
UCLA
UCLA Previously Published Works

Title
TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning.

Permalink
https://escholarship.org/uc/item/59n7w2rz

Journal
ACM Transactions on Embedded Computing Systems, 23(3)

Authors
Saha, Swapnil
Sandha, Sandeep
Aggarwal, Mohit
et al.

Publication Date
2024-05-01

DOI
10.1145/3603171
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59n7w2rz
https://escholarship.org/uc/item/59n7w2rz#author
https://escholarship.org
http://www.cdlib.org/


TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine 
Learning

SWAPNIL SAYAN SAHA,
University of California - Los Angeles, Los Angeles, CA, USA

SANDEEP SINGH SANDHA,
Abacus.AI, Seattle, WA, USA

MOHIT AGGARWAL,
BrightNight, Austin, TX, USA

BRIAN WANG,
University of California - Los Angeles, Los Angeles, CA, USA

LIYING HAN,
University of California - Los Angeles, Los Angeles, CA, USA

JULIAN DE GORTARI BRISENO,
University of California - Los Angeles, Los Angeles, CA, USA

MANI SRIVASTAVA
University of California - Los Angeles, Los Angeles, CA, USA

Abstract

Machine learning at the extreme edge has enabled a plethora of intelligent, time-critical, and 

remote applications. However, deploying interpretable artificial intelligence systems that can 

perform high-level symbolic reasoning and satisfy the underlying system rules and physics within 

the tight platform resource constraints is challenging. In this paper, we introduce TINYNS, the first 

platform-aware neurosymbolic architecture search framework for joint optimization of symbolic 

and neural operators. TINYNS provides recipes and parsers to automatically write microcontroller 

code for five types of neurosymbolic models, combining the context awareness and integrity of 

symbolic techniques with the robustness and performance of machine learning models. TINYNS 

uses a fast, gradient-free, black-box Bayesian optimizer over discontinuous, conditional, numeric, 

and categorical search spaces to find the best synergy of symbolic code and neural networks 

within the hardware resource budget. To guarantee deployability, TINYNS talks to the target 

hardware during the optimization process. We showcase the utility of TINYNS by deploying 

microcontroller-class neurosymbolic models through several case studies. In all use cases, TINYNS 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided 
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is 
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. 
Request permissions from permissions@acm.org.

Authors’ addresses: Swapnil Sayan Saha, swapnilsayan@g.ucla.edu. 

HHS Public Access
Author manuscript
ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

Published in final edited form as:
ACM Trans Embed Comput Syst. 2024 May ; 23(3): . doi:10.1145/3603171.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outperforms purely neural or purely symbolic approaches while guaranteeing execution on real 

hardware.

Keywords

neurosymbolic; neural architecture search; TinyML; AutoML; Bayesian; platform-aware

1 INTRODUCTION

Tiny machine learning (TinyML) refers to hardware and software suites that enable always-

on, ultra-low-power (≤ 1 mW), and on-device sensor data analytics on low-end (≤ 1-2 MB 

of SRAM and eFlash) Internet of Things (IoT) platforms [51, 126, 136, 148]. TinyML 

holds the key to making on-board intelligent inferences from unstructured data for time-

critical and remote applications, such as aerial robotics [127], underwater navigation [134], 

picosatellite machine inference [45], and wildlife monitoring [47]. 2.5 billion TinyML 

platforms are expected to ship in 2030 [4].

An integral component in the TinyML workflow is neural architecture search (NAS) or 

AutoML, which automatically constructs the most performant neural network (NN) from 

a set of lightweight ML blocks [79, 81, 94, 162, 167, 173] and connection rules given 

target platform SRAM, eFlash, energy, and latency constraints [14, 60, 101, 103, 136, 139]. 

The NAS-generated model is compiled to the target device using TinyML compiler suites 

[30, 43, 65, 67, 95, 103], which perform operator and inference engine optimizations [27, 

42, 103, 177], model compression [76], and code generation [136, 171]. After deployment, 

periodic fine-tuning of the model accounts for feature distribution shifts using on-device 

training [24, 100, 129] and federated learning [89, 110]. AutoML is preceded by data 

acquisition and analytics [131], and feature projection for dimensionality reduction [164] in 

the TinyML workflow [136].

The first generation efforts in TinyML focused on the exploration (lightweight model 

blocks), optimization (NAS, AutoML), and integration (compiler suites) of standalone 

NNs within the device platform constraints [136]. However, IoT applications in the wild 

need to obey specific rules, physics, and heuristics for provably correct operation, context 

awareness, and explainability [106, 136, 142, 174]. Examples include:

• A localization ML model regressing position from motion sensor data should not 

output displacements when rotational artifacts dominate translational movements 

[134].

• An aerial vehicle should not exceed a certain bank angle to remain stable [44].

• In nurse care settings, certain atomic events (e.g., washing hands) must precede 

other events (e.g., administering medicine to a patient) to comply with sanitary 

protocols [174] and not vice-versa.

• Certain spectral features (e.g., peak frequency) in the embedding manifold 

improve the accuracy and interpretability of wearable human activity recognition 

models [8].

SAHA et al. Page 2

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While ML models have achieved superior performance on unstructured, multimodal, and 

noisy sensor inputs over human-engineered symbolic techniques, three issues plague the 

deployment of standalone ML models for context-aware sensor data analytics. Firstly, even 

with large datasets, ML models cannot guarantee the learned feature representations obey all 

the rules, symmetries, and physics of the underlying system [37, 85, 134, 152]. Secondly, 

the contextual field of ML models (even transformers) is limited to a few minutes, making 

them unsuitable for high-level reasoning on atomic events that can span several hours (if not 

days) with spatial and temporal constraints [7, 114, 128, 166, 174]. Thirdly, ML models lack 

transparency and interpretability, with the decision trace (e.g., causation versus correlation) 

and learned features difficult to understand [63, 109, 114, 121, 147, 176].

Neurosymbolic artificial intelligence (AI) is a potential bridge to connect the interpretability, 

verifiability, data efficiency, and context awareness of symbolic techniques with the 

scalability, flexibility, robustness, and performance of NNs [64, 70, 106, 108, 109, 118, 

142, 146, 149, 174, 175]. Neurosymbolic AI integrates NNs with expert principles expressed 

as probabilistic reasoning modules, logical reasoning modules, knowledge graphs, question/

answering engines, and constraint satisfaction functions [64, 142]. Concatenation of neural 

and symbolic reasoning has been successful in a broad spectrum of challenging problems. 

These include complex event recognition [7, 128, 166, 169, 174], commonsense reasoning 

[20, 141], visual question answering [109, 176], oceanographic forecasting [35, 58], 

autonomous driving [71, 150, 157], business management [19, 36], and bioinformatics [5, 

92]. Thereby, neurosymbolic AI can enable rich, complex, and intelligent inferences at the 

extreme edge beyond the perception of atomic events [128, 136, 165]. However, real-time 

adoption of neurosymbolic frameworks on extremely resource-constrained platforms such as 

microcontrollers is challenging, as discussed next.

1.1 Challenges

Given the ultra-resource constraints of TinyML platforms, manually finding the optimal 

synergy between the hyperparameters of the NN and the symbolic program is arduous and 

challenging [128]. Deployment of hybrid programs requires AutoML platforms that can 

perform neurosymbolic optimization.

• Absence of Platform-Aware AutoML Tools for Neurosymbolic Optimization: 
While AutoML and NAS frameworks have been proposed for optimizing NNs 

for TinyML platforms [14, 60, 83, 101, 103, 123, 124, 139], existing AutoML 

tools are not designed to perform platform-aware joint optimization of neural 

and symbolic components [136]. Platform-aware neurosymbolic optimization is 

necessary to not only fit the highest-performing program within the platform 

resource constraints but also discover previously unknown high-utility symbolic 

subroutines as seen in AlphaTensor [57].

• Fitting Neural and Symbolic Components Within Platform Constraints: 
TinyML hardware platforms have tight memory, power, and compute budget 

[103]. A typical ARM Cortex-M4 microcontroller has only 128 kB of SRAM 

and 1 MB of eFlash, while a smartphone or cloud server can have RAM and 

storage in the order of tens of gigabytes and terabytes, respectively [14, 136]. 

SAHA et al. Page 3

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While standalone NNs and standalone symbolic logic are capable of running on 

TinyML platforms [136], directly porting existing neurosymbolic frameworks on 

microcontrollers, in-sensor processors [31], and field-programmable gate arrays 

[83] is not computationally tractable.

1.2 Contributions

We introduce TINYNS, a platform-in-the-loop framework for automatic optimization and 

deployment of neurosymbolic programs on commodity microcontrollers. Given a search 

space containing the hyperparameters, logical association rules, and constraints of symbolic 

and ML (neural or non-neural) model operators, TINYNS automatically finds the best 

combination of symbolic and ML operators and hyperparameters within the target device 

memory, latency, and energy constraints. The ML models may be feedforward, residual, 

or recurrent. The framework provides recipes to map neurosymbolic program atoms 

from a prototyping language (e.g., Python) to a deployment language (e.g., C). To 

guarantee program deployability, TINYNS communicates with the target hardware during the 

optimization process to receive hardware and program runtime metrics instead of relying on 

proxies. The framework builds on top of a state-of-the-art, gradient-free, black-box Bayesian 

optimizer [138, 139] designed to optimize non-gradient-friendly and expensive objective 

functions within a few iterations. Using TINYNS, we showcase several previously unseen 

applications on microcontrollers. These include physics-aware inertial navigation [134], 

yielding adversarially robust TinyML models, picking the best model from a zoo of neural 

and non-neural models [135], and co-optimizing features, Kalman filters and NNs [50]. Our 

contributions are summarized as follows:

• Fast, Gradient-Free, and Black-Box Bayesian Optimizer: We present a 

fast, parallel, gradient-free, and application-agnostic Bayesian optimizer that 

can handle non-gradient friendly objectives, categorical and conditional search 

spaces, and expensive objective functions, all while converging to near-global 

optima within few iterations [138, 139]. The optimizer forms the basis for our 

search algorithm.

• Platform-in-the-Loop Neurosymbolic Architecture Search: To the best 

of our knowledge, we are the first to showcase a platform-in-the-loop 

neurosymbolic architecture search framework for microcontrollers. Our 

framework automatically synthesizes the most performant neurosymbolic 

program from a symbolic and ML operator search space within the target 

platform constraints.

• Recipes for Deploying Neurosymbolic Programs on Microcontrollers: Using 

case studies, we show-case recipes for defining the neurosymbolic program 

synthesis search space for all five neurosymbolic program categories [142]. 

Our framework includes parsers that automatically write microcontroller code 

according to these recipes.

• Pushing the Boundaries of Handcrafted Neurosymbolic Programs: We 

showcase several unseen TinyML applications made possible by joint 

optimization of neural and symbolic components.

SAHA et al. Page 4

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TINYNS is available open-source at: https://github.com/nesl/neurosymbolic-tinyml.

1.3 Organization

The rest of the paper is organized as follows: Section 2 presents related work and 

background on porting ML models onto microcontrollers and neurosymbolic AI. Section 

3 describes the Bayesian optimization algorithm. Section 4 details the platform-in-the-

loop neurosymbolic architecture search space formulation and the recipes for deploying 

neurosymbolic programs. Afterward, Section 5 presents extensive experimental evaluations 

of our framework through six case studies. Finally, Section 6 provides concluding remarks 

and future directions.

2 BACKGROUND AND RELATED WORK

In this section, we first discuss the workflow for porting ML models onto microcontrollers 

[136], which we modify to realize neurosymbolic TinyML (Section 2.1). Next, we discuss 

the features of existing NAS frameworks and their shortcomings in performing joint 

optimization of ML and symbolic operators (Section 2.2). Afterward, we provide a brief 

overview of the taxonomy, languages, and recent trends in neurosymbolic AI (Section 2.3). 

Finally, we provide a brief overview of existing Python to microcontroller code parsers 

(Section 2.4).

2.1 Machine Learning on Microcontrollers

Fig. 1 illustrates the typical workflow for porting ML models to commodity microcontrollers 

[136]. First, in the model development phase, data engineering frameworks collect, 

analyze, clean, label, and store raw sensor data to produce an application-specific 
dataset suitable for training ML models [131]. These frameworks also include tools 

for targetted augmentation, outlier identification, unit tests, class balancing, and heuristic-

assisted automated labeling. The additional tools ensure the trained models are free from 

bias and shortcuts while generalizing well on edge cases and unseen scenarios [111, 

136]. Afterward, optional feature projection applies linear methods, non-linear methods, 

or domain-specific feature extraction for dimensionality reduction while preserving data 

variance [56]. Linear methods include matrix factorization [46, 99] and principal component 

analysis (PCA) [12, 34]. Non-linear methods are suitable for minimizing the distance 

between non-linear high-dimensional input space and the prototype manifold. Common 

non-linear methods include autoencoders [132], t-distributed stochastic neighbor embedding 

[163], and kernel PCA [144]. Domain- specific feature extraction applies signal processing, 

statistical, and time-series functions to the input data depending on the application area 

[75]. Next, a model backbone is picked from a zoo of lightweight models geared towards 

embedded deployment, based on application and platform specifications. Examples include 

decision trees and k-nearest neighbor blocks with sparse projection matrices [74, 93], 

lightweight spatial convolution (e.g., squeeze and excitation modules [81] and depthwise-

separable convolution [79]), low rank, stabilized, and quantized recurrent networks [94, 

158, 167], temporal convolutional networks [97, 162], and attention condensers [173]. The 

hyperparameters of the backbone are optimized using neural architecture search given a 

cost function and the hyperparameter search space based on target device constraints [11, 

SAHA et al. Page 5

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/nesl/neurosymbolic-tinyml


130, 180]. Search space representation includes layer-wise, cell-wise, and hierarchical [130]. 

Search strategies include reinforcement learning (RL), differentiable NAS, evolutionary 

algorithms (with or without weight sharing), or Bayesian optimization [54]. The hardware 

metrics can come from real measurements (slowest), lookup tables, prediction models, or 

analytical proxies (fastest) [54, 130].

The model deployment phase begins by generating embedded code to run the best-

performing candidate model from the NAS algorithm on the device. This is done by 

compiler suites, some of which provide inference engines for resource management and 

model graph realization during execution [43, 103]. Compiler suites also perform operator 

fusion [30, 103], loop transformations [27, 42], data reuse [95], and model compression 

(pruning, quantization and encoding) [76] to improve memory usage and runtime latency 

[136]. Afterward, the model file system is lashed onto the microcontroller and occasionally 

fine-tuned to account for data distribution shifts using on-device training (e.g., transfer 

learning, incremental training, or continual learning) [24, 100, 129] or federated learning 

techniques [110].

Variations of the closed loop workflow have been applied to varying applications 

domains, including image recognition, audio keyword spotting, visual wake words, 

anomaly detection, navigation, gesture recognition, mHealth, and face recognition [13, 

136]. However, these applications assume decisions being made by a standalone ML 

model, with no symbolic programs (apart from optional feature projection) present on 

the microcontroller for high-level reasoning [136]. TINYNS modifies the workflow to 

incorporate symbolic atoms from which programs can be constructed and optimized jointly 

with the model backbones.

2.2 Neural Architecture Search for Microcontrollers

Table 1 compares prominent NAS frameworks for microcontrollers against TINYNS. In 

particular, TINYNS adopts a black-box, Bayesian, gradient-free, and platform-in-the-loop 

search strategy to balance training infrastructure cost, NAS convergence time, guaranteed 

execution, application support, and neurosymbolic search space characteristics. iNAS [112] 

uses RL to formulate the NAS multi-objective optimization process as a Markov decision 

process, with the ability to support complex and discontinuous search spaces with thousands 

of dimensions [136]. However, RL has a long convergence time (e.g., 5 GPU years) with 

additional fine-tuning costs [23, 136]. MCUNet [102, 103] and μNAS [101] use evolutionary 

search on RL search spaces to achieve faster convergence. In particular, MCUNet uses 

weight-sharing to decouple training from search, mutating, and crossing Pareto-optimal 

sub-network populations from a "once-for-all" supernetwork [23]. This allows networks 

for several target hardware to be optimized together. Nevertheless, evolutionary NAS with 

weight sharing requires GPU infrastructure capable of supernetwork training, suffers from 

fine-tuning costs, and has a convergence time of 3-8 GPU weeks [23, 136]. MicroNets [14] 

and UDC [60] use differentiable NAS (DNAS), which performs continuous gradient descent 

relaxation of weights and architectural encodings jointly with approximate gradients via path 

binarization [25, 104]. This reduces the convergence time to 1-3 GPU weeks [23]. However, 

DNAS cannot directly model loss contour discontinuities (e.g., categorical or conditional 

SAHA et al. Page 6

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hyperparameters) and have high GPU memory usage owing to the over-parametrized 

network formulation [112, 136]. Bayesian optimization can handle discontinuous search 

spaces and cost functions while being executable on commodity GPU workstations [134, 

135], further reducing the convergence time to 1-10 GPU days [59]. However, vanilla 

Bayesian optimization struggles in search spaces beyond a dozen hyperparameters and 

assumes dense distribution of performant models in the search space [41, 60]. Since 

neurosymbolic search space dimensions can be orders of magnitude higher than NN search 

spaces, TINYNS uses Monte Carlo sampling with Upper Confidence Bound (UCB) as the 

acquisition function instead of the gradient-based approach of SpArSe [59] to perform 

exploration and exploitation similar to UDC [60]. This prevents TINYNS from being stuck 

to local optima or evaluating invalid configurations [134, 138] even in complex RL search 

spaces. Moreover, TINYNS adopts a black-box approach similar to RL or evolutionary NAS. 

The black-box approach allows optimization of any scalar term beyond model performance 

and hardware metrics in the cost function and eventually permits the inclusion of both 

symbolic and any Tensorflow Lite Micro supported ML operators in the search space 

beyond convolutional operators. Further, TINYNS talks to the target hardware during the 

NAS process to get resource metrics instead of relying on proxies. Platform-in-the-loop not 

only guarantees the deployability of the neurosymbolic code, but also allows TINYNS to 

ignore neurosymbolic programs that induce faults, runtime errors, compilation errors, or lash 

overflow, saving on convergence time. In fact, TINYNS automatically writes the C code of 

the neurosymbolic program from Python constructs using proposed neurosymbolic recipes 

without user intervention.

2.3 Neurosymbolic Artificial Intelligence

Over the past decade, deep learning (DL) has been extensively used to make complex 

inferences from unstructured, noisy, and high-dimensional data, such as in computer vision, 

LIDAR point clouds, speech processing, drug discovery, time-series processing and genetics 

[98]. However, traditional DL is data-hungry even for simple tasks, lacks interpretability 

and explainability, does not guarantee to follow rules, physics, and constraints, fails on 

feature distribution shifts, and struggles to learn long-range temporal patterns [37, 63, 64, 

121, 147]. The flipside is symbolic AI, which was once the dominant trend of AI research 

several decades ago before the prevalence of DL [116, 153]. Symbolic programs are data 

efficient, interpretable, and good at reasoning over the long-term, but suffer when solving 

NP-hard problems and dealing with spatial and temporal uncertainties in the input data 

[142]. Neurosymbolic AI couples DL with symbolic methods to have fast computation 

time, deal with unstructured data and uncertainty effortlessly, maintain explainable models, 

and capture complex relations [64, 70, 86, 108, 118, 142]. Neurosymbolic learning is 

analogous to the two types of human reasoning [84]: type 1 reasoning is fast and intuitive, 

corresponding to pattern recognition in DL, and type 2 is slower and logical, corresponding 

to symbolic algorithms and logical reasoning.

2.3.1 Taxonomy of Neurosymbolic AI.—Neurosymbolic AI systems are categorized 

into five groups [86, 142], as illustrated in Fig. 2:

SAHA et al. Page 7

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Symbolic Neuro Symbolic or Neural-after-Symbolic: This is the most 

common paradigm [86]. The inputs are symbolic, while the processing is purely 

neural. The neural component either learns the relations between the symbols 

or learns to focus on some specific symbols based on needs. Examples include 

inference over human-engineered features [87] and graph NN inference with 

pre-processed graph nodes [143]. While this technique allows applying human-

engineered functions on the inputs, the synergy between neural and symbolic 

components is weak, with no high-level reasoning possible over the outputs.

• Neuro→Symbol or Symbolic-after-Neural: In this approach, NNs process raw 

inputs and output structured data, which are fed to symbolic programs for 

further reasoning. Examples include DUA [114] and DeepProbLog [108]. In 

DUA, a symbolic meta-policy learning module with common sense background 

knowledge combines primitive actions from a deep RL agent. In DeepProbLog, 

NNs are trained to output probabilistic predicates, which are fed to a logic 

program to evaluate user-defined logic rules. The technique allows the flow of 

gradients from the symbolic output through the network but suffers from the high 

compute cost of the reasoning module.

• Neuro ∪ Compile (Symbolic) or Symbolically-constrained Neural: This 

technique adds a symbolic component to the learning process of a neural model 

to follow constraints, norms, or rules, which are compiled away during training 

[96]. An example includes Pylon [3], where user-defined constraints on the 

output are converted to an additional loss added to the traditional error cost. 

While constraints are simple to express using this method, the network is not 

guaranteed to satisfy hard thresholds.

• Symbolic[Neuro] or Neurosymbolic Aggregation: In this method, a neural 

model and symbolic program aggregate their results to achieve more robust 

inference. The neural component models errors resulting from uncertainties 

of the symbolic program, or the symbolic program forces the NN to follow 

some constraints or rules. In STLnet [106], a neural student model learns to 

predict succeeding output sequences by learning temporal logic relations, while 

a symbolic teacher model generates an output sequence most similar to that 

prediction within the given relational constraints.

• Neuro[Symbolic] or Neurally-accelerated Symbolic or Symbolically-
structured Neural: This is the preferred neurosymbolic paradigm [86], where 

the NN architecture is generated using (or has layers embedded with) symbolic 

reasoning. A neural model replaces slow or non-differentiable symbolic 

programs while keeping the latter’s functionality. Examples include logic Tensor 

Networks [146], which generates a first-order logic language into TensorFlow 

computational graphs. Pix2rule [33] embeds a differentiable linear layer in a 

deep NN, which is biased to capture the semantics of AND and OR to extract 

spatial symbolic rules. Neuroplex [174] adopts a knowledge distillation approach 

to train a neural model that can replace the logic reasoner for complex event 

SAHA et al. Page 8

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pattern detection. While allowing pure type 2 reasoning, this method may 

include special ML operators unsupported on TinyML hardware.

