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Abstract

This paper proposes and analyzes tests that can be used to compare the accuracy of alternative
conditional density forecasts of a variable. The tests are also valid in the broader context of model
selection based on out-of-sample predictive ability. We restrict attention to the case of density
forecasts derived from non-nested parametric models, with known or estimated parameters. The
evaluation makes use of scoring rules, which are loss functions defined over the density forecast
and the realizations of the variable. In particular, we consider the logarithmic scoring rule, which
leads to the development of asymptotic and bootstrap ‘weighted likelihood ratio’ tests. The name
comes from the fact that the tests compare weighted averages of the scores over the available
sample, as a way to focus attention on different regions of the distribution of the variable. For a
uniform weight function, the asymptotic test can be interpreted as an extension of Vuong (1989)’s
likelihood ratio test for non-nested hypotheses to time series data and to an out-of-sample testing
framework. A Monte Carlo simulation explores the size and power properties of this last test
in finite samples. An application using S&P500 daily returns shows how the tests can be used
to compare the performance of density forecasts obtained from GARCH models with different
distributional assumptions.
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1 Introduction

A density forecast is an estimate of the future probability distribution of a random variable, condi-
tional on the information available at the time the forecast is made. It thus represents a complete
characterization of the uncertainty associated with the forecast, as opposed to a point forecast, which
provides no information about the uncertainty of the prediction.

Density forecasting is receiving increasing attention in both macroeconomics and finance (see
Tay and Wallis, 2000 for a survey). A famous example of density forecasting in macroeconomics
is the ‘fan-chart’ of inflation and GDP published by the Bank of England and by the Sveriges
Riksbank in Sweden in their quarterly Inflation Reports (for other examples of density forecasting
in macroeconomics, see also Diebold, Tay and Wallis, 1999 and Clements and Smith, 2000). In
finance, where the wide availability of data and the increasing computational power make it possible
to produce more accurate estimates of densities, the examples are numerous. Leading cases are in
risk management, where forecasts of portfolio distributions are issued with the purpose of tracking
measures of portfolio risk such as the Value-at-Risk (see, e.g., Duffie and Pan, 1996) or the Expected
Shorfall (see, e.g., Artzner et al., 1997). Another example is the extraction of density forecasts
from option price data (see, e.g. Soderlind and Svensson, 1997). The vast literature on forecasting
volatility with GARCH-type models (see Bollerslev, Engle and Nelson, 1994) and its extensions to
forecasting higher moments of the conditional distribution (see Hansen, 1994) can also be seen as
precursors to density forecasting. The use of sophisticated distributions for the standardized residuals
of a GARCH model and the modeling of time dependence in higher moments is in many cases an
attempt to capture relevant features of the data to better approximate the true distribution of the
variable. Finally, a focus on densities is the central issue in the literature on copula modeling and
forecasting, that is gaining interest in financial econometrics (see Patton, 2001).

With density forecasting becoming more and more widespread in applied econometrics, it is
necessary to develop reliable techniques to evaluate the forecasts’ performance. A popular method
for evaluating a sequence of conditional density forecasts was proposed by Diebold, Gunther and
Tay (1998). These authors suggested evaluating a sequence of density forecasts by considering the
probability integral transforms (z;) of the realizations of the variable with respect to the forecast
densities. If the density forecasts coincide with the true conditional densities, the sequence {z} is
independent and identically distributed (i.i.d.) U(0,1). While Diebold et al. (1998) adopted mainly
qualitative tools for testing the i.i.d. U(0,1) behavior of the transformed data, formal tests of the

same hypothesis have been recently suggested by Berkowitz (2000), Hong (2000) and Hong and White



(2000).

Even with rigorous testing procedures of the i.i.d. U(0,1) hypothesis available, it is important
to emphasize that the Diebold et al. (1998)’s method is only valid in absolute terms, that is, to
evaluate the ‘goodness’ of a particular sequence of density forecasts, relative to the data-generating
process. In practice, it is likely that any econometric model used to produce the sequence of density
forecasts is misspecified. In this situation a more relevant question is how to decide which one of
two (or more) given alternative density forecasts is preferable. The issue of comparative evaluation
of density forecasts has not yet been explored from a methodological point of view, but, in spite of
this, there are a few examples of empirical research that attempt to compare density forecasts. The
Diebold et al. (1998) technique, in particular, has inspired a number of applications where alternative
density forecasts are evaluated by constructing their corresponding sequences of probability integral
transforms and comparing their relative distance to the uniform distribution, see, e.g., Clements
and Smith (2000) and Weigend and Shi (2000). This distance is in most situations assessed only
through visual inspection, and no formal testing is utilized. This paper attempts to fill the gap in
the literature and propose formal tests that can be utilized to rank alternative density forecasts.

In the paper, we restrict attention to an environment in which two possibly misspecified, para-
metric models are used to generate conditional density forecasts for the variable of interest. The
models are assumed to be non-nested and the parameters of the densities are either known or es-
timated. We emphasize that even though the paper focuses on a density forecasting environment,
the techniques proposed can be used in the more general context of model selection. In this case,
two competing models will be analyzed in terms of their ex-post predictive performance, in an out-
of-sample evaluation exercise that compares forecasts of the entire conditional density, rather than
simple point forecasts implied by the two models. As such, our tests can be used in conjunction with
Diebold-Mariano (1995) type of tests, that compare models according to their (point) forecasting
accuracy or in terms of the relative loss implied by some economically meaningful criterion. Even
though our focus in the paper is on univariate densities, all the tests can be easily generalized to the
multivariate case, which is for example relevant in the context of evaluation and selection of copula
models.

We measure the relative accuracy of density forecasts by so-called ‘scoring rules’, which are loss
functions defined over the density forecast and the outcome of the variable. In particular, we restrict
attention to the logarithmic scoring rule, and suggest ranking the forecasts according to the relative

magnitude of a weighted average of the scores over the available sample. We show that the use



of a weighted average allows the user to compare the performance of density forecasts in different
regions of the unconditional distribution of the variable, distinguishing for example predictive ability
in ‘normal’ days from that in ‘extreme’ days. The use of a simple average yields instead the standard
likelihood ratio test for comparison of non-nested models proposed by Vuong (1989), extended to the
case of time series data and to an out-of-sample testing framework.

The paper is organized as follows. Section 2 introduces the notation and the assumptions utilized
in the paper. In Section 3, we briefly discuss loss functions for the evaluation of density forecasts.
The class of loss functions proposed leads to the development of asymptotic and bootstrap weighted
likelihood ratio tests, discussed in Section 4. Section 5 derives an extension of the standard likelihood
ratio test for non-nested hypotheses proposed by Vuong (1989) to time series data and to an out-of-
sample framework. A bootstrap and a bootstrap-t likelihood ratio tests are also considered, and the
small sample properties of the tests are analyzed in a Monte Carlo simulation in Section 6. All the
tests proposed in the paper are used in Section 7 to compare density forecasts for the S&P 500 daily
returns obtained from GARCH models with different distributional assumptions. Finally, Section 8

concludes.

