down-regulation of one CYP in B. glabrata (CYP II f2) was also observed [16] and we similarly

noted down-regulation of a CYP (1-like isoform X1) in B. pfeifferi. This supports the sugges-

tion by Zhang et al. [16] that different members of the CYPs repertoire are likely to have differ-

ent functions in Biomphalaria snails in response to diverse stimuli, including biotic challenges

like S.mansoni or abiotic challenges like molluscicides.

Phase 2 in the elimination of xenobiotics would likely involve molecules like glutathione

transferases that transfer charged chemical species like glutathione to the xenobiotic. Glutathi-

one-S-transferase 7-like (GST) was up-regulated 5-fold following niclosamide exposure in B.

glabrata [16]. In addition to CYPs, GST has also been shown to be up-regulated following

niclosamide-based molluscicide exposure in Oncomelania hupensis [15]. GST was also repre-

sented in the B. pfeifferi Illumina DE transcripts with up-regulation of GST omega-1-like, and

microsomal GST-1 and -3-like (Fig 2A).

Transmembrane transporters complement the detoxification and conjugation reactions of

phases 1 and 2 by eliminating the xenobiotic or toxin present in an organism [47]. ATP-bind-

ing cassette (ABC) transporters, particularly ABC efflux transporters, play an important role in

eliminating toxic compounds from cells. For instance, ABCG2, a non-specific, multi-xenobi-

otic transporter is known to be expressed at high levels in the gills and hemocytes ofMytilus
edulis [50]. One family of ABC efflux transporters, the multidrug resistance proteins (MRPs)

act to eliminate drugs and toxic chemicals transporting anionic compounds detoxified in

phases 1 and 2. One MRP-1 is expressed 2.8-fold higher than controls in B. glabrata [16] and

10 MRP-1 transcripts were up-regulated in B. pfeifferi suggesting these transporters are remov-

ing toxic waste products produced directly by niclosamide or indirectly through cell death or

tissue necrosis (S2 Table).

Heat shock proteins are up-regulated after exposure to a variety of stressors including elevated

temperature, hypoxia, ischemia, heavy metals, radiation, calcium increase, glucose deprivation,

various pollutants, drugs, and infections [51]. Up-regulation of HSPs has been associated with

susceptibility of B. glabrata to S.mansoni [52–53]. HSPs have also been identified in other mol-

luscs as indicators of environmental stress. The disk abaloneHaliotis discus discus up-regulates

HSP 20 when treated with extreme temperatures, changing salinity, heavy metals, and microbial

infection [54]. The marine bivalve,Mytilus galloprovincialis up-regulates HSPs 24.1, 70, 90, and

sequestosome-1 following toxic metal exposure [55]. Biomphalaria glabratamounts a multiface-

ted HSP response to niclosamide by up-regulating HSPs 12, 40, and 70 [16] and the selective

autophagosome cargo protein sequestosome-1. We also saw up-regulation of these specific HSPs

but the more comprehensive sequencing available from the Illumina study revealed mixed

responses of isoforms of HSP 12.2 and down-regulation of HSP 30 (Fig 2B).

In response to exposure to S.mansoni infection, B. pfeifferi shows a more complex transcrip-

tional expression of HSPs, cytochrome p450s, and glutathione-S-transferases than it does to mol-

luscicide with no general up- or down-regulation of any group of these transcripts [23]. Biotic

stressors such as parasites with intimate and prolonged contact with host tissues may induce a

more complex stress response with up- and down-regulation of various HSPs in comparison to

a general up-regulation of CYPs, glutathione-S-transferases, small and large molecular weight

HSPs, and sequestosome noted in the response of several molluscs to abiotic stressors.

Additional responses of Biomphalaria to sublethal molluscicide exposure

detected with Illumina RNA-Seq

Transcripts involved in protection from oxidative damage, generalized pathogen defense and

innate immunity, protease inhibitors and feeding behavior were all noted. We observed high
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expression of several glutathione peroxidase transcripts, presumably associated with enhanced

conversion of hydrogen peroxide to water. In cancerous colon cells, niclosamide increased cell

death when used with a therapeutic drug through hydrogen peroxide production [56], there-

fore, it is not inconceivable that niclosamide in snails is directly or indirectly involved in

increasing hydrogen peroxide levels. Glutathione peroxidase has been shown to increase the

general tolerance of cells to oxidative stress resulting from exposure to xenobiotics [57].