2.3.2 Neurosymbolic Language Tools.—Neurosymbolic language tools synthesize 

programs from user-defined rules. DeepProbLog [108] is a probabilistic logic programming 

language where users can define logical rules and network architectures. The symbolic 

reasoning module is differentiable, allowing backpropagation of target labels at the output 

of the logic program through the NN. Pylon [3] is a PyTorch framework that learns 

deep NNs with constraints. It automatically converts constraints defined by users into 

a constraint loss, and the NN is trained using the summation of this constraint loss 

and a regular loss function. Gen [40] is a probabilistic programming language designed 

for general-purpose neurosymbolic program synthesis. It can build generative models to 

represent data-generating processes, supports flexible DL and differentiable programming, 

and can make probabilistic inferences.

2.3.3 Recent Trends in Neurosymbolic Artificial Intelligence.—Recent research 

in neurosymbolic AI focuses on handling domain shifts, performing error correction, 

increasing data efficiency, and improving the interpretability of ML systems [64, 142]. 

Symbolic background knowledge allows extrapolation when dealing with input distribution 

different from training data [105]. Error correction designs robust ML systems enabling 

streamlined recovery from wrong outputs without retraining on new data [18]. Symbolic 

reasoning allows NNs to be trainable with less data [142]. Improving the interpretability of 

ML systems makes NN decisions more transparent and explainable [115]. Unfortunately, 

the deployment of neurosymbolic programs on IoT platforms or for real-time inference 

has received little attention. μCEP [128] is the only framework that allows complex event 

processing on neural outputs using logical rules on commodity microcontrollers. However, 

μCEP is hard-coded for a single application (complex activity detection), few network 

architectures (fully-connected and convolutional), and a specific neurosymbolic AI category 

(Neuro→Symbol), with no notion of co-optimization of neural and symbolic components or 

platform-awareness. In contrast, our framework allows platform-aware automatic co-design 

of ML (neural or non-neural) and symbolic components regardless of application, choosing 

the best synergy of ML operators and symbolic hyperparameters within the tight resource 

bounds of TinyML platforms.

2.4 Python to Microcontroller Code Parsers

Parsers automate the porting of code written in a high-level language (e.g., Python) to a 

deployment-time language (e.g., C). There are two kinds of parsers relevant to this work.

2.4.1 TinyML Compiler Suites.—These software suites take an ML model trained in a 

high-level ML framework to generate embedded code and perform operator optimizations, 

model compression, and inference engine optimizations. The embedded file system is then 

lashed onto the microcontroller for inference. Some of these frameworks provide memory 

planners, intermittent computing, runtime interpreters, and operator resolver functionalities 

in the form of inference engines [136]. The frameworks use a template file system to 

map tensor manipulation operations, logging, and input/output handling from the high-level 

SAHA et al. Page 9

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model schema to objects. TensorFlow Lite Micro (TFLM) [43], uTVM [30], Microsoft 

EdgeML [68, 69, 74, 93, 94, 133], CMSIS-NN [95], and EON compiler [80] are popular 

frameworks that automatically parse TensorFlow [1] and PyTorch [120] neural networks to 

C code mainly for deploying on ARM Cortex-M processors. STM32Cube.AI 1, Eloquent 

ML 2, and Sklearn Porter 3 parse support vector machines, decision trees, naive Bayes, 

k-nearest neighbors, random forest, XGBoost, and regressors from Scikit-Learn [122] to C 

[136]. For model parsing, we adopt and modify TFLM for parsing neural networks to C. 

Firstly, we add scripts to check for use of unsupported ML operators and detect compilation 

and memory overflow faults during neurosymbolic program optimization by talking to the 

target hardware. Secondly, our parser can automatically modify the TFLM file system to 

invoke only the necessary operators, take care of quantization and dequantization, assign 

appropriate arena and buffer sizes, and place .c and .h files in the appropriate directories. 

Thirdly, our parser invokes the embedded C compiler directly from Python and flashes the 

compiled program on the target hardware.

2.4.2 General Purpose Parsers.—These parsers convert general-purpose Python code 

to C. Shed Skin 4, Nuitka 5, Pyrex 6, Cython [16], SWIG [15], and BoostPython [90] 

are popular Python-to-C source-to-source translators. Most of these frameworks convert 

implicitly statically typed Python programs to C/C++, write boilerplate code using interface 

files through a shared library, perform compiler optimizations, and transmute data structures 

and types. However, these parsers lack support for runtime-interpreted program aspects and 

functions, cross-compilation, standard library, and unrestricted function deinitions. Recently, 

large conversational language models such as ChatGPT 7 are being used as code translation 

assistants [172]. The generated code is not error-free most of the time but helps save manual 

code conversion time for programmers. MicroPython [161] and Zerynth 8 are software 

implementations of Python written in C for 32-bit microcontrollers. MicroPython supports 

features in the most popular Python modules, allows code portability due to the use of 

the hardware abstraction layer, offers modular programming, provides access to low-level 

hardware, and immediately executes commands. Similar to TFLM, MicroPython includes a 

runtime interpreter to interpret the bytecode. Unfortunately, MicroPython is 101 – 102 orders 

of magnitude slower than pure C/C++ [82], preventing its adoption in time-critical systems. 

In contrast, instead of providing direct source-to-source translation, TINYNS provides recipes 

to map the symbolic component for 4 of the 5 neurosymbolic paradigms from Python to 

pure C/C++. We assume the user has implemented the symbolic code in C either manually 

or using an existing source-to-source translator, and instead focuses on activating and 

passing arguments to the C objects from Python. For symbolic neuro symbolic, we use 

the concept of an array of over-parametrized function pointers selected using a binary mask. 

For neuro→symbol, we use ANTLR to port program trees from Python to C. For neuro 

1 https://www.st.com/en/embedded-software/x-cube-ai.html 
2 https://eloquentarduino.com/ 
3 https://github.com/nok/sklearn-porter 
4 https://shedskin.github.io/ 
5 https://www.nuitka.net/ 
6 https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/ 
7 https://openai.com/blog/chatgpt 
8 https://zerynth.com/blog/python-and-c-hybrid-programming-on-a-microcontroller-with-zerynth/ 

SAHA et al. Page 10

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.st.com/en/embedded-software/x-cube-ai.html
https://eloquentarduino.com/
https://github.com/nok/sklearn-porter
https://shedskin.github.io/
https://www.nuitka.net/
https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/
https://openai.com/blog/chatgpt
https://zerynth.com/blog/python-and-c-hybrid-programming-on-a-microcontroller-with-zerynth/


∪ compile (symbolic), a physics extraction function is activated. For symbolic [neuro], the 

function arguments are sent to a Kalman update step. The recipes call for the use of CMSIS 

libraries for mathematical, tensor, and signal processing operations.

3 MANGO: FAST, PARALLEL AND GRADIENT-FREE BAYESIAN 

OPTIMIZER

TINYNS adopts Mango [138, 139], which is an efficient realization of Bayesian optimization. 

Bayesian optimization provides a state-of-the-art approach to optimize expensive objective 

functions in a few iterations, approximated by a surrogate model.

3.1 Surrogate Model

Typical surrogate models used in Bayesian optimization libraries are Gaussian processes 

(GP), tree-structured Parzen estimators, and random forests. Among the available surrogate 

models, Mango uses the GP surrogate (GP) over the search space (Ω) due to its ability 

to provide a tractable assessment of prediction uncertainty incorporating the effect of data 

scarcity [154]. The GP is a non-parametric machine learning model speciied using a mean 

(μ) and a kernel function (k).

f(Ω) ∼ GP(μ(Ω), k(Ω, Ω’))

(1)

Vanilla GP models work well on continuous search spaces but struggle to deal with the 

discontinuity in the search spaces induced by categorical, mixed, and hierarchical search 

spaces. Naive rounding or one-hot encoding causes the GP to get stuck to the same 

candidate model. Thereby, Mango adopts the solution proposed by Garrido-Merchan et al. 
[66], which modiies the GP covariance function to account for regions in the search space 

where the objective function becomes constant due to one-hot encoding or rounding inside 

the objective function evaluator wrapper. The constant behavior cannot be modeled by GP. 

We use a transformation of the input variables that rounds real-valued hyperparameters and 

performs one-hot encoding of categorical variables, causing the Cartesian distance between 

the sample points with the same configuration becoming 0. This allows the GP to indirectly 

model the expected constant behavior, as the transformation enforces maximum correlation 

between the function evaluations at the sample points with the same configuration under the 

GP.

3.2 Acquisition Function

The exploration-exploitation is handled using the UCB [155, 156] as the acquisition 

function. In UCB the next sample (Ωt) at iteration t is sampled from the search space (Ω) 

using the predicted mean (μt − 1) and the corresponding variance (σt − 1
2 ) at iteration t − 1. The 

exploration factor (β) balances the contributions of the mean and variance.

SAHA et al. Page 11

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ωt = argmax
Ω

(μt − 1(Ω) + β0.5σt − 1(Ω))

(2)

The first term (mean) in the acquisition function refers to the goodness of the current 

sampled point (exploitation), while the second term refers to the uncertainty of the sampled 

point (exploration). Mango adopts UCB because of four reasons. Firstly, UCB is robust 

to uncertainty and noise in the function evaluations without pre-processing.. Secondly, 

UCB allows efficient sampling for cases where picking a suboptimal point may cause 

a time-consuming and expensive function evaluation. Thirdly, UCB balances exploration 

and exploitation by sampling points that are not just likely to improve the final score 

(exploitation), but also sampling points that have high uncertainty (exploration). This not 

only prevents the optimizer from getting stuck in a local optimum but also provides both 

a coarse and a fine-grained view of the objective plane, allowing the score to achieve 

theoretical optimal values at the boundary of violating deployability constraints. Lastly, 

UCB uses of an adaptive β with theoretical convergence guarantees within 90% of the 

optimal value [48, 155, 156]. β is heuristically decided based on the complexity of the search 

space (domain size) ∣ Ω ∣, the current iteration count t, and the variance (uncertainty) σt − 1
2 (Ω)

at iteration t − 1.

β = α ⋅ exp(2 ⋅ C), α = 2 log(0.6 ⋅ ∣ Ω ∣ ⋅ t2 ⋅ π2), C = 8
log(1 + 1

δ + σt − 1(Ω) )
, δ = 1e−6

(3)

Firstly, if the search space is bigger, α will increase logarithmically, leading to a bigger β. 

This will cause the acquisition function to be dominated by exploration. Secondly, as the 

search progresses, α increases logarithmically. This impels the acquisition function to be 

exploration dominant in the later iterations. Thirdly, sample points near already explored 

regions will return a lower value of σt − 1
2 (Ω), leading to a lower value of β. Lastly, if a 

region is invalid or bad, then μt − 1(Ω) will be higher, causing the acquisition function to 

be dominated by exploration. If a region is valid or good or near the theoretical optimal 

boundary, then μt − 1(Ω) will be lower, causing the acquisition function to be dominated 

by exploitation. The four factors cause Mango to perform what is known as sampling 

to find the boundaries in the objective plane. t ensures that exploration never stops in 

case Mango has not found a “hidden” region where global optima may reside. However, 

exploration dependent on t is logarithmic, leading to only a small increase in the β with each 

passing iteration. σt − 1
2 (Ω) ensures that as more regions of the objective plane are explored, 

Mango moves from primarily exploration-driven to exploitation-driven sampling, which 

allows Mango to perform fine-grained sampling at later iterations. μt − 1(Ω) ensures that this 

fine-grained sampling is being performed at the boundaries close to the theoretical optimal 

value with 90% probability. The entire formulation makes Mango explore all unexplored 

SAHA et al. Page 12

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



boundaries (coarse-grained sampling), and then find the points close to the theoretical 

optimal value (fine-grained sampling).

3.3 Handling Mixed Search Spaces

Traditionally, gradient-driven optimizers (e.g., GpyOpt [9] and Skopt [10]) are used to find 

the next promising sample, such as in SpArSe [59]. Sandha et al. [138, 139] showed that 

gradient-driven optimization in complex search spaces having discrete or categorical values 

can provide sub-optimal solutions by evaluating gradients at invalid configurations of the 

search space. Mango realizes a gradient-free optimizer for handling non-gradient-friendly 

values. Mango directly supports discrete integer values and continuous values and converts 

pure categorical to the one-hot encoding. However, this comes with the challenge that the 

decision boundary of the acquisition function becomes discontinuous due to the discrete 

values. Further, one-hot encoding of categorical variables increases the dimensionality of 

the search. To handle the discontinuous decision boundary, Mango adopts a gradient-free 

optimizer that doesn’t assume the continuity of gradient in the acquisition function search 

space. This is based on the Monte Carlo optimization of the acquisition function. Since 

the evaluation of the acquisition function is very cheap, this approach is scalable to search 

decision boundaries extensively to parallelly select the next optimal points. The acquisition 

function is evaluated at thousands of valid samples in the search space; thus, there is no 

mismatch between the proposed and actual evaluations. This approach also works directly 

for the one-hot encoded spaces by doing evaluations only at the valid regions of the one-hot 

encoding without sampling the intermediate regions between 1 and 0 where no valid real 

sample exists. It is to be noted that in a gradient driven approach, the optimal point is 

finally converted to the correct sample either by rounding-off that can degrade the search 

results, which is not the case in Mango. This sampling-based approach also reduces the 

computational complexity [139] of the optimizer compared to the gradient-based methods 

used in other Bayesian optimization libraries [9, 10, 59].

To reduce the search space complexity even further, TINYNS proposes the use of slider 

matrices, enumerated trees, and ordinal masks. Instead of exposing Mango directly to the 

heterogeneous variables, for high-dimensional search spaces, TinyNS exposes Mango to 

the normalized slider matrix, inspired by the wrapper-based approach proposed in Garrido-

Merchanet al. [66]. The slider matrix is a continuous formulation of the mixed parameter 

space normalized between 0 and 1. The one-hot encoding or rounding is performed inside 

the objective function evaluator wrapper as proposed in [66] via a mapping that maps the 

terms in the slider matrix to the mixed parameter space. For even more complicated search 

spaces, TinyNS uses tree enumeration algorithms to generate program tree candidates and 

exposes TinyNS to an ordinal mask that selects one of the trees.

3.4 Parallelization

Another challenge in solving Eq. 2 is parallelizing the sequential search process, selecting a 

batch of values to ensure exploration or diversity in the batch. The straightforward approach 

of ranking the search choices according to the acquisition function and then selecting the 

top picks is sub-optimal due to limited exploration [48]. To enable parallel search, Mango 
provides a clustering search algorithm on the samples drawn from the acquisition function. 

SAHA et al. Page 13

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The clustering search selects promising domain samples from different clusters based on 

their distance in the search space. The different clusters are far from each other in the 

hyperparameter space to enable exploration or diversity. The number of clusters is equal to 

the batch size and is flexible.

3.5 Addition to Mango

TinyNS expands the state-of-the-art Bayesian optimizer to perform neurosymbolic 

architecture search in three ways. Firstly, while Mango internally handles categorical and 

continuous variables, the optimizer alone cannot deal with complex neurosymbolic search 

spaces on its own. We provide recipes to show how Mango can deal with neurosymbolic 

search spaces through the intelligent use of slider matrices, Boolean masks, and enumerated 

trees. This significantly increases the types of problems Mango can handle. Secondly, to 

prevent wasting valuable GPU hours and improve convergence time, we use a guided 

optimization strategy. Specifically, we do not train programs that violate deployability 

constraints or induce faults. We penalize Mango by a constant number when it makes wrong 

choices. Yet, we design the optimization function in such a way that Mango is still able 

to find the boundaries in the objective plane even in complex search spaces and achieve 

near-optimal results. Thirdly, we make Mango platform-aware by allowing it to talk to the 

target hardware during deployment time. This allows guaranteed program deployment and 

accurate profiling. We discuss these additions in more detail in Section 4.

3.6 Evaluation: Parallel Search in Mango

We visualize the parallel search enabled by Mango in Fig. 3 (Left). Four iterations of the 

clustering search algorithm are shown for a 1-D function having multiple optimal points. 

The ground-truth function is represented by objective. The samples are the points that 

have been evaluated, and hence the true objective function values are known. A batch 

size of 3 is used, representing the parallel evaluation of 3 samples in each iteration. The 

Surrogate function shows the internal approximation of the ground-truth objective based on 

the evaluated samples. The acquisition function is based on the UCB. The three clusters 
created in different regions of the acquisition function are shown. The next sampling 
locations represent the points selected from each cluster for evaluation in the next iteration. 

We observe that the ground-truth max optimal is found by Mango in the fourth iteration, 

which occurs at −1.0 and has a value of 4.72.

3.7 Evaluation: Comparison Against Other Bayesian Optimizers

We compare Mango for hyperparameter tuning with existing state-of-the-art Bayesian 

optimization libraries using the multiple criteria methodology proposed by Dewancker 

et al. [49]. Speciically, we measure the performance of an optimizer by considering the 

solution’s proximity to the optimal point (accuracy) and the number of iterations required 

to reach the optima (speed). We compared the performance for hyperparameter tuning 

of three ML classifiers: Xgboost, K-Nearest Neighbor (KNN), Support Vector Machines 

(SVM) to maximize the 3-way cross-validation accuracy for the iris plants dataset, wine 

recognition dataset, and breast cancer Wisconsin (diagnostic) dataset taken from Scikit-learn 

[122], i.e., a total of 9 tuning tasks (three classifiers trained using three datasets). The 

search space includes continuous, integer, and categorical hyperparameters with the exact 

SAHA et al. Page 14

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



definitions available [137]. We tune each classifier for 80 iterations and repeat each tuning 

experiment 30 times. Results are shown in Fig. 3 (Right). Mango performs better than all 

other libraries in 6 or more tasks out of 9 in hyperparameter tuning for classiiers with 

mixed hyperparameters (continuous, integer, and categorical) spaces. Specifically, Mango 

outperforms HyperOpt (TPE surrogate), SMAC (random forest surrogate), Optuna (TPE 

surrogate), and GPyOpT (vanilla GP surrogate). Overall, Mango offers state-of-the-art 

optimization capabilities for handling complex search spaces.

4 PLATFORM-AWARE NEUROSYMBOLIC OPTIMIZATION

TINYNS treats neurosymbolic architecture search as nonlinear programming [17] over the 

search space Ω:

min f(Ω), s.t. f(Ω) ≤ b

(4)

where

f( ⋅ ) = λk∑
n

gk(Ω), Ω = {{V , E}, [θm, m, w], [θs, s, u]}, ∑
n

λk = 1, k ∈ [1, n]

(5)

Ω contains both ML components and symbolic components. The ML components include 

the ML hyperparameters θm, trainable ML parameters w (e.g., NN weights and biases), and 

ML operators m (e.g., convolution, pooling, support vector kernel, fully connected, etc.). The 

ML operators may be feedforward, residual, or recurrent. The symbolic components include 

the symbolic hyperparameters θs, numerical parameters to be optimized u (e.g., Kalman 

filter gain), and symbolic program atoms s (e.g., predicates, terms, features, etc.). Candidate 

neurosymbolic programs constructed from Ω can be thought of as directed acyclic graphs 

qΩ(X) with edges E, vertices V  and input tensor X. The goal is to ind a neurosymbolic 

program that satisies the aggregate constraint f(Ω) ≤ b. In other words, the objective function 

seeks a Pareto-frontier configuration Ω∗ under competing objectives [59] such that:

fk(Ω∗) < = fk(Ω) ∀k, Ω ∧ ∃j: fj(Ω∗) < fj(Ω) ∀Ω ≠ Ω∗

(6)

The aggregate constraint function f( ⋅ ) is a linear combination of individual objectives g( ⋅ )
weighted by random scalarizers λ. Let A be a complete Boolean algebra, ωω be the ordinal 

set, and A be a fixed set of names. Then, g( ⋅ ) and Ω have the following properties:

•
d ∨ ¬d, d = (∃gk( ⋅ ) ∧ ∃c ∈ Ω) ∄ lim

x c
gk(x) ∨ ∄g(c) ∨ lim

x c
gk(x) ≠ g(c)

discontinuity condition

SAHA et al. Page 15

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



•
∃z ∈ Ω [ z ∈ ℝ

continuous,
numeric

∨ [z ∈ B, B ⊆ ℝ, f :B ℕ]
discrete, numeric

∨ [((∀q ∈ q̄)πq = q) π ⋅ z = z, π ∈ Perm ℝ]
categorical, nominal

∨ z ∈ ωω

categorical,
ordinal

]

•
∃x ∣ a ∈ X, x ∈ Ω, a, b ∈ A (a = b x ∣ a = y ∣ b) ∧ (x ∣ b = y ∣ b x ∣ a = y ∣ a) ∧

∀(ai)i ∈ I ∈ A, ∀(xi)i ∈ I ∈ X, ∀i ∈ I ∃!x(x ∣ ai = xi ∣ ai)
conditional inclusion

The base formulation of Eq. 4 and Eq. 5 is given as:

min fopt, fopt = λtferror(Ω) + λ2fflash(Ω) + λ3fSRAM(Ω) + λ4flatency(Ω)

(7)

where,

fflash(Ω) =
γf ∣ γf ∣ < 1 ∧ ϵflag = 0

fault flag
, γf = − ‖ℎFB(w, {V , E})‖0

flashmax

model proxy

+ ξf

slack for
symbolic

∨ − Compiler‐reported flash
flashmax

real measurement

αf, αf ≫ flashmax

(8)

fSRAM(Ω) =

γs ∣ γs ∣ < 1 ∧ ϵflag = 0
fault flag

, γs = − maxl ∈ [1, L]{‖xl‖0 + ‖al‖0}
SRAMmax

model proxy

+ ξs

slack for
symbolic

∨ − Compiler‐reported SRAM
SRAMmax

real measurement

αs, αs ≫ SRAMmax

(9)

flatency(Ω) =

FLOPS
FLOPStarget

model proxy

∨ RTOS‐reported latency
latencytarget

real measurement

ϵflag = 0
fault flag

αl, αl ≫ FLOPStarget ∨ latencytarget

(10)

The goal of the base formulation is to find a Pareto-optimal neurosymbolic program with 

the lowest possible runtime latency but maximizes the device’s full SRAM and flash 

capacity without inducing overflow or faults. The performance of a candidate neurosymbolic 

program on the validation dataset at each iteration in the search provides ferror(Ω). When 

SAHA et al. Page 16

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the target hardware is connected to the training server, the compiler provides the program 

SRAM consumption fSRAM(Ω) and lash consumption fflash(Ω), while the onboard real-time 

operating system (RTOS) reports the program runtime latency flatency(Ω). The measurements 

are conditioned on the absence of faults, indicated by ϵflag. Based on prior work [134, 135], 

we set λ1 to 1.0, λ2 to 0.01, λ3 to 0.01, and λ4 to 0.05. TINYNS has the following fault detection 

capabilities:

• Flash, SRAM, or model arena buffer overflow (the program is too big to fit).

• Use of unsupported ML operators.

• Compilation errors.

• Runtime RTOS faults.

