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ABSTRACT OF THE DISSERTATION

Flows of settling marine aggregates

and complex fluid rheology

by Eunji Yoo

Doctor of Philosophy in Applied Mathematics
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Committee Co-Chairs: François Blanchette and Shilpa Khatri

Settling marine aggregates are essential in transporting dissolved carbon diox-

ide from the surface ocean to the deep sea. While sinking, they may accumulate in thin

layers where density stratification is present, becoming nutrient hotspots for bacteria and

animal activity. We simulate settling marine aggregates both in an ambient homogeneous

and a density-stratified fluid to study their dynamics. We model a marine aggregate

as a fractal collection of cubes. In a homogeneous fluid, the flow is computed in the

Stokes regime using a boundary integral method. We focus on analyzing the forces

acting on the aggregate in the presence of various background flows. We have identified

an effective hydrodynamic radius that captures the settling dynamics accurately. We

couple the velocity with the advection-diffusion equation to track the heat density or salt

concentration in time. We use this method to quantify how the presence of stratification

affects the settling speed and time of the aggregates.

We also present the study of complex fluids with higher-order rheology. We

introduce rate-dependent flows having non-Newtonian behaviors. We pay attention

to a flow of granular material, which is the second most commonly used material in

industry after water. We model a second-order stress tensor in strain rate for granular

material within an Adaptive Mesh Refinement (AMR) framework, AMReX-incflo, to

solve for incompressible flows. We also formulate a regularization of the yield stress

terms to account for viscosity divergence at low strain rates. To incorporate a higher-

order strain rate tensor with the incompressible solver numerically, we added a two-stage

Runge-Kutta scheme in the AMReX-incflo code and the default solver, the explicit Euler

method.
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Chapter 1
Introduction

Marine aggregates are randomly formed particles composed of organic and

inorganic matter, such as phytoplankton, detritus, sediment, and fecal pellets (Jackson,

1989). Since these components stick together arbitrarily, a marine aggregate is often

shown as a fractal structure. These marine aggregates take in carbon dioxide (CO2)

during photosynthesis near the surface ocean and carry the dissolved carbon to the deep

ocean. This process removes CO2 from the atmospheric carbon cycle (Honjo et al., 2014)

and plays a role in regulating atmospheric CO2 and climate changes, which is one of the

most significant environmental problems we face today.

It has been observed that larger sinking aggregates tend to accumulate in thin

layers where the ambient fluid is density stratified (Alldredge et al., 2002). The highly

concentrated thin layers become biological hotspots for bacterial activity and animal

feeding. It is ecologically important to understand the marine aggregates’ dynamics as

they delay in settling.

We consider the flows around aggregates in the low Reynolds number regime,

which is applicable for approximately the smallest 30% of marine aggregates (Alldredge

& Gotschalk, 1988). Flow in this regime is governed by the Stokes equations, which

allows solutions to be found via boundary integral methods (Pozrikidis, 1992). Such

methods have been implemented in several contexts, typically via a combination of

analytical integration near the singularities that arise and quadrature methods away

from the singularities. See (Pozrikidis, 1992) for a review. Boundary integral methods

are particularly well suited to computations of flow around complex solids (Zinchenko

& Davis, 2006) as velocity and forces may be expressed in terms of an integral over the

1



2

boundary of the object. They have also recently been combined with other methods, for

example, to capture interactions between fluids and elastic solids (Bao et al., 2017) and

stochastic fluctuations in suspensions (Bao et al., 2018). Here, we form aggregates using

cubic particles, which results in a simple boundary over which the resulting integrals can

be computed analytically, as described in Chapter 2. This has the advantage of avoiding

numerical singularities on the boundary, which otherwise require regularization (Cortez,

2001) or specialized numerical methods such as high-order product Nyström meth-

ods (Atkinson, 1997; Delves & Mohamed, 1985), adaptive sub-domain integration (Chan,

Beris, & Advani, 1992), or nearest-neighbor discretization of the regularized Stokeslet

boundary integral equation (Smith, 2018). We introduce a novel implementation of

boundary integral methods which is both simple and well-behaved numerically. Details

of this new methodology, along with its validation, are presented in Section 2.4. We

compare two approaches, using a single-layer and double-layer integral representation

of the velocity (Pozrikidis, 1992; Power & Miranda, 1987; Ingber & Mammoli, 1999),

and determine which is the most suitable for fluid flow simulations around marine

aggregates with this new method.

̂n
⋅ ⃗x ∈ S

⋅ ⃗y ∈ ℝ3

Figure 1.1: Example aggregate model with ten cubes. We denote S as the aggregate

boundary surface and n̂ as its normal. The vectors x⃗ and y⃗ are points on and outside of

S.

Our research is centered on computing the velocity field around settling marine

aggregates and the forces acting on them. We do so using boundary integral equation

(BIE) formulations. We construct marine aggregates using cubes to capture their fractal

shape, as shown in Figure 1.1.
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1.1 Fluid momentum equations

To describe the incompressible fluid motion that takes place around marine

aggregates, we consider the Navier-Stokes equations,

∇ · u⃗ = 0 (1.1)

ρ

(
∂u⃗

∂t
+ u⃗ · ∇u⃗

)
= ∇ · ¯̄σ + ρg⃗, (1.2)

where ρ is fluid density (constant) and u⃗, g⃗ are fluid velocity and gravity vectors,

respectively. The first equation (1.1) shows the conservation of mass, and equation (1.2)

describes the momentum conservation. We also introduce the stress tensor, ¯̄σ as sum of

the fluid pressure P and deviatoric stress tensor τ ,

¯̄σ = −P ¯̄I + τ = −P ¯̄I + 2µ̃D, (1.3)

where µ̃ is constant fluid viscosity and D is the symmetric strain rate tensor, that is,

D = 1
2
(
∇u⃗+ (∇u⃗)T

)
. (1.4)

Since seawater is a Newtonian fluid, following Newton’s law of viscosity, the strain

rate (1.4) becomes ∇u⃗. This implies that we can rewrite the momentum equation (1.2) as

ρ

(
∂u⃗

∂t
+ u⃗ · ∇u⃗

)
= −∇P + µ̃∇2u⃗+ ρg⃗ (1.5)

For typical seawater, it is reasonable to say ρ ≈ 1025kg/m3 and µ̃ = 1.2 × 10−3kg/ms.

Also, the gravity vector is g⃗ = −gk̂ ≈ −9.8m/s2 × (0, 0, 1) where k̂ points in the vertical

direction (upward).

The momentum equation (1.2) can be linearized for flows where inertial effects

are small. To estimate the size of the main forces at play, we consider a radius of marine

aggregate, Ra ≈ 5 × 10−5(m) and the reference Stokes settling speed of an aggregate,

Us = gR2
a

µ̃
(ρa − ρ) ≈ 3.8 × 10−4(m/s), (1.6)

where ρa ≈ 1400kg/m3 is the aggregate mass density. When we non-dimensionalize the

momentum equation using the length scale, Ra, and velocity, Us, we obtain the following

equation: (
ρUsRa

µ̃

)(
∂u⃗′

∂t′
+ u⃗′ · ∇′u⃗′

)
= ∇′2u⃗′ − ∇′P ′ + g⃗′, (1.7)
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where we find and compute the Reynolds number (Re),

Re = ρUsRa

µ̃
≈ 10−2 ≪ 1. (1.8)

Note that we use the prime symbol to represent a dimensionless value. Since we have a

fairly small Reynolds number, we may neglect the inertial effects, limiting the left-hand

side of equation (1.7) to zero,

∇′2u⃗′ − ∇′P ′ + g⃗′ = 0. (1.9)

In the settling marine aggregate project part of this thesis, we, therefore, consider the

following Stokes equations, written with dimensions, to describe the fluid flow around

the settling aggregates,

∇ · u⃗ = 0

µ̃∇2u⃗− ∇P + ρg⃗ = 0. (1.10)

The solutions of the system of equations are the fluid velocity, u⃗, and pressure, P . In

general, pressure does not induce motion. We see the pressure at rest, denoted as Ps,

contains the pressure of gravity, Ps(y⃗) = ρg⃗ · y⃗, where y⃗ ∈ R3 is a point in the fluid. Using

this static pressure term, we introduce the dynamic pressure Pd, defined as

Pd(y⃗) = P (y⃗) − Ps(y⃗) = P (y⃗) − ρg⃗ · y⃗. (1.11)

By substituting the expression (1.11), we obtain

∇ · u⃗ = 0

µ̃∇2u⃗− ∇Pd = 0. (1.12)

While an aggregate model settles, we focus on the velocity field and hydrodynamic

forces around the marine aggregate model.

1.2 Boundary integral equation (BIE) formulations

For our simulations, we consider a large fluid domain compared to the size of

an aggregate, having zero fluid velocity at infinity. We also treat our aggregate surface

as a solid. Although marine aggregates are porous, the solid boundary condition is

reasonable to apply due to their low permeability. This condition prevents flow through
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the aggregate, acting like a solid particle. For this reason, any flow inside of the aggregate

is neglected in the remainder of this thesis.

For a general surface S, the velocity u⃗ at a point y⃗ ∈ R3 exterior to the surface

may generally be expressed using the representation formula (Pozrikidis, 1992) when

solving for the flow using the Stokes equations,

u⃗(y⃗) = − 1
8πµ̃

∫
S
f⃗(x⃗) · ¯̄G(x⃗, y⃗) dS(x⃗) + 1

8π

∫
S
u⃗(x⃗) · ¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗), (1.13)

where the integral is taken over points x⃗ on the surface S. The kernel ¯̄G(x⃗, y⃗) is the

Green’s function of the Stokes equations at any point y⃗, that is the Stokeslet, in the domain

for a point-source located at x⃗,

¯̄G(x⃗, y⃗) =
¯̄I

||x⃗− y⃗||
+ (x⃗− y⃗)(x⃗− y⃗)

||x⃗− y⃗||3
. (1.14)

The kernel ¯̄K(x⃗, y⃗) is the stress tensor associated with this fundamental solution, named

the Stresslet,

¯̄K(x⃗, y⃗) = −6(x⃗− y⃗)(x⃗− y⃗)(x⃗− y⃗)
||x⃗− y⃗||5

, (1.15)

where ∥ · ∥ is the vector 2-norm. The first integral distribution on the right-hand side

of equation (1.13) is called the single-layer potential, and the second one is called the

double-layer potential. To compute the velocity at a point on the surface S, i.e., x⃗s ∈ S, we

use

u⃗(x⃗s) = − 1
4πµ̃

∫
S
f⃗(x⃗) · ¯̄G(x⃗, x⃗s) dS(x⃗) + 1

4π

∫
S
u⃗(x⃗) · ¯̄K(x⃗, x⃗s) · n̂(x⃗) dS(x⃗). (1.16)

In general, f⃗(x⃗) is the unknown stress vector, or traction, on the surface, and u⃗(x⃗) is the,

typically unknown, velocity on the surface S. When S is the boundary of a solid object,

in our case, an aggregate, the general representation formula may be simplified in two

different ways, depending on the fluid domain characteristics and the object’s surface.

We will introduce those two formulae in Chapter 2.

1.3 Complex fluids

In the last part of this thesis, we will turn our attention to non-Newtonian fluids.

This topic is added to my thesis as an extension of a summer internship at the Lawrence

Berkeley National Lab in 2022 under the guidance of Dr. Ishan Srivastava.
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A broad class of complex fluids encompasses various materials of natural, in-

dustrial, and medical importance, such as granular materials, suspensions of micro-scale

materials, and biological molecules. Complex fluids show many interesting behaviors

quite different than Newtonian fluids. The major difference is that the viscosity (denoted

µ̃ in the Newtonian fluid case) is not constant anymore; rather, it is attributed to the

shear rate γ̇ = |D| (Kundu, Cohen, & Dowling, 2016). Due to this varying viscosity, the

constitutive behavior of non-Newtonian fluids is highly complex. To understand their

behaviors, we shall focus on the viscous stress tensor, τ , introduced in equation (1.3).

In particular, we explore four features of viscosity in complex fluids: 1) (shear) rate-

dependent flow, 2) yield stress, 3) a second-order strain rate rheology, and 4) granular

material flow. Note that rheology is the study of material deformation and flows as

responses to applied stress, including those that exhibit co-existing two states.

sh
ea
r s
tr
es
s 

[P
a]

| τ
|

shear rate  [s ]·γ −1

Bingham 
(Toothpaste)

Shear-Thinning 
(shampoo)

Shear-Thickening 
(cornstarch + water)

Yield stress
Newtonian (water)

|τ | = μ̃ ·γ

Figure 1.2: Classification of fluid types based on descriptions in (Irgens, 2014). Solid

lines show different types of non-Newtonian behavior with examples in the parenthesis.

The red star describes yield stress. The dashed line represents Newton’s law of viscosity.

Figure 1.2 demonstrates how the shear stress, |τ |, varies on the shear rate γ̇,

with an example. Two types of rate-dependent flow, shear-thinning, and thickening, are

plotted with the green and purple lines, respectively. The viscosity of a shear-thinning

fluid, such as shampoo or mayonnaise, decreases as the shear rate increases (Singh &
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Heldman, 2013). On the other hand, shear-thickening fluid viscosity gets higher under

shear strain (Barnes, Hutton, & Walters, 1989). Meanwhile, the orange straight line

represents the Bingham plastic fluid. One defining characteristic of many complex fluids

is the presence of yield stress, which is shown as the red star on the vertical axis. Yield

stress is an instantaneous stress value to make a material flow. For an insufficiently

stressed state, the material behaves like an elastic solid, allowing deformation plastically;

once the yield stress is exceeded, it flows like a fluid (Irgens, 2014). Examples of yield

stress fluids include toothpaste, cement, mud, and blood. We will discuss more of the

relationship between viscosity and shear rate in Chapters 4.2 and 4.3.

While the viscous stress tensor of the rate-dependent fluids has a linear rela-

tionship with the strain rate, D, other flow effects can be captured by a higher-order

strain rate. In this thesis, we explore up to the second-order case and call them secondary

flows. In the recent paper by (Tanner, 2018), Tanner discussed several examples of

non-colloidal suspensions and highlighted the importance of examining these secondary

flows. For instance, a curvature in free-surface flows (Couturier et al., 2011), anomalous

stress profile in cylindrical Couette flows (Krishnaraj & Nott, 2016), or negative rod

climbing effect (Weissenberg effect) (Boyer, Pouliquen, & Guazzelli, 2011) are found for

a non-linear strain rate effect. We thus want to implement computational tools to study

the second-order strain rate effect.

Lastly, we present further work for granular materials. They are highly ubiqui-

tous and the second most common material on earth after water (Richard et al., 2005).

For example, we can find grains in the food industry, pharmaceutical powder to make

medicine tablets, and geological materials, such as sand or soil. One fascinating property

is that they can behave like a liquid, solid, and gas, coexisting simultaneously. For

instance, sand in a desert can stay still like a solid without any external forces; it can also

flow or slide like a fluid when there is wind. There are still many open questions we

should study to understand the behaviors of granular materials due to the complicated

dynamics.

Our ultimate goal for this project is to have a constitutive rheology code that

can capture complex continuum dynamics. We use the exascale computing package

AMReX-Codes, which is a block-Structured Adaptive Mesh Refinement (AMR) Software

Framework and Applications. We implement the granular rheology in an individual

module of AMReX called incflo. This code allows us to model the incompressible

https://amrex-codes.github.io/index.html
https://amrex-codes.github.io/incflo/
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Navier-Stokes equations with various types of rheology in complex geometries without

subcycling in time. We will describe the details of the numerical methods in Chapter 4.4.

This dissertation is ordered as follows: in Chapter 2, we introduces the simula-

tions of settling marine aggregates in a homogeneous fluid. As an extended study, we

explore a density-stratified fluid to understand more realistic marine aggregate behaviors

in Chapter 3. Lastly, Chapter 4 addresses complex fluid rheology and granular materials

using the AMReX-Codes.



Chapter 2
Settling marine aggregates in a

homogeneous fluid

The content of this chapter has been published in Yoo, E., Khatri, S., & Blanchette,

F. (2020). Hydrodynamic forces on randomly formed marine aggregates [Publisher:

American Physical Society]. Physical Review Fluids, 5(4), 044305. https://doi.org/10.

1103/PhysRevFluids.5.044305

In this chapter, we compute the flow around randomly-formed aggregates

and characterize the resulting hydrodynamic forces in a constant-density fluid. Since

the 1980s, there have been numerous models of aggregation, including marine aggre-

gation, based on the random motion of small particulates (Rosenstock & Marquardt,

1980; Witten & Sander, 1981; Witten & Cates, 1986; Kolb, 1987). To form aggregates,

we use two established models: individually-added aggregation and cluster-cluster

aggregation, which are described in detail in (Yoo, Khatri, & Blanchette, 2020). We study

the hydrodynamics of flow around a broad sample of the resulting aggregates. In situ,

measurements of oceanic aggregates have shown an approximately linear relationship

between the drag and the aggregate diameter (Alldredge & Gotschalk, 1988). Experi-

mental studies of settling aggregates first focused on inorganic clusters (Wiltzius, 1987)

and later considered precisely constructed aggregates (Takayasu & Galembeck, 1998)

and statistical descriptions of broader ensembles (C. P. Johnson, Li, & Logan, 1996). It

was generally found that a linear relationship exists between the drag and the square

root of the projected area, which allows for the identification of a corresponding settling

9

https://doi.org/10.1103/PhysRevFluids.5.044305
https://doi.org/10.1103/PhysRevFluids.5.044305
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hydrodynamic radius (C. P. Johnson, Li, & Logan, 1996; Tang, Greenwood, & Raper,

2002). However, these experimental studies did not allow for a systematic variation of

certain parameters and found a range of results depending on the measure used and

the exact composition of the aggregates. Computational studies, in theory, do not have

this limitation. Early numerical results were based on rather coarse approximations of

aggregates, using point particle approximations (Chen, Deutch, & Meakin, 1984). The

accelerated Stokesian dynamics (ASD) approach, which model aggregates as a collection

of spheres and accounts for lubrication forces between them, was later developed (Brady

& Bossis, 1988) and used to estimate a hydrodynamic radius for progressively larger

aggregates (Rogak & Flagan, 1990; Bossis, Meunier, & Brady, 1991). In addition to the

drag on settling aggregates, the torque on rotating aggregates was computed using

ASD (Binder, Hartig, & Peukert, 2009). More recently, results were obtained using

Lattice-Boltzmann simulations that also considered inertial effects (Zhang & Zhang,

2015). The distribution of internal stresses in rigid aggregates moving in a constant

flow, which may result in an aggregate break-up, was also recently studied using the

method of reflections (Gastaldi & Vanni, 2011) and again using ASD (Vanni, 2015). We

develop here computational simulations that, in the regime considered, are more flexible

and efficient, allowing us to study a greater number of aggregates, resulting in more

statistically reliable results.

While ocean water is density stratified due to temperature or salinity, we

begin with the simplifying assumptions of uniform fluid density to understand settling

aggregate dynamics. As marine aggregates have fractal structures, it is important to find

an appropriate length scale to be able to predict their settling speed more accurately. We

thus consider a homogeneous fluid in this chapter to choose an effective hydrodynamic

radius.

2.1 Aggregation Model

To model marine aggregates, we make use of existing models of aggregation

where the constituting particles undergo a random walk (Rosenstock & Marquardt, 1980;

Witten & Sander, 1981; Witten & Cates, 1986; Kolb, 1987). In these models, particles are

typically subject to uniform Brownian motion and attach to one another when sufficiently

close. The resulting aggregates often have a fractal structure characterized by a fractal

dimension, d. The fractal dimension describes the nature of these complicated objects
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ing results for spheres, allowing the determination of an effective hydrodynamic radius. We present our
conclusions in Section 7.

2 Aggregation Model

Figure 1: We show typical aggregates as formed by two different methods. Top row: individually-added-
aggregates (IAA) containing (a) 50, (b) 100, and (c) 200 cubes. Bottom row: cluster-to-cluster aggregates
(CCA) containing (d) 50, (e) 100, and (f) 200 cubes.

To model marine aggregates, we make use of existing models of aggregation where the constituting par-
ticles undergo a random walk [45, 55, 54, 36]. In these models, particles are typically subject to uniform
Brownian motion and attach to one another when sufficiently close. The resulting aggregates often have a
fractal structure, characterized by a fractal dimension, d. The fractal dimension describes the nature of these
complicated objects and may be defined from the relation N ⇠ (Rs/l)d, where N is the number of particles
of length scale l that are part of the aggregate within a sphere of radius Rs [54]. In general, fractal dimen-
sions of aggregates have been found to range from 1.3 to 3 depending on the exact formation mechanism
[55, 36, 18]. Direct observations of marine aggregates have found fractal dimensions ranging approximately
from 1.3 to 2.5 [3, 26].

We consider aggregates made of collated cubic particles, as shown in Fig. 1. Once formed, we assume
that aggregates do not deform, sinter, or break apart [15]. This is a flexible model that has the advantage

3

(a) (b) (c)

(d) (e) (f)

Figure 2.1: We show typical aggregates as formed by two different methods. Top row:

individually-added-aggregates (IAA) containing (a) 50, (b) 100, and (c) 200 cubes. Bottom

row: cluster-to-cluster aggregates (CCA) containing (d) 50, (e) 100, and (f) 200 cubes.

and may be defined from the relation N ∼ (Rs/l)d, where N is the number of particles

of length scale l that are part of the aggregate within a sphere of radius Rs (Witten &

Cates, 1986). In general, fractal dimensions of aggregate models have been found to

range from 1.3 to 3 depending on the exact formation mechanism (Witten & Sander,

1981; Kolb, 1987; Gmachowski, 2002). Direct observations of marine aggregates have

found fractal dimensions ranging approximately from 1.3 to 2.5 (Alldredge & Gotschalk,

1988; Jackson & Burd, 1998).

We consider aggregates made of collated cubic particles, as shown in Figure 2.1.

Once formed, we assume that aggregates do not deform, sinter, or break apart (Eggers-

dorfer et al., 2011). This is a flexible model that has the advantage of having a simple

external boundary, which will be exploited when we solve for the flow around the

aggregate. We generate diffusion-limited aggregates using two different techniques: (1)

individually-added aggregation (IAA) and (2) cluster-to-cluster aggregation (CCA) (Wit-

ten & Cates, 1986; Kolb, 1987). In both methods, each cube has a non-dimensional length,

2, is aligned with the Cartesian axes, and is centered at a point on a three-dimensional

Cartesian lattice restricted to a triply periodic box of period 2P . The cube centers thus
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only take values of the form {(2m, 2n, 2p) |m,n, p ∈ Z,−P < m,n, p ≤ P}.

Typically, the IAA method gives a more compact form of aggregates, with

dimension ≈ 2.56, than the CCA case, which has dimension ≈ 1.79 (Witten & Sander,

1981; Kaye, 2008). More details regarding the analysis of the aggregation formation can

be found (Yoo, Khatri, & Blanchette, 2020).

To characterize the size of each aggregate, we define the dimensionless gyration

radius, R′
g, also known as the root-mean-square radius, as

R′
g =

√√√√ 1
NC

NC∑
i=1

∥x⃗i − x⃗cm∥2, (2.1)

and the maximum radius of the aggregate, R′
m, as the maximum distance between the

center of each of its constituting cubes, x⃗i, and the center of mass, x⃗cm, to which we add

one to account for the size of an individual cube,

R′
m = 1 + max

i=1,··· ,NC
∥x⃗i − x⃗cm∥, (2.2)

where NC is the number of cubes in the aggregate. We obtain the center of mass of the

aggregate, x⃗cm, by taking the mean values of each element of x⃗i for i = 1, · · · , NC. Note

that most experimental studies use the projected area method to describe the size of an

aggregate. However, since this project is done computationally, which has more freedom

than physical experiments, we choose to use those formulations (2.1) and (2.2) without

reduction of dimension. We will later show the results of different forces acting on the

aggregates and examine which size measurement captures better physical properties.