2 Description of environment

2.1 Notation

For simplicity we will restrict attention to the univariate case. The extension to multivariate is
relatively straightforward. The density forecasts are based on two alternative conditional models
Fy = {f(y441190);0 € ©} and Gy = {g(y+41/Q;7);7 € T'}. The parameter spaces © and I’
are respectively k1 and ko dimensional. The forecasts are conditional on the information set ; =
{yt—j, x141—5; 7 > 0}, containing the past history of the variable of interest Y; and possibly the history
of other explanatory variables denoted jointly as X;;1. We point out that the two models are not
restricted to use the same selection of explanatory variables in their specifications. We consider a
recursive forecasting scheme. The available sample of size T is divided in two parts, with the first R
data used for estimation and the last n for out-of-sample evaluation. The first forecasts are formed
using data from 1 to R, the second using data 1 to R+1 and so forth. The last forecasts are produced
by estimating the models on data from 1 to R+n—1=1T — 1. Let 6, and 4, denote the estimators

based on data from 1 to ¢. This procedure will generate two sequences of n density forecasts

{f(yer1|%: 0y 4 and {g(yer1|Q% 50} (1)



for the variables Y41, ..., Y;. We let 6% and * denote the probability limits respectively of 0; and Ay

2.2 Assumptions

The first set of assumptions, collected in Assumption 1, is related to the regularity conditions utilized
by West (1996). The assumptions only stated in terms of f and 6 implicitly hold for g and ~. The
symbol V’g will denote the k—th derivative operator with respect to 6. The function w(-) appearing
in Assumption 1-(f) is a weight function used in the development of weighted likelihood ratio tests,
whose meaning and use will be made more precise in Section 3.

Assumption 1. Let N be an open neighborhood of 0 : (a) f(y+1/€%,-) is continuously differ-
entiable of order 2 on N.

(b) There exists a constant D < oo such that for all ¢, supgey |Valog f(Yir1|Q:,0)] < my for a
measurable m; that satisfies Em; < D.

(¢) The estimate 0, satisfies 0, — 0" = BY (t)A7 (t), where B/ (t) is ki x q and A/(t) is ¢ x 1, with
Bf(t) “% B/, Bf matrix of rank ky and Af(t) =13, a£(9*) for a ¢ x 1 orthogonality condition
af(6*) such that Eal(6*) = 0.

(d) Forsome d, d’,d" > 1, sup, E|log f(Yi11|Q, 0°)[*, sup, E|Vg;log f(Yis1|, 0%)|*¢, sup, E|a{/]4d”
< o0, for all ¢, where Vy; is the i—th component of the gradient.

(e) {Y:} is strong mixing, with mixing coefficients of size —3d/(d — 1).

(f) [w(Yeg1)log f(YVir1|, 07), (w(Yis1) Ve log f(Yisn|, 07)), a{/]’ is covariance stationary.

Assumption 1 imposes conditions on the density models, the weight function, the estimation
procedure and the data-generating process of the random variable Y;. The restrictions are fairly
standard, and allow for application of the results to a wide range of situations that arise in practice.
In particular, we demand the use of smooth density functions for the forecast models, but this
requirement could be relaxed along the lines of McCracken (2000). We also require existence of
at least four moments of the log-likelihoods and the scores. This requirement, in general, depends
on both the density models and the true density, and its plausibility should thus be verified on
a case by case basis. The parameters of the models can be estimated by a variety of linear and
nonlinear techniques, including Maximum Likelihood, OLS and GMM. The restrictions on memory
and heterogeneity of the data-generating process still allow for conditional heterogeneity and serial

dependence.!

!The assumption of covariance stationarity (Assumption 1-f) is mainly imposed for convenience in estimating the

asymptotic variance matrix. This assumption could be relaxed, at the price of increased complexity (see Rivers and



Assumption 2. (a) The conditional models Fy and G, are non-nested: Fy ¢ G, and G, € Fp.
(b) fC[+56%) # g(|-77)-

Part (a) indicates that the models can be either strictly non-nested (Fy NG~ = 0)) or overlapping
(Fp NGy # 0 but Fy ¢ G, and Gy ¢ Fy). Examples of strictly non-nested densities are, e.g., the
normal and the lognormal, the Student’s ¢ and the Generalized Error Distribution (GED) with finite
degrees of freedom parameters. Alternatively, non-nestedness can be achieved when both f and ¢
belong to the same family of distributions, but the models specify non-nested expressions for, say,
the conditional mean or variance. An example is the case of two different non-linear specifications
that cannot be obtained from each other, or of models that utilize different explanatory variables.
Overlapping arises when the two models are not nested but still possess some common elements, as
in the case of conditional moment equations that depend on some common explanatory variable or of
two families of distributions that both nest the normal. For a more complete discussion, see Vuong
(1989).

Part (b) is relevant in the case of overlapping models. It requires the density forecasts to be
distinct only when evaluated at the respective probability limits of the parameters. In practice,
unless the probability limits of the parameter estimates are known a priori, one will have to pre-test
for condition (b). In the example where f and g belong to the same family of distributions and specify
conditional moment equations that depend on common and non-common variables, one should verify
that at least one of the coefficients on the non-common variables is significantly different from zero?.
In this case, it is guaranteed that the two density forecasts evaluated at the probability limits of the
parameters are distinct.

Assumption 3. As T — oo, R, n — o0 and limp_,(n/R) =7, 0 < 7w < 00.

Assumption 3 allows the in-sample and the out-of-sample sizes to diverge at the same rate,
or the in-sample size to grow faster than the out-of-sample. This assumption concerns the way the
asymptotic distribution is achieved. In particular, letting the in-sample and the out-of-sample diverge
at the same rate is a way to state that the asymptotic distribution of the test statistics will take
into account the uncertainty due to estimated parameters. Imposing = = 0, on the other hand, is an

artificial way to ensure that estimation uncertainty will not affect the asymptotic distribution.

Vuong, 1999).
In this case, the following test will not have exact size . Instead, a will represent an upper bound on the actual

size of the test.



3 Loss functions and density forecasting

There is a large literature on loss functions for evaluation of point forecasts (e.g., Christoffersen and
Diebold, 1997). In this section, we explore the possibility of incorporating loss functions into the
evaluation of density forecasts, and argue that the standard framework of loss functions for forecast
evaluation is not appropriate when the object to be forecasted is a conditional density.

The incorporation of loss functions into the forecasting problem has until now focused on the
definition of classes of loss functions of the form L(¥r,y+r), where g, is a 7-step-ahead point
forecast of Y, and yyr is the realization of the variable. In the vast majority of cases, the loss
function is assumed to only depend on the forecast error, as for quadratic loss or general asymmetric
loss (e.g., Christoffersen and Diebold, 1997, Weiss, 1996). Weiss (1996) shows that, in this framework,
the optimal predictor is some summary measure of the true conditional density of the variable Y;,
(the mean for quadratic loss, the median for absolute error loss, etc.). This means that a user with,
say, a quadratic loss function will only care about the accuracy of the mean prediction and will
be indifferent among density forecasts that yield the same forecast for the conditional mean. As a
consequence, in this situation it becomes unnecessary to issue a density forecast in the first place,
and the forecaster should only concentrate on accurately forecasting the relevant summary measure
of the true density. The discussion of loss functions relevant for density forecasting must thus involve
a shift of focus.