If ϵflag = 0, the hardware metrics are normalized by the device SRAM and flash capacities 

(SRAMmax, flashmax), and target latency (latencytarget) to a common scale. If ϵflag ≠ 0, the hardware 

metrics are set to a value much larger than the device capacity or target latency. We set 

αf = 125, αs = 125, αl = 50, resulting in fopt being 5.0 whenever deployability constraints are 

violated. This policy, called hard thresholding, achieves full device capability exploitation. 

Since violating deployability constraints always returns an fopt of 5, after sufficient iterations, 

TINYNS can observe and exploit the small but valid linear region of SRAM and flash usage 

between −1 and 0 (γf and γs are valid between −1 and 0), striving to move γf and γs towards 

−1. Yet, TINYNS is aware that certain choices of ML operators and symbolic atoms would 

make γf and γs more negative (hence the objective should ideally be minimized even further) 

but are invalid. In other words, the optimizer is penalized by a large constant number when 

it picks candidate models that do not fit within the device or induce faults and instead 

encourages the acquisition function to not pick too many points in the regime where the 

violation may occur. After sampling sufficient points in the small but valid linear region 

and the invalid regions, the surrogate function smooths out sufficiently to match the linear 

region in the objective plane where the accuracy improvement is proportional to memory 

usage without inducing faults. Hard thresholding is possible thanks to the adoption of 

parallel version [48] of GP-UCB [155, 156]. During exploitation, GP-UCB picks candidate 

models which are likely to minimize fopt. The sample points in this phase will be close 

to one or more of the “successful” points in the linear/valid region found during previous 

iterations. Exploitation, thereby, provides a finer-grained view of the objective plane. During 

exploration, GP-UCB will either pick points in the valid or invalid region to make sure 

the optimizer is not stuck in local optima. Exploration, thereby, provides a coarse-grained 

view of the objective plane. With sufficient iterations, the acquisition function moves from 

being exploration driven to exploitation driven, converging near theoretical optimal value 

at the boundary of violating deployability constraints. The parallel implementation allows 

the optimizer to have access to more “batches of sample points" at each iteration. The 

policy of hard thresholding is not possible to implement with gradient-based optimizers due 

to discontinuous penalization. For those optimizers, one would have to train the model to 

get the accuracy even if GPU hours are wasted, calculate the memory usage, and penalize 

in a continuous fashion proportional to the memory usage (referred to as coupling of 

deployability and performances). Since we do not train a candidate model once deployability 

SAHA et al. Page 17

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constraints have been violated, hard thresholding (combined with fault detection) also 

prevents TINYNS from training a candidate model that does not satisfy all the constraints, 

saving valuable GPU hours by as much as 50% over gradient-based optimizers.

Note that SpArSe [59] treats λ as a super-hyperparameter bring drawn from a random 

distribution at each iteration. However, realizing λ as a super-hyperparameter in complex 

neurosymbolic search spaces with a gradient-free and black-box optimizer is challenging 

as compared to the gradient-based optimizer in SpArSe. For the same program candidate, 

different values of λ will yield different values of fopt at each iteration, resulting in a large 

number of iterations needed to achieve acceptable performance. We are aware that our 

choices of λ and α may not provide the most optimal neurosymbolic program for each 

application, but, as we will showcase, are able to guarantee high-utility and deployable 

neurosymbolic programs that significantly outperform the state-of-the-art.

When the target device is absent, TINYNS relies on well-known analytical proxies to provide 

device resource usage estimates. fflash(Ω) is given by the size of the flatbuffer model schema 

ℎFB( ⋅ ) [43]. fSRAM(Ω) is given by the standard NN SRAM usage model, with intermediate 

layer-wise activation maps and tensors stored in the SRAM [59]. flatency(Ω) is provided by the 

FLOPS count [14]. Assuming the ML component dominates resource usage over symbolic 

components, a static slack constant ξ is added to the SRAM and flash proxies to account for 

SRAM and flash usage by the symbolic program. There are, however, several issues with 

this profiling approach:

• Proxies are inaccurate and do not work for a wide variety of ML operators (e.g., 

well-known proxies were developed only for convolutional models) [134, 135]. 

Proxies do not even exist for symbolic programs.

• Model proxies tend to overestimate device capabilities without considering 

overhead from symbolic programs, runtime inference engines, RTOS, or data 

stacks [134, 135].

• Proxies cannot capture all the faults that the platform-in-the-loop approach can. 

Hence, the correctness of the neurosymbolic program is not guaranteed.

• Proxies cannot take into account compiler suite optimizations at the execution 

level, often yielding sub-optimal models compared to the platform-in-the-loop 

approach.

For each candidate neurosymbolic program, TINYNS automatically writes embedded C code 

for microcontrollers from Python constructs using parsers. The recipes used by the parsers 

are discussed next.

4.1 Symbolic Neuro Symbolic

Problem Formulation (Symbolic). Consider a vector of independent domain-engineered 

functions z( ⋅ ) constructed from s in Ω that operate on X. During the search process, each 

function in z( ⋅ ) can be accessed through a binary mask c, signifying the activation and 

deactivation of a collection of elements of z( ⋅ ).

SAHA et al. Page 18

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Xi
feat = zi

Ui(X) ci = 1, i ∈ [1, n], ci ∈ 0 ∨ 1

(11)

U is a 2D hyperparameter data structure for z( ⋅ ). ith row of U correspond to the 

hyperparameters for zi. The number of columns of U is the number of optimization 

hyperparameters for that zi which takes the maximum number of hyperparameter arguments, 

e. Each element in U corresponds to the range of possible floating point numbers in the 

search space for the (i, j)th hyperparameters, expressed as a list. Boolean hyperparameters 

are converted to (0.0, 1.0), and nominal variables are converted to ordinal choices (e.g, 1.0, 

2.0, 3.0, 4.0, 5.0). The length of each element in U varies.

U =

[α1
1, 1, α2

1, 1, …, αγ1
1

1, 1] [α1
1, 2, α2

1, 2, …, αγ2
1

1, 2] … [α1
1, e, α2

1, e, …, αγe1
1, e]

[α1
2, 1, α2

2, 1, …, αγ1
2

2, 1] [α1
2, 2, α2

2, 2, …, αγ2
2

2, 2] … [α1
2, e, α2

2, e, …, αγe2
2, e]

. . … .

. . … .

. . … .
[α1

n, 1, α2
n, 1, …, αγ1

nn, 1] [α1
n, 2, α2

n, 2, …, αγ2
nn, 2] … [α1

n, e, α2
n, e, …, αγen

n, e]

(12)

An example of U is shown below. There are 3 feature functions in z. The first feature takes 

4 hyperparameter arguments, the second feature takes 1 hyperparameter argument, and the 

third feature takes 2 hyperparameter arguments. All the functions are programmed to accept 

4 arguments, but each function may not use all 4 arguments. The arguments are internally 

processed by each function to the correct form.

Usample =
[0.0, 1.0] range(3.0, 64.0) uniform( − 5.0, 10.0) [1.2, 5.2]

[0.2, 0.5, 0.8, 1.5, 2.3] [0.0] [0.0] [0.0]
[1.0, 2.0, 3.0, 4.0] linspace( − 22.0, 22.0, 100) [0.0] [0.0]

(13)

To normalize each element in U to the same scale and make the search tractable, TINYNS 

uses a slider matrix Uslider during the search process instead of being directly exposed to U.

Uslider =

ζ1, 1 ζ1, 1 … ζ1, e

ζ2, 1 ζ2, 2 … ζ2, e

. . … .

. . … .

. . … .
ζn, 1 ζ2, n … ζn, e

, ζi, j =
linspace(0, 1, δ) [α1

i, j, α2
i, j, …, αγji

i, j] ≠ 1
0

(14)

SAHA et al. Page 19

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



δ represents the granularity factor, which controls how finely each element in U can be 

chosen. Ideally, δ should be equal to the length of the largest array in U. Let ηi, j be a value in 

an array element in U. The mapping between ζi, j and ηi, j is:

ηi, j = ακ
i, j, κ = round ζi, j ⋅ [α1

i, j, α2
i, j, …, αγji

i, j] , μi, j ∈ [0, 1]

(15)

The search space for the symbolic components, thereby, is composed of the binary mask c
and Uslider.

Problem Formulation (Neural).—Consider a collection of k model backbones ϕ
constructed from m in Ω. During each iteration in the search process, only one of the models 

is considered via an ordinal mask d.

modeliterationt = ϕi, i ∈ d, d = [1, 2, …, k]

(16)

Each model will have its own optimization hyperparameters (e.g., number of convolutional 

layers, kernel size, support vector kernel type, etc.). We modify the concept of 

hyperparameter data structure and slider matrix from the symbolic search space to account 

for ordinal model choice. Let V be the 2D hyperparameter data structure for ϕ. The structure 

of V remains the same as that of U, now with k rows of hyperparameters. The number of 

columns of V is equal to the number of optimization hyperparameters for that ϕi which takes 

the maximum number of arguments f.

V =

[β1
1, 1, β2

1, 1, …, βγ1
1

1, 1] [β1
1, 2, β2

1, 2, …, βγ2
1

1, 2] … [β1
1, f, β2

1, f, …, βγf
1

1, f]

[β1
2, 1, β2

2, 1, …, βγ1
2

2, 1] [β1
2, 2, β2

2, 2, …, βγ2
2

2, 2] … [β1
2, f, β2

2, f, …, βγf
2

2, f]
. . … .
. . … .
. . … .

[β1
k, 1, β2

k, 1, …, βγ1
k

k, 1] [β1
k, 2, β2

k, 2, …, βγ2
k

k, 2] … [β1
k, f, β2

k, f, …, βγk
f

k, f]

(17)

An example of V is shown below. The first row corresponds to the hyperparameters for 

a temporal convolutional network (TCN) [162], and the second row corresponds to the 

hyperparameters for Bonsai [93].

Vsample =

range(2, 64)
kernel size

[1.0, 2.0, 5.0]
stack count

[[1, 2, 4], [1, 2, 4, 8], [1, 4, 8, 32]]
dilation factors

uniform(0.0, 1.0)
dropout

range(40, 60)
prototype count

range(1, 4)
sigmoid parameter

range(1, 6)
depth

[0.0]

SAHA et al. Page 20

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(18)

Since d is ordinal, Vslider takes a vector form:

Vslider = χ1, 1 χ1, 2 … χ1, f , χi, j =
linspace(0, 1, δ) [β1

i, j, β2
i, j, …, βγji

i, j] ≠ 1
0

(19)

The search space for the neural components, thereby, is composed of the ordinal mask d and 

Vslider. Note that when k = 1, the elements in V are directly fed to the search algorithm.

Parsing (Symbolic).—The python constructs for each function in z( ⋅ ) have equivalent C 

constructs, declared in a .h file and defined in a .cc file. The .cc file also includes an 

extract_symbolic(raw_data[], output_feat[], mask[], params[]) function, 

which takes the windowed and raw sensor data as input (raw_data[]), picks functions 

according to a binary mask array (mask[]), applies the corresponding hyperparameters 

to the chosen functions (params[]), and outputs the processed data (output_feat[]). 

TINYNS writes the Pareto-optimal mask c∗ as mask[], the Pareto-optimal values in the 

2D hyperparameter data structure U∗ as flattened array params[], and the maximum 

number of arguments each function can take MAX_PARAM_COUNT to the .cc file. Algorithm 

1 provides example implementation for the extract_symbolic() function. All of the 

functions are programmed to take a hyperparameter array of length MAX_PARAM_COUNT, 

internally processing the arguments to the correct form like in Python. An array of function 

pointers of type f allows flexible addition, removal, and access to functions, retaining the 

same order of functions from Python and allowing sequential application of each function 

to the raw input data. The output channel count for each function is variable and defined in 

func_output_size[].

Parsing (Neural).—TINYNS uses the TensorFlow Lite Micro (TFLM) [43] Mbed RTOS 

C file system for real-time model inference on microcontrollers. Algorithm 2 shows the 

main.cc file of the file system. We choose TFLM as the runtime inference engine due to its 

widespread public use, portable design philosophy, heterogenous hardware support, memory 

efficient paradigms, static memory allocation, and pathways for easy model replacement 

[43, 136]. First, the model backbone in Python is constructed using Keras [72] or Keras/

TensorFlow wrappers for Scikit-learn [122] with TensorFlow backend [1]. Next, the Keras 

model is converted to a .tflite model, with appropriate quantization schemes applied 

during conversion (e.g., no quantization or full integer quantization using a representative 

dataset). The parser now needs to check if the operators in the .tflite file are present in 

the TFLM operator resolver list. The steps are:

• Read the .tflite file as a flatbuffer byte array.

• Decode the value at the start of the flatbuffer using packer type 

flatbuffers.packer.uoffset to create a model object.

• Unpack the model object into a graph of flatbuffer objects.

SAHA et al. Page 21

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Convert the hierarchy of flatbuffer objects to a nested opcode dictionary.

• Match the opcode keys in the model to the opcode names in the 

BUILTIN_OPCODE2NAME dictionary provided with the TFLite API.

• Check if the resulting set of names is present in the AVAILABLE_TFLM_OPS list.

Algorithm 1 Example of extract_symbolic() for
Symbolic Neuro Symbolic parsing

#include ‘‘_______ . h"
.
.
#define MAX_PARAM_COUNT 3 ∕ ∕ written by parser
#define MAX_NUMBER_OF_FUNC 4
const int func_output_size[MAX_NUMBER_OF_FUNC] = {1, 1, 1, 4};
int mask_array[MAX_NUMBER_OF_FUNC] = {1, 1, 0, 1}; ∕ ∕ written by parser
float params_array[MAX_NUMBER_OF_FUNC ∗ MAX_PARAM_COUNT] =
{2.2, 39, − 23, 1.2, 0.0, 0.0, 23.5, 2.2, 0.0, − 5.1, 0.95, 0.0}; ∕ ∕ written by parser

void func_1(float ∗ input_ar, float ∗ output_ar, float ∗ param_ar){
}
void func_2(float ∗ input_ar, float ∗ output_ar, float ∗ param_ar){
}
void func_3(float ∗ input_ar, float ∗ output_ar, float ∗ param_ar){
}
void func_4(float ∗ input_ar, float ∗ output_ar, float ∗ param_ar){
}

void extract_symbolic(float ∗ raw_data, float ∗ output_feat,
int ∗ mask, float ∗ params){
typedef void ( ∗ f)(float[ ], float[ ], float[ ]);
int j = 0;
float param_ar[MAX_PARAM_COUNT] = {0.0};
f func[MAX_NUMBER_OF_FUNC] = {&func_1, &func_2, &func_3, &func_4};

for(int i = 0; i < MAX_NUMBER_OF_FUNC; i + + ){
for (int k = 0; k < MAX_PARAM_COUNT; k + + ){

param_ar[k] = params[i ∗ MAX_PARAM_COUNT + k];
}
if (mask[i] = = 1){

float temp_buff[func_output_size[i]];
func[i](raw_data, temp_buff, param_ar);
for (int k = 0; k < func_output_size[i]; k + + ){

output_feat[j] = temp_buff[k];
k = k + 1;
j = j + 1;

}
}

}
}

SAHA et al. Page 22

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 2 Example ofmain.cc for Symbolic Neuro
Symbolic parsing

#include ‘‘_______ . h"
.
.
Timer t;
constexpr int kTensorArenaSize = 500 ∗ 1024; ∕ ∕ written by parser
alignas(16) unit8_t tensor_arena[kTensorArenaSize];
tflite ∷ MicroModelRunner < float, float, 13 > ∗ runner; ∕ ∕ written by parser
float raw_data[kInputSize]; ∕ ∕ writtern by parser
float input_model[kModellInputSize]; ∕ ∕ written by parser

int main( ) {
static tflite ∷ MicroMutableOpResolver < 13 > resolver; ∕ ∕ written by parser
resolver . AddShape( ); ∕ ∕ written by parser
resolver . AddStridedSlice( ); ∕ ∕ written by parser
.
.

static tflite ∷ MicroModelRunner < float, float, 13 > model_runner(
g_featnn_model_data, resolver, tensor_arena,
kTensorArenaSize); ∕ ∕ written by parser
runner = &model_runner;

get_sensor_data(raw_data);
extract_symbolic(raw_data, input_model, mask_array, params_array);

t . start( );
runner− > SetInput(input_model);
runner− > Invoke( );
t . stop( );

for (size_t i = 0; i < kCategrotyCount; i + + ) {
float coverted = runner − > GetOutput( )[i]; ∕ ∕ written by parser
printf(‘‘ % 0.3f", converted);
if (i < (kCategoryCount − 1)) {

printf(‘‘, ");
}

}
printf(‘‘ n");
prinft(‘‘timer output: % f n",
t . reset( );

}

If all the operators in the model are supported by TFLM, then, the .tflite file is converted 

to a flatbuffer model schema using Linux hex dump, generating .cc file of the model. The 

parser opens the main.cc file and makes the following changes:

• Declare the TFLM arena size depending on target hardware constraints. The 

arena is a stack in the SRAM used for initialization and runtime variable storage.

SAHA et al. Page 23

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Declare the arrays for storing raw data and processed output from 

extract_symbolic, which is also the input to the model. The arrays can be 

float or int depending on model quantization. In TFLM, flattened input arrays are 

internally reshaped to match the input tensor shape of the model.

• Declare a TFLM interpreter instance (MicroModelRunner), which resolves the 

model graph during runtime. The data types should be the input and output data 

types of the model, and the last number indicates the number of unique ML 

operators that need to be called by the operator resolver.

• Declare the TFLM operator resolver instance (MicroMutableOpResolver), 

which links only the essential ML operators to the model graph.

• Add the operators necessary to resolve the graph from the intersection of the set 

of model opcode names and the AVAILABLE_TFLM_OPS list.

• Pass the flatbuffer model schema, the operator resolver, and the arena to the 

interpreter.

• Dequantize the outputs if the model output is quantized.

Fig. 4 summarizes the parser operation between the Python file system and the TFLM Mbed 

RTOS C file system.

Examples.—An example includes finding the best set of features for on-device wearable 

human activity recognition. Another example includes finding the best model among a set 

of models for on-device wearable fall detection under 2 kB of memory. We showcase the 

examples in Section 5.2 and Section 5.3. In the first example, the search algorithm is given 

a model backbone and several temporal, statistical, and spectral features that can operate on 

the raw, windowed data. The goal is to find the best model hyperparameters and features that 

work well to give maximal activity detection accuracy within the hardware constraints. In 

the second example, the goal is to find the best model and its corresponding hyperparameters 

that can detect falls within a tight memory budget.

4.2 Neuro→Symbol

Problem Formulation.—There are two ways to realize this paradigm. Firstly, if a static 

domain-engineered function z( ⋅ ) with hyperparameter data vector u operates on the output 

of the model to produce high-level reasoning, then the symbolic search space only contains 

u.

u = [α1
1, 1, α2

1, 1, …, αγ1
1

1, 1] [α1
1, 2, α2

1, 2, …, αγ2
1

1, 2] … [α1
1, e, α2

1, e, …, αγe1
1, e]

(20)

u is similar in form as U from Section 4.1, but only corresponds to the optimization 

hyperparameter space for a single function. The neural search space is the same as that 

shown in Section 4.1.

SAHA et al. Page 24

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Secondly, consider a collection of logical (e.g., AND, OR, NOT) operators Λ, relational 

(e.g., equivalence, less than or equal to, greater than or equal to) operators ℜ, arithmetic 

(e.g., add, multiply) operators Ξ, and conditional (e.g., if else then) operators Υ, expressed 

in a Domain-Specific Language (DSL) [118]. Given maximum tree depth ℘ and a finite 

number of trees N, the symbolic atoms can be combined to synthesize candidate program 

graphs (or program decision trees) that can perform high-level reasoning over several neural 

output timesteps.

G = GenerateProgramTree({Λ, ℜ, Ξ, Υ}, ℘, N)

(21)

Fig. 5 shows an example program supergraph generated from the DSL operator space, 

from which candidate trees can be extracted. The GenerateProgramTree() is an enumeration 

algorithm [118, 160] that generates all possible combinations of program graphs G given ℘
and N using context-free grammar. The rules of connection are fixed by the DSL. Ideally, 

the path cost of the program graph should be low for interpretability and resource savings, 

yet have high accuracy. In other words, in Fig. 5, the goal is to find the top-performing 

shortest path to Decision A and Decision B. The symbolic search space is an ordinal mask j
that represents one of N program subgraphs extracted from the program supergraph.

programiterationt = Gi, Gi ∈ G, i ∈ j, j = [1, 2, …, N]

(22)

The neural search space is the same as that shown in Section 4.1.

Parsing.—Neuro→Symbol follows the same model parsing strategy discussed in Section 

4.1, Algorithm 2 and Fig. 4. For symbolic parsing, in the first case, the symbolic parser 

passes the Pareto-optimal u∗ as hyperparameter_vector[] to the main.cc file, where 

the function z( ⋅ ) is defined as symbolic_function(). This function operates on the 

output of the model. An example of this case is shown in Algorithm 3. In the second case, 

the program decision tree along with the grammar and the parser runtime are ported as 

header iles. The steps to port a program tree generated using ANTLR [119] are:

• Port the graph as a .txt or .h file, expressed in DSL.

• Deine the lexer rules in a .g4 iles. The lexer rules are necessary to tokenize the 

DSL program tree.

• Run the ANTLR runtime engine with the lexer.g4 file in the target language 

(Python or C) to create the necessary lexer iles.

• Define the grammar in another .g4 file. The grammar defines the relations 

between the class of tokens, assigning labels using the DSL operator space.

SAHA et al. Page 25

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Run the ANTLR runtime engine again, but with the grammar.g4 file to create 

the parser files, which processes the program graph to create a hierarchical 

abstract syntax tree. Specify the -visitor flag when running the engine to have 

control over the query traversal.

• Create a visitor, which will traverse the tree according to the parser grammar.

• Pass the DSL graph from the .txt or .h file to the lexer as a string argument. 

The tokenized tree is passed to the parser to generate the syntax tree, which is 

inally passed to the visitor for traversal.

