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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Crop production is becoming an increasing challenge as the global population grows and

the climate changes. Modern cultivated crop species are selected for productivity under opti-

mal growth environments and have often lost genetic variants that could allow them to adapt

to diverse, and now rapidly changing, environments. These genetic variants are often pres-

ent in their closest wild relatives, but so are less desirable traits. How to preserve and effec-

tively utilize the rich genetic resources that crop wild relatives offer while avoiding

detrimental variants and maladaptive genetic contributions is a central challenge for ongoing

crop improvement. This Essay explores this challenge and potential paths that could lead to

a solution.

Introduction

Plant domestication is a process that began with cultures around the world experimenting

with alternative means of food production. These experiments have expanded, undoubtedly,

beyond the imaginations of their originators. Much of the planet’s surface is now involved,

and most of human sustenance derives from experiments that originated among fewer than

1,000,000 humans starting 10 to 12,000 years before present. Domestication has involved a

mix of intentional (or “artificial”) selection and unintentional (sometimes “unconscious”)

selection—the simple result of differential survival and reproduction among individuals in a

novel environment [1].

Changes resulting from domestication occurred slowly. Archeological evidence demon-

strates protracted, gradual change that lasted thousands of generations for many domesticates

(Box 1) [2]. Evolution continues today in traditional populations outside of formal breeding

programs [3]. While there are clear examples of genetic loci that have a major impact on

domestication phenotypes, in each cultivated species the process likely involved changes in

hundreds or thousands of genes [4–7]. This results in a continuum of morphological and

genetic differentiation, but crops and their relatives can nonetheless be usefully categorized

into 3 broad groups (Fig 1). The first are extant populations of wild plants that share a
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Box 1. Glossary

Domesticates

Plants that have coevolved with humans. Most domesticates rely on humans for survival

and reproduction.

Deleterious alleles

Alleles that decrease the survival or reproductive capacity of an organism.

Genetic drift

One of the fundamental evolutionary processes, genetic drift refers to stochastic changes

in allele frequencies unrelated to an allele’s impact on fitness.

Purifying selection

Natural selection that removes deleterious alleles from a population.

Germplasm

Genetic resources related to the species being studied, including wild relatives, unim-

proved populations such as landraces or heirlooms, and improved varieties. These

genetic resources—usually seeds but possibly including living plants or tissue culture—

are collected and maintained for long-term preservation and are commonly used in

genetic studies or breeding programs.

Introgression

Introduction of genetic material from one taxa or species into another. Introgression

may occur naturally via hybridization or via inbreeding by traditional crossing and

repeated backcrossing to a recurrent parent. The size of the introgressed region depends

on the local recombination rate and how many backcrosses have occurred; each back-

cross with the recurrent parent results in reduction of the donor genome by approxi-

mately 50%.

Elite recurrent parent

The recipient parent of an introgression, typically an improved variety with high yield or

superior quality, that is otherwise lacking a particular trait to be introduced from a

donor variety.

Heterotic patterns

In species that exhibit heterosis or hybrid vigor, there are often specific germplasm com-

binations that result in higher or lower levels of heterosis. Low levels of heterosis may

result when crossing individuals from the same heterotic group, while crosses between

individuals from 2 different heterotic groups result in higher levels of heterosis.
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common (wild) ancestor with domesticates some time in the past. These extant populations

are not the direct progenitors of crops but can be identified as crop wild relatives. They include

taxa most closely related to a domesticate, as well as more distantly related taxa, especially

those that can hybridize with the domesticate. Second are domesticated plants that result from

intentional and unintentional selection by indigenous peoples, known as traditional varieties

(often called landraces). These are often diverse and continue to be cultivated and selected in

smaller-scale agricultural settings worldwide. Third are modern cultivars, which have been

developed in the past century from directed breeding efforts following the advent of industrial

agriculture. Modern cultivars are typically highly adapted to current agronomic environments

and display desired characteristics often absent from crop wild relatives and traditional varie-

ties, such as high, stable yields or ease of processing and transportation.