Glutathione reductase, a critical oxidoreductase enzyme that catalyzes the reduction of glu-

tathione disulfide to glutathione, surprisingly was down-regulated. As noted above, glutathi-

one is a key ingredient needed in phase II conjugation mediated by the enzyme glutathione-S-

transferase, which is up-regulated in B. pfeifferi following molluscicide exposure. An impaired

ability to regenerate glutathione because of down-regulated glutathione reductase activity

could then impair both the detoxification process and interfere with maintenance of redox bal-

ance by allowing hydrogen peroxide to accumulate.

One of the more striking responses of B. pfeifferi treated with niclosamide was the high up-

regulation of transcripts for several protease inhibitors including antitrypsin-like and serpins

(serine protease inhibitors) and the down-regulation of metallo, cysteine, and serine proteases.

In contrast, only one serine protease (chymotrypsin-like elastase family member 1) and a sin-

gle aminopeptidase N-like transcript were up-regulated. Caspases are cysteine-dependent pro-

teases that play essential roles in programmed cell death [58] and isoforms of caspase-2 and 3

were down-regulated in niclosamide-exposed B. pfeifferi. The down-regulation of protease

activity may be part of a compensatory stress response made by the snail to minimize meta-

bolic changes associated with niclosamide exposure that if left unchecked would lead to apo-

ptosis and protein degradation.

Responses typically classified as innate immune responses because they occur following

exposure to parasites like S.mansoni were also noted in B. pfeifferi exposed only to niclosa-

mide. One such transcript was homologous to CD109 antigen-like, a thioester-containing pro-

tein, which is highly enriched in plasma from both resistant and susceptible strains of B.

glabrata containing miracidia transforming into mother sporocysts [59]. We also noted up-

regulation of a transcript identified as complement C1q-like protein that we have reported to

be up-regulated in early S.mansoni-infected B. pfeifferi [23]. Fibrinogen-related proteins

(FREPs) 1 and 2 were both up-regulated after niclosamide exposure; FREP2 was also up-regu-

lated in S.mansoni-shedding B. pfeifferi [23]. Dermatopontin, a parasite-responsive gene fre-

quently noted in studies of both B. glabrata and B. pfeifferi, was also up-regulated following

niclosamide exposure.

A conspicuous response was the high up-regulation of over 100 diverse transcripts identi-

fied as LBP/BPI1 (lipopolysaccharide binding protein/bacterial permeability-increasing pro-

tein 1) in B. pfeifferi after exposure to niclosamide. LBP/BPI1 is an antimicrobial molecule

found in the albumen gland of B. glabrata and egg masses [60]. Silencing of LBP/BPI1 expres-

sion in B. glabrata resulted in significant reduction of egg-laying, and death of eggs attributable

to oomycete infections, providing evidence that LBP/BPI is involved in parental immune pro-

tection of offspring [61].

Transcripts homologous to B. glabrata tyrosinases (Tyr) 1, 2, and 3, are also up-regulated in

response to niclosamide. In early-stage pre-patent S.mansoni infections Tyr-1 is up-regulated,

and Tyr-3 is down-regulated in B. pfeifferi harboring cercariae-producing sporocysts [24]. Tyr-

osinases are involved in melanin synthesis and additionally might mark an early phase in initi-

ation of castration by diverting tyrosine towards the production of melanin instead of

dopamine in S.mansoni-infected B. pfeifferi [23]. Like LBP/BPI1, tyrosinase has also been iso-

lated from B. glabrata egg masses and is presumed to provide an immunoprotective effect for

developing embryos by contributing to the melanization of the egg membrane [60,62]. The
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additional considerable effort by the snail to make two egg mass-associated proteins in

response to niclosamide is baffling, but might represent a last-ditch attempt to produce off-

spring before death. Alternatively, perhaps this is best viewed as an example of relatively non-

specific innate immune responses that can be invoked by exposure to an unusual stressor,

even if it is of an abiotic nature. Another consideration is that it represents a response to the

presence of bacteria in the snail that might appear due to impaired hemocyte function or possi-

bly due to failure to contain the gut microbiome in its usual compartment.