Since a density forecast can be seen as a collection of probabilities assigned by the forecaster
to all attainable events, the tools developed in the probability forecasting evaluation literature can
be readily employed. In particular, we will make use of so-called ‘scoring rules’ for evaluation of
density forecasts. Scoring rules (see, inter alia, Winkler, 1967, Blattenberger and Lad, 1988, Diebold
and Lopez, 1996, Lopez, 2001) are loss functions whose arguments are the density forecast and the
actual outcome of the variable, and they play an important role in probability forecasting both
in an ezr-ante and ex-post sense. Fx-ante, scoring rules are used to elicit subjective probabilities
from experts. Ez-post, they provide a tool for evaluation and comparison of alternative probability
forecasts. Common choices of scoring rules for continuous distributions (e.g., Matheson and Winkler,
1976) are the quadratic (or Brier score), logarithmic and spherical scores, respectively given by

+oo
S(fy) = 2/(y) - / (f(w)2du 2)

—0o0

S(f.y) = logf(y) (3)
+oo
Fw)/( / (f () 2du) 2, (4)
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where 3 is the observed value of the variable and f(-) the density forecast.?

In this paper, we adopt an ex-post perspective, and restrict attention to the logarithmic scoring
rule (3) as a tool for comparing alternative density forecasts. Intuitively, the logarithmic score rewards
a density forecast which assigns high probability to the event that actually occurred. The logarithmic
score is also mathematically convenient, being the only scoring rule that is solely a function of the
value of the density at the realization of the variable.

When a sequence of alternative density forecasts and of observed values of the variable is avail-
able, one can rank the density forecasts by comparing the average realized scores for each forecast.
For the two sequences of density forecasts f and g introduced in Section 2.1, one would compute
the average scores over the out-of-sample period as Sy = n~1 Zf:_Rl 10g f(ye+1]Q;0;) and S, =
n~t Zzﬂ;}% log 9(ye+1]24; 4, ), and select the forecast yielding the highest score.

In this paper, we suggest a more general approach which involves considering a weighted average
of the scores over the out-of-sample period. The idea is that a user might be especially interested
in a density forecast that is accurate in predicting events that lay in a particular region of the
unconditional distribution of the variable of interest. An example could be a user who only cares
about predicting (loosely defined) tail events, as in the case when different investment strategies
or policy implications would arise if the future realizations of the variable fall into the tails of the
distribution. If the user is presented with two alternative density forecasts, he might then want to
place greater emphasis on the performance of the competing models in the tails of the distribution,
and less emphasis on what happens in the center. Another situation that might be of interest is a
focus on predicting events that fall near the unconditional mean of the variable, as a way to ignore
the influence of possible outliers on predictive performance. Finally, one might want to separate the
predictive performance of the models in the right and in the left tail of the distribution, as in the
case, e.g., of forecasting models for risk management, where losses have different implications than
gains.

For each of the above situations, we can define an appropriate weight function w () and compare
the weighted average scores 5}” =n! Zzﬂ;}% w(yes1) log f(yes1|Q; 0;) and 5;” =n! Zzﬂ;}% w(Ye+1)
log g(y+1/|92;4;). The weight function w(-) can be arbitrarily chosen by the researcher to select the
desired region of the unconditional distribution of Y;. The only requirements imposed on the weight

function are that w : R — (0, 1] and that it be twice continuously differentiable on R. For example,

3 A scoring rule is usually expressed as a gain, rather than a loss. In spite of this, we will continue referring to scoring

rules as loss functions.



when the data have unconditional mean 0 and variance 1, one could consider the following weight

functions.

e Center of distribution: w1 (y) = ¢(y), ¢ standard normal density function (or pdf)
e Tails of distribution: wa(y) =1 — ¢(y)/¢(0), ¢ standard normal pdf
e Right tail: ws(y) = ®(y), ® standard normal distribution function (or cdf)

o Left tail: wy(y) =1 — ®(y), ¢ standard normal cdf
Plots of wi — wy are shown in Figure 1.
[FIGURE 1 HERE]

A formal test for comparing the weighted average logarithmic scores is proposed in the following

section.

4 Weighted likelihood ratio tests

For a given weight function w(-) and two alternative conditional density forecasts f(:|-) and g(:|-) for

Yi+1, consider
WLR* = Elw(Yi41)(log f(Yer1 |; 6%)) — log g(Yir1[$2577))]- (5)

A test for equal weighted average logarithmic scores of density forecasts f and g can be formulated

as

Hy : WLR* =0 against (6)
Hyf : WLR*>0or

H, : WLR* <0,

where the two alternative hypotheses respectively indicate that f is better than g or that g is better
than f. We call a test of Hy a ‘weighted likelihood ratio’ test.

The test above allows one to rank the two density forecasts for a particular choice of weight
function. To reduce dependence on the functional form chosen for the weight function, one might
consider generalizing the test (6) to take into account possibly different specifications for w(-). For

example, if the null hypothesis is rejected in favour of one of the alternatives, say Hy, a test of superior



predictive ability of density forecast f relative to g could be constructed by considering a sequence of
J weight functions {wj(~)}3]:1 spanning the whole support of the unconditional distribution of Y; and
testing whether WLR* > 0 for all w;. The theoretical underpinnings of such a test are not further
considered in this paper, and are left for future research.

The expression for WLR* in (5) depends on the unknown expectation E[] and probability limits

0* and v*. We consider estimating W LR* by the out-of-sample analogue
T—1

WLR, =n""Y " wdir (By), (7)
t=R

where wdy41(B;) = w(yes1)[10g f (yer1|Qs: 0) —1og g(ye1Qu: 3], By = (03, 45) and {ge}F_., are the

realizations of the variable over the out-of-sample period.

4.1 Asymptotic weighted likelihood ratio test

An asymptotic test of hypothesis Hy can be derived using the framework developed by West (1996).
The test will rely on asymptotic normality of the test statistic and the asymptotic variance will
incorporate terms that reflect parameter estimation uncertainty. Before proceeding, it might be
useful to recall Assumption 1-c), which introduces some notation regarding the parameter estimates
and Assumption 3, which defines the constant 7w that will appear in the asymptotic variance of the

test statistic. We will also make use of the following notation.

@1(8) = , ar(B) =
w(Yit1)log g(Yis1/267) a

w(Yien) log £ (V1| 6) f ®) )

8qq(7) = El(@(8") — Eq(8)(a—;(5") — Eai(8"))']
b4ali) = FEl(a(8") — Ea(8"))ar—; (5"
b6aa(j) = FEla(B8")a,_;(8")]

Sa= Y 6ad), Sia= Y 64a(i); Saa= D Baals)

j=—o00 j=—o00 j=—o00

Yi11)Velog f(Yig1|Q; 0 0 BT 0
- w(Yi41) Vo log f (Vi[5 07) B=

0 w (Y1) Vy log g(Yeg1[Q457%) 0 B
O = 1-a'n(l+7)for 0<7<o0, =0 for7=0

= Sy +1(FBS;, + S4B F') 4+ 2IIFBS..B'F'.
The following result provides the asymptotic weighted likelihood ratio test.