The evolutionary path from wild species to domesticate is different for each crop (Fig 1);

thus, the demographic and genetic history of each species is unique. Annual species typically

experienced greater reductions in diversity and more generations of strong selection than

perennial crops; perennials often retain more diversity but also more deleterious alleles

(Box 1) or genetic load [8,9]. Long-lived perennial and clonally propagated species may have

undergone fewer generations of differentiation from their wild progenitors, and modern culti-

vars may thus differ little from traditional varieties. For example, only a handful of generations

and a few genetic crosses separate citrus or strawberry modern cultivars from their wild pro-

genitors [6,10]. Differences in plant mating systems likely affected opportunities for gene flow,

and the structuring of genetic diversity across populations [11] and preexisting ecological rela-

tionships may have preadapted some species to more rapid domestication [12]. In addition to

these biological factors, historical contingencies may have played a significant role in the

Fig 1. From crop wild relatives to modern cultivars. Modern cultivars of perennial crops like strawberry and citrus

have often undergone relatively few generations of selection from a common ancestor with their wild relatives

compared with many annual cereal crops, and modern cultivars of many perennial species may have resulted from

hybridization among wild taxa or earlier varieties. For annual crops like maize, domestication involved an extended

process of hundreds or thousands of generations of selection resulting in traditional varieties. Traditional varieties

regularly exchange genes with crop wild relatives and are shaped by continual selection imposed by farmers and

adaptation to their environment. Adaptation to modern agricultural conditions, here identified as crop improvement,

is a relatively recent process usually involving only tens of generations of selection. Figure was created using

BioRender.com.

https://doi.org/10.1371/journal.pbio.3002235.g001
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evolution of many crops [13], including whether domestication happened once, as in maize

[14], or multiple times, as in barley [15] and amaranth [16].

Whether domestication entailed thousands of generations of gradual selection or the

extraction of a single clonal genotype from wild populations, it nearly always results in the loss

of genetic diversity in traditional varieties and modern cultivars compared with crop wild rela-

tives. An understanding of the extent of loss in genetic diversity in domesticates is relatively

new [17], as earlier natural history often emphasized the diversity of phenotypic forms in culti-

vated varieties [18,19]. But molecular markers reveal that crop diversity largely represents a

subset of that in wild relatives [20], and a loss of diversity is also evident in comparisons of the

genetic variation underlying agronomic phenotypes [21]. The initial stages of domestication

almost invariably involved only a subset of crop wild relative individuals, and much of the loss

of diversity likely resulted from this sampling process and genetic drift (Box 1) [22]. But allelic

diversity is also lost by positive selection fixing alleles relevant for domestication and purifying

selection (Box 1) removing deleterious alleles (Fig 2). Modern breeding accentuates both drift

and selection, resulting in an ever-narrowing base of diversity available for further improve-

ment [23,24]. Indeed, while perennial crops diverge from their wild relatives by fewer genera-

tions and thus may better capture their wild relative genotypes, diversity in perennial modern

cultivars is often low because only a small number of varieties are in widespread use [25,26].

In this Essay, we argue that allelic diversity from crop wild relatives likely already exists in

cultivated populations conserved in germplasm (Box 1) repositories. These alleles have been

tested by evolution in an agronomic background. Many are of sufficient age that the 2-fold

sieve of recombination and selection have separated them from linked deleterious variants.

Surveying domesticated traditional varieties for functionally relevant variation from crop wild

Fig 2. Deleterious load and crop evolution. Shown are 3 chromosomes sampled from populations of crop wild

relatives, traditional varieties, and modern cultivars. Selection during crop evolution increases the frequency of

domestication-related alleles, which are beneficial in agronomic settings, but not necessarily alleles for adaptation,

which may only be beneficial in specific environments. Deleterious alleles are often concentrated in low recombination

regions of the genome (white on the recombination scale bar) and preferentially removed by purifying selection, but

some are fixed during the process of domestication and improvement. Adaptive alleles linked to deleterious alleles are

difficult to introgress because of their negative impacts on fitness or agronomic traits (red dashed line labeled “hard”),

but adaptive alleles far from deleterious alleles can be easily introgressed (red dashed arrow labeled “easy”). But the

long-term combined action of introgression, recombination, and selection has allowed the historical introgression of

“hard” adaptation alleles from crop wild relatives into traditional varieties (gray dashed arrow), where they could then

be more easily incorporated into modern cultivars. Figure was created using BioRender.com.

https://doi.org/10.1371/journal.pbio.3002235.g002
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relatives may thus greatly facilitate the identification and incorporation of useful wild diversity

into modern breeding programs.