Another unexpected response was the high up-regulation of myomodulin-like neuropep-

tide in niclosamide-treated B. pfeifferi. Myomodulins are neurotransmitters involved in regu-

lating feeding behavior by controlling radula protractor muscles used for feeding [63] in

Lymnaea stagnalis [63,64] and Aplysia californica [65]. Myomodulin is down-regulated in pre-

patent S.mansoni-infected B. glabrata and this was implicated as possibly diminishing feeding

efficiency in infected snails [66]. Down-regulation of a B. pfeifferi feeding circuitry peptide was

seen in early and patent S.mansoni infections [23]. The up-regulated myomodulin activity

noted here provides evidence that basic physiological activities such as feeding are altered after

niclosamide exposure. The musselMytilus edulis shows a decreased rate of feeding after expo-

sure to hydrophobic organic chemicals, organochlorine compounds, organophosphate and

carbamate pesticides, and pyrethroids [67–68].

With respect to features down-regulated following niclosamide exposure, it would seem

transcription and translation efficiency would be hindered as evidenced by down-regulation of

nearly a dozen ribosomal proteins, transcription factors, and mitogen-activated protein

kinases (MAPKs). Of transcripts associated with stress responses, HSP 30 and HSP 70 cytosolic

isoform were down-regulated along with an HSP 12 isoform. Neuroglobins are members of

the hemoglobin superfamily of oxygen carriers, are expressed in the glial cells surrounding

neurons and have been found in marine, freshwater, and terrestrial molluscs including the gas-

tropods L. stagnalis, Planorbis corneus, A. californica,Helix pomatia and Cepaea nemoralis
[69]. Although we did not observe down-regulation of the hemoglobin-encoding gene noted

by Zhang et al. [16] following exposure of B. glabrata to niclosamide, down-regulation of neu-

roglobin in niclosamide-exposed B. pfeifferi was observed. This could be associated with

reduced availability of oxygen, at least for neural cells.

Significant down-regulation of a Cu-Zn SOD (-9.3 log2FC) in B. pfeifferi indicates that

SODs have a more complex response to niclosamide than previously thought from the micro-

array study by Zhang et al. [16]. High expression of certain alleles of Cu-Zn SOD have been

implicated in resistance of B. glabrata strain 13-16-R1 to S.mansoni [70–72] so it is not

unlikely that different Cu-Zn SODs show distinctive responses to other stressors like niclosa-

mide. Calmodulins, ubiquitous calcium-dependent signaling proteins responsible for regulat-

ing the uptake, transport, and secretion of calcium in gastropod shell formation [73–74], are

expressed by B. glabrata in response to gram (-) and gram (+) bacteria, yeast [75], and in B.

glabrata snail plasma containing larval S.mansoni. Here, we saw down-regulation of calmodu-

lin in B. pfeifferi treated with the niclosamide, raising the possibility that calmodulin expres-

sion is more responsive to biotic challenges. Transcripts related to cell adhesion like spondins

that are expressed in Biomphalaria hemocytes [76] were also down-regulated.

Responses of B. pfeifferi with cercariae-producing S. mansoni infections to

sublethal niclosamide treatment

As previously noted, snails treated with the combined effects of the biological stressor S.man-
soni and the abiotic stressor niclosamide were surprisingly responsive (Fig 1), exhibiting large

numbers of uniquely up- and down-regulated features, with many of these only modest in the
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degree of their differential expression. Among the more notable responses were several fea-

tures associated with managing cell death in damaged tissues (Table 2). The transmembrane

transporter ABCA3 is associated with resistance to xenobiotics and engulfment during apopto-

sis [77]. The enzymes glutaredoxin-2-like and catalase-like are both involved in reduction of

hydrogen peroxide that may be released during niclosamide-induced apoptosis. An increase in

apoptosis could account for the up-regulation of lysosomal endopeptidases such as cathepsin-

L-like. Two mitochondria-associated transcripts that also play a role in gluconeogenesis, glyc-

eraldehyde-3-phosphate dehydrogenase (GAPDH) and glycerol-3-phosphate dehydrogenase-

like (GPDH) were also up-regulated. GAPDH accumulates in mitochondria during apoptosis

and induces pro-apoptotic mitochondrial membrane permeability [78]. Niclosamide has been

screened as a potential promoter of mitochondrial fragmentation by disrupting membrane

potential, reducing ATP levels, and inducing apoptosis by caspase-3-activation in HeLa cells

[79].