Algorithm 3 Example of main.cc for the first case of
Neuro→Symbol

SAME AS ALGORITHEM 2
.
.

float hyperparameter_vector[3] = [ − 2.4, 1.1, 2.0]; ∕ ∕ written by parser
void symbolic_function(float ∗ inp, float ∗ out, float ∗ params){
}

float raw_data[kInputSize]; ∕ ∕ written by parser
float model_output[kOutputSize]; ∕ ∕ written by parser
float symbolic_output[kSymbolicSize]; ∕ ∕ written by parser

int main( ) {
SAME AS ALGORITHM 2
.
.
runner = &model_runner;

get_sensor_data(raw_data;
t . start( );
runner− > SetInput(raw_data);
runner− > Invoke( )
for(size_t i = 0; i < kCategoryCount; i + + ){

model_output[i] = runner − > GetOutput( )[i]; ∕ ∕ written by parser
}

symbolic_function(model_output, symbolic_output, hyperparameter_vector);
t . stop( );
for(size_t i = 0; i < kSymbolicSize; i + + ){

printf(‘‘ % 0.3f\n", symbolic_output[i]);
}
printf(‘‘\n");
printf(‘‘timer output: % f\n", t . read());
t . reset( );

}

SAHA et al. Page 26

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 4 Example of main.cc for the second case
of NeurôSymbol

SAME AS ALGORITHEM 2
.
.
INCLUDE TREE, RUNTIME AND GRAMMAR FILES HERE

float raw_data[kInputSize]; ∕ ∕ written by parser
float model_output[kOutputSize]; ∕ ∕ written by parser
float symbolic_output[kSymbolicSize]; ∕ ∕ written by parser

int main( ) {
SAME AS ALGORITHM 2
.
.
runner = &model_runner;

get_sensor_data(raw_data;

t . start( );
runner− > SetInput(raw_data);
runner− > Invoke( )

for(size_t i = 0; i < kCategoryCount; i + + ){
model_output[i] = runner − > GetOutput( )[i]; ∕ ∕ written by parser

}
program_graph_runtime(model_output, symbolic_output); ∕ ∕ lexer − > parser − > visitor
t . stop( );

for(size_t i = 0; i < kSymbolicSize; i + + ){
printf(‘‘ % 0.3f\n", symbolic_output[i]);

}
printf(‘‘\n");
printf(‘‘timer output: % f\n", t . read());
t . reset( );

}

Examples.—An example of the first approach includes joint optimization of a symbolic 

object tracker with a neural object detector using the CenterNet algorithm [179]. We 

showcase this example in Section 5.4. The object detector backbone is a ResNet-34 

+ Deformable Convolutional Network, with the optimization hyperparameters being the 

number of convolutional stacks, the kernel size, whether to use layer-wise activations or not 

and the head convolutional value. Given an input image It ∈ ℝW × H × 3, the model outputs 

the center points Dpi and bounding box dimensions Spi of the detected objects, as well as 

a heatmap of the centroid of the objects Y xyc, Y ∈ [0, 1]
W
R × H

R × C based on the rendering 

function ℛ with Gaussian Kernel σi for each class c ∈ {0, 1, …, C − 1}.

ℛq({p0, p1, …}) = max
i

exp (pi − q)2

2σi
2 , q ∈ ℝ2, p ∈ ℝ2

SAHA et al. Page 27

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(23)

q is a position on the image. To track and associate objects across frames, the network is 

also fed the previous frame It − 1 and prior detection heatmaps ℛ(pt − 1). The network then 

outputs the 2D offset of the object dt, with associations performed using greedy matching. 

Thus, the network is trained via a weighted sum of the focal loss ℒk (based on ground 

truth heatmap Y xyc, Y ∈ [0, 1]
W
R × H

R × C), the size ℒsize (based on ground truth bounding box 

dimensions s), and the local location regression ℒoff (based on ground truth object positions 

pi).

ℒk = 1
N ∑

xyc

(1 − Y xyc)
2 log(Y xyc) Y xyc = 1

(1 − Y xyc)4(Y xyc)
2 log(1 − Y xyc)

(24)

ℒsize = 1
N ∑

i = 1

N
∣ Spi − si ∣

(25)

ℒoff = 1
N ∑

i = 1

N
Dpit − (pi

t − 1 − pi
t)

(26)

A hlter is used to discard heatmaps below a certain rendering threshold τ or objects whose 

detection conhdence scores w, w ∈ [0, 1] are below a certain threshold θ. These thresholds 

form the optimization hyperparameters for the symbolic component (the hlter). The error 

metric is the sum of the multi-object tracking accuracy (MOTA) and the minimal cost 

change from the predicted identiication of objects to the correct identiication (IDF1) [179].

4.3 Neuro ∪ Compile (Symbolic)

Problem Formulation.—There are two ways to realize this paradigm. Firstly, if the 

rules are non-differentiable, the rules are characteristic of certain architectural encodings 

post-training, or the rules cannot be explicitly expressed in the model learning algorithm, 

then the constraints can be expressed as regularizer terms in Eq. 7:

min fopt, fopt = λ1ferror(Ω′) + λ2fflash(Ω′) + λ3fSRAM(Ω′) + λ4flatency(Ω′) + λ5frule 1(Ω′) + λ6frule 2(Ω′) + …

(27)

Ω′ contains only the ML components (i.e., Ω′ = {{V , E}, θm, m, w}), reducing the 

neurosymbolic architecture search to a NAS problem, regularized by additional scalar rules. 

SAHA et al. Page 28

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The rules can form soft constraints that do not form piecewise penalization functions, or 

hard constraints like SRAM and flash consumption to strongly penalize the search algorithm 

beyond a small, valid region of Ω′. Secondly, if the rules are differentiable, or the rules can 

be compiled away during training as input-output pairs, then the constraints can be included 

as physics metadata channels in the learning algorithm as inputs to the model graph q:

min fopt, fopt = λ1ferror(Ω′) + λ2fflash(Ω′) + λ3fSRAM(Ω′) + λ4flatency(Ω′)

(28)

where,

ferror(Ω′) = ℒvalidation(Y′, Y), Y′ = qΩ′(X, xphysics metadata channel)

(29)

Parsing.—In the irst case, the parsers only need to map the model from Python to C, 

following the recipe of model parsing in Section 4.1, Algorithm 2 and Fig. 4. In the second 

case, since the rules and hyperparameters are static and operate on the input data, there is no 

concept of symbolic optimization or symbolic parsing. Rather, there exists a function called 

extract_physics() in main.cc that operates on the raw data to generate the physics 

metadata channel, shown in Algorithm 5. The channel is appended to the end of the raw 

data, which is then fed to the model as an input tensor.

SAHA et al. Page 29

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 5 Example of main.ee for the second case of Neuro ∪ Compile (Symbolic)

SAME AS ALGORITHEM 2
.
.
float raw_data[kInputSize]; ∕ ∕ written by parser
float phsics_channel[kPhysicsSize];
float input_model[kInputSize + kPhysicsSize]; ∕ ∕ written by parser

int main( ) {
SAME AS ALGORITHM 2
.
.
runner = &model_runner;

get_sensor_data(raw_data;
extract_physics(raw_data, physics_channel);
for (int i = 0; i < kInputSize; i + + ){

input_model[i] = raw_data[i];
}
int j = 0;
for (int i = kInputSize; i < kInputSize + kPhysicsSize; i + + ){

input_model[i] = physics_channel[j];
j = j + 1;

}
t . start( );
.
.
SAME AS ALGORITHM 2

}

Examples.—An example of the first technique includes finding adversarially robust 

TinyML models, where frule(Ω′) denotes the white-box adversarial robustness score from 

RobustBench [38] or AutoAttack [39] bench-marks on a perturbed validation set (e.g., 

perturbed using fast gradient sign method (FGSM) or projected gradient descent (PGD)) 

versus the clean validation set.

frule 1(Ω′) = 1 − 1
N ∑

i = 0

N
qi, qi = 1 y′xi = y′xi, perturbed

0

(30)

where,

xi, perturbed = xi + ε ⋅ sign ∇xiℒvalidation(qΩ′(xi), yi)
FGSM

∨ clipε xi
t + α ⋅ sign ∇xiℒvalidation(qΩ′(xi)t, yi)

PGD

(31)

SAHA et al. Page 30

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



α and ε are attack strength hyperparameters in Eq. 31. An example of the second 

technique includes supplying a neural inertial navigation model with local-variance step 

detector binary mask or mean Fourier transform coefficients of accelerometer readings aI , 

signifying transportation modes. The goal is to prevent the network from outputting invalid 

displacements when the object is static [134].

xphysics metadata channel = c(Ia), cj(Ia) = 1 aL, Δt
I > ζ ⋅

∑k ∈ Δt aL, k
I − aL, Δt

I 2

n
0

step detector

∨ ∣ FFT( ∣ aΔt
I ∣ )‖

Fourier transform

(32)

where, j is the measurement epoch, Δt is the length of current time window, 

aL, Δt
I = G5, fc( ∣ aΔt

I ∣ ) − G5, fc( ∣ aDeltat
I ∣ ), ζ is a tunable parameter and G5, fc( ⋅ ) represents a 5th 

order low-pass filter with cutoff fc. The model is expected to output zero displacements 

when the physics metadata channel value drops below a threshold τ.

E(yj
′) 0 ∣ xj, physics metadata channel < τ

(33)

We showcase the examples in Section 5.5 and Section 5.6.

4.4 Symbolic[Neuro]

Problem Formulation.—Consider a dynamical system such that g :xk + 1 ∣ k uk + 1, xk ∣ g is 

non-linear. xk + 1 ∣ k represents the state at epoch k + 1, xk represents the state at epoch k, g( ⋅ )
is a neural network backbone, and uk + 1 represents the control input (sensor measurements) at 

epoch k + 1. The neural system evolution is given as follows:

xk + 1 ∣ k = gv(xk, uk + 1, wk + 1)

(34)

wk + 1 is the additive White Gaussian process noise with covariance Q. Now, consider 

measurement updates zk + 1 coming from a symbolic observation model ℎ( ⋅ ) via 

complementary sensor measurements.

xk + 1 ∣ k + 1 = xk + 1 ∣ k + Kk + 1 zk + 1 − ℎu(xk + 1 ∣ k, vk)
measurement residual

(35)

vk is the additive White Gaussian measurement noise with covariance R and Kk + 1 is a gain 

factor. The goal is to optimally fuse the neural system model and the symbolic measurement 

SAHA et al. Page 31

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model. Assuming Markov property, modeling the uncertainty in g( ⋅ ) and ℎ( ⋅ ) using Kalman 

hlter theory allows optimal fusion [50].

Pk + 1 ∣ k = APkAT + Bk + 1UkBk + 1
T + Qk, Ak + 1 = ∂g

∂x xk, uk + 1, wk + 1
, Bk + 1 = ∂g

∂u xk, uk + 1, wk + 1

(36)

Pk + 1 ∣ k + 1 = (I − Kk + 1Hk + 1) Pk + 1 ∣ k, Hk + 1 = ∂ℎ
∂x xk + 1 ∣ k, vk

(37)

where,

Kk + 1 = Pk + 1 ∣ kHk + 1
T Hk + 1Pk + 1 ∣ kHk + 1

T + Rk + 1

innovation covariance

−1

(38)

Ak + 1 and Bk + 1 represents the linearized Jacobian of the neural network w.r.t. the past state 

and control inputs, while Hk + 1 represents the linearized partial derivative of the observation 

model w.r.t. the past state. The predicted process covariance P is given by the Lyapunov 

equation and updated during measurements using algebraic Riccati recursion [151]. The 

goal of the search algorithm is to hnd the optimal hyperparameters of g( ⋅ ) and ℎ( ⋅ ), given 

by hyperparameter vectors v and u, respectively:

u = [α1
1, 1, α2

1, 1, …, αγ1
1

1, 1] [α1
1, 2, α2

1, 2, …, αγ2
1

1, 2] … [α1
1, e, α2

1, e, …, αγe1
1, e]

(39)

v = [β1
1, 1, β2

1, 1, …, βγ1
1

1, 1] [β1
1, 2, β2

1, 2, …, βγ2
1

1, 2] … [β1
1, f, β2

1, f, …, βγf
1

1, f]

(40)

Parsing.—The model parsing follows the same recipe shown in Section 4.1, 

Algorithm 2, and Fig. 4. The symbolic parser sends the optimal u∗ to main.cc. 

Algorithm 6 shows an example of the main.cc. The program extensively uses 

matrix operations (obtainable through CMSIS-NN library [95] available through TFLM) 

to compute the Kalman hyperparameters. CMSIS-NN matrix operation constructs are 

used in reshape_jacobian(), lyapunov_eq(), measurement_update(), get_pd(), 

compute_kalman_gain(), and ricatti() functions to accelerate matrix operations 

through vector processors found in some Cortex-M microcontrollers. However, a key 

challenge in realizing the Symbolic[Neuro] form is the lack of on-board Jacobian 

computation support (GetJacobian()).

SAHA et al. Page 32

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Examples.—We showcase a Neural-Kalman filter that fuses GPS measurements with a 

neural inertial odometry model to regress an object’s position [50]. The example is shown in 

Section 5.7. The neural network regresses the object’s 2D velocity vx, vy from accelerometer 

aI, gyroscope wI and magnetometer mI readings:

(vx, k, vy, k) = g vI(0), g0
I, N0

I, aq:q + n
I , wq:q + n

I , mq:q + n
I , ck(Ia) , ck(Ia) = ∣ FFT( ∣ aq:q + n

I ∣ ) ∣ .

(41)

SAHA et al. Page 33

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SAHA et al. Page 34

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 6 Example of main.ee for Symbolic[Neuro]

SAME AS ALGORITHEM 2
.
INCLUDE CMSIS_NN HEADERS HERE
#define STATE_SIZE 3
float raw_data[kRawData];
float input_model[kRawData + STATE_SIZE];
float obs_model_params[4] = { − 2.0, 1.0, 0.0, 37.5}; ∕ ∕ written by parser
cur_state[3] = {0.0, 0.0, 0.0}
float jacobian[kJacobianSize] = {0.0};
float reshaped_jacobin[kA][kB];
float P[kC][kD];
float K[kE][kF];
float H[kG][kH];
float out[koutsize] = {0.0};

void reshape_jacobian(float ∗ flattened_jacobian[ ], float ∗ 2D_jacobian[ ][ ]){
}
void lyapunov_eq(float ∗ covariance_mat[ ][ ], float ∗ 2D_jacobian[ ][ ], float ∗ sensor_data[ ]){
}
void measurement_update(float ∗ state[ ], float ∗ gain_matrix[ ][ ], float ∗ sensor_data[ ]){
}
void get_pd(float ∗ obs_model[ ][ ], float ∗ output_obs_model[ ]){
}
void obs_model(float ∗ out[ ], float ∗ state[ ], float ∗ params[ ]){
}
void compute_kalman_gain(float ∗ gain_matrix[ ][ ], float ∗ covariance_mat[ ][ ], float ∗ out[ ]){
}
void ricatti(float ∗ covariance_mat[ ][ ], float ∗ gain_matrix[ ] [ ], float ∗ out[ ]){
}
int main( ) {

SAME AS ALGORITHM 2
.
∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ LOP ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕
get_sensor_data(raw_data);
for(int i = 0; i < kRawData; i + + ){

input_model[i] = raw_data[i]
}
for(int i = kRawData; i < kRawData + STATE_SIZE; i + + ){

input_model[i] = cur_state[i];
}
t . start( );
runner− > SetInput(input_model);
runner− > Invoke( );
for (size_t i = 0; i < STATE_SIZE; i + + ) {

cur_state[i] = runner − > GetOutput( )[i]; ∕ ∕ neural system model
}
for (size_t i = 0; i < STATE_SIZE; i + + ) {

jacob[i] = runner − > GetJacobian( )[i];
}
reshap_jacobian(jacob, reshapeed_jacobian); ∕ ∕ reshape flattened Jacbian to 2D matrix
laypunov_eq(P, reshaped_jacobian, raw_data); ∕ ∕ compute P for neural system model
get_comp_sensor_data(raw_data);
measurement_update(cur_state, K, raw_data); ∕ ∕ update state
for (size_t i = 0; i < STATE_SIZE; i + + ) {

printf(‘‘ % f", cur_state[i]);
}
obs_model(out, cur_state, obs_model_params); ∕ ∕ get observations
get_pd(H, out); ∕ ∕ compute partial derivative
compute_kalman_gain(K, P, H) ∕ ∕ compute the gain matrix
ricatti(P, K, H); ∕ ∕ update P during measurement update
t . stop( );
printf(‘‘\n");
printf(‘‘timer output: % f\n", t . read( ));
t . reset( );
∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ LOP ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕

}

SAHA et al. Page 35

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The system propagation is given as follows:

xk + 1 ∣ k = Axk + f(uk + 1)

Pk + 1 ∣ k = APkAT + Bk + 1UkBk + 1
T , Bk + 1 = ∂f

∂u xk, uk + 1

(42)

where,

x =

Lx

Ly

vx

vy

, u =

aq:q + n
I

wq:q + n
I

mq:q + n
I

c(aq:q + n
I )

, A =
I2 × 2 02 × 2

02 × 2 02 × 2
, Bk + 1 =

Δt∂gv( ⋅ )x

∂aq:q + n
I

Δt∂gv( ⋅ )x

∂wq:q + n
I

Δt∂gv( ⋅ )x

∂mq:q + n
I

Δt∂gv( ⋅ )x

∂c(aq:q + n
I )

Δt∂gv( ⋅ )y

∂aq:q + n
I

Δt∂gv( ⋅ )y

∂wq:q + n
I

Δt∂gv( ⋅ )y

∂mq:q + n
I

Δt∂gv( ⋅ )y

∂c(aq:q + n
I )

∂gv( ⋅ )x

∂aq:q + n
I

∂gv( ⋅ )x

∂wq:q + n
I

∂gv( ⋅ )x

∂mq:q + n
I

∂gv( ⋅ )x

∂c(aq:q + n
I )

∂gv( ⋅ )y

∂aq:q + n
I

∂gv( ⋅ )y

∂wq:q + n
I

∂gv( ⋅ )y

∂mq:q + n
I

∂gv( ⋅ )y

∂c(aq:q + n
I )

(43)

f( ⋅ ) =
Δt ⋅ I2 × 2

I2 × 2
⋅ gv( ⋅ ), Δt = s

n − s , s = stride, n = window size

(44)

U consists of Allan variance parameters [52] of the inertial measurement unit. The 

measurement updates z come from the GPS module. ℎ denotes the inverse mapping from 

longitude-latitude to 2D Cartesian coordinates. The hyperparameters of the neural network 

and the Kalman filter are optimized jointly.

4.5 Neuro[Symbolic]

Problem Formulation and Parsing.—This paradigm is equivalent to a model with 

special operators or layers. The search space, therefore, contains the hyperparameters of 

the model backbone to be optimized. The model parsing follows the same recipe shown in 

Section 4.1, Algorithm 2, and Fig. 4, with no symbolic parsing. However, the special layers 

must be added as custom operators first to TFLite, and then to TFLM. The steps are as 

follows:

• Create the custom operator in TensorFlow.

• Clone Tensorlow repository.

• Define the init(), free(), prepare(), and eval() functions for the 

operator in the OPERATOR_NAME.cc file in tensorflow/lite/kernels/ 

directory.

• Register the operator in tensorflow/lite/kernels/register.cc and 

register_ref.cc. Add the registration under namespace custom and 

BuiltinRefOpResolver::BuiltinRefOpResolver(). In the BUILD file, 

SAHA et al. Page 36

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



under cc_library( name = "builtin_op_kernels", add the operator .cc 

file names under srcs. Add the dependencies under deps.

• Configure, build, and install the modified TensorFlow. Load the model with 

the custom operator in the TFLite interpreter in Python to verify the correct 

operation.

• From tensorflow/lite/core/api/flatbuffer_conversions.cc, under 

ParseOpDataTfLite, extract the code for parsing the operator into a function.

• Extract the reference for the operator to a standalone header from 

tensorflow/lite/kernels/internal/reference/. Add the new header 

to tensorflow/lite/kernels/internal/BUILD.

• Copy the operator code from tensorflow/lite/

kernels/OPERATOR_NAME.cc to tensorflow/lite/micro/kernels/

OPERATOR_NAME.cc. Remove TFLite-specific code. Add the operator 

registrations in micro_ops.h, micro_mutable_op_resolver.h, and 

all_op_resolver.cc.

5 EVALUATION

In this section, we evaluate the performance of TINYNS on six different case studies 

resembling four neurosymbolic architecture search recipes (Section 5.2 to Section 5.7). We 

also validate the viability of TINYNS for generating performant microcontroller-class models 

on the industry-standard MLPerf Tiny v0.5 Inference Benchmark [13] in Section 5.1.

5.1 MLPerf Tiny v0.5 Inference Benchmark

The MLPerf Tiny v0.5 Benchmark Suite contains four classification tasks and quality target 

metrics representing a wide array of TinyML applications [13, 136]. The tasks include image 

classification (CIFAR10 dataset [91]), unsupervised anomaly detection (ToyADMOS dataset 

[88]), keyword spotting (Google Speech Commands dataset [170]), and visual wake words 

detection (Visual Wake Words dataset [32]). We benchmark TINYNS on the first three tasks.

5.1.1 Dataset Splits and Pre-processing.—We use the standard dataset splits and 

pre-processing functions provided by the benchmark suite. For CIFAR10, 50000 32×32×3 

images are used for training, and 10000 images are used for testing. The dataset has 10 

output classes. For ToyADMOS, 3600 and 400 non-anomalous sound samples from 4 toy 

cars mixed with ambient noise are used for training and validation, respectively, and 2500 

anomalous and non-anomalous sound samples from the same 4 toy cars are used for testing. 

The pre-processor extracts the Mel-scaled power spectrogram from the raw WAVE files 

using 128 Mel bands, 5 frames, an FFT window length of 1024, and a hop length of 

512. The spectrogram is converted to log Mel energy, clipped to keep the central portion, 

and concatenated with other frames to generate features. Each input tensor is a vector of 

length 640. For Google Speech Commands, the 100503 1-second keywords from 2618 

speakers are divided into 85511, 10102, and 4890 utterances for training, validation, and 

testing, respectively The dataset has 12 output classes. The pre-processor extracts the log 

SAHA et al. Page 37

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mel-frequency cepstral coefficient (MFCC) fingerprints from the raw 16 KHz WAVE files 

after decoding, volume scaling, random time-shifting (100 mS), and adding background 

noise to the raw audio data. The window size is 30 mS and the stride is 20 mS. 10 MFCC 

coefficients are used, resulting in each model input being a 49×10×1 tensor.

5.1.2 Model Backbones, Training Details, and Search Space Definition.—For 

image recognition, we optimize the ResNet [77] backbone provided in the benchmark suite. 

