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Absolute Identification is Surprisingly Faster with More Closely

Spaced Stimuli

James S. Adelman (J.S.Adelman@warwick.ac.uk)
Neil Stewart (Neil.Stewart@warwick.ac.uk)

Department of Psychology, University of Warwick,
Gibbet Hill Road, Coventry, CV4 7AL, UK

Abstract

Bow and set size effects on response times in absolute
identification mirror the effects on accuracy: Central
stimuli and stimuli in large sets are responded to more
slowly and less accurately. In an analysis of the re-
sponse time data from Experiment 1 of N. Stewart,
G. D. A. Brown and N. Chater (2005), involving the ab-
solute identification of tone frequency (pitch), we find
that in contrast to the accuracy data, where widely
spaced stimuli are responded to slightly more accurately
than narrowly spaced stimuli, widely spaced stimuli re-
ceive slower responses than narrowly spaced stimuli.
This result poses an additional challenge for models of
absolute identification, as accuracy and response times
are not jointly linked to some unified difficulty factor.

Introduction

In absolute identification, participants learn unique asso-
ciations between stimuli that vary on a simple perceptual
dimension (e.g., pitch) and ordered numerical responses.
Behavioral data that may inform us about the repre-
sentations and processes involved in the performance of
this task come in the form of the responses (i.e., their
accuracy) and the time they take. Absolute identifica-
tion is particularly intriguing for psychophysicist, given
the surprising finding that although observers can dis-
criminate perfectly between stimuli drawn from the set
in pairwise comparisons, they make a great deal of er-
ror in identifying the same stimuli. Further, the limit in
identifying stimuli holds across a wide range of sensory
continua - such as tones varying in pitch, lines varying in
length, smells varying in intensity, tastes varying in their
saltiness, and cutaneous electric shocks varying in their
intensity - suggesting that the limit is a fundamental
property of the cognitive system (see Stewart, Brown, &
Chater, 2005, for a recent review).

Key effects in the accuracy data are the bow effect,
that stimuli nearer the center of the range are responded
to less accurately; the set size effect, that accuracy is re-
duced when there are more stimuli (and hence responses)
in the experimental set; and sequential effects — assim-
ilation to recent responses and contrast to less recent
responses (again see Stewart et al., 2005). At least with
regard to the bow and set size effects, response times
mirror the accuracy data (in terms of a difficulty inter-
pretation): Central stimuli and stimuli in large sets are
responded to slower (e.g. Karpiuk, Lacouture, & Marley,
1997; Kent & Lamberts, 2005).

Models have been developed in attempts to give inte-
grated explanations of accuracy and response time com-
ponents of absolute identification performance, and with
surprising apparent difficulty. Karpiuk et al. (1997), for
instance, linked a rehearsal-based limited capacity model
to a counter system for this purpose, but to simulate dif-
ferences between set sizes, the parameters needed to be
modified from set size to set size, and so this model does
not intrinsically explain set size effects. Nosofsky (1997)
linked an exemplar-similarity system to counters (as in
Nosofsky & Palmieri, 1997); although this model pro-
duced basically correct effects, it did not account well
for effects of set size on edge stimuli.

An alternative exemplar-similarity model, based on
the EGCM-RT (Lamberts, 2000), was produced by Kent
and Lamberts (2005). With a small modification to the
original assumptions about information accumulation of
elements of features, this model was able to account for
differences in set size with completely common assump-
tions and parameters. The basic operation of the model
proceeds by the sampling of elements from the stimu-
lus dimension at random intervals and, with increased
sampling of elements, similarity to the presented stim-
ulus of stored exemplars that mismatch this stimulus
decreases. A response may be made upon information
sampling, depending probabilistically on the equivocal-
ity of the current exemplar-stimulus similarities. Should
a response be made, the choice of the response is based
on the choice rule (Shepard, 1957; Luce, 1963).

The relative judgment model (RJM) of Stewart et al.
(2005) differs greatly in operational principles — it as-
sumes that differences to the previous stimulus are the
main source of information in absolute identification,
and ‘confusions’ are not (primarily) due to similarity
(between stimuli), but rather limited capacity on the re-
sponse scale — but it also fits accuracy data from differ-
ent set sizes without an arbitrary change in parameters
(although the model has yet to be extended to response
time data).

One piece of evidence that has been adduced in favor
of relative models is a relative insensitivity to the spacing
of the stimuli — making stimuli more different makes lit-
tle or no improvement in accuracy despite gross changes
in similarity (Brown, Neath, & Chater, 2002). A tradi-
tional exemplar model therefore needs to be augmented
by a relative-judgment assumption that sensitivity scales
with stimulus range to capture this effect (Brown et al.,
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2002, but see Lockhead, 2004, for arguments that this
does not occur).