Pattern recognition receptors (PRRs), key elements responsible for the recognition of path-

ogens, showed mixed responses. Four distinct PRR genes were up-regulated: peptidoglycan-

recognition protein SC2-like, ficolin-like, FREP 2, and FREP 10. We have reported the up-reg-

ulation of FREP 2 in S.mansoni-infected B. pfeifferi [24] but here we see four additional iso-

forms of FREP 2 up-regulated. Toll-like receptors (TLRs) which are involved in recognizing

pathogens and activating conserved innate immune signaling pathways [80], were conspicu-

ously down-regulated (TLRs 3, 4, 5, 7, and 8). Additional transcripts that function in various

aspects of innate immune responses and that were down-regulated are C3 PZP-like alpha-

2-macroglobulin domain-containing protein 8, hemolymph trypsin inhibitor B-like, tyrosine-

3-monooxygenase, DBH-like monooxygenase 2, and tyramine beta-hydroxylase-like.

As with snails treated with niclosamide alone, once again a down-regulation of transcripts

for ribosomal proteins was noted. Reduction in ribosome production can be considered a

stress response because it is a rapid and effective response against misfolded proteins [81] but

may simply be an indication of a downgrading of general condition. Other down-regulated

transcripts show diverse functional activity. Several annexins, intracellular Ca2+ and

Table 2. Biomphalaria pfeifferi transcripts up-regulated in response to dual stressors (S. mansoni infection and

sublethal niclosamide exposure) identified for their potential role in programmed cell death. Except where noted,

functions were obtained from Entrez Gene at https://www.ncbi.nlm.nih.gov/gene and UniProtKB at www.uniprot.org/

uniprot.

Transcript Description Function

ABCA3 transmembrane transporter Resistance to xenobiotics and engulfment during apoptosis

Growth arrest-specific protein 2-like Cell cycle arrest; regulation of cell shape; may act as a cell death substrate

for caspases

Glutaredoxin-2-like Mitochondrial; response to hydrogen peroxide and regulation of

apoptosis caused by oxidative stress

Calmodulin 2/4-like, 5, A-like Can mediate the stress response calcium-dependent signaling that

controls a variety of enzymes, ion channels, proteins, kinases, and

phosphatases

Heparanase-like Facilitates cell migration associated with metastasis, wound healing and

inflammation

Catalase-like Reduction of hydrogen peroxide

Caspase 3 and 8-like TNF binding; endopeptidase activity involved in apoptosis

Tumor necrosis factor (TNF) and

receptor

Induces cell death

Cathepsin-L-like Lysosomal endopeptidase

Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH)

Induces pro-apoptotic mitochondrial membrane permeability (Deniaud

et al. 2007)

https://doi.org/10.1371/journal.pntd.0006927.t002
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phospholipid binding proteins are down-regulated showing the possible disruption of regula-

tion of membrane organization, trafficking, and the regulation of Ca2+ concentrations within

cells [82].

Unlike the general up-regulation of CYPs in B. pfeifferi exposed only to niclosamide, B.

pfeifferi with dual stressors highly down-regulate several CYPs (microsomal CYPs 2J1-like,

2B4-like, 3A29-like, 26A1-like, and mitochondrial CYP12A2-like). Mitochondrial CYP12A2-

like is known to metabolize a variety of insecticides and xenobiotics [83]. We cannot discount

that contribution to the down-regulation of this particular CYP is a result of mitochondrial

degradation caused, in part, by niclosamide as noted previously as well as the additional stress

of a patent S.mansoni infection.

