
UNIVERSITY OF CALIFORNIA,
IRVINE

Deep Learning Models for Spatio-Temporal Forecasting and Analysis

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Reza Asadi

Dissertation Committee:
Professor Amelia Regan, Chair

Professor Michael Dillencourt
Professor R. Jayakrishnan

2020

c© 2020 Reza Asadi

DEDICATION

To my family for their love and support

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1

1.1 Spatio-temporal traffic data . 1

1.2 Machine learning problems in traffic data . 6

1.2.1 Traffic flow prediction . 7

1.2.2 Imputing incomplete traffic data . 7

1.2.3 Clustering of traffic flow data . 8

1.3 Outline and contributions . 9

2 Distributed network flow problem 12

2.1 Introduction . 13

2.2 Preliminaries . 15

2.2.1 Notation . 15

2.2.2 Graph theory . 16

2.2.3 Eliminating affine equality constraints in optimization problems . . . 19

2.3 Problem definition . 20

2.4 A cycle-basis distributed ADMM solution . 23

2.4.1 Minimum search variable . 23

iii

2.4.2 Constructing cyber layer to solve the optimal power flow in a dis-
tributed manner . 24

2.5 Numerical example . 28

2.6 Conclusion and future research . 30

3 Spatio-temporal clustering of traffic data 33

3.1 Introduction . 34

3.2 Technical background . 37

3.2.1 Problem definition . 37

3.2.2 Autoencoders . 38

3.2.3 Deep embedded clustering . 39

3.3 Spatio-temporal clustering . 40

3.4 Experimental results . 43

3.4.1 Dataset . 43

3.4.2 Temporal clusters . 44

3.4.3 Spatial clusters . 49

3.5 Conclusion and future work . 52

4 Spatio-temporal missing data imputation 54

4.1 Introduction . 55

4.2 Preliminaries . 57

4.2.1 Problem definition . 57

4.2.2 A denoising autoencoder . 58

4.3 A convolutional-recurrent deep neural network encoder decoder framework . 59

4.3.1 A CNN-BiLSTM autoencoder . 59

4.3.2 Missing data imputation using latent feature representations 61

4.4 Experimental results . 62

4.4.1 Dataset . 62

4.4.2 Preprocessing . 62

4.4.3 Baseline missing data imputation models 63

4.4.4 Autoencoder models . 64

4.4.5 Comparison of results . 65

4.4.6 Discussion on multiple missing data imputation 67

4.4.7 Latent feature representation . 68

4.5 Conclusion and future work . 70

iv

5 Spatio-temporal forecasting 71

5.1 Introduction and literature review . 72

5.1.1 Background . 73

5.1.2 Contributions of the work . 75

5.2 Problem definition . 76

5.3 Technical background . 77

5.3.1 Dynamic time warping . 77

5.3.2 Fuzzy hierarchical clustering . 77

5.3.3 Convolutional layer . 80

5.3.4 Convolution-LSTM layer . 80

5.3.5 A denoising stacked autoencoder . 81

5.4 Methodology . 82

5.4.1 Preprocessing . 83

5.4.2 Neural network models . 84

5.5 Experimental analysis . 86

5.5.1 Dataset . 86

5.5.2 Pattern analysis in traffic data . 87

5.5.3 Fuzzy hierarchical clustering . 90

5.5.4 Comparison of results . 91

5.5.5 Performance metrics . 94

5.5.6 Spatial performance metrics . 94

5.5.7 Temporal performance metrics . 95

5.5.8 Performance results on test data . 96

5.5.9 Performance results over spatial features 97

5.5.10 Performance results over temporal features 97

5.5.11 Performance results with missing data 100

5.5.12 Hypothesis testing . 101

5.6 Conclusion and future work . 103

Bibliography 105

v

LIST OF FIGURES

Page

1.1 Representation of loop detector sensors on highways of Bay Area, California 3

1.2 Time series decomposition with daily frequency is represented for one sensor’s
traffic flow data. 4

1.3 The relation between occupancy, speed and flow 5

1.4 The congestion propagation in successive sensors. 5

1.5 Image-like representation of a speed value of 13 successive sensors over 7 hours
(5 min time stamp) . 5

1.6 A DTW distance of pair sensors are illustrated. A Clustering method finds
three clusters. Such a plot show the spatial similarity in the traffic flow data. 6

2.1 A biconnected graph of 11 nodes and 18 arcs with its cycle basis of dimension 8. 17

2.2 Physical and cyber layers of a optimal network flow problem with n = 16
and m = 24 arcs with different capacities in the physical layer (with different
thickness). In the physical layer graph, the arrows indicate the positive flow
directions. The cyber layer is constructed using the cycle basis of the physical
layer graph. In the cyber layer there are N = 9 agents with processing and
communication capabilities. 22

2.3 Oriented version of biconnected graph of Fig 2.1 which represents the physical
layer in our numerical example. The inflow is through node v1 which leaves
the network through node v11. The highlighted graph in bold is the cyber
layer graph constructed from the cycle basis shown in Fig 2.1. 28

2.4 Each plot depicts xi(k) − x?i , for ei’s in that sub-captioned cyber layer node
(fundamental cycle). Cyber layer nodes use the distributed ADMM algorithm
outlined in Section 2.4 to solve the problem. We use Matlab ‘quadprog’ to
solve the problem in a centralized manner to generate reference values x?i ,
i ∈ {1, . . . , 18}. As the plots show, every cyber node asymptotically calculates
the optimal arc flow for its arcs. 32

3.1 26 sensors on one highway in Bay Area, California are selected. The black
boxes are the main-line loop detector sensors. 44

vi

3.2 TSNE representation of autoencoder’s latent features. 45

3.3 To represent the relation between latent features and time series data points,
two data points are selected from three regions 1, 2 and 3 in Fig.a and repre-
sented in Fig.b, Fig.c and Fig.d. 45

3.4 The plot for the relation of DTW distance and latent feature space. 46

3.5 TSNE of cluster probabilities as the output of deep embedded clustering. . . 47

3.6 The plot of sum of squares of data points to cluster centers in terms of the
number of clusters. 48

3.7 The histogram of size of temporal clusters. 48

3.8 Sum of Square Error of DTWs . 49

3.9 Four sampled data points are selected. The Fig.a and Fig.b show the data
points in cluster 20. Fig.c and Fig.d show the data points in cluster 30. . . 49

3.10 Heatmap of similarity matrix of sensors and the spatial clusters represented
with blue rectangles. 50

3.11 The relation between average similarity matrix and the hours of a day. . . . 51

3.12 The number of spatial clusters for each hours of day is shown. 51

3.13 Heatmap of similarity of sensors. Existence of locality in traffic flow data.
Similarity matrix of sensors. 52

4.1 A sliding window selects subsamples and feeds these into an autoencoder. The
missing values are represented in black. 58

4.2 The framework for multiple imputation with autoencoders 59

4.3 A convolutional BiLSTM encoder decoder (CNN-BiLSTM-Res) for missing
data imputation . 60

4.4 Three regions of highways are selected for missing data imputation analysis. 63

4.5 The comparison of validation loss during training of autoencoder models . . 67

4.6 The comparison of missing data imputation models for one interval of missing
values . 67

4.7 The illustration of missing data imputation for one sensor by the proposed
model . 68

4.8 The latent feature space visualization of FC-NN with t-SNE. Each data point
has a color that represents the time of day. 68

4.9 The comparison of applying KNN on FC-NN latent feature for various size of k 69

4.10 The comparison of applying KNN on FC-NN latent feature for various size of
latent features . 69

5.1 The proposed framework for the spatio-temporal forecasting problem 82

5.2 The proposed spatial-temporal decomposition deep neural network architecture 85

vii

5.3 The red dots represent loop detector sensors on highways of Bay Area, California. 87

5.4 Time series decomposition with daily frequency is represented for one sensor’s
traffic flow data. 88

5.5 The relation between occupancy, speed and flow 89

5.6 The congestion propagation in successive sensors. 89

5.7 Image-like representation of a speed value of 13 successive sensors over 7 hours
(5 min time stamp) . 89

5.8 The table shows the Dynamic Time Warping distance of time series residuals
among 15 sensors on a highway. The result of hierarchical clustering method
is illustrated with three clusters. The distance values near to diagonal have
lower values, as they are more similar with each other. 90

5.9 An example of traffic flow data for one sensor over one week is shown, where
the blue line is predicted values, and the red dots are the actual values. The
proposed model outperforms FCNN in peak hours, while they have compa-
rable performance in off-peak hours. The black circles represent peak hours,
where the predicted values are closer to actual values in the proposed model. 99

5.10 The proposed model can better capture residual patterns. Some of the big
fluctuations are meaningful residual patterns, and can be predicted. 99

5.11 Prediction results with random missing data 101

viii

LIST OF TABLES

Page

3.1 Clustering of spatio-temporal data . 42

4.1 The comparisons of the models . 65

5.1 Multi-dimensional Dynamic Time Warping 78

5.2 A DTW-based fuzzy hierarchical clustering on spatio-temporal data 79

5.3 Evaluation of the models for the traffic flow forecasting problem. 95

5.4 Spatial statistical indicators for 15-min traffic flow forecasting. 96

5.5 Temporal statistical indicators for 15-min traffic flow forecasting. 98

5.6 Performance evaluation of three models for traffic flow forecasting in peak and
off-peak hours . 100

5.7 The MAE and RMSE of forecasting models with randomly generated missing
data. 101

5.8 The number of sensors, out of 380, for which the proposed model has statis-
tically significant lower MAE and MSE. 103

ix

ACKNOWLEDGMENTS

I would like to express my deepest sincere gratitude to my advisor, professor Amelia Regan.
Her guidance, support, optimism and encouragement have been invaluable throughout the
entire time of my PhD studies. I am grateful to the committee members of my final defense,
Professor Michael Dillencourt and Professor Jay Jayakrishnan. I am also grateful to professor
Solmaz Kia, for our collaborations in part of my PhD studies. Her guidance and expertise
were instrumental in guiding my early research projects. I would like to express my special
thanks to my master degree advisor, Professor Mehdi Ghatee, whose encouragement, wisdom
and expertise was deeply motivating and inspiring for my academic pursuits.

Also, I’d like to say thanks to my colleagues during my entire PhD studies. The discussions
with Dmitri Akhripov were immensely formative and influential early on. I am fortunate to
have the support of great friends in department of computer science, Ahmad Razavi, Siavash
Rezaei, Saeed Mirza Mohammadi and Mehdi Torabzadeh. I am also glad to have present
members of Amelia Regan’s lab, Amari Lewis, Arash Nabili, Dalal Alharthi, and Caesar
Aguma. I also learned a lot from my collaborators, whom I have crossed paths during my
experience in industry, Rodrick Megraw, Xiaoxia Shi and Kelsey Dilullo. Throughout the
entire of my PhD, I’ve had valuable experience as a teaching assistant of graduate classes,
and I’ve learned valuable skills from Professors Rick Lathrop, Michael Dillencourt and Pierre
Baldi.

I thank Institute of Electrical and Electronics Engineers (IEEE), Elsevier, Association for
Computing Machinery (ACM) for giving me permissions to include my previously published
papers in this dissertation.

x

VITA

Reza Asadi

EDUCATION

Doctor of Philosophy in Computer Science 2020
University of California, Irvine Irvine, California

Master of Science in Computer Science 2016
University of California, Irvine Irvine, California

Master of Science in Computer Science 2013
Amirkabir University of Technology Tehran, Iran

Bachelor of Science in Computer Science 2011
Amirkabir University of Technology Tehran, Iran

RESEARCH EXPERIENCE

Graduate Research Assistant 2014–2019
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Introduction to Artificial Intelligence, Professor Rick Lathrop Winter, 2018
University of California, Irvine

Advanced Data Structures, Professor Michael Dillencourt Spring, 2018
University of California, Irvine

Introduction to Artificial Intelligence, Professor Kalev Kask Fall, 2018
University of California, Irvine

Deep Learning and Neural Networks, Professor Pierre Baldi Winter, 2019
University of California, Irvine

xi

REFEREED JOURNAL PUBLICATIONS

A Spatio-Temporal Decomposition Based Deep Neural
Network for Time Series Forecasting

2019

Reza Asadi and Amelia Regan; Journal of Applied Soft Computing - Elsevier

Cycle flow formulation of optimal network flow prob-
lems and respective distributed solutions

2019

Reza Asadi and Solmaz S. Kia; IEEE/CAA Journal of Automatica Sinica

A Rule-Based Decision Support System in Intelligent
Hazmat Transportation System

2015

Reza Asadi and Mehdi Ghatee; IEEE Transaction on Intelligent Transportation Systems

REFEREED CONFERENCE PUBLICATIONS

Spatio-Temporal Clustering of Traffic Data with Deep
Embedded Clustering (Best Paper Award)

Nov 2019

Reza Asadi and Amelia Regan; Proceedings of the 3rd ACM SIGSPATIAL International
Workshop on Prediction of Human Mobility

A Convolutional Recurrent Autoencoder for Spatio-
temporal Missing Data Imputation

July 2019

Reza Asadi and Amelia Regan; International Conference of Artificial Intelligence,
ICAI’19

Cycle basis distributed ADMM solution for optimal net-
work flow problem over biconnected graphs

July 2016

Reza Asadi, Solmaz S. Kia and Amelia Regan; 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton)

xii

ABSTRACT OF THE DISSERTATION

Deep Learning Models for Spatio-Temporal Forecasting and Analysis

By

Reza Asadi

Doctor of Philosophy in Computer Science

University of California, Irvine, 2020

Professor Amelia Regan, Chair

Spatio-temporal problems arise in broad areas of environmental and transportation systems.

These problems are challenging, because of both spatial and temporal neighborhood similari-

ties and correlations. We consider traffic data, which is a complex example of spatio-temporal

data. Traffic data is geo-referenced time series data, where fixed locations have observations

for a period of time. Traffic data analysis and related machine learning tasks have an impor-

tant role in intelligent transportation systems, such as designing navigation systems, traffic

management, control systems and in the future will be essential for setting appropriate an-

ticipatory tolls. Recent data collection methodologies dramatically increase the volume of

available spatio-temporal data, which require scalable machine learning models. Moreover,

deep learning models outperform traditional machine learning and statistical models due to

their strong feature learning abilities in spatial and temporal domains. Increases in available

data and recent advances in deep learning models in spatio-temporal domains are the main

motivations of this dissertation.

We first study, non data-driven and optimization-based solutions for the network flow prob-

lem, which appears in a wide range of applications including transportation systems and

electricity networks. In these applications, the underlying physical layer of the systems can

generate a very large graph resulting in an optimization problem with a large decision vari-

xiii

able space. We present a distributed solution for the network flow problem. The model

uses cycle basis and an alternating direction method of multipliers (ADMM) method to

find a lower computational time and number of communications, while obtaining a centrally

optimal solution.

Second, we attempt to obtain spatio-temporal clusters in traffic data, which represent similar

traffic data in terms of both spatial and temporal similarities. Clustering of traffic data are

used to analyze traffic congestion propagation and detection. We obtain spatio-temporal

clusters using a modification to Deep Embedded Clustering, which considers both spatial

and temporal similarities in latent features. Also we define new evaluation metrics to evaluate

spatio-temporal clusters of traffic flow data.

Third, when sensors collect spatio-temporal data in a large geographical area, the existence

of missing data cannot be escaped, which negatively impacts of prediction models. Here,

we investigate the problem of incorporating both spatial and temporal contexts in missing

traffic data imputation using convolutional and recurrent neural networks. We propose a

convolutional-recurrent autoencoder for missing data imputation, and illustrate the perfor-

mance of autoencoders for missing data imputation in spatio-temporal data.

Finally, traffic flow prediction has an important role in diverse intelligent transportation

systems and navigational systems. There is a large literature on this problem. However,

the problem is challenging for high-dimensional traffic data. We explicitly design the neu-

ral network architecture for capturing various types of spatial and temporal patterns. We

also define evaluation metrics for spatio-temporal forecasting problems to better evaluate

generalization of the model over various spatial and temporal features.

xiv

Chapter 1

Introduction

Here, we describe main characteristics of spatio-temporal traffic data, along with the machine

learning tasks related to traffic data.

1.1 Spatio-temporal traffic data

Spatio-temporal data have both contexts of space and time. In a spatial area, sensors ob-

serves an object state, event, or position over a time period. Spatio-temporal problems can

be classified into five categories, events, Geo-referenced data, Geo-referenced time series,

moving objects and trajectories [8]. We consider Geo-referenced time series data, which rep-

resent the history of observed variables over a time period in fixed locations of a geographical

area. Spatio-temporal data mining arise in various domains [132], including transportation

science (traffic flow prediction and analysis [131], [76], [144]), environmental science (partic-

ipation, weather and wind forecasting [121], [113]), load forecasting[120], and Social sciences

[22]. Spatio-temporal data are multi-variate time series data, where there are spatial sim-

ilarities and correlations between neighboring time series. There are multiple reasons that

1

make spatio-temporal data complex and challenging. First, such a data have both spatial

and temporal contexts at the same time. Most of the datasets have only one of the contexts.

For example, generally images are an example of spatial data. Also, most of text processing

problems include temporal, or sequential, relation among the words and characters. Consid-

ering both of the contexts require careful design of the machine learning problems. Second,

spatio-temporal data are gathered over a network or geographical area with sensors. Such

a data can be represented with graph-structured data. Learning a graph-structured data

necessitate careful design of the machine learning models. Third, spatio-temporal features

are not randomly independent. There are non-linear similarities and correlations in both

spatial and temporal contexts. It makes the data more difficult to work with than general

randomly and independent distribution. Lastly, there are various machine learning tasks

related to spatio-temporal data, which require careful design of the machine learning model,

such as missing data imputation, forecasting, clustering and anomaly detection.