Following the settings in the MLPerf Tiny v0.5 Benchmark [13] and state-of-the-art NAS 

frameworks for microcontrollers [14, 54, 60, 101, 103, 124], we train each candidate model 

for a fixed number of epochs of 500. While green AI advocates for training epochs to be 

considered as a hyperparameter [145] to be optimized, the additional hyperparameter may 

lead to a longer NAS convergence time from more candidate models being trained to achieve 

acceptable accuracy, minimizing the reduction in the total number of training epochs. In 

addition, TinyML neural architectures are either well-known (e.g., ResNet [77], MobileNets 

[79], or SqueezeNet [81]) or compact (e.g., FastGRNN [94], Bonsai [93], ProtoNN [74] or 

temporal CNN [97]), allowing the use of known and fixed training epochs or a small number 

of training epochs to achieve acceptable performance [136]. We use the Adam optimizer 

with a learning rate scheduler having an initial learning rate of 0.001 and decaying by a 

factor of 0.99 with each passing epoch. The batch size is 32, the loss is categorical cross-

entropy, and the NAS error metric is training accuracy. The optimization hyperparameters 

include:

• Number of convolutional stacks: range (1, 5)

• Kernel size: [1, 3, 5, 7]

• Number of filters (initial layer): [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24]

• Use batch normalization: [True, False]

• Use activations: [True, False]

For anomaly detection, we optimize a temporal convolutional autoencoder (denoted as 

1D-CNN in the rest of the paper) backbone inspired by Thill et al. [159]. The encoder 

is a TCN [97, 162] without dilated kernels, followed by a 1D convolutional layer (linear 

activation) with a quarter and one-third of the number of filters and a kernel size of the 

TCN layer, respectively The decoder includes the same layers but in reverse, followed by a 

fully-connected layer with 640 units and linear activation. Each candidate model is trained 

for 350 epochs, using the AMSGrad variant of the Adam optimizer with a learning rate of 

0.001, β1 of 0.9, β2 of 0.999, and ϵ of 1e-8. The batch size is 1024, the loss is the mean 

squared error, and the NAS error metric is validation loss. The search space is as follows:

• Number of layers per stack: range (3, 8)

• Number of TCN stacks: [1, 2, 3]

• Number of filters in the TCN layers: range (3, 64)

• Kernel size in the TCN layers: range (3, 16)

• Skip connections in TCN: [True, False]

SAHA et al. Page 38

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For keyword spotting, we optimize a TCN, which can handle spatial and temporal features 

hierarchically without the explosion of hyperparameter count [97, 162]. The TCN layer is 

followed by a dense layer with 12 units and softmax activation. Each candidate model is 

trained for 60 epochs, using the Adam optimizer with a step function learning rate scheduler. 

The batch size is 1000, the loss is sparse categorical cross-entropy, and the NAS error metric 

is sparse categorical accuracy. The search space is as follows:

• Number of layers per stack: range (3, 8)

• Number of TCN stacks: [1, 2, 3]

• Number of filters in the TCN layers: range (2, 64)

• Kernel size in the TCN layers: range( 2, 16)

• Skip connections in TCN: [True, False]

• Dilation factor choices: [1, 2, 4, 8, 16, 32, 64, 128, 256]

5.1.3 Overall Performance.—Fig. 6 (Left) and Fig. 7 showcases the Pareto-optimal 

frontier generated by TINYNS versus competing frontiers and microcontroller models. 

TINYNS exceeds the benchmark accuracy by 4.3% and 5.5% for image recognition and 

anomaly detection, respectively, while consuming 1.14×-3.09× lower lash. For image 

recognition, TINYNS outperforms models generated SpArSe [59] and μNAS [101] by 

4.5%-17.5% while taking 1.7×-7.7× lower convergence time (shown in Fig. 6 (Right)). 

Compared to LEMONADE [53], TINYNS provides 2.2× smaller models at the cost of 1.3% 

accuracy loss. TINYNS converges faster than gradient-based or evolutionary NAS due to 

two key properties. Firstly, TINYNS can eliminate infeasible candidate models in the search 

space without training, thanks to accurate hardware profiling using real microcontrollers 

during the search process. Proxies are unable to take into account the compiler runtime 

optimizations, and the dynamic overhead from RTOS, data stacks, and model interpreters. 

For all three tasks, the models generated by proxied TINYNS not only have sub-optimal 

accuracy (1.6%-5.5% lower) and flash usage (4.2× higher) compared to proxy less TINYNS 

but also have higher convergence time (2.3× higher). Secondly, the exploration-exploitation 

philosophy of the acquisition function, coupled with parallel search capabilities and the 

computationally-tractable sampling-based approach allows TINYNS to approach the global 

optimum without requiring evaluation of thousands of candidate architectures. Each model 

in the Pareto-frontier is generated within 10-50 iterations. For anomaly detection, TINYNS 

outperforms attention-based OutlierNets [2] by 6.3% and guarantees deployability over 

MobileNetv2 [140], but underperforms over MicroNets [14] models. We hypothesize that 

flattening the log MFCC in the 1D-CNN backbone loses spatial correlation across the 

feature coefficients. This phenomenon also generates sub-optimal TINYNS models for 

keyword spotting, failing to cross the benchmark accuracy of 90% as shown in Fig. 7 

(Right). This showcases the importance of performing NAS not just over a single model 

backbone, but over multiple model backbones. In Section 5.3, we showcase how TINYNS 

operating on a search space with multiple models can generate models with the lowest 

lash usage and highest accuracy. Regardless, given an ideal model backbone, TINYNS 

SAHA et al. Page 39

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can generate models with the highest accuracy and guaranteed deployability within a few 

evaluations without requiring expensive training infrastructure.

5.1.4 Architectural Adaptation Based on Resource Availability.—Table 2, Table 

3, and Table 4 show the hyperparameters of the model backbones for the three tasks 

generated by TINYNS for four different STM32 microcontrollers with varying SRAM 

and flash limits. In general, as the device capabilities increase, TINYNS generates models 

that have higher FLOPS, and higher SRAM and flash usage. Instead of providing the 

smallest model with the highest accuracy, TINYNS adapts hyperparameters such as the 

number of kernels, size of kernels, and the number of convolutional stacks with increasing 

device capabilities to maximize accuracy. Fig. 8 and Fig. 9 show visual examples of such 

architectural adaptation for three of the four microcontrollers. As the SRAM and flash 

capacity increases, TINYNS automatically adjusts the number of layers per stack, the number 

of stacks, the kernel size, and the number of filters depending on an increase in SRAM 

or flash. For example, a model with more parameters but a smaller kernel size and filter 

count are likely to benefit from an increase in lash but no change in SRAM. Likewise, when 

dilated convolutions are used, TINYNS assigns a small dilation factor to earlier layers and 

a large dilation factor in later layers when it cannot increase the number of layers due to 

resource limits. This allows a TCN with a limited layer count to have the same receptive 

field (albeit less fine-grained) as a TCN with more layer count, capturing both short-term 

local context and long-term global time-series inter-dependencies. Table 2, Table 3, and 

Table 4 further showcase the problem with proxies as opposed to real-hardware profiling. 

These models have a higher number of parameters but a lower number of filters and 

kernel size than proxy-less models. Since proxies are unable to take into account compiler 

optimizations, the generated models underestimate the available SRAM and overestimate the 

flash usage, yielding models with poor accuracy.

5.1.5 Convergence Time of Proxyless versus Proxied TinyNS.—Fig. 10 shows 

the number of iterations needed to reach the best optimization score for proxy less and 

proxied TINYNS for all three tasks. Mango allows both random initialization and an initial 

set of evaluation points to warm up the optimizer. The user can either customize the initial 

evaluation points to guide the optimization process or choose random sampling to mitigate 

randomness effects [138]. We showcase the results for an average from 3 independent runs 

for each algorithm to account for the effect of randomness. For both profiling techniques, 

tighter hardware constraints (lower SRAM and lash capacities) equate to more iterations 

required for convergence. However, proxy less TINYNS converges 3.2×-12.6× faster to 

the highest performing model compared to proxied TINYNS. Intuitively, platform-in-the-

loop should be slow while analytical proxies should be fast, as real measurements have 

compilation time and prohling time overhead and are not immediate. However, since proxies 

are inaccurate and do not reflect the execution level dynamics, more infeasible model 

candidates are trained rather than discarded, wasting valuable computing time and increasing 

the search completion time. In our evaluation, we found the platform-in-the-loop approach 

to be 50% faster than using proxies for hardware prohling. Even though proxied TINYNS 

achieves a higher score than proxy less TINYNS, the deployability of models generated by 

proxied TINYNS is not guaranteed due to high flash consumption. Further, we have seen 

SAHA et al. Page 40

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



earlier that these models do not fully exploit the SRAM capabilities and have lower accuracy 

than proxy-less models. The increased score achieved by proxied TINYNS is contributed by 

model candidates with a high flash footprint.

5.2 Optimization of Features and Neural Weights (Symbolic Neuro Symbolic)

In this case study, we showcase how TINYNS provides the best combination of features and 

neural network hyperparameters for various target hardware.

5.2.1 Dataset and Task Description.—We use the UCI-HAR dataset [6] for this 

case study. The task is to classify 6 human activities (walking, walking upstairs, walking 

downstairs, sitting, laying, and standing) from a single waist-mounted x-axis accelerometer 

data sampled at 50 Hz from 30 volunteers. The dataset is split with leave-7 out, i.e., data 

from 21 volunteers are in the training set, and data from the rest 7 volunteers are in the test 

set. As suggested by the dataset authors, we use a window size of 128 (2.56 s) with a stride 

of 64. 10% of the training data is used for validation.

5.2.2 Model Backbones, Training Details, and Search Space Definition.—The 

model backbone consists of a TCN. The TCN layer is followed by a dense layer with 6 units 

and softmax activation. Each candidate model is trained for 150 epochs, using the Adam 

optimizer with default parameters. The loss is categorical cross-entropy, and the NAS error 

metric is validation accuracy. The search space for the model is as follows:

• Number of layers per stack: range (3, 8)

• Number of TCN stacks: [1, 2, 3]

• Number of hlters in the TCN layers: range (3, 64)

• Kernel size in the TCN layers: range(3, 16)

• Skip connections in TCN: [True, False]

• Dilation factor choices: [1, 2, 4, 8, 16, 32, 64, 128]

The feature space consists of 12 features listed in Table 5. There are 6 statistical features, 3 

temporal features, and 3 spectral features to choose from. The search space for the features 

is dehned using the binary mask technique shown in Section 4.1.

5.2.3 Target Hardware.—We perform neurosymbolic optimization for the same four 

microcontrollers from Section 5.1. In addition, we also perform optimization for an 

integrated sensor processing unit (ISPU) from STMi-croelectronics. The ISPU is an ultra-

low-power 10 MHz 32-bit RISC processor (architecture: STRED) embedded within the 

LSM6DSOIS and ISM330IS 6DoF MEMS inertial sensor. The processor uses a proprietary 

version of TFLM (called q2c) to run on-chip neural networks without needing a power-

hungry microcontroller in the loop and uses the STRED/ISPU toolchain to compile C++ 

programs. The processor has 8kB SRAM and 32kB flash [107].

5.2.4 Overall Performance.—Fig. 11 (Left) shows the Pareto-frontier generated by 

TINYNS versus using all the features and directly operating on the raw accelerometer 

SAHA et al. Page 41

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data. On average, TINYNS provides up to 2% improvement in accuracy over the same 

model operating on raw data or operating on all the features. Extracting all the features is 

computationally intensive (especially for the ISPU) while operating on raw data without 

a gyroscope or magnetometer or other axes of the accelerometer results in performance 

degradation. Table 5 and Table 6 show the chosen features and model hyperparameters for 

each target hardware. Surprisingly, TINYNS learns to pick only the most important features 

(e.g., peak-to-peak, FFT mean coefficients, entropy, and variance) for the ISPU and the 

microcontrollers with the lowest SRAM and flash capacities. These features are well-known 

to have the highest effect on classifier performance in human activity recognition literature 

[8, 168]. As the device capabilities increase, TINYNS selects other features in the feature 

set. TINYNS also performs architectural adaptation and device capability exploitation seen 

in Section 5.1, increasing the number of hlters, the kernel size, and the number of stacks of 

the model candidates. To prevent exploding and vanishing gradient problem, TINYNS learns 

to add skip connections to deeper TCN models. The SRAM usage and FLOPS count of the 

models steadily increase with increasing device capabilities as shown in Fig. 11 (Center) 

and Fig. 11 (Right). The median SRAM saturation is around 20%, with the saturation 

being higher for devices with higher flash availability, showing full resource exploitation 

by TINYNS for each target hardware. Overall, choosing the best synergy of features and 

model hyperparameters makes it possible to run models on extremely resource-constrained 

platforms beyond microcontrollers like the ISPU.

5.3 Fall Detection under 2 kB and Activity Recognition (Symbolic Neuro Symbolic)

In this case study, we showcase how TINYNS picks the best model backbone (neural or 

non-neural) and its hyperparameters out of a zoo of TinyML model backbones.

5.3.1 Dataset and Task Description.—We use the AURITUS dataset [135] for this 

case study. There are two tasks. The first task is to distinguish between fall and non-fall 

activities under a 2 kB memory constraint (suitable for ISPU) using an ear-mounted 6DoF 

inertial measurement unit called earable. The second task is to classify 9 human activities 

(walking, jogging, standing, sitting, laying, turning left, turning right, jumping, and falling). 

The dataset is sampled at 100 Hz from 45 volunteers. We split the dataset in two ways: split 

with no unseen participants and split with leave-1 out. In the first splitting technique, we use 

80% of the data for training, 10% for validation, and 10% for testing. In the second splitting 

technique, we perform 10-way cross-validation by leaving a random participant out of the 

training set. The data from the chosen 44 participants are split 90:10 for training: validation. 

The stride was set to 0.5 seconds and the window size was optimized as a hyperparameter.

5.3.2 Model Backbones, Training Details, Target Hardware, and Search Space 
Definition.—We set 5 different model backbones (3 neural, 2 non-neural) in the search 

space, each with its own set of optimization hyperparameters:

• TCN (neural) [97, 162] - number of filters in the TCN layers: range (2, 64); 

kernel size in the TCN layers: range (2, 16); skip connections in TCN: [True, 

False]; the number of layers per stack: range (3,8); dilation factor choices: 

[1,2,4,8,16,32,64,128,256].

SAHA et al. Page 42

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• FastGRNN (neural) [94] - number of hidden units: range (20, 60).

• FastRNN (neural) [94] - number of hidden units: range (20, 60).

• Bonsai (non-neural) [93] - projection dimension: range (10, 70); sigmoid 

parameter: uniform (1.0, 4.0); depth: range(1, 6).

• ProtoNN (non-neural) [74] - projection dimension: range (10, 70); γ: uniform 

(0.0015, 0.05); the number of prototypes: range (10, 70).

In addition, for all the models, the search space for the window size is [1, 2, 3, 5] 

seconds. For TCN, we generate Pareto-frontier for 4 different STM32 microcontrollers 

(F446RE, L476RG, F407VET6, and F746ZG) and the Qualcomm CSR8670 microcontroller 

found inside the earable. We use proxies for profiling the CSR processor as it does not 

support firmware modification. For the STM32 microcontrollers, we use platform-in-the-

loop profiling. For Bonsai and ProtoNN, we apply five features on the accelerometer and 

gyroscope vector sums: maxima, minima, range, variance, and standard deviation. The rest 

of the models operate directly on the raw data. The loss is categorical cross-entropy for all 

the models, except for Bonsai, which uses multi-class hinge loss. The NAS error metric is 

validation accuracy for TCN and training accuracy for the rest of the classifiers.

5.3.3 Overall Results.—Fig. 12 summarizes the accuracy and model size for the 

highest performing models for each of the 5 backbones against competing models, while 

Table 7 shows the hyperparameters of the said models. TINYNS achieves state-of-the-art 

improvement in both accuracy and model size reduction, providing earable activity detection 

models that are 98×-740× smaller yet 3%-6% more accurate than competing models. 

The activity recognition models are as small as 6-13 kB. Further, TINYNS achieves 

98% earable fall detection accuracy with a model as small as 2.3 kB. The case study 

illustrates the importance of optimizing several model backbones rather than a single 

backbone, particularly in unseen domains void of expert knowledge. Notably, models with 

more parameters do not necessarily provide higher accuracies. Appropriate architectural 

encodings make it possible to achieve the same or better accuracy with a lower parameter 

count (e.g., a CNN is likely to outperform a fully-connected neural network due to the 

ability to extract spatial relations, even though the latter may have more parameters). Even 

if one architecture performs poorly, the search algorithm would have other architectures 

to choose from. Thereby, exploring various architectures is important for squeezing highly 

performant models beyond microcontrollers, such as the ISPU.

5.4 Optimization of Neural Detector Weights and Symbolic Object Tracker 
(Neur→Symbol)

In this case study, we show the ability of TINYNS to jointly optimize neural and symbolic 

modules, where the symbolic module makes high-level reasoning over the neural outputs.

5.4.1 Dataset and Task Description.—We use the MOT17 dataset [113] for this case 

study. The goal is to develop multiple people tracking algorithms from a single camera feed 

under model size constraints. The dataset is pre-processed using the ByteTrack library [178].

SAHA et al. Page 43

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.4.2 Model Backbones and Search Space Definition.—We use the ByteTrack 

library [178] to implement the CenterNet algorithm [179], which was discussed in Section 

4.2. Each candidate model is trained for 70 epochs with a batch size of 16. The search space 

for the ResNet + Deformable Convolutional Network and the tracking hlter are:

• Number of convolutional stacks: range (1, 5)

• Kernel size: [1, 3, 5, 7, 9,…, 23]

• Layer-wise activations: [True, False]

• Head convolutional value: [50, 100, 150,…, 300]

• Rendering threshold: linspace (0.1, 0.9, 9)

• Conhdence threshold: linspace (0.1, 0.9, 9)

5.4.3 Overall Results.—Table 8 shows the performance, resource usage, and 

hyperparameters of the CenterNet algorithm under hard memory constraints compared to 

the handcrafted algorithm with default hyperparameters. Note that the MOTA and IDF1 for 

all the models are low as no pre-training or fine-tuning on additional data is performed. 

The 250 MB model achieves MOTA and IDFf within 1% of the handcrafted model, while 

the 500 MB model exceeds the MOTA and IDF by 4.5%. The case study showcases that 

TINYNS can achieve the performance of neurosymbolic models hand-tuned using hundreds 

of human hours automatically, and even exceed the performance when device constraints 

relax. Compared to a human designer, TINYNS can find models whose hyperparameters 

may be counter-intuitive (e.g., reducing the head convolutional value from 150 to 100 and 

removing layer-wise activations for the 500 MB model) but provide superior performance.

5.5 Improving Adversarial Robustness of TinyML Models (Neuro U Compile (Symbolic))

In this case study, we showcase how TINYNS can find model architectures that follow some 

coveted architecture-dependent constraints.

5.5.1 Dataset and Task Description.—We use the AURITUS dataset in this case study 

(the same dataset used in Section 5.3). The goal and the dataset splits are the same as that 

in Section 5.3, except that now we want TinyML models that not only have the highest 

accuracy within the device constraints but are also adversarially robust to white-box attacks 

(discussed in Section 4.3).

5.5.2 Model Backbones, Training Details, Target Hardware, and Search Space 
Definition.—We use the TCN, Bonsai, and ProtoNN backbones using the same model 

search space defined in Section 5.3. The window size is fixed to 5 seconds. For the TCN, we 

generate Pareto-frontier for F446RE, L476RG, and F746ZG. The rest of the training details 

are the same as Section 5.3.

5.5.3 Overall Results.—Fig. 13 shows the test accuracy, adversarial accuracy, and 

the model size of TINYNS generated models with adversarial robustness optimization, 

versus handcrafted models and models generated by TINYNS with no adversarial robustness 

optimization. TINYNS generates models that are 1%-26% (9% on average more adversarially 

SAHA et al. Page 44

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



robust than competing models while maintaining or exceeding the accuracy on the main 

task. This comes at the cost of increased model size, albeit well within the flash constraints 

of the target hardware. This is because larger models have more parameters and are therefore 

more robust to small input perturbations. In addition, models generated by TINYNS without 

adversarial robustness optimization are more sensitive to small perturbations compared to 

handcrafted models. This is probably due to high loss smoothness and low gradient variance 

in the loss contour of NAS-generated models [117].

5.6 Physics-Aware Neural Inertial Localization (Neuro ∪ Compile (Symbolic))

In this case study, we showcase how TINYNS can force models to follow some coveted 

constraints via the inclusion of physics channels.

5.6.1 Dataset and Task Description.—We use 5 inertial odometry datasets spanning 

4 applications for this case study. These include two datasets for human tracking namely 

OxIOD [29] and RoNIN [78], AQUALOC [61] unmanned underwater vehicle (UUV) 

tracking, EuRoC MAV [22] undermanned aerial vehicle (UAV) tracking, and the GunDog 

[73] animal tracking. The split information for all the datasets is shown in Table 9. The goal 

is to train a model to predict the position of an object using inertial sensor data without 

GPS updates while mitigating position explosion error innate in inertial sensors due to bias 

and drift. The model must be able to detect when sufficient translational movement has not 

happened, thereby not updating the position (physics-aware).

5.6.2 Model Backbones, Training Details, Target Hardware, and Search Space 
Definition.—We use a TCN backbone. The outputs of the TCN are reshaped, pooled, 

and flattened, and then fed to a 32-unit dense layer with linear activations. The loss is a 

mean-squared error, the optimizer is Adam with a learning rate of 0.001, and the NAS error 

metric is validation loss. The search space for the model is as follows:

• Number of layers per stack: range (3, 8)

• Dropout: uniform (0.0, 1.0)

• Normalization: [Weight, Layer, Batch]

• Number of filters in the TCN layers: range (2, 64)

• Kernel size in the TCN layers: range (2, 16)

• Skip connections in TCN: [True, False]

• Dilation factor choices: [1, 2, 4, 8, 16, 32, 64, 128, 256]

We generate the Pareto-frontier for the 4 STM32 microcontrollers outlined in Section 5.3.

5.6.3 Overall Results.—Fig. 14 shows the odometric resolution of models found 

by TINYNS (called TINYODOM) versus handcrafted state-of-the-art neural and symbolic 

models. TINYNS models outperform purely neural and purely symbolic models on all four 

applications by 1.15× while being 31×-134× smaller. In other words, TINYNS not only 

exceeds the resolution of human-designed neural and symbolic models but also ensures 

the deployability of the models on microcontrollers. The superior performance is possible 

SAHA et al. Page 45

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



partly due to the inclusion of the physics channel, which improves the resolution by 1.1× 

on average, as showcased in Table 10. The physics channel ensures that lightweight and 

under-parameterized models such as those generated by TINYNS are able to follow the 

underlying system physics as well as over-parametrized baselines. Fig. 15 visualizes the 

architectural adaptation and device capability exploitation by TINYNS when generating 

the Pareto-frontier. As observed in previous sections, TINYNS changes the appropriate 

hyperparameters to improve device resource usage and resolution.

5.7 Neural-Kalman Sensor Fusion (Symbolic[Neuro])

In this case study, we showcase how TINYNS can optimally combine a neural system model 

with a symbolic measurement model using Kalman hlter theory.

5.7.1 Dataset and Task Description.—We use the AgroBot dataset [50] in this case 

study. The goal is to perform precision localization of an agricultural robot using neural 

inertial localization, with intermittent GPS updates. The underlying system must fuse the 

smoothness and short-term resolution of neural inertial localization with the long-term 

precision of GPS. The dataset contains 6.5 hours and 4.5 km of inertial and GPS data. We 

used 80% of the dataset for training and 20% for testing.

5.7.2 Model Backbones, Training Details, Target Hardware, and Search Space 
Definition.—We used the same model backbone and search space outlined in Section 5.6. 