10



Theorem 1 (Weighted Likelihood Ratio Test) Given Assumptions 1, 2, 3, /n(W LR,—W LR*) A

N(0,02), where 02 is given by
o? =%/, with 1 = (1,-1)

and ¥ is defined in (8). Let 62 be a consistent estimator® of o2, then
(i) under Hy : /AW LR, /6n 2 N(0,1)
(i) under Hy : /hW LRy, /6 “5 + 00
(iii) under Hy : /nW LRy, /Gn %% — c0.

For a desired level of confidence, one would first choose the corresponding critical value ¢ from the
standard normal distribution. If |\/nW LR,,/6,,| < ¢ one would conclude that the weighted average
scores for the two density forecasts are not significantly different. If instead |\/nW LR, /6,| > ¢, the
null would be rejected in favour of Hy (if WLR, is positive) or Hy (if W LR, is negative). The test
proposed has correct asymptotic size and is consistent, as reflected by the fact that the test statistic
has a distribution that does not depend on the parameters under the null hypothesis, and it diverges

under the alternative.

4.2 Bootstrap weighted likelihood ratio test

While the computation of the asymptotic test in the previous section can be quite involved, a test
that is easier to implement can be derived utilizing the bootstrap. The test is derived by resampling
the test statistic W LR, (1), in the following way.

A bootstrap artificial sample of size n is obtained by selecting random indexes 7(t), t = R, ..., T—1
and considering the relative sequence of out-of-sample weighted likelihood ratios {wdT(t)H(ﬁT(t));t =

R,...,T — 1}. One can create B such artificial samples and for each calculate the resampled test

statistic as
T-1 R
WLRL =01 wdyy41(Br), b=1,.., B. (9)
t=R

There are now several available techniques to do resampling when the data are dependent, as in the
time-series case. Popular examples are the moving blocks bootstrap of Kiinsch (1989) and Liu and

Singh (1992) and the stationary bootstrap of Politis and Romano (1994). In the following, we focus

4 A consistent estimate of the asymptotic variance can be obtained using kernel-based estimators of each component
of 3, such as the Newey-West (1987) estimators. II can be estimated by 1 — (R/n)In(1 + n/R). See West (1996) or

McCracken (2000) for a more thorough discussion on how to estimate each component of the asymptotic variance.

11



attention on the Politis and Romano (1994) stationary bootstrap, but in principle other techniques
can be used. The idea behind the stationary bootstrap is to resample blocks of random length, where
the length of each block has a geometric distribution. Under some conditions on the growth rate of
the average block length, Politis and Romano (1994) show that the stationary bootstrap resampling
scheme satisfies desirable consistency and weak convergence properties. See also White (2000, p.
1104) for a description of how to implement the stationary bootstrap.

A bootstrap confidence interval for the weighted likelihood ratio statistic W LR,, can be obtained
in many different ways (see Shao and Tu, 1995 for a discussion). We consider for simplicity an

equal-tailed (1 — a)100% confidence interval for W LR, obtained as
CI=[WLR, —q*(1—«/2), WLR,, — ¢"(a/2)], (10)

where ¢*(a/2) and ¢*(1 — a/2) are respectively the a/2 and 1 — «/2 quantiles of the empirical
distribution of WLR. —W LR, b=1,..., B. If 0 ¢ CI we can reject the null hypothesis (11) of equal
weighted average score of density forecasts f and g, in favour of f (if WLR,, > 0) or in favour of g (if
WLR, < 0), at a confidence level . The validity of this procedure rests on the assumption that the
distribution of \/n(WLR% — WLR,,), conditional on {Ygy1, ..., Y7} converges to the distribution of
VR(WLR, —WLR*), as n increases. This claim is proven by Politis and Romano (1994)’s Theorem
2 for the case when the resampled statistic depends on known parameters. In the presence of BT(t)
in (9), the validity of the bootstrap is obtained at the cost of imposing stronger conditions on the
convergence of the parameter estimators to their probability limits and on the relative growth rates of
the in-sample and the out-of-sample sizes. This point is argued by White (2000), to whom the reader
is referred for a rigorous treatment. For our purposes, it suffices to add the following assumptions to
the ones presented in Section 2.

Assumption 4: BT obeys a law of the iterated logarithm.

Assumption 5: (n/R)loglog R — 0 as T' — oc.

Notice that Assumption 5 is effectively a strengthening of Assumption 3. To guarantee validity
of the bootstrap approximation one must thus impose a condition on the relative rate of divergence
of R and n. Under Assumptions 1, 2, 4 and 5, Theorem 2.3 of White (2000) guarantees validity of
the bootstrap weighted likelihood ratio test.

12



5 Likelihood ratio tests

In this section we show how a standard likelihood ratio test can be derived as a special case of
the tests analyzed in the previous section, when the weight function is identically one. We make
a point of treating this case separately because the computations become particularly simple when
the parameters of the density forecast are estimated by maximum likelihood. Together with the
asymptotic and bootstrap tests already proposed for the general weight function case, we further
consider a bootstrap-t test.

The asymptotic test proposed in this section is related to Vuong (1989)’s likelihood ratio test for
non-nested hypotheses. In that case, the comparison of alternative models is performed in-sample
and under the assumption of independence and identical distribution of the variable of interest. In
contrast, our approach focuses on the out-of-sample evaluation of density models, and we allow the

variable to be characterized by conditional heterogeneity and serial dependence.

5.1 Asymptotic likelihood ratio test

When the weight function is w(y) = 1 a test for equal average likelihood scores of density forecasts

f and g can be formulated as

Hyp : LR* =0 against (11)
Hy : LR*>0or

H, : LR*<0,

where LR* = E[log f(Yi+1|%;60%) — log g(Yi41|Q4;*)]. Similarly to the developments in Section 4,
we estimate LR* by the out-of-sample mean

T-1

LR, =n"" Z[log S (1| 91&) — log g(ye+1]2%: )], (12)
i—R

where {yt}f: Ry are the realizations of the variable while 0, and 4, are Maximum Likelihood Esti-

mators (MLE). In this section, we further assume that forecasts f and g make use of the same set of

explanatory variables.

Let di1(8*) = log f (Vi1 |Q; 0%) — log g(Yis1|Q7%), 65 = (67,7*) and define

+oo
o2 > 6aalj), where (13)

j=—o00

Saa(j) = E[(de(8") — Edy(8"))(d—;(8") — Edy(8))']
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The following result provides the asymptotic likelihood ratio test.