The relevant prediction of similarity-based models is
that there should be a large advantage for more widely
spaced stimuli as the reduction in similarity reduces con-
fusion. The advantage in accuracy is however meagre, as
illustrated with the data of Stewart et al. (2005) in Fig-
ure 3. In a basic exemplar model, the lowest accuracies
should be almost doubled by the doubling in spacing be-
tween narrow and wide conditions.

It might nonetheless be the case that there is an advan-
tage for widely spaced stimuli, but that it obtains most
strongly in response times, rather than accuracy. We
therefore examined previously collected but unanalysed
response times from the study of Stewart et al. (2005)
for this effect.

Method

Accuracy data from this experiment were previously re-
ported as Experiment 1 in Stewart et al. (2005); here we
focus on response times.

Participants

A total of 120 undergraduates from the University of
Warwick participated in this experiment.

Stimuli

Two sets of ten tones varying in frequency (pitch) were
used. The set for the narrow condition had lowest fre-
quency 768.7 Hz, and the ratio between adjacent tones
was 1.06:1. The set for the wide condition had low-
est frequency 600 Hz, and the ratio between tones was
1.12:1. Tones were thus equally spaced in log-Hz, and
therefore approximately equally spaced in psychological
space. The two sets have equal means in log space.

Tones were 500 ms in duration. Over the first 50 ms,
amplitude linearly increased from zero to maximum, and
over the final 50 ms, linearly decreased from maximum
to zero.

Design

Spacing of tones (narrow and wide) was crossed with
set sizes of six, eight and ten stimuli (chosen from the
center of the range) to produce six between-participants
conditions.

Procedure

Within each of seven blocks that were 120 trials long,
each tone was presented equally often, and ordering was
randomized was within blocks.

On each trial, a tone was presented over headphones
simultaneously with a visually presented “?” that re-
mained on the computer screen until the participant re-
sponded with a key from those labeled “1” to “10”. The
ordering of the correct assignment was counterbalanced
over participants. Although a computer keyboard is not
ideal for the comparison of different responses, the pri-
mary comparisons here are of responses with the same
key, and between stimuli, so this should not affect the
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Figure 1: Mean response time as a function of set size
and spacing. Error bars indicate ±1SE.

pattern of results. The response triggered the replace-
ment of the “?” with the correct response for 750 ms,
before a blank inter-stimulus interval of 500 ms.

Results

Slow responses (greater than ten seconds) and fast re-
ponses (less than 150 ms) were excluded from all anal-
yses. Incorrect responses were not excluded, although
doing so gives a similar pattern of results.

The relationship between overall mean response time,
set size and spacing is illustrated in Figure 1. An
ANOVA confirmed that there were significant effects of
set size (F (2, 114) = 13.89, p < .0001, η2 = .137) and
spacing (F (1, 114) = 4.57, p < .05, η2 = .027), but no
interaction (F (2, 114) = 0.28, p > .7, η2 = .003).

These results are broken down by stimulus in Fig-
ure 2, with the corresponding accuracy statistics in Fig-
ure 3 (cf. Figure 11 of Stewart et al., 2005). Whilst
the cost in response is apparent in this break-down,
the edge (lowest and highest) stimuli within each set
size appear to be immune to the effect. An ANOVA
with a further factor of the two edge stimuli vs. all
other stimuli continued to demonstrate a significant set
size effect (F (2, 114) = 11.86, p < .0001, η2 = .136)
and a spacing effect in the margin (F (1, 114) = 2.91,
p = .09, η2 = .017), and critically showed a signifi-
cant interaction between spacing and stimulus endness
(F (1, 114) = 15.71, p < .001, η2 = .008). There was
also evidence for a main effect of edgeness of stimuli,
an interaction between stimulus edgeness and set size,
and the three-way interaction. ANOVAs conducted sep-
arately for end and non-end stimuli confirmed that non-
end stimuli showed an effect of spacing (F (1, 114) = 6.00,
p < .05, η2 = .042), but there was no evidence of this
for end stimuli (F (1, 144) = 0.38, p > .5, η2 = .003).
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Figure 2: Mean response time as a function of set size, spacing and stimulus. Error bars indicate ±1SE.
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Figure 3: Mean proportion correct responses as a function of set size, spacing and stimulus. Error bars indicate
±1SE.
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Modeling

We optimised parameters for the EGCM-RT for abso-
lute identification (Kent & Lamberts, 2005) by the min-
imization of the sum squared deviation from the points
in Figures 2 and 3, with the deviation measured in stan-
dard errors of the mean to approximately equalize the
influence of response time and accuracy. Only the sen-
sitivity parameter (c) was permitted to vary between
spacings, to allow for adjustment of scale. The residual
time parameter (tres) was constrained to be at least 150
ms as this is intended to include the motor component
of response (Kent and Lamberts use 250 ms), and other
parameters were constrained to be non-negative.