In addition, we optimize noise hyperparameters in the Kalman hlter Allan variance matrix:

• accelerometer noise variance: linspace (0, 1, 10000)

• gyroscope noise variance: linspace (0, 1, 10000)

• magnetometer noise variance: linspace (0, 1, 10000)

The batch size, optimizer, and training epochs were set to 256, Adam (learning rate: 0.001), 

and 3000, respectively. The NAS error metric is the absolute trajectory error during training. 

The model size constraint is set to 2 MB.

5.7.3 Overall Results.—Table 11 outlines the performance of TINYNS generated 

neurosymbolic model versus human-engineered state-of-the-art neural and symbolic 

approaches of localization. Compared to competing neural models, TINYNS model without 

GPS lowers model size and absolute trajectory error by 1.5× - 27× and 1.4× - 5.8×, 

respectively. Compared to competing symbolic models, TINYNS model with GPS lowers 

absolute trajectory error and relative trajectory error by 1.2× - 11× and 1.1× - 3.8×. The 

neural-Kalman fusion exploited by TINYNS combines the long-term precision of symbolic 

models with the short-term robustness and resolution of neural networks within the 2 MB 

limit set forth in this case study.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Neurosymbolic AI provides a pathway for making context-aware, physics-aware, robust, 

interpretable, and performant AI systems. TINYNS provides a stepping stone in automating 

the deployment of neurosymbolic frameworks onto ultra resource-constrained IoT devices 

SAHA et al. Page 46

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



like microcontrollers and ISPUs. The Bayesian optimization formulation provides an 

inexpensive method to iterate over complex neurosymbolic search spaces, providing Pareto-

optimal models depending upon resource availability. GP-UCB and hard thresholding policy 

allow fine-grained search space exploration and exploitation and improved convergence 

time. Through TINYNS, we have showcased state-of-the-art performance in various unseen 

applications. Several lessons, limitations, and directions for future work for our framework 

are as follows:

• There is an absence of general-purpose parsers, lexers, and visitors needed to 

realize symbolic program graphs on microcontrollers. We need tools that are 

similar to TFLM but for parsing program decision trees.

• The process of porting a custom symbolic layer from TF to TFLM is convoluted, 

with support for mostly the layers available in TFL. To run such custom layers, 

a user-friendly framework for the automatic porting of custom TF operators to 

TFLM is necessary.

• Our framework only supports TFLM so far for model parsing. However, there 

are other inference engines for which support must be added.

ACKNOWLEDGMENTS

The research reported in this paper was sponsored in part by the Air Force Office of Scientific Research (AFOSR) 
under Cooperative Agreement FA9550-22-1-0193; the IoBT REIGN Collaborative Research Alliance funded by 
the Army Research Laboratory (ARL) under Cooperative Agreement W911NF-17-2-0196; the NIH mHealth 
Center for Discovery, Optimization and Translation of Temporally-Precise Interventions (mDOT) under award 
1P41EB028242; the National Science Foundation (NSF) under awards # 1705135 and 1822935. and, the CONIX 
Research Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored 
by DARPA. The views and conclusions contained in this document are those of the authors and should not be 
interpreted as representing the official policies, either expressed or implied, of the AFOSR, ARL, DARPA, NIH, 
NSF, SRC, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for 
Government purposes notwithstanding any copyright notation here on.

REFERENCES

[1]. Abadi Martín, Barham Paul, Chen Jianmin, Chen Zhifeng, Davis Andy, Dean Jeffrey, Devin 
Matthieu, Ghemawat Sanjay, Irving Geoffrey, Isard Michael, et al. 2016. {TensorFlow}: a system 
for {Large-Scale} machine learning. In 12th USENIX symposium on operating systems design 
and implementation (OSDI16). 265–283.

[2]. Abbasi Saad, Famouri Mahmoud, Shafiee MohammadJavad, and Wong Alexander. 2021. 
OutlierNets: highly compact deep autoencoder network architectures for on-device acoustic 
anomaly detection. Sensors 21, 14 (2021), 4805. [PubMed: 34300545] 

[3]. Ahmed Kareem, Li Tao, Ton Thy, Guo Quan, Chang Kai-Wei, Kordjamshidi Parisa, Srikumar 
Vivek, Van den Broeck Guy, and Singh Sameer. 2022. PYLON: A PyTorch framework for 
learning with constraints. In NeurIPS 2021 Competitions and Demonstrations Track. PMLR, 
319–324.

[4]. Alajlan Norah N and Ibrahim Dina M. 2022. TinyML: Enabling of Inference Deep Learning 
Models on Ultra-Low-Power IoT Edge Devices for AI Applications. Micromachines 13, 6 
(2022), 851. [PubMed: 35744466] 

[5]. Alshahrani Mona, Khan Mohammad Asif, Maddouri Omar, Kinjo Akira R, Queralt-Rosinach 
Nhria, and Hoehndorf Robert. 2017. Neuro-symbolic representation learning on biological 
knowledge graphs. Bioinformatics 33, 17 (2017), 2723–2730. [PubMed: 28449114] 

[6]. Anguita Davide, Ghio Alessandro, Oneto Luca, Perez Xavier Parra, and Ortiz Jorge Luis Reyes. 
2013. A public domain dataset for human activity recognition using smartphones. In Proceedings 

SAHA et al. Page 47

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the 21th international European symposium on artificial neural networks, computational 
intelligence and machine learning. 437–442.

[7]. Apriceno Gianluca, Passerini Andrea, and Serafim Luciano. 2021. A Neuro-Symbolic Approach to 
Structured Event Recognition. In 28th International Symposium on Temporal Representation and 
Reasoning (TIME 2021).

[8]. Attal Ferhat, Mohammed Samer, Dedabrishvili Mariam, Chamroukhi Faicel, Oukhellou Latifa, 
and Amirat Yacine. 2015. Physical human activity recognition using wearable sensors. Sensors 
15, 12 (2015), 31314–31338. [PubMed: 26690450] 

[9]. The GPyOpt authors. 2016. GPyOpt: A Bayesian Optimization framework in python. http://
github.com/SheffieldML/GPyOpt.

[10]. The Skopt authors. 2016. Skopt: scikit-optimize. https://scikit-optimize.github.io/.

[11]. Baker Bowen, Gupta Otkrist, Naik Nikhil, and Raskar Ramesh. 2017. Designing neural 
network architectures using reinforcement learning. International Conference on Learning 
Representations (ICLR) (2017).

[12]. Balakrishnama Suresh and Ganapathiraju Aravind. 1998. Linear discriminant analysis-a brief 
tutorial. InstituteforSignal and Information Processing 18, 1998 (1998), 1–8.

[13]. Banbury Colby, Reddi Vijay Janapa, Torelli Peter, Holleman Jeremy, Jeffries Nat, Kiraly 
Csaba, Montino Pietro, Kanter David, Ahmed Sebastian, Pau Danilo, et al. 2021. MLPerf Tiny 
Benchmark. Advances in Neural Information Processing Systems (2021).

[14]. Banbury Colby, Zhou Chuteng, Fedorov Igor, Matas Ramon, Thakker Urmish, Gope Dibakar, 
Reddi VijayJanapa, Mattina Matthew, and Whatmough Paul. 2021. Micronets: Neural network 
architectures for deploying tinyml applications on commodity microcontrollers. Proceedings of 
Machine Learning and Systems 3 (2021), 517–532.

[15]. Beazley David M. 1996. SWIG: an easy to use tool for integrating scripting languages with C 
and C++. In Proceedings of the 4th conference on USENIX Tcl/Tk Workshop, 1996-Volume 
4.15–15.

[16]. Behnel Stefan, Bradshaw Robert, Citro Craig, Dalcin Lisandro, Seljebotn Dag Sverre, and Smith 
Kurt. 2010. Cython: The best of both worlds. Computing in Science & Engineering 13, 2 (2010), 
31–39.

[17]. Bertsekas Dimitri. 2016. Nonlinear Programming. Vol. 4. Athena Scientific.

[18]. Bhatia Sahil, Kohli Pushmeet, and Singh Rishabh. 2018. Neuro-symbolic program corrector for 
introductory programming assignments. In 2018 IEEE/ACM 40th International Conference on 
Software Engineering (ICSE). IEEE, 60–70.

[19]. Borrajo M Lourdes, Baruque Bruno, Corchado Emilio, Bajo Javier, and Corchado Juan M. 2011. 
Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. 
International journal of neural systems 21, 04 (2011), 277–296. [PubMed: 21809475] 

[20]. Bosselut Antoine, Rashkin Hannah, Sap Maarten, Malaviya Chaitanya, Celikyilmaz Asli, and 
Choi Yejin. 2019. COMET: Common- sense Transformers for Automatic Knowledge Graph 
Construction. In Proceedings of the 57th Annual Meeting of the Association for Computational 
Linguistics. 4762–4779.

[21]. Brossard Martin, Bonnabel Silvere, and Condomines Jean-Philippe. 2017. Unscented Kalman 
filtering on Lie groups. In 2017IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS). IEEE, 2485–2491.

[22]. Burri Michael, Nikolic Janosch, Gohl Pascal, Schneider Thomas, Rehder Joern, Omari Sammy, 
Achtelik Markus W, and Siegwart Roland. 2016. The EuRoC micro aerial vehicle datasets. The 
International Journal of Robotics Research 35, 10(2016), 1157–1163.

[23]. Cai Han, Gan Chuang, Wang Tianzhe, Zhang Zhekai, and Han Song. 2019. Once-for-All: 
Train One Network and Specialize it for Efficient Deployment. In International Conference on 
Learning Representations.

[24]. Cai Han, Gan Chuang, Zhu Ligeng, and Han Song. 2020. Tinytl: Reduce memory, not parameters 
for efficient on-device learning. Advances in Neural Information Processing Systems 33 (2020), 
11285–11297.

[25]. Cai Han, Zhu Ligeng, and Han Song. 2018. ProxylessNAS: Direct Neural Architecture Search on 
Target Task and Hardware. In International Conference on Learning Representations.

SAHA et al. Page 48

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
https://scikit-optimize.github.io/


[26]. Capotondi Alessandro, Rusci Manuele, Fariselli Marco, and Benini Luca. 2020. Cmix-nn: Mixed 
low-precision cnn library for memory-constrained edge devices. IEEE Transactions on Circuits 
and Systems II: Express Briefs 67, 5 (2020), 871–875.

[27]. Carr Steve, McKinley Kathryn S, and Tseng Chau-Wen. 1994. Compiler optimizations for 
improving data locality. ACM SIGPLAN Notices 29, 11 (1994), 252–262.

[28]. Chen Changhao, Lu Xiaoxuan, Markham Andrew, and Trigoni Niki. 2018. Ionet: Learning to 
cure the curse of drift in inertial odometry. In Proceedings of the AAAI Conference on Artificial 
Intelligence, Vol. 32.

[29]. Chen Changhao, Zhao Peijun, Lu Chris Xiaoxuan, Wang Wei, Markham Andrew, and Trigoni 
Niki. 2020. Deep-learning-based pedestrian inertial navigation: Methods, data set, and on-device 
inference. IEEE Internet of Things Journal 7, 5 (2020), 4431–4441.

[30]. Chen Tianqi, Moreau Thierry, Jiang Ziheng, Zheng Lianmin, Yan Eddie, Shen Haichen, Cowan 
Meghan, Wang Leyuan, Hu Yuwei, Ceze Luis, et al. 2018. {TVM}: An automated {End-to-End} 
optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems 
Design and Implementation (OSD118). 578–594.

[31]. Chowdhary Mahesh and Dayal Sankalp. 2018. Reconfigurable sensor unit for electronic device. 
US Patent 10,142,789.

[32]. Chowdhery Aakanksha, Warden Pete, Shlens Jonathon, Howard Andrew, and Rhodes Rocky. 
2019. Visual wake words dataset. arXiv preprint arXiv:1906.05721 (2019).

[33]. Cingillioglu Nuri and Russo Alessandra. 2022. pix2rule: End-to-end Neuro-symbolic Rule 
Learning. 15th International Workshop on Neural-Symbolic Learning andReasoning (NeSy) 
(2022).

[34]. Comon Pierre. 1994. Independent component analysis, a new concept? Signal Proceedings 36, 3 
(1994), 287–314.

[35]. Corchado JM and Aiken J. 1998. Neuro-symbolic reasoning for real time oceanographic 
problems. In Conference On Data Mining. IEE, Savoy Place, London.

[36]. Corchado Juan M, Borrajo M Lourdes, Pellicer María A, and Yanez J Carlos. 2004. Neuro-
symbolic system for business internal control. In Industrial conference on data mining. Springer, 
1–10.

[37]. Cranmer Miles, Greydanus Sam, Hoyer Stephan, Battaglia Peter, Spergel David, and Ho Shirley. 
2020. Lagrangian Neural Networks. In ICLR 2020 Workshop on Integration of Deep Neural 
Models and Differential Equations.

[38]. Croce Francesco, Andriushchenko Maksym, Sehwag Vikash, Debenedetti Edoardo, Flammarion 
Nicolas, Chiang Mung, Mittal Prateek, and Hein Matthias. 2021. RobustBench: a standardized 
adversarial robustness benchmark. In Thirty-fifth Conference on Neural Information Processing 
Systems Datasets and Benchmarks Track (Round 2).

[39]. Croce Francesco and Hein Matthias. 2020. Reliable evaluation of adversarial robustness with 
an ensemble of diverse parameter-free attacks. In International conference on machine learning. 
PMLR, 2206–2216.

[40]. Cusumano-Towner Marco F, Saad Feras A, Lew Alexander K, and Mansinghka Vikash K. 
2019. Gen: a general-purpose probabilistic programming system with programmable inference. 
In Proceedings of the 40th acm sigplan conference on programming language design and 
implementation. 221–236.

[41]. Daulton Samuel, Eriksson David, Balandat Maximilian, and Bakshy Eytan. 2022. Multi-
Objective Bayesian Optimization over High-Dimensional Search Spaces. In The 38th Conference 
on Uncertainty in Artificial Intelligence.

[42]. Dave Shail, Kim Youngbin, Avancha Sasikanth, Lee Kyoungwoo, and Shrivastava Aviral. 2019. 
Dmazerunner: Executing perfectly nested loops on dataflow accelerators. ACM Transactions on 
Embedded Computing Systems (TECS) 18, 5s (2019), 1–27. [PubMed: 34084098] 

[43]. David Robert, Duke Jared, Jain Advait, Reddi Vijay Janapa, Jeffries Nat, Li Jian, Kreeger 
Nick, Nappier Ian, Natraj Meghna, Wang Tiezhen, et al. 2021. Tensorflow lite micro: Embedded 
machine learning for tinyml systems. Proceedings of Machine Learning and Systems 3 (2021), 
800–811.

SAHA et al. Page 49

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[44]. Deittert Markus, Richards Arthur, Toomer Chris A, and Pipe Anthony. 2009. Engineless 
unmanned aerial vehicle propulsion by dynamic soaring. Journal of guidance, control, and 
dynamics 32, 5 (2009), 1446–1457.

[45]. Denby Bradley and Lucia Brandon. 2019. Orbital edge computing: Machine inference in space. 
IEEE Computer Architecture Letters 18, 1 (2019), 59–62.

[46]. Denton Emily L, Zaremba Wojciech, Bruna Joan, LeCun Yann, and Fergus Rob. 2014. Exploiting 
linear structure within convolutional networks for efficient evaluation. In Advances in Neural 
Information Processing Systems. 1269–1277.

[47]. Desai Harsh, Nardello Matteo, Brunelli Davide, and Lucia Brandon. 2022. Camaroptera: A Long-
Range Image Sensor with Local Inference for Remote Sensing Applications. ACM Transactions 
on Embedded Computing Systems (TECS) (2022).

[48]. Desautels Thomas, Krause Andreas, and Burdick Joel W. 2014. Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization. The Journal of Machine Learning 
Research 15, 1 (2014), 3873–3923.

[49]. Dewancker Ian, McCourt Michael, Clark Scott, Hayes Patrick, Johnson Alexandra, and Ke 
George. 2016. A strategy for ranking optimization methods using multiple criteria. In Workshop 
on Automatic Machine Learning. PMLR, 11–20.

[50]. Du Yayun, Saha Swapnil Sayan, Sandha Sandeep Singh, Lovekin Arthur, Wu Jason, Siddharth 
S, Chowdhary Mahesh, Jawed Mohammad Khalid, and Srivastava Mani. 2023. Neural-Kalman 
GNSS/INS Navigation for Precision Agriculture. International Conference on Robotics and 
Automation (ICRA) (2023).

[51]. Dutta Lachit and Bharali Swapna. 2021. Tinyml meets iot: A comprehensive survey. Internet of 
Things 16 (2021), 100461.

[52]. El-Sheimy Naser, Hou Haiying, and Niu Xiaoji. 2007. Analysis and modeling of inertial sensors 
using Allan variance. IEEE Transactions on instrumentation and measurement 57, 1 (2007), 140–
149.

[53]. Elsken Thomas, Metzen Jan Hendrik, and Hutter Frank. 2019. Efficient Multi-Objective 
Neural Architecture Search via Lamarckian Evolution. In International Conference on Learning 
Representations.

[54]. Elsken Thomas, Metzen Jan Hendrik, and Hutter Frank. 2019. Neural architecture search: A 
survey. Journal of Machine Learning Research 20, 1 (2019), 1997–2017.

[55]. Esfahani Mahdi Abolfazli, Wang Han, Wu Keyu, and Yuan Shenghai. 2019. AbolDeepIO: A 
novel deep inertial odometry network for autonomous vehicles. IEEE Transactions on Intelligent 
Transportation Systems 21, 5 (2019), 1941–1950.

[56]. Espadoto Mateus, Martins Rafael M, Kerren Andreas, Hirata Nina ST, and Telea Alexandru C. 
2019. Toward a quantitative survey of dimension reduction techniques. IEEE Transactions on 
visualization and Computer graphics 27, 3 (2019), 2153–2173.

[57]. Fawzi Alhussein, Balog Matej, Huang Aja, Hubert Thomas, Romera-Paredes Bernardino, 
Barekatain Mohammadamin, Novikov Alexander, Ruiz Francisco J R, Schrittwieser Julian, 
Swirszcz Grzegorz, et al. 2022. Discovering faster matrix multiplication algorithms with 
reinforcement learning. Nature 610, 7930 (2022), 47–53. [PubMed: 36198780] 

[58]. Fdez-Riverola F and Corchado Juan M. 2003. Forecasting red tides using an hybrid neuro-
symbolic system. AI Communications 16, 4 (2003), 221–233.

[59]. Fedorov Igor, Adams Ryan P, Mattina Matthew, and Whatmough Paul N. 2019. SpArSe: Sparse 
architecture search for CNNs on resource-constrained microcontrollers. Advances in Neural 
Information Processing Systems 32 (2019).

[60]. Fedorov Igor, Matas Ramon, Tann Hokchhay, Zhou Chuteng, Mattina Matthew, and Whatmough 
Paul. 2022. UDC: Unified DNAS for Compressible TinyML Models. Advances in Neural 
Information Processing Systems 35 (2022).

[61]. Ferrera Maxime, Creuze Vincent, Moras Julien, and Trouvé-Peloux Pauline. 2019. AQUALOC: 
An underwater dataset for visual–inertial–pressure localization. The International Journal 
ofRobotics Research 38, 14 (2019), 1549–1559.

SAHA et al. Page 50

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[62]. Gao Ruipeng, Xiao Xuan, Zhu Shuli, Xing Weiwei, Li Chi, Liu Lei, Ma Li, and Chai Hua. 
2021. Glow in the Dark: Smartphone Inertial Odometry for Vehicle Tracking in GPS Blocked 
Environments. IEEE Internet ofThings Journal 8, 16 (2021), 12955–12967.

[63]. Garcez A, Gori M, Lamb LC, Serafim L, Spranger M, and Tran SN. 2019. Neural-symbolic 
computing: An effective methodology for principled integration of machine learning and 
reasoning. Journal of Applied Logics 6, 4 (2019), 611–632.

[64]. Garcez Artur d’Avila, Bader Sebastian, Bowman Howard, Lamb Luis C, de Penning Leo, 
Illuminoo BV, Poon Hoifung, and Zaverucha Coppe Gerson. 2022. Neural-symbolic learning and 
reasoning: A survey and interpretation. Neuro-Symbolic Artificial Intelligence: The State of the 
Art 342 (2022), 1.

[65]. Garofalo Angelo, Rusci Manuele, Conti Francesco, Rossi Davide, and Benini Luca. 2020. PULP-
NN: accelerating quantized neural networks on parallel ultra-low-power RISC-V processors. 
Philosophical Transactions of the Royal Society A 378, 2164 (2020), 20190155.

[66]. Garrido-Merchán Eduardo C and Hernández-Lobato Daniel. 2020. Dealing with categorical and 
integer-valued variables in bayesian optimization with gaussian processes. Neurocomputing 380 
(2020), 20–35.

[67]. Gobieski Graham, Lucia Brandon, and Beckmann Nathan. 2019. Intelligence beyond the edge: 
Inference on intermittent embedded systems. In Proceedings ofthe Twenty-Fourth International 
Conference on Architectural Support forProgrammingLanguages and Operating Systems. 199–
213.

[68]. Gopinath Sridhar, Ghanathe Nikhil, Seshadri Vivek, and Sharma Rahul. 2019. Compiling KB-
sized machine learning models to tiny IoT devices. In Proceedings ofthe 40th ACM SIGPLAN 
Conference on Programming Language Design and Implementation. 79–95.

[69]. Goyal Sachin, Raghunathan Aditi, Jain Moksh, Simhadri Harsha Vardhan, and Jain Prateek. 
2020. DROCC: Deep robust one-class classification. In International conference on machine 
learning. PMLR, 3711–3721.

[70]. Greydanus Samuel, Dzamba Misko, and Yosinski Jason. 2019. Hamiltonian neural networks. 
Advances in neural information processing systems 32 (2019).

[71]. Grigorescu Sorin, Trasnea Bogdan, Cocias Tiberiu, and Macesanu Gigel. 2020. A survey of deep 
learning techniques for autonomous driving. Journal ofFieldRobotics 37, 3 (2020), 362–386.

[72]. Gulli Antonio and Pal Sujit. 2017. Deep learning with Keras. Packt Publishing Ltd.

[73]. Gunner Richard M, Holton Mark D, Scantlebury Mike D, van Schalkwyk O Louis, English Holly 
M, Williams Hannah J, Hopkins Phil, Quintana Flavio, Gomez-Laich Agustina, Borger Luca, et 
al. 2021. Dead-reckoning animal movements in R: a reappraisal using Gundog. Tracks. Animal 
Biotelemetry 9, 1 (2021), 1–37.