Using crop wild relatives directly in breeding programs

Crop wild relatives contain a wealth of alleles that were lost during domestication and

improvement [27–29]. These alleles can be valuable sources of desirable traits such as disease

and insect resistance, abiotic stress resistance, flavor and nutritional quality, and plant growth

and health. Incorporating this diversity can improve breeding populations, support emerging

markets and novel products, and contribute to adapting crops to changing climates [29–31].

For any given crop, there are often multiple crop wild relatives that could potentially be useful

and may vary in terms of genetic distance, interfertility, and maintenance of useful traits rela-

tive to the relevant modern cultivar. Prioritizing which samples and populations are main-

tained in collections, evaluated for desirable traits, and incorporated into modern cultivars is

both necessary and challenging.

Crop wild relatives and traditional varieties are a good source of novel

variation

Crop wild relatives and traditional varieties share much of their genetic makeup with modern

cultivars. In the initial stages of cultivation and in incipient domesticates, long segments of the

genome will be shared with wild relatives. These relationships reflect identity by descent (IBD)

from parents to progeny. The size of IBD regions is reduced each generation by recombination

and is dependent on factors such as the outcrossing rate and diversity within populations.

Individuals from closely related populations can share large regions of IBD over hundreds of

generations [32]. Sharing of large regions of IBD is also a hallmark of recent introgression

(Box 1) and distinguishing between shared ancestry and recent introgression can be difficult.

Because domestication is a recent evolutionary process, the majority of gene-level variants

in modern cultivars, including single-nucleotide changes and insertions and deletions, are a

subset of those found in crop wild relatives (c.f. [33,34]). Nonetheless, modern cultivars have

also diverged as a result of genetic drift, selection, and the accumulation of new mutations.

These factors are particularly important in clonally propagated species where recombination is

largely absent [8]. Variants are also arranged into new haplotypes by recombination. This can

include multiple combinations of functional variants such as amino acid changing mutations

and regulatory elements.

Direct introgression of crop wild relative alleles is a major strategy for increasing genetic

diversity and genetic variation in commercial breeding programs. Breeders typically use intro-

gression to respond to an emerging threat or existing deficiency in the commercial germplasm

collection. Genetic variation is required for breeders to make genetic gains, and alleles that can

confer a selective advantage for emerging threats such as a new disease or climatic extremes

may not exist in modern cultivars. In this case, researchers and breeders look for the desired

trait variation in crop wild relatives in hopes of finding individuals that contain alleles with

large genetic effects capable of producing adapted progeny. This approach has been successful

in many cases [35], including for disease resistance [36,37] and abiotic stress [38]. Even with

genes of large effect for domestication or improvement where beneficial alleles have been fixed

in modern cultivars, agronomically relevant variation may exist in crop wild relatives. For

example, branching was selected against during sunflower domestication but was later reintro-

duced from a wild relative to facilitate hybrid breeding [39]. Selection at domestication or

improvement loci often results in the fixation of one or a few haplotypes, sometimes inadver-

tently fixing inferior alleles at nearby linked genes [40,41]. Even at loci directly targeted by
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selection during breeding, crop wild relatives often exhibit diverse allelic series [42,43], includ-

ing variation at loci conferring favorable variation for yield components [44,45].

Incorporating novel diversity from crop wild relatives into commercial breeding popula-

tions is the fundamental goal of “pre-breeding” for many crops. The pre-breeding process

requires phenotyping crop wild relatives, identifying key lineages (donors) with beneficial or

novel alleles, and introgressing the donor alleles. Introgression is most commonly done by

crossing diverse germplasm with the relevant modern cultivar in conjunction with selection

for the novel trait or allele using phenotype, genetic markers, or predicted breeding values

[46]. One successful example of pre-breeding is the Germplasm Enhancement of Maize, a

coordinated effort of the US Department of Agriculture, university breeders, and industry

partners to widen the germplasm base of commercial hybrid corn in the United States through

the incorporation of traditional variety alleles in elite modern cultivars [47]. Some sectors of

private industry also invest in efforts such as “discovery breeding,” where broader germplasm,

including traditional varieties and crop wild relatives, are explored to improve modern

cultivars.