2.2 Derivation of single- and double-layer potentials

We introduced equation (1.16) as a solution to the Stokes equations in Chapter 1.

As we have a solid boundary surface of a marine aggregate model, we are able to use a

simplified version of the fundamental solution. We are interested in solving for the flow

at points y⃗ in the fluid domain, which extends to infinity, and external to the surface,

S, of an aggregate, as shown in Figure 1.1. We take advantage of the linearity of the

Stokes equations and express the velocity as a boundary integral over the surface of the

aggregate (Pozrikidis, 1992; Stakgold, 2000). The resulting Fredholm integral formulas

have the advantage of involving computations in two dimensions only, despite the

three-dimensionality of the system. For solid objects, one may obtain two different
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Fredholm integral formulas. We derive both formulations in the remainder of this

section, following the guidance of (Pozrikidis, 1992).

2.2.1 Single-layer potential (SLP)

We first derive the velocity with the single-layer potential alone. The solid

boundary condition allows us to express the aggregate’s velocity as

u⃗s (x⃗) = U⃗a + Ω⃗ × (x⃗− x⃗cm) , (2.3)

where U⃗a and Ω⃗ are constant translational and angular velocities, respectively. Without

loss of generality, we conveniently choose a zero center of mass, x⃗cm = 0⃗, for this

derivation. Substituting the solid object velocity, equation (2.3), into the double-layer

potential in equation (1.13) gives∫
S

(
U⃗a + Ω⃗ × x⃗

)
· ¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗)

=
∫

S
U⃗a · ¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗) +

∫
S

(
Ω⃗ × x⃗

)
· ¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗) (2.4)

The first integral on the right-hand side of equation (2.4) can be re-written as

U⃗a ·
∫

S

¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗), (2.5)

since the translational velocity U⃗a is constant. For the flow around (outside) and on the

solid object, Pozrikidis provides a useful identity (Pozrikidis, 1992),

∫
S

¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗) =


¯̄0 if y⃗ ∈ R3 \ (S ∪ inside of aggregate)

−4π ¯̄I if y⃗ ∈ S
. (2.6)

Then, including the velocity U⃗a, we get

U⃗a ·
∫

S

¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗) =


0⃗ if y⃗ ∈ R3 \ (S ∪ inside of aggregate)

−4πU⃗a if y⃗ ∈ S
. (2.7)

The second integral in equation (2.4) can be evaluated with the following

identity, from (Pozrikidis, 1992), using Einstein (summation) notation,

εiℓm

∫
S
xℓ Kmjk(x⃗, y⃗) nk(x⃗) dS(x⃗)

=


0⃗ if y⃗ ∈ R3 \ (S ∪ inside of aggregate)

−4π εiℓj xℓ if y⃗ ∈ S
, (2.8)
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where εiℓm is the Levi-Civita permutation symbol. Multiplying both sides by the angular

velocity, Ω, in equation (2.8), we get∫
S

(
Ω⃗ × x⃗

)
· ¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗) =

∫
S

(εiℓm Ωixℓ) Kmjk(x⃗, y⃗) nk(x⃗) dS(x⃗)

=


0⃗

−4π εiℓj Ωi x
0
ℓ

=


0⃗ if y⃗ ∈ R3 \ (S ∪ inside of aggregate)

−4π (Ω × y⃗) if y⃗ ∈ S.
(2.9)

We now combine the two equations, (2.7) and (2.9),

∫
S
u⃗(x⃗) · ¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗) =


0⃗ if y⃗ ∈ R3 \ (S ∪ inside of aggregate)

−4πu⃗(y⃗) if y⃗ ∈ S
.

(2.10)

When the point y⃗ is strictly outside of the aggregate surface, S,

u⃗(y⃗) = − 1
8πµ̃

∫
S
f⃗(x⃗) · ¯̄G(x⃗, y⃗) dS(x⃗), (2.11)

only the single-layer potential term. For evaluation points on the surface S, y⃗ = x⃗s ∈ S,

since the double-layer potential is −4πu⃗(x⃗s), when we substitue into equation (1.16),

we obtain exactly the same equation (2.11). This implies that the single-layer potential

formula is continuous across the boundary surface S. To analyze the force and torque,

we use the stress f⃗ from equation (2.11) to compute

F⃗o =
∫

s
f⃗(x⃗) dS(x⃗) and Q⃗o =

∫
s
(x⃗− x⃗cm) × f⃗(x⃗) dS(x⃗). (2.12)

where F⃗o and Q⃗o represent the total force and torque, respectively, acting on the aggregate

surface S.

2.2.2 Double-layer potential (DLP)

The second approach we can take is removing the single-layer potential. To de-

rive the double-layer potential formulation, we consider a complimentary flow u⃗c for the

points inside of the aggregate surface boundary S, having the same force on the boundary

as u⃗. More specifically, the velocity u⃗ has the representation form, equation (1.13) and the

complimentary flow u⃗c has the same stress, f⃗ , on the boundary as u⃗. Before we proceed,

we shall justify the existence of the complimentary flow. The new flow u⃗c can be found
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when the velocity u⃗ on the boundary satisfies∫
S
u⃗(x⃗) · n̂ dS(x⃗) = 0. (2.13)

This condition is taken from (Pozrikidis, 1992). This can be fulfilled with our problem due

to the continuity equation, ∇ · u⃗ = 0, and the divergence theorem. By the conservation

of mass, we can say ∫
V

∇ · u⃗(x⃗) dV (x⃗) = 0. (2.14)

By the divergence theorem, we have∫
V

∇ · u⃗(y⃗) dV (y⃗) =
∫

S
u⃗(x⃗) · n̂ dS(x⃗) +

∫
Sf

u⃗(x⃗) · n̂ dS(x⃗) = 0, (2.15)

where Sf is the surface of the control volume of the fluid, V , surrounding the solid

particle. See Figure 2.2. Note that the fluid volume V is strictly outside the aggregate

boundary S. The control volume could be a large sphere with a radius, rf . Then the ve-
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Figure 2.2: Schematic of the control volume and its surface.

locity u⃗ on Sf approaches zero with order O(1/rf ) and its associated stress tensor decays

at the rate O(1/r2
f ). For large enough rf , the surface integral on Sf in equation (2.15) is

zero, implying that ∫
S
u⃗(x⃗) · n̂ dS(x⃗) = 0.

Then, following (Pozrikidis, 1992), we have a complementary flow u⃗c. By the Lorentz

reciprocal identity, any two flows having the same force on the boundary satisfy∫
S
f⃗(x⃗) · ¯̄G(x⃗, x⃗o) dS(x⃗) − µ̃

∫
S
u⃗c(x⃗) · ¯̄K(x⃗, x⃗o) · n̂(x⃗) dS(x⃗) = 0, (2.16)
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Substituting equation (2.16) into the representation formula, equation (1.13), we obtain a

flow

u⃗dl(y⃗) = 1
8π

∫
S
ψ⃗(x⃗) · ¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗), (2.17)

where ψ⃗(x⃗) = u⃗(x⃗) − u⃗c(x⃗). When ¯̄K is a Green’s function for an infinite flow, the

velocity (2.17) satisfies the Stokes equation with any choice of ψ⃗(x⃗).

Due to our constraints to derive equation (2.17), the double-layer potential

formula, u⃗dl is only valid for a particle that has a force- and torque-free body, such as a

swimming microorganism. For other solid-body models, finite non-zero net force and

torque models, the velocity we would like to find, u⃗, does not capture the force and

torque on the surface S accurately, i.e.,

u⃗dl(y⃗) = u⃗(y⃗) − 1
8πµ̃F⃗o · ¯̄G(x⃗0, x⃗cm) − 1

8πµ̃
Q⃗o × (y⃗ − x⃗cm)

∥y⃗ − x⃗cm∥3 . (2.18)

For the double-layer potential formula, we define the total force and torque as

F⃗o = µ̃

L

∫
S
ψ⃗(x⃗) dS(x⃗) (2.19)

and

Q⃗o = µ̃

L

∫
S
(x⃗− x⃗cm) × ψ⃗(x⃗) dS(x⃗) (2.20)

We multiply by µ̃/L to have the same physical meaning when the stress vector, f⃗ , as we

found the forces using the single-layer potential, equation (2.12). Note that equation (2.18)

implies that the net force and torque associated with the velocity u⃗dl are zero. The second

and third terms in equation (2.18), denoted by u⃗F and u⃗Q, respectively, are a solution

to the Stokes equations, except at the center of mass of the solid particle, x⃗cm. The flow

u⃗F is the velocity at a point y⃗ generated by a point force with strength F⃗0 at x⃗cm. In the

same manner, the flow u⃗Q represents the velocity induced by the vorticity associated

with the flow u⃗F . With those two extra terms, Mikhlin 1957, p.172 (Smithies, 1959) and

Power & Miranda 1987 (Power & Miranda, 1987) introduced the following double-layer

potential formula,

u⃗(y⃗) = 1
8π

∫
S
ψ⃗(x⃗) · ¯̄K(x⃗, y⃗) · n̂(x⃗) dS(x⃗)

+ 1
8πµ̃F⃗o · ¯̄G(x⃗0, x⃗cm) + 1

8πµ̃
Q⃗o × (y⃗ − x⃗cm)

∥y⃗ − x⃗cm∥3 , (2.21)

for any points y⃗ in the fluid and strictly outside of the solid particle surface S.
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Unlike the single-layer potential, the double-layer potential formula is not

continuous across the surface S. We thus consider another velocity expression on the

aggregate boundary surface with a jump condition (Pozrikidis, 1992),

u⃗(x⃗s) = −1
2 ψ⃗(x⃗s) + 1

8π

∫
S
ψ⃗(x⃗) · ¯̄K(x⃗, x⃗s) · n̂(x⃗) dS(x⃗)

+ 1
8πµ̃F⃗o · ¯̄G(x⃗s, x⃗cm) + 1

8πµ̃
Q⃗o × (x⃗s − x⃗cm)

∥x⃗s − x⃗cm∥3 , (2.22)

for the points on the surface, x⃗s ∈ S.

2.3 Non-dimensionalization

For the convenience of further study, we write all equations in non-dimensional

form using the following parameters:

x⃗ = Rax⃗
′, u⃗ = Usu⃗′, f⃗ = µ̃Us

Ra
f⃗ ′, ψ⃗ = Usψ⃗

′, F⃗o = µ̃UsRaF⃗o
′
, Q⃗o = µ̃UsR

2
aQ⃗o

′
. (2.23)

We use the values presented in Chapter 1, as we derived the Reynolds number (1.8).

Neglecting inertial terms, the system of equations becomes

−∇′P ′
d + ∇′2u⃗′ = 0⃗ (2.24)

∇′ · u⃗′ = 0, (2.25)

where we define the dynamic pressure as Pd(x⃗) = P (x⃗) + ρgk̂ · x⃗. Equation (2.3), used in

both the single-layer and double-layer formulations, is thus non-dimensionalized as

u⃗′(x⃗′
s) = U⃗a

Us
+ Ω⃗Ra

Us
× (x⃗′

s − x⃗′
cm) = U⃗ ′

a + Ω⃗′ × (x⃗′
s − x⃗′

cm) (2.26)

Furthermore, dimensionless forms of the single-layer potential formula for the velocity

at a point outside of the surface S is

u⃗′(y⃗′) = − 1
8π

∫
S′
f⃗ ′(x⃗′) · ¯̄

G′(x⃗′, y⃗′) dS′(x⃗′). (2.27)

equations for the non-dimensional force and angular velocity, given dimension-

ally in equation (2.12), become

F⃗ ′
o = F⃗o

1
µ̃UsRa

=
∫

S′
f⃗ ′(x⃗′) dS′(x⃗′) (2.28)

Q⃗′
o = Q⃗o

1
µ̃UsR2

a

=
∫

S′
(x⃗′ − x⃗′

cm) × f⃗ ′(x⃗′) dS′(x⃗′). (2.29)
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We also make dimensionless the double-layer potential in a similar manner,

u⃗(y⃗′) =
∫

S′
ψ⃗′(x⃗′) · ¯̄

K ′(x⃗′, y⃗′) dS′(x⃗′) + F⃗ ′
o · ¯̄
G′(x⃗′

0, x⃗
′
cm) + 1

8π
Q⃗′

o × (y⃗′ − x⃗′
cm)

∥y⃗′ − x⃗′
cm∥3 , (2.30)

for points outside of S, and

u⃗(x⃗′
s) = −1

2 ψ⃗
′(x⃗′

s) + 1
8π

∫
S′
ψ⃗′(x⃗′) · ¯̄

K ′(x⃗′, x⃗′
s) · n̂(x⃗) dS′(x⃗′)

+ F⃗ ′
o · ¯̄
G′(x⃗′

s, x⃗
′
cm) + 1

8π
Q⃗′

o × (x⃗′
s − x⃗′

cm)
∥x⃗′

s − x⃗′
cm∥3 , (2.31)

for points on S. The non-dimensional force and torque, in this case, are

F⃗ ′
o =

∫
S′
ψ⃗′(x⃗′) dS(x⃗′) (2.32)

Q⃗′
o =

∫
S′
ψ⃗′(x⃗′) · (¯̄̄ϵ · x⃗′) dS(x⃗′), (2.33)

which were given dimensionally, in equation (2.19).

2.4 Numerical methods

When solving for the velocity field exterior to a solid object or an aggregate, one

may either prescribe the translation velocity, U⃗ ′
a, and angular velocity, Ω⃗′, of the object or

prescribe the total force and torque. We found the analysis easier to perform when setting

U⃗ ′
a and Ω⃗′ to known values, providing us with the velocity on the surface of the object

via equation (2.26). We thus know u⃗′ on the left-hand-side of equations (2.27) and (2.31).

Provided we can evaluate the surface integrals, we may then solve for the unknown

stress vector, f⃗ ′, or density, ψ⃗′, respectively. Once these are found, we can evaluate the

velocity of the fluid at any point exterior to the aggregate using equations (2.27) or (2.30)

and compute the force and torque via equations (2.28) and (2.29), or equations (2.32)

and (2.33).

Because we consider aggregates that are composed of cubic particles, their

surface is simply a collection of squares. In both the single and double-layer potential

approach, we impose a velocity at the center of each square on the surface, x⃗sq,i, where

i = 1, 2, · · · , Nf , with Nf denoting the total number of square faces of an aggregate. We

thus need to compute integrals of the form

I⃗(x⃗′
sq,i) =

∫
S′
q⃗′(x⃗′) · ¯̄J(x⃗′, vecx′

sq,i) dS′(x⃗′). (2.34)
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Here, q⃗ represents either f⃗ or ψ⃗, and ¯̄J stands for either ¯̄G or
¯̄̄
K · n̂, depending on

if the single or double-layer method is used, respectively. To allow an exact analytic

computation of the integrals, we assume that on the kth square face, the vector q⃗′(x⃗′) = q⃗′
k

is constant, for k = 1, 2, . . . , Nf . The surface integrals over the entire aggregate may then

be discretized as

I⃗(x⃗′
sq,i) =

Nf∑
k=1

q⃗′
k

∫
S′

k

¯̄J(x⃗′, x⃗′
sq,i) dS′(x⃗′) =

Nf∑
k=1

q⃗′
k

¯̄Π′
i,k. (2.35)

where the coefficients ¯̄Π′
i,k are constant. These constants may be computed analytically,

and the corresponding formulas are given in Appendix A. This discretization is equiva-

lent to using a two-dimensional mid-point rule to estimate the integrals. Equation (2.35)

is linear in q⃗′
k, resulting in a dense linear system of 3Nf equations for each of the Nf

three-dimensional unknown vectors q⃗′
k (either the stress vector or the density).

We note that the numerical method presented here describes the fluid flow

around a single aggregate but a similar procedure can be employed to determine the

flow exterior to several aggregates. Each aggregate then has its own translation and

angular velocity vectors, as well as its own force and torque. In that case, it is more

natural to set the force and torque on each particle, using equations (2.28) and (2.29)

or equations (2.32) and (2.33), and then solve for the translation and angular velocities,

adding two vector equations per aggregate to the linear system.

We now discuss specific features of the single- and double-layer potential

methods. For the single-layer potential, we have ¯̄J(x⃗′, x⃗′
k) = ¯̄G(x⃗′, x⃗′

k), and q⃗′
k = f⃗ ′

k. In

that case, the 3Nf × 3Nf linear system obtained is not full rank. Stress vectors are only

found up to a constant multiple of the local normal vectors since a stress vector given by

a constant multiple of the local normals results in a zero velocity at the interface and a

zero net force and torque. To obtain a unique solution, we add an equation enforcing

that
Nf∑
k=1

f⃗ ′
k · n̂k = 0, (2.36)

where n̂k is the outer normal on each face. The resulting (3Nf + 1) × 3Nf system has a

unique solution vector f⃗ ′
k.

For the double-layer potential, the unknown density, ψ⃗′
k, is found using the

same discretization (2.35) applied to equation (2.31), resulting in a system with no rank

deficiency. See Appendix A. However, the values of the total force and torque terms
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must be solved simultaneously with the unknown density, resulting in a slightly larger

system of size 3(Nf + 2) × 3(Nf + 2). These additional equations, (2.32) and (2.33), are

discretized as,

0 =
∫

S′
ψ⃗′(x⃗′) dS′(x⃗′) − F⃗ ′

o = A′
Nf∑
k=1

ψ⃗′
k − F⃗ ′

o, (2.37)

0 =
∫

S′
ψ⃗′(x⃗′) · (¯̄̄ϵ · x⃗′) dS′(x⃗′) − Q⃗′

o = A′
Nf∑
k=1

ψ⃗′
k · ¯̄̄ϵ · x⃗′

k − Q⃗′
o (2.38)

where A′ = 4 is the non-dimensional area of each square.

Figure 2.3: Sample streamlines of flow past a 20-cube aggregate. The aggregate is

assumed to move horizontally, into the page and to the right.

In Figure 2.3, we present sample streamlines computed with this numerical

method. Here, we show results obtained with the single-layer potential method where

the aggregate is assumed to move horizontally with U⃗ ′
a = (1, 0, 0) and Ω⃗′ = (0, 0, 0).

The double-layer potential would give visually identical results. Once the velocity was

computed, the streamlines were obtained by performing a second-order Runge-Kutta

time integration. The streamlines, computed in the frame of reference of the aggregate,

can be seen to be deflected by the object, with weaker deflections further away from the

aggregate.

2.4.1 Validation and Comparison

We proceed to validate and compare our implementation of the single and

double-layer approaches. Although the single-layer approach is somewhat simpler to

implement, it has been found to yield linear systems with larger condition numbers when
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(a) (b) (c)
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Figure 2.4: Cubes of various resolutions used for validation. All three cubes have the

same volume and contain (a) 1 interior cube with length ∆x = 2, (b) 53 = 125 interior

cubes with length ∆x = 2/5, and (c) 93 = 729 interior cubes with length ∆x = 2/9.

integrated using boundary element methods, though with seemingly little impact on its

accuracy (Youngren & Acrivos, 1975; Ingber & Mammoli, 1999). We consider a simple

system where resolution may easily be varied and compute the flow around a single

large cube, subdivided into smaller collated cubes, as shown in Figure 2.4. We define

∆x = 2/Nx, where Nx is the number of cubes in each linear dimension, and increase

the resolution by increasing Nx. The prescribed translation and angular velocities are

kept constant at U⃗ ′
a = (0, 0,−1) and Ω⃗′ = (0, 0, 0), respectively. We then compute and

compare the total force and torque on the cube.
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Figure 2.5: (a) Drag on a cube as a function of ∆x for both the single- and double-layer

methods. (b) The error of the drag as ∆x is varied, shown on a log-log scale. Dashed lines

are linear fits to the data. The error is computed by taking the difference between the

limit shown in (a), D′
ex = 25.401, and drag values, D′ when ∆x = 2, 1, 0.5, 0.25, 0.125,

and 0.0625.
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In Figure 2.5(a), we present the non-dimensional drag, D′, the z′-component of

the total force on the cube,

D′ = −F⃗ ′
o · U⃗a

||U⃗a||
= F⃗ ′

o · k̂ = F⃗o · k̂
µ̃UsL

, (2.39)

as computed by both methods, using equations (2.28) and (2.32), for various

resolutions. We first observe that both methods converge to the same limit value of

D′ ≈ 25.401 as we decrease ∆x. These results agree very well with the observations

of Gurel et al. (Gurel, Ward, & Whitmore, 1955) who found a drag of 25.311, and with

the empirical relation proposed by Johnson et al. (D. L. Johnson, Leith, & Reist, 1987),

which yields a drag of 25.150. Values given in earlier literature are similar but somewhat

smaller, with McNown & Malaika (McNown & Malaika, 1950) reporting a drag of 24.311.

These literature values are also plotted in Figure 2.5(a).

Figure 2.5(b) presents the error relative to the limit value of D′
ex = 25.401 for

both methods. We notice that the convergence rate is similar in both methods, showing a

convergence rate slightly higher than one. Typically, one expects to observe a quadratic

order of convergence using the mid-point integration rule. However, the order of

convergence is likely lower here owing to the presence of edges and corners, which are

not treated specially as a resolution is increased.

Figure 2.6: The shaded face is the domain where the stress vector and density shown

in Figure 2.7 and 2.8 are computed. The red arrow shows the x-axis used in Figure 2.9.

Sample streamlines, discussed in Section 2.4.2, are shown as dashed lines. We also show

the translation vector, U⃗ ′
a.

The single-layer method is seen to be more accurate than the double-layer
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method, with an error approximately four times smaller. In other words, a similar degree

of accuracy can be obtained with the single-layer method when using a value of ∆x four

times greater than the double-layer method. The other components of the force acting

on the cube, as well as the total torque, are expected to be exactly zero because of the

symmetry of the cube. In our computations, the torque and the other components of the

force never exceed 10−10, as anticipated.

We now consider point-wise quantities such as the stress vector, density func-

tion, and velocity on the surface of the cube and in the fluid exterior of the cube. These

quantities are computed in the plane z′ = 1, which coincides with the face of the cube

normal to the incoming flow, as shown in Figure 2.6.
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Figure 2.7: Vertical (z′) component of the stress vector, f⃗ ′, computed using the single-

layer potential shown at z′ = 1, as illustrated in Figure 2.6. The resolution is: (a) ∆x = 2,

(b) ∆x = 0.5, and (c) ∆x = 0.0625. The color bar is the same for all three figures.
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Figure 2.8: Vertical (z′) component of the density, ψ⃗′, computed using the double-layer

potential, shown at z′ = 1, as illustrated in Figure 2.6. The resolution is: (a) ∆x = 2, (b)

∆x = 0.5, and (c) ∆x = 0.0625. The color bar is the same for all three figures and the

same as in Figure 2.7.
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We show in Figure 2.7 and 2.8 the z′-component of the stress vector, f⃗ ′, and

of the density, ψ⃗′, respectively. When varying the resolution of the cube, we obtain N2
x

different values of the stress vector or density for each side of the cube; each assumed

to be constant on a square with side length ∆x. Comparing Figs. 2.7 and 2.8, it is clear

that the stress vector is better approximated by a constant value than the density. As can

be seen in both Figure 2.7 and 2.8, convergence is slowest at the edges and even more

so at the corners. Despite the rapid variations of the stress vector and density at the

corners, the drag is seen to converge with increased resolution, see Figure 2.5, though

perhaps with a slower order of convergence than would be expected from a mid-point

rule. The single-layer potential approach thus provides a good approximation of the

total drag even at low resolution. In contrast, the double-layer potential method finds a

density that varies to a greater extent over the face of the higher-resolution cube, making

low-resolution estimates less accurate. On the other hand, the variations near the corners

are smoother, which could make this method a better choice if one were focusing on the

behavior at the edges or corners. These observations are consistent with the single-layer

approach resulting in more accurate computations of the drag than the double-layer

approach when using the same resolution.
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Figure 2.9: Vertical (z′) component of the velocity, denoted by w′, along the line (x′, 0, 1)
as illustrated in Figure 2.6. We show three different resolutions for the (a) single-layer

method and (b) double-layer method.

We next present analysis of the z′−component of the velocity, w′, when the cube

has the same translation velocity, U⃗ ′
a = (0, 0,−1). In Figure 2.9, we present this velocity

along the line (x′, 0, 1), shown in Figure 2.6 as the red arrow, as we vary the resolution
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of the cube for both the single-layer and double-layer approaches. When using the

single-layer potential, we compute the velocity for all points using equation (2.27). For

the double-layer potential approach, we compute the velocity at points on the surface

of the cube using equation (2.31) and at points in the fluid exterior to the cube using

equation (2.30). In Figure 2.9, dashed lines represent the edge of the cube, i.e., points

x′ ∈ [0, 1] are on the cube surface and points x′ ∈ (1, 2] are exterior to the cube. Since we

impose the translation velocity, U⃗ ′
a at the center of each square, we expect that w′ = −1

for x′ ∈ [0, 1]. We observe that on the cube surface, the single-layer method, shown in

Figure 2.9(a), results in smoother velocities than the double-layer method, shown in

Figure 2.9(b). In Figure 2.9(a), as ∆x decreases, the velocities on the surface of the cube

converge to −1. The velocity on the edge of the surface, at x′ = 1, does not agree exactly

with the expected value, though it approaches -1 as ∆x decreases. On the other hand,

the double-layer approach has discontinuous oscillations of the velocity on the surface.

This is due to our assumption of locally constant, and thus discontinuous, ψ⃗′, which

directly affects the velocity in equation (2.31). The oscillations decrease in amplitude

as ∆x decreases, and the velocity exterior to the cube is smooth. The discrepancy with

the expected velocity at the edge of the cube, x′ = 1, is greater than for the single-layer

approach.
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Figure 2.10: Comparison of the condition number for the linear system of both the

single-layer and double-layer methods as the resolution of the cube is varied.

We conclude the comparison of the two methods by considering their computa-

tional complexity. It has been observed that Fredholm integral equations of the first kind,

such as that associated with the single-layer potential, often lead to ill-posed numerical
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methods when the surface integral is discretized (Delves et al., 1974; Karrila & Kim, 1989).

The main challenge is dealing with the singularity of the the integral kernel. However,

in our method, we compute the surface integrals analytically over each square so that

the kernel singularities are integrated exactly. In addition, we constrain the system to

have a unique solution through equation (2.36). We compare the condition number of

the linear system of each of our two methods for various resolutions in Figure 2.10. We

find that the condition number of the single-layer method is approximately inversely

proportional to ∆x. On the other hand, the condition number of the double-layer method

is approximately inversely proportional to (∆x)3 and is thus much greater.

Based on our findings of more accurate drag, smoother and more accurate

velocity, and smaller condition numbers, we conclude that the single-layer potential

approach is more appropriate to model flow around aggregates made of cubic particles.

In the remainder of this chapter, we, therefore, present results obtained using the single-

layer approach.

2.4.2 Streamlines

To gain a better understanding of the flow around a cube, we present the

streamlines generated when U⃗ ′
a = (0, 0,−1). We show the streamlines around the cube

in the frame of reference of the cube for y′ = 0 in Figure 2.11 (see Figure 2.6 for the exact

location of the face and sample streamlines). To compute the streamlines, we first obtain

the values of stress vector, f⃗ ′(x⃗′
s), on each square face of the cube using equation (2.27).

We then chose initial positions below the cube and used a second-order Runge-Kutta

method to advance the positions in time using the corresponding velocities computed

using equation (2.27) at each position. We compare the streamlines with four different

resolutions of the cube; ∆x = 2, 1, 0.5, and 0.25. For the cube with ∆x = 2, streamlines

are seen to enter the interior of the cube.

In Figure 2.11 (a), we obtained the most inaccurate streamlines, violating our

solid boundary surface assumption. This implies that we need more than one cube to

model an aggregate. We observe the major error occurs at the corner of the cubes. We

interpret the error at low resolution as smoothing of the cube. As we increase the resolu-

tion, the streamlines remain exterior to the cube. Moreover, higher resolutions result in

streamlines following the cube boundary more accurately, showing the convergence of

the method.
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Figure 2.11: Streamlines around a cube with varying resolution moving in the

z′−direction. The resolution is: (a) ∆x = 2, (b) ∆x = 1, (c) ∆x = 0.5, and (d) ∆x = 0.25.

2.5 Forces on Aggregates Subject to a Background Flow

In this section, we present the response of the aggregates when subjected to

various flow fields. We consider an aggregate at rest, with boundary condition u⃗′ = 0 on

the surface of the aggregate, subject to a background flow. Three common background

flows are considered, which can be combined to provide an approximation of any general

flow to first order in space: U⃗ ′
bg(x⃗) = −U⃗ ′

a − Ω⃗′ × x⃗′ + ¯̄M ′ · x⃗′, the primes indicating

dimensionless quantities as above. Here, −U⃗ ′
a is the translation velocity of the flow past

an aggregate or equivalently when changing the frame of reference, a constant settling

velocity U⃗ ′
a of the aggregate in a fluid at rest. Similarly, −Ω⃗′ is the constant angular

velocity of a rotating flow around an aggregate, or equivalently when changing the

frame of reference, the constant angular velocity of a rotating aggregate in a fluid at



28

rest. Lastly, ¯̄M ′ is a traceless, symmetric tensor that induces a straining flow around the

aggregate. In all three cases, to solve for the response of the aggregates, we decompose

the fluid velocity as u⃗′ = U⃗ ′
bg + U⃗ ′

c, where the correction velocity, U⃗ ′
c, decays to zero at

infinity and satisfies U⃗ ′
c = −U⃗ ′

bg on the surface of the aggregate. Using this formulation

allows for this correction to be computed via the single-layer potential boundary integral

as described above in Sections 2.3 and 2.4.

2.5.1 Translation Flow
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Figure 14: Non-dimensional drag of aggregates in a constant flow, ~U 0
bg = ~U 0

a = (0, 0, 1), as a function of
gyration radius R0

g for aggregates of different sizes, N . We present in (a) the drag of individually-added-
aggregates (IAA) and in (b) the drag of cluster-cluster-aggregates (CCA). The dashed lines are least-square
linear fits: in (a) D0 = 21.47R0

g and in (b) D0 = 18.04R0
g .

a linear fit was optimal for IAA, finding ↵ = 1.00, and found a somewhat smaller exponent for CCA, with
↵ = 0.85. Assuming a linear relation, we find for individual aggregation (IAA) that a least-square fit has
a slope of 21.47 with a coefficient of determination of R2 = 0.95 (Fig. 14(a) For cluster aggregation (CCA),
we find a best-fit line with slope 18.04, and a corresponding coefficient of determination of R2 = 0.86 (Fig.
14(b)).

These results are consistent with experimental results showing a linear relationship between the drag on an
aggregate and the square root of A0

p, the two-dimensional projected area of the aggregate [51]. In addition
to computing the drag as a function of the gyration radius (Fig. 14), we computed the drag of aggregates as
a function of their projected area. We found that A0

p was not as good predictor of the drag experienced by
the aggregate. In particular, for aggregates containing a fixed number of cubes, there we saw no correlation
between the projected area and the forced experienced by the aggregate. A similar observation holds for
the torque and straining force discussed below, and as a result, we choose to present all of our results in
terms of either the maximum or gyration radius.

Although the relationship between the drag and gyration radius is nearly linear, there appears to be further
structure in the data obtained, as is particularly visible for CCA in Fig. 14(b). For an aggregate composed of
a fixed number of cubes, N , the drag increases linearly with aggregate size, but at a slower rate than when
N is also allowed to vary. To better characterize this dependency, we introduce a rescaled non-dimensional
drag that takes into account the difference between the gyration radius of a given aggregate and the mean
gyration radius of all aggregates with the same number of cubes. We denote the average gyration radius
for aggregates of N cubes as R̄0

g(N). Similarly, we define an average maximum radius for aggregates made
of N cubes as R̄0

m(N). We may then define the departure from these average value as

�g =
R0

g � R̄0
g

R̄0
g

and �m =
R0

m � R̄0
m

R̄0
m

.

These measures are positive when the aggregate is more spread out than the mean aggregate size and
negative when the aggregate is more compact than the mean. We then define a rescaled drag that accounts
for the variability in the aggregate radius as

D0
r =

D0

1 + ��g
, (29)

17

(a) (b)

Figure 2.12: Non-dimensional drag of aggregates in a constant flow, U⃗ ′
bg = −U⃗ ′

a =
(0, 0, 1), as a function of gyration radius R′

g for aggregates of different sizes, N . We

present in (a) the drag of individually-added-aggregates (IAA) and in (b) the drag of

cluster-cluster-aggregates (CCA). The dashed lines are least-square linear fits: in (a)

D′ = 21.47R′
g and in (b) D′ = 18.04R′

g.

We first consider a constant background velocity, U⃗ ′
bg(x⃗′) = −U⃗ ′

a = (0, 0, 1).

In Figure 2.12, we present the non-dimensional drag on the aggregate, D′, as defined

in equation (2.39), as a function of the non-dimensional gyration radius, R′
g, of each

aggregate. We show in Figure 2.12(a) the drag on aggregates formed by individual

random walkers (IAA) and in Figure 2.12(b) the drag on aggregates formed by cluster

aggregation (CCA). Recall that aggregates formed by individually-added random walk-

ers tend to be more compact. The drag appears to scale linearly with the gyration radius

for both types of aggregates, as would be expected from dimensional considerations for

the proper measure of the size of an aggregate. Note that for all the fits presented in this

section, we compute the coefficient of determination, R2, using either the gyration or
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maximum radius as an independent variable to assess how closely each model fits the

data.

To verify this linear relationship between the drag and the gyration radius, we

found the slope of D′ as a function of R′
g on a log-log plot, giving the best exponent, α,

in the relation D′ ∼ (R′
g)α. This confirmed that a linear fit was optimal for IAA, finding

α = 1.00, and found a somewhat smaller exponent for CCA, with α = 0.85. Assuming

a linear relation, we find for individual aggregation (IAA) that a least-square fit has a

slope of 21.47 with a coefficient of determination of R2 = 0.95 (Figure 2.12(a)) For cluster

aggregation (CCA), we find a best-fit line with a slope of 18.04 and a corresponding

coefficient of determination of R2 = 0.86 (Figure 2.12(b)).

These results are consistent with experimental results, which showed a linear

relationship between the drag on an aggregate and the square root of A′
p, the two-

dimensional projected area of the aggregate (Tang, Greenwood, & Raper, 2002). In

addition to computing the drag as a function of the gyration radius, we computed the

drag of aggregates as a function of their projected area. We found that A′
p was not a

good predictor of the drag experienced by the aggregate. In particular, for aggregates

containing a fixed number of cubes, we observed no correlation between the projected

area and the drag experienced by the aggregate. A similar observation holds for the

torque and straining force discussed below, and as a result, we choose to present all of

our results in terms of either the maximum or gyration radius.

Although the relationship between the drag and gyration radius is nearly linear,

there appears to be further structure in the data obtained, as is particularly visible for

CCA in Figure 2.12(b). For an aggregate composed of a fixed number of cubes, N , the

drag increases linearly with aggregate size but at a slower rate than when N is also

allowed to vary. To better characterize this dependency, we introduce a rescaled non-

dimensional drag that takes into account the difference between the gyration radius of a

given aggregate and the mean gyration radius of all aggregates with the same number

of cubes. We denote the average gyration radius for aggregates of N cubes as R̄′
g(N).

Similarly, we define an average maximum radius for aggregates made of N cubes as

R̄′
m(N). We may then define the departure from these average values as

σg =
R′

g − R̄′
g

R̄′
g

and σm = R′
m − R̄′

m

R̄′
m

.

These measures are positive when the aggregate is more spread out than the mean

aggregate size and negative when the aggregate is more compact than the mean. We use
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Figure 15: Rescaled non-dimensional drag, D0
r, as a function of gyration radius R0

g for (a) individually-
added aggregates (IAA) and for (b) cluster-cluster-aggregates (CCA). Here, D0

r is defined in equation (29)
and the fit used, plotted as dashed lines, are given in equation (30) for figure (a) and in equation (31) for
figure (b).

where � is an empirical parameter that we fit based on the data. To optimize the collapse, we choose � to
maximize the correlation coefficient between the rescaled drag and the gyration radius.

As seen in Fig. 15 the data collapses better. For IAA, we find � = �0.43, with a best-fit line of D0
r = 21.55R0

g ,
which improves the determination coefficient, though only to a relatively small degree as the data was
already nearly linear. This negative value of � indicates that less compact aggregates have less drag than
more compact aggregates when composed of the same number of cubes. The drag is thus well described
by

D0 = 21.55

 
1 � 0.43

R0
g � R̄0

g

R̄0
g

!
R0

g . (30)

where the mean gyration radius is R̄0
g = 1.32N0.39 as described in section 3. For CCA, the same procedure

yielded � = �0.64, and the resulting collapse is shown in Fig. 15(b). The rescaled drag follows a much
improved linear relationship as a function of the gyration radius, with a slope of 18.16 and a coefficient of
determination of R2 = 0.97. A complete description of the drag for CCA is thus

D0 = 18.16

 
1 � 0.64

R0
g � R̄0

g

R̄0
g

!
R0

g (31)

where the mean gyration radius is R̄0
g = 0.85N0.56.

5.2 Rotating flow

In Fig. 16, we present the non-dimensional torque as a function of gyration radius for aggregates subject to
a rotating background flow, ~U 0

bg(~x
0) = ~⌦0 ⇥ ~x0. We present only the component of the torque parallel to ~⌦0,

as the other two components both average to zero. This component, T 0, is non-dimensionalized using the
angular velocity,

T 0 = ~Q0 ·
~⌦0

||~⌦0||
and ~Q0 =

~Q

µ||~⌦||L3
(32)
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Figure 2.13: Rescaled non-dimensional drag, D′
r, as a function of gyration radius R′

g for

(a) individually-added aggregates (IAA) and for (b) cluster-cluster-aggregates (CCA).

The rescaled drag, D′
r, is defined in equation (2.40), and the fits to the data, plotted as

dashed lines, are given in equation (2.41) for (a) and in equation (2.42) for (b).

these measures to define a rescaled drag that accounts for the variability in the aggregate

radius as

D′
r = D′

1 + γσg
, (2.40)

where γ is an empirical parameter that we fit based on the data. To optimize the collapse,

we choose γ to maximize the correlation coefficient between the rescaled drag and the

gyration radius.

As seen in Figure 2.13 the data collapses better. For IAA, we find γ = −0.43,

with a best-fit line of D′
r = 21.55R′

g, which improves the coefficient of determination

to 0.97, which is a relatively small gain as the data was already nearly linear. This

negative value of γ indicates that less compact aggregates experience more drag than

more compact aggregates when composed of the same number of cubes. The drag is

thus well described by

D′ = 21.55
(

1 − 0.43
R′

g − R̄′
g

R̄′
g

)
R′

g . (2.41)

where the mean gyration radius is R̄′
g = 1.32N0.39, as described in Section 3. For

CCA, the same procedure yielded γ = −0.64, and the resulting collapse is shown in

Figure 2.13(b). The rescaled drag follows a much improved linear relationship as a

function of the gyration radius, with a slope of 18.16 and a coefficient of determination



31

of R2 = 0.97. A complete description of the drag for CCA is thus

D′ = 18.16
(

1 − 0.64
R′

g − R̄′
g

R̄′
g

)
R′

g (2.42)

where the mean gyration radius is R̄′
g = 0.85N0.56. A similar dependence was found

when replacing the gyration radius with the maximum radius or the square root of

the projected area. However, the coefficients of determination were then lower, by

approximately 2%, and the best-fit exponents, α, were lower for the gyration radius and

further from one for the projected area (lower for IAA, higher for CCA). This indicates

that the gyration radius is a better descriptor of the size of an aggregate when considering

the drag.

2.5.2 Rotating flow
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Figure 16: Non-dimensional torque, T 0, defined in equation (32), as a function of gyration radius, R0
g ,

for aggregates composed of varying number of cubes, N . In (a) individually-added-aggregates (IAA) are
presented and in (b) cluster-cluster-aggregates (CCA) are presented. The dashed lines are least-square cubic
fits: in (a) T 0 = 44.12(R0

g)
3 and in (b) T 0 = 24.98(R0

g)
3.

Here, we expect a cubic dependence of the torque on a properly chosen measure of the aggregate’s size,
is in contrast to the linear dependence of the drag, described in Section 5.1. This is because computing a
torque rather than a force increases the order of dependence on the gyration radius by one. In addition,
this calculation is based on an imposed angular velocity, ~⌦0 rather than a translation velocity, which also
increases the order of the dependence on the gyration radius by one. We verified that a cubic fit was the
most appropriate by finding the slope on a loglog plot of the torque as a function of gyration radius, yielding
the best exponent ↵ in the relation T 0 ⇠ (R0

g)
↵. This confirmed that a cubic fit was optimal for IAA, finding

↵ = 3.00, and again found a somewhat smaller exponent for CCA, with ↵ = 2.68, indicating that the torque
of CCA shows a slower average growth and, as can be seen in Fig. 16, noticeably more variability. Assuming
a cubic fit, we find for the IAA a least-square fit of T 0 = 44.12(R0

g)
3 with coefficient of determination

R2 = 0.91 and for the CCA a least-square fit of T 0 = 24.98(R0
g)

3 with coefficient of determination R2 = 0.81.
A similar dependence was found when replacing the gyration radius with the maximum radius, though
generally with somewhat smaller coefficients of determination and best fit exponents ↵, indicating that the
gyration radius is a more useful descriptor of the size of an aggregate when describing its torque.

5.3 Extensional flow

We now consider the response of an aggregate to an extensional flow, ~U 0
bg(~x

0) = ¯̄M 0 · ~x0. In such a back-
ground flow, for an object with no preferred orientation, the drag and torque both average to zero. However,
the aggregate will be under effective tension or compression, an effect that could lead to rupture. Quan-
tifying these forces is relevant to the formation and breakup of marine aggregates. We therefore define a
straining force vector, ~E, that quantifies this effect. We non-dimensionalize using the greatest eigenvalue in
magnitude of the matrix ¯̄M which we denote by |�|, and obtain

~E0 =
~E

µ|�|L2
. (33)

The straining force may be decomposed as ~E0 = E0
1v̂1 +E0

2v̂2 +E0
3v̂3, where the v̂i are the real, orthonormal

eigenvectors in the spectral decomposition of ¯̄M 0, which is always possible since ¯̄M 0 is symmetric. The
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Figure 2.14: Non-dimensional torque, T ′, defined in equation (2.43), as a function of

gyration radius, R′
g, for aggregates composed of a varying number of cubes, N . In (a)

individually-added-aggregates (IAA) are presented, and in (b) cluster-cluster-aggregates

(CCA) are presented. The dashed lines are least-square cubic fits: in (a) T ′ = 44.12(R′
g)3

and in (b) T ′ = 24.98(R′
g)3.

In Figure 2.14, we present the non-dimensional torque as a function of gyration

radius for aggregates subject to a rotating background flow, U⃗ ′
bg(x⃗′) = −Ω⃗′ × x⃗′. We

present only the component of the torque parallel to Ω⃗′, as the other two components

both average to zero. This component, T ′, is non-dimensionalized using the angular
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velocity,

T ′ = −Q⃗′
o · Ω⃗′

||Ω⃗′||
and Q⃗′

o = Q⃗o

µ̃||Ω⃗||L3
(2.43)

Here, we expect a cubic dependence of the torque on a properly chosen measure

of the size of the aggregate, in contrast to the linear dependence of the drag as described

in Section 2.5.1. This is because computing a torque rather than a force increases the order

of dependence on the gyration radius by one. In addition, this calculation is based on an

imposed angular velocity, Ω⃗′, rather than a translation velocity, which also increases the

order of the dependence on the gyration radius by one. We verified that a cubic fit was

the most appropriate by finding the slope on a log-log plot of the torque as a function of

gyration radius, yielding the best exponent α in the relation T ′ ∼ (R′
g)α. This confirmed

that a cubic fit was optimal for IAA, with α = 3.00, and again we observed a somewhat

smaller exponent for CCA, with α = 2.68, indicating that the torque of CCA shows a

slower average growth. Furthermore, for CCA, as can be seen in Figure 2.14(b), there is

noticeably more variability. Assuming a cubic fit, we find for the IAA a least-square fit of

T ′ = 44.12(R′
g)3 with the coefficient of determination R2 = 0.91 and for the CCA a least-

square fit of T ′ = 24.98(R′
g)3 with the coefficient of determination R2 = 0.81. Here too,

a similar dependence was found when replacing the gyration radius with the maximum

radius or projected area, though again with smaller coefficients of determination and

best-fit exponents further from three as expected from dimensional analysis, so that

the gyration radius is also a more useful descriptor of the size of an aggregate when

studying the torque.

2.5.3 Extensional flow

We now consider the response of an aggregate to an extensional flow, U⃗ ′
bg(x⃗′) =

¯̄M ′ · x⃗′. In such a background flow, for an object with no preferred orientation, the drag

and torque both average to zero. However, the aggregate will be under effective tension

or compression, an effect that could lead to rupture. Quantifying these forces is relevant

to the formation and breakup of marine aggregates. We, therefore, define a straining

force vector, E⃗, that quantifies this effect. We non-dimensionalize this force using the

largest eigenvalue in the magnitude of the matrix ¯̄M which we denote by |λ| and obtain

E⃗′ = E⃗

µ̃|λ|L2 . (2.44)
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Figure 17: Non-dimensional straining force, S0
f , define in equations (??) and (??) , as a function of the maxi-

mum radius R0
m for aggregates of different sizes N . In (a) are individually-added-aggregates (IAA) and in

(b) are cluster-cluster-aggregates (CCA). The dashed lines are least-square fits quadratic approximations:
in (a) for IAA, S0

f = 7.48(R0
m)2 and in (b) for CCA, S0

f = 6.64(R0
m)2.

components of ~E0 are then defined as

E0
i =

1

2

✓Z

S0
|~f 0 · v̂i| dS0 �

����
Z

S0
~f 0 dS0

���� · v̂i

◆
, (34)

where ~f 0 · v̂i is the projection of the stress in the direction of the eigenvector v̂i. This straining force is a
measure of how much stress imposed in one direction is also applied in the opposite direction resulting in
a strain on the aggregate. The factor of 1/2 accounts for the double counting of the tensile or compressive
forces when integrating over stress in the direction of, and opposite to, the vector v̂i. We have subtracted
the component of the net force in each direction to obtain a straining force that is independent of the net
force on the object. In the results shown in this section, we consider two-dimensional extensional flows, for
which the eigenvalues are �1, 0, and 1.

For the straining force, dimensional considerations lead us to expect a quadratic dependence on an appro-
priate measure of the aggregate’s size. However, we found that the slope of the straining force as a function
of gyration radius on a loglog plot, giving the exponent ↵ in the relation S0

f ⇠ R0↵
g , yielded values greater

than two for both IAA and CCA (with exponents of 2.1 and 2.2 respectively. In contrast, using the maxi-
mum radius as a measure of the aggregate’s size resulted in a dependence that was much closer to being
quadratic, with best fits on the growth exponent giving S0

f ⇠ (R0
m)1.98 for IAA and S0

f ⇠ (R0
m)2.01 for CCA.

We therefore present the data as a function of maximum radius rather than gyration radius, as R0
m appears

to be a better predictor of the straining force. In Fig. ?? we present the component of the straining force in
the direction of stretching, denoted by S0

f , for aggregates of different sizes as a function of the maximum
radius R0

m. The dashed lines in Fig. ?? are quadratic fits to the data as a function of maximum radius and we
find best fits of S0

f = 7.48(R0
m)2 for IAA with coefficient of determination of R2 = 0.74, and S0

f = 6.64(R0
m)2

with coefficient of determination of R2 = 0.56 for CCA. For both IAA and CCA, we observe that if N is
held constant and the maximum radius varied, the growth of the straining force seems to be significantly
slower than quadratic. This once again suggests a rescaling as in Section ??.

To rescale the straining force, we define

S0
r =

S0
f

1 + ��m
,

with �m defined above as the non-dimensional deviation from the average maximum radius for aggregates
of the same size. This rescaled force yields a better collapse of the data, as can be seen in Fig. ??, particularly
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Figure 2.15: Non-dimensional straining force, S′
f , defined using equations (2.44)

and (2.45), as a function of the maximum radius, R′
m, for aggregates of different sizes N .

In (a) individually-added-aggregates (IAA) and (b) cluster-cluster-aggregates (CCA) are

presented. The dashed lines are least-square quadratic fits: in (a) for IAA, S′
f = 7.48(R′

m)2

and in (b) for CCA, S′
f = 6.64(R′

m)2.

The straining force may be decomposed as E⃗′ = E′
1v̂1 + E′

2v̂2 + E′
3v̂3, where the v̂i are

the real, orthonormal eigenvectors in the spectral decomposition of ¯̄M ′, which is always

possible since ¯̄M ′ is symmetric. The components of E⃗′ are then defined as

E′
i = 1

2

(∫
S′

|f⃗ ′ · v̂i| dS′ −
∣∣∣∣∫

S′
f⃗ ′ dS′

∣∣∣∣ · v̂i

)
, (2.45)

where f⃗ ′ · v̂i is the projection of the stress vector in the direction of the eigenvector

v̂i. This straining force is a measure of how much stress imposed in one direction

is also applied in the opposite direction resulting in a strain on the aggregate. The

factor of 1/2 accounts for the double counting of the tensile or compressive forces when

integrating the stress vector in the direction of, and opposite to, the vector v̂i. We have

subtracted the component of the net force in each direction to obtain a straining force

that is independent of the net force on the object. In the results shown in this section,

we consider two-dimensional extensional flows, for which the eigenvalues are −1 in the

x′-direction, 1 in the y′-direction, and 0 in the z′-direction. We present the component of

the straining force in the y′-direction, denoted as S′
f .

For the straining force, dimensional considerations lead us to expect a quadratic

dependence on an appropriate measure of the aggregate’s size. However, we found that

the slope of the straining force as a function of gyration radius on a log-log plot, giving
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the exponent α in the relation S′
f ∼ (Rg)′α, yielded values greater than two for both IAA

and CCA, with exponents of 2.1 and 2.2, respectively. In contrast, using the maximum

radius as a measure of the aggregate’s size resulted in a dependence that was much

closer to being quadratic, with best fits on the growth exponent giving S′
f ∼ (R′

m)1.98

for IAA and S′
f ∼ (R′

m)2.01 for CCA. We, therefore, present the data as a function of the

maximum radius rather than the gyration radius, as R′
m appears to be a better predictor

of the straining force. In Figure 2.15, we present S′
f for aggregates of different sizes as

a function of the maximum radius, R′
m. The dashed lines in Figure 2.15 are quadratic

fits to the data as a function of maximum radius and we find best fits of S′
f = 7.48(R′

m)2

for IAA with the coefficient of determination of R2 = 0.74, and S′
f = 6.64(R′

m)2 with

the coefficient of determination of R2 = 0.56 for CCA. For both IAA and CCA, we

observe that if N is held constant and the maximum radius is varied, the growth of the

straining force seems to be significantly slower than quadratic. This once again suggests

a rescaling as in Section 2.5.1.
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Figure 18: Rescaled non-dimensional straining force, S0
r, as a function of maximum radius R0

m for aggre-
gates of different sizes N . In (a) are individually-added-aggregates (IAA) and in (b) are cluster-cluster-
aggregates (CCA). The dashed lines are least-square quadratic fits: in (a) for IAA, S0

r = 8.24(R0
m)2, in (b) for

CCA, S0
r = 7.47(R0

m)2.

with �m defined above as the non-dimensional deviation from the average maximum radius for aggregates
of the same size. This rescaled force yields a better collapse of the data, as can be seen in Fig. 18, particularly
for IAA. Here we found that the best rescaling value was � = �1.32 for IAA, and � = �0.92 for CCA,
though in that case the resulting data appears to grow slightly faster than quadratically. Nonetheless, it
is possible to fit a quadratic to the rescaled drag, and doing so yields S0

r = 8.24R2
m with coefficient of

determination R2 = 0.89 for IAA and S0
r = 7.47R2

m with coefficient of determination R2 = 0.63 for CCA.

We note that the straining force, even when rescaled, exhibits a large amount of scatter compared to the
torque and drag, particularly for CCA, which tend to have more elongated aggregates. Observing individ-
ual aggregates of similar size but different straining forces reveals that the straining force is particularly
sensitive to the orientation of an aggregate. The scatter is thus largely due to this sensitivity, as the same
aggregate oriented differently can experience a significantly different straining force.

6 Discussion

To put the results obtained above into context, we compare them to the well-known corresponding results
for a sphere [19]. The gyration radius of a sphere of radius Rs is Rg =

p
2/5Rs and thus the Stokes

hydrodynamic force acting on a sphere is ~F = 6⇡µ~UaRs ⇡ 29.8µ~UaRg . Also, the torque on a rotating
sphere is ~Q = 8⇡µ~⌦R3

s ⇡ 99.35µ~⌦R3
g . For a sphere in an extensional flow, the exact solution of the straining

force for the flow satisfying ~Ubg = ¯̄M · ~x at infinity and ~Ubg = 0 on the surface of the sphere is known [19].
The details of the computation of the corresponding straining force are given in the appendix. We find that
for a matrix ¯̄M with unit eigenvector v̂i and corresponding eigenvalue �i, the straining force is

Ei =
1

2

Z

S

|~f · v̂i| dS = 5⇡µR2
s�i ⇡ 15.7µR2

m�i,

where we used that the maximum radius Rm of a sphere is simply its usual radius Rs and that a sphere in
an extensional flow experiences no net force.

Our results from Section 5, and the corresponding results for a sphere, are summarized in Table 1. We
first note that the hydrodynamic force acting on translating aggregates is significantly less than that acting
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Figure 2.16: Rescaled non-dimensional straining force, S′
r, as a function of maximum

radiusR′
m for aggregates of different sizesN . In (a) individually-added-aggregates (IAA)

and (b) cluster-cluster-aggregates (CCA) are presented. The dashed lines are least-square

quadratic fits: in (a) for IAA, S′
r = 8.24(R′

m)2, in (b) for CCA, S′
r = 7.47(R′

m)2.

To rescale the straining force, we define

S′
r =

S′
f

1 + γσm
,

with σm defined above as the non-dimensional deviation from the average maximum

radius for aggregates of the same size. This rescaled force yields a better collapse of the
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data, as can be seen in Figure 2.16, particularly for IAA. We found that the best rescaling

value was γ = −1.32 for IAA and γ = −0.92 for CCA. In the CCA case, the resulting

data appears to grow slightly faster than quadratic. Nonetheless, it is possible to fit

a quadratic to the rescaled drag, and doing so yields S′
r = 8.24R2

m with coefficient of

determination R2 = 0.89 for IAA and S′
r = 7.47R2

m with coefficient of determination

R2 = 0.63 for CCA.

We note that the straining force, even when rescaled, exhibits a large amount

of scatter compared to the torque and drag, particularly for CCA, which tend to have

more elongated aggregates. Observing individual aggregates of similar size but different

straining forces reveals that the straining force is particularly sensitive to the orientation

of an aggregate. The scatter is thus largely due to this sensitivity, as the same aggregate

oriented differently can experience a significantly different straining force.

2.6 Discussion

The results presented above all use a resolution of ∆x = 2, which corresponds to

using aggregates made of cubes of non-dimensional side length 2, not further refined. To

assess the accuracy of results with this resolution, we considered 16 different aggregates

made of 100 cubes of side length two and refined the resolution to use ∆x = 2, 1, and

2/3, thus increasing the number of cubes from 100 to 800 and 2700 while maintaining the

aggregate shape. Both the drag and torque were seen to converge as the resolution was

increased. The coarsest resolution, used in the section above, yielded results that were

less than 2% away from the more highly resolved results for the drag and less than 5%

away for the torque (we found for similar sampling that the extensional force behaved in

a manner between that of the drag and torque). For comparison, the standard deviation

of the drag and torque of the samples considered was approximately three times as large

for all resolutions studied. The variability between aggregates of a given size thus far

exceeds the error due to a coarse resolution. Further, we performed a similar study on

aggregates of various sizes and found that the effects of a coarse resolution decreased

as the size of the aggregate increased. The data we present is for aggregates of size

ranging from 25 to 200 cubes with ∆x = 2 and is, therefore, sufficiently accurate to allow

a meaningful quantification of the drag, extensional force, and torque.

To put the results for aggregates obtained in section 2.5 into context, we compare

them to the well-known corresponding results for a sphere (Guazzelli & Morris, 2011).
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The gyration radius of a sphere of radius Rs is Rg =
√

2/5Rs, and thus the Stokes

hydrodynamic force acting on a sphere is F⃗o = 6πµ̃U⃗aRs ≈ 29.8µ̃U⃗aRg. Also, the torque

on a rotating sphere is Q⃗o = 8πµ̃Ω⃗R3
s ≈ 99.35µ̃Ω⃗R3

g. For a sphere in an extensional flow,

the exact solution of the straining force for the flow satisfying U⃗bg = ¯̄M · x⃗ at infinity and

U⃗bg = 0 on the surface of the sphere is known (Guazzelli & Morris, 2011). The details

of the computation of the corresponding straining force are given in the appendix. We

find that for a matrix ¯̄M with unit eigenvector v̂i and corresponding eigenvalue λi, the

straining force is

Ei = 1
2

∫
S

|f⃗ · v̂i| dS = 5πµ̃R2
sλi ≈ 15.7µ̃R2

mλi,

where we used that the maximum radius Rm of a sphere is simply its usual radius Rs

and that a sphere in an extensional flow experiences no net force.

Our results from Section 2.5, and the corresponding results for a sphere, are

summarized in Table 2.1. We first note that the hydrodynamic force acting on translating

aggregates is significantly less than that acting on a translating sphere of the same

gyration radius. This is presumably because the aggregates are not densely filled and

thus allow some flow to effectively go through them. For the same reason, the force

on the more compact IAA is also greater than that on the less compact CCA. Similarly,

the coefficients of the torque for both types of rotating aggregates are less than those of

the corresponding rotating sphere. This is, once again, because less compact structures

encounter less torque from the fluid when rotating. Further, a similar observation also

holds for the straining force when in an extensional flow, where denser structures are

subject to a larger straining force for an equivalent radius.

Sphere IAA CCA

Force (−F⃗ ) 29.8µ̃U⃗aRg 21.47µ̃U⃗aRg 18.04µ̃U⃗aRg

Rescaled Force (−F⃗r) N/A 21.55(1 − 0.43σg)µ̃U⃗aRg 18.16(1 − 0.64σg)µ̃U⃗aRg

Torque (−Q⃗) 99.35µ̃Ω⃗R3
g 44.12µ̃Ω⃗R3

g 24.98µ̃Ω⃗R3
g

Straining Force (E⃗) 15.7µ̃R2
m|λ|v̂ 7.48µ̃R2

m|λ|v̂ 6.64µ̃R2
m|λ|v̂

Rescaled Strain. For. (Sr) N/A 8.24(1 − 1.32σm)µ̃|λ|R2
m 7.47(1 − 0.92σm)µ̃|λ|R2

m

Table 2.1: Summary of results from section 2.5 compared to corresponding results for a

sphere.

We may use our results to define a hydrodynamic radius, Rh, as the radius of a

sphere subject to similar forces or torque as a given aggregate. The exact hydrodynamic
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radius varies if we consider the force, torque, or straining force in their corresponding

flows. On average, we find that the hydrodynamic radius obtained considering forces

and torques was approximately Rh ≈ 1.15Rg for individually-added aggregates, and

Rh ≈ 1.01Rg for cluster-cluster aggregates. These results are consistent, though with

a smaller coefficient, with results found in terms of the maximum radius and based

on the drag alone by Zhang and Zhang (Zhang & Zhang, 2015). It should be noted

that corresponding spheres would also have a far larger volume, as volume scales like

V ∼ R3
g for spheres, while the volume of individually formed aggregates scales as

V ∼ R2.57
g and that formed by cluster aggregation scales as V ∼ R1.79

g .

As stated in the introduction, many models make use of the settling speeds of

aggregates. We can use our computed force to obtain a settling speed for an aggregate

with a given departure from the mean radius of aggregates of similar size, σg, and

gyration radius Rg. To do so, we match the hydrodynamic force with the buoyancy

force, F⃗b = g⃗V∆ρ. Here ∆ρ is the density difference between the aggregate and the

external fluid, and V = 8L3N is the aggregate volume, with L the half-width of the cubes

forming the aggregates and N the number of cubes within an aggregate. Depending on

the aggregate formation mechanism, the number of cubes will scale differently with the

gyration radius. For IAA, we found that N = 0.24(R′
g)2.56 and for CCA, we found that

N = 1.34(R′
g)1.79. Using equation (2.41) for IAA and equation (2.42) for CCA, we may

solve for the Stokes settling speed of aggregates. We thus find, for IAA

U⃗a = 0.19
(
g⃗∆ρL0.44R1.56

g

µ̃

)(
1

1 − 0.43σg

)
, (2.46)

and for CCA

U⃗a = 0.58
(
g⃗∆ρL1.21R0.79

g

µ̃

)(
1

1 − 0.64σg

)
. (2.47)

For comparison, the settling speed of a sphere in terms of its gyration radius is

U⃗a = 5
9

(
g⃗∆ρR2

g

µ̃

)
. (2.48)

These results are consistent with measurements that found that aggregates of fractal

dimension close to three, more similar to IAA, had a settling speed of aggregates slower

than predictions based on the settling speed of a corresponding sphere (Alldredge &

Gotschalk, 1988).

We note that the increase of the settling speed as a function of aggregate size

is slower than for solid objects, particularly for CCA, where the growth only scales
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as R0.79
g . Moreover, we remark that our initial estimate of the Reynolds number of an

aggregate was based on the Stokes settling speed of a sphere, which overestimates the

settling speed of an aggregate. The use of the Stokes equations is therefore appropriate

for aggregates with diameters even larger than 1mm, as initially argued.

Finally, we note that settling aggregates are generally subject to a non-zero

torque and, equivalently, rotating aggregates are subject to a non-zero force. This is a

result of the asymmetrical shape of any particular aggregate, which causes aggregates to

spin as they settle, or equivalently, to settle as they spin. This induced motion has no

preferred direction, and so the average over all the aggregates generated here is zero.

However, we have computed the standard deviation of the drag of all aggregates subject

to an angular velocity Ω⃗ and found that it scaled roughly quadratically with the gyration

radius. In general, then, one finds that a settling aggregate spins at a rate given by a

fraction of the ratio of its settling speed over its gyration radius, ||Ω⃗|| ∼ ||U⃗a||/Rg, with

the proportionality constant being approximately 0.005 for IAA and 0.013 for CCA.

2.7 Concentration dynamics simulations

The depth of the fluid or shape of aggregates is typically considered to quantify

the efficiency of transferring organic carbon via settling aggregates. In the euphotic

zone, which is the uppermost layer of the oceans, the majority of marine aggregates are

remineralized by metabolic processes (Henson, Sanders, & Madsen, 2012). Omand et

al. presented a model to study the sensitivity of the shape of the aggregates with its

remineralization rate and density (Omand et al., 2020). Our model of the gravitational

sinking aggregates can contribute to understanding the oceanic carbon cycle.

To understand this application and track the concentration dynamics of a

marine aggregate, we solve the three-dimensional advection-diffusion equation, that is

∂C

∂t
= −u⃗ · ∇C +DC∇2C, (2.49)

where C represents the CO2 concentration. Note that another type of concentration can

be considered depending on one’s interest. We denote the diffusivity (m2/s) of C as

DC . We may non-dimensionalize equation (2.49) using the same parameters as shown

in (2.23), in addition to the time parameter, t′ = (Us/L) t. As we non-dimensionalize
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equation (2.49), we find a dimensionless quantity, the Péclet number (Pe),

Pe = UsRa

DC
. (2.50)

It describes the ratio between the advection and diffusion time scales of the aggregate.

One can also find the Schmidt number to understand the diffusion rate of the fluid. Since

we consider the Stokes flow, the Schmidt number is effectively infinite.

With the Péclet number, the resulting advection-diffusion equation is

∂C ′

∂t′
= −u⃗′ · ∇′C ′ + 1

Pe
∇′2C ′. (2.51)

Based on the the diffusivity of CO2 in seawater (Park & Choi, 2020) measured, we find

the Péclet number,

Pe = UsRa

DCO2
≈ 3.8 × 10−4(m/s) ×

(
5 × 10−5) (m)

6 × 10−9(m2/s) ≈ 3.2 (2.52)

Note that this could differ for sizes of an aggregate, and we will explore various Péclet

numbers for our simulations within a reasonable range.

In the following subsection, we explain the numerical methods to solve and

couple the boundary integral equation with the advection-diffusion equation in time

and space. We close this chapter by presenting preliminary results of the concentration

dynamics in a homogeneous fluid.

2.7.1 Time integration

The main role of coupling the advection-diffusion equation is to update the

concentration C in time. The velocity field of the advection term in equation (2.51) is

obtained using the boundary integral equations. Note that the velocity does not depend

on time. We only update C in time. Since our entire fluid velocity computation is already

large and slow, we try to focus on efficiency for the concentration evaluation.

For the time integration, we initially selected the trapezoidal rule as the implicit

method,

Cn+1
j = Cn

j + ∆t
2
[
F
(
Cn+1

j

)
+ F

(
Cn

j

)]
, (2.53)

and the two-stages Runge-Kutta as the explicit scheme,

Ctemp
j = Cn

j + ∆t
2 F

(
Cn

j

)
(2.54)

Cn+1
j = Cn

j + ∆tF
(
Ctemp

j

)
, (2.55)
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where Cn
j represents the discrete concentration value C ′ at a numerical grid xj and n−th

time step. Here, the function, F , represents any choice of spatial discretization method.

2.7.2 Spatial discretization

There are two spatial discretizations we considered: 1) finite differences (central

differences) and 2) discrete Fourier transform (DFT). For this comparison, we consider

the one-dimensional (1D) version of the advection-diffusion equation,

∂C

∂t
= −u(x)∂C

∂x
+ 1

Pe
∂2C

∂x2 . (2.56)

The finite differences method allows us to set various boundary conditions.

We apply the central differences for both the advection and diffusion terms to obtain

second-order convergence in space with finite differences. One concern is the stability

of numerical methods. We, therefore, want to be careful about and keep track of the

Courant-Friedrichs-Levy (CFL) condition for both the advection and diffusion terms,

max(|u|) ∆t
∆x ≤ 1 for advection, and,

1
Pe

∆t
∆x2 ≤ 1 for diffusion. (2.57)

On the other hand, the DFT is a well-known method to obtain spectral accuracy

on a simple periodic domain with smooth data. It is a discretized version of the Fourier

transform using the concept of Riemann sums in a bounded domain instead of infinite

space. When we use a product of a small prime factor as the number of discretization

nodes, typically, DFT is more efficient than finite differences. Thus, it is worthwhile

to compare both methods before we choose one. In the one-dimensional domain x ∈
(−Lx/2, Lx/2], with period L, we discretize the domain with N points. The stepsize,

then, ∆x is ∆x = Lx/N . We use MATLAB built-in tools fft and ifft to compute

the DFT and inverse DFT conveniently. The output of fft of f(xj) is f̂k. Once we

have values in Fourier space, f̂k, we simply multiply by ik or −k2 to obtain f̂ ′
k or f̂ ′′

k ,

respectively. One advantage of the DFT can be seen by letting N with the power of a

small prime number, typically 2. This allows the floating point operations to become

O(N logN) instead of O(N2). Additionally, if the solution is m times differentiable, the

convergence rate for a spectral method is O(N−m).

Comparison between two spatial methods

Since our boundary integral method requires an infinite ambient, we approxi-

mate periodic boundary conditions by using a large domain size that does not affect the
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accuracy of the solutions near the aggregate. The velocity decreases toward zero on the

edge of our domain, but it is not exactly zero, resulting in a jump at the boundary. We,

therefore, compare the finite differences and the discrete Fourier transform methods to

determine the one that best handles the jump at the boundaries. We investigate the error

versus computing time by fixing a jump size with various resolutions. We ran the code

for t = 10π in the 1D domain [0, 2π]. In Figure 2.17, each start point represents the error

obtained with the largest spatial discretization (∆x ≈ 0.1). Note that the finest solution

with ∆x ≈ 0.003 is used as the reference solution when computing the error.

4 6 8 10 12 14
10-6

10-5

10-4
 start

 start

FD
DFT

4 6 8 10 12 14
10-7

10-6

10-5

10-4

 start

 start

FD
DFT

Figure 2.17: Error and computing time with jump size (left) O(10−4) and (right) O(10−3)
with various resolutions (∆x ≈ [0.1, 0.05, 0.025, 0.01, 0.006])

At a glance, the error decreases, and computing time increases with higher

resolutions, as we expected. In particular, the left panel of Figure 2.17 shows a smaller

error due to the jump size that is about O(10−4). We note the computing time differences

between the two methods. We can see this clearly in the right panel of Figure 2.17.

To get a particular error size, the finite differences scheme requires less time than the

DFT method. The gap between the two methods becomes larger as we compute the

solution with finer resolution. This is explained by the fact that the MATLAB built-in

functions, fft, and ifft, spend more time than building the sparse matrix for the finite

differences to compute derivatives. It shows that finite differences are more efficient

for our situation. Thus, we have decided to use the finite differences scheme for spatial

discretization of the advection-diffusion equation.
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2.7.3 Frames of reference

Throughout this work, we use two frames of reference: 1) lab and 2) moving

frame of reference. First, for the fluid velocity computation, we use the lab frame of

reference to take advantage of the zero velocity boundary condition at infinity, as shown

in Figure 2.18 (left). This condition implies that the domain is large enough compared

Figure 2.18: Schematics of frames of reference. (Left) lab frame and (right) moving frame

of reference

to the aggregate. We solve for the stress on the aggregate boundary by prescribing the

constant velocity or the body force of the aggregate to compute the fluid velocity field.

On the other hand, we use the moving frame to model the concentration

dynamics. In this setting, we fix the aggregate in the middle of the fluid domain and

move the fluid upward to describe the settling motion, as shown in Figure 2.18 (right).

This can be done by changing variable from the velocities in the lab frame; we simply

add −U⃗a to all velocities in the lab frame of reference,

u⃗M = u⃗L − U⃗a.

The velocity at the boundary of the fluid domain becomes the same speed but in the

opposite direction, i.e., −U⃗a = (0, 0, 1). We also can see that now the aggregate has zero



43

velocity in the moving frame of reference.

2.7.4 Simulations

As a sample simulation, we use ten cubes to model an aggregate with a discon-

tinuous initial concentration, zero throughout the fluid domain, outside of the aggregate,

and a higher concentration inside and on the aggregate. Specifically, we prescribe values

of 1 for the inside of each cube and 0.5 for all square faces. We also place 0.25 and 0.125
for all edges and corners of cubes, respectively. This intuitive concentration setup is to

reduce the risk of any stability issue due to the discontinuity at the aggregate boundary.

In addition to the initial concentration, the following conditions are set:

• Number of cubes NC = 10

• Settling velocity U⃗a = (0, 0,−1)

• Center of mass of the aggregate x⃗cm = (−0.8, 0.4, 0)

• Maximum radius of the aggregate Rm ≈ 5.3472

• Domain = [−11.50, 9.90] × [−10.29, 11.09] × [−21.39, 21.39]
(Centered at the center of mass of the aggregate.)

• Spatial step size: Nx = Ny = 50, Nz = 100; ∆x = ∆y = ∆z ≈ 0.43

• Péclet number Pe = 100

• Time step ∆t = 0.1

• Final time Nt = 500

For the sample simulation, we set Pe = 100. This is in case it is necessary to

observe a larger Péclet number that could have more numerical error. We compute the

fluid velocity field once using the boundary integral method and keep it fixed while we

update the concentration.

We simulated this problem using both the implicit (trapezoid) and the explicit

(RK2) time integration. Under the conditions provided above, we get an advection CFL
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condition number of approximately 0.03 and a diffusion one of 0.08. Since the CFL

numbers are less than 1, we can use the RK2 method with no stability issue. The main

reason we wanted to try the explicit method is to reduce computing time if possible.

However, we found that both time integration methods gave us similar results in terms

of computing time.

We present snapshots of the simulation using the discontinuous initial concen-

tration in Figure 2.19. It is a three-dimensional simulation; however, for clear visualiza-

tion, we slice the domain at x = −0.8, which is the middle of x−axis. Note that we are

using a moving frame of reference such that the surrounding fluid is flowing upward

to represent the settling aggregate motion. After time t ≈ 30 in Figure 2.19, we can see

lower concentration is going outside of our numerical domain.
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Figure 2.19: Snapshots of concentration dynamics with a discontinuous initial concentra-

tion with finite differences in space and RK2 for time.

Figure 2.20 shows the sum of the concentration of the fluid over time. The

results seem to be consistent with our expectation that the mass is conserved until the

flow reaches the upper boundary of our domain. The right plot in Figure 2.20 shows the

concentration difference between each time and the initial one up to time t = 20.

2.7.5 Discussion

There are several topics we can study further with the homogeneous ambient

fluid case. We may continue analyzing the preliminary results for the dissolved CO2

model we presented. As an application of the dissolved CO2 simulation, we consider

the remineralization of marine aggregates. In particular, We can apply a method of

remineralization and model dissolved CO2 of marine aggregates to study the carbon

flux profile in a homogeneous fluid. In a recent article, Omand et al. (Omand et al.,
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Figure 2.20: (Left) Variation of total concentration in the fluid domain in time. (Right) The

error between the total concentration at each time and the initial sum of concentration.

2020) proposed a derivation of the sinking particle flux model with a sphere. Several

aspects of this derivation can be improved with a model such as ours, and we can

provide justifications for features that were assumed or roughly estimated. With our

randomly shaped aggregate model, we expect to present more accurate dynamics and

could calculate the size of a sphere with equivalent diffusive properties as a function of

aggregate size and fractal dimension.

2.8 Conclusion

We have developed a novel implementation of boundary integral methods for

flow around aggregates composed of cubes. In this case, we found that the single-layer

approach was more accurate and therefore used it to study the flow around randomly

formed aggregates. We have presented the results of the flow around individually-

added and cluster-to-cluster aggregates and characterized the resulting forces. We have

identified a suitable length scale to characterize the behavior of fractal aggregates in

various contexts. To describe the drag or force, and torque, on an aggregate, the gyration

radius, Rg, is the best choice, with respective scalings of F⃗o ∼ µ̃U⃗aRg and Q⃗o ∼ µ̃Ω⃗R3
g,

as should be expected in Stokes flow. An improved collapse of the drag is possible if

we account for an aggregate’s departure from its typical size, R̄g, through the factor

σg = Rg−R̄g

R̄g
. The nearly linear relationship between the drag and the gyration radius

indicates that the choice of Rg to describe the size of an aggregate is an appropriate one
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while, for example, the volume-based size L = V 1/3 would not yield a linear relationship

with the drag.

We have also considered the effects of extensional flow on aggregates, an aspect

that has been understudied. We introduced a simple characterization of the straining

force, E⃗, on a solid object. We used computations of the straining force to determine

that the maximum radius, Rm, is the most appropriate length scale to predict the impact

of extensional flow on an aggregate and found that E⃗ ∼ µ̃|λ|R2
mv̂. This is particularly

relevant when considering aggregate formation and break up. As in the case of the force,

an improved collapse of straining force is possible using an aggregate’s departure from

its typical size, σm = Rm−R̄m

R̄m
.

Our numerical approach can be directly applied to compute the flow around

several particles. Our method can thus be used to conduct a more accurate investigation

of aggregate formation. In the present study, as is the case in the vast majority of

diffusion-limited aggregation studies, aggregates were formed without factoring in flow

dynamics. Our numerical approach allows us to determine the response of the system

dynamically when subjected to stochastic forces. Rather than assuming a constant

drag and no deformation, we may instead calculate the forces acting on every particle,

determine the deformation or potential break-up of the particles by matching the viscous

stress with the particle’s elastic stress, and determine the aggregates settling velocity as it

deforms. Such an approach should provide the most accurate aggregate formation model

yet, which in turn will allow for a more accurate characterization of their properties.

Another promising avenue for future work is the incorporation of stratification

effects. Marine aggregates typically settle in a water column where the density increases

with depth, owing to salinity and temperature variations. Since aggregates are very

porous, they are sensitive to stratification (Prairie et al., 2013). Fluid entrainment and

diffusive effects play a role in first stopping and then restarting the settling of the porous

aggregate (Panah, Blanchette, & Khatri, 2017; Camassa et al., 2013). This process has

already been modeled using spherical particles, but how diffusion and ambient stratifi-

cation affect fractal-like aggregates remains unclear. By coupling the current simulations

to a concentration field subject to advection-diffusion and tracking its effect on the fluid

density within an aggregate, one should be able to obtain an improved approximation

of the behavior of aggregates settling in a stratified ambient. Accounting for the effects

of stratification on the flow itself requires the addition of a volume integral of the con-
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centration to equation (2.11). This implies a significant increase in computational effort,

but a careful implementation can be done that results in reasonable run-time. Such a

derivation and implementation are the subject of the next chapter of this thesis.



Chapter 3
Settling marine aggregates in a

stratified fluid

In the last few decades, several scientists have modeled the dynamics and

ecological impact of marine aggregates (Jackson & Burd, 1998; Kiørboe et al., 2002). Their

effects on bacterial transport (Jackson, 1989) and algal bloom (Jackson, 1990) have been

described in models that use simplified descriptions of the aggregates’ settling speeds.

Moreover, accumulation of aggregates in thin layers where the ambient fluid is stratified

has been reported (MacIntyre, Alldredge, & Gotschalk, 1995; Alldredge et al., 2002)

and more recently modeled experimentally (Prairie et al., 2013), analytically (Camassa

et al., 2013), and computationally (Panah, Blanchette, & Khatri, 2017). Understanding

marine aggregate formation, settling speed, and persistence of these thin layers is

ecologically important. Therefore, in this chapter, we discuss the dynamics of settling

marine aggregates in a density-stratified fluid.

3.1 Governing Equations

In this chapter, instead of constant density ρ, as in Chapter 2, we suppose that

the background fluid density varies linearly in the vertical direction,

ρbg(z) = ρ0 (1 − γz) , (3.1)

where ρ0 is the fluid density where the aggregate’s center of mass is located at rest

initially and γ > 0 is constant. Over time, perturbations, C(y⃗, t), occur due to the

48
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settling motion due to non-homogeneous fluid. More specifically, we define C as the

concentration difference between the initial value and time t. From this, we can establish

the fluid density variation over time,

ρ(y⃗, t) = ρbg(z) + αρ0C(y⃗, t) = ρ0 (1 − γz + αC(y⃗, t)) , (3.2)

where the non-zero constant α depends on the type of solute. We provide the schematic

of the perturbation effect on the top of the background fluid density in Figure 3.1. The

Background density 

ρbg(z) = ρ0 (1 − γz)

Perturbation  
 αρ0C( ⃗y, t)

⃗y = (x, y, z)
x

y

z

Figure 3.1: Description of fluid density stratification.

non-constant density ρ(y⃗, t) changes the momentum equation from (1.12) to

µ̃∇2u⃗(y⃗) − ∇Pd(y⃗) + ρ0αC(y⃗, t)g⃗ = 0, (3.3)

where Pd is the dynamic pressure, defined as

Pd(y⃗) = P (y⃗) −
∫
ρbg(z)gdz. (3.4)

To take the density perturbation of the ambient fluid into account, we find a particular

solution to the momentum equation (3.3). Once we have it, simple addition to the

homogenous solution gives the entire solution due to the linearity of the system.
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To derive a particular solution, we consider the singularly forced Stokes prob-

lem (Pozrikidis, 1992),

µ̃∇2u⃗(y⃗) − ∇P (y⃗) + q⃗ δ (x⃗− y⃗) = 0, (3.5)

where q⃗ is an arbitrary constant vector, x⃗ is an arbitrary point in fluid domain, and δ is

the three-dimensional delta function. The problem (3.5) describes the effect coming from

a singular force applied at y⃗ = x⃗. The fundamental solution to equation (3.5) coupled

with the continuity equation (1.1) are

u⃗(y⃗) = 1
8πµ̃

¯̄G (x⃗, y⃗) · q⃗ (3.6)

P (y⃗) = 1
4π

x⃗− y⃗

∥x⃗− y⃗∥3 · q⃗, (3.7)

where the kernel ¯̄G is the Stokeslet, introduced in Chapter 1, equation (1.14). This implies

that the solutions (3.6) and (3.7) satisfy equation (3.5) as

µ̃∇2
( 1

8πµ̃
¯̄G (x⃗, y⃗) · q⃗

)
− ∇

( 1
4π

x⃗− y⃗

∥x⃗− y⃗∥3 · q⃗
)

+ q⃗ δ (x⃗− y⃗) = 0. (3.8)

When we multiply by C(x⃗, t) on both sides and integrate the entire equation over the

domain, V (x⃗), we get

∫
V

[
µ̃∇2

( ¯̄G (x⃗, y⃗) · q⃗
8πµ̃

)
C(x⃗, t)−∇

( (x⃗− y⃗) · q⃗
4π∥x⃗− y⃗∥3

)
C(x⃗, t)+ q⃗ δ (x⃗− y⃗)C(x⃗, t)

]
dV (x⃗) = 0.

(3.9)

Note that the operator ∇ is linear and describes derivatives in y⃗. Additionally, since the

volume V stays the same, we are able to switch the order with the integral operator as

follows,

µ̃∇2
∫

V

( ¯̄G (x⃗, y⃗) · q⃗
8πµ̃

)
C(x⃗, t) dV (x⃗) − ∇

∫
V

(
C(x⃗, t)(x⃗− y⃗) · q⃗

4π∥x⃗− y⃗∥3

)
dV (x⃗) + q⃗C(x⃗, t) = 0.

(3.10)

By choosing q⃗ = ρ0αg⃗, we can find a particular solution to our modified Stokes momen-

tum equation, (3.3),

u⃗(y⃗) = ρ0α

8πµ̃

∫
V

¯̄G (x⃗, y⃗) · C(x⃗, t)g⃗ dV (x⃗). (3.11)

P (y⃗) = ρ0α

4π

∫
V

x⃗− y⃗

∥x⃗− y⃗∥3 · C(x⃗, t)g⃗ dV (x⃗). (3.12)
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The entire velocity solution, thus, becomes

u⃗ (y⃗, t) = − 1
8πµ̃

∫
S
f⃗(x⃗) · ¯̄G (x⃗, y⃗) dS(x⃗) + ρ0α

8πµ̃

∫
V
C (x⃗, t) g⃗ · ¯̄G (x⃗, y⃗) dV (x⃗). (3.13)

As we see, the velocity at a point u⃗(y⃗, t) is now dependent on space and time compared

to the homogeneous fluid case. We can update the velocity field in time by coupling

the solution (3.13) with the advection-diffusion equation (2.51) to model the solute

perturbation, C.

3.1.1 Force balance

Since the velocity of the aggregate is no longer constant in time, we now need

to solve it. Specifically, we now need to solve for the translational and angular velocity,

U⃗a and Ω⃗, respectively, by prescribing the total body force and total torque from the fluid

on the aggregate. To close the system of equations, we prescribe the total drag force, F⃗o,

and total torque, Q⃗o.

First, we know that the total drag is the sum of the stress, f⃗ ,

F⃗o =
∫

S
f⃗(x⃗) dS = −

∫
S

[
−
(
P −

∫
ρbg(z)g dz

)
¯̄I + µ̃

(
∇u⃗+ (∇u⃗)T

)]
· n̂ dS(y⃗). (3.14)

To impose the total drag (3.14), we observe the right-hand side of equation (3.14) includes

the buoyancy force, F⃗b. As we work in the Stokes regime, the net force on the aggregate

must be zero, so we have

F⃗o(t) + F⃗g(t) + F⃗b = 0⃗, (3.15)

where the gravity force acting on the aggregate, F⃗g, can be expressed as

F⃗g = ρaVag⃗, (3.16)

with aggregate density ρa and volume Va. To calculate the aggregate density, ρa, we

consider aggregate porosity, ϕ, that is 0 ≤ ϕ ≤ 1. We then define the density of an

aggregate as

ρa = ϕρf + (1 − ϕ)ρs, (3.17)

where ρf and ρs are the density of the fluid and solid portion of the aggregate, respec-

tively. To obtain the fluid portion of the aggregate density, we take an average of the

fluid density where the aggregate is located,

ρf (t) = 1
Va

∫
Va

ρ(x⃗, t) dV (x⃗) (3.18)
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We here consider the solid part of the aggregate density as ρs ≈ 1400kg/m3. We also

set the porosity to ϕ = 0.95. Meanwhile, we find the buoyancy force, F⃗b, from equa-

tion (3.14),

F⃗b = −
∫

S

(∫
ρbg(z)g dz

)
¯̄I · n̂ dS(y⃗). (3.19)

For the total torque, we use the form (2.29), and set the value to zero,

Q⃗o =
∫

S
f⃗ × (x⃗− x⃗cm) dS = 0⃗. (3.20)

Note that this does not imply that the aggregate is not rotating.

3.1.2 Perturbation variation

As the aggregate settles, the concentration, and therefore the fluid density,

changes
∂ρ(y⃗, t)
∂t

+ u⃗(y⃗) · ∇ρ(y⃗, t) = D∇2ρ(y⃗, t), (3.21)

where D is the diffusion coefficient. By applying the relationship between fluid den-

sity ρ and the concentration perturbation C from equation (3.2), we can rewrite the

equation (3.21) in terms of C,

∂C(y⃗, t)
∂t

+ u⃗(y⃗) · ∇C(y⃗, t) = D∇2C(y⃗, t) + γ

α
u⃗(y⃗) · k̂. (3.22)

Note that the advection-diffusion equation for C contains an additional source term that

depends on the vertical component of the fluid velocity.

3.2 Dimensional analysis

To facilitate further analysis, we non-dimensionalize our new equations. We

mainly use the same parameters we introduced in section 2.3, equations (2.23), in

addition to the following dimensionless parameters:

C = CmaxC
′ ρ = µ̃

UsRa
ρ′, (3.23)

In this chapter, the Stokes settling speed Us, defined in equation (1.6), becomes

Us = gR2
a

µ̃
(ρs − ρ0)(1 − ϕ),
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since we consider the porosity of an aggregate as (3.17). For the scale of the perturbation,

C, we introduce the maximum density difference of the background density profile in

the fluid domain at the initial time, i.e.,

Cmax = 1
αρ0

∣∣∣∣max
x⃗∈V

(ρbg(z)) − min
x⃗∈V

(ρbg(z))
∣∣∣∣ . (3.24)

We first derive the dimensionless modified Stokes momentum equation, using

primes to indicate dimensionless variables,

∇′2u⃗′(y⃗) = ∇Pd
′(y⃗) − αρ0Cmax

(ρs − ρ0)(1 − ϕ)C
′ (y⃗, t) k̂, (3.25)

which is then solved for the velocity,

u⃗′(y⃗) = − 1
8π

∫
S′
f⃗ ′(x⃗) · ¯̄

G′ (x⃗, y⃗) dS′(x⃗)

− αCmax

8π
ρ0

(ρs − ρ0)(1 − ϕ)

∫
V ′
C ′ (x⃗, t) k̂ · ¯̄

G′(x⃗, y⃗) dV ′(x⃗) (3.26)

where S′ is the aggregate surface. Moreover, the force balance equation (3.15) becomes

F⃗ ′
o(t) = 1

µ̃UsRa

(
−ρaVagk̂ +

∫
S

(∫
ρbg(z)g dz

)
¯̄I · n̂ dS(x⃗)

)
. (3.27)

Lastly, the advection-diffusion equation becomes,

∂C ′(x⃗, t)
∂t′

+ u⃗′(x⃗) · ∇′C ′(x⃗, t) = 1
Pe

∇′2C ′(x⃗, t) + γRa

αCmax
u⃗′ · k̂, (3.28)

using the velocity field from equation (3.26), for the advection term. Note that we

discussed the Péclet number with CO2 diffusivity in Chapter 2.7 while introducing its

definition in equation (2.50). In addition, using the thermal diffusivity of the ocean,

Dheat (Nayar et al., 2016; Sharqawy, Lienhard, & Zubair, 2010): we get a Péclet number

of

Peheat = UsRa

Dheat
≈ 3.8 × 10−4(m/s) ×

(
5 × 10−5) (m)

1.5 × 10−7(m2/s) ≈ 10−2, (3.29)

and the diffusion effect due to salinity (Wollast & Garrels, 1971),

Pesalt = UsRa

Dsalt
≈ 3.8 × 10−4(m/s) ×

(
5 × 10−5) (m)

2 × 10−9(m2/s) ≈ 9.5. (3.30)

For the rest of this chapter, we drop the prime for simplicity and use only

dimensionless forms.
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3.3 Numerical methods

In this section, we first consider drag computation on an aggregate. We derive

the simplest form to implement. We then revisit the velocity field calculation in a

homogeneous fluid. We briefly introduce the linear system to solve for the aggregate’s

stress and velocity. Lastly, we present the method to compute the velocity field in a fluid

with density stratification, involving a volume integral of the perturbation C(x⃗, t). Due

to the high computational cost, we use the fast multipole method (FMM). We briefly

introduce the FMM and its framework for the Stokes kernel.

3.3.1 Aggregate force balance

We first recall the force balance equation (3.15), introduced in section 3.1.1.

To obtain the total drag, there are two types of forces we consider: 1) aggregate body

force, F⃗g, and 2) fluid buoyancy force, F⃗b. The aggregate density, ρa, of the fluid portion

changes over time, which affects its (dimensionless) gravitational body force,

F⃗g = − 1
µ̃UsRa

(
ρaVagk̂

)
. (3.31)

We also need to track the buoyancy, depending on the aggregate’s vertical position,

F⃗b = 1
µ̃UsRa

(∫
S

(∫
ρbg(z)g dz

)
¯̄I · n̂ dS(x⃗)

)
, (3.32)

since the surrounding fluid density changes while the aggregate settles. For further

simplicity, we find an antiderivative of the background density,

Pbg(z) =
∫
ρbg(z)g dz = ρ0

(
z − 1

2γz
2
)
g, (3.33)

by choosing the lower bound of the integral as zero without loss of generality. In practice,

we can easily evaluate the gravitational force (3.31). While settling, we compute the fluid

density where the aggregate is located. Once we know which grid points are inside the

aggregate, simply adding the densities at those points gives us the fluid density portion

of the aggregate, which eventually plays a role in updating ρa.

Next, we investigate the buoyancy force (3.32) with a single cube case for

simplicity. We can extend this case to multiple cubes in the same manner by addition.

We consider the discretized version of integral (3.32),

F⃗b ≈ 1
µ̃UsRa

Nf∑
i=1

R3
a

∫
Si

Pbg(z) ¯̄I · n̂i dSi(x⃗), (3.34)
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where i represents the index of square faces (not power), and Nf is the number of square

faces: Nf = 6 for one cube case. Depending on the orientation of each square face,

or the axis of Sn, is different. For example, let S1 be the first square with the normal

n̂1 = (1, 0, 0), and surface parametrized with y and z between −1 and 1,

L1 ≡ R3
a

∫
S1

Pbg(z) ¯̄I · n̂1 dS1(x⃗) = R3
a

∫ 1

−1

∫ 1

−1
Pbg(z) ¯̄I · n̂1 dydz. (3.35)

See Figure 3.2 for notation. Since the background density ρbg is a function of z, we can

̂n1 = (1,0,0)

S1

S2

S3
̂n2 = (0,1,0)

̂n3 = (0,0,1)

Figure 3.2: Example cube to describe the buoyancy force computation. The pink area is

the S1 integral domain.

intuitively see that the value (3.35) and the one with the normal n̂6 = −n̂1 = (−1, 0, 0)
has the same magnitude but in the opposite direction, and thus, we have L6 = −L1. This

implies the following,

∑
i=1,2,5,6

R3
a

∫
Si

Pbg(z) ¯̄I · n̂i dSi(x⃗) = 0 (3.36)

for the one cube case of discretized buoyancy equation (3.34).

The integrals on S3 and S4 are slightly different since the square faces are

perpendicular to the z−axis. On the face S3, which has normal n̂3 = (0, 0, 1), we get

R3
aρ0

∫ 1

−1

∫ 1

−1

(
z − γ

2 z
2
)
g ¯̄I · n̂3 dxdy = 4R3

aρ0

(
zT − γ

2 zT
2
)
gn̂3, (3.37)

where zT is the constant z−level value on the face S3. The integral value on the face S4

would be the same as (3.37), having n̂4 = (0, 0,−1) instead of n̂3. We then can have a
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more explicit expression for the discretized buoyancy equation (3.34),

6∑
i=1

R3
a

∫
Si

Pbg(z)g ¯̄I · n̂i dSi(x⃗)

= 4R3
aρ0

(
zT − γ

2 zT
2
)
gn̂3 + 4R3

aρ0

(
zB − γ

2 zB
2
)
gn̂4, (3.38)

where zB is the constant z−value on the surface S4 (bottom face). By substituting the

normals n̂3 and n̂4, we can simplify the right-hand side of equation (3.38), knowing that

zT − zB = 2, equation (3.38) becomes

6∑
i=1

R3
a

∫
Si

Pbg(z)g ¯̄I · n̂i dSi(x⃗) = 8R3
aρ0 (1 − γzcn) g, (3.39)

where we define the z−component of the center of the n−th cube forming an aggregate,

zcn (n = 1, 2, · · · , NC). We thus have shown that the only information we need to keep

track of is the location of the center of each cube that forms an aggregate.

3.3.2 Linear system for velocity and stress on aggregates

As mentioned in section 3.1.1, we do not prescribe the settling velocity of an

aggregate, and it becomes one of our unknowns. We thus need to solve for 1) translational

velocity (U⃗a), 2) rotational velocity (Ω⃗), and 3) stress vector (f⃗k) on each square face k. To

do so, for any point y⃗ on the surface of the aggregate, we consider the surface velocity

equations (3.26) with the solid body motion, (2.3),

U⃗a + Ω⃗ × (y⃗ − x⃗cm) + 1
8π

∫
S
f⃗(x⃗) · ¯̄G(x⃗, y⃗) dS(x⃗)

= −αCmax

8π
ρ0

(ρs − ρ0)(1 − ϕ)

∫
V
C (x⃗, t) k̂ · ¯̄G(x⃗, y⃗) dV (x⃗), (3.40)

where the volume integral value on the right-hand side is known. To set up the linear

system accordingly, We discretize the boundary integral as described in equation (2.35),

choosing f⃗k for q⃗k, and ¯̄G for ¯̄J ,

I⃗(x⃗sq,i) =
Nf∑
k=1

f⃗k

∫
Sk

¯̄G(x⃗, x⃗sq,i) dS(x⃗) =
Nf∑
k=1

f⃗k
¯̄Πi,k ≈

∫
S
f⃗(x⃗) · ¯̄G(x⃗, x⃗sq,i) dS(x⃗), (3.41)

where x⃗sq,i is the center of each square on the surface for i = 1, 2, · · · , Nf . With

equations (3.14), (3.20), the exact linear system of the equations we implement is as
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follows.


¯̄Π1,1

¯̄Π1,2 · · · ¯̄Π1,Nf

¯̄Π2,1
¯̄Π2,2 · · · ¯̄Π2,Nf

.

.

.
.
.
.

. . .
.
.
.

¯̄ΠNf ,1
¯̄ΠNf ,2 · · · ¯̄ΠNf ,Nf




¯̄I
.
.
.

¯̄I

 −


[x⃗sq,1 − x⃗cm]×

.

.

.

[x⃗sq,Nf
− x⃗cm]×



4
[

¯̄I · · · ¯̄I
]

¯̄0 ¯̄0

−4
[

[x⃗sq,1 − x⃗cm]× · · · [x⃗sq,Nf
− x⃗cm]×

]
¯̄0 ¯̄0





f⃗1

.

.

.

f⃗Nf

U⃗a

Ω⃗


=



F⃗1

.

.

.

F⃗Nf

F⃗o

Q⃗o


.

(3.42)

Since we consider three-dimensional space, the size of the identity matrix ¯̄I is (3 × 3).

The matrix [y⃗]× represents the cross product operator defined by,

[y⃗]× =


0 −y3 y2

y3 0 −y1

−y2 y1 0

 , (3.43)

where y⃗ = (y1, y2, y3). We use this operator for the rotation term,

[x⃗− x⃗cm]×Ω⃗ = (x⃗− x⃗cm) × Ω⃗ = −Ω⃗ × (x⃗− x⃗cm),

in the total torque equation. In addition, the top part of the right-hand side of the

equation (3.40) is the discretization of the volume integral,

F⃗(x⃗sq,i) = −αCmax

8π
ρ0

(ρs − ρ0)(1 − ϕ)

Ns∑
j=1

C (x⃗sq,i, t) k̂ · ¯̄G (x⃗sq,i, x⃗j), (3.44)

where Ns is the total number of grid or source points in the fluid domain. We discuss

more details of the volume integral computation in the next section. One can find factor

4 multiplied by the second and third blocks on the right-hand side of the system (3.42).

Since we set the side length of a cube as 2, factor 4 represents the area of a square face,

which is the integral domain of the total force and torque equations. Note that the linear

system 3.42 gives us infinitely many solutions. To select a unique solution, we use the

method of least squares.

Once we solve the linear system and obtain the unknowns, we use equa-

tion (3.26) to calculate the velocity field at all points in the fluid domain. We want
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to point out that the fluid velocity computation, especially including the volume inte-

gral (3.44), is a very numerically expensive calculation. To accelerate it, we apply the fast

multipole method (FMM) to our simulations. In the following section, we explain how

we use the FMM.

3.3.3 Fast Multipole Method (FMM)

Knowing that we simulate our problem in a three-dimensional fluid domain, it

is necessary to implement an efficient and fast method for each part of the code. At the

same time, we want to keep the stability and desired accuracy. The FMM is a numerical

scheme for rapid computation ofN -body problems governed by a Green’s function using

a multipole expansion. It was first introduced by Greengard and Rokhlin (L. Greengard

& Rokhlin, 1987). Since then, the researchers at Flatiron Institute - Simons Foundation,

including the original authors of the FMM, have developed the methods and shared the

source code (Cheng, Greengard, & Rokhlin, 1999; L. Greengard & Rokhlin, 1997; L. F.

Greengard & Huang, 2002). We choose to use their library, called FMM3D. It provides

the Fortran code with MATLAB wrapper for the N−body interactions governed by

Laplace and Helmholtz equations in three dimensions. For our problem, we can modify

the Laplace kernel, as shown in (Tornberg & Greengard, 2008), to compute the integrals

of the Stokeslet (1.14). The definition of the Laplace FMM in the FMM3D library is the

following:

Definition 3.3.1. (Laplace FMM) Let cn ∈ R denote a collection of charge strengths and

v⃗n ∈ R3 denote a collection of dipole strengths for n = 1, 2, · · · , N . The Laplace FMM

computes the potential u(y⃗m) ∈ R3 given by

u(y⃗m) =
N∑

n=1

[
cn

∥x⃗n − y⃗m∥
− v⃗n · ∇y⃗

1
∥x⃗n − y⃗m∥

]
, (3.45)

at the source (x⃗n) and target locations (y⃗m). When y⃗m = x⃗n, the term corresponding to x⃗n

is dropped from the sum.

Note that we use the letters m and n to index the targets and sources, respectively. For

our problem, the points where we want to obtain velocity would be the targets; all points

in the integral domain are sources. In addition to the target and source points, we can

input the constant cn and vector v⃗n. One needs to be careful with these terms; both

values could depend on the sources but are independent of the targets.

https://github.com/flatironinstitute/FMM3D
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Volume integral of the Stokeslet

We first investigate how to incorporate the volume integral (3.44) (without the

prefactor) in the form of (3.45). For a fixed j, we can rewrite the equation using the index

notation (i, j = 1, 2, 3),

Ṽ (ym
j ) ≡ d

Ns∑
n=1

3∑
i=1

C(xn
i , t)kiGij(xn

i , y
m
j ), (3.46)

where y⃗m = (ym
1 , y

m
2 , y

m
3 ) is the target point, x⃗n = (xn

1 , x
n
2 , x

n
3 ) are the source or

grid points in the fluid domain V , and d is a constant from a quadrature method. The

Stokeslet can be expressed in terms of the Laplace kernel, Φ(x⃗, y⃗) = 1/∥x⃗− y⃗∥ as,

Gij(x⃗n, y⃗m) = δijΦ
(
xn

i − ym
j

)
−
(
xn

i − ym
j

) ∂

∂xj
Φ
(
xn

i − ym
j

)
(3.47)

By substituting the Stokeslet (3.47) into the discretized volume integral (3.46), we then

get

Ṽj(y⃗m) =
Ns∑

n=1
d

3∑
i=1

C(xn
i , t)ki

(
δij

∥x⃗n − y⃗m∥
−
(
xn

i − ym
j

) ∂

∂xj

1
∥x⃗n − y⃗m∥

)
(3.48)

Knowing that the vector k̂ = (0, 0, 1), only the terms where i = 3 survive. We thus

reach the simplified sum,

Ṽj(y⃗m) =
Ns∑

n=1
n̸=m

d C(xn
3 , t)

(
δ3j

∥x⃗n − y⃗m∥
− xn

3
∂

∂xj

1
∥x⃗n − y⃗m∥

)
(3.49)

+ ym
j

Ns∑
n=1
n̸=m

d C(xn
3 , t)

∂

∂xj

1
∥xn

3 − ym
j ∥

+ Vp. (3.50)

We take the singularity out of the sums since the FMM3D only evaluates an integral for

points y⃗m ̸= x⃗n ∈ V . At a singularity, i.e., y⃗m = x⃗n, we use MATLAB built-in function,

integral3, to integrate numerically by defining a small cube Vp around the singularity

point,

Vp(y⃗) =
∫

Vp

C(x⃗, t)k̂ · ¯̄G (x⃗, y⃗) dV (x⃗). (3.51)

We then compute Ṽ as in equation (3.46). We also split the last (gradient) term having(
xn

i − ym
j

)
in equation (3.48), and write it as two summations in equation (3.50) to point

out that these two points, xn
i and ym

j , represent different arguments. The point xn
i
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represents all points in the volume integral domain V , i.e., source and ym
j is a particular

point, or target, in which we evaluate the velocity. This is important to acknowledge

since the FMM3D code treats these source and target points separately, and this is the

key to accelerating the computation. The main advantage of using FMM is that we call

this FMM code only once for multiple targets with Ns number of source points.

Moreover, since our summation has a vector form, while the FMM3D package

returns a scalar value, we need to run this FMM3D package three times at least for each

part, (3.49) and (3.50). For more details, we break down the equations to determine what

are cn and v⃗n would be in (3.45). First, we consider the first term in summation (3.49),

Ns∑
n=1
n̸=m

d C(xn
3 , t)

δ3j

∥xn
3 − ym

j ∥
=

0, 0, d
Ns∑

n=1
n ̸=m

C(xn
3 , t)

∥xn
i − ym

j ∥

 (3.52)

Since C(xn
3 , t) ∈ R for each n and a fixed time t, we simply choose cn = C(xn

3 , t). The

second term in the sum (3.49) can be computed by letting v⃗n in equation (3.45) be the

product of the standard basis vector, êj , and the constant xn
3 C(xn

3 , t), that is

Ns∑
n=1
n̸=m

d C(xn
3 , t)

(
xn

3
∂

∂xj

1
∥x⃗n − y⃗m∥

)
= d

Ns∑
n=1
n̸=m

xn
3 C(xn

3 , t) ∇y⃗
1

∥x⃗n − y⃗m∥
. (3.53)

We simply repeat the FMM3D for each component.

As we mentioned, the second summation (3.50) is slightly different since the

target point is multiplied by the gradient term that can be only related to the sources.

One of the critical rules in the FMM is separating the target and source terms to compute

integrals rapidly. Thus, the computation of this sum requires another three uses of the

FMM package and a dot product with the target point vector. We compute the sum in

the same manner as in (3.53)

ym
j

Ns∑
n=1
n̸=m

d C(xn
3 , t)

∂

∂xj

1
∥x⃗n − y⃗m∥

= dym
j

Ns∑
n=1
n̸=m

C(xn
3 , t) ∇y⃗

1
∥x⃗n − y⃗m∥

(3.54)

as we have shown in the previous summation term with the gradient.

Surface integral of the Stokeslet

To obtain the fluid velocity, we use equation (3.26) for all y⃗ ∈ V . In this

computation, the evaluation of

uH(y⃗) =
∫

S
f⃗(x⃗) · ¯̄G (x⃗, y⃗) dS(x⃗), (3.55)
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is quite expensive, as is that of the volume integral. We measured CPU time while

varying the total number of fluid grid points. In Figure 3.3, each line represents CPU

time to compute, in seconds: 1) volume integral on the aggregate surface S, 2) volume

integral in the fluid domain V , 3) solving the linear system (3.42), 4) solving the advection-

diffusion equation to update the perturbation, 5) velocity evaluation in the fluid domain,

and 6) sum of all above (1 - 5). The main takeaway in this plot is that the velocity

103 104 105 106
10-1

100

101

102

103

104

-- slope slp = 1.028

Figure 3.3: CPU time for each computation step in second with an aggregate of 125 cubes

for ten time steps.

computation for all fluid points is dominant. We thus decided to use the FMM for this

surface integral (3.55) by approximating as follows: Here, the points x⃗ are the sources,

and y⃗ are the targets. For the velocity inside and on the aggregate boundary, we use the

rigid boundary velocity u(x⃗) = U⃗a + Ω⃗ × (x⃗− x⃗cm). This implies that we only use targets

located outside the aggregate, and we do not expect any singularity in this computation

(x⃗ ̸= y⃗). However, we may have close evaluation problems. We will discuss the size of

errors in the next section.

We handle the integration of the Stokeslet in a manner similar to what was

done for the volume integral. Using the Laplace kernel, we can rewrite the surface

integral (3.55) as

uH(y⃗) =
∫

S
f⃗(x⃗) ·

( ¯̄I
∥x⃗− y⃗∥

− (x⃗− y⃗) ∇y⃗
1

∥x⃗− y⃗∥

)
dS(x⃗). (3.56)
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We first discretize the entire aggregate surface into Nf square faces located at [cxn
j −

1, cxn
j + 1], where (cxn

1 , cx
n
2 ) is the center of n square face. The discretized version of the

velocity equation (3.56) is denoted by H(y⃗),

H(y⃗m) = uH(y⃗) − Ef =
Nf∑

n=1
Hn(y⃗m)

=
Nf∑

n=1
f⃗(x⃗n) ·

∫ cxn
2 +1

cxn
2 −1

∫ cxn
1 +1

cxn
1 −1

( ¯̄I
∥x⃗n − y⃗m∥

− (x⃗n − y⃗m) ∇y⃗m
1

∥x⃗n − y⃗m∥

)
dx1dx2,

(3.57)

where the error coming from this approximation is denoted as Ef . A more detailed

analysis regarding Ef can be found in section 2.4.1. Note that the stress f⃗(x⃗n) is assumed

to be constant over each square face. One can find that we have a significant error in the

cube’s corners. We want to ensure that we do not introduce larger errors as we make

further approximations.

Next, we need to approximate the surface integral in equation (3.57) using a

mid-point rule for a Riemann sum,

H̃(y⃗m) = Hn(y⃗m) − EG

=
Nf∑

n=1
f⃗(x⃗n) ·

Ns2∑
s=1

d2
( ¯̄I

∥x⃗n
s − y⃗m

s ∥
− (x⃗n

s − y⃗m) ∇x⃗n
s

1
∥x⃗n

s − y⃗m∥

)
− EG, (3.58)

where EG is the error coming from the quadrature method. We use N2
s sub-squares with

sizes of d = 2/Ns and take the center of each sub-squares as the integration point. We

take the same number of points, Ns, evenly distributed in one direction. In the schematic,

Figure 3.4, the red cross represents the center of the n−th square face, (cxn
1 , cx

n
2 ). The

blue dots and the red cross are the integration points. We do not include any boundary

values on one square face for simplicity.

As mentioned, we hope to have a small integration error, i.e., EG ≪ Ef . To

measure Ef , we consider the settling of one cube-shaped aggregate. We then observe

the relative error of the vertical velocity on one square face, considering the translational

velocity, U⃗a, as the exact solution. In Figure 3.5, we see the square face at x = 1, where

the white dashed line shows the location of the square face, and the color indicates the

relative error. It implies that the maximum of 23.12% error occurs at the cube corners.

Note that this error made on the drag of a single cube is the worst-case scenario of our

simulations. We have confirmed the effect of doubling the resolution of larger aggregates
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Figure 3.4: Schematic of points we use to approximate the integral of the single-layer

potential kernel over one square face.

in Chapter 2. We found changes of less than 2% for the drag and 5% for the torque. We

thus would like to control the quadrature error, EG, by adjusting the total number of

integration points, Ns2.

Two parameters affect the efficiency and accuracy of the FMM computations:

1) the number of quadrature points, N2
s , and 2) the relative precision ε in the FMM3D

library, which determines the number of terms in the series expansion. In Figure 3.6, we

vary the number of integration points to choose an optimal value. We test a single-time

simulation in the domain, [−5, 5]× [−5, 5]× [−10, 10], with the one cube aggregate model.

To check the responses of varying ε values, we simulated the same setup with two

tolerance values, ε = 10−1, 10−6. From this analysis, we chose that Ns = 92 quadrature

points as the error is of a size we can tolerate. We had similar results for the ε = 10−6

case. We did not notice any difference in accuracy. We may observe this because the

corner error, Ef , dominates our approximation and is already larger than 10%. After

implementing the FMM3D library into our program, we checked the compute time to

compare the fluid velocity computation previously shown as the green (or dashed line)

in Figure 3.3. In Figure 3.7, we observe that the efficiency of the computation increases

about ten times when the number of fluid grid points is about 500,00, which is in the

range of what we will use to compute the fully stratified simulations.



64
Slide Title

x =1.00

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0.05

0.1

0.15

0.2

y

y

y

z

Figure 3.5: Sample case of the relative velocity error on one face, Ef .

3.3.4 Rotation

To have more realistic simulations, we allow our model aggregates to rotate

while they settle. In this section, we focus on the angular velocity, Ω⃗ = ∆θ/∆t, which

tells us how much the aggregate rotates, ∆θ in one time step, ∆t. This information is

stored in the orientation matrix, Q(t). We can compute the position, x⃗R(t) of a point on

the surface of the rotated aggregated using

x⃗R(t) = Q(t)x⃗a,

where x⃗a is the position of a point of the aggregate surface relative to the center of mass

expressed in a coordinate system that rotated with the aggregate. We note that x⃗a is

constant in time and Q(0) = ¯̄I (identity matrix) initially. After we move forward one

time step, we update this orientation matrix as

Q(t+ ∆t) = RQ(t), (3.59)

where R is a rotation matrix.

We implement updates to the orientation matrix as follows (Polimeno, Kim, &

Blanchette, 2022). Assume we obtain the angular velocity, Ω⃗, from solving equation (3.42)

at every time step. (Initially, it is the zero vector). With this, we can find the three-

dimensional change of the angular position vector, Ω⃗∆t = (∆θ1, ∆θ2, ∆θ3) ≡ ∆θ⃗. The
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Figure 3.6: Relative error between U∗ and U∗+, varying the number of integration points:

Ns = [3, 5, 7, 11, 17, 27, 41]2 and ε = 10−1.

matrix A is then defined such that Ax⃗ = ∆θ × x⃗,

A =


0 −∆θ3 ∆θ2

∆θ3 0 −∆θ1

−∆θ2 ∆θ1 0

 , (3.60)

From here, we have the rotation matrix R = eA. We can compute the matrix exponential

eA using Rodrigues’ formula, for antisymmetric matrices

R = eA = ¯̄I + sin(ϕ)
ϕ

A + 1 − cos(ϕ)
ϕ2 A2, (3.61)

where ϕ = ∥∆θ⃗∥2. With this R and orientation matrix Q, we are ready to update the

fluid grid.

Linear system in a rotated coordinate

We first solve for the stress at the center of each square face of an aggregate,

y⃗ = x⃗i, using the same formula as equation (3.26),

u⃗ (x⃗i) = −
∫

S
f⃗(x⃗) · ¯̄G (x⃗, x⃗i) dS − αCmax

8π
ρ0

(ρs − ρ0)(1 − ϕ)

∫
V
C (x⃗, t) k̂ · ¯̄G (x⃗, x⃗i) dV,
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Figure 3.7: CPU time with an aggregate made with 125 cubes for ten time steps. The

green line is the velocity computation with the original single-layer potential code, and

the pink line represents the approximation using the FMM3D library.

As we allow rotation, we can express the above equation in a rotated frame of reference

using x⃗r,i = Qx⃗i, u⃗r = Qu⃗, and f⃗r = Qf⃗ ,

u⃗r(x⃗r,i) = Qu⃗ (Qx⃗i) = − 1
8π

∫
S
f⃗r(Qx⃗) · ¯̄G (Qx⃗,Qx⃗i) dS

− αCmax

8π
ρ0

(ρs − ρ0)(1 − ϕ)

∫
V
C (x⃗, t) k̂ · ¯̄G (x⃗,Qx⃗i) dV. (3.62)

Since the rotation matrix Q is constant in space and is a rotation matrix, it is valid to say

that
¯̄G (Qx⃗,Qx⃗i) = ¯̄G(x⃗, x⃗i).

We now solve for unknowns, including the translational and angular velocities, in a

rotated coordinate system x⃗r,i. Note that the stress values we obtain here are located in

the rotated positions. To complete the linear system to solve for stress, translational, and

angular velocities, we temporarily map the fluid domain grid into the same coordinate

system as the boundary integral term. We can multiply by Q−1 = QT as

u⃗ (Qx⃗i) = − Q−1
( 1

8π

∫
S
f⃗r(Qx⃗) · ¯̄G (Qx⃗,Qx⃗i) dS

)
− Q−1

(
αCmax

8π
ρ0

(ρs − ρ0)(1 − ϕ)

∫
V
C (x⃗, t) k̂ · ¯̄G (x⃗,Qx⃗i) dV

)
. (3.63)

For the other force equations as well, we implement the following∫
S
f⃗(x⃗) dS(x⃗) = Q−1F⃗o (3.64)
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Figure 3.8: Schematics of the rotation of an aggregate. The blue grid is the fluid domain,

and the green rectangle represents an aggregate. Red stars show points on the aggregate.

∫
S
f⃗(x⃗) × (x⃗− x⃗cm) dS(x⃗) = 0⃗. (3.65)

Once we solve the linear system, we may return the values on the fluid grid to the

Cartesian coordinate system.

Velocity computation

Once we solve the stress, we are supposed to use the same equation (3.26) to

solve for velocity in the fluid grid, which stays in the Cartesian coordinates. Although

the volume integral term can stay as it is, the boundary integral needs some special

treatment since it has two mixed coordinate systems. We particularly pay more attention

to the Stokeslet,

¯̄G (Qx⃗, y⃗) =
¯̄I

||Qx⃗− y⃗||
+ (Qx⃗− y⃗)(Qx⃗− y⃗)T

||Qx⃗− y⃗||3
,

where Qx⃗ is in the rotated frame. Since we cannot compute the boundary integral of the

Stokeslet when Qx⃗ and y⃗ are not in the same coordinate system, we need to express y⃗

using another vector v⃗ that is in the rotated frame such that

Qx⃗− y⃗ = x⃗− v⃗,

or equivalently,

v⃗ =
( ¯̄I − Q

)
x⃗+ y⃗.
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After we solve for the velocity field of the fluid domain, we rotate the ve-

locity field back to the original coordinate by multiplying by the inverse of Q for the

concentration update.

3.4 Validation

As we explained in the previous section, the run time of the entire simulation

with an aggregate model using 100 cubes, which we desire to observe, may take up to a

few weeks. We thus need to determine the parameters to optimize the computing time

while maintaining an acceptable degree of accuracy. We examine a smaller simulation,

using an aggregate with ten cubes, NC = 10, shown in Figure 3.9, by varying 1) domain

size via s in Figure 3.9, 2) grid spacing ∆x, and 3) time step ∆t. Note that we use

uniform spacing for all directions, i.e., ∆y = ∆z = ∆x. To vary the fluid domain size,

we consider the center of mass, x⃗cm, and maximum radius, Rm, of the aggregate. We use

a domain centered at x⃗cm of size 2s [Rm ×Rm × 2Rm]. We note that s is thus the ratio of

the domain size to the aggregate diameter. See Figure 3.9.

Since we are interested in the aggregate’s long-term settling behavior, we

measure its (a) translational velocity U⃗a, (b) location of x⃗cm, and (c) drag F⃗o as a function

of time. In particular, we present the vertical component of these three values, focusing

on the settling direction. We also want to observe the (d) perturbation C(x⃗, t). At

locations far from the aggregate, we expect to see very small, almost zero, perturbation.

We thus focus on the perturbation value near the aggregate, denoted by x⃗⋆, which is

distanced by approximately (1.2 +Rm) from the center of mass.

We show three snapshots of the perturbationC at three different times, obtained

with ∆t = 0.75, ∆x = 1, and s = 5, at x = −0.3 as a sample result in Figure 3.10. Note

that the white star point is at x⃗⋆ = (−0.3, 6.9, 0.4), which is the particular point at which

we present C. Since we use the moving frame of reference to compute the perturbation,

we see that the aggregate stays in the middle of the fluid domain in Figure 3.10. We

notice slight oscillations near the top of the fluid domain, where the zero-flux boundary

condition is applied, as the perturbation increases. However, these oscillations remain

relatively small and do not extend to the vicinity of the aggregate. We will consider a

large enough fluid domain compared to the aggregate size, and study to observe the

convergence of the quantities of interest, U⃗a(t), x⃗cm(t), F⃗o(t), and C(x⃗⋆, t).
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Figure 3.9: Sample aggregate with ten cubes where s = 3, that is used to obtain simula-

tions presented in Figure 3.10.

3.4.1 Varying the domain size, via parameter s

As we described in section 2.7.2, we have periodic boundary conditions in the

horizontal direction to model an infinite domain where the velocity vanishes to zero. We

seek to determine a domain size via the multiplicative factor s, required to approximate

these conditions. If we can obtain reasonable results in a smaller domain, we could use

smaller s, resulting in more rapid computations and smaller memory requirements.

In Figure 3.11, we present three different domain sizes with the s factor s = 3, 4,

and 5. At first glance, we can barely tell the differences between all three cases. In other

words, there is no significant impact on aggregate behavior when reducing the domain

size down to s = 3. Although we notice that the perturbations at x⃗⋆ show a little more

variation with s, this remains a negligible effect.
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Figure 3.10: Snapshots of the perturbation obtained with ∆t = 0.75, ∆x = 1, and s = 5.

We look at the y − z plane at x = −0.3, which is near the center of mass of the aggregate.

The small white dot, x⃗⋆ = (−0.3, 6.9, 0.4), is located outside of, but very close to, the

aggregate.

3.4.2 Varying time step, ∆t

We now vary the time step, ∆t. We consider three different cases, ∆t = 0.75, 0.5,

and 0.25. We are able to run simulations with somewhat large time steps since the

aggregate size is small enough to have a velocity of order one. When the initial settling

velocity is high, the CFL condition (2.57) can be violated, leading to instability. As the

aggregate settles, the surrounding fluid becomes denser, which decreases the velocity,

and therefore the CFL number. Thus, the velocities are more limited on the time step at

the beginning of the simulation.

While we vary ∆t, we set the domain size to aggregate diameter ratio s = 3
since we observed no critical changes in aggregate dynamics, and we can save computa-

tional time. For a fair comparison, we keep the grid size ∆x = 1. The main takeaway of

Figure 3.12 is that there are no significant differences in the values we observe when we

vary ∆t = 0.75, 0.5, and 0.75. Once again, we notice some variations in the perturbation

C(x⃗⋆, t) at later times. However, these remain smaller than 4%.

To more accurately capture the effects of varying ∆t, we also present the relative

errors between two ∆t = 0.25 and 0.5 in Figure 3.13. It is clear that the errors in all four

values are fairly small compared to the error at the corner we found in section 3.3.3 (due

to the approximation of constant stress over each face). For the time integration scheme

we use, which is the explicit RK2 method, we typically expect to have second-order

convergence. These error plots support that our solutions have reached convergence.
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Figure 3.11: Comparison of various domain sizes with s = 3, 4, 5. The time step is

∆t = 0.5, and the grid size is ∆x = 1. We show (a) the settling speed, (b) the position

of the center of mass, (c) the vertical force on the aggregate, and (d) the value of the

perturbation at x⃗⋆. Note thatNC = 10 is the number of cubes used to form the aggregate.

3.4.3 Varying grid size, ∆x

Lastly, we perform the simulations with several grid sizes, ∆x = 1, 2, and 4.

The choice of such large grid sizes is justified by the approximation of constant stress

over each face (of side length 2). In general, as long as all three choices produce similar

results and have no stability issues, we prefer to use as large ∆x as possible to reduce

the computational time. The number of fluid grid points can also be a challenge in terms

of the computational memory required.

As we saw in the first two validations, we observe quite good agreement

presented in the velocity, location, and drag in Figure 3.14. If we had computation time

or memory capacity constraints, these results in plots (a), (b), and (c) support that we

can still obtain qualitative results to analyze a settling aggregate.
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Figure 3.12: Comparison of various ∆t = 0.75, 0.5, 0.25 in the domain size factor s = 5
with ∆x = 1. We show (a) the settling speed, (b) the position of the center of mass, (c) the

vertical force on the aggregate, and (d) the value of the perturbation near the aggregate.

For the last plot (d), since we have different grid spacings, we were not able to

capture the perturbation at the x⃗⋆ exactly for ∆x = 2 and 4 cases. We thus used MATLAB

built-in function interp3 to interpolate the C value at location x⃗⋆. We particularly

select the nearest-neighbor method, which finds the value at the nearest sample grid

point. We find the interpolation results seem to be reliable, having a good match with

previous results of C with various domain and time step sizes.

Before we conclude this section, we want to note that it is difficult to say we

obtained the correct solution since we do not have any analytic solutions. The validations

we provide here are to exhibit convergence and estimate the size of the errors made due

to time and space discretization and finite domain size effects. The results we described

in this section were confirmed with simulations of an aggregate made with 50 cubes,

and similar trends were observed. We present larger aggregate model simulations in the
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Figure 3.13: Relative error between ∆t = 0.5 and 0.25 cases.

next section.

3.5 Simulation results

3.5.1 Base case analysis

Since there are several parameters we are interested in varying, we decided on

setting a base case to compare further simulations. To explore assorted shapes, we used

50 cubes to form an aggregate. We particularly use the aggregate shape in Figure 3.15. To

avoid any stability issues while being computationally efficient, we choose the time step

size ∆t = 0.5 and grid spacing ∆x = 1. In section 3.4, we have shown that these choices

provide good accuracy. Moreover, we found that simulating the settling aggregate in the

domain size with the scaling factor s = 3 is sufficient to have negligible boundary effects.

Also, we apply Pe = 100 as we did for the homogeneous model in Chapter 2.7.4 for this

base model.

Additionally, we select the stratification strength γ more systematically. To
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Figure 3.14: Comparison of various ∆x = 1, 2, 4 in the domain size factor s = 5 with

∆t = 0.75. We show (a) the settling speed, (b) the position of the center of mass, (c) the

vertical force on the aggregate, and (d) the value of the perturbation near the aggregate.

do so, we first consider the settling distance of an aggregate, denoting it as zT . In

Figure 3.9, we show that the aggregate is initially located in the middle of the domain.

We are interested in observing a setup where γ is as large as possible while allowing

the aggregate to travel about zT = 6Ra before reaching its level of neutral buoyancy.

Equation (3.1) allows us to compute the background fluid stratification γ

ρbg = ρ0(1 − γzT ) = ρ0(1 − γ6Ra) = ρa. (3.66)

We want the aggregate density ρa, which is defined in equation (3.17), to reach neutral

buoyancy, assuming its fluid portion ρf is ρ0. For an aggregate composed of 50 cubes,

we have an estimated average radius Ra ≈ 9 (Yoo, Khatri, & Blanchette, 2020), and thus

we find γ ≈ 4 × 10−4.

In Figure 3.16, we show several 2D snapshots, sliced in the middle of the domain

(x = −0.74), of the perturbation C at various times. Note that we see negative values of
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Figure 3.15: The base aggregate model (random seed number 2) with 50 cubes.

C since the perturbation is a concentration difference from the initial concentration. We

can observe much higher perturbations around the aggregate that increases in magnitude

as time increases as the aggregate entrains the upper-layer solute.

We observe the aggregate behavior more closely in Figure 3.17. As we intro-

duced in the previous section, we measure (a) the settling speed and (b) the normalized

total drag of the aggregate. We also exhibit the ratio of total drag to the settling speed

in plot (c) as a measure of the coefficient in the linear relationship between drag and

velocity that is observed in Stokes flow. Although both settling speed and drag seem to

be decreasing over time, we find that their ratio (c) increases non-linearly. This implies

that the stratification of the fluid plays a role in the aggregate’s settling behavior, not

only by reducing the buoyancy but also through the entrained fluid. We would have

observed a horizontal line if the surrounding fluid did not affect aggregate motion as it

settled in a homogeneous fluid.

In the last plot (d), we observe the perturbation at a particular location outside

the aggregate boundary. It is the white star point x⃗⋆ = (−0.74, 12.74, 0.24) in Figure 3.16.

This point is approximately (1.01 + Rm) away from the center of mass of the aggregate.

The perturbation is expected to grow over time in magnitude at this point. As the settling

motion slows down, the magnitude of perturbation also smoothes out.

In the next section, we explore various shapes of aggregates made with 50

cubes in addition to the base case. Afterward, we will observe the effects of varying

Péclet numbers and background fluid density stratification γ.
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Figure 3.16: Concentration dynamics with the base model case at various times.

3.5.2 Various shapes of aggregates

We first run simulations with randomly shaped aggregates using 50 cubes, in

addition to the base case model that is the random seed #2. We create more aggregates,

numbering the random seeds from #11 to #15 as shown in Figure 3.18, as well as seeds

#21 to #35. With these six sample aggregates, we examine their behaviors. Results are

presented in Figure 3.19.

There are some variations (less than 16%) in aggregates settling behaviors, yet

their speed, drag, and x⃗cm locations seem to have overall similar motions. Meanwhile,

plot (c) shows larger differences between each aggregate shape. We find this interesting

feature that the drag-velocity ratio spread shows approximately a 12% difference range

and 5% away from their mean value (at the final time). Note that the sample mean value

at the final time t = 50 is about 0.3241. This demonstrates that modeling an aggregate

with a simplified shape, such as a sphere, cannot accurately capture all physical forces

involved.

Based on this mean value of six samples, we can estimate the number of random

seeds, Nsd, that we should simulate to obtain a finer result. In particular, we want to get

the Nsd such that the relative error between the standard error (SE) and standard error
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Figure 3.17: Comparison of various Péclet numbers. We show (a) the settling speed, (b)

the vertical component of normalized drag force on the aggregate, (c) the ratio of (b) to

(a) values, and (d) the perturbation at position x⃗⋆.

of the mean (SEM ) is 1%, i.e.,

|SE − SEM |
SE

< 1(%). (3.67)

In our case, we have

SE = Standard deviation with all Nsd√
Nsd

(3.68)

and

SEM = Standard deviation of 6 samples√
6

. (3.69)

However, since we do not know the numerator of SE, we assume that it is the same as

the sample standard deviation. We then can solve for Nsd ≥ 37. In the future, we plan to

run simulations with Nsd many different randomly formed aggregates.
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Figure 3.18: Five sample aggregates composed of 50 cubes.

3.5.3 Various Péclet number, Pe

Next, we vary Péclet numbers, Pe = 1 and 10, comparing the simulations to

the base case for which Pe = 100. As a smaller Péclet number implies more diffusive

effects, we look for differences in perturbation. Since we have more numerical instability

for lower Péclet numbers, we reduce the time step size to ∆t = 0.1 for all three Péclet

number cases.

Figure 3.20 shows no drastic variations between all three Péclet numbers,

especially for the velocity and total drag. Focusing on the perturbation plot (d), we

can see that more diffusion occurs for the smallest Péclet, Pe = 1, having a steady

perturbation value after time t = 30. Overall, it is clear that all four plots agree well with

our expectations, even though the impact of varying the Péclet number is small in this

regime.

3.5.4 Various stratification strength, γ

Lastly, we investigate three different stratification strengths,

γ = 10−4 × [ 1, 4 (base case), 6] .

We anticipate observing variations in both aggregate and fluid dynamics as we change

the γ value. Note that every other parameter is the same as in the base case.

We first present quantities of interest the aggregate itself in Figure 3.19. In plot

(a), we see that the settling speed of the aggregate decreases faster when the fluid density
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Figure 3.19: Comparison of various shapes of aggregates made with 50 cubes. We show

their (a) settling speed, (b) drag force on the aggregate in the settling direction, (c) ratio

of (b) to (a) values, and (d) position of the center of mass.

gradient is sharper. Similar results are shown for the total drag over time in plot (b). To

clarify, we present the ratio of the drag to the settling speed in plot (c). We observe very

similar behavior as in the homogeneous fluid case with the smallest γ = 10−4. Note

that this γ is considered a small value for the aggregate radius Ra ≈ 9. For instance, the

same γ may be a large enough value to observe a clear background fluid stratification

effect for an aggregate radius 20. We also look at the center of mass of aggregate over

time. Since γ = 10−4 mimics a homogeneous fluid, the aggregate travels more, yet with

a slower speed, demonstrated by the blue solid line in plot (d).

From a fluid perspective, we obtain the perturbation over time at two different

points. In Figure 3.22, the left plot is the perturbation at the usual point, x⃗⋆, where the

white star is located in Figure 3.16. It is located outside of the aggregate, yet very close.
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Figure 3.20: Comparison of various Péclet numbers. We show (a) the settling speed, (b)

the vertical force on the aggregate, (c) the ratio of (b) to (a) values, and (d) the value of

the perturbation near the aggregate.

On the right side, we examine the perturbation inside of the aggregate, particularly at

the center of the fluid domain. By looking at the magnitude of C, there are certainly

higher perturbations for all three γ cases at x⃗m. Moreover, the perturbation varying

range is quite large for the light stratification case (blue line). As we mentioned, it is

because the same aggregate stops moving in a stronger density-stratified fluid due to

reaching neutral buoyancy.

3.6 Conclusion

As an extension of our study of the homogeneous system (Yoo, Khatri, &

Blanchette, 2020), we have developed a numerical method to simulate a settling marine

aggregate, randomly formed with cubes, using a boundary integral method in a density-
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Figure 3.21: Comparison of various background density stratification strengths. We

show (a) the settling speed, (b) the vertical force on the aggregate, (c) the ratio of (b) to

(a) values, and (d) the position of the center of mass

stratified fluid. Applying the net force equilibrium in a Stokes regime, we prescribed

the total drag and torque to solve for the stress on the aggregate and its settling velocity

using the single-layer potential formula. With the velocity field obtained, we advance the

perturbation in time using the advection-diffusion equation. To accelerate the evaluation

of integrals of Stokeslet, we incorporate the Fast Multipole Method by modifying the

Laplace kernel.

We have validated our methods by providing results of a settling aggregate

composed of 10 cubes while varying the spatial grid, time steps, and domain sizes. Most

of the errors for each comparison appeared to be much smaller than those resulting from

assuming that the stress is uniform on each square face of a cube.

Furthermore, we simulated larger aggregates, made with 50 cubes, in different

settings. We have observed aggregate settling behavior before its density matches the

surrounding fluid density. We found a consistent trend in the settling behaviors between
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Figure 3.22: Perturbation with various γ at (a) the star position x⃗⋆, outside the aggregate,

and (b) the center of the fluid domain, inside the aggregate.

different shapes of aggregates with, for example, variations in the drag coefficient of the

order of 8%. In future work, we can simulate aggregates with more cubes and consider

more different shapes for better statistical results. kk Under the different Péclet number

environments, we find the main changes in the perturbation, as expected, between Pe = 1

and Pe = 10. Since a smaller Péclet number implies a higher diffusivity, the perturbation

near the aggregate slows down 10% faster than the other two cases.

We also explore various stratification strengths via γ values. Marine aggregates

are highly porous and sensitive to surrounding fluid density stratification (Prairie et al.,

2013). Our results also support these characteristics while we perform the simulations

with three types of background fluid density gradients. In addition to our results in

this thesis, potential future work includes considering another applicable regime with

different parameters.

We note that a description of rotational flow results is missing, although we

have allowed a rotation of an aggregate while obtaining all the numerical results. In

short, we have found an approximate torque having the order O(10−4). This is quite

a small value compared to the drag force and perturbation effects as a response to the

background fluid stratification. We consider analyzing more details as future work.

There are several branches we can extend our research further with our com-

prehensive numerical tools developed. As much research work has been done with a

sphere model as an aggregate, we would like to compare our results, such as the settling

speed, drag acting on the aggregate, and the amount of concentration entrained.



Chapter 4
Continuum modeling of a complex

fluid

In this chapter, I report the internship research I began at LBNL in the summer

of 2022 that I have continued to work on as part of my doctoral studies. We begin with

elaborating more details of Figure 1.2 from Chapter 1.3.

4.1 Rate-dependent flow

In general, most non-Newtonian behaviors of complex fluids can be captured

via shear rate dependency. We can describe rate-dependent flow with the following

power law (Herschel & Bulkley, 1926). We then have the viscous stress tensor,

τ = 2nµ̃γ̇n−1D, (4.1)

where µ̃ is the constant viscosity under zero shear rate and n is the flow behavior index

that can be determined experimentally depending on the materials. We also recall

that the magnitude of strain rate is γ̇ = |D|. Note that this value can be computed by

applying the scaled Frobenius norm for a second-order tensor,

γ̇ = |D| =
√

1
2 tr (DDT ).

The relationship between rate-dependent flow and shear rate can be addressed

with the apparent viscosity function, η,

η(γ̇) = 2n−1µ̃γ̇n−1. (4.2)

83
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Figure 4.1: Relationship between apparent viscosity and shear rate. The plot is drawn

based on (Irgens, 2014). The value µ∞ is the asymptotic viscosity at high shear rate.

We show the variation of apparent viscosity depending on the shear rate in Figure 4.1.

The black dashed line can be found when n = 1 in equation (4.2) where the Newtonian

fluid viscosity µ̃ as introduced in equation (1.3). Furthermore, the purple and green lines

in Figure 4.1 imply that the shear-thinning and thickening behaviors can be found when

n < 1 and n > 1, respectively.

As we have shown in Figure 1.2 in Chapter 1.3, a Bingham fluid is a particular

case of the rate-dependent flow. Bingham fluid behaves as a solid, like plastic, under

stress less than the yield stress and begins flowing like a fluid with varying viscosity.

This is why it is classified as a viscoplastic fluid. The rheological equations describing

Bingham fluid (Bingham, 1917) with yield stress τ0 are, D = 0, if |τ | < τ0

τ =
(
2µ̃+ τ0

γ̇

)
D, if |τ | ≥ τ0,

(4.3)

and its corresponding apparent viscosity is

η = µ̃+ τ0
2γ̇ , (4.4)

when |τ | ≥ τ0. To illustrate more general yield stress fluids, (Sverdrup, Nikiforakis,

& Almgren, 2018) proposed the constitutive equations by combining equations (4.1)
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and (4.3),  D = 0, if |τ | < τ0

τ =
(
2nµ̃γ̇n−1 + τ0

γ̇

)
D, if |τ | ≥ τ0,

(4.5)

When n = 1, we recover the Bingham fluid.

As it is implied in equation (4.5), we obtain the yield stress of a fluid as |τ | → τ0.

When we solve for τ0 in equation (4.5), we see that

2nµ̃γ̇n + τ0 → τ0, (4.6)

due to |D| = γ̇, and thus, we should have

γ̇ → 0. (4.7)

Note that the computation of τ is already implemented for a general rate-

dependent fluid in AMReX. In the implementation, they use the Papanastasiou regular-

ization method (Papanastasiou, 1987). By introducing a small parameter, denoted as ε,

we can regularize the singularity of γ̇ as following,

1
γ̇

→ 1 − e−γ̇/ε

γ̇
(4.8)

for γ̇/ε ≫ 1. Otherwise, we simply use 1/ε. The detailed mathematics and analysis can

be found in (Sverdrup, Nikiforakis, & Almgren, 2018).

4.2 Second-order strain rate rheolgy

Once we obtain the stress tensor τ for a complex fluid, we can incorporate the

varying viscosity into the incompressible Navier-Stokes equations, which are introduced

in (1.1) and (1.2), recalling here,

∇ · u⃗ = 0
∂u⃗

∂t
+ u⃗ · ∇u⃗ = 1

ρ
(−∇P + ∇ · τ + ρg⃗) ,

to obtain the flow velocity, u⃗. We include a viscous stress tensor of the form,

τ = ν0A1 + ν1A2
1 + ν2A2, (4.9)

where ν0 is constant in shear flow, and ν1 and ν2 are a function of the shear rate γ̇. The

second-order form of the deviatoric stress tensor, equation (4.9), was introduced by
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Colemann and Noll (Coleman & Noll, 1960). The term Ai is the Rivlin-Ericksen tensor,

defined as

A1 = ∇u⃗+ (∇u⃗)T = 2D (4.10)

and

A2 = ∂A1
∂t

+ u⃗ · ∇A1 + A1∇u⃗+ (∇u⃗)T A1. (4.11)

Note that the general form of the Rivlin-Ericksen tensor can be extended to order n,

An+1 = ∂An

∂t
+ u⃗ · ∇An + An∇u⃗+ (∇u⃗)T An. (4.12)

For polymer solutions, the most studied in non-Newtonian fluids, it is well-

known that the effect of the O
(
D2) term is small enough to ignore, compared to O (D)

(Bird, Armstrong, & Hassager, 1987). For this reason, the effect of O
(
D2) has been

neglected in many research works for a complex fluid. For other materials, however,

there are potentially important characteristics we should pay attention to considering

the stress with higher-order terms in D, including granular materials. As a first step, we

thus explore the second-order rheology with granular materials.

4.3 Granular rheology

We model a new stress tensor τ with a second-order strain rate that describes

non-isotropic material flow properties,

¯̄σ = −P ¯̄I + τ = −P ¯̄I + µ1(γ̇)O(D) + µ2(γ̇)O(D2). (4.13)

In this section, we focus on the methodology to compute the viscosity µi(γ̇) (i = 1, 2)

under the simple shear flow. In (Srivastava et al., 2021), a new stress tensor is presented

to describe a non-isotropic flow as follows,

τ = µ1(γ̇)D + µ2(γ̇)
[
D2 − tr

(
D2)
3 I

]
, (4.14)

where

µ1(γ̇) = (η1γ̇ + κ1) 1
γ̇
, (4.15)

and

µ2(γ̇) =
(
η2γ̇

2 + κ2
) 1
γ̇2 . (4.16)
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As a particular application to equation (4.9), the form (4.16) is derived under two condi-

tions: (1) the flow motion is simple with a constant stretch by neglecting deformation

history, and (2) the flow is isochoric, having uniform properties along streamlines and

tr(D) = 0. Note that the last term in equation (4.14) with tr
(
D2) appears to show the

pressure dependency of the granular material, in addition to the hydrostatic pressure

P (Rajagopal, 2006).

The flow functions, ηi and κi for i = 1, 2, have the following dependence on

total stress: each ηi(γ̇, p) is (shear) rate-dependent and κi(p) is (shear) rate-independent.

We shall explain the details of these two types of functions in the following sub-section.

4.3.1 µ(I) rheology

The key to modeling the ηi and κi terms is the well-known µ(I) relationship

developed by (Jop, Forterre, & Pouliquen, 2006). Here, I is the inertial number,

I = γ̇d√
P/ρp

, (4.17)

where d and ρp are the average particle diameter and density of a given granular material.

This dimensionless quantity describes the ratio of the average static force to the inertial

force between granular particles, (Jop, Forterre, & Pouliquen, 2006) interpreted the

inertial number as the ratio between a macroscopic deformation and an inertial timescale.

To understand the granular flow regimes depending on the inertial number.

We consider an hourglass example. As we can see in Figure 4.2, three different states

Slide Title
Solid-like

Liquid-like

Gas-likediameter 

density 

d
ρp

Pressure P

Figure 4.2: Schematics of granular flow with an hourglass example.

can co-exist in granular materials. In the top part of the hourglass, filled with sand, the
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particles seem not to move and resemble a solid. In the middle nozzle of the hourglass,

we can observe the sands passing through the nozzle, flowing like a liquid. Meanwhile,

the sand landing on the bottom part of the hourglass forms a cone shape. When we

look very closely at the top of the cone, we can see that the sand is falling and colliding,

behaving like a gas.

In general, these three regimes can be categorized by the inertial number I .

The solid-like state appears when I is small. As I increases, the granular material

deformation occurs rapidly, as we see in the middle of the hourglass. The collisional

flow, acting like a gas, can be observed for a large I number.

Srivastava (Srivastava et al., 2021) developed a calibration to obtain the coeffi-

cients ηi and κi, for i = 1, 2, by applying the µ(I)g rheology for granular materials,

µ(I)g
i = µ0

i +AiI
iαi = (ηiγ̇

i + κi)
P

, (4.18)

where µ0
i , Ai, and αi are fitting parameters, depending on the materials. Note that µ(I)g

is a dimensionless function of I . By substituting the inertial number I , equation (4.17),

into equation (4.18), we get

µ0
i +Ai

(
γ̇d√
P/ρ

)iαi

= (ηiγ̇
i + κi)
P

. (4.19)

We then can find the viscous terms (4.15) and (4.16),

µi(γ̇) = P

(
µ0

i +Ai

(
γ̇d√
P/ρ

)iαi
)

1
γ̇i

(4.20)

Note that we can obtain the fitting parameters from particle-based simulations for

granular materials, such as the discrete element method (DEM). The following parameter

values are introduced in (Jop, Forterre, & Pouliquen, 2006) and (Srivastava et al., 2021):

0.09 ≤ µ0
1 ≤ 0.33, 0.37 ≤ α1 ≤ 0.7

0.01 ≤ µ0
2 ≤ 0.1, 0.28 ≤ α2 ≤ 0.44.

One can find the corresponding Ai values in (Srivastava et al., 2021). Note that we use

the following regularization,
1
γ̇2 → 1 − e−γ̇2/ε

γ̇2
, (4.21)

for a higher-order strain rate.
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4.3.2 Hydrostatic pressure dependency

For granular rheology, it is typical to see compressible flow. It is, thus, essential

to take pressure into account to evaluate the viscosity as seen in equation (4.20). Here,

we consider the pressure as a combination of background flow pressure, P0, that is linear

in the vertical direction, z, and a perturbation, P ′, such that

P = P0(z) + P ′(x, y, z).

Note that the perturbations are due to gravity. Without a gravitational force, we may

simply input the pressure, P0, constant over time.

In case gravity is involved, we consider the density term in order to approximate

the perturbation, as

ρ = ρ0 + ρ′(x, y, z),

where ρ0 is constant and ρ′ is a spacially-dependent density perturbation of the flow.

Here, we assume that

∇P0 = dP0
dz

≈ ρ0g. (4.22)

This recovers our momentum equation. As we would like to construct a background

pressure that stays constant over time for our granular rheology, we may use this

assumption. By integrating both sides of equation (4.22), we obtain

P0 ≈ pbg + ∇P0z. (4.23)

We would like to use this form since we already have the pbg term implemented in

the AMReX-incflo code. When we have periodic boundary conditions in the gravity

direction, we might need to prescribe a pressure gradient to have an additional pressure

effect.

The challenge we faced in implementing the pressure-dependent flow was

connecting the pressure in addition to the strain rate into the rheology code. We also

need to use a different module than the AMReX-incflo for a compressible flow. We thus

leave the pressure-dependent granular flow as a future work.

4.4 Numerical method

In this section, we demonstrate the numerical method used to solve the flow

velocity with incompressible Navier-Stokes equations incorporating the viscosity (4.20).
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We particularly focus on the time integration that we wanted to improve as we consider

the second-order strain rate stress tensor. The main AMReX-incflo library provides three

different time integration methods: 1) explicit Euler, 2) Crank-Nicolson, and 3) implicit

Euler methods. Since we have the stress tensor τ of the form (4.9), which is non-linear

in the velocity, the most convenient choice was the explicit Euler method. However, it

would be beneficial to have another scheme for more stability, efficiency, and accuracy.

We consider a two-stage Runge-Kutta (RK2) method to achieve second-order

convergence. In particular, we implemented the following scheme,

u⃗temp = u⃗n + ∆t
2 F (u⃗n) (4.24)

u⃗∗ = u⃗n + ∆tF
(
u⃗temp

)
, (4.25)

where

F (u⃗n) = −u⃗n · ∇u⃗n + 1
ρ

(
−∇Pn + ∇ · τ (u⃗n) + ρg⃗

)
.

where the superscript n represents the current time (known) value; u⃗n ≈ u⃗(x⃗, tn). The

new velocity value u⃗∗ is an updated velocity to the next time, u⃗∗ ≈ u⃗(x⃗, tn+1). Note that

the temp time is considered to be n+ n/2. One important part of being consistent is that

we only update the one time step with ∆t, from the time n to ∗.

After we integrate over one time step, we should make sure that u⃗∗ satisfies

the continuity equation (1.1). We thus project this intermediate velocity u⃗∗ onto the

divergence-free space (Sverdrup, Nikiforakis, & Almgren, 2018). For the projection

step, we first express u⃗∗ according to the Helmholtz-Hodge-Decomposition (Chorin &

Marsden, 1993),

u⃗∗ = u⃗n+1 + ∇ϕ, (4.26)

where u⃗n+1 is the new velocity at time tn+1 that satisfies the divergence-free condition

and ϕ is a scalar function. To take advantage of the incompressibility of u⃗n+1, we find

the divergence of equation (4.26), leading to the Poisson equation for ϕ,

∇2ϕ = ∇u⃗∗.

After we solve for ϕ, applying given boundary conditions, we find the updated velocity,

projecting the velocity u⃗∗ onto the divergence-free space to get the new time-level

solutions.

u⃗n+1 = u⃗∗ − ∇ϕ.
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As we mentioned, my contribution to the AMReX-incflo for this project is the granular

material viscosity evaluation and the RK2 scheme implementation. For the rest of the

parts to solve for the Navier-Stokes equations, we use the AMReX-incflo library as it

is. Note that the details of general algorithms for this library can be found in (Almgren

et al., 1998).

4.5 Numerical validation for time integration

We compare the performance of time integration methods: 1) the explicit Euler,

which was already available in the AMReX-incflo, and 2) the explicit RK2 scheme that

we implemented for a higher-order strain rate rheology.

Slide Title

2

1
2

x

y

z
velocity (0, 1, 0)

Figure 4.3: Numerical simulation domain box filled with sand type material. We use

dimensions with centimeters for a length and seconds for a time scale.

For this validation, we consider a rectangular cuboid, as we show in Figure 4.3,

with dimensions 2 cm (x) × 1 cm (y) × 2 cm (z), where all the walls in the x− and

z−directions have a no-slip boundary condition. We impose a periodic condition on

the y−direction. Note that we consider centimeters (cm) for the length scale. In the

finite volume sense of spatial discretization, the total number of cells composing the

cuboid is 8 × 8 × 8. We suppose this cuboid is filled with dry sands of a mean diameter

d = 0.15 cm and material density ρ = 1 g/cm3. To make sands flow, we move the

top plate in the y−direction, shown as the pink in Figure 4.3, with the velocity (0, 1,

0) cm/s. For the rest of the parameters, we obtain information from other research
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papers. In (Senetakis, Coop, & Todisco, 2013), they observed the interparticle friction

of dry sands µs ≈ 0.01 g·cm/s2, in which particle sizes are in the range of 0.12 cm and

0.24 cm. We then find the fitting parameters from (Srivastava et al., 2021), as in the

following Table 4.1. With this setup and parameters, we first observe the finest results to

µ0
i αi Ai

i = 1 0.12 0.41 0.512

i = 2 0.02 0.31 0.252

Table 4.1: Fitting parameters of granular materials when the interparticle friction µs =
0.01 (Srivastava et al., 2021).

understand the flow.

4.5.1 Velocity in the shear flow direction

We first present the reference solution of our simulation. In particular, we

show the velocity in the shear flow direction, y, in Figure 4.4. We use the explicit EulerSlide Title

t = 0.1 t = 0.4 t = 1

Figure 4.4: Velocity component (cm/s) in y−axis at time t = 0.1, 0.4 and t = 1 (s).

method with the time step ∆t = 10−5 (s) as the reference solution. The final time of this

validation is t = 1 s.

We note that in this setup, the velocity is independent of y, although we move

the plate in this direction. To observe the variation of x − z plane clearly, we obtain

Figure 4.5 when y = 1. We can see that the most variation occurs on the top of the z-axis

where the plate is moving.
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Slide Title

t = 1t = 0.4t = 0.1

Figure 4.5: Velocity component (cm/s) in y−axis at time t = 1, 6, and 10 (s).

4.5.2 Error analysis (order convergence)

Using the reference velocity in y−direction obtained by the explicit Euler, we get

the errors of the Euler and RK2 methods with various time step sizes, ∆t. In Figure 4.6,

we obtain the infinite norm of the absolute difference of velocities in the y−axis. It is clear

to see that RK2 is performing much better in terms of order convergence and accuracy.

5 6 7 8 9 10

10-5

0.02

0.03

0.04

0.05

0.06
0.07
0.08
0.09 Euler

RK2

slope Euler = 0.8198
slope RK2 = 2.0691

Figure 4.6: Order convergence between the explicit Euler and RK2 schemes at time t = 1
(s). The vertical axis shows the infinite norm of the absolute differences between the

reference solution and each method.

As we expected, the explicit Euler method shows close to the first order, and

the RK2 shows second-order convergence. Note that due to the time constraint, we used

two points, ∆t = 10−4, 50−5, to plot Figure 4.6. Since the error of the explicit Euler
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method is large and we need the Euler method for a reference solution to validate the

RK2 scheme, we have to use quite a small time step ∆t to confirm the convergence.

4.6 Future work

There are several potential future works we could consider as an extension of

this project. We may analyze the stabilities between the explicit Euler and RK2 methods

for this particular granular flow in the cuboid. Our preliminary results of the new time

integral implementation showed that the RK2 method was more stable than the explicit

Euler method for certain fitting parameters. As we show in Figure 4.7, the stability
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Figure 4.7: Stability regions of the explicit Euler and RK2 methods.

region for the RK2 method is slightly larger in the imaginary direction than the explicit

Euler (Griffiths & Higham, 2010). For advection-dominated problems, the spread of

the eigenvalues of the Jacobian matrix is mostly along the imaginary direction. For this

reason, we expect better stability for our problem as the diffusion is small compared to

the advection.

As we are concerned with the stability of explicit schemes, it would be useful

to have an implicit time integration for the second-order strain tensor flow. Although

further investigation is necessary, we anticipate having a second-order convergence with

better stability with the following predictor-corrector scheme (Press, 2007),

u⃗temp − 1
ρ

∇
(

∇ · τ temp
1

2

)
= u⃗n + F̃ (u⃗n) ∆t+ 1

ρ
∇
(∇ · τ n

1
2 + ∇ · τ n

2

)
∆t
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u⃗n+1 − 1
ρ

∇
(

∇ · τ n+1
1

2

)
= u⃗n + F̃ (u⃗n) ∆t+ 1

ρ
∇
(∇ · τ n

1
2 + ∇ · τ n

2 + ∇ · τ temp
2

2

)
∆t

where

F̃ (u⃗n) = −u⃗n · ∇u⃗n + 1
ρ

(
−∇Pn + ρg⃗

)
.

The idea is similar to an implicit RK2 scheme. The main difference is that we split the

viscous tensor τ term into two parts,

τ1 ∝ D, and τ2 ∝ D2.

The complication of this implementation is building the linear system to solve for each

velocity, u⃗temp and ⃗un+1.

From the second-order strain rate rheology perspective, we consider adding

the time-dependent term,

µ3 [DW − W D, ] (4.27)

to the stress tensor give in equation (4.14). The viscosity coefficient can be found by

modifying the µ(I) rheology (4.18),

µ(I)3 = −A3
(
I2
)α3 = η3γ̇

2

P
. (4.28)

Specifically, we can find the coefficients of each shear rate term in equation (4.14) as

µ3 = −PA3

(
γ̇d√
P/ρ

)2α3 1
γ̇2 . (4.29)

To obtain more realistic simulations, it would be necessary to connect the granular

rheology with a compressible flow.

It is also interesting that solid particles suspended in a Newtonian fluid can

exhibit highly non-Newtonian behaviors. To model this type of behavior, we may

implement immersed boundary methods to simulate a suspension of solid particles in a

Newtonian fluid, which is an important application area that has received significant

research interest lately (Couturier et al., 2011).



Chapter 5
Conclusion

Modeling fluid interactions with other objects can deliver information we

cannot easily obtain in physical experiments. To achieve this, we studied both Newtonian

and non-Newtonian fluids by investigating marine aggregate models and granular

rheology.

We discussed the settling marine aggregate simulations in the first two parts

of this thesis. We are motivated to explore marine aggregates by their relevance to

global climate change, which is the most significant environmental problem we face

today. The ocean absorbs approximately 40% of the carbon dioxide (CO2) produced

anthropogenically (Omand et al., 2020). A portion of the atmospheric CO2 is dissolved at

the surface of the ocean and fixed by marine aggregates. As they transport the dissolved

carbon to the deep sea, marine aggregates contribute to reducing the atmospheric

CO2 level. While there are many active experimental works in oceanography, there are

limitations to obtaining and processing an actual marine aggregate. With a computational

approach, we can reduce these restrictions and assist in research for marine aggregate

dynamics. Our ultimate goal for this project is thus to provide numerical tools to attain

useful information related to biological or oceanic research.

The methods we developed can create randomly formed aggregate models

having a fractal dimension using two algorithms, individually-added aggregation, and

cluster-to-cluster aggregation. The parameters for surrounding fluid can be easily ad-

justed in the Stokes approximation. In the homogeneous fluid, we found a suitable

length scale for fractal aggregates to allow users to predict different forces acting on

the aggregates as they settle. For a more realistic investigation, we simulate the settling

96
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marine aggregate model in a density-stratified fluid. We can quantify several values of

interest, including settling speed, time to pass a fluid density gradient, and concentration

perturbation. We hope to contribute to oceanic carbon cycle research by providing an

understanding of the fluid dynamics of marine aggregates.

For the last chapter of this thesis, we introduced a general strain-to-stress

relation for complex fluids that show non-Newtonian behaviors. Since they tend to

exhibit more complicated properties than Newtonian fluids, there are still many open

questions in this field. In this project, we particularly focused on flows of granular

materials, which can be found everywhere in our daily lives. One example is the sand

sliding in nature. A dune sliding due to its instability could be extremely hazardous

and may even result in casualties depending on its location. In this case, measuring and

predicting the slope of a dune is important to prevent any future accidents (Xie et al.,

2021). Since their state can co-exist between solid, liquid, and gas, simulating granular

material behaviors using computational programs is generally difficult. The constitutive

rheology code, AMReX-incflo, developed by researchers at Lawrence Berkeley National

Laboratory, provides various rheological models by incorporating a viscous term into

an incompressible flow. In this library, we implemented the viscosity computation for

granular rheology. To explore a second-order shear rate behavior of complex fluids, we

also coded the quadratic strain tensor computation for the incompressible flow solution.

For better order convergence and stability, we added a two-stage Runge-Kutta scheme

in the AMReX-incflo. Our numerical development in the AMReX-incflo would allow us

to examine complex fluid behavior in a more sophisticated way. We hope to continue

studying complex fluid research and contributing to various scientific fields.
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Appendix A
Appendix for Chapter 2

A.1 Exact Kernel Integration

Slide Title

⃗y

Figure A.1: Schematic of the mapped domain where numerical integration is performed.

When computing the flow around the aggregates, we need to integrate over

square surfaces. To integrate over any square face, we first map the square over which we

need to integrate to the square (x, y, 0) with x ∈ [−1, 1] and y ∈ [−1, 1], as depicted in Fig.

(A.1). The normal to the surface is thus always in the z−direction. We may then exactly

evaluate all the surface integrals involved in either the single-layer or double-layer
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potential methods.

A.1.1 Single-layer potential

In the single-layer potential approach, we need to compute integrals of the

form ∫
S

( ¯̄I
||x⃗− y⃗||

+ (x⃗− y⃗)(x⃗− y⃗)
||x⃗− y⃗||3

)
dS(x⃗)

=
∫

S

¯̄I
||x⃗− y⃗||

dS(x⃗) +
∫

S

(x⃗− y⃗)(x⃗− y⃗)
||x⃗− y⃗||3

dS(x⃗) = I1 + I2. (A.1)

Here, we have that x⃗ = (x, y, 0) and we write y⃗ = (x0, y0, z0) and

||x⃗− y⃗|| = R(x, y) =
√

(x− x0)2 + (y − y0)2 + z2
0

We first consider the case when x0 = y0 = z0 = 0, which arises when integrating over a

face centered at the point where we are computing the velocity. In that case, we have

R(x, y) =
√
x2 + y2. We find for the diagonal terms of I1∫ 1

−1

∫ 1

−1

1√
x2 + y2 dxdy = 8 arcsinh(1) (A.2)

and all the non-diagonal terms are zero.

Away from the singularity, we can generally find antiderivatives computed

using Mathematica. For the integral I1, we have∫
S

1
||x⃗− y⃗||

dS(x⃗) =
∫ 1

−1

∫ 1

−1

1
R(x, y) dxdy

= (x− x0) log (R(x, y) + (y − y0)) + (y − y0) log (R(x, y) + (x− x0))

−z0 arctan
((x− x0)(y − y0)

z0R(x, y)

)
+ z0 arctan

((y − y0)
z0

)
− (y − y0)

∣∣∣∣1
x=−1

∣∣∣∣∣
1

y=−1
. (A.3)

Note that there is no issue with evaluating the arctangent when z0 = 0, as the

multiplication by z0 yields zero. Also, we need to be careful using this antiderivative

when evaluating cases where z0 = 0 and |x0| = |y0| = 1. In that case, the integral

simplifies to ∫ 1

−1

∫ 1

−1

1√
1 + x2

dxdy = 4 sinh−1(1). (A.4)

Next, we consider the second part of the integral equation (A.1), I2, which we

index with m and n

I2 =
∫ 1

−1

∫ 1

−1

(x⃗− y⃗)m(x⃗− y⃗)n

R(x, y)3 dxdy. (A.5)
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Note that the numerator in equation (A.5), written in index notation, refers to four

different cases. There are two square-like terms

(a) (x− x0)(x− x0) or (y − y0)(y − y0) and (b) z2
0 ,

and two mixed terms

(c) (x− x0)(y − y0) and (d) − (x− x0)(z0) or − (y − y0)(z0).

Again, we treat x0 = y0 = z0 = 0 separately. The first two diagonal terms (case

(a)) are then ∫ 1

−1

∫ 1

−1

x2

(x2 + y2)3/2 dxdy = 4 arcsinh(1). (A.6)

The third diagonal term is zero because of z0 = 0, and every non-diagonal term is zero

by symmetry.

Assuming that x0y0z0 ̸= 0, we consider cases (a)-(d) in turn. For case (a), we

have ∫ 1

−1

∫ 1

−1

(x− x0)2

R(x, y)3 dxdy = (y − y0) (log (R(x, y) + x) − 1)

+z0 arctan
((y − y0)

z0

)
−z0 arctan

((x− x0)(y − y0)
z0R(x, y)

)∣∣∣∣1
x=−1

∣∣∣∣∣
1

y=−1
. (A.7)

This case does not have evaluation issues since the argument of the logarithm can only

be zero if y = y0, which causes this entire term to be zero. Also, R(x, y) can only be zero

if z0 = 0, which would then ensure that the third term would be zero. Note that the cases

with numerator (y − y0)2 and (x− x0)2 are equivalent if we swap the x and y variables

by choosing a different mapping.

Case (b) is simpler since the z0 term is constant.

∫ 1

−1

∫ 1

−1

z2
0

R(x, y)3 dxdy = z0 arctan
((x− x0)(y − y0)

z0R(x, y)

)∣∣∣∣1
x=−1

∣∣∣∣∣
1

y=−1
(A.8)

Here, the only possibility to have an undefined value is when z0 = 0, which simply gives

a value of zero as the multiplying factor z0 dominates the arctangent.

For case (c), we find∫ 1

−1

∫ 1

−1

(x− x0)(y − y0)
R(x, y)3 dxdy = −R(x, y)|1x=−1

∣∣∣1
y=−1

. (A.9)
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Finally, for case (d), we have∫ 1

−1

∫ 1

−1

(x− x0)z0
R(x, y)3 dxdy = −z0 log (R(x, y) + (y − y0)) |1x=−1

∣∣∣1
y=−1

. (A.10)

As before, this case also does not have any issue since R(x, y) + (y− y0) can only be zero

if z0 = 0, which causes the entire term to be zero.

A.1.2 Double-layer potential

We now consider the double-layer potential integrals of the form∫
S

(x⃗− y⃗)(x⃗− y⃗)
R(x, y)5 (x⃗− y⃗) · nk dS(x⃗). (A.11)

Since the inner product between the position and normal vectors always gives z0 in the

mapped coordinates, we focus on the integral,∫
S

(x⃗− y⃗)m(x⃗− y⃗)n

R(x, y)5 dS(x⃗). (A.12)

Note that we only need to compute this integral when z0 ̸= 0, as otherwise equation

(A.11) is zero because of the inner product. This also implies that R(x, y) may never be

zero.

We now consider the following four cases:

(a) m = n = 1 or m = n = 2,

(b) m = n = 3,

(c) m = 1, n = 2 or m = 2, n = 1,

(d) m =1 or 2 and n = 3, or m = 3 and n =1 or 2 vice versa.

For case (a), we find ∫ 1

−1

∫ 1

−1

(x− x0)2

R(x, y)5 dxdy

= 1
3

[ 1
z0

arctan
((x− x0)(y − y0)

z0R(x, y)

)
− (x− x0)(y − y0)(

(x− x0)2 + z2
0
)
R(x, y)

] ∣∣∣∣∣
1

x=−1

∣∣∣∣∣∣
1

y=−1

. (A.13)

Since z0 ̸= 0 and R(x, y) ̸= 0, there are no issues when evaluating this antiderivative.

For case (b),∫ 1

−1

∫ 1

−1

z2
0

R(x, y)5 dxdy = 1
3

[ 1
z0

arctan
((x− x0)(y − y0)

z0R(x, y)

)

+ (x− x0)(y − y0)
(
R(x, y)2 + z2

0
)(

(x− x0)2 + z2
0
) (

(y − y0)2 + z2
0
)
R(x, y)

]∣∣∣∣∣
1

x=−1

∣∣∣∣∣∣
1

y=−1

, (A.14)
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which again can always be evaluated directly when z0 ̸= 0.

Case (c) is relatively simple, as we can see,∫ 1

−1

∫ 1

−1

(x− x0)(y − y0)
R(x, y)5 dxdy = 1

3R(x, y)

∣∣∣∣1
x=−1

∣∣∣∣∣
1

y=−1
. (A.15)

Finally, case (d) is

∫ 1

−1

∫ 1

−1

(x− x0)z0
R(x, y)5 dxdy = − (y − y0)z0

3
(
(x− x0)2 + z2

0
)
R(x, y)

∣∣∣∣∣
1

x=−1

∣∣∣∣∣∣
1

y=−1

. (A.16)

Once again, this is simple to evaluate when z0 ̸= 0.

A.2 Extensional Flow past a Sphere

In the case of a sphere of radius Rs, one may compute an exact solution for the

flow satisfying U⃗bg = ¯̄M · x⃗ at infinity and U⃗bg = 0 on the surface of the sphere.

The Stokes flow around the sphere is then (Guazzelli & Morris, 2011)

u⃗ =
( ¯̄M · x⃗

)(
1 − R5

s

r5

)
+
(
( ¯̄M : x⃗x⃗)x⃗

) (5
2

)(
R5

s

r7 − R3
s

r5

)

and the corresponding pressure is

P = −5µR3
s

¯̄M : x⃗x⃗
r5

where x⃗ is the position vector and r the distance to the center of the sphere. The stress

tensor is then

¯̄T = 5µR3
s

¯̄M : x⃗x⃗
r5 + 2 ¯̄M

(
1 − R5

s

r5

)
.+ (x⃗( ¯̄M · x⃗) + ( ¯̄M · x⃗)x⃗)

(
10R5

s

r7 − 5R3
s

r5

)

+5
(
R5

s

r7 − R3
s

r5

)
( ¯̄M : x⃗x⃗) ¯̄I + 5

(
5R3

s

r7 − 7R5
s

r9

)
( ¯̄M : x⃗x⃗)x⃗x⃗

On the surface of the sphere, where r = Rs, we consider the stress vector,

f⃗ = ¯̄T · n̂, where n̂ = x⃗/Rs, and find

f⃗ = ¯̄T · n̂
∣∣∣
r=Rs

= 5µ
R2

s

(
2 ¯̄M : x⃗x⃗
Rs

− 2 ¯̄M : x⃗x⃗
Rs

+ ¯̄M · x⃗Rs

)
= 5µ ¯̄M · x⃗

Rs

For an eigenvector v̂i with eigenvalue λi, we thus find

Si = 1
2

∫
S

|f⃗ · v⃗i| dS = 5πµR2
sλi.
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