The best fits obtained from this procedure are illus-
trated in Figures 4 and 5 (parameters were q = 0.0005,
cnarrow = 0.55, cwide = 0.35, θ = 1.73, tres = 150,
α = 0.64, and λ = 0.00). The ratio between c for narrow
and wide conditions was close to 2, the value suggested
by Brown et al.’s (2002) relative-judgment assumption
(although this cannot be range-based for the EGCM-
RT as this would be inconsistent with its explanation of
the set size effect) but the wide spacing condition was
nevertheless predicted to be more accurate and quicker
than the narrow condition. To examine whether this
was due to under-weighting of the response time com-
ponent, we conducted new optimizations weighting the
response time squared discrepancies by a factor of 10.
This simply reversed the predictions: Wide spacing was
predicted to be slightly less accurate and slower than the
narrow condition. Permitting tres to vary between con-
ditions (reflecting, for example, differing rescaling costs)
resulted in essentially no improvement in fit, because this
parameter was already straining at the bound.

Discussion

The new analysis showed an effect of spacing on response
times such that responses were slower for widely spaced
stimuli despite the responses to these stimuli being more
accurate. To the best of our knowledge, this is the first
examination of the effect on response times of the manip-
ulation of the spacing of the stimulus set independently
of set size and practice1. The effect on response time did
not appear to be a uniform cost of, for instance, rescal-
ing, because edge stimuli were immune to the effect.

The EGCM-RT could not account for these results
when only sensitivity (c) and residual time (tres) were
permitted to differ between spacings. The reason for this
problem is that both stopping probability (and hence re-
sponse time) and accuracy are linked to the equivocal-
ity of the current similarities ratings: Stopping is more
likely to occur (sooner) and responses are more likely to
be correct when the similarities strongly favor the single
correct response.

The remaining parameters are supposed either to re-
late to basic perceptual rates or similarity calculations

1Lacouture (1997) compared these conditions, but partici-
pants always participated in the narrow condition before the
wide, and so the reverse effect in his data may be due to
practice.

(q, α or λ), or to the criterion for responding (θ). Al-
though a different stopping criterion for each spacing
would almost certainly give the correct form of results,
Kent and Lamberts (2005) have correctly avoided vary-
ing parameters freely between conditions because doing
so begs the question: Why do participants behave dif-
ferently in different conditions?

The effect of stimulus spacing on response time would
also seem to be inconsistent with Stewart et al.’s (2005)
RJM. In its basic form, without allowance for stimulus
noise, the model treats different stimulus spacings iden-
tically. Any extended version of this model intended to
account for response times must include a mechanism
that causes response times for central stimuli to be sen-
sitive to stimulus spacing.

Even if accuracy differences are due to greater percep-
tual noise in the narrow condition, this does not explain
why this condition is faster. If accuracy differences are
in fact due to the reduction in time spent on the narrow
condition, this does not explain why participants sys-
tematically choose to spend less time on this condition;
otherwise said, what rule relates condition to stopping
criterion?

Suppose that, for instance, judgments in the narrow
are more difficult and hence would be slower and less
accurate. Then, participants might attempt to compen-
sate by performing faster in the narrow condition but
overcompensate to be faster than in the wide condition.
With more levels of spacing, it may be possible to test
a specific model of such a threshold (over-)adjustment.
However, if the adjustment in threshold is so severe, why
is accuracy relatively preserved? Alternatively, partici-
pants may (possibly incorrectly) think the narrow condi-
tion too difficult and expend less effort for a gain in speed
with only a small accuracy penalty. If this is the case,
a full account will explain why differences in set sizes
do not follow the pattern, since larger set sizes must be
slower and subjectively more difficult, and yet do not
yield faster responses.

Reversing the trade-off to be a slowing to compen-
sate for inadequate accuracy would have to mean that
the wide condition is intrinsically more difficult, and
accuracy is overcompensated. This might be the case
within the Luce, Green, and Weber (1976) attention-
band model of absolute identification, as the attention
band will cover a smaller region and so is less likely to
cover the current stimulus. This model does not, how-
ever, extend to response times nor account for biases
due to sequential effects. Another possibility is that the
wider condition is more difficult because it is further re-
moved from the natural psychological number scale for
tone frequency (see Gescheider, 1988, for a discussion of
evidence that such a scale exists).

In any case, none of these possibilities readily explains
the interaction between the bow and spacing effects:
Edge stimuli are no slower in a wide spacing condition,
but they are more accurate, whereas center stimuli are
both slower and more accurate in the wide spacing con-
dition. It is unclear why this should be the case. Over-
all, the relationship between response time and spacing
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Figure 4: EGCM-RT predicted mean response time as a function of set size, spacing and stimulus.

Stimulus

P
ro

po
rt

io
n 

C
or

re
ct

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

Narrow

1 2 3 4 5 6 7 8 9 10

Wide

Set Size
6
8
10

Figure 5: EGCM-RT predicted mean proportion correct responses as a function of set size, spacing and stimulus.
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identified here poses a difficult problem for resolution in
theoretical accounts of absolute identification.
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