Theorem 2 (Likelihood Ratio Test) Given Assumptions 1, 2, 3, /n(LR, — LR") BN (0,02).
Let 62 be a consistent estimator of o2, then

(i) under Hy : /RLRy /6y 2 N(0,1)

(ii) under Hy : \/uLR, /6y “5 + o0

(i1i) under Hy : \/nLRy, /6y, “5 — o00.

The expression for the asymptotic variance (13) reveals that estimation uncertainty is asymp-
totically irrelevant under the assumptions of the theorem. The asymptotic variance is in fact the
same that would have been obtained had the parameters been known (as assumed by Diebold and
Mariano, 1995), and it coincides (apart from a scale factor) with the spectral density of the variable
{di (%) — Edi(5*)} at frequency zero. This is somewhat a special case. If the estimator used is
not MLE, or if the two density forecasts use different sets of explanatory variables, for example,
estimation uncertainty becomes relevant for the asymptotic distribution, as discussed in Section 4.1.
In these situations, asymptotic irrelevance of parameter estimation uncertainty can be attained by
imposing that Assumption 3 holds with 7 = 0 (see West, 1996 for a discussion), in which case the

appropriate asymptotic variance will still be (13).

5.2 Bootstrap likelihood ratio tests

The asymptotic test can be complemented with and compared to the bootstrap test that was proposed
in Section 4, with a weight function that is now identically one. For the likelihood ratio test, we
also explore the possibility of improving the accuracy of the bootstrap confidence interval CI in
(10). We do so by use of the so-called ‘bootstrap-t > approach (see, e.g., Efron and Tibshirani, 1993).
The procedure deviates from the one described in Section 4 in that it requires to calculate for each
artificial sample b, both the test statistic LR ° and an estimate 2, of its standard deviation. The
relevant standard deviation is o /y/n, where o is the square root of the asymptotic variance defined in
(13), which can be estimated by kernel-based estimators, such as the Newey-West (1987) estimator.

A bootstrap-t confidence interval for LR,, with (1 — «)100% nominal coverage is then computed as
Cl—-t=[LR,—u"(1—-a/2)6,, LR, —u*(a/2)5,], (14)

where ©*(1 — a/2) and u*(a/2) are the 1 — /2 and the /2 quantiles of the empirical distribution of

(LRY — LR,)/6%,b=1,..., B and &, is an estimate of the standard deviation of LR,,. A theoretical

PLR? is equivalent to WLRY in (9) with w(-) identically equal to one.
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result (e.g., Shao and Tu, 1995) proves that the bootstrap-¢ confidence interval (14) is more accurate
than the bootstrap confidence interval (10) or the confidence interval implied by the asymptotic
normal approximation in Theorem 2. ® The higher order accuracy of the bootstrap-t confidence
interval is an asymptotic result. In practice, its superior performance in finite samples will likely
depend on the quality of the estimator for the variance. It is thus a worthwhile exercise to contrast

the performance of the proposed tests in samples of the sizes typically available in practice.

6 Monte Carlo experiment

In this section, we analyze and compare the size and power of the likelihood ratio tests proposed
in the previous section. Due to the inherent difficulties in finding plausible non-nested models that
satisfy the null hypothesis, we restrict attention to the case where the two density forecasts are both
normal but their specification for the conditional mean depends on a common autoregressive term
and on an exogenous variable, which is different for the two densities. This situation could arise in
practical applications when, for example, two economic theories postulate that different explanatory
variables have predictive content for the variable of interest. Let Y; be the variable of interest, and
X1t and X9, be the explanatory variables. Let = {y:—;, T1441—j, 2t+1—4; 7 > 0} be the information
set at time t. We consider the following specifications for the true conditional density and for density

forecasts f and g.

DGP : Y ~ N(p*yi—1 + o x1p + 7 wa, 1) (15)
Forecastl : Y{Q ~ N(pyi—1 + axy, 1) = f

Forecast2 : Yy ~ N(pyr—1 + Bro, 1) =g

The variables Xi; and Xg; are independent N (0, 1) random variables. Notice that we assumed the
true variance to be known by both forecasters. This simplification, although perhaps unrealistic, was
needed to obtain a parameterization for the DGP such that f and g satisfy the null hypothesis. In this
case, one can easily show that the probability limits for the parameters of f and g are respectively
(p*,a*) and (p*,3*)" and that the expected difference of the scores is LR* = (a*)? — (3*)%. A
parameterization for the DGP such that o* = §* will thus satisfy the null hypothesis, and it will be
used to investigate the size of the tests. The parameterization used for the size study is (p*, a*, %) =

(.5,.1,.1). The power curve is obtained by keeping a* = .1 fixed and increasing $*. The number of

SHigher accuracy of a confidence interval means that its coverage level is closer to the nominal level (1 —«)100%.
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Monte Carlo iterations is chosen to be 1000. We consider a total of 15 different combinations of in-
sample (R) and out-of-sample (n) sizes: R = 50,100, 150 and n = 25, 50, 75, 100, 150. This range and
relative proportion of in-sample and out-of-sample sizes seems broad enough to represent the typical
situation of macroeconomic forecasting. To represent the larger sample sizes that may arise in some
financial applications, we further consider the two pairs (R, n) = (500,250) and (R,n) = (650, 350).

For each iteration, the parameters of f and g are estimated by ML on the first sample of size
R. The density forecasts for period R + 1 are then formed as f : N(pryr + &rxir+1,1) and g :
N(pryr + B rZT2r+1,1). Each density is evaluated at the realized value for the variable yr4+1 and the
first observed score difference is obtained as dry1 = 108 f(Yr11|QR; Pr> R) —108 (YR+1 QR PRy BR)-
The sample is then augmented by including observation yry1 and the procedure is repeated on the
sample of size R+ 1 to obtain the score difference dr2, and so forth. The recursion generates a total
of n score differences dr1, ..., dg+n that are averaged to obtain LR, as in (12). The three likelihood
ratio tests proposed in Sections 5 are then performed and their rejection frequencies calculated over
the Monte Carlo iterations. We refer to the three tests as ‘asymptotic LR test’, ‘bootstrap LR test’
and ‘bootstrap-t LR test’. As noted in Section 5.1, when the forecasts are conditional on different
information sets the asymptotic variance is (13) as long as Assumption 3 holds with 7 = 0. We
implicitly impose this requirement, and use (13) in the computations for the asymptotic LR test.
The impact of ignoring estimation uncertainty will emerge from the analysis of the power curves for

decreasing 7. Table 1 reports the empirical size of the three tests for nominal size .05.
[TABLE 1 HERE]

The asymptotic LR test is oversized for an out-of-sample size n < 50. A mild tendency to
overreject is still present for the two bootstrap tests when the size of the out-of-sample is small, but
they are overall better sized than the asymptotic test for all combinations of R and n. All tests have
good size for an out-of-sample n > 75.