Crop wild relatives are replete with maladaptive alleles

By definition, crop wild relatives are unimproved or less improved than modern cultivars and

hence harbor alleles that are maladaptive under modern agronomic practices [48]. These mal-

adaptations include photoperiod sensitivity, plant architectures less amenable to harvest, or

susceptibility to biotic and abiotic stresses, all of which can dramatically affect yield and prod-

uct quality (e.g., [29,49]). In addition, crop wild relatives are often not suited for the long-term

storage or long-distance transportation systems of modern food supply chains. For these rea-

sons, they are usually not used directly in breeding programs and are instead subjected to the

pre-breeding process described above. Following hybridization of the crop wild relative donor

with an elite recurrent parent (Box 1), each backcross with the recurrent parent results in a

loss of half of the existing donor genome. For example, after 5 generations of backcrossing, the

expected proportion of the donor parent is only 3.125%. Recombination during this process is

relatively limited, however, resulting in the introgression of the large chromosomal regions

surrounding a target locus. When selecting for a single locus, backcrossing will also often result

in the introgression of off-target regions elsewhere in the genome. This contributes to a form

of linked selection [50] known as linkage drag and frequently results in a decrease in agro-

nomic performance as genes that are not the direct targets of selection tend to carry alleles that

are detrimental in a modern cultivar background. Genome-scale genetic data have revealed

evidence of linkage drag in many crops [51,52], and recent analyses in sunflower showed not

only that linkage drag results in decreasing yield, but also that introgressions from more dis-

tantly related species are more deleterious than those from closely related taxa [53].

One solution to linkage drag is marker-assisted backcrossing, where flanking markers are

used to track the desired allele in a breeding population and to make selections, and genome-

wide markers are used to actively select against the remaining donor genome and for the

recurrent parent, effectively prioritizing recombination events close to the target locus. The

added expense and effort of implementing marker-assisted backcrossing in a breeding pro-

gram is such that it essentially requires an allele with a large effect to recover the value. In addi-

tion, the result is unlikely to be a single gene introgression; larger introgressions can contain

dozens to hundreds of genes depending on the genomic context. Each desirable allele will

reside in a region of the genome that may contain numerous maladapted alleles, and the com-

bination of recombination rate and haplotype structure (whether beneficial and deleterious

alleles are on the same or different haplotypes) will determine the likelihood of breaking up
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linkage blocks (Fig 2). In the end, the merits and consequences of introgression will depend on

several factors, including variation present in the breeding program and the number and effect

size of the loci underlying the trait to be introgressed [54].

Overall, while the long-term advantages of increasing diversity and adding functional varia-

tion from crop wild relatives are well understood, the short-term challenges are often sufficient

to prevent the effective utilization of such wild relatives in breeding programs. This is espe-

cially true in industry settings focused on short-term profits (though there are some notable

exceptions). The commitment to existing heterotic patterns (Box 1) makes wide crosses with

wild relatives even less palatable for hybrid crops. The combination of linkage drag, logistical

challenges with backcrossing and marker-assisted selection, and the time scale involved (many

years) make the effort required to introgress crop wild relative alleles often not worth the gain.

Exceptions to this tend to be large-effect loci where significant agronomic gains are clear [29].