[74]. Gupta Chirag, Suggala Arun Sai, Goyal Ankit, Simhadri Harsha Vardhan, Paranjape Bhargavi, 
Kumar Ashish, Goyal Saurabh, Udupa Raghavendra, Varma Manik, and Jain Prateek. 2017. 
Protonn: Compressed and accurate knn for resource-scarce devices. In International Conference 
on Machine Learning. PMLR, 1331–1340.

[75]. Guyon Isabelle, Gunn Steve, Nikravesh Masoud, and Zadeh Lofti A. 2008. Feature extraction: 
foundations and applications. Vol. 207. Springer.

[76]. Han Song, Mao Huizi, and Dally William J. 2016. Deep Compression: Compressing Deep Neural 
Networks with Pruning, Trained Quantization and Huffman Coding. International Conference on 
Learning Representations (ICLR) (2016).

[77]. He Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian. 2016. Deep residual learning for 
image recognition. In Proceedings of the IEEE conference on computer vision and pattern 
recognition. 770–778.

[78]. Herath Sachini, Yan Hang, and Furukawa Yasutaka. 2020. Ronin: Robust neural inertial 
navigation in the wild: Benchmark, evaluations, & new methods. In 2020 IEEE International 
Conference on Robotics and Automation (ICRA). IEEE, 3146–3152.

[79]. Howard Andrew G, Zhu Menglong, Chen Bo, Kalenichenko Dmitry, Wang Weijun, Weyand 
Tobias, Andreetto Marco, and Adam Hartwig. 2017. Mobilenets: Efficient convolutional neural 
networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

SAHA et al. Page 51

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[80]. Hymel Shawn, Banbury Colby, Situnayake Daniel, Elium Alex, Ward Carl, Kelcey Mat, Baaijens 
Mathijs, Majchrzycki Mateusz, Plunkett Jenny, Tischler David, et al. 2022. Edge Impulse: An 
MLOps Platform for Tiny Machine Learning. arXiv preprint arXiv:2212.03332 (2022).

[81]. Iandola Forrest N, Han Song, Moskewicz Matthew W, Ashraf Khalid, Dally WilliamJ, and 
Keutzer Kurt. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 
MB model size. arXiv preprint arXiv:1602.07360 (2016).

[82]. Ionescu Valeriu Manuel and Enescu Florentina Magda. 2020. Investigating the performance of 
MicroPython and C on ESP32 and STM32 microcontrollers. In 2020 IEEE 26th International 
Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 234–237.

[83]. Jiang Weiwen, Zhang Xinyi, Sha Edwin H-M, Yang Lei, Zhuge Qingfeng, Shi Yiyu, and Hu 
Jingtong. 2019. Accuracy vs. efficiency: Achieving both through fpga-implementation aware 
neural architecture search. In Proceedings of the 56th Annual Design Automation Conference 
2019.1–6.

[84]. Kahneman Daniel. 2011. Thinking, fast and slow. Macmillan.

[85]. Karniadakis George Em, Kevrekidis Ioannis G, Lu Lu, Perdikaris Paris, Wang Sifan, and Yang 
Liu. 2021. Physics-informed machine learning. Nature Reviews Physics 3, 6 (2021), 422–440.

[86]. Kautz Henry. 2022. The third AI summer: AAAI Robert S. Engelmore Memorial Lecture. AI 
Magazine 43, 1 (2022), 93–104.

[87]. Khalid Samina, Khalil Tehmina, and Nasreen Shamila. 2014. A survey of feature selection and 
feature extraction techniques in machine learning. In 2014 science and information conference. 
IEEE, 372–378.

[88]. Koizumi Yuma, Saito Shoichiro, Uematsu Hisashi, Harada Noboru, and Imoto Keisuke. 
2019. ToyADMOS: A dataset of miniature- machine operating sounds for anomalous sound 
detection. In 2019 IEEE WKSH on Applications of Signal Proceedings to Audio and Acoustics 
(WASPAA). IEEE, 313–317.

[89]. Kopparapu Kavya, Lin Eric, Breslin John G, and Sudharsan Bharath. 2022. TinyFedTL: 
Federated Transfer Learning on Ubiquitous Tiny IoT Devices. In 2022 IEEE International 
Conference on Pervasive Computing and Communications Workshops and other Affiliated 
Events (PerCom Workshops). IEEE, 79–81.

[90]. Koranne Sandeep. 2011. Boost c++ libraries. Handbook of open source tools (2011), 127–143.

[91]. Krizhevsky A. 2009. Learning Multiple Layers of Features from Tiny Images. Master’s thesis, 
University ofTront (2009).

[92]. Kulmanov Maxat, Khan Mohammed Asif, and Hoehndorf Robert. 2018. DeepGO: predicting 
protein functions from sequence and interactions using a deep ontology-aware classifier. 
Bioinformatics 34, 4 (2018), 660–668. [PubMed: 29028931] 

[93]. Kumar Ashish, Goyal Saurabh, and Varma Manik. 2017. Resource-efficient machine learning in 
2 kb ram for the internet of things. In International Conference on Machine Learning. PMLR, 
1935–1944.

[94]. Kusupati Aditya, Singh Manish, Bhatia Kush, Kumar Ashish, Jain Prateek, and Varma Manik. 
2018. Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. 
Advances in neural information processing systems 31 (2018).

[95]. Lai Liangzhen, Suda Naveen, and Chandra Vikas. 2018. Cmsis-nn: Efficient neural network 
kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601 (2018).

[96]. Lample Guillaume and Charton Frangois. 2019. Deep Learning For Symbolic Mathematics. In 
International Conference on Learning Representations.

[97]. Lea Colin, Vidal Rene, Reiter Austin, and Hager Gregory D. 2016. Temporal convolutional 
networks: A unified approach to action segmentation. In European Conference on Computer 
Vision. Springer, 47–54.

[98]. LeCun Yann, Bengio Yoshua, and Hinton Geoffrey. 2015. Deep learning. nature 521, 7553 
(2015), 436–444. [PubMed: 26017442] 

[99]. Lee Daniel D and Seung H Sebastian. 1999. Learning the parts of objects by non-negative matrix 
factorization. Nature 401, 6755 (1999), 788–791. [PubMed: 10548103] 

SAHA et al. Page 52

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[100]. Lee Seulki and Nirjon Shahriar. 2020. Learning in the wild: When, how, and what to learn for 
on-device dataset adaptation. In Proceedings of the 2nd International Workshop on Challenges in 
Artificial Intelligence and Machine Learning for Internet of Things. 34–40.

[101]. Liberis Edgar, Dudziak Łukasz, and Lane Nicholas D. 2021. μNAS: Constrained Neural 
Architecture Search for Microcontrollers. In Proceedings of the 1st Workshop on Machine 
Learning and Systems. 70–79.

[102]. Lin Ji, Chen Wei-Ming, Cai Han, Gan Chuang, and Han Song. 2021. Memory-efficient Patch-
based Inference for Tiny Deep Learning. Advances in Neural Information Processing Systems 34 
(2021), 2346–2358.

[103]. Lin Ji, Chen Wei-Ming, Lin Yujun, Gan Chuang, Han Song, et al. 2020. Mcunet: Tiny deep 
learning on iot devices. Advances in Neural Information Processing Systems 33 (2020), 11711–
11722.

[104]. Liu Hanxiao, Simonyan Karen, and Yang Yiming. 2018. DARTS: Differentiable Architecture 
Search. In International Conference on Learning Representations.

[105]. Ma Kaixin, Francis Jonathan, Lu Quanyang, Nyberg Eric, and Oltramari Alessandro. 2019. 
Towards Generalizable Neuro-Symbolic Systems for Commonsense Question Answering. In 
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing. 
22–32.

[106]. Ma Meiyi, Gao Ji, Feng Lu, and Stankovic John. 2020. STLnet: Signal temporal logic enforced 
multivariate recurrent neural networks. Advances in Neural Information Processing Systems 33 
(2020), 14604–14614.

[107]. Magno Michele, Ronco Andrea, and Schulthess Lukas. 2022. On-Sensors AI with Novel ST 
Sensors: Performance and Evaluation in a Real Application Scenario. TinyML Summit 2022 
(2022).

[108]. Manhaeve Robin, Dumancic Sebastijan, Kimmig Angelika, Demeester Thomas, and Raedt 
LucDe. 2018. Deepproblog: Neuralprobabilistic logic programming. Advances in Neural 
Information Processing Systems 31 (2018).

[109]. Mao Jiayuan, Gan Chuang, Kohli Pushmeet, Tenenbaum Joshua B, and Wu Jiajun. 2018. 
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural 
Supervision. In InternationalConference on LearningRepresentations.

[110]. Mathur Akhil, Beutel Daniel J, de Gusmao Pedro Porto Buarque, Fernandez-Marques Javier, 
Topal Taner, Qiu Xinchi, Parcollet Titouan, Gao Yan, and Lane Nicholas D. 2021. On-device 
federated learning with flower. On-Device Intelligence Workshop at MLSys (2021).

[111]. Mazumder Mark, Chitlangia Sharad, Banbury Colby, Kang Yiping, Ciro Juan Manuel, Achorn 
Keith, Galvez Daniel, Sabini Mark, Mattson Peter, Kanter David, et al. 2021. Multilingual 
Spoken Words Corpus. In Thirty-fifth Conference on Neural Information Processing Systems 
Datasets and Benchmarks Track (Round 2).

[112]. Mendis HashanRoshantha, Kang Chih-Kai, and Hsiu Pi-cheng. 2021. Intermittent-Aware Neural 
Architecture Search. ACM Transactions on Embedded Computing Systems (TECS) 20, 5s 
(2021), 1–27.

[113]. Milan Anton, Leal-Taixe Laura, Reid Ian, Roth Stefan, and Schindler Konrad. 2016. MOT16: A 
benchmark for multi-object tracking. arXivpreprint arXiv:1603.00831 (2016).

[114]. Mitchener Ludovico, Tuckey David, Crosby Matthew, and Russo Alessandra. 2022. Detect, 
Understand, Act: A Neuro-symbolic Hierarchical Reinforcement Learning Framework. Machine 
Learning 111, 4 (2022), 1523–1549.

[115]. Mu Jesse and Andreas Jacob. 2020. Compositional explanations of neurons. Advances in Neural 
Information Processing Systems 33 (2020), 17153–17163.

[116]. Newell Allen. 1980. Physical symbol systems. Cognitive science 4, 2 (1980), 135–183.

[117]. Pang Ren, Xi Zhaohan, Ji Shouling, Luo Xiapu, and Wang Ting. 2022. On the Security Risks of 
{AutoML}. In 31st USENIX Security Symposium (USENIX Security 22). 3953–3970.

[118]. Parisotto Emilio, Mohamed Abdel-rahman, Singh Rishabh, Li Lihong, Zhou Dengyong, and 
Kohli Pushmeet. 2017. Neuro-Symbolic Program Synthesis. In International Conference on 
Learning Representations.

[119]. Parr Terence. 2013. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf.

SAHA et al. Page 53

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[120]. Paszke Adam, Gross Sam, Massa Francisco, Lerer Adam, Bradbury James, Chanan Gregory, 
Killeen Trevor, Lin Zeming, Gimelshein Natalia, Antiga Luca, et al. 2019. Pytorch: An 
imperative style, high-performance deep learning library. Advances in neural information 
processing systems 32 (2019).

[121]. Pearl Judea. 2019. The seven tools of causal inference, with reflections on machine learning. 
Commun. ACM 62, 3 (2019), 54–60.

[122]. Pedregosa Fabian, Varoquaux Gaël, Gramfort Alexandre, Michel Vincent, Thirion Bertrand, 
Grisel Olivier, Blondel Mathieu, Prettenhofer Peter, Weiss Ron, Dubourg Vincent, et al. 2011. 
Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12 (2011), 
2825–2830.

[123]. Perego Riccardo, Candelieri Antonio, Archetti Francesco, and Pau Danilo. 2020. Tuning deep 
neural network’s hyperparameters constrained to deployability on tiny systems. In International 
Conference on Artificial Neural Networks. Springer, 92–103.

[124]. Perego Riccardo, Candelieri Antonio, Archetti Francesco, and Pau Danilo. 2022. AutoTinyML 
for microcontrollers: Dealing with black-box deployability. Expert Systems with Applications 
207 (2022), 117876.

[125]. Qi Honghui and Moore John B. 2002. Direct Kalman filtering approach for GPS/INS 
integration. IEEE Trans. Aerospace Electron. Systems 38, 2 (2002), 687–693.

[126]. Ray Partha Pratim. 2021. A review on TinyML: State-of-the-art and prospects. Journal of King 
Saud University-Computer and Information Sciences (2021).

[127]. Raza Wamiq, Osman Anas, Ferrini Francesco, and Natale Francesco De. 2021. Energy-Efficient 
Inference on the Edge Exploiting TinyML Capabilities for UAVs. Drones 5, 4 (2021), 127.

[128]. Ren Haoyu, Anicic Darko, and Runkler Thomas A. 2021. The synergy of complex event 
processing and tiny machine learning in industrial IoT. In Proceedings of the 15th ACM 
International Conference on Distributed and Event-based Systems. 126–135.

[129]. Ren Haoyu, Anicic Darko, and Runkler Thomas A. 2021. Tinyol: Tinyml with online-learning 
on microcontrollers. In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 
1–8.

[130]. Ren Pengzhen, Xiao Yun, Chang Xiaojun, Huang Po-Yao, Li Zhihui, Chen Xiaojiang, and Wang 
Xin. 2021. A comprehensive survey of neural architecture search: Challenges and solutions. 
ACM Computing Surveys (CSUR) 54, 4 (2021), 1–34.

[131]. Roh Yuji, Heo Geon, and Whang Steven Euijong. 2019. A survey on data collection for 
machine learning: a big data-ai integration perspective. IEEE Transactions on Knowledge and 
Data Engineering 33, 4 (2019), 1328–1347.

[132]. Rumelhart David E, Hinton Geoffrey E, and Williams Ronald J. 1985. Learning internal 
representations by error propagation. Technical Report. California Univ San Diego La Jolla Inst 
for Cognitive Science.

[133]. Saha Oindrila, Kusupati Aditya, Simhadri Harsha Vardhan, Varma Manik, and Jain Prateek. 
2020. RNNPool: Efficient non-linear pooling for RAM constrained inference. Advances in 
Neural Information Processing Systems 33 (2020), 20473–20484.

[134]. Saha Swapnil Sayan, Sandha Sandeep Singh, Garcia Luis Antonio, and Srivastava Mani. 2022. 
Tinyodom: Hardware-aware efficient neural inertial navigation. Proceedings of the ACM on 
Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022), 1–32.

[135]. Saha Swapnil Sayan, Sandha Sandeep Singh, Pei Siyou, Jain Vivek, Wang Ziqi, Li Yuchen, 
Sarker Ankur, and Srivastava Mani. 2022. Auritus: An Open-Source Optimization Toolkit for 
Training and Development of Human Movement Models and Filters Using Earables. Proceedings 
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022), 1–34.

[136]. Saha Swapnil Sayan, Sandha Sandeep Singh, and Srivastava Mani. 2022. Machine Learning for 
Microcontroller-Class Hardware - A Review. IEEE Sensors Journal (2022).

[137]. Sandha Sandeep Singh. 2021. Parameter search spaces use to evaluate 
Mango on classifiers. https://github.com/ARM-software/mango/blob/master/benchmarking/
Parameter_Spaces_Evaluated.ipynb.

SAHA et al. Page 54

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ARM-software/mango/blob/master/benchmarking/Parameter_Spaces_Evaluated.ipynb
https://github.com/ARM-software/mango/blob/master/benchmarking/Parameter_Spaces_Evaluated.ipynb


[138]. Sandha Sandeep Singh, Aggarwal Mohit, Fedorov Igor, and Srivastava Mani. 2020. Mango: 
A python library for parallel hyperparameter tuning. In ICASSP 2020-2020 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3987–3991.

[139]. Sandha Sandeep Singh, Aggarwal Mohit, Saha Swapnil Sayan, and Srivastava Mani. 2021. 
Enabling Hyperparameter Tuning of Machine Learning Classifiers inProduction. In 2021 IEEE 
ThirdInternational Conference on CognitiveMachineIntelligence (CogMI). IEEE, 262–271.

[140]. Sandler Mark, Howard Andrew, Zhu Menglong, Zhmoginov Andrey, and Chen Liang-Chieh. 
2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE 
conference on computer vision and pattern recognition. 4510–4520.

[141]. Sap Maarten, Bras Ronan Le, Allaway Emily, Bhagavatula Chandra, Lourie Nicholas, Rashkin 
Hannah, Roof Brendan, Smith Noah A, and Choi Yejin. 2019. Atomic: An atlas of machine 
commonsense for if-then reasoning. In Proceedings of the AAAI conference on artificial 
intelligence, Vol. 33. 3027–3035.

[142]. Sarker Md Kamruzzaman, Zhou Lu, Eberhart Aaron, and Hitzler Pascal. 2021. Neuro-symbolic 
artificial intelligence. AI Communications (2021), 1–13.

[143]. Scarselli Franco, Gori Marco, Tsoi Ah Chung, Hagenbuchner Markus, and Monfardini Gabriele. 
2008. The graph neural network model. IEEE transactions on neural networks 20, 1 (2008), 
61–80. [PubMed: 19068426] 

[144]. Schölkopf Bernhard, Smola Alexander, and Müller Klaus-Robert. 1997. Kernel principal 
component analysis. In International Conference on Artificial Neural Networks. Springer, 583–
588.

[145]. Schwartz Roy, Dodge Jesse, Smith Noah A, and Etzioni Oren. 2020. Green ai. Commun. ACM 
63, 12 (2020), 54–63.

[146]. Serafini Luciano and d’Avila Garcez Artur S. 2016. Learning and reasoning with logic tensor 
networks. In Conference of the Italian Association for Artificial Intelligence. Springer, 334–348.

[147]. Seshia Sanjit A, Sadigh Dorsa, and Sastry S Shankar. 2022. Toward verified artificial 
intelligence. Commun. ACM 65, 7 (2022), 46–55.

[148]. Shafique Muhammad, Theocharides Theocharis, Reddy Vijay Janapa, and Murmann Boris. 
2021. TinyML: Current Progress, Research Challenges, and Future Roadmap. In 2021 58th 
ACM/IEEE Design Automation Conference (DAC). IEEE, 1303–1306.

[149]. Shah Ameesh, Zhan Eric, Sun Jennifer, Verma Abhinav, Yue Yisong, and Chaudhuri Swarat. 
2020. Learning differentiable programs with admissible neural heuristics. Advances in neural 
information processing systems 33 (2020), 4940–4952.

[150]. Shalev-Shwartz Shai, Shammah Shaked, and Shashua Amnon. 2017. On a formal model of safe 
and scalable self-driving cars. arXiv preprint arXiv:1708.06374 (2017).

[151]. Sinopoli Bruno, Schenato Luca, Franceschetti Massimo, Poolla Kameshwar, Jordan Michael I, 
and Sastry Shankar S. 2004. Kalman filtering with intermittent observations. IEEE transactions 
on Automatic Control 49, 9 (2004), 1453–1464.

[152]. Sivaraman Aishwarya, Farnadi Golnoosh, Millstein Todd, and denBroeck GuyVan. 2020. 
Counterexample-guided learning ofmonotonic neural networks. Advances in Neural Information 
Processing Systems 33 (2020), 11936–11948.

[153]. Smolensky Paul. 1987. Connectionist AI, symbolic AI, and the brain. Artificial Intelligence 
Review 1, 2 (1987), 95–109.

[154]. Snoek Jasper, Larochelle Hugo, and Adams Ryan P. 2012. Practical bayesian optimization of 
machine learning algorithms. Advances in neural information processing systems 25 (2012), 
2951–2959.

[155]. Srinivas Niranjan, Krause Andreas, Kakade Sham, and Seeger Matthias. 2010. Gaussian Process 
Optimization in the Bandit Setting: No Regret and Experimental Design. In Proceedings of the 
27th International Conference on Machine Learning. 1015–1022.

[156]. Srinivas Niranjan, Krause Andreas, Kakade Sham M, and Seeger Matthias W. 2012. 
Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE 
transactions on information theory 58, 5 (2012), 3250–3265.

SAHA et al. Page 55

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[157]. Sun Jiankai, Sun Hao, Han Tian, and Zhou Bolei. 2021. Neuro-Symbolic Program Search 
for Autonomous Driving Decision Module Design. In Conference on Robot Learning. PMLR, 
21–30.

[158]. Thakker Urmish, Fedorov Igor, Zhou Chu, Gope Dibakar, Mattina Matthew, Dasika Ganesh, 
and Beu Jesse. 2021. Compressing RNNs to Kilobyte Budget for IoT Devices Using Kronecker 
Products. ACM Journal on Emerging Technologies in Computing Systems (JETC) 17, 4 (2021), 
1–18.

[159]. Thill Markus, Konen Wolfgang, and Bäck Thomas. 2020. Time series encodings with 
temporal convolutional networks. In International Conference on Bioinspired Methods and 
TheirApplications. Springer, 161–173.

[160]. Tjandrasuwita Megan, Sun Jennifer J, Kennedy Ann, and Yue Yisong. 2021. Interpreting Expert 
Annotation Differences in Animal Behavior. In CVPR 2021 Workshop on CV4Animation.

[161]. Tollervey Nicholas H. 2017. Programming with MicroPython: embedded programming with 
microcontrollers and Python. " O’Reilly Media, Inc.".

[162]. van den Oord Aäron, Dieleman Sander, Zen Heiga, Simonyan Karen, Vinyals Oriol, Graves 
Alex, Kalchbrenner Nal, Senior Andrew, and Kavukcuoglu Koray. 2016. WaveNet: A Generative 
Model for Raw Audio. In 9th ISCA WKSH on Speech Synthesis WKSH (SSW 9).

[163]. Van der Maaten Laurens and Hinton Geoffrey. 2008. Visualizing data using t-SNE. Journal of 
Machine Learning Research 9, 11 (2008).

[164]. Van Der Maaten Laurens, Postma Eric, Van den Herik Jaap, et al. 2009. Dimensionality 
reduction: a comparative. J Mach Learn Res 10, 66-71 (2009), 13.

[165]. Verma Dinesh C, Verma Archit, and Mangla Utpal. 2021. Addressing the Limitations of AI/ML 
in creating Cognitive Solutions. In 2021 IEEE Third International Conference on Cognitive 
Machine Intelligence (CogMI). IEEE, 189–196.

[166]. Vilamala Marc Roig, Xing Tianwei, Taylor Harrison, Garcia Luis, Srivastava Mani, Kaplan 
Lance, Preece Alun, Kimmig Angelika, and Cerutti Federico. 2021. Using DeepProbLog to 
perform Complex Event Processing on an Audio Stream. In Tenth International Workshop on 
Statistical Relational AI.