In this dissertation, we consider Geo-referenced data, where specific locations have their own

time series data. Also, time series data are gathered in synchronous way. We describe a

spatio-temporal data with X ∈ Rs,t,f , where s is the number of spatial points, also known

as sensors, t is the total number of time stamps, and f is the number of features. Sensors

gather such data in a geographical area, so it is considered as the first dimension. Given a

large value of t, a sliding window method with window size of w generates a sequence of data

points xt ∈ Rs,w,f for t ∈ {1, . . . , t}. The machine learning models receive input data points,

individually xt
i ∈ Rw,f for one location i or globally xt ∈ Rs,w,f . A sliding window method

increase the flexibility of designing machine learning models that are capable of processing

input data over different temporal or spatial features.

Traffic data are obtained with loop-detectors, cameras, and other types of sensors gather

traffic data. The data represents traffic flow, speed and occupancy. We use traffic flow

data from the Bay Area of California represented in Fig. 5.3 which have been broadly used,

2

and available in PeMS [1]. The traffic data is gathered every 30 seconds and aggregated

over 5 minute periods. Each sensor on highways has flow, occupancy and speed at each

time stamp. A sensor is an inductive loop traffic detector device on mainline, off-ramp or

on-ramps locations.

Figure 1.1: Representation of loop detector sensors on highways of Bay Area, California

Spatial patterns in traffic data are the results of traffic evolution in the network. Here, we

analyze the spatial, short-term and long-term patterns. In Fig. 5.4, an additive time series

decomposition of traffic flow data is presented for one station. Given a one day frequency,

time series decomposition has similar, repeated (seasonal) daily patterns. Moreover, there

are long-term weekly patterns, shown as trends T. The long-term patterns, such as seasonal

and trends, arise from similar periodic patterns, generated outside of the highway network.

In other words, they are related to origin-destination matrix of vehicles in the network. The

time series residuals are not only random noise, but also the results of spatial and short-term

patterns, related to the evolution of traffic flow or sudden changes in smaller regions of the

network.

Time series residuals are interpreted as random noise for time series data. However, in

traffic flow data, the residuals are the results of traffic evolution in the network. In Fig.

5.5, we examine the non-linear relation of flow, speed and occupancy in one day and one

sensor. It shows that high occupancy reduces speed in a road segment, which is the result

of traffic congestion. For more details, we refer the reader to the theoretical analysis of

3

(a) The observed traffic flow data. (b) Seasonality of traffic flow data

(c) Trends of traffic flow data (d) Residuals of traffic flow data

Figure 1.2: Time series decomposition with daily frequency is represented for one sensor’s
traffic flow data.

these relationships in [38] and [89], respectively. In a transportation network, the congestion

propagation describes the relation among neighboring sensors of a highway, shown in Fig.

5.6. For a given three sensors, traffic congestion is propagated with nearly 20 minutes of

delay. For a larger geographical area, the speed of 13 successive sensors is represented in an

image-like representation of spatio-temporal data, in Fig. 5.7. The reduction of speed in

peak hours is presented with darker colors. It shows that the reduction in speed is similar in

neighboring areas, which also represents the existence of spatial correlation in neighboring

sensors.

One of the methods of finding spatial similarities in spatio-temporal data is to find the

similarity matrix among locations. First, we need a distance function among time series.

Dynamic Time Warping as a distance function of time series [] is described in Chapter

4. Here, to represent the spatial similarities, a similarity matrix is obtained for a given

25 sensors in a highway. The result is represented with a heatmap. We can see that the

elements close to diagonal have lower values. Also, a clustering method can find the clusters

of similar sensors.

4

(a) The relation between flow, occupancy
and speed is shown. Occupancy, with
value more than 8% occupied by vehicles,
decreases average speed, which is the re-
sult of traffic congestion.

(b) Log plot to represent the linear rela-
tion between occupancy and flow in free
flow speed (about 70 mph).

Figure 1.3: The relation between occupancy, speed and flow

(a) Three successive sensors
are selected to represent con-
gestion propagation in the
network.

(b) The reduction in speed of sensor 1 and 2 can
be observed twice in this plot, in which there is 20
minute delay due to congestion propagation delay
time.

Figure 1.4: The congestion propagation in successive sensors.

Figure 1.5: Image-like representation of a speed value of 13 successive sensors over 7 hours
(5 min time stamp)

These analysis show that spatial and temporal patterns of traffic data have some unique

characteristics. Here, we address some of the important challenges in designing a neural

5

Figure 1.6: A DTW distance of pair sensors are illustrated. A Clustering method finds three
clusters. Such a plot show the spatial similarity in the traffic flow data.

network architecture for spatio-temporal data. In these data, time series residuals are not

meaningless noise, but they represent spatial patterns in data. Moreover, convolutional neu-

ral networks capture spatial patterns. However, convolutional layers can capture spatial and

short-term patterns, but sliding a convolutional kernel on spatial features miss the underly-

ing structure of the network and reduce the performance of the model. Also, spatio-temporal

data have a non-stationary behaviour in the existence of long-term patterns. Furthermore,

spatial and temporal patterns can be used to handle missing data.

1.2 Machine learning problems in traffic data

We describe the main characteristics of spatio-temporal data, and illustrate it on traffic data

in last section. Here, we describe the importance of main machine learning problems arise

for traffic data and machine learning solutions for such problems.

6

1.2.1 Traffic flow prediction

Short-term traffic flow prediction is an important tool for reducing travel time, and helps

traffic managers to understand traffic dynamics, and reduce traffic congestion, transportation

costs and air pollution [21], [112]. Traffic data include complex spatial and temporal patterns,

but it is not chaotic and prediction models can anticipate near future traffic states [25].

Navigational systems on smart phones and Map software applications have an important role

in our daily lives, short-term traffic flow prediction is a component in predicting travel time.

There is a large number of research studies for the traffic flow prediction. Starting in the

1970’s with the original work of Gazis and Knapp [45], many studies develop new models for

traffic flow prediction problems, such as auto-regressive integrated moving average (ARIMA)

[57] and Seasonal-ARIMA [68], and statistical techniques, such as Markov chain models [140]

and Bayesian networks [129]. However, there are several limitations on these models, due to

prior assumptions, lack of handling missing data, noisy data, outliers, as well as the curse of

dimensionality. Recently, deep learning models have been successfully applied to the traffic

flow prediction [80], [134], [100].

1.2.2 Imputing incomplete traffic data

Traffic data are obtained by a large number of sensors. A challenge in data processing step is

to have missing values. This is the result of malfunctioning of hardware devices, communica-

tion network problems, power supply issues, expected or unexpected maintenance time and

so on [20]. While various solutions reduce the size of missing values, this ideal solutions rarely

occur. Hence, researchers study missing data imputation in broad areas, including trans-

portation science. There are a large number of studies develop machine learning solutions

for missing data imputation of traffic data. Existence of spatial and temporal neighborhood

similarity makes the problem challenging. Simulation-based models have been proposed for

7

missing data imputation [90]. In [77], a k-nearest-neighbor models impute incomplete traffic

data based on similarity of spatial and temporal features. Low-dimensional representation

and learning of spatio-temporal data has been increasingly popular in missing data impu-

tation models. In [104] and [103], a Bayesian-PCA and probabilistic-PCA are proposed

to impute the incomplete traffic flow volume data. Clustering based solutions [67], tensor-

based completion [67], and spatio-temporal cokriging [67] are other types of machine learning

models that have been studying missing data imputation problem for traffic data. However,

when there are big data sets, scalable machine learning models, such as deep learning models

require careful design to consider missing data imputation for spatio-temporal traffic data

[43], [145].

1.2.3 Clustering of traffic flow data

Clustering of traffic data is an important tool for analysis of traffic data. In [39] and [18], they

propose a model for classifying traffic data into similar groups using fuzzy and density-based

clustering models. Also, clustering models have been used for spatio-temporal detecting

congestion patterns [7], [106]. Moreover, clustering of traffic data can be used as a component

for other applications. In [67], they propose a clustering-based model for missing data

imputation of traffic data. In [93], they propose a modified k-means clustering for the travel

time prediction. In [79], they propose a clustering-based model for detecting anomalies

in traffic data. Broad range of applications for using clustering as a method of analysis

or improving the performance of other machine learning models, show the importance of

proposing a clustering model using deep learning.

8

1.3 Outline and contributions

The structure of the dissertation and contributions of each project is as follows,

Chapter 2 describe a new solution for static network flow problem with capacity bounds.

The objective of this project is to find a distributed solution for network flow problem and

reduce communication and computation costs. We consider static network flow problem

with an optimization solution, contrary to other chapters, where data-driven solutions are

studied. We investigate the graph and optimization theoretical concepts in finding a cycle

basis solution and an efficient distributed solution.

Contributions of Chapter 2 include:

• We take advantage of the cycle basis concept in the graph theory to reduce the search

variables of an optimal network flow.

• We apply the cycle-basis solution to power flow control with generators and storage.

• We propose an ADMM solution for a distributed cycle-basis network flow problem.

• Numerical example demonstrates the outperformance of the proposed model in reduc-

ing computational time and communications.

Chapter 3 describe a clustering model for spatio-temporal traffic data. The focus is to find

spatial and temporal clusters with deep learning models. Both types of spatial and temporal

clusters are obtained and evaluated on traffic data.

Contributions of Chapter 3 include:

• We describe the advantages of using deep embedded clustering for clustering of spatio-

temporal traffic data.

9

• We propose a modified deep embedded clustering, which uses prior geographical infor-

mation to find spatial clusters.

Chapter 4 describe missing data imputation problem for spatio-temporal data. The focus is

to design a convolutional-recurrent autoencoder for imputing missing values. The evaluation

shows that the imputation of artificial missing values is better than state-of-the-art neural

network models.

Contributions of Chapter 4 include:

• We propose a convolutional bidirectional-LSTM for capturing spatial and temporal

patterns.

• we analyze an autoencoder’s latent feature representation in spatio-temporal data and

illustrate its performance for missing data imputation.

• The result shows that multiple missing data imputation with reconstruction of input

can outperform baseline and state-of-the-art neural networks.

Chapter 5 describe traffic flow prediction problem. The focus is to decompose spatial and

temporal features and use them in designing a deep learning model for spatio-temporal

forecasting problem. There is a rigorous analysis of spatio-temporal features and evaluation

of the models.

Contributions of Chapter 5 include:

• A deep neural network is proposed for the short-term spatio-temporal forecasting.

• A clustering method and a multi-kernel convolutional layer capture spatial patterns.

• Time series decomposition helps the model to better capture temporal patterns.

10

• The model generates more robust outcomes when faced with missing data.

• The performance of the model is evaluated for spatio-temporal forecasting problem

using new evaluation metrics.

11

Chapter 2

Distributed network flow problem

Minimum cost network flow problems appear in a wide range of applications including general

network optimization problems, transportation systems, electricity networks and information

networks. In these applications, the underlying physical layer of the systems can generate a

very large graph resulting in an optimization problem with a large decision variable space.

Various arc and node based cyber layer layouts have been proposed to solve this problem in a

distributed manner. In this chapter, for a physical layer network of n nodes and m arcs with

biconnected graph topology, we take advantage of the cycle basis concept in the graph theory

to reduce the search variables of an optimal network flow from m to m−n+ 1 variables. We

show that our proposed new formulation of the optimal network flow problem is amenable

to a distributed solution using alternating direction method of multipliers (ADMM) method

via a cyber layer whose nodes are defined based on the fundamental cycles of a cycle basis

of the physical layer graph. We demonstrate the performance of our algorithm through a

numerical example. The results of this work is published in [12] and the extension of the

work is published in [11].

12

2.1 Introduction

In this chapter, we consider the optimal network flow problem in a network of a physical

system. The physical system consists of several routes between a source point and a sink

point, which are used to transfer a flow from the source to the sink. The objective of the

optimum network flow problem is to minimize the overall cost of transporting flow [23].

Network flow problems appear in many important applications, such as power networks [92],

communication networks [122], wireless sensor networks [133] and transportation systems

[19]. Network flow problems and their variants are also relevant to computer vision [64],

robust routing with the objective of routing with minimal variance in noisy communications

[133], wireless routing and resource allocation [135]. With the advent of new technologies,

the amount of available data and network size has been increasing, which necessitate various

performance improvement techniques in cyber-physical systems [107], and increase the size

of optimization problems. However, the number of decision variables is directly related with

the time and space (resources1) computation complexity of optimization solvers.

Optimal network flow problems are normally cast as a convex optimization problem where

the cost is the sum of convex cost of flows through arcs subject to capacity bounds for each arc

and flow conservation equations at each node. With the advent of new technologies, both the

size of networks and the amount of data available on those networks have been increasing.

Such expansions in the size of physical networks result in increasingly large optimization

problems associated with optimal network flow problems. This has promoted the interest in

the parallel and distributed solutions for optimal network flow problems [59], [98].

Convex cost network flow problems can be solved in a distributed manner via dual sub-

gradient descent [23]. Sub-gradient methods are analyzed for distributed convex optimiza-

tion [94] and uncertainty of the network structure is considered in [78]. The resulting al-

gorithm has a slow convergence rate [114]. In [142], they proposed a second order method

13

for network flow optimization, which has better convergence rate of sub-gradient methods.

In [88], they applied local domain ADMM on minimum cost flow problem.

However, all of the above algorithms assume arc based network flow, that is, the total number

of search variables matches the total number of arcs in the physical network. To solve the

network flow problem in a distributed manner, each arc or group of arcs are assigned to a

cyber layer node. Then, the optimization problem of the optimal network flow problem is

cast in a separable manner and solved by cyber layer nodes in a cooperative way. Although,

in distributed algorithms the computational cost of the optimal flow problem is distributed

among the agents in cyber layer, the large number of decision variables normally translates

to a large number of cyber nodes or large communication overhead between neighboring

cyber nodes.

In this chapter, we use the cycle basis concept in graph theory to reduce the search variables of

an optimal network flow over a physical layer graph of n nodes and m arcs, with biconnected

topology, from m variables to m − n + 1. The concept of cycle basis for network flow

optimization is related to the tie-set graph theory to solve current and voltage Kirchhoff

laws in electric circuits [63]. Using the tie-set graph theory, [62] and [92] have discussed a

method to solve optimal network flow problems with quadratic arc costs functions.

In this chapter, we consider a minimum network flow problem where the arc costs are convex

functions. Our contributions in this chapter are a rigorous study of the relationship between

the fundamental cycle basis of a biconnected graph and the oriented incidence matrix of

the connected physical layer graph of a network flow problem. Recall that the incidence

matrix can be used to cast the flow conservation requirement at each node of the network

flow problem. Here, we show that the nullspace of the incidence matrix is cast by rows

of a cycle basis matrix of the graph, resulting in a systematic way to eliminate the affine

flow conservation constraints and replacing the arc flow by an equation that is described

based on the cycle basis matrix, cycle flow and a particular solution of the flow conservation

14

equation. Our next contributions are (a) results that show how particular solution needed in

the reduced variable representation can be found in an efficient manner; (b) results that show

the new formulation of the optimal network flow problem based on the cycle basis variables

is amenable to a distributed ADMM solution method (c.f. [26] and [88]) via a cyber layer

whose nodes are defined based on the fundamental cycles of a cycle basis of the physical

layer graph. We also discuss other possible cyber layer choices that are still able to solve our

formulation of the optimal network flow problem in a distributed manner.

The chapter is organized as follows. Section 2.2 defines our notation, graph theoretic termi-

nologies and concepts, and reviews some preliminary results from the literature on convex

optimization. Section 2.3 formally presents our problem statement. Section 2.4 gives our

main results on cycle basis formulation of the optimal network flow problem and discuss how

this formulation can be solved in a distributed manner via a distributed ADMM algorithm.

Section 2.5 demonstrates the performance of our algorithm using a numerical example. Sec-

tion 2.6 gives the summary and states the future work.

2.2 Preliminaries

In this section, we introduce our notation, briefly review the relevant graph theoretic defini-

tions and concepts, as well as, some relevant optimization theory results.

2.2.1 Notation

Let R and R>0 be, respectively, the set of real and positive real numbers. For a matrix

A ∈ Rn×m we represent its entry in ith row and jth column by Aij. Transpose of A is

denoted by A>. We let 0n denote the vector of n zeros. When clear from the context, we do

not specify the matrix dimensions. In a network of n agents, if pi ∈ Rd is a variable of agent

15

i ∈ {1, . . . , n}, the aggregated pi’s of the network is the vector p = [p1
>, · · · ,pN>]> ∈ (Rd)n.

For finite sets V1 and V2, V1\V2 is the set of elements in V1, but not in V2. The cardinality

of a finite set V is |V |.

2.2.2 Graph theory

In this section, following [41], we review our graph related terminology and conventions. We

also introduce graph related notation that we use throughout the chapter.

We represent a graph with a set of nodes V = {v1, v2, · · · , vn} and a set of arcs E =

{e1, · · · , em} ∈ V × V with G = (V , E). The graph is assumed to be undirected and has

no self-loops. The (unoriented) incidence matrix I ∈ Rn×m of G is a matrix whose n rows

correspond to the n nodes and the m columns correspond to m arcs such that Iij = 1 of jth

arc is incident on the ith node, and Iij = 0 otherwise. A walk is an alternating sequence of

nodes and connecting arcs. A path is a walk that does not include any node twice, except

that its first node might be the same as its last. A graph is connected if there is a path from

its every node to every other node. A graph is biconnected if and only if any node is deleted,

the graph remains connected.

Next, we review some concepts and proprieties pertinent to cycles in graphs. A cycle of

G is any subgraph in which each node has even degree. The degree of a node in a graph

is the total number of arcs connected to that node. A simple cycle is a path that begins

and ends on the same node with no other repetitions of nodes. For a graph with arc set

E = {e1, · · · , em}, a cycle vector c ∈ Rm is a binary vector with ci = 1 if ei is in the cycle

and ci = 0, otherwise. The set of all cycle vectors on G is a linear vector space over a field,

Galois field modulo 2 or GF (2). In this field elements belong to the set {0, 1} with operation

addition modulo 2 written as ‘⊕’ such that 0⊕ 0 = 0, 1⊕ 0 = 1, 0⊕ 1 = 1, 1⊕ 1 = 0. Let

graph G has µ cycles and m arcs. A cycle matrix B ∈ Rµ×m of G is a binary matrix, where

16

1 2

3

4

5

6

7

8

9

10 11

e1

e
2e

3

e 4 e
5

e6

e7

e
8

e 9

e10

e11

e 1
3

e
14

e15

e 1
7

e
17

e
1
7

e18

Figure 2.1: A biconnected graph of 11 nodes and 18 arcs with its cycle basis of dimension 8.