Figures 2-5 show the power curves for a selection of in-sample and out-of-sample pairs.
[FIGURES 2-5 HERE]

On the horizontal axis, instead of reporting the increasing distance between the values of the
coefficients o* and 3*, we choose to report the corresponding difference in R? from the regressions

that define density forecasts f and ¢.” For the size study we let o = 3* = 0.1, which implies an

"The R from each regression can be shown to equal R} = 1 — (1 — p**)(8** + 1)/(a*® + 8** + 1) and R] =
1—(1-p**)(a®+1)/(a* 4+ B +1) and thus the difference is given by R} — R = (1—p*?)(a** —8*?) /(" + 8" + 1)
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equal R? for the two models of 0.36, and for the power study we let 3* increase, so that the difference
in R? for the two forecasts varies between 0 and 0.5. The graphs are presented in order of increasing
out-of-sample size. A pattern that emerges form the figures is that the three tests have different
power when the out-of-sample size n is small, but the power tends to become equal across the three
tests for larger n. For n = 25 (Figure 2), the asymptotic LR test has higher power than the bootstrap
tests, at the price of high size distortions. For the same value of n, the bootstrap-t LR test has
slightly lower power than the bootstrap LR test, but this divergence in power between the bootstrap
tests disappears for n > 75. Notice also that all power curves become steeper as the out-of-sample size
increases, a sign of the consistency of the tests. A final conclusion that emerges from the comparison
of the two panels in each figure is that the size of the in-sample seems not to affect the properties
of the tests. The size and power differences seem to be driven only by the size of the out-of-sample.
This is a hopeful indication that imposing the condition that the in-sample size grows faster than
the out-of-sample (i.e., Assumption 3 with 7 = 0) does not affect the properties of the tests, while
considerably simplifying the estimation of the asymptotic variance of the likelihood ratio test. This
in turn would suggest that ignoring parameter estimation uncertainty does not significantly alter the

properties of the likelihood ratio tests in our framework.

7 Empirical application

In this section, the tests proposed in the paper are utilized to compare one-step-ahead univariate
density forecasts for the S&P500 index obtained from GARCH models with different distributional
assumptions. The data are daily U.S. returns on the S&P500 from 1/1/1990 to 8/3/2001 obtained
from Datastream. The return series is derived from the price index data, pt, as y = 100log(p:/pe—1),
so that y; represents the continuously compounded return (in percent) on the index. We model the

returns as a GARCH(1,1)

Yy = pte (16)
|1 ~ f(0,0¢),
0} = w+agr |+ B0}
This model specification will generate density forecasts with time-varying variance and functional

form specified by f. When the model (16) is used for prediction, the accuracy of the forecast critically

depends on the distribution chosen for the standardized residuals. It is widely acknowledged that a

17



normality assumption for the conditional distribution of the disturbances €; does not account for the
excess kurtosis that characterizes the residuals from a fitted GARCH model®. A way to incorporate
excess kurtosis in the model is the use of fat-tailed distributions for the disturbances. Popular exam-
ples are the Student’s ¢ (proposed by Bollerslev, 1987) and the generalized error distribution (GED),
utilized by Nelson (1991). A further characteristic that one might want to account for is the possible
skewness of returns, that can be captured, for example, by a skewed-¢ distribution (see Hansen, 1994).
In the following, we will refer to density forecasts generated by model (16) with the three different
specifications for the disturbances as t—GARCH, GED—GARCH and skewt—GARCH. The goal is
to do pairwise comparisons to select the model that yields the most accurate density forecasts, and
then isolate the regions of the distribution where such outperformance takes place. We are able to
apply the tests proposed in the paper to the non-nested pairs ( t-—GARCH, GED—GARCH) and (
skewt—GARCH, GED—GARCH). The comparison of the out-of-sample performance of t-—GARCH
and skewt—GARCH is not possible due to the nestedness of the two models.

We proceed as follows. We divide the available sample of T' = 2928 observations in two parts, using
the first R data for estimation and leaving the remaining n observations for out-of-sample evaluation.
We consider a range of sizes for n that varies between n = 100 (and thus R = 2828) and n = 1500
(which corresponds to R = 1428), using increments of 100 in n. The first set of density forecasts is
obtained by estimating the parameters of (16) for each of the three distributional assumptions on
the sample of size R. This involves estimating the unconditional mean fi, the GARCH parameters
(w, &, B) and the shape parameters of each distribution by ML. The t—GARCH density forecast for
the variable Yr, is, for example, a Student’s ¢ with mean i, variance O'%% =W+ @6% + Ba% and
shape parameter as estimated on the sample of size R. For each of the three density forecasts, we
then evaluate the log of the density at the realized value of yry1. This generates the first set of three
logarithmic scores. The procedure is then repeated on the samples of sizes R+ 1,...,T — 1, and it
yields a sequence of n logarithmic scores.

Before proceeding with the tests, we consider the sequence of volatility forecasts implied by the
three different models, that are plotted in Figure 6 for the case of n = 1500. As the reader can see, the
volatility forecasts implied by the different distributional assumptions are virtually indistinguishable.
As a consequence, any approach to model selection that relies on the comparison on volatility forecast

accuracy is likely doomed to fail.

8Evidence of non-normality of financial assets’ returns has been documented, inter alia, by Mandelbrot (1963), Fama

(1965), Bollerslev (1987).
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[FIGURE 6 HERE]

In contrast, the tests proposed in the paper will help detect any superior predictive ability that
is solely due to the different distributional assumptions of the three models. The first set of results

compares the accuracy of t—GARCH and GED—GARCH density forecasts.
[FIGURES 7-9 HERE]

The LR, statistic is computed by letting f be the GED density and g the Student’s ¢ density. A
value of LR, that is significantly less than zero will thus mean that the t—GARCH density forecasts
outperform the GED—GARCH forecasts. Figure 7 plots the p-values of the asymptotic LR test
for increasing out-of-sample size n. Equal performance of the two density forecasts is rejected at a
95% confidence level for values of n greater than 1000. For these sample sizes, the LR, is negative
(Figure 8), indicating that t—GARCH forecasts are more accurate than GED—GARCH forecasts.
This conclusion is confirmed by the bootstrap-t LR test, reported in Figure 8. The figure shows
the value of LR, for different n and the relative bootstrap 95% confidence interval. For values of n
greater than 1000, LR, is significantly negative.

To detect in what regions of the unconditional distribution of the returns the t—GARCH density
forecasts outperform the GED—GARCH forecasts, we consider the weighted likelihood ratio tests
for the four weight functions shown in Figure 1. The four panels in Figure 9 plot the values of
the weighted likelihood ratio statistic W LR,, for the different weight functions, together with 95%
bootstrap confidence intervals. The value of W LR, is significantly negative for the weight function
w1, which represents the center of the unconditional distribution. This indicates that the t—GARCH
density forecasts significantly outperform the GFED—GARCH forecasts for values of returns that fall
near the center of the unconditional distribution. In other words, t—GARCH density forecasts are
better than GED—GARCH forecasts at predicting returns in ‘normal’ days, while the two densities
are equally accurate in predicting ‘extreme’ events.

We then investigate whether allowing the best model ((—GARCH) to incorporate skewness will
lead to further improvements in its performance relative to the GED—GARCH forecast model.
The second set of results compares the performance of skewt—GARCH and GED—GARCH density

forecasts. Figures 10-12 are the equivalent of Figures 7-9 for the new pair of density forecasts.