Concluding remarks

This study provides a distinctive and detailed view of the nature of the response of field-

derived B. pfeifferi to relevant stressors likely to be encountered in its environments, including

infections with S.mansoni, just one of several digenetic trematodes known to commonly infect

this snail in Africa [84], and treatment with the commonly used molluscicide, niclosamide. It

is important to gain additional detailed information regarding the effects of niclosamide on

snails, particularly those that harbor schistosome infections. For example, do infected snails

succumb more readily to treatment and if so, why? This particular aspect of molluscicide use

has not been widely investigated.

In general, treatment with niclosamide alone resulted in the fewest responsive features in B.

pfeifferi (1,711) followed by infection with S.mansoni (2,271) and then by the combination of

niclosamide and S.mansoni (7,683). Snails in these three groups all responded in very distinct

ways, but in each case with more features up- than down-regulated. Sublethal exposure to a

single xenobiotic provoked about 67% as large a transcriptomic response as was noted for

snails shedding S.mansoni cercariae, snails that had probably been infected with the parasite

for at least a month and harbored large numbers of daughter sporocysts. The fact that snails

that received the combination of infection and niclosamide responded so much more vigor-

ously with so many distinctive features suggests that they were under greater duress and that

their responses in some sense preempted the responses of snails in the other two groups.

Treatment with niclosamide alone provoked up-regulation of several features associated

with response to xenobiotics including cytochrome p450s, heat shock proteins, multidrug

resistant transporters and glutathione-S-transferases, confirming many of the observations

made by Zhang et al [16] in a microarray study of B. glabrata treated with sublethal doses of

niclosamide. Several additional unique aspects of the response to niclosamide were also noted

given the increased resolution provided by Illumina sequencing. We note that one of the

effects of niclosamide on B. pfeifferimay be to contribute to redox imbalance because glutathi-

one is being used by glutathione-S-transferases to conjugate xenobiotics but may not be suffi-

ciently regenerated because of down-regulated activity of glutathione reductase.

Exposure of infected snails to niclosamide was noteworthy in revealing the involvement of

several features not found to be responsive to either stressor alone. Although many of the

uniquely expressed features did not respond dramatically, the ones that did were indicative of

responses associated with apoptosis, reduced protein synthesis, reduced production of some

CYPs and thus diminished detoxification ability, and diminished innate immune function.

Accordingly, we hypothesize that the combination of stressors was likely overcoming the

snail’s ability to maintain homeostasis. The snail mounts a considerable transcriptomic

response to the presence of cercariae-producing sporocysts [23] and it is not hard to imagine

that the energy demand placed on infected snails by continual production of cercariae takes an
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additional toll. The mortality rate of B. pfeifferi infected with S.mansoni is significantly higher

than that noted for unexposed control snails [25]. The molluscicide-exposed infected snails

selected for sequencing were alive when sampled, but the transcriptional profiles suggested

they were not thriving. This is broadly in agreement with observations made to indicate that B.

sudanica with S.mansoni infections succumb to sublethal niclosamide treatment at a higher

rate than do uninfected controls [20]. In other words, the combination of stressors used here

exposed the limits of what these snails can do to maintain homeostasis.

We remind readers of three possible scenarios presented in the introduction regarding S.

mansoni transcriptional response to molluscicide: 1) An overall absence of S.mansoni tran-

scripts indicating suspension of activity; 2) Cercariae-producing S.mansoni sporocysts express

unique features that are absent in response to molluscicide exposure; and 3) Shedding S.man-
soni stages treated with molluscicide show transcriptional responses suggestive of an ability to

protect the host-parasite unit in which they reside from a xenobiotic. We can discount the first

scenario because the sporocyst response did not appear to be as indicative of a failure to main-

tain homeostasis as we noted for snails. This is in keeping with the general observation that the

lethal dose of niclosamide for sporocysts is probably higher than for snails [20]. Although it is

clear that both miracidia and cercariae are vulnerable to niclosamide [17–18], this may be a

reflection of their more aerobic metabolism and that they would be more fully exposed to the

action of niclosamide in vitro as compared to sporocysts nested within the tissues of an

infected snail. Inspection of the transcripts produced uniquely by niclosamide-exposed sporo-

cysts does not reveal any candidates that would seem to favor resilience to niclosamide. This