Crop wild relative alleles have actively introgressed into traditional variety

germplasm

Historically, domestication has often been portrayed as the split between cultivated plants and

their crop wild relatives. However, empirical studies from a variety of systems highlight that

domestication was a complex process that unfolded across a diverse landscape and involved

genetic exchange both with a crop’s direct progenitor, as well as with additional wild relatives

[55,56]. Human dissemination of crops from centers of origin often happened relatively

quickly; crops in the Fertile Crescent, for example, are estimated to have spread from their cen-

ter of origin at a rate of 1 km/yr [57] and maize spread from the lowlands of Mexico to the

Andes in South America in less than 3,000 years [58]. This rapid diffusion forced crops to

quickly adapt to new growing environments but also provided the opportunity for hybridiza-

tion with locally adapted wild relatives. For example, in wheat and other complex polyploid

plants, hybridization with wild relatives was essential to the formation of modern cultivated

forms [59]. In scarlet runner bean, a complex history of introgression from wild relatives spans

both ancient and recent crop evolution [60]. And in numerous crops such as avocado [61], cit-

rus [62], and apple [63], modern varieties are the result of complex patterns of introgression

from one or more wild relatives. Indeed, evidence suggests the vast majority of food crops

actively hybridize with wild relatives in some part of their range [64].

Far from being accidental or detrimental, gene flow with crop wild relatives has often been

instrumental in the evolution of domesticated taxa. In maize, for example, a meaningful subset

of recent selection in traditional varieties has been for alleles introgressed from a wild relative

[65], and introgression from a different wild relative contributed to highland adaptation [66].

This may have led to superior varieties that replaced preexisting domesticated populations

across the Americas [67]. As genome-scale investigation of domesticates and crop wild rela-

tives has expanded, researchers are increasingly identifying examples of adaptive introgression

from wild relatives contributing to local adaptation in crops as diverse as barley [68] and date

palms [69]. In some cases, even the adaptive locus itself can be identified [62,67,70]. Indeed,

traditional farmers across the globe will often tolerate wild relatives in or near their fields,

sometimes actively encouraging hybridization with the crop [71], with the idea that such intro-

gression makes their crop “stronger” [72]. Perhaps the best example of this is tomato, where

early farmers and breeders have brought in a host of traits from wild relatives including disease

resistance [73].

If introgression from crop wild relatives generally increases maladaptation due to linkage

drag and deleterious alleles, why have these processes not prevented historical gene flow? In

fact, it is likely that hybridization with crop wild relatives was constrained by maladaptation.
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For example, ongoing gene flow between traditional varieties of maize and one of its wild rela-

tives is depleted around loci important for maize domestication [74]. But this constraint varies

across the genome; in some genomic regions, alleles from crop wild relatives may mitigate

genetic load inadvertently fixed during domestication [53,75–78]. More importantly, much of

the introgression between crop wild relatives and traditional varieties occurred many genera-

tions in the past and involved traditional variety populations much larger than modern breed-

ing pools. Combined, these factors maximize the effect of recombination in breaking up

linkage between beneficial alleles and maladaptive alleles at linked sites; for example, recent

characterization of introgression from a wild relative in maize found the majority of intro-

gressed segments to be quite small, often including only a single gene [67]. Large population

sizes and long time periods also mean that selection by farmers—both intentional and unin-

tentional—has had considerable opportunity to remove introgressed haplotypes with mal-

adaptive alleles.

Future prospects for crop wild relatives in germplasm improvement

How can wild relatives and existing germplasm resources be best used to adapt crops to the

novel environments and agronomic practices that will accompany changing climates? One

approach that has garnered much public attention is the use of novel genome editing tech-

niques to “domesticate” wild plants or introduce alleles from crop wild relatives into modern

germplasm. In one recent study, researchers edited a number of key genes to dramatically

change the architecture and agronomic suitability of a wild relative of tomatillo [79]. In

another, researchers demonstrated the feasibility and potential yield gain of introducing an

allele identified in a wild relative into elite hybrid maize germplasm [80]. By segregating edits

away from the initial transgenes, these approaches could circumvent regulations and concerns

about genetically modified organisms. Genome editing also avoids the potential for linkage

drag of deleterious alleles from crop wild relatives linked to the locus of interest.