[FIGURES 10-12 HERE]
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As expected, given the nestedness of skewt and t distributions, Figures 10 and 11 lead to the
same conclusion highlighted by Figures 7 and 8. The skewt—GARCH density forecasts outper-
form the GED—GARCH forecasts. Figure 12 reveals that the skewt—GARCH outperforms the
GED—GARCH in both the center and the right tail of the unconditional distribution of returns.
That is, the skewt—GARCH is better at predicting returns in normal days and in days when returns
are relatively high (the definition of what constitutes a normal day and a high return is necessarily im-
precise, given the arbitrary choice of weight function). In conclusion, a t—GARCH or skewt—GARCH
density forecasts are seen to be more accurate than a GED—GARCH density forecast. A similar

finding has been documented by Bollerslev, Engle and Nelson (1994) in a non-predictive setting.

8 Conclusion

The paper proposed a number of tests that can be used to compare conditional density forecasts,
or in the more general context of model selection based on out-of-sample forecasting performance.
The tests can be utilized in both a univariate and a multivariate setting, even though in the paper
we focused for simplicity on the univariate case. We restricted attention to the case of density
forecasts derived from conditional parametric models that are non-nested, with known or estimated
parameters.

We considered measuring the performance of the density forecasts by so-called ‘scoring rules’,
which are loss functions defined over the probability forecast and the outcome of the variable. In
particular, we restricted attention to the logarithmic scoring rule, and suggested ranking the forecasts
according to the relative magnitude of a weighted average of the scores measured over the available
sample, which led to the development of ‘weighted likelihood ratio’ tests. We showed how these
tests can be utilized to isolate the performance of competing density forecasts in different regions
of the unconditional distribution of the variable of interest. Loosely speaking, the tests can help
distinguish, for example, the relative performance of the density forecasts in ‘normal’ days from the
performance in days when the variable takes on ‘extreme’ values. We proposed both asymptotic
and bootstrap weighted likelihood ratio tests. As a special case of a weighted likelihood ratio test,
we obtained an extension of Vuong’s (1989) likelihood ratio test for non-nested hypotheses to time
series data and out-of-sample testing. When the parameters of the density forecasts are estimated
by maximum likelihood, we further pointed out that the asymptotic likelihood ratio test becomes

particularly easy to compute. The performance of the asymptotic and bootstrap likelihood ratio
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tests in finite samples was analyzed through a Monte Carlo simulation that considered the case
where the alternative density forecasts have the same functional form, but use different exogenous
variables in their conditional mean specifications. We found the asymptotic likelihood ratio test to
be moderately oversized for very small out-of-sample sizes, while the bootstrap tests had good size
and power for all combinations of in-sample and out-of-sample sizes. The tests proposed in the paper
were finally used in an empirical application comparing density forecasts obtained from GARCH-type
models with different distributional assumptions for the standardized residuals. The data considered
were the series of S&P 500 daily returns and the models used for constructing density forecast were
GARCH(1,1) with Student’s ¢, generalized error distribution (GED) and skewed Student’s t (skewt)
disturbances. We concluded that density forecasts from a t—GARCH and from a skewt—GARCH
models are more accurate than density forecasts from a GED—GARCH model, and the superior
performance was seen to occur in ‘normal days’. The skewt—GARCH forecasts also outperformed

the GED—GARCH forecasts on days when the returns on the S&P 500 are large and positive.
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9 Proofs

Proof of Theorem 1. Since WLR,, = tn~" Zzﬂ*}% @+1(3;) and WLR* = 1Eq1(3%), we have that
VA(WLR,— WLR*) = t/n[n " S5 ¢t41(8:) — Eqi11(8")]. We will make use of Theorem 4.1 of
West (1996) to show that

T—
qu B) = Eara (8] 2 N(0, %), (17)
=R

from which it follows that \/n(WLR,— WLR*) 2N (0,:X). To be able to apply Theorem 4.1, we
must first show that Assumptions 1-4 of West (1996) (which we will call W1-W4) are satisfied by
the vector qi4+1(5)-
W1-(a) requires ¢:+1(5) to be measurable and twice continuously differentiable in a neighborhood
of §*, which is implied by Assumption 1-(a).
V21og g(Yis1|Q%,7) 0

W1-(b) requires the matrix V%qt+1(ﬂ) = to be
0 Vi log f(Yit1/Q4,0)

bounded by a variable with finite expectation, which follows from the boundedness of the two diagonal
components imposed by Assumption 1-(b).

W2 assumes that the parameter estimates 3, can be written as 3, — 3* = B(t)A(t), where
B(t) % B, B a matrix of rank k = k1 + ko, and A(t) = 130 as(8%), with Fas(8*) = 0. This

: : . Bo(t) 0
follows directly from Assumption 1-(c), by letting B(t) = and B and a.(5%) to
0 Bt

be as defined in (8).

W3-(a) imposes a bound on the fourth moments of a;(3*), gi4+1(6*) and Vggi+1(8*). Existence
of the fourth moments of a;(5*) is directly implied by Assumption 1-(d). The boundedness on the
fourth moments of ¢;11(8%) and Vgq41(8*) is implied by the existence of the fourth moments of each
component of the two vectors. For illustration, we only prove this claim for the second component
of qi+1(5%), which equals w(Yi41)log f(Yiy1|Q¢, 0%). From Assumption 1-(d), it follows that there
exists a d > 1 such that E|log f(Yi41|Q, 60%)]** < co. Consider E|w(Y;11)log f(Yii1|Q, 6%)[*, with

d = for some € > 0. Since w(Y;41) > 0, and by applying Holder’s inequality, we have

1+a’
E|w(Yis1) log f(Yir1|Q, 0°)[* = Elw(Yig1)*? | log f (Vi1 |Qe, 04|
< (Blw(Yien)* |755) 75 (E|log f (Yipa|Q, 67)| % (1)) T

= (Blw(Yes)| )7 (B|log £(Yi1|Q, 09 7 < o,
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since the first term is finite because of boundedness of w (-), and the second term is bounded by
Assumption 1-(d).

W3-(b) assumes the vector [gi+1(8%) ,vec(Vag+1(8%)), ar(*)"] to be strong mixing of size —3d/(d—
1). This follows from {Y;} being strong mixing of size —3d/(d — 1) by Assumption 1-(e), and from
Lemma 2.1 of White and Domowitz (1984), showing that measurable functions of mixing processes
are mixing of the same size.

W3-(c) requires [gi+1(6%) ,vec(Vag+1(8%)), ar(B*)"]" to be covariance stationary, which is directly
implied by Assumption 1-(f).

W3-(d) assumes Syq defined in (8) to be positive definite. This is ensured by Assumption 2,
requiring the two components of ¢;+1(5*) to be distinct.

W4 coincides with Assumption 3.

We can thus apply Theorem 4.1 of West (1996) to prove (17).