[167]. Voelker Aaron, Kajić Ivana, and Eliasmith Chris. 2019. Legendre Memory Units: Continuous-
Time Representation in Recurrent Neural Networks. Advances in Neural Information Processing 
Systems 32 (2019), 15570–15579.

[168]. Wang Yan, Cang Shuang, and Yu Hongnian. 2019. A survey on wearable sensor modality 
centred human activity recognition in health care. Expert Systems with Applications 137 (2019), 
167–190.

[169]. Wang Ziqi, Sarker Ankur, Wu Jason, Hua Derek, Dong Gaofeng, Singh Akash Deep, and 
Srivastava Mani B. 2022. Capricorn: Towards Real-time Rich Scene Analysis Using RF-Vision 
Sensor Fusion. In Proceedings of the 20th Conference on Embedded Networked Sensor Systems.

[170]. Warden Pete. 2018. Speech commands: A dataset for limited-vocabulary speech recognition. 
arXivpreprint arXiv:1804.03209 (2018).

[171]. Warden Pete and Situnayake Daniel. 2019. Tinyml: Machine learning with tensorflow lite on 
arduino and ultra-low-power microcontrollers. O’Reilly Media.

[172]. Weisz Justin D, Muller Michael, Ross Steven I, Martinez Fernando, Houde Stephanie, Agarwal 
Mayank, Talamadupula Kartik, and Richards John T. 2022. Better together? an evaluation of 
ai-supported code translation. In 27th International Conference on Intelligent UserInterfaces. 
369–391.

[173]. Wong Alexander, Famouri Mahmoud, and Shafiee Mohammad Javad. 2020. AttendNets: Tiny 
Deep Image Recognition Neural Networks for the Edge via Visual Attention Condensers. 6th 
WKSH on Energy Efficient Machine Learning and Cognitive Computer (EMC2 2020) (2020).

[174]. Xing Tianwei, Garcia Luis, Vilamala Marc Roig, Cerutti Federico, Kaplan Lance, Preece Alun, 
and Srivastava Mani. 2020. Neuroplex: learning to detect complex events in sensor networks 
through knowledge injection. In Proceedings of the 18th Conference on Embedded Networked 
Sensor Systems. 489–502.

[175]. Yao Shuochao, Piao Ailing, Jiang Wenjun, Zhao Yiran, Shao Huajie, Liu Shengzhong, Liu 
Dongxin, Li Jinyang, Wang Tianshi, Hu Shaohan, et al. 2019. Stfnets: Learning sensing signals 

SAHA et al. Page 56

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the time-frequency perspective with short-time fourier neural networks. In The World Wide 
Web Conference. 2192–2202.

[176]. Yi Kexin, Wu Jiajun, Gan Chuang, Torralba Antonio, Kohli Pushmeet, and Tenenbaum Josh. 
2018. Neural-symbolic vqa: Disentangling reasoning from vision and language understanding. 
Advances in neural information processing systems 31 (2018).

[177]. Yu Jiecao, Lukefahr Andrew, Das Reetuparna, and Mahlke Scott. 2019. Tf-net: Deploying sub-
byte deep neural networks on microcon-trollers. ACM Transactions on Embedded Computing 
Systems (TECS) 18, 5s (2019), 1–21. [PubMed: 34084098] 

[178]. Zhang Yifu, Sun Peize, Jiang Yi, Yu Dongdong, Weng Fucheng, Yuan Zehuan, Luo Ping, 
Liu Wenyu, and Wang Xinggang. 2022. Bytetrack: Multi-object tracking by associating every 
detection box. In European Conference on Computer Vision. Springer, 1–21.

[179]. Zhou Xingyi, Koltun Vladlen, and Krahenbuhl Philipp. 2020. Tracking objects as points. In 
European Conference on Computer Vision. Springer, 474–490.

[180]. Zoph Barret and Le Quoc V. 2017. Neural architecture search with reinforcement learning. 
International Conference on Learning Representations (ICLR) (2017).

SAHA et al. Page 57

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CCS Concepts: · Computing methodologies → Machine learning.

SAHA et al. Page 58

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Closed loop workflow for deploying neural networks on microcontrollers [136].

SAHA et al. Page 59

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The five categories of neurosymbolic artificial intelligence [86, 142].

SAHA et al. Page 60

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(Left) Visualizing parallel optimization in Mango. (Right) Sequential optimization 

performance of Mango on 9 ML classification tasks versus 5 other state-of-the-art Bayesian 

optimizers.

SAHA et al. Page 61

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Architecture of automated neurosymbolic parsing for Symbolic Neuro Symbolic.

SAHA et al. Page 62

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Sample program supergraph generated from the DSL operator space for Neuro → Symbol 

[118, 149, 160]. Green nodes represent non-terminal nodes and purple nodes represent goal 

nodes.

SAHA et al. Page 63

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
(Left) Test accuracy versus model size of CIFAR10 ResNet models found by TINYNS versus 

competing CIFAR10 models designed for microcontrollers. (Right) NAS convergence time 

for TINYNS and competing microcontroller NAS frameworks on the CIFAR10 dataset.

SAHA et al. Page 64

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
(Left) Test AUC versus the model size of anomaly detection models (1D-CNN) found 

by TINYNS versus competing anomaly detection models designed for microcontrollers on 

the ToyADMOS dataset. (Right) Test accuracy versus the model size of keyword spotting 

models (TCN) found by TINYNS versus competing keyword spotting models designed for 

microcontrollers on the Google Speech Commands dataset.

SAHA et al. Page 65

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Architectural adaptation and device capability exploitation by TINYNS on the ToyADMOS 

dataset. The SRAM and flash limits of the hardware are given in parenthesis in kB in the 

form (SRAM, Flash). Lij  refers to ith layer of the 1D-CNN in the jtℎ stack.

SAHA et al. Page 66

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Architectural adaptation and device capability exploitation by TINYNS on the Speech 

Commands dataset. The SRAM and flash limits of the hardware are given in parenthesis 

in kB in the form (SRAM, Flash). Lij  refers to ith layer of the TCN in the jtℎ stack.

SAHA et al. Page 67

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Convergence iterations required for proxy less and proxied TINYNS. (Left) CIFAR10, 

(Center) ToyADMOS, (Right) Google Speech Commands. The SRAM and flash limits of 

the hardware are given in parenthesis in kB in the form (SRAM, Flash). Note that a higher 

score for proxied TINYNS does not necessarily guarantee deployability, while the highest 

score for proxy less TINYNS guarantees deployability on the target microcontroller.

SAHA et al. Page 68

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
(Left) Flash usage of models found via neurosymbolic optimization of features and model 

hyperparameters. The accuracy of the said models operating on all features and directly on 

the raw data is also shown. Flash limits of the target hardware are shown in parentheses. 

(Center) SRAM usage of models found via neurosymbolic optimization of features and 

model hyperparameters. SRAM limits of the target hardware are shown in parentheses. 

(Right) FLOPS count of models found via neurosymbolic optimization of features and 

model hyperparameters.

SAHA et al. Page 69

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
(Left) Highest performing models found by TINYNS for earable fall detection under 2 kB 

memory constraint when optimizing several model backbones. (Center and Right) Test 

accuracy and leave 1-out test accuracy of highest performing models found by TINYNS 

versus state-of-the-art earable activity detection classifiers when optimizing several model 

backbones. The TCN backbone is optimized for 5 different target hardware (eSense earable, 

F446RE, L476RG, F407VET6, and F746ZG).

SAHA et al. Page 70

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
(Left) Test accuracy, adversarial accuracy, and model size of TCN backbones for 

three different target hardware (F446RE, L476RG, and F746ZG). (Right) Test accuracy, 

adversarial accuracy, and model size for ProtoNN and Bonsai backbones. For all three model 

backbones, the results are shown for NAS with adversarial robustness term, NAS without 

adversarial robustness term, and handcrafted models.

SAHA et al. Page 71

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Odometric resolution of physics-aware neurosymbolic-inertial odometry models 

(TinyOdom) found via neurosymbolic architecture search, versus state-of-the-art 

handcrafted neural and symbolic models for tracking humans, animals, unmanned 

underwater vehicles (UUV), and unmanned aerial vehicles (UAV).

SAHA et al. Page 72

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 15. 
Architectural adaptation and device capability exploitation by TINYNS on the AQUALOC 

dataset. The SRAM and flash limits of the hardware are given in parenthesis in kB in the 

form (SRAM, Flash). Li refers to ith layer of the TCN.

SAHA et al. Page 73

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 74

Table 1.

Qualitative comparison of existing NAS frameworks for microcontrollers versus TINYNS

Method Search Strategy Profiler Search Space Cost Function
Parameters

Inference
Engine

Compression
Awareness

Open
Source

SpArSe 
[59]

Gradient-driven 
Bayesian

Analytical Conv2D (regular, 
depthwise, 
downsampled)

Error, SRAM, 
Flash

uTensor Pruning 
(structured, 
unstructured)

No

MCUNet 
[102, 103]

Evolutionary 
(with weight 
sharing)

Lookup tables, 
prediction 
models

Conv2D (elastic) Error, SRAM, 
Flash, Latency

TinyEngine 
[103]

None No

MicroNets 
[14]

One-shot DNAS Analytical Conv2D 
(MbNetv2, DS-
CNN)

Error, SRAM, 
Flash, Latency

TFLite Micro 
[43], CMix-
NN [26]

Quantization 
(sub-byte)

No

μNAS [101] Evolutionary (no 
weight sharing)

Analytical Conv2D (regular, 
depthwise)

Error, SRAM, 
Flash, Latency

TFLite Micro 
[43]

Structured 
Pruning

Yes

iNAS 

[112]^
Reinforcement 
Learning

Lookup tables, 
analytical

Conv2D, tile size, 
loop order, 
preservation 
batch size

Error, Flash, 

Latency*, 
Volatile Buffer, 
Power-Cycle 

Energy@

Accelerated 
intermittent

Quantization (2 
bytes)

Yes

UDC [60] DNAS with 
exploration and 
exploitation

Analytical Conv2D, sparsity, 
bitwidth

Error, Flash Vela NPU Unstructured 
pruning, 
quantization 
(sub-byte)

No

TinyNS Gradient-free 
Bayesian with 
exploration and 
exploitation

Real 
measurements, 
analytical

Any supported 
ML operator and 
symbolic program 
atoms

Any scalar 
term

TFLite Micro 
[43]

Quantization (1 
byte)

Yes

^
intermittent-aware NAS

*
sum of progress preservation, progress recovery, battery recharge, and compute cost

@
sum of progress preservation, progress recovery, and compute cost

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 75

Table 2.

Chosen ResNet model hyperparameters for each target hardware by TINYNS on the CIFAR10 dataset. The 

SRAM and flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash).

Device Profiling
SRAM 
Usage 
(kB)

Latency (s) 
or FLOPS

Number of 
filters

Kernel 
size

Number of 
stacks

Batch 
normalization Activations

F446RE (128, 
512)

Real 107 0.58 (L) 10 5 4 True True

Proxy 95.8 12.9M (F) 4 7 4 True True

L476RG (128, 
1024)

Real 87.8 3.13 (L) 24 5 2 True True

Proxy 56.5 3.82M (F) 6 3 3 True True

F746ZG (320, 
1024)

Real 308 1.39 (L) 22 7 2 True True

Proxy 286 55.9M (F) 24 3 3 True True

L4R5ZI_P (640, 
2048)

Real 608 1.13 (L) 20 3 4 True True

Proxy 309 40.9M (F) 18 3 4 False True

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 76

Table 3.

Chosen 1D-CNN model hyperparameters for each target hardware by TINYNS on the ToyADMOS dataset. The 

SRAM and flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash).

Device Profiling
SRAM 
Usage 
(kB)

Latency (s) or 
FLOPS

No. of 
filters

Kernel 
size

No. of 
layers per 

stack

No. of 
stacks

Skip 
connections

F446RE (128, 512)
Real 87.8 0.01 (L) 50 3 5 1 True

Proxy 81.3 0.32M (F) 16 10 4 1 True

L476RG (128, 
1024)

Real 88.2 0.06 (L) 38 10 6 1 True

Proxy 62.0 0.24M (F) 26 3 5 1 True

F746ZG (320, 
1024)

Real 288 0.01 (L) 42 4 4 3 True

Proxy 78.1 0.31M (F) 30 4 3 1 True

L4R5ZI_P (640, 
2048)

Real 608 0.03 (L) 63 3 5 1 True

Proxy 444 1.77M (F) 57 6 4 2 True

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 77

Table 4.

Chosen TCN model hyperparameters for each target hardware by TINYNS on the Google Speech Commands 

dataset. The SRAM and flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash).

Device Profiling
SRAM 
Usage 
(kB)

Latency (s) 
or FLOPS

No. of 
filters

Kernel 
size

Dilations, no. of layers per 
stack

No. of 
stacks

Skip 
connections

F446RE (128, 
512)

Real 106 0.31 (L) 51 9 [1,8,64,128], 4 2 True

Proxy 77.8 21.6M (F) 27 9 [1,2,16,32,64,128], 6 2 True

L476RG (128, 
1024)

Real 95.4 0.65 (L) 44 7 [1,2,4,8,16,128], 6 2 True

Proxy 79.4 22.0M (F) 30 9 [1,2,8,16,128], 5 2 True

F746ZG (320, 
1024)

Real 286 0.04 (L) 45 4 [1,4,16,64,128], 5 1 True

Proxy 147 32.4M (F) 56 4 [1,4,8,64], 4 3 True

L4R5ZI_P 
(640, 2048)

Real 606 1.66 (L) 63 8 [1,4,8,16,32,64,128,256], 8 3 True

Proxy 210 68.2M (F) 55 8 [1,16,128], 3 3 True

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 78

Table 5.

Chosen features (shaded) for each target hardware for neurosymbolic optimization of input feature choices and 

model backbone. The SRAM and flash limits of the hardware are given in parenthesis in kB in the form 

(SRAM, Flash).

Device Features

ISPU (8, 
32)

Mean IQR Maximum Median Variance MAD Abs. 
Energy

Entropy Peak-
to-
Peak

FFT 
Mean 
Coeff.

Fundamental 
Frequency

Max. 
Power 
Spectrum

F446RE 
(128, 512)

Mean IQR Maximum Median Variance MAD Abs. 
Energy

Entropy Peak-
to-
Peak

FFT 
Mean 
Coeff.

Fundamental 
Frequency

Max. 
Power 
Spectrum

L476RG 
(128, 
1024)

Mean IQR Maximum Median Variance MAD Abs. 
Energy

Entropy Peak-
to-
Peak

FFT 
Mean 
Coeff.

Fundamental 
Frequency

Max. 
Power 
Spectrum

F746ZG 
(320, 
1024)

Mean IQR Maximum Median Variance MAD Abs. 
Energy

Entropy Peak-
to-
Peak

FFT 
Mean 
Coeff.

Fundamental 
Frequency

Max. 
Power 
Spectrum

L4R5ZI_P 
(640, 
2048)

Mean IQR Maximum Median Variance MAD Abs. 
Energy

Entropy Peak-
to-
Peak

FFT 
Mean 
Coeff.

Fundamental 
Frequency

Max. 
Power 
Spectrum

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 79

Table 6.

Chosen model hyperparameters for each target hardware for neurosymbolic optimization of input feature 

choices and model backbone. The SRAM and flash limits of the hardware are given in parenthesis in kB in the 

form (SRAM, Flash).

Device Number of 
filters

Kernel size Number of 
stacks

Dilations, number of layers per 
stack

Skip connections

ISPU (8, 32) 3 5 1 [1,2,4,32,64,128], 6 False

F446RE(128, 512) 5 3 3 [1,2,16,32,128], 5 False

L476RG (128, 1024) 7 7 2 [1,2,4,32,128], 5 False

F746ZG (320, 1024) 3 10 3 [1,2,8,16,32], 5 True

L4R5ZI_P (640, 2048) 29 6 1 [1,4,16,64,128], 5 True

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 80

Table 7.

Chosen model hyperparameters for each backbone found by TINYNS when optimizing several model 

backbones for earable activity detection. The SRAM and flash limits of the hardware are given in parenthesis 

in kB in the form (SRAM, Flash).

Model Backbone Device

Hyperparameters

Number of 
filters Kernel size Dilations, number of layers per 

stack Skip connections

TCN

F446RE (128, 512) 18 2 [2, 4, 8, 16, 32, 64, 128, 256], 8 Yes

L476RG (128, 1024) 13 7 [1, 4, 16, 32], 4 No

eSense earable (128, 
16000) 15 2 [1, 2, 4, 8, 32, 128, 256], 7 Yes

F407VET6 (192, 512) 17 3 [2, 4, 32, 128, 256], 5 No

F746ZG (320, 1024) 21 2 [2, 8, 16, 64, 128, 256], 6 Yes

FastGRNN

None (hardware-agnostic)

Hidden Units

50

FastRNN 32

Bonsai

Projection Dimension Sigmoid Parameter Depth

22 1.0 3

ProtoNN

Projection Dimension Prototypes Y
70 70 0.004

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 81

Table 8.

Chosen object detector and tracking filter hyperparameters for CenterNet algorithm under different size limits.

Constraint
Flash 
Usage 
(MB)

Performance Model hyperparameters Filter hyperparameters 
(thresholds)

MOTA IDF1 Kernel 
size

Stack 
count

Head 
convolution 

value
Activations Rendering Confidence

Handcrafted 
(none) 238 36.5 55.0 1 1 128 True 0.4 0.5

250 MB limit 238 36.1 54.6 1 1 150 True 0.3 0.4

500 MB limit 270 38.0 57.2 9 1 100 False 0.7 0.5

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 82

Table 9.

Window size, stride, training-validation-test splits, and training epochs used in the inertial odometry datasets

Dataset Sampling Rate (Hz) Window Size Stride Splits (Tr, Val, Te) (%) Model Epochs

OxIOD 100 200 10 85, 5, 10 900

RoNIN 200 400 20 70, 5, 25 900

AQUALOC 200 400 20 80, 5, 15 300

EuRoC MAV 200 50 5 80, 10, 10 300

GunDog 40 10 10 45*, 5*, 50 300

*
Training trajectory split into 2 parts for train and validation splits.

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 83

Table 10.

Effect of removing the physics channel of proposed neural-inertial odometry models on 3 inertial odometry 

datasets.

Dataset
Absolute Trajectory Error (m) Relative Trajectory Error (m)

With Physics Without Physics With Physics Without Physics

OxIOD 3.35 3.86 0.90 1.24

AQUALOC 3.36 3.71 2.44 2.53

Agrobot (Phase 1) 7.85 9.13 1.10 1.33

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 84

Table 11.

Odometric resolution and flash usage of proposed neural-Kalman GPS-INS fusion for locating precision 

agricultural robots versus state-of-the-art neural and symbolic approaches.

Paradigm Method Code Size (MB) Absolute Trajectory Error (m) Relative Trajectory Error (m)

Neural

IONet [28] 1.71 5.58 ∣ 10.1 0.92 ∣ 0.57

L-IONet [29] 0.55 8.11 ∣ 18.6 0.91 ∣ 1.40

AbolDeepIO [55] 12.5 7.24 ∣ 20.5 0.96 ∣ 0.93

VeTorch [62] 29.6 2.86 ∣ 15.6 0.44 ∣ 0.84

Symbolic

UKF-M INS+GPS [21] 0.192 5.50 0.49

EKF INS+GPS [125] 0.077 3.31 0.58

GPS only - 1.89 0.42

Neurosymbolic
Ours (no GPS, w physics) 1.10 1.76 ∣ 9.12 0.28 ∣ 1.55

Ours (w GPS, w physics) 1.12 1.02 ∣ 1.81 0.28 ∣ 0.64

first term in the error is on seen trajectory, second term is on unseen trajectory; single term is on unseen trajectory

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 June 26.


	Abstract
	INTRODUCTION
	Challenges
	Contributions
	Organization

	BACKGROUND AND RELATED WORK
	Machine Learning on Microcontrollers
	Neural Architecture Search for Microcontrollers
	Neurosymbolic Artificial Intelligence
	Taxonomy of Neurosymbolic AI.
	Neurosymbolic Language Tools.
	Recent Trends in Neurosymbolic Artificial Intelligence.

	Python to Microcontroller Code Parsers
	TinyML Compiler Suites.
	General Purpose Parsers.


	MANGO: FAST, PARALLEL AND GRADIENT-FREE BAYESIAN OPTIMIZER
	Surrogate Model
	Acquisition Function
	Handling Mixed Search Spaces
	Parallelization
	Addition to Mango
	Evaluation: Parallel Search in Mango
	Evaluation: Comparison Against Other Bayesian Optimizers

	PLATFORM-AWARE NEUROSYMBOLIC OPTIMIZATION
	Symbolic Neuro Symbolic
	Problem Formulation (Neural).
	Parsing (Symbolic).
	Parsing (Neural).


	Table T1
	Table T2
	Neuro→Symbol
	Problem Formulation.
	Parsing.


	Table T3
	Table T4
	Neuro ∪ Compile (Symbolic)
	Problem Formulation.
	Parsing.


	Table T5
	Symbolic[Neuro]
	Problem Formulation.
	Parsing.
	Examples.


	Table T6
	Neuro[Symbolic]
	Problem Formulation and Parsing.


	EVALUATION
	MLPerf Tiny v0.5 Inference Benchmark
	Dataset Splits and Pre-processing.
	Model Backbones, Training Details, and Search Space Definition.
	Overall Performance.
	Architectural Adaptation Based on Resource Availability.
	Convergence Time of Proxyless versus Proxied TinyNS.

	Optimization of Features and Neural Weights (Symbolic Neuro Symbolic)
	Dataset and Task Description.
	Model Backbones, Training Details, and Search Space Definition.
	Target Hardware.
	Overall Performance.

	Fall Detection under 2 kB and Activity Recognition (Symbolic Neuro Symbolic)
	Dataset and Task Description.
	Model Backbones, Training Details, Target Hardware, and Search Space Definition.
	Overall Results.

	Optimization of Neural Detector Weights and Symbolic Object Tracker (Neur→Symbol)
	Dataset and Task Description.
	Model Backbones and Search Space Definition.
	Overall Results.

	Improving Adversarial Robustness of TinyML Models (Neuro U Compile (Symbolic))
	Dataset and Task Description.
	Model Backbones, Training Details, Target Hardware, and Search Space Definition.
	Overall Results.

	Physics-Aware Neural Inertial Localization (Neuro ∪ Compile (Symbolic))
	Dataset and Task Description.
	Model Backbones, Training Details, Target Hardware, and Search Space Definition.
	Overall Results.

	Neural-Kalman Sensor Fusion (Symbolic[Neuro])
	Dataset and Task Description.
	Model Backbones, Training Details, Target Hardware, and Search Space Definition.
	Overall Results.


	CONCLUSION, LIMITATIONS, AND FUTURE WORK
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	Fig. 14.
	Fig. 15.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.
	Table 8.
	Table 9.
	Table 10.
	Table 11.