However, we would argue that such approaches are not likely to be the most fruitful avenue

for using wild relative diversity to improve crops. Domestication invariably involves changes

at hundreds or thousands of alleles [56], such that it is unlikely that a crop wild relative

“domesticated” via genome editing will be comparable in yield or other characteristics to mod-

ern cultivars [81]. Genetic engineering approaches also suffer from a number of logistic and

scientific disadvantages [48]. First, such approaches require sufficient a priori genetic knowl-

edge to identify the causative allele. Although causative alleles have been identified for a hand-

ful of traits in some species, the vast majority of functionally relevant diversity in most species

remains entirely uncharacterized. Second, not all species are amenable to tissue culture or

transformation, and within many taxa not all individuals are amenable to these practices. In

maize, for example, while some private sector companies have been able to edit many varieties,

public breeding and research efforts are still mostly restricted to using a small number of older

inbred plants that can be readily transformed but are considered genetically inferior. This limi-

tation means novel edited alleles still need to be backcrossed into the relevant germplasm,

which carries the risk of linkage drag. Third, it is often unclear how novel edits or transgenes

will behave in a new genetic background, potentially leading to undesirable epistatic interac-

tions. Given these challenges, as well as the time, cost, and effort, only alleles with large genetic

effects are generally considered for editing.

While genome editing is undoubtedly a useful tool, we argue that an effective and efficient

avenue for incorporating crop wild relative diversity into modern germplasm is to use wild rel-

ative alleles already present in traditional varieties housed in germplasm banks. Germplasm

repositories maintain a wealth of historical and modern genetic diversity. They increasingly
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include additional genetic and phenotypic data that can be used a priori to help narrow down

useful material [82–84]. Increasing evidence of gene flow between traditional varieties and

wild relatives during crop evolution means that germplasm collections of traditional varieties

likely harbor a wealth of untapped diversity from wild relatives. Importantly, these alleles have

already been filtered by the combined action of recombination and both intentional and unin-

tentional selection (Fig 2). Crop wild relative alleles surviving in traditional varieties at apprecia-

ble frequency are thus unlikely to be linked to strongly deleterious variation and are likely to

work reasonably well in a domesticated genetic background. Because these alleles are already

present in a traditional variety, evaluation and later introgression into elite material is substan-

tially easier than working directly with the wild relative. Finally, use of such materials circum-

vents the need to know causal alleles or mechanisms; coupled with evaluation or genomic

selection, crossing with traditional varieties can effectively introgress many alleles at unknown

loci across the genome without the need to understand precise causal mechanisms [85].

The incorporation of crop wild relative and traditional variety alleles into elite breeding

programs is dependent on a number of factors, including the complexity of the trait or traits of

interest, the ease of intercrossing, generation time, and the timeline for trait development. At

one extreme, some crops may require lengthy pre-breeding interventions involving multiple

crosses to bridge between diverse germplasm and relevant modern cultivars. Such bridging

crosses limit the potential for genetic exchange and slow the process of introgression. But in

species with genetic compatibility among wild relatives or traditional varieties, the develop-

ment of multiparent populations can accelerate the identification of loci contributing to trait

variation, facilitate recombination, and uncover multiple alleles at a locus that contribute to a

trait [86]. In some crops, trait introgression efforts could also benefit from so-called “speed

breeding” approaches, where day-night cycles, temperatures, and timing of seed harvest are

manipulated to dramatically reduce the time required to grow out each generation of breeding

lines [87]. When combined with marker-assisted backcrossing or genomic prediction and

selection, traits of interest from a traditional variety donor can thus be rapidly introgressed

while minimizing the genome-wide contribution of the donor.

For many perennial crops, including trees and clonally propagated species, conservation of

wild relatives and traditional varieties can be complicated by the limited potential for repro-

duction by seed or the need to preserve particular strains. Species such as apple, citrus, grape,

and avocado are preserved in living nurseries, where many plants may consist of distinct

genetics aboveground grafted to rootstocks that are tolerant of local growing conditions and

soil pests [88]. While these collections may occupy large tracts of land with “permanent” plant-

ings, they also offer some advantages. These include the opportunity to observe and harvest

fruits grown under a variety of weather conditions over many growing seasons.

Safeguarding diversity for the future

We are losing genetic resources from farmers’ fields through the replacement of traditional

varieties by modern cultivars [89] and from the wild in part due to the very same global chal-

lenges that their use could contribute to solving: climate and environmental changes [90,91].