The second part of the theorem follows directly from the fact that /n(WLR,— WLR") 2
N(0,0?), with 02 > 0 due to positive definiteness of ¥, and from Slutsky’s Theorem. m

Proof of Theorem 2. When w(y) = 1, for all z, and the parameter estimates are QMLEs,

V4 log g(Yig1|Q%; 7" 0
it follows that F' = F 1108941l 7) = 0. In this case, thus, the
0 Vo log f(Yi41|€2;07)
matrix ¥ defined in (8) reduces to Syq, and the asymptotic variance of the likelihood ratio test
becomes 02 = 1S, = Z;fioo Wgq(4) = ;fioo 84d(7). m
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Table 1

Size of nominal .05 tests

A. LR asymptotic test

n

R 25 50 75 100 150

50 0.162 0.095 0.059 0.042 0.047
100 0.158 0.160 0.076 0.078 0.064
150 0.197 0.167 0.086 0.053 0.065

B. LR bootstrap test

n
R 25 50 75 100 150
50 0.059 0.058 0.037 0.033 0.033
100 0.072 0.065 0.047 0.052 0.050
150 0.092 0.073 0.052 0.036 0.054

C. LR bootstrap-t test

n
R 25 50 75 100 150
50 0.080 0.063 0.044 0.047 0.046
100 0.066 0.073 0.058 0.069 0.055
150 0.094 0.077 0.064 0.048 0.061

Notes: Each panel reports the empirical size of the three likelihood ratio tests discussed in
Section 5. Entries represent the rejection frequencies over 1000 Monte Carlo replications of the null
hypothesis Hy : E[log g(Yi4+1|Q;7*) — log f(Yi41|Q4;0%)] = 0, where the density forecasts f, g and
the DGP are defined in (15). The nominal size is .05. Each cell corresponds to a pair of in-sample

and out-of-sample sizes (R, n).
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Figure 1: Weight functions for the weighted likelihood ratio test. w1(y) = ¢(y), wa(y) = 1 —2.5¢(y),
w3(y) = ®(y), wa(y) =1 — O(y), where ¢ and P are, respectively, the standard normal pdf and cdf.
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Power curve. R=50 n=25
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Figure 2: Power curves of LR asymptotic test, LR bootstrap test and LR bootstrap-t test in the
Monte Carlo experiment discussed in Section 6. Each curve represents the rejection frequencies over
1000 Monte Carlo replications of the null hypothesis Hy : E[log g(Yi+1|Q¢;7*)—log f(Yis1]|2:60%)] = 0,
where the density forecasts f, g and the DGP are defined in (15). The horizontal axis shows the
difference in R? from the regressions defining the two density forecasts f and g. Both figures consider
an out-of-sample size of n = 25. The upper panel is for in-sample size R = 50 and the lower panel

for R = 150.
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Power curve. R=50 n=75
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Figure 3: Power curves of LR asymptotic test, LR bootstrap test and LR bootstrap-t test in the
Monte Carlo experiment discussed in Section 6. Each curve represents the rejection frequencies over
1000 Monte Carlo replications of the null hypothesis Hy : E[log g(Yi+1|Q¢;7*)—log f(Yis1]|2:0%)] = 0,
where the density forecasts f, g and the DGP are defined in (15). The horizontal axis shows the
difference in R? from the regressions defining the two density forecasts f and g. Both figures consider
an out-of-sample size of n = 75. The upper panel is for in-sample size R = 50 and the lower panel

for R = 150.
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Power curve. R=50 n=150
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Figure 4: Power curves of LR asymptotic test, LR bootstrap test and LR bootstrap-t test in the
Monte Carlo experiment discussed in Section 6. Each curve represents the rejection frequencies over
1000 Monte Carlo replications of the null hypothesis Hy : Ellog g(Yi4+1|Q4;v*)—log f(Yiy1|%;0%)] =0,
where the density forecasts f, g and the DGP are defined in (15). The horizontal axis shows the
difference in R? from the regressions defining the two density forecasts f and g. Both figures consider
an out-of-sample size of n = 150. The upper panel is for in-sample size R = 50 and the lower panel

for R = 150.
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Power curve. R=500 n=250
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Figure 5: Power curves of LR asymptotic test, LR bootstrap test and LR bootstrap-t test in the
Monte Carlo experiment discussed in Section 6. Each curve represents the rejection frequencies over
1000 Monte Carlo replications of the null hypothesis Hy : Ellog g(Yi4+1|Q4;v*)—log f(Yiy1|%;0%)] =0,
where the density forecasts f, g and the DGP are defined in (15). The horizontal axis shows the
difference in R? from the regressions defining the two density forecasts f and g. The upper panel is
for the pair of in-sample and out-of-sample sizes R = 500 and n = 250 and the lower panel is for

R = 650 and n = 350.
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Volatility forecasts from t-GARCH, GED-GARCH and skewt-GARCH
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Figure 6: One-step-ahead forecasts of the daily volatility of the S&P500 returns implied by recursively
estimated t—GARCH(1,1), GED—GARCH(1,1) and skewt—GARCH(1,1) models.
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Figure 7: The figure shows p-values for the asymptotic LR test of the null hypothesis of equal
performance of t—GARCH and GED—GARCH density forecasts. The horizontal axis indicates

increasing out-of-sample size.

Figure 8: The solid line in the figure indicates the value of the test statistic LR,,, representing the
out-of-sample mean of the logarithmic score differences for a GED—GARCH density forecast and
a t—GARCH forecast. A negative value indicates that t—GARCH outperforms GED—-GARCH.
The horizontal axis represents increasing out-of-sample size. The dashed line is the 95% bootstrap-t

confidence interval for LR,,.
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Figure 9: Weighted likelihood ratio tests of equal performance of t—GARCH and GED—-GARCH
density forecasts. The figure shows 95% bootstrap confidence intervals for the weighted likelihood
ratio statistics W LR, for increasing out-of-sample size. A negative value of the statistic indicates
that t—GARCH outperforms GED—GARCH. The panels represent the four different weight functions

shown in Figure 6; clockwise, the weight function used are wy, wo, ws and wy.
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Figure 10: The figure shows p-values for the asymptotic LR test of the null hypothesis of equal
performance of skewt—GARCH and GED—GARCH density forecasts. The horizontal axis indicates

increasing out-of-sample size.

Figure 11: The solid line in the figure indicates the value of the test statistic LR,, represent-
ing the out-of-sample mean of the likelihood ratio between a GED—GARCH density forecast
and a skewt—GARCH forecast. A negative value indicates that skewt—GARCH outperforms
GED—GARCH. The horizontal axis represents increasing out-of-sample size. The dashed line is
the 95% bootstrap-t confidence interval for LR,,.
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Figure 12: Weighted likelihood ratio tests of equal performance of skewt—GARCH and
GED—GARCH density forecasts. The figure shows 95% bootstrap confidence intervals for the
weighted likelihood ratio statistics W LR,, for increasing out-of-sample size. A negative value of
the statistic indicates that skewt—GARCH outperforms GED—GARCH. The panels represent the

four different weight functions shown in Figure 6; clockwise, the weight function used are w1, wa, ws

and wy.
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