Bij = 1 if the jth arc is in the ith cycle of the graph, Bij = 0, otherwise, i.e., ith row of B is

the cycle vector of cycle i ∈ {1, . . . , µ}.

The following result gives the rank of the cycle matrix with in GF (2).

Lemma 2.2.1 (GF (2) rank of cycle matrix of a connected graph [41]). If B is a cycle matrix

of a connected graph G with n nodes and m arcs, then GF (2) rank of B is µ = m− n+ 1.�

A cycle basis of G is a set of simple cycles that forms a basis of the cycle space of G. Every

cycle in a given cycle basis is called a fundamental cycle. Bf ∈ Rµf×m, where µf = m−n+1 is

a fundamental cycle matrix of graph G if and only if its rows span cycle space of G in GF (2).

Therefore, we have rank(Bf) = m−n− 1 in GF (2). A fundamental cycle basis of a graph is

constructed by its spanning tree, in a way that cycles formed by a combination of a path in

the tree and a single arc outside of the tree. For every arc outside of the tree, there exists

one cycle. Each cycle generated in this way is independent of other cycles, because it has

one arc, not exist in other cycles. Figure 2.1 depicts a graph with its cycle basis highlighted

by the dashed closed curves.

In this chapter, we focus on planar graphs. A planar graph is a graph which can be drawn in

the plane without any edges crossing. Some pictures of a planar graph might have crossing

edges, but it must be possible to redraw the picture to eliminate the crossings.

Next, we discuss our conventions for the oriented form of a given graph G = (V , E). When

17

there is an orientation assigned to arcs of a graph, we write ek = (vi, vj) if arc ek points from

node vi towards node vj. Notice that in the oriented graph Go = (V , Eo), if (vi, vj) ∈ Eo then

(vj, vi) /∈ Eo, i.e., there is no symmetric arc in the oriented graph. For an oriented graph

Go, the oriented incidence matrix is the matrix Io ∈ R|V|×|E|, where Io
ij = 1 if arc ej leaves

node vi, I
o
ij = −1 if arc ej enters node vi, otherwise Io

ij = 0. For a connected graph of n

nodes with a given orientation, the rank of both I and Io is n−1. For cycles in the oriented

version of a graph of n nodes and m arc, Go = (V , Eo), we assign the clockwise direction as

positive cycles orientation and define the oriented cycle vector co ∈ Rm with co
i = 1 if ei is

in the cycle and aligned with its direction, co
i = −1 if ei is in the cycle but opposing the

direction of the cycle and finally co
i = 0 if ei is not in the cycle. In the following, we show

that every oriented cycle matrix is in the nullspace of oriented incident matrix Io.

Theorem 2.2.1 (relationship between the oriented incidence and oriented cycle vector [41]).

Let Go be an oriented graph with oriented incidence matrix Io. Then, every oriented cycle

vector co is orthogonal to every row of Io, i.e., Io co = 0n. �

For a graph G of n nodes and m arcs with fundamental cycle matrix Bf ∈ R(m−n+1)×m, when

we assign orientation, we represent the oriented fundamental matrix by Bof. Next, we show

that rank(Bof) = m− n+ 1 in real space.

Theorem 2.2.2 (rank of oriented cycle matrix of an orineted graph). Let Bof be an oriented

fundamental cycle matrix of an oriented graph Go with n nodes and m arcs, then rank(Bof) =

m− n+ 1.

Proof. The proof is a straightforward consequence of how fundamental cycle basis is con-

structed from spanning tree of a graph. By construction, every fundamental cycle of a cycle

basis has an arc that does not appear in other fundamental cycles. As a result, (in both

unoriented and oriented cases) the cycle vector of each fundamental cycle is independent of

all other fundamental cycle vectors in a cycle basis. This completes the proof.

18

We close this section by introducing some notations for oriented fundamental cycles of an

oriented connected graph Go with n nodes and m arcs. For a given cycle basis of Go, we

represent the set of its fundamental (oriented) cycles by Cf and its dimension by µf = m−n+1.

We represent the set of arcs of an oriented fundamental cycle Cof
i ∈ Cf, i ∈ {1, . . . , µf}, by

Cofe
i = {ej ∈ Eo, j ∈ {1, . . . ,m} |Bof

ij 6= 0}. For a given cycle basis, we refer to the cycles

that share an arc as neighbors and represent the set of (cycle) neighbors of any fundamental

cycle Cof
i ∈ Cf, i ∈ {1, . . . , µf}, by N C

i = {j ∈ {1, . . . , µf}\{i} | ∃ k ∈ {1, . . . ,m} s.t. Bof
ik 6=

0 and Bof
jk 6= 0}. For every fundamental cycle Cof

i , i ∈ {1, . . . , µf} in a given cycle basis Cf of

a given Go, we write its member arc set as Cofe
i = C̄ofe

i ∪ C̃ofe
i , where C̄ofe

i = {ej ∈ Cofe
i |Bof

ij 6=

0 and Bof
kj = 0, k ∈ {1, . . . , µf}\{i}} is the set of arcs that are only in Cof

i and C̃ofe
i = Cofe

i \C̄ofe
i

is the set of arcs that are both in Cof
i and its neighboring cycles. We let Cof(ei) be the set of

fundamental cycles that arc ei ∈ Eo belongs to, i.e., Cof(ei) = {Cof
j , j ∈ {1, . . . , µf} | ei ∈ Cofe

j }.

2.2.3 Eliminating affine equality constraints in optimization prob-

lems

Consider the following optimization problem

x? = argmin
x∈Rn

φ(x), s.t.,

Ax = b,

g(x) ≤ 0,

(2.1)

where φ : Rn → R and g : Rn → Rm are the cost function and the inequality constraint

function, respectively. Here, A ∈ Rp×n with rank(A) = p ≤ n. To solve this problem, one

way is to eliminate the equality constraints and then solve inequality constraint optimization

problem [27]. A matrix F ∈ Rn×(n−p) and vector xp ∈ Rn is found which parametrize affine

19

feasible solutions as

{x ∈ Rn | Ax = b} = {Fz + xp | z ∈ Rn−p}. (2.2)

Here, xp is a particular solution of Ax = b, and F ∈ Rn×(n−p) is any matrix whose range is

the nullspace of A. Then, x? in (2.1) satisfies x? = Fz? + xp where

z? =argmin
z∈Rn−p

φ̄(z) = φ(Fz + xp), s.t. (2.3)

g(Fz + xp) ≤ 0.

Notice that in comparison to (2.1), in (2.3) we not only eliminated the equality constraints

but also decreased the number of optimization search variables from n to n− p.

2.3 Problem definition

In this section, we describe our optimal network flow problem of interest which is defined

as a constrained convex optimization problem over a cyber-physical network. We start by

defining the physical layer. Consider a network of n nodes where each node is connected

to a subset of other nodes through some form of routes. For example, in a power network

the route is a transmission line, while in a transportation network the route is the road

connecting two conjunction nodes on the road map. The physical layer topology is described

by a connected graph Gphysic = (Vphysic, Ephysic), where |Vphysic| = n and |Ephysic| = m. The

flow can travel in both directions in every route, however, we assume a pre-specified positive

orientation for each route and based on it we describe the flow network in the physical layer

by the oriented version of Gphysic, i.e, Go
physic = (Vphysic, Eo

physic), where Vphysic = {v1, · · · , vn}

is the node set and for the arc set if (vi, vj) ∈ Eo
physic, then (vj, vi) /∈ Eo

physic. Every arc

(route) (vi, vj) on the network has a capacity that is lower bounded and upper bounded by

20

pre-specified scalar values. This physical network transfers a flow f1 ∈ R>0 from source node

v1 to sink node vn (see the physical layer in Fig. 2.2), while respecting the routes capacities

as well as conservation of the flow constraints at each node, i.e., the total inflow into each

node must be equal to the total outflow from that node. There is a convex cost associated

with flow across each arc. Let Eo
physic = {e1, e2, · · · , em}, and the flow across arc ei be xi.

Our optimal power flow problem of interest is to find the network minimizer x? ∈ Rm in the

following optimization problem

x? = argmin
x∈Rm

φ(x) =
m∑
i=1

φi(xi), s.t., (2.4a)

Io x = f , (2.4b)

bi ≤ xi ≤ b̄i, i ∈ {1, · · · ,m}, (2.4c)

where f = [f1, · · · , fn]>, with fn = −f1 ∈ R given and fj = 0 for j = {2, · · · , n − 1}.

Also, for i ∈ {1, . . . ,m}, b̄i, bi ∈ R are given scalars, and φi : R → R is convex function.

Here, (2.4b) captures the flow conservation at nodes across the network and (2.4c) describes

the arc capacity constraints.

For a given input flow f1, the feasible set of problem (2.4) is give by

Xfe =
{
x ∈ Rm |Io x = f , bi ≤ xi ≤ b̄i, i ∈ {1, · · · ,m}

}
. (2.5)

For a given network and capacity bounds, the maximum (resp. minimum) network flow

problem gives an upper and (resp. lower) bound on the admissible ranges of input flow f1

such that the feasible set (2.5) is always non-empty. Maximum (also minimum) flow of a

network can be find using the Edmonds-Krap algorithm in O(nm2) in a central way [44].

As the size and, consequently, the number of the arcs in the physical network grow, the

number of search variables in the optimization problem (2.4) grows with it linearly. Dis-

21

f1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16 fn

physical layer

cyber layer

Figure 2.2: Physical and cyber layers of a optimal network flow problem with n = 16 and
m = 24 arcs with different capacities in the physical layer (with different thickness). In the
physical layer graph, the arrows indicate the positive flow directions. The cyber layer is
constructed using the cycle basis of the physical layer graph. In the cyber layer there are
N = 9 agents with processing and communication capabilities.

tributed solutions where agents with computation and communication capabilities solve this

problem through parallel processing are proposed to solve large scale optimal network flow

problems. Although, in this algorithms the computational cost of the optimization prob-

lem (2.4) does efficiently get distributed among the agents in cyber layer, the high number

of decision variables normally translates to high number of agents or large communication

overhead between neighboring agents.

Our first objective in this chapter is to use concepts from cycle basis and cycle flow in graph

theory to reduce and obtain the minimum number of search variables for the optimal network

flow problem (2.4). Our next objective is to use these results to devise a cyber layer layout

with efficient communication topology to solve the optimal network flow problem (2.4) in a

distributed manner using an ADMM approach.

22

2.4 A cycle-basis distributed ADMM solution

In this section, we address the two objectives we mentioned in Section 2.3.

2.4.1 Minimum search variable

To obtain the minimum search variable, we invoke the result discussed in Section 2.2.3 in

eliminating the affine equality constraint (2.4b) from our optimal network flow problem (2.4).

Our first result below, uses Theorem 2.2.1 and Theorem 2.2.2 to obtain minimum search

variable for the optimal network flow problem (2.4). Even though this result gives a guideline

to reduce the size of the search variable, the challenge is to obtain a matrix whose columns

span the nullspace of the incidence matrix Io in such a way that the equivalent representation

of the optimization problem (2.4) is amenable to a distributed solution.

Theorem 2.4.1 (Eliminating the flow conservation constraint from (2.4)). Consider the op-

timal network flow problem (2.4) over a physical network described by Gphysic = (Vphysic, Ephysic)

where |Vphysic| = n and |Ephysic| = m and its oriented graph is Gophysic . Assume that Gphysic is

biconnected. Then, x? in (2.1) satisfies x? = Bof >z? + xp where

z? =argmin
z∈Rµf

φ(z) = φ(Bof >z + xp), s.t. (2.6)

b ≤ Bof >z + xp ≤ b̄,

where Bof is the oriented fundamental cycle matrix of Gophysic and xp is a particular solution

(2.4b).

Proof. Given the discussion in Section 2.2.3, the proof relies on showing that the nullspace

of Io is spanned by columns of Bof >. Recall that for a connected digraph rank(Io) = n− 1.

Therefore, the size of the nullspace of Io ∈ Rn×m is m − n + 1. Invoking the results of

23

Theorem 2.2.1 and Theorem 2.2.2, we have, respectively, Io Bof > = 0 and rank(Bof >) =

m − n + 1. Therefore, nullspace of Io is spanned by columns of Bof >. This completes our

proof.

For any given f1, the particular solution of (2.4b) can be obtained in an efficient manner

using the following result.

Lemma 2.4.1 (Particular solution of (2.4b)). Let x̄p be a particular solution of (2.4b) for

f1 = 1. Then, for any f1 ∈ R, a particular solution for (2.4b) is given by xp = f1x̄p.

Proof. Recall that in (2.4b), f =

[
f1 0 · · · 0 fn

]>
, where fn = −f1. For any f1 ∈ R, let

x = f1x̄p. Then, we can write Io x = Io x̄p f1 =

[
1 0 · · · 0 −1

]>
f1 = f . Therefore, a

particular solution for Io x = f is xp = f1 x̄p.

Remark 2.4.1 (A procedure to construct particular solutions of (2.4b)). A particular so-

lution for the flow conservation equation corresponding to f1 = 1, x̄p, can be constructed

using any oriented path from node v1 to node vn. For a given path from source node v1 to

sink node vn, x̄p
i = 0 if ei is not in this path, x̄p

i = 1 (resp. x̄p
i = −1) if the direction of ei is

along (resp. opposing) the direction from node 1 to node n (see Section 2.5 for a illustrative

numerical example). To construct a sparse particular solution, one can use shortest path

from node v1 to node vn.

2.4.2 Constructing cyber layer to solve the optimal power flow in

a distributed manner

Here, we use the results of Section 2.4.1 to propose appropriate topologies for a cyber layer

that can solve the optimal network flow problem (2.4), in a distributed manner, using its

24

equivalent minimum search variable representation (2.6). For the proceeding text, please

recall our cycle basis related notations defined at the closing paragraph of Section 2.2.2.

We start by describing how every arc flow xi, i ∈ {1, . . . ,m} is expressed in terms of z ∈ Rµf .

Given that x = Bof >z + xp, then xi = z>[Bof]i + xp
i , where [Bof]i, i ∈ {1, . . . ,m}, is the ith

column of Bof. Notice that one can think of every zi, i ∈ {1, . . . , µf} as a cycle flow variable

(with positive direction in clockwise direction) of the fundamental cycle Cof
i . Recall that, for

a given arc ei ∈ Eo
physic, every element of Bof

ji is zero except if cycle Cof
j contains arc ei, i.e.,

ei ∈ Cofe
j . As a result, we can deduce that every xi, i ∈ {1, . . . ,m}, is an affine function of xp

i

and {zk}k∈{j∈{1,...,µf} | ei∈Cofej }, indicating that every arc flow is a function of its corresponding

element of the particular solution and the cycle flow of fundamental cycles that contain the

arc. Given such relationship, then the cost function of every arc is

φi(xi) = φi(z
>[Bof]i + xp

i)

= ψi({zk}
k∈
{
j∈{1,...,µf} | ei∈Cofej

}, xp
i). (2.7)

Based on the observation above, we propose a structure for the cyber layer to solve the

optimal network flow problem which we describe below.

Cyber layer architecture: we propose to assign a cyber layer node to each fundamental

cycle (see Fig. 2.2 as an example). We assume that the cyber layer nodes of neighboring

fundamental cycles can communicate with each other in bidirectional way. For biconnected

physical layer graphs this procedure will result in a connected graph of µf = m−n+ 1 nodes

for cyber layer (see Fig. 2.2 and Fig. 2.3 for examples).

To simplify our notation for distributed ADMM solver, we assume that the physical layer

graph is planar and among the set of cycle basis we choose the one that each arc belongs to

at most two fundamental cycles (c.f. Mac Lane’s planarity criterion [85]).

25

Next, we describe how the optimal cost flow problem (2.4) can be cast in a separable manner

among the cyber layer nodes in a way that the problem can be solved by implementing a

distributed partial variable ADMM algorithm [26, 88]. To this end, for every cyber layer

node i ∈ {1, . . . , µf}, we define yi = (ȳi, ỹi) ∈ R|NC
i |+1, where ȳi is the local copy of zi (the

cycle flow of the fundamental cycle corresponding to cyber node i) and ỹi is the local copy

of {zk}k∈NC
i

(the cycle flows of the neighboring fundamental cycles of cyber node i) at cyber

node i. Next, we cast the cost function of each cyber node in terms of its decision variable

yi. For every cyber layer node, we define its cost function as the sum of costs of its exclusive

member arcs, i.e., the arcs that are in C̄ofe (cost function of these nodes depend on only cycle

flow zi of cyber node i) plus sum of 0.5 costs of arcs that it shares with its neighbors, i.e.,

the arcs that are in C̃ofe (cost function of these nodes depend on the cycle flow of the cyber

node i and the flow of the neighbor node containing them). Recall that we assumed that

every cyber node has a copy of the cycle flow variables of its neighbors. We represent the

cost of each cyber layer node i by θi(yi) as follows (recall (2.7))

θi(yi) = θ̄i(ȳi) + θ̃(ȳi, ỹi), (2.8)

where

θ̄i(ȳi) =
∑
∀ek∈C̄ofei

ψk(ȳi, x
p
k),

and

θ̃(ȳi, ỹi) =
1

2

∑
∀ek∈C̃ofei

ψk(ȳi, [ỹi]ek , x
p
k),

where [ỹi]ek gives the component of ỹi that corresponds to the local copy of the cycle flow of

26

the neighboring cycle which contains ek. Now we cast the optimal network flow problem in

the following equivalent form that can be solved by the cyber layer nodes using a distributed

ADMM method

y? = argmin
y1,··· ,yµf

µf∑
i

θi(yi) s.t. (2.9)

for i ∈ {1, . . . , µf} :

ȳi = ŷi,

[ỹi]ek = ŷj, ∀ek ∈ C̃ocf
i , j = [N C

i]ek ,

bk ≤ Bof
ikȳi+Bof

jk[ỹi]ek+xp
k ≤ b̄k, ∀ek ∈ C̃ocf

i , j = [N C
i]ek ,

bk ≤ Bof
ik ȳi + xp

k ≤ b̄k, ∀ek ∈ C̄ocf
i ,

where [N C
i]ek gives the cycle neighbor of node i which also contains arc ek. Recall that

because we assume the graph is planar, for every cyber/cycle node i, for each given ek ∈ C̃ocf
i ,

there is only one neighbor that contains that arc. Here, the primal variable of each agent

in the ADMM method at each agent i ∈ {1, . . . , µf} is yi = (ȳi, ỹi). And, the auxiliary

variables of the ADMM method are {ŷi}i∈{1,...,µf}. These augxillary variables, through the

affine conditions in (2.9), enforce the local copy of any cycle flow at a cyber node to be the

same as the local copies of its neighbors.

Here, we assume that every cyber node knows the components of the particular solution

associated with the arcs constituting its corresponding fundamental cycle basis. Once every

cyber node i ∈ {1, . . . , µf} computes y?i , its component of the optimal solution y?, then it

can proceed with

x?k = Bof
ik ȳi + xp

k, ∀ek ∈ C̄ocf
i

x?k = Bof
ik ȳi+Bof

jk [ỹi]ek+xp
k, ∀ek ∈ C̃

ocf
i , j = [N C

i]ek ,

27

f1 1 2

3

4

5

6

7

8

9

10 11 f1

e1

e
2e

3

e 4 e
5

e6

e7

e
8

e 9

e10

e11

e 1
2

e
13

e14

e 1
5

e
16

e 1
7

e18

c8

c1

c2

c6

c5

c4

c3

c7

Figure 2.3: Oriented version of biconnected graph of Fig 2.1 which represents the physical
layer in our numerical example. The inflow is through node v1 which leaves the network
through node v11. The highlighted graph in bold is the cyber layer graph constructed from
the cycle basis shown in Fig 2.1.

to obtain the optimal cycle flows through its arcs, i.e., the optimal flow through ∀ek ∈ Cocf
i .

For networks with large fundamental cycle sizes, one can split a cycle among several cyber

nodes. In this case the length of the ȳi of these agents will be 0 and we can still use the

distributed ADMM algorithm (c.f. [26] and[88]) to solve the problem. Similarly, two or more

cycles can be assigned to one cyber layer. The details are omitted for brevity.

Also notice that once the cyber layer and the particular solution x̄p are established, they

stay the same for all input flow f1.

2.5 Numerical example

In this section, we use a numerical example to demonstrate the effectiveness of our cycle

basis distributed solution in solving an optimal network flow problem. We use the network

in Fig. 2.1 as our physical layer network. We assign positive flow orientation to the arcs as

represented in Fig. 2.3. We assume the lower and upper bound capacities satisfy bi = −b̄i,

i ∈ {1, . . . , 18}, where we pick b̄i uniformly randomly from [2, 50]. Here, the cost of the

network flow xi through each arc ei, i ∈ {1, . . . , 18}, is given by φi(xi) = (xi/b̄i)
2.

28

We use Matlab ‘quadprog’ to solve the problem in a centralized manner to generate refer-

ence values to compare the performance of our distributed cycle basis distributed ADMM

algorithm as outlined in Section 2.4. For the given capacities, the maximum flow is 59, i.e.,

the external flow should be in the admissible range of [−59,+59].

Recall that using the cycle basis method, we have xi = z>[Bof]i + xp
i , i ∈ {1, . . . , 18}, where

for network of Fig. 2.1 the cycle flow vector is z> = [z1, ..., z8]. Therefore, using the cycle

basis method, the number of the decision variables of the optimal flow problem (2.4), here,

reduces from 18 to 8 in (2.6). For the network of Fig. 2.1, the fundamental orientated cycle

basis matrix is (recall that we have assumed the positive cycle flow direction to be clockwise)

Bof =

1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0

0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 −1

0 0 0 0 −1 1 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 1 0 0 0 1 0 0 0

0 1 −1 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0



To obtain the particular solution for our cycle basis optimal network flow solver, we in-

voke the results discussed in Lemma 2.4.1 and Remark 2.4.1. First, we construct the

particular solution corresponding to f1 = 1, x̄p, using the shortest path {e1, e5, e11, e16}

from source node v1 to sink node v11 in the physical layer graph. Here, this solution is

x̄p = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0) (recall that the choice of shortest path is to

29

obtain a sparse solution). This particular solution is for f1 = 1, and for any other external

flow f, the new particular solution is x = f x̄p. In other words, for any external flow, the

particular solution vector x̄p is for a same shortest path, and we only multiply x̄p by the

external flow value.

To solve our network flow problem in a distributed manner, we generate the cyber layer

based on the minimum weight cycle basis shown in Fig. 2.1. This cyber layer solves the

problem using the distributed ADMM solution described in (2.9). For our simulation we

consider a scenario where the input flow f1 = 59 for 50 iteration and it is changes to f1 = 30

afterwards. Fig. 2.4 depicts our simulation result.

In Fig. 2.4, plots show the distance of arc flow values from their optimum solution during

execution of distributed ADMM. During the first 50 iteration the distributed ADMM con-

verges to the optimum solution. Then, for the second external flow, it converges to the

optimum solution again. The results illustrate that for different values of external flow, the

distributed ADMM converges to optimum solution using the same cycle basis matrix and

particular solutions that are generated by scaling the same x̄p.

2.6 Conclusion and future research

We consider the optimal network flow problem and investigated how the decision variables of

this problem can be reduced from m variables for a physical network of n nodes and m arcs

to m − n + 1 variables for biconnected graphs. The results of this project are presented in

[12] and [11]. Our study was based on exploiting the cycle basis concept from graph theory.

We also proposed a new cyber layer architecture which solves our equivalent reduced search

variable representation of the optimal network flow problem in a distributed manned using an

ADMM approach. Our future work includes a study of dynamic optimal flow problem where

30

the throughput flow changes with time. We will also explore extensions of our algorithm to

solve problems with multiple sources and multiple sinks.

31

0 10 20 30 40
-10

-5

0

5

10

(a) cyber layer node 1
(fundamental cycle 1 con-
sisted of arcs {e1, e2, e4})

0 10 20 30 40
-10

-5

0

5

10

(b) cyber layer node 2
(fundamental cycle 2 con-
sisted of arcs {e4, e5, e7})

0 10 20 30 40
-10

-5

0

5

10

(c) cyber layer node
3 (fundamental cycle
3 consisted of arcs
{e14, e16, e17})

0 10 20 30 40
-10

-5

0

5

10

(d) cyber layer node
4 (fundamental cycle
4 consisted of arcs
{e12, e13, e14})

0 10 20 30 40
-10

-5

0

5

10

(e) cyber layer node
5 (fundamental cycle
5 consisted of arcs
{e15, e16, e18})

0 10 20 30 40
-10

-5

0

5

10

(f) cyber layer node
6 (fundamental cycle
6 consisted of arcs
{e5, e6, e11, e12})

0 10 20 30 40
-10

-5

0

5

10

(g) cyber layer node
7 (fundamental cycle
7 consisted of arcs
{e9, e10, e11, e15})

0 10 20 30 40
-10

-5

0

5

10

(h) cyber layer node
8 (fundamental cycle
8 consisted of arcs
{e2, e3, e7, e8, e9})

Figure 2.4: Each plot depicts xi(k) − x?i , for ei’s in that sub-captioned cyber layer node
(fundamental cycle). Cyber layer nodes use the distributed ADMM algorithm outlined in
Section 2.4 to solve the problem. We use Matlab ‘quadprog’ to solve the problem in a
centralized manner to generate reference values x?i , i ∈ {1, . . . , 18}. As the plots show, every
cyber node asymptotically calculates the optimal arc flow for its arcs.

32

Chapter 3

Spatio-temporal clustering of traffic

data

Traffic data is a challenging spatio-temporal data, and a multi-variate time series data with

spatial similarities. Clustering of traffic data is a fundamental tool for various machine learn-

ing tasks including anomaly detection, missing data imputation and short term forecasting

problems. In this chapter, first, we formulate a spatio-temporal clustering problem and de-

fine temporal and spatial clusters. Then, we propose an approach for finding temporal and

spatial clusters with a deep embedded clustering model. The proposed approach is exam-

ined on traffic flow data. In the analysis, we present the properties of clusters and patterns

in the dataset. The analysis shows that the temporal and spatial clusters have meaningful

relationships with temporal and spatial patterns in traffic data, and the clustering method

effectively finds similarities in traffic data. The results of the work is published in [15].

33

3.1 Introduction

The volume of traffic flow data has increased with the advent of new sensing technologies. In

most transportation systems, a large number of sensors gather traffic data in a geographical

area. The data are gathered over specific time periods, and it has both spatial and tempo-

ral patterns. Traffic data is considered a high-dimensional time series data, which include

the flow, speed and occupancy of a large number of sensors, and in which there is a spa-

tial correlation among neighboring time series. The problem is challenging because of both

temporal and spatial patterns in data. Spatio-temporal data arise in broad areas of engineer-

ing and environmental sciences. In [17], they discuss various types of spatio-temporal data

and their corresponding data mining approaches. In transportation systems, traffic flow

data is a challenging spatio-temporal data. Analyzing such data can improve the perfor-

mance of intelligent transportation systems, reduce traffic congestion, and air pollution [91].

Also, spatio-temporal congestion patterns is studied for traffic flow data [106]. However, the

increasing volume of traffic data requires the development of large-scale machine learning

algorithms and big data analytics [151]. Various studies examine data-driven approaches

and large-scale machine learning techniques in transportation systems [128].

Exploring similarities in spatio-temporal patterns results in finding interesting patterns in

data. Clustering algorithms not only find similarities among data points, but also explore

deep insights in temporal and spatial patterns. Clustering algorithms have been used in a

broad range of machine learning tasks. In this chapter, we focus on developing a clustering

method for spatio-temporal data. Here, we describe some of the important applications of

using clustering method to solve machine learning problems. In [5], a clustering method is

used for detecting anomalies. Data points which are far from center of clusters or are in

separate clusters can be considered as anomalies. In [67], they use k-means clustering for

finding similar spatial data. Then an autoencoder imputes missing data for each cluster.

In [16] and [29], the spatial clusters are used to improve the performance of a forecasting

34

problem. These works illustrate that the clustering of spatio-temporal data is a fundamental

tool for various machine learning tasks.

Moreover, clustering algorithms have been used on various types of traffic flow data. In [34],

they cluster vehicle trajectory data to model traffic flow. The data is obtained from traffic

surveillance of intersections. In [31], they cluster traffic flow patterns based on dynamical

traffic flow models. A macroscopic flow model is used with a multivariate clustering approach.

However, most of traffic flow data are obtained by loop detectors or sampling from GPS data

on road networks. Each road segment includes traffic data for a time stamp. Here, we focus

on traffic data obtained by loop detectors. Clustering of traffic data is a common data

mining analysis [61]. In [36], they propose a fuzzy clustering technique for traffic flow data.

A Dynamic Time Warping (DTW) distance among traffic flow data is used as a similarity

measure. Also, clustering of traffic data can find interesting insights in physical properties of

traffic flow data. In [115], they apply fuzzy k-means clustering to analyze variations in traffic

flow states. While clustering of traffic data is an important problem, it is a challenging one.

Traffic data is spatio-temporal data in which there is a non-linear relation among spatial and

temporal neighborhoods. Clustering of time series data requires a distance metric, such as

DTW, which extracts a non-linear relation among time series data. Moreover, traffic data is

a multi-variate time series with spatial correlation. Applying traditional clustering methods,

such as k-means, on traffic data is computationally expensive and can have low performance

[54], though more efficient heuristic methods for k-means clustering of traffic flow data have

been studied [118].

Since traffic flow data is a multi-variate time series data, here we review some of the recent

works for time series clustering. In [3], they describe a broad range of time series clustering

applications. Also, the main components of time series clustering have been studied, in-

cluding time series representations, similarity and distance measures, clustering prototypes

and time series clustering. In [117], they describe the challenges of k-means clustering with

35

time warp measure. They propose a weighted and kernel time warp measures for k-means

clustering. Their method has a faster estimation of clusters. Further investigation in time

series clustering is studied in [96].

Deep learning models significantly improve performance of various machine learning prob-

lems, such as computer vision and natural language processing. Such models have been

broadly used for various large-scale spatio-temporal problems [132], [13]. Moreover, deep

learning models for clustering tasks are broadly studied in [87]. Deep embedded clustering is

primarily introduced in [136]. Variations of the model have been studied in a broad domains.

A joint training of the model to preserve the latent feature space structure is proposed [48].

In [138], they analyze a clustering-friendly latent representations, in which jointly optimize

dimension reduction by a neural network and a k-means clustering. While most of the works

apply deep embedded clustering on images, there are few studies to show their performance

on time series data. In [125], they jointly cluster and train the model. They also segment

time series data with agglomerative clustering.

The aforementioned works show the importance of developing a deep learning model for

the spatio-temporal clustering problem. In addition, they show the recent advances in deep

learning models for clustering tasks. However, there is lack of study to investigate the

performance of deep learning models for spatio-temporal clustering. Here, we formulate and

propose a procedure for spatio-temporal clustering with deep learning models. We define

temporal and spatial clusters and analyze spatial and temporal clusters obtained by deep

learning models in details. Such an analysis shows the existence of temporal and spatial

patterns in the clusters. Also, we illustrate that the proposed approach can better finds

temporal clusters, as it captures the non-linear relation among temporal data. Our focus in

this study is on traffic flow data. Clustering of such data not only improves the performance

of clustering based machine learning models, such as anomaly detection with a clustering

method, but also provides opportunities to further investigate transportation systems using

36

temporal and spatial clusters.

In section 2, we describe the technical background for the proposed approach. In section 3, we

define spatial and temporal clusters, and describe the proposed approach for finding spatial

clusters with temporal clusters. In section 4, a deep learning investigation of clustering on

traffic flow data is illustrated. In Section 5 our conclusion and future work are presented.

3.2 Technical background

3.2.1 Problem definition

Spatio-temporal data is represented with a matrix X ∈ Rs×t×f , where s is the number of

sensors, t is the number of time stamps and f is the number of traffic features, including

flow, speed and occupancy. Each sensor has its own time series data xi ∈ Rt×f . Clustering of

whole time series is computationally expensive and finding temporal patterns in such clusters

is not possible. Hence, we generate sub-sequences of time series data and apply clustering

methods on them. A sliding window approach with time window w generates a sequence of

traffic data. A traffic state at time stamp t and location i is represented with Xt
i ∈ Rw×f . In

other words, the data points are represented with traffic states.

A clustering method assigns each traffic state xt
i into a cluster cj, where j ∈ {1, . . . , |C|}, and

|C| is the given number of clusters. For a latent representation of xt
i , represented with zt

i ,

the clustering method assigns zt
i to the clusters. A temporal cluster consists of traffic states

from all sensors. In other words, any traffic state can be a member of a temporal cluster. In

algorithm 1, we find spatial clusters from temporal clusters. A spatial cluster includes some

of the sensors. A spatial cluster is obtained based on similarity of temporal clusters. The

similarity of two sensors is obtained based on the similarity of their temporal clusters. In

37

this way, instead of comparing two sensors’ data for a long time period, e.g. six of months

of training data, we have temporal similarity for a short time windows with size w.

Similarity of time series cannot be obtained from the euclidean distance of their vectors. A

non-linear distance function, e.g. DTW, can provide a similarity (distance) measure for two

time series. Another approach is to find latent feature representations and use a euclidean

distance measure on those representations, as the temporal relation does not necessarily hold

in lower dimension space. We consider both approaches in this chapter. We also examine

this property of latent features in experimental results by finding the correlation between

DTW distance of traffic states and euclidean distance of latent features. In such a way, the

clustering is more efficient, as the distance function is applied on lower dimension space.

3.2.2 Autoencoders

An autoencoder is primarily proposed in [127]. It reconstructs the input data with x =

f(x,θ), given model parameters θ, an input data x and reconstructed input x. An encoder is

the first neural network component, which reduces the dimension of input data to a latent

feature space h ∈ Rd, where d < n. Latent features consists of the most important patterns

of input data. The second neural network component is a decoder, which reconstructs the

input data from its latent representation.

h = σ(drop(x)w1 + b1) (3.1)

x = σ(drop(h)w2 + b2) (3.2)

where the activation function and the dropout function are represented with σ(.) and drop(.),

respectively. In a deep autoencdoer, the encoder considers several layers and reduces the

38

input dimension into latent feature space h. Then the decoder as a multi layer neural

network, reconstructs the input. The loss function L(x, x), e.g. mean square error, reduces

the difference of input data x and its reconstruction x.

3.2.3 Deep embedded clustering

A Deep embedded clustering neural network is introduced in [136]. The encoder transforms

x into latent feature space z. The clustering layer is connected to latent feature layer. The

weights of clustering layer is initialized with cluster centers obtained by k-means clustering.

Cluster center i is represented with µi ∈ Rd. Given k as the number of clusters, and d as

latent feature size, the clustering layer is represented with a dense layer Rd → Rk. In other

words, it converts latent features into a vector of size k, which k-th element represents the

probability that the data point is assigned to the cluster k.

Given initial cluster centers {µ1, . . . , µk} and latent features z, a student’s t-distribution

measures the similarity between cluster centers µi and data points xi as follows,

qij =
(1 + ||zi − µj||2)−1∑
k(1 + ||zi − µk||2)−1

(3.3)

where the degree of freedom of the student’s t-distribution is one. The probability of assigning

data point xi to cluster µj is represented with qij. The assigned cluster is argmaxj qij. The

clustering algorithm iteratively adjusts clusters by learning from high confidence assignments.

To learn from high confidence assignments, an auxiliary target distribution pij is as follows,

pij =
q2

ij/fj∑
k q2

ij/fk
, (3.4)

KL-divergence loss between qij and pij learns the high confidence soft cluster assignment,

39

KL(P||Q) =
∑

i

∑
j

pij log
pij

qij
(3.5)

A joint training of autoencoders with reconstruction loss and clustering loss is proposed in

[48], in which an autoencoder reconstructs input and cluster data points simultaneously. A

joint training preserves the structure of latent feature representation of data points. In this

chapter, we pretrain an autoencoder with traffic states and using a joint training method we

obtain the clusters of temporal data.

3.3 Spatio-temporal clustering

Here, we describe the proposed method for spatio-temporal clustering of traffic data.

As represented in Section 2.1, we consider the clustering of traffic states xt
i ∈ Rw×f for a

given time window w and features f. While in alternative approaches, one can consider the

problem of clustering a whole time series xi ∈ Rt×f , or sub sequences of spatio-temporal data

xt ∈ Rs×w×f . Clustering of traffic states provides more flexibility and efficiency. First, we

can have multiple clusters for one sensor in different time stamps, unlike clustering of whole

time series. Second, we can cluster sensors independent of one other, unlike clustering of sub

sequences of spatio-temporal data. However, in this approach, we need a method to obtain

temporal and spatial clusters. In this section, we describe our proposed method.

The input of autoencoder consists of all traffic states xt
i for all sensors i and time stamps t.

The autoencoder reconstructs traffic states. Also, the encoder outputs their latent feature

representations. The deep embedded clustering assigns the latent feature of each traffic state

to the clusters. The probability that each traffic state would be in cluster k is represented

40

with ct
ik. The assigned cluster would be obtained by ct

i = argmaxk ct
ik. We represent the

temporal cluster ct
i for sensor i and time stamp t. Although temporal clusters can find

meaningful patterns in data, spatial clustering is useful to find the relation of sensors in

a geographical area. Spatial clustering needs aggregation of temporal clusters. First, we

define spatial similarity as the similarity of temporal clusters for a time interval. In other

words, spatial similarity of two sensors i and j for a time time interval T is the number of

times their temporal clusters are equal for t ∈ T. For example, if the objective is to find

spatial similarity of sensors between 3pm to 5pm on one day, then it can be obtained by

comparing ct
i and ct

j for all t in range of 3pm to 5pm. In this approach, the spatial clustering

is dynamic over various time intervals. Spatial clustering can be obtained based on these

temporal clusters. In the rest of this section we describe the proposed procedure.

The proposed procedure is in Algorithm 5.1. The input of spatio-temporal data is represented

with x ∈ Rs×t×k. First we normalize data with Normalize(.). All of the features are normalized

in the range of zero to one over time stamps to have a same maximum and minimum value.

A sliding window method SlidingWindow(., .) receives input data and window size of w.

A sequence of xt ∈ Rs×w×k is generated for {0, . . . , t}. An autoencoder trainAutoencoder(.)

receives an input traffic states xt
i for all sensors i and time stamp t. It reconstructs each input

data and train model parameters. The model parameters are stored in modelPre. Since the

autoencoder has encoder-decoder architecture, it can output the latent feature representation

of input data with predictLatent(.), as the output of layer z with lowest dimension layer.

The first step of applying deep embedded clustering is to find initial clusters as introduced

in [136]. A k-means clustering initialKmeans(.) is applied on latent feature representations

for few iterations. The output is the initial cluster means. For a given number of clusters

c, the mean of clusters is found, represented with µk for cluster k. The deep embedded

clustering trainEmbeddedC(., ., .) receives the pre-trained autoencoder, input data and mean

of clusters. The model has one clustering layer connected to latent feature layer, further

41

Table 3.1: Clustering of spatio-temporal data

1: procedure Clustering(X = {x1, . . . , xs}) . Spatio-temporal data with s sensors
2: X← Normalize(X) . Normalize each sensor
3: [x1, . . . , xt] = slidingWindow(X,w) . Generating sequence of time windows
4: modelPre = trainAutoencoder([x1, . . . , xt])
5: [z1. . . . , zt] = modelPre.predictLatent([x1, . . . , xt])
6: [µ1, . . . , µc] = initialKmeans([z1, . . . , zt])
7: modelEmb = trainEmbC(modelPre, [x1, . . . , xt], [µ1, . . . , µc])
8: . End of training step.
9: Q = modelEmb.predictClusters([x1, . . . , xt])

10: for i← 1 to s
11: for j← i to s
12: C[i, j] =

∑
t∈T(Qt

i == Qt
j)

do
do

13: return C . Return the similarity of sensors in dataset.

details were provided in Section 2.3 of this chapter. The output of deep embedded clustering

is Q ∈ Rt×s,c, which includes the probability of membership of each traffic state xt
i to the

clusters c clusters. For all sensors in dataset, the number of times two sensors are in same

clusters is considered as their spatial similarity, which is obtained in lines 9-13 of Algorithm

1. This comparison is for all t in time interval T. In other words, for each time interval, we

can obtain spatial similarity among sensors. Such a value is stored in C. Since the value of

similarity matrix CT depends on time interval T, we can obtain different spatial similarities

over various times of day. To find spatial clusters from CT, a threshold value ε on each

element CT
ij can finds the clusters. In other words, if we have CT

ij > ε, then two sensors i and j

are in a same cluster. In the experimental results, we illustrate the output similarity matrix

C using heatmaps and spatial clusters obtained by Algorithm 1. This approach for finding

spatial clusters has advantages over applying a clustering method on spatio-temporal data

directly. Our objective is to find a dynamic spatial cluster set. In such a way, we can obtain

various spatial clustering in different time intervals.

42

3.4 Experimental results

Here we illustrate the results for clustering of traffic flow data. The objective is to show the

existence of spatial and temporal patterns in the found clusters.

The deep learning model is implemented with Keras. We use a fully-connected autoneocder

with 7 layers. All of the layers have Relu activation function and dropout rate of 0.2. The

number of hidden units are (32, 32, 128, 4, 128, 32, 32) in seven fully-connected layers. The

batch size of 288, one day with 5-min time stamp, and Adam optimizer are selected. The deep

embedded clustering layer has a l2 regularization of 0.1. The loss function in joint training

of the model is 0.05 for clustering loss term, the KL divergence of clustering layer’s output

and auxiliary target, and 1.0 for reconstruction loss term. The higher value of reconstruction

loss keeps the structure of latent feature space. The joint training of clustering layer with

reconstruction loss has 5000 epochs, and every 50 epochs we update the auxiliary target

distribution p with high confidence soft cluster assignments.

3.4.1 Dataset

Traffic data are selected from the PeMS data[1], which have widely used by researchers ex-

amining large-scale traffic flow models. Traffic data is gathered from main-line loop detector

sensors every 30 seconds and aggregated to every 5 minutes. The data is for US-101 South

highway, in the Bay Area of California, which includes 26 mainline sensors, illustrated in

Fig. 3.1. We select the data for the first two months of 2016. The data includes flow, speed

and occupancy. In a preprocessing step, we re-scale data into the range of [0, 1]. Since the

data is not stationary, the output of clustering can be meaningless and dependent on the

hours of a day. We subtract each time window of size w from its first element. After hyper

parameter tuning, a time window of size 12, one hour, is selected. In such a way, we expect

43

the model to cluster time series data based on the slope, periodic patterns and non-linear

temporal similarities.

Figure 3.1: 26 sensors on one highway in Bay Area, California are selected. The black boxes
are the main-line loop detector sensors.

3.4.2 Temporal clusters

The latent feature representation of one sensor’s traffic states are represented in Fig 3.2. A

t-distributed stochastic neighbor embedding (TSNE) introduced in [84], method is used for

showing latent features in two dimension space. The color of each traffic state represents

the hours of a day. One day is grouped into 10 colors, every 2.4 hours. The plot is for

five weekdays. The results show that different time stamps are distinguishable from each

other, e.g., all of the data points around 3pm are in same area. While the latent feature

representation shows that there is a temporal pattern in data, we need to examine the

similarity of time series based on latent feature representation. In Fig 3.3a, we select three

areas and two data points from each area. The corresponding traffic flow is represented

in Fig. 3.3b, 3.3c and 3.3d. To simplify the figures, we only present traffic flow, and

ignore traffic occupancy and speed. The similarity between green and red lines represents

the non-linear similarity between two closest data points. The figures clearly illustrate the

meaningful relation among time series data and their corresponding latent features. In other

words, the slope and non-linear temporal relation exists in the samples. Also, we note that

44

as it is illustrated in Section 4.1 (Data), all of the data points are subtracted from their first

element to make them stationary, hence the first element is zero in all of the plots.

Figure 3.2: TSNE representation of autoencoder’s latent features.

(a) (b)

(c) (d)

Figure 3.3: To represent the relation between latent features and time series data points,
two data points are selected from three regions 1, 2 and 3 in Fig.a and represented in Fig.b,
Fig.c and Fig.d.

Another interesting insight in temporal clusters is to find the relation among the clusters, and

their DTW distance. In Fig 3.4, the relation between DTW and latent features is represented.

For any given data points, the euclidean distance of latent features is calculated. Also the

DTW among their time series is calculated. The correlation between euclidean distance

of latent features and DTW of time series is presented in the Figure 3.4. Such an analysis

illustrates that latent feature representation has a direct relation with DTW. The correlation

45

Figure 3.4: The plot for the relation of DTW distance and latent feature space.

between latent features and dynamic time warping is obtained and illustrated in Fig 3.4. The

figure shows the changes of DTW for various sizes of latent features. Such an analysis shows

that with a latent feature size of 4, the correlation between dynamic time warping and

euclidean distance of latent features is 0.98. Such a high value of correlation shows the

direct relation between them. A K-means clustering algorithm has a O(n2) computational

time. Using a DTW method on time windows of size w, the total computation would be

O(n2w2). On the other hand, euclidean distance of two vectors with size of l has l comparisons.

Then, computational time of K-means on latent feature space with euclidean distance would

be O(n2l), where latent feature size l is very smaller than original size of time series w.

This reduction in computational time of k-means clustering and high correlation between

euclidean distance of latent feature representations and dynamic time warping is our first

conclusion on the dataset.

The analysis in this section illustrates that latent features of traffic states keeps the non-

linear relation among temporal data. A deep embedded clustering model uses the clustering

of latent features. In next, we illustrate the patterns in output of deep embedded clustering

model.

Deep embedded clustering uses latent feature representation of time series to find their

clusters. The output of clustering layer is a vector c ∈ RK, where ck is the probability that

46

a data point assigned to the cluster k. To analyze the patterns, we use tsne for representing

the vector c over different hours in Fig 3.5. The results show that different hours have their

own clustering patterns and the cluster assignment are separable based on time stamp. This

figure shows that not only latent features have distinguishable temporal patterns, but also

cluster probabilities are distinguishable over different time stamps.

Figure 3.5: TSNE of cluster probabilities as the output of deep embedded clustering.

In clustering algorithms, finding an appropriate number of clusters is a challenging task. In

spatio-temporal data, data have both context of time and space. We cannot easily estimate

the number of clusters for temporal data. In deep embedded clustering, the number of initial

clusters should be given. To obtain an appropriate number of clusters in k-means clustering,

a general approach is to use inertia, as the sum of squares of data points to their cluster

centers. In Fig 3.6, the plot shows the value of inertia for the given number of clusters. The

results show that the optimum number of clusters is around 70. The optimum value can be

obtained, when the reduction in inertia becomes linear.

The histogram of the size of clusters is represented in Fig 3.8. The histogram shows the size

of clusters obtain by deep embedded clustering. There are some clusters with very small size.

These clusters can contain rare time series shapes. On the other hand, the large clusters

contain the most frequent patterns.

47

Figure 3.6: The plot of sum of squares of data points to cluster centers in terms of the
number of clusters.

Figure 3.7: The histogram of size of temporal clusters.

To illustrate similarity of data points in each cluster, two data points are selected from cluster

20 and 30. In Fig. 3.9, it shows the similarity of selected data points in same clusters. Each

cluster contains the most similar time series data.

Here we evaluate temporal clusters by comparing temporal similarities between members.

A better clustering model should find clusters that have lower distance between members.

Hence, we compare DEC and k-means clustering. The comparison is based on DTW distance

function in Figure .

48

Figure 3.8: Sum of Square Error of DTWs

(a) (b)

(c) (d)

Figure 3.9: Four sampled data points are selected. The Fig.a and Fig.b show the data points
in cluster 20. Fig.c and Fig.d show the data points in cluster 30.

3.4.3 Spatial clusters

In the previous section, we thoroughly analyze the temporal clusters. The analysis shows that

there is clearly an interesting relation between latent feature clustering and dynamic time

warping distance. Also, it shows that there is meaningful temporal patterns in the clusters.

These analyses are the primary work for finding spatial clusters, because in Algorithm 1,

we use temporal clusters for finding spatial clusters. In this section, we analyze the spatial

clusters obtained by Algorithm 1.

49

(a) Similarity of sensors in
one highway in off-peak hours,
3AM.

(b) Similarity of sensors in one
highway in peak hours, 5pm.

Figure 3.10: Heatmap of similarity matrix of sensors and the spatial clusters represented
with blue rectangles.

We consider 70 clusters in deep embedded clustering. Each sensor i has t data points,

obtained by sliding window approach. The number of clusters to which each sensor is

assigned has a mean of 40.4 and standard deviation of 6.5. In other words, the data points

of each sensor are only assigned to 57% of the clusters on average. The analysis shows that

each sensor is only assigned to part of the clusters, and it shows the output of clustering is

different over spatial areas.

Algorithm 1 finds spatial clusters by comparing temporal clusters. The output of algorithm

is a similarity matrix CT for a time interval T. In the first analysis we divided traffic data

into two time intervals. Figure 3.10 shows the similarity matrix with a heat-map. The result

is presented for off-peak hours and peak hours. The output shows that in off-peak hours

sensors are highly similar in all areas. However, in peak hours, only neighboring sensors are

similar to each other. In other words, most part of the highway have similar flow patterns

in off-peak hours. However, traffic congestion propagates flow in neighboring areas in peak

hours. It increases dissimilarity between far sensors. This property shows that the number

of clusters reduces in off-peak hours and increases in peak hours. To evaluate this property,

we find the average value of similarity matrix in different hours of day in Fig 3.11. The

results show that in peak hours there is more dissimilarity among far distance sensors and

as a result the size of clusters are reduced.

50

Figure 3.11: The relation between average similarity matrix and the hours of a day.

A threshold on similarity matrix finds the spatial cluster of neighboring similar sensors. The

blue rectangles in Fig 3.10 represents the spatial clusters. In a similarity matrix, if higher

similarities occurs near to diagonal, it shows that neighboring sensors are more similar to

each other. The results show that in off-peak hours, there is more similarity in larger areas.

In total, there are 4 clusters. However, in peak hours, there are 10 clusters. The neighboring

sensors have more similar temporal clusters. This can be the result of flow propagation in

the network, which results in higher similarity in neighboring sensors. The number of spatial

clusters obtained by the proposed method over different hours of a day is in Fig 3.12. Higher

number of clusters in peak hours shows that there is more similarities in a geographical area,

when there is more flow congestion. Another interesting result is that the spatial clusters

are not distributed. It shows that there is a meaningful relation between spatial similarity

and distance. Also, our analysis shows that if we obtain temporal clusters with a k-means

clustering model, then there is not any meaningful relation between neighboring

Figure 3.12: The number of spatial clusters for each hours of day is shown.

Further investigation can extract more insights related to spatial clustering of traffic flow.

51

For most of the hours of the day the pattern in the highway is the same as Fig 3.13. In large

number of time intervals in peak hours, the sensors number 16 and 22 are distinguishable

from the neighboring sensors. They have their own cluster. While we only consider mainline

sensors in dataset, we found both of the sensors have two off-ramps and on-ramps before and

after. It shows that their traffic patterns are affected by traffic flow comes from the outside

of the highway, and they are not similar to neighboring mainline sensors. Such an analysis

can extract interesting relation among highways and incoming/outgoing flows.

Figure 3.13: Heatmap of similarity of sensors. Existence of locality in traffic flow data.
Similarity matrix of sensors.

3.5 Conclusion and future work

While clustering of spatio-temporal data is a challenging and important problem, there is

a lack of analysis on applying deep embedded clustering models on spatio-temporal data

to investigate their corresponding patterns. In this chapter, we formulate spatio-temporal

clustering, define spatial and temporal clusters, and describe an approach in finding such

clusters. The results of this work is presented in [15]. To find a more efficient way of cluster-

ing, we use a deep embedded clustering model, which clusters latent feature representation

of time series data. A deep analysis of temporal and spatial clusters show that they preserve

temporal and spatial patterns. We describe several interesting patterns extracted from the

clusters, such as high correlation between euclidean distance of latent features and DTW

distance of time series, distinguishable clustering probabilities for different time stamps, and

52

dynamic spatial clustering for various hours of a day. Unlike most of the application of time

series clustering, here a dynamic spatial clustering can be more effective, when use such

clusters for other analysis or machine learning models.

The proposed approach finds temporal and spatial clusters for spatio-temporal problems.

There are some advantages of applying deep embedded clustering method compared with

k-means clustering method. First, we describe that the computational time of deep embed-

ded clustering is lower than k-means clustering. Also, while applying k-means clustering

method on temporal data requires to define a non-linear distance function, a deep embedded

clustering method do not require to have a non-linear distance function, since latent feature

representations have a direct correlation with DTW method. Moreover, the deep embedded

clustering method has a probabilistic output, which can be useful when the objective is to

find fuzzy clusters.

This clustering approach can improve the performance of machine learning models in various

problems, such as missing data imputation, forecasting and anomaly detection problems. For

example, spatial clustering can find the most similar sensors in a region, and can be used for

imputing missing data, or the distance of data points from temporal cluster centers can be

used to detect anomalies. Moreover, the clustering of traffic data can help researchers to have

further pattern analysis. Other types of neural networks, such as convolutional-recurrent

neural, networks for finding an appropriate latent feature representation and other clustering

models, such as agglomerative clustering model, can be investigated to better represent the

clustering of spatio-temporal data. Also, this approach can find spatial and temporal clusters

for other spatio-temporal data, such as weather data and power grid network data.

53

Chapter 4

Spatio-temporal missing data

imputation

When sensors collect spatio-temporal data in a large geographical area, the problem of miss-

ing data cannot be escaped. Missing data negatively impacts the performance of data analy-

sis and machine learning algorithms. In this chapter, we study deep autoencoders for missing

data imputation in spatio-temporal problems. We propose a convolution bidirectional-LSTM

for capturing spatial and temporal patterns. Moreover, we analyze an autoencoder’s latent

feature representation in spatio-temporal data and illustrate its performance for missing data

imputation. Traffic flow data are used for evaluation of our models. The result shows that

the proposed convolution recurrent neural network outperforms state-of-the-art methods.

The results of the work is published in [14].

54

4.1 Introduction

Spatio-temporal problems have been studied in broad domains [17], such as transportation

systems, power grid networks and weather forecasting, where data is collected in a geo-

graphical area over time. Traffic flow data are an important spatial-temporal data. Unlike

traditional methods for static network flow problems [12], in which solving an optimiza-

tion problem finds the solution, recently data-driven spatio-temporal approaches have been

broadly applied on traffic flow data [20]. Spatio-temporal data are gathered by a large num-

ber of sensors and they inevitably miss observations due to a variety of reasons, such as

an error prone measurements, malfunctioning sensors, or communication error [73]. In the

presence of missing data, the performance of machine learning tasks such as classification,

clustering and forecasting drops dramatically and results in biased inference. Hence, the

problem is addressed by estimating missing values or by developing robust machine learning

techniques with respect to missing data.

Statistical and machine learning techniques are broadly applied for missing data imputation.

The primary approach is to use an ARIMA model, which works well under linear assumptions

[9]. A matrix completion method has also been proposed for missing data imputation [141];

however, it requires low-rankness and static data. Dimensional reduction techniques for

missing data imputation have good performance, e.g., a probabilistic principle component

analysis method for missing traffic flow data [103], and a tensor-based model for traffic

data completion [105]. Most recently, [71] proposes a clustering approach in spatial and

temporal contexts for missing data imputation, including pattern clustering-classification

and an Extreme Learning Machine with in-depth review of related work of missing data

imputation in traffic flow problems. While clustering and dimensional reduction techniques

differ from our model, some similarities suggests an avenue for further investigation in the

future.

55

Increasing in the size of spatio-temporal datasets motivates researchers to develop scalable

missing data imputation techniques, which is an motivation for developing new frameworks

for big data analytics [124]. Contrary to statistical and traditional machine learning tech-

niques, neural networks do not rely on hand-crafted feature engineering and do not use

prior assumptions on input data. Shallow neural networks are shown to have great per-

formance compared with other machine learning algorithms on traffic data [10], but their

performance reduces in large-scale problems. Recently deep neural networks significantly

improve performance of machine learning tasks on large-scale problems. Following the pro-

posed denoising autoencoder with a fully connected neural network in [127], a comparison of

denoising autoencoders and k-means clustering for traffic flow imputation is studied in [43].

Multiple missing data imputation with multiple training of fully connected, overcomplete

autoencoders are examined in [46]. In [37], in-depth comparison of stacked autoencoders

with state-of-the-art techniques for missing data imputation is studied.

Since training neural networks is computationally expensive, fully-connected, multiply trained

and overcomplete autoencoders can be inefficient solutions for large scale problems. More-

over, recent works demonstrate the increased performance of convolutional layers and LSTM

layers for extracting spatial and temporal patterns compared to fully connected layers. A

Convolutional neural network is proposed for missing data imputation in traffic flow data

[152]. The model captures spatial and short term patterns with a convolutional layer. A

bidirectional LSTM with a modification on the LSTM neurons is proposed [30], but spatial

relation is not considered. Convolutional recurrent neural networks have great performance

in large-scale spatio-temporal problems [16]. In [55], a spatio-temporal autoencoder is pro-

posed for high dimension patient data with missing values. However, their objective is to

learn data with missing values for a classification problem.

In the aforementioned works deep neural networks have been studied on spatio-temporal

data. However, there is lack of analysis in applying convolutional-recurrent autoencoders on

56

spatio-temporal problems for missing data imputation in traffic flow problems with the objec-

tive of learning spatial patterns with convolutional and temporal patterns with LSTM layers.

In this paper, we first propose a convolutional recurrent autoencoder for multiple missing

data imputation. The model is examined on traffic flow data. It is shown that the proposed

convolutional recurrent autoencoder improves the performance of missing data imputation

problem. Moreover, the latent feature representation of the autoencoders is analyzed. This

analysis shows that the latent feature space is semantically meaningful representation of

traffic flow data. We also examine the performance of applying k-nearest-neighbor (KNN) to

evaluate the effectiveness of using autoencoders’ latent representation in missing data impu-

tation. The proposed model can be applied for missing data imputation in spatio-temporal

problems.

4.2 Preliminaries

4.2.1 Problem definition

Spatio-temporal data is represented by a matrix X ∈ Rs×t̄×f , where s is the number of

sensors, t̄ is the number of time steps and f is the number of features. Missing data can

exist in various ways, for example at individual points or over intervals, where one sensor

loses data for a period of time. To apply a deep neural network for time series imputation, a

sliding window method generates xt ∈ Rs×w×f , where w is time window and t ∈ [0, t̄]. In the

rest of the paper, we call xt as a data point. For the purpose of training and evaluation, an

interval of missing values is added to the input data and represented with xt
m. The objective

is to impute missing values for xt
m using spatial and temporal correlation. In Fig. 4.1, a

schematic example of applying a sliding window on a spatial time series with interval-wise

missing values is represented.

57

a data point xt

Se
ns

or
s

Slides over time

Figure 4.1: A sliding window selects subsamples and feeds these into an autoencoder. The
missing values are represented in black.

4.2.2 A denoising autoencoder

An autoencoder decoder AD(.) proposed in [127] and can be applied in missing data impu-

tation problem. In the training process, a denoising encoder decoder receives xt
m as input

and xt as target data. It reconstructs its input x̄t = AD(xt
m) by minimizing the loss function

Loss(xt, x̄t), e.g. mean square loss function, for autoencoders’ output x̄t. In other words,

the autoencoder receives a data point with some missing values and reconstructs it with

the objective of accurate missing data imputation. An encoder reduces the dimension to

a latent feature space h ∈ Rd, where d < n, which extracts the most important patterns

of the input data. The decoder reconstructs the input from its latent representation. For

a two layer encoder decoder, an encoder is represented with h = σ(drop(x)w1 + b1) and a

decoder is represented with x̄ = σ(drop(h)w2 + b2), where σ(.) is the activation function and

drop(.) is dropout function. A multi layer fully connected, convolutional or recurrent neural

network can be used as an encoder or decoder to reconstruct input data. Moreover, learning

low dimensional representation of spatial data is shown effective in unsupervised learning

[50] and autoencoders broadly have been used to produce latent feature representation on

real-world datasets [72]. In section 4.3.2, we describe the effectiveness of using latent feature

representation in multiple missing data imputation problem.

58

Spatial features

Te
m
po
ra
l f
ea
tu
re
s

Time Window
(W)

A convolution
Recurrent Encoder

Decoder

Input Data

Reconstruction
of input

K Nearest Neighbor
on Latent feature
representation

Average of W
reconstruction

outputs

Average of K nearest
data points

Figure 4.2: The framework for multiple imputation with autoencoders

4.3 A convolutional-recurrent deep neural network en-

coder decoder framework

As discussed in detail in [111], in multiple imputation each missing datum is replaced with

weighted average of more than one imputations. Hence, we propose a framework for multiple

missing data imputation on spatio-temporal data, represented in Fig. 4.2.

A sliding window method gives the input data with size of w to the autoencoder. A convolu-

tional recurrent autoencoder reconstructs the input data and automatically imputes missing

values. There are w reconstructed values for each time window. The average of these re-

constructed values is the output of neural network. The evaluation of reconstructed values

is shown in Section. 4.4.5. The second approach is with the latent feature representation of

autoencoders. A KNN finds the most similar k data points in training data. The average of

these produces the imputed values for the testing data. The model is evaluated in Section.

4.4.7.

4.3.1 A CNN-BiLSTM autoencoder

Here we introduce the proposed convolutional recurrent autoencoder for spatio-temporal

missing data imputation. The proposed model is illustrated in Fig. 4.3.

59

k1

k2

m=1m=2

...

...

h
c

....

Data point with
missing values

Data point with
imputed

missing values

Fully
connected
layerBiLSTM Encoder

Decoder
Convolution layer with
various kernel sizes

h
c

Residual layer

+

Se
ns
or
s

Time

Figure 4.3: A convolutional BiLSTM encoder decoder (CNN-BiLSTM-Res) for missing data
imputation

To extract spatial and temporal patterns, an encoder consists of both convolutional and

LSTM layers. A convolutional layer has a kernel, which slides over spatial time series data

X ∈ Rs×w×c, where c is the number of channels. For non-grid data, sliding a kernel on spatial

features loses the network structure and reduces the performance of model [16]. Hence the

kernel only slides over the time axis. The kernel size is (s,m), where m < w, and stride size is

(s, 1). Various length of kernel have been shown to have better performance. Hence, several

kernels with different values of m are applied to the input data. The output of each kernel i

is ki ∈ R1×w×f , where f is the filter size. All of the outputs are concatenated and represented

with h ∈ R1×w×F, where F is the total size of all filters.

An LSTM layer receives the output of convolutional layer, represented by X ∈ Rw×F . An

LSTM cell uses input, output and forget gates to prevent vanishing gradients in recurrent

cells. It also returns hidden state ht and cell state ct. A bidirectional LSTM layer captures

the relation of past and future data simultaneously. It has two sets of LSTM cells which

propagate states in two opposite directions. Thus a bidirectional LSTM layer is used for

the recurrent component. Given l1 as the number of units in LSTM layer, the output of

bidirectional LSTM is h ∈ Rw×2×l1 . The latent feature representation of encoder consists of

LSTM states [ht
forward, c

t
forward,h

t
back, c

t
back], where these are the hidden and cell states of the

forward and backward direction of bidirectional LSTM.

60

The decoder receives the encoder states and encoder output. The decoder consists of a

bidirectional LSTM and a fully connected layer. The LSTM layer receives the hidden and

cell states of the encoder to reconstruct the input data. A bidirectional model reconstructs

past and future data. It follows with a fully connected layer with linear activation function.

Training the encoder decoder with convolutional and LSTM layers is slow, as the gradient

of the loss function is propagated backward on to LSTM cells and then convolutional layers.

To increase the speed of training, we used a skip connection, introduced in [51], to connect

the output of the convolutional layer to the fully connected layer with a Add(.) function. In

the training process, the convolutional layer receives more effect from the gradient of loss

function and as a result, there is faster convergence for the encoder decoder to learn spatial

and temporal patterns.

The reconstruction of input automatically imputes missing data from the spatial and tem-

poral correlation among neighboring areas. Given a time window w, every time stamp xt

is reconstructed w times and the average is used for missing imputation. An autoencoder

decoder reconstructs input data x̄t = AD(xt
m) by minimizing loss function Loss(x̄t, xt) for all

time steps t.

4.3.2 Missing data imputation using latent feature representations

A KNN algorithm compares the distance among all data points, and finds the k nearest data

points. This approach find the most similar data points and then find the average for missing

data imputation. With a sliding window approach, the number of data points in training

data is the same as number of time steps t̄. For a given data point xt which is a matrix of

size len = s × w × f, the total number of comparison in KNN is t2 × len. Moreover, a time

series distance can be obtained with Dynamic Time Warping [110], which is computationally

more expensive than euclidean distance.

61

The latent representation of autoencoder is a fixed size and reduced dimension vector h ∈ Rd.

Applying KNN on latent representation is computationally more efficient than on time series

data points. The total comparison is t2× d and the latent feature distance can be computed

with euclidean distance, faster than Dynamic Time Warping. In the experimental analysis,

we evaluate the computational time of applying KNN on latent feature. Moreover, the

average of k most similar data points is used as multiple missing imputation. The results of

this analysis is compared with PCA-KNN in experimental results.

4.4 Experimental results

4.4.1 Dataset

We examine the performance of the proposed model on traffic flow data available in PeMS

[1]. Traffic data are gathered every 30 seconds and aggregated every 5 minutes using loop

detector stations on highways. We use three subset of stations in the Bay Area, represented

in Fig. 4.4, and evaluate the average performance of our model on these three regions to

have better evaluation of the models. The first region has 10 mainline stations on 22 miles

of highway US 101-South. The second region has 9 mainline stations on 10 miles of I-280-

South highway, and the third region has 11 mainline stations on 13 miles of I-880-South.

The training data is for the first 4 months of 2016 and the testing data is for next 2 months.

The selected sensors have more than 99% of available data for this time period.

4.4.2 Preprocessing

The data is scaled to range of [0-1] where for each data set, 0 is the minimum flow observed

and 1 is the maximum. A sliding window approach is used to generate image-like input for

62

Figure 4.4: Three regions of highways are selected for missing data imputation analysis.

time series data. During the experiments, we found out a time window of size 6, 30 minutes,

works well. Each data point is represented with Xt ∈ Rs×6×1, where s is the number of

sensors for each region.

To evaluate the model for missing data imputation, we added missing blocks to have a ground

truth for evaluation. The missing data is generated randomly on training and testing data.

We generated blocks of missing data with size of 0.5 to 4 hours. The sensors are randomly

selected for each missing block. In the analysis, training data without missing values cannot

result in a robust autoencoder for missing data imputation. Therefor, 25% percent of training

and testing data is considered as missing values. In the analysis, the performance of missing

data imputation models are examined only on these missing blocks, represented with index

list of Itest
m .

4.4.3 Baseline missing data imputation models

Our first missing data imputation method uses a temporal average to fill missing data. Traffic

flow patterns are repeated every week. Hence, a weekly-hourly average table is obtained from

training data (W-H-Average). The main drawback of using temporal average is that specific

63

days such as holidays or event days (games, festivals, concerts) have their own patterns and

they are not repeated in the training data.

The second method uses the closest sensors to estimate the missing data. The value of

traffic flow should be similar to the closest sensors on highways. Following the work [16],

a Dynamic Time Warping distance method finds the most similar sensors using time series

residuals. The method uses the average of the two closest sensors and estimates the missing

data (Neighbor-Value).

In the third baseline method, the most important principle components are selected, then a

KNN finds the most similar data points. The average of k nearest values is used to estimate

missing data (KNN-PCA). In the analysis, we examine different values of PCA components.

The first 10 components contain more than 95 % information ratio. Also, larger values

of k, improves the result, as the average of several missing imputations is usually a better

estimation for missing values. The best size of PCA components and k are 10 and 20,

respectively. The number of features is the number of sensors multiplied by time window,

which is 60, 54 and 66 for three regions. The best values of MAE and RMSE are shown in

Table. 4.1.

4.4.4 Autoencoder models

Here we describe the implemented autoencoders. For all of the models, the batch size is set

to 256 and the epochs are set to 100. An ADAM optimizer with learning rate of 0.001 is

used for training the model.

A fully connected denoising encoder decoder is implemented for missing imputation FC-NN.

The model is trained with architecture of (32, 16, 12, 16, 32) obtained by grid search over

various number of layers and hidden units. Each layer is a fully connected layer with a

64

Missing data imputation error for traffic flow data
Models MAE RMSE

W-H-Average 26.3 34.8
Neighbor-value 38.9 45.5
KNN-PCA 19.0 25.5
FC-NN 14.3 21.5
LSTM 10.1 16.0
BiLSTM 7.8 14.0
CNN-BiLSTM 7.6 13.9
CNN-BiLSTM-Res 6.8 13.0

Table 4.1: The comparisons of the models

Leaky-RELU activation function.

To capture temporal patterns, an LSTM encoder decoder with 32 neurons is trained LSTM.

To capture the effect of past and future data points, a bidirectional LSTM is implemented

with 16 neurons in each direction BiLSTM. A dropout with parameter 0.2 prevents over-

fitting the LSTM layers. A convolutional recurrent encoder decoder CNN-BiLSTM is im-

plemented with four kernels of size (s, 1), (s, 2), (s, 3) and (s, 4) and filter size of 8 and a

Leaky Relu activation function. The bidirectional-LSTM has 16 units on each direction and

is connected to a fully connected layer with the size of input sensors. Slow convergence of

convolutional-BiLSTM model motivates us to add a skip connection connecting convolutional

to the output of BiLSTM for faster gradient propagation. The model CNN-BiLSTM-Res,

the proposed model in Fig. 4.3, is with the same architecture of CNN-BiLSTM but with

skip connection. All implementations has been done with Tensorflow and Keras [2].

4.4.5 Comparison of results

Given x as real value and x̄ as predicted value, Mean Absolute Error (MAE), and Root Mean

Square Error (RMSE) are used for evaluation. Given a set of missing data points in testing

data Xtest
m and their corresponding indices Itest

m , the index i is selected from the index set of

65

missing data Itest
m in 4.1 and 4.2.

MAE =
1

n

∑
i∈Itest

m

|xi − x̄i| (4.1)

RMSE =

√√√√1

n

∑
i∈Itest

m

(xi − x̄i)2 (4.2)

The results are represented in Table. 4.1. It shows that the temporal and spatial averages,

the first two models have a poor performance for missing data imputation. Among three

baseline models, KNN-PCA is the best missing data imputation technique. Autoencoders

have significantly better performance than baseline models. The LSTM model has good

performance for missing data imputation compared with FC-NN for capturing temporal

patterns. A bidirectional LSTM shows great performance by capturing the relation between

past and future data simultaneously. A CNN-BiLSTM hardly converges to the optimum

solution but is not better than the BiLSTM model. Finally, the proposed CNN-BiLSTM-Res

encoder decoder has the best MAE and RMSE. It shows that a skip connection improves the

performance for a combination of convolutional and LSTM layers. The model CNN-BiLSTM-

Res has 13% and 7% improvement on MAE and RMSE compared with the best BiLSTM

model. As it is illustrated in Section. 4.3.1, because of the slow convergence of convolutional

LSTM models, a skip connection is used to propagate gradients of loss function directly to

convolutional layer. In Fig. 4.5, the convergence of CNN-BiLSTM and CNN-BiLSTM-Res

are represented, which shows faster convergence of CNN-BiLSTM-Res.

In Fig. 4.6, the prediction results is represented for FC-NN and CNN-BiLSTM-Res as the

example of missing data imputation results. Compared with FC-NN, the prediction result of

CNN-BiLSTM-Res is clearly more accurate missing imputation and closer to ground truth.

In Fig. 4.7, the plot illustrates the missing data imputation by CNN-BiLSTM-Res for two

66

Figure 4.5: The comparison of validation loss during training of autoencoder models

Figure 4.6: The comparison of missing data imputation models for one interval of missing
values

missing blocks during three days, and shows the closeness of imputed data to real traffic flow

data. This output example shows the estimation of missing block of data is very close to

real values; however, still the distance between real and predicted values for missing blocks

is more than healthy data, which are the time series values out of missing blocks.

4.4.6 Discussion on multiple missing data imputation

For non-temporal data, an autoencoder reconstructs one value for each input data point.

However, for temporal data, a sliding window generates data points for each time step.

Referring to Figure 4.1, the data point actually contains all of the values within a time

window. For a given time window w, there are w reconstructed values for each time step.

The result in Table. 4.1 is for w multiple missing data imputation. Here we use one step

reconstruction of each output for comparison purpose. In other words, here we describe a

single missing imputation output of applying autoencoders on traffic flow data.

The value of MAE for FC-NN, LSTM, BiLSTM and CNN-BiLSTM are 23.7, 15.5, 11.9,

67

Figure 4.7: The illustration of missing data imputation for one sensor by the proposed model

Figure 4.8: The latent feature space visualization of FC-NN with t-SNE. Each data point
has a color that represents the time of day.

6.9, respectively. Also, the RMSE for FC-NN, LSTM, BiLSTM and CNN-BiLSTM are 32.1,

22.5, 18.1, 13.7, respectively. Comparing to Table. 4.1, we can see that a single missing

data imputation has very lower performance. The analysis shows that multiple imputation

and using the average of them significantly improves missing data imputation. This multiple

imputation approach improves the output of autoencoders on time series data.

4.4.7 Latent feature representation

The latent feature representation of autoencoders illustrates meaningful information. In Fig

4.8, a t-SNE method [84] visualizes latent feature representation of hidden state of (FC-NN)

for 7 days. The plot shows that for each time of day the patterns of data points are closer to

each other. Here our objective is to illustrate how latent feature representation can be used

for missing data imputation. Hence we use the concept of similarity of data points. A KNN

68

Figure 4.9: The comparison of applying KNN on FC-NN latent feature for various size of k

Figure 4.10: The comparison of applying KNN on FC-NN latent feature for various size of
latent features

is applied on latent feature representation in training data points. The k most similar data

points are used. The error for the average of different values of k is represented in Fig 4.9.

The plot shows that a 1 nearest neighbor on latent feature representation results in 23.5 and

31.0 for MAE and RMSE scores. However, a 13 nearest neighbor results in 16.7 and 22.6,

MAE and RMSE, respectively. The reduction in missing data imputation error shows the

effectiveness of multiple imputation on latent feature representation. We also examine the

relation between size of latent features and missing imputation on FC-NN in Fig. 4.10. The

analysis shows that across latent sizes of 2 to 20 there are changes in the performance of the

missing data imputation. The results suggest that the best latent size is 10.

A KNN is applied on latent feature representation of various implemented autoencoders. The

results of applying KNN on latent feature of FC-NN, hidden and cell state of LSTM and

BiLSTM have MAE of 16.6, 18.1, 17.8 and RMSE of 22.5, 24.1, 23.8, respectively. While a

FC-NN with six layers is the best model to generate latent features, the other convolutional

recurrent models cannot easily generates a latent feature representation for missing data

imputation. One conclusion is that size of latent vector greatly effect on the result. A KNN

on smaller size of latent vector finds better missing data imputation. The analysis also shows

69

that applying KNN on the latent feature of FC-NN is better than KNN-PCA, which shows

autoencoders are capable of generating better latent feature representation for traffic flow

data.

4.5 Conclusion and future work

In this paper, we study autoencoders for missing data imputation in spatio-temporal prob-

lems and examined the performance of various autoencoders to capture spatial and temporal

patterns. We illustrate that a convolutional recurrent autoencoder can capture spatial and

temporal patterns and outperforms state-of-the-art missing data imputation. We conclude

that a convolutional layer with various kernel sizes and a bidirectional LSTM improves miss-

ing data imputation in traffic flow data. Also, the slow convergence of the convolutional

recurrent autoencoder is improved with a skip connection. We also describe an approach

considering multiple imputation for autoencoders for time series data. The results show

that multiple imputation is significantly better than single imputation. Moreover, We il-

lustrate advantage of using the latent feature of autoencoders for missing data imputation.

We describe an approach for using autoencoders’ latent feature representation for multiple

imputation. The analysis shows that it outperforms KNN on principle components of traf-

fic flow data. However, the latent feature of convolutional recurrent autoencoders needs a

careful design of the architecture to obtain better results and can be explored more in future

works.

Future research will focus on generative neural networks which recently shows a significant

performance in various machine learning problems. Moreover, while it is shown that convo-

lutional recurrent neural networks show a great performance for spatio-temporal problems,

spatial and temporal clustering techniques can make the model more effective on larger

geographical areas.

70

Chapter 5

Spatio-temporal forecasting

Spatio-temporal problems arise in a broad range of applications, such as climate science and

transportation systems. These problems are challenging because of unique spatial, short-

term and long-term patterns, as well as the curse of dimensionality. In this chapter, we

propose a deep learning framework for spatio-temporal forecasting problems. We explicitly

design the neural network architecture for capturing various types of spatial and temporal

patterns, while the model is robust to missing data. In a preprocessing step, a time series de-

composition method is applied to separately feed short-term, long-term and spatial patterns

into different components of the neural network. A fuzzy clustering method finds clusters

of neighboring time series residuals, as these contain short-term spatial patterns. The first

component of the neural network consists of multi-kernel convolutional layers which are de-

signed to extract short-term features from clusters of time series data. Each convolutional

kernel receives a single cluster of input time series. The output of convolutional layers is con-

catenated by trends and followed by convolutional-LSTM layers to capture long-term spatial

patterns. To have a robust forecasting model when faced with missing data, a pretrained

denoising autoencoder reconstructs the model’s output in a fine-tuning step. In experimental

results, we evaluate the performance of the proposed model for the traffic flow prediction.

71

The results show that the proposed model outperforms baseline and state-of-the-art neural

network models. The results of the work is published in [16].

5.1 Introduction and literature review

Time series data arise in broad areas, such as engineering, medicine, finance, and economics.

Various types of statistical and machine learning techniques have been applied to such prob-

lems. Increases in both the volume and variety of data motivate researchers to develop

scalable machine learning models for important time series problems, such as forecasting

[81], anomaly detection [4], classification [149], and clustering [86]. Spatio-temporal data

is a multi-variate time series data, in which there is a spatial dependency between neigh-

boring time series [17]. Spatio-temporal forecasting problems arise in diverse areas, such as

solar power forecasting [24], load demand forecasting [101], weather forecasting [137], various

smart city applications [119], and transportation systems, such as the traffic flow prediction

problem [100]. In this chapter, we propose a deep learning model for spatio-temporal prob-

lems, and focus on a short-term traffic flow prediction problem. The traffic flow prediction

problem is a challenging problem, because of the spatial and non-linear relations among

neighboring time series, as well as short-term and long-term temporal patterns.

Predicting traffic flow data can assist travelers to make better routing decisions, improve

traffic management systems, and decrease traffic congestion. Recently, navigation systems

available on smart phones have increased the importance of a traffic flow prediction problem

in our daily lives. Many travelers rely on these to plan an efficient travel route. With the

advent of new sensing, computing and networking technologies such as cameras, sensors,

radars, inductive loops, and GPS devices, a large volumes of data are readily available [148].

These increasingly large data sets necessitate the development of scalable machine learning

models [151] [35]. Hence, to improve the performance of transportation systems, researchers

72

are motivated to take advantage of new spatio-temporal data-driven techniques and to design

scalable algorithms [6].

5.1.1 Background

Starting in the 1970’s with the original work of Gazis and Knapp [45], many studies develop

new models for traffic flow prediction problems, such as auto-regressive integrated moving

average (ARIMA) [57] and Seasonal-ARIMA [68], and statistical techniques, such as Markov

chain models [140] and Bayesian networks [129]. However, there are several limitations on

these models, due to prior assumptions, lack of handling missing data, noisy data, outliers,

as well as the curse of dimensionality. Neural networks, with fully-connected and radial basis

layers, have been broadly applied to transportation problems [97, 10]. Several works show

a great performance of neural networks in transportation problems for twenty-five years or

more [116, 108, 58]. However, shallow architecture neural networks cannot efficiently work

with large-scale data.

Deep learning models have been successfully applied to broad areas of machine learning

problems. Recently, there have been several attempts to design deep learning models for

time series forecasting problems. The primary work proposes a stacked autoencoder (SAE)

model to learn traffic flow features and illustrate the advantage of SAE model versus multi-

layer perceptron [81]. In [53], they propose stacked autoencoders with multi-task learning

at the top layers of the neural network. A deep belief network (DBN) composed of layers

of a restricted boltzman machine is proposed in [69]. In [130], an ensemble model of four

categories of fully connected neural networks is proposed. In [102], an ensemble of DBN

with Support Vector Regression is proposed. While most of these models use full-connected

layers, other types of neural network layers can better capture spatio-temporal patterns.

Convolutional Neural Networks (CNN) have been applied to various data, such as images,

73

videos, and audios. Weight sharing, the main feature of convolutional layers, reduces the

number of trainable variables and better captures locality in data. In [82], the performance

of CNN models is examined for a time series forecasting problem, where spatio-temporal

traffic flow data are represented as images. The CNN model forecasts traffic speed in a large

transportation networks. In [40], they study image-like representation of spatio-temporal

data using convolutional layers and an ensemble learning model. A convolutional layer

considers spatial structure in euclidean space, which can miss the underlying structure of

the network [52]. This problem is addressed in this chapter using a multi-kernel convolutional

layer, applied to the clusters of similar time series data. As an alternative approach, following

the work [28], spatial dependency is captured using bi-directional diffusion convolutional

recurrent models [74]. They illustrate a graph-structured representation of time series data

to capture spatial relation among time series.

Moreover, in the presence of temporal data, recurrent neural networks have shown a great

performance in a time series forecasting problem. A Long-Short Term Model (LSTM) model

[109] have been successfully applied to the time series forecasting problem [147], the traffic

speed prediction problem [83] and traffic flow estimation with missing data [123] [13]. While

convolutional neural networks can exhibit excellent performance on spatial data, and recur-

rent neural networks have advantages on temporal data; spatio-temporal problems combine

both of these. [137] proposes a new convolutional-LSTM layer for the spatio-temporal fore-

casting problem, and applied to the weather forecasting problem. In [134], they propose a

hybrid deep learning model for a traffic flow prediction. An LSTM component and a CNN

component separately learn temporal and spatial features. A CNN model is proposed for

the time series forecasting problem in [139]. They propose explicit grouping of input time

series and implicit grouping using error back-propagation. In [32], they use a CNN-LSTM

model to capture traffic flow evolution in a transportation network. A convolutional layer is

followed by an LSTM layer, separately applied to downstream and upstream data. In [47], a

3-dimensional convolutional layer is applied to spatio-temporal traffic data. The model cap-

74

tures correlation of traffic data in both spatial and temporal dimensions. In [60], a structural

recurrent layer is proposed, which converts topology of the road network into recurrent lay-

ers. In [75], they propose a model with convolutional and gated convolutional layers followed

by attention layers. In [146], a graph convolutional sequence to sequence model is proposed

for a multi-step prediction problem.

5.1.2 Contributions of the work

In the aforementioned works, spatio-temporal forecasting problems have been studied, and

various types of convolutional and recurrent neural networks have been proposed. Spatio-

temporal data contain several unique patterns which motivate us to use spatial and temporal

decomposition methods, and to explicitly consider various types of patterns in designing an

efficient neural network architecture. Here, we address some of the important challenges in

designing a neural network architecture for spatio-temporal data. In these data, time series

residuals are not meaningless noise, but they represent spatial patterns in data. Moreover,

convolutional layers can capture spatial and short-term patterns, but sliding a convolutional

kernel on spatial features miss the underlying structure of the network and reduce the per-

formance of the model. Also, spatio-temporal data have a non-stationary behaviour in the

existence of long-term patterns. Furthermore, spatial and temporal patterns can be used to

handle missing data.

In this chapter, we consider unique properties of spatio-temporal data in designing a deep

learning model, and we use spatio-temporal decomposition methods to extract spatial and

temporal patterns. The contributions of the chapter are:

• We propose a deep neural network model, which explicitly consider various types of

short-term, long-term and spatial patterns.

75

• We describe a fuzzy clustering method, which clusters spatial time series data.

• A multi-kernel convolutional layer is designed to maintain the network structure, and

extract short-term and spatial patterns. It is followed by a convolution-LSTM com-

ponent to capture long-term trends, and a pretrained denoising autoencoder to have

robust prediction in the existence of missing data.

• The spatial and temporal patterns of a real world traffic flow data are analyzed, and

the performance gains of the proposed model relative to baseline and state-of-the-art

deep neural networks are illustrated.

5.2 Problem definition

Time series data are a set of successive measurements, Xi = {x1
i , . . . , x

t̄
i}, where xt

i is observed

values at location i and time stamp t, and the total number of time stamps is t̄. A sensor

i gathers xt
i with corresponding k features xt

i = {xt,1
i , . . . , xt,k

i }. A spatio-temporal data is a

collection of n multi-variate time series X = {x1, . . . , xn}, represented by a matrix X ∈ Rn×t̄×k,

where n is the number of sensors, which gather spatio-temporal data in a geographical area.

In spatio-temporal data, there is a non-linear similarity and correlation among neighboring

time series data.

Given X as the set of all time series in a region, a spatio-temporal forecasting problem is

cast as a regression problem. The objective of a forecasting problem is to predict Xt
output =

{xt+1, . . . , xt+h}, given Xt
input = {xt−w, xt−w+1, . . . , xt}, where w is the size of time window,

and h is the prediction horizon. A sliding window method generates input data points Xt
input

and target data points Xt
output. In equation (5.1), an optimum parameter θ? represents the

optimum time series forecasting model. In a neural network, θ? represents the weights of the

model and the gradient descent algorithm minimizes the non-linear loss function fθ(., .) by

76

solving following optimization problem,

θ? = argminθ

t̄∑
t=1

fθ(X
t
input,X

t
output) (5.1)

In this chapter, given a spatio-temporal data X, a deep neural network receives an input data

Xinput ∈ Rn×w×k, and predicts Xoutput ∈ Rn×h×k̄, where k̄ is the number of output features.

5.3 Technical background

Here, we detail the main components of the proposed approach, including a fuzzy hierarchical

agglomerative clustering, a convolutional layer, a convolutional-LSTM layer and a denoising

autoencoder.

5.3.1 Dynamic time warping

A Dynamic time warping (DTW) algorithm finds an optimal path between two time series.

It compares each point of the first time series with a point in the second one. Hence, similar

patterns occurring in different time slots are considered similar. A dynamic programming

method finds the optimal match [99]. Here, we describe the DTW for k-dimensional time

series. Algorithm 5.1 finds the distance between two k-dimensional time series with size of

N and M.

5.3.2 Fuzzy hierarchical clustering

Given n time series X = {x1, . . . , xn}, a fuzzy hierarchical clustering method finds a mem-

bership matrix C ∈ Rn×c, where c is the number of clusters and Cij ∈ [0, 1] is the fuzzy

77

Table 5.1: Multi-dimensional Dynamic Time Warping

1: procedure δ(a, b) . Distance of k-dimensional time series

2: return
∑K

k=1 |a[k]− b[k]|
3: procedure DTW(X = {x1, . . . , xN},Y = {y1, . . . , yM}) . Two input time series
4: X, Y ← Normalize(X, Y)
5: C[1, 1]← δ(x1, y1) . Initialization of distance matrix
6: for i← 2 to N do
7: C[i, 1]← C[i− 1, 1] + δ(xi, y1)

8: for j← 2 to M do
9: C[1, j] = C[1, j− 1] + δ(x1, yj)

10: for i← 2 to N do
11: for j← 2 to M do
12: C[i, j]← min(C[i− 1, j],C[i, j− 1],C[i− 1, j− 1]) + δ(xi, yj)

13: return d← C[N,M] . Return the distance of two time series

membership of a time series i to a cluster j. Here, a k-dimensional time series of a sensor i is

represented with xi. Also, distance of two time series is obtained by Algorithm 5.1.

To apply a DTW-based clustering method, the main challenge is to compute the mean of

a cluster addressed in [49], [95], [99], because the initial values impact the output of the

clustering method. Hence, we consider a fuzzy hierarchical clustering method without a

need to find cluster means. We apply a fuzzy clustering method, with some modification

compared with [65], on time series data. A complete-linkage distance function is used between

two clusters, and a single-linkage is used between two time series, and a time series and a

cluster.

An Algorithm 5.2 finds the membership matrix of time series to clusters. The matrix D is

the set of distances between all pair of time series and clusters, and it is initialized by all

distances between time series. The function minDistance(.) finds the closest pair of elements

(a, b) in the set D, which a and b can be a time series or a cluster. The matrix C is the

list of clusters and their members. The function updateClusters(., ., .) adds the selected pair

of elements (a, b) to the list of clusters. This function merges a and b into a new cluster.

The matrix A is the list of assigned time series, when a time series is assigned into one

78

cluster. Based on a new formation of clusters, the function updateDistances(., ., .) finds the

new distances between time series and clusters. It updates the distance of all clusters and

unassigned time series to the new cluster. Moreover, it updates the fuzzy distance of all

assigned time series to the new cluster, and all elements of the new cluster to other clusters.

The fuzzy distance between assigned time series u, and a cluster ci is obtained by using

equations (5.2),

dmin
u = min{d(u, cj)|cj ∈ C}

µ(u, ci) =
dmin

u

d(u, ci) + dmin
u

, (5.2)

d(u, ci) = min{(1− logm(µ(u, ci))) ∗ d(u, ci), d(u, ci)}

where dmin
u is the minimum distance of a assigned time series u to any of the clusters, µ(a, b)

is membership value of assigned time series u to the cluster ci, m is a fuzziness parameter,

and the distance function d(., .) is based on single-linkage method for each pair of time series,

or a time series and a cluster, and complete-linkage method for two clusters.

Table 5.2: A DTW-based fuzzy hierarchical clustering on spatio-temporal data

procedure FHC(X = {x1, x2, . . . , xn}) . n input time series
D = {}; . Distance matrix
A = {}; . List of assigned points
C = {}; . List of clusters and their members
D← initializeDistances(X);
while Convergence is satisfied do

(a, b)← minDistance(D)
C,A← updateClusters(C,A, a, b)
D← updateDistances(D,A,C, a, b)

return C . Return the list of fuzzy clusters

79

5.3.3 Convolutional layer

Convolutional layers use three primary ideas – local receptive fields, shared weights and

spatial subsampling; making them effective and efficient models for extracting features from

local stationary grid data [66]. Given an input matrix X ∈ Rn×t̄×k, a 2-dimensional convolu-

tional layer has a weight matrix W ∈ Ra×b×k, called a kernel, where a ≤ n and b ≤ t̄, and k is

the number of channels. A convolutional multiplication X∗W is obtained by sliding a kernel

over the input matrix. Strides s1 and s2 are used as the number of elements shifts over input

on each dimension, e.g. it moves the kernel to s1 elements at a time on the first dimension.

The kernel is a shared weight in the convolutional layer. Given Xl as the input of layer l, the

output is obtained by Zl = σ(Xl∗Wl +bl) for an activation function σ(.) and a bias vector bl.

Pooling layers are among successive convolutional layers, described by Xl+1 = maxPool(Zl).

They reduce the size of hidden layers, while extracting features in locally connected layers.

A max pooling layer with pooling size of (m, n) selects the maximum value in a matrix of

size W̄ ∈ Rm×n, and reduces the dimension of layers divided by m and n.

5.3.4 Convolution-LSTM layer

A Long-Short Term Memory (LSTM) is introduced to improve recurrent cells, when there

is a long-term dependency in data [109]. A memory cell ct, input gate it, output gate ot

and forgot gate ft solve the exploding/vanishing gradient problem in recurrent layers. Given

convolution operator ∗ and a Hadamard product ◦, a convolutional LSTM layer is formulated

as follows [137],

80

it = σ(Wxi ∗ xt + Whl ∗ ht−1 + Wci ◦ ct−1 + bi)

ft = σ(Wxf ∗ xt + Whf ∗ ht−1 + Wcf ◦ ct−1 + bf)

ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc) (5.3)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

In other words, a convolutional-LSTM layer have same structure of convolutional layers, but

with LSTM cells. The convolutional-LSTM layer has an input matrix X ∈ Rw×a×b×k, where

w is size of time window, and the matrix W ∈ Ra×b×k is the spatial information on a grid of

size a and b. Each element of the matrix Wij has k features, represented as the number of

channels.

5.3.5 A denoising stacked autoencoder

Given an input data x ∈ Rm, an autoencoder layer transforms input data with a non-

linear function z = σ(xW1 + b1), z ∈ Rd, where d < m is the latent representation size

[126]. The decoder generates x̄ = σ(zW2 + b2), where x̄ ∈ Rm is the reconstruction of

input data. In other words, the reconstruction of input data is obtained from latent feature

z, which represents the most important patterns. A dropout function is represented with

zl+1 = dropout(σ(zlWl + bl), α), in which randomly α percent of neurons are dropped in

each round of training step. In the training process, the objective is to reconstruct x, by

minimizing a loss function L(., .), e.g. least square function, between x and x̄ and obtaining

optimum model parameters θ? for all n input data points as follows,

81

Spatial temporal
data

Time series
decomposition

Fuzzy heirarchial
clusteringNetwork

structure Cluster set

Multi kernel
convolutional

layers

Denoising
autoEncoder

decoder
Convolutional
LSTM layers

[x1 , ... , Xn]

horizon 1

horizon h

[x1 ,..,Xn]

...Residuals

Long term patterns Periodic patterns

Figure 5.1: The proposed framework for the spatio-temporal forecasting problem

θ? = argminθ

n∑
i=1

Lθ(xi, x̄i) (5.4)

Stacked autoencoders are a set of multiple autoencoder layers, in which the input of each

layer is the output of previous layer [127]. To have a robust model to missing values, the

input data is corrupted with some missing values, while the output remains unchanged.

Adding missing values to the input data and training the neural network to reconstruct the

input data helps the neural network to be robust to missing values. Unsupervised training

of stacked autoencoders can be used to reconstruct the original data in the presence of noisy

or missing data [150], [46], [13]. In this chapter, we use a pretrained autoencoder to improve

the performance of the neural network in existence of missing data.

5.4 Methodology

In this section, we describe the architecture of the proposed deep learning framework, in Fig.

(5.1).

82

5.4.1 Preprocessing

In our proposed framework, the preprocessing of data includes several steps, represented in

Fig. 5.1. A time series decomposition method is applied on input time series X ∈ Rn×w×k.

It generates three time series components of X = (S,T,R), which are seasonal, trends and

residuals of time series data, respectively. In spatio-temporal data, time series residuals

not only represent random noise, but also can capture spatial patterns. For example, in a

transportation network, time series residuals can be caused by the traffic evolution of the

transportation network and they are meaningful patterns in a spatial neighborhood. We

illustrate the existence of spatial patterns in time series residuals, in Section 5.5.

To apply Algorithm 5.2 on time series residuals, we consider a set G for geographically

nearest neighbors of sensors. As the objective is to have smooth clusters over a geographical

area, the algorithm updates single-linkage distances between two time series from set G; thus

one cluster would not be distributed in a geographical area. The output of the clustering

algorithm is a fuzzy membership of each sensor to their clusters. Each sensor xi has a

membership to multiple clusters. A DTW distance function finds the non-linear similarity

between any two time series xi and xj. A fuzzy hierarchical clustering algorithm finds the

cluster of sensors with similar time series residuals by finding the clusters in which the

distance of its members is minimized. To represent short-term similarity among neighboring

time series, we use a sliding window method on training data and obtain an average of

the corresponding DTW distances. A sliding window method finds similarities between

short-term time windows of neighboring areas. To reduce computational time, the sliding

window method is only applied when there is high similarity among neighboring time series.

For example, in traffic flow data, the interaction among neighboring sensors increases in

peak hours and congested time periods. Applying Algorithm 5.2 with the aforementioned

modifications on spatial time series finds fuzzy clusters of time series, stored in the cluster

set in Fig. 5.1.

83

5.4.2 Neural network models

The architecture of the deep neural network is presented in Fig. 5.2. The spatio-temporal

data is a high dimensional time series data, in which there is a spatial correlation among

neighboring time series. Hence, the model has two main components. The convolutional com-

ponent captures spatial patterns, and the recurrent component captures temporal patterns.

Time series residuals are the first input of the neural network, detrended and represented

by a matrix R ∈ Rs×w×k. A convolutional component is applied to extract patterns from

the time series residuals. The spatial relation among time series can be a grid structure,

e.g. weather data, or a graph structure, e.g. traffic data. In a general convolutional layer,

a kernel slides on the first and second dimensions. However, because the sensors can have a

graph structure relation, like sensors in a transportation network, sliding a kernel on spatial

features, the first dimension, looses the structure of the network [74]. Hence, we propose a

multi-kernel convolutional layer, which receives the cluster set and time series residuals. A

kernel Wi is assigned to a cluster i, and it is described with weight matrix Wi where Wij 6= 0,

if j ∈ ci. In other words, the size of trainable variables for a kernel, corresponding to cluster

i, is Wi ∈ R|Ci|,w,k. Only the sensors in cluster i, have local connectivity to corresponding

time series residuals. Each kernel only slides over the temporal axis and obtains hidden

units hi = maxPool(σ(RiWi +bi)) for all i ∈ {1, . . . , |C|}. Several convolution-Rectified Lin-

ear Unit(ReLU)-Pooling layers extract short-term and spatial patterns from the time series

residuals in each neighborhood. The output of the kernels are concatenated and connected

to a fully-connected layer hl+1 = concat(FC(hl
1), . . . ,FC(hl

|C|)) and represented with a hidden

layer hl+1 ∈ Rw×s×v×1, where v is the number of represented features in convolutional layers

and s is the total number of sensors.

The time series trends represent long-term patterns, the second input of the proposed neu-

ral network. The trends of time series T concatenate to hl+1 on the last axis, hl+2 =

concat(hl+1,FC(T), axis = 4) which results in hl+2 ∈ Rw×s×v×2. Time series residuals are only

84

Concatenate() Concatenate()Multi-kernel convolution layers Convolution-LSTM layers Denoising Encoder-Decoder

...

...

...

Output

Spatial-Temporal Data

T
im

e
se
ri
es

re
si
d
u
al
s

Time series trends Time series seasonal

Figure 5.2: The proposed spatial-temporal decomposition deep neural network architecture

similar in a small spatial neighborhood. However, time series trends can represent traffic

patterns in a larger geographical area, examined in Section 5.5.2. Hence, we consider Conv-

LSTM layers to capture spatio-temporal patterns of the output of multi-kernal convolutional

layer, concatenated with time series trends. This layer, described in section 5.3.4, receives

an input hl+2, and apply the kernel on the matrix of size (a = s, b ≤ v) with two channels.

This convolutional layer has different architecture with the first multi-kernel convolutional

layer, that is, each neural cell is an LSTM cell and is applied on all input sensors. The

convolutional LSTM layers extract features from residuals and trends.

Spatio-temporal data can include seasonal patterns, e.g. traffic flow data have weekly sea-

sonal pattern, represented in Section 5. The output is concatenated with seasonal patterns

of time window of size w + h, represented with {t − w, . . . , t + h}. It is followed by a fully-

connected layer. The output is ȳ ∈ Rs×h×k, where h is the prediction horizon. The output ȳ

consists of predicted values for all sensors in the prediction horizon.

One of the challenges in spatio-temporal data is to have robust prediction with missing or

noisy data. In real-time data obtained by sensors over a geographical area, missing data or

noisy data are highly probable. We consider a separate component at top of the proposed

model for robust prediction of missing data. An encoder decoder component is the last

component of the model. A denoising encoder decoder reconstructs the last output ȳ for each

cluster. In the pretraining step, for a prediction horizon h and a cluster j, each autoencoder

85

generates x̄ = DAj(x), where x̄ ∈ Rs×h×k is the reconstruction of input. An autoencoder

component predict traffic flow ȳd = DA(ȳ). As the output of autoencoders is designed based

on the clusters, there are some sensors xk ∈ ci ∩ cj, i 6= j, where the fully-connected target

layer FCt is connected to all common variables between denoising autoencoders with a linear

activation function youtput = FCt(DA1(ȳ), . . . ,DA|C|(ȳ)). In other words, the final layer finds

the weighted average of predicted values of a sensor, if it belongs to more than one cluster.

In the training process the objective is to minimize the loss function L(., .), such as a mean

square error function, between youtput and actual values y, and to obtain optimum model

parameters θ? for input data using stochastic gradient descent,

θ? = argminθ

|X|∑
i=1

Lθ(xi, yi) (5.5)

5.5 Experimental analysis

In this section, we apply the proposed model on traffic flow data. We analyze spatio-temporal

patterns, and evaluate the performance of the proposed model compared with baseline and

state-of-the-art neural network models.

5.5.1 Dataset

We use traffic flow data from the Bay Area of California represented in Fig. 5.3 which have

been broadly used, and available in PeMS [1]. The traffic data is gathered every 30 seconds

and aggregated over 5 minute periods. Each sensor on highways has flow, occupancy and

speed at each time stamp. A sensor is an inductive loop traffic detector device on mainline,

off-ramp or on-ramps locations. In a preprocessing step, we select 597 sensors which have

86

more than 90% of the observed values in the first six months of 2016. The neural network

models receive all sensors’ data as input, and predict the value of mainline sensors, 380

of sensors, for a given prediction horizon. For this analysis, a large number of sensors are

selected to better evaluate the proposed model. A deep learning model generally outperforms

statistical and traditional machine learning models, when there is a large-scale training data

with complex patterns [143]. Moreover, such a large number of sensors can illustrate the

generalization of the proposed model over various types of spatial and temporal patterns.

Figure 5.3: The red dots represent loop detector sensors on highways of Bay Area, California.

5.5.2 Pattern analysis in traffic data

Spatial patterns in traffic data are the results of traffic evolution in the network. Here, we

analyze the spatial, short-term and long-term patterns. In Fig. 5.4, an additive time series

decomposition of traffic flow data is presented for one station. Given a one day frequency,

time series decomposition has similar, repeated (seasonal) daily patterns. Moreover, there

are long-term weekly patterns, shown as trends T. The long-term patterns, such as seasonal

and trends, arise from similar periodic patterns, generated outside of the highway network.

In other words, they are related to origin-destination matrix of vehicles in the network. The

time series residuals are not only random noise, but also the results of spatial and short-

term patterns, related to the evolution of traffic flow or sudden changes in smaller regions of

the network. Hence, time series residuals of neighboring sensors are more similar with each

87

other.

(a) The observed traffic flow data. (b) Seasonality of traffic flow data

(c) Trends of traffic flow data (d) Residuals of traffic flow data

Figure 5.4: Time series decomposition with daily frequency is represented for one sensor’s
traffic flow data.

Time series residuals are interpreted as random noise for time series data. However, in

traffic flow data, the residuals are the results of traffic evolution in the network. In Fig.

5.5, we examine the non-linear relation of flow, speed and occupancy in one day and one

sensor. It shows that high occupancy reduces speed in a road segment, which is the result

of traffic congestion. For more details, we refer the reader to the theoretical analysis of

these relationships in [38] and [89], respectively. In a transportation network, the congestion

propagation describes the relation among neighboring sensors of a highway, shown in Fig.

5.6. For a given three sensors, traffic congestion is propagated with nearly 20 minutes of

delay. For a larger geographical area, the speed of 13 successive sensors is represented in an

image-like representation of spatio-temporal data, in Fig. 5.7. The reduction of speed in

peak hours is presented with darker colors. It shows that the reduction in speed is similar in

neighboring areas, which also represents the existence of spatial correlation in neighboring

sensors.

88

(a) The relation between flow, occupancy
and speed is shown. Occupancy, with
value more than 8% occupied by vehicles,
decreases average speed, which is the re-
sult of traffic congestion.

(b) Log plot to represent the linear rela-
tion between occupancy and flow in free
flow speed (about 70 mph).

Figure 5.5: The relation between occupancy, speed and flow

(a) Three successive sensors
are selected to represent con-
gestion propagation in the
network.

(b) The reduction in speed of sensor 1 and 2 can
be observed twice in this plot, in which there is 20
minute delay due to congestion propagation delay
time.

Figure 5.6: The congestion propagation in successive sensors.

Figure 5.7: Image-like representation of a speed value of 13 successive sensors over 7 hours
(5 min time stamp)

89

Figure 5.8: The table shows the Dynamic Time Warping distance of time series residuals
among 15 sensors on a highway. The result of hierarchical clustering method is illustrated
with three clusters. The distance values near to diagonal have lower values, as they are more
similar with each other.

5.5.3 Fuzzy hierarchical clustering

In this section, we illustrate the results of a fuzzy clustering method, applied on the time

series residuals. In Fig. 5.8, the DTW distance matrix shows the similarity among time

series residuals of neighboring sensors. The matrix shows that the average DTW distance

for peak hours has the highest dependency among neighboring sensors. Each fuzzy cluster

is obtained by applying Algorithm 5.2 on the training data. On the elements near the

diagonal, the lowest distance values show the similarity between neighboring sensors. The

fuzzy clustering method finds the membership of each sensor to the clusters. In the fuzzy

membership matrix, we consider a threshold of 0.1. All the sensors with a membership value

of more than 0.1 are considered as the members of the clusters. We also consider the average

length of clusters to be less than 10 miles. The agglomerative clustering method stops when

the average size of clusters become greater than 10. As the clustering method is only applied

to mainline sensors, we also add the on-ramp and off-ramp sensors to the cluster of closest

mainline sensor. The output of fuzzy hierarchical clustering method has 64 clusters, where

the average number of elements is 9.7 with standard deviation of 4.2 and minimum cluster

size of 3 and maximum of 14. The length of smallest and largest cluster is 0.3 mile and 32.1

90

mile. And there are 53 sensors which appear in more than one cluster, nearly 10% of total

sensors.

To examine the relation between trends in one spatial area, we obtain DTW distance of

each pair of sensors. A sliding window method generates time series sequences. For a given

time window, we normalized trends by subtracting all time stamp values from the last value.

The average DTW distance is 0.7, for all pairs of sensors, which shows the high similarity

of trends. By contrast, the average DTW distance of time series residuals is 4.5 for all pair

of sensors, while applying the fuzzy clustering method on time series reduces the average

DTW of clusters to 0.6. This analysis shows that similarity among trends is independent

of distance of sensors, while similarity of time series residuals significantly increases for

neighboring sensors. Hence, we only apply fuzzy clustering on