coupled with the stable expression of known defense or stress response genes noted above

leads us to a conclusion that sporocysts have little if any ability to mount protective responses

to niclosamide and certainly do not seem to provide anything that would favor enhanced sur-

vival of their host snail in the presence of a chemical that is clearly lethal for the host. It is possi-

ble that the parasite can only rely on host xenobiotic detoxification capabilities when

confronted with niclosamide. Regarding scenario #3, even though S.mansoni sporocysts

within snails treated with niclosamide expressed more transcripts than in untreated snails,

there was little about the response to suggest they possessed any distinctive or large-scale abil-

ity to respond to a xenobiotic like niclosamide, so it can be rejected. We can though accept a

modified version of our second scenario as our data suggests niclosamide treatment to B. pfeif-
feri with cercariae-producing S.mansoni sporocysts does not produce a strong negative effect

on the transcriptomic responses of sporocysts. However, given the relatively unhealthy state of

the treated snails, it would inevitably follow that the condition of the sporocysts would

degenerate.

The broader implications of the current and future use of molluscicides for snail control

remain unknown; however, the threat remains that snails downstream from the point of treat-

ment could survive being exposed to lower doses (a result of dilution) of molluscicide, thus

remaining susceptible to infection [20]. It remains to be seen if individual snails that happen to

be repeatedly exposed to sublethal doses of niclosamide might experience faster and more

durable induction of protective compounds, rendering them more resistant to later lethal

doses. Also, by either enhancing or normal immune function of the snail, sublethal mollusci-

cide treatment could potentially alter the normal balance of the snail-schistosome interaction,

possibly increasing or diminishing compatibility. Or, in snails with pre-existing S.mansoni
infections, sporocysts may capitalize on altered snail defenses resulting from molluscicide

treatment and potentially increases cercarial production. Possibilities like these should be

taken into consideration in the planning of snail control programs that use molluscicides such

as niclosamide in situations where their concentrations are rapidly diluted in large water
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volumes, or where molluscicicdes are repeatedly applied. Further study is necessary to deter-

mine if these are realistic possibilities.

In conclusion, we noted remarkably distinctive transcriptomics responses for B. pfeifferi
depending on the nature of the stressor they received, and that the combination of niclosamide

and S.mansoni infection imposed a level of stress on the snails that resulted in an extensive

response comprised of many features we had not observed previously. This study contributes

to the growing list of molecular participants that may govern the outcomes of the intimate

interrelationships between snails and schistosomes, and that may help us understand how

snail host biology might be targeted for disruption by molluscicidal chemicals.
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S3 Fig. Stress and defense transcripts expressed by S. mansoni untreated (Shedding) and
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defense factors, heat shock proteins, peroxiredoxins, SODs (superoxide dismutases), and

cytochrome p450.

(TIF)

S4 Fig. ABC transporters expressed by S. mansoni in S. mansoni-shedding samples (Shed-

ding) and S. mansoni-shedding samples treated with a sublethal dose of niclosamide

(0.15mg/L) (Shedding + Molluscicide). Expression is measured as log2-transformed TPM

(transcripts per million) and ordered by hierarchical clustering.

(TIF)
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S5 Fig. Schistosoma mansoni proteases and protease inhibitor transcripts expressed in S.

mansoni-shedding samples (Shedding) and S. mansoni-shedding samples treated with a

sublethal dose of niclosamide (0.15mg/L) (Shedding + Molluscicide).

(TIF)

S6 Fig. Intramolluscan S. mansoni of B. pfeifferi treated with molluscicide (Shedding + Mollus-

cicide) exhibited modest increases in expression of cercarial elastases (SmCE1a, SmCE1a.2,

cercarial protease, and SmCE2b) (A), nutrient transporters (glucose, amino acid, and nucleo-

side) (B), germinal cell proliferation (C), and neural development and neuropeptides (D).

Shedding S. mansoni stages treated with niclosamide had higher transcript levels for cell polar-

ity protein, neuronal differentiation, notch, SOX transcription factor, and septate junction

protein and although modest, these may have important downstream effects on germinal cell

proliferation or neurogenesis.

(TIF)
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