Conserving and making available crop genetic resources for current and future use in breed-

ing, research and cultivation is the core mandate of genebanks all around the world [92].

While global germplasm collections are far from complete, and germplasm samples of tradi-

tional varieties and natural populations of crop wild relatives are particularly under-collected

and under-conserved [93,94], they remain a critical—and in some cases our only—source of

wild relative variation. Triticum tiompheevii, for example, is a wild relative of wheat that is

most likely extinct in situ but still available from ex situ collections [95].
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Germplasm repositories are increasingly pushing to make their resources available. They

do so most effectively by sharing germplasm under agreed terms as described under the multi-

lateral system of the International Plant Treaty [96] or similar arrangements that are set up to

encourage use by private and public sector users. Similarly, large-scale, systematic initiatives

are taking place to evaluate and assess traits of interest in germplasm samples [82,84,97,98],

providing key data that is useful for initiating pre-breeding programs. Taking advantage of

these resources, including traditional variety germplasm and the diverse wild relative alleles

they contain, may well prove key in adapting crops to rapidly changing global environments.

Acknowledgments

We would like to acknowledge Felix Andrews for helping us realize how not to think about

domestication.

Author Contributions

Conceptualization: Sherry Flint-Garcia, Hannes Dempewolf, Peter L. Morrell, Jeffrey Ross-

Ibarra.

Writing – original draft: Sherry Flint-Garcia, Mitchell J. Feldmann, Hannes Dempewolf, Jef-

frey Ross-Ibarra.

Writing – review & editing: Sherry Flint-Garcia, Peter L. Morrell, Jeffrey Ross-Ibarra.

References
1. Ross-Ibarra J, Morrell PL, Gaut BS. Plant domestication, a unique opportunity to identify the genetic

basis of adaptation. Proc Natl Acad Sci U S A. 2007; 104(Suppl 1):8641–8648. https://doi.org/10.1073/

pnas.0700643104 PMID: 17494757

2. Purugganan MD, Fuller DQ. Archaeological data reveal slow rates of evolution during plant domestica-

tion. Evolution. 2011; 65:171–183. https://doi.org/10.1111/j.1558-5646.2010.01093.x PMID: 20666839

3. Bellon MR, Mastretta-Yanes A, Ponce-Mendoza A, Ortiz-Santamarı́a D, Oliveros-Galindo O, Perales

H, et al. Evolutionary and food supply implications of ongoing maize domestication by Mexican campe-

sinos. Proc Biol Sci. 2018; 285:20181049. https://doi.org/10.1098/rspb.2018.1049 PMID: 30158306

4. Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, Duan N, et al. Phased diploid genome assemblies and

pan-genomes provide insights into the genetic history of apple domestication. Nat Genet. 2020;

52:1423–1432. https://doi.org/10.1038/s41588-020-00723-9 PMID: 33139952

5. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, et al. The effects of artificial

selection on the maize genome. Science. 2005; 308:1310–1314. https://doi.org/10.1126/science.

1107891 PMID: 15919994

6. Hardigan MA, Lorant A, Pincot DDA, Feldmann MJ, Famula RA, Acharya CB, et al. Unraveling the

Complex Hybrid Ancestry and Domestication History of Cultivated Strawberry. Mol Biol Evol. 2021;

38:2285–2305. https://doi.org/10.1093/molbev/msab024 PMID: 33507311

7. Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, et al. Durum wheat

genome highlights past domestication signatures and future improvement targets. Nat Genet. 2019;

51:885–895. https://doi.org/10.1038/s41588-019-0381-3 PMID: 30962619

8. Gaut BS, Dı́ez CM, Morrell PL. Genomics and the Contrasting Dynamics of Annual and Perennial

Domestication. Trends Genet. 2015; 31:709–719. https://doi.org/10.1016/j.tig.2015.10.002 PMID:

26603610

9. Miller AJ, Gross BL. From forest to field: perennial fruit crop domestication. Am J Bot. 2011; 98:1389–

1414. https://doi.org/10.3732/ajb.1000522 PMID: 21865506

10. Wu GA, Terol J, Ibanez V, López-Garcı́a A, Pérez-Román E, Borredá C, et al. Genomics of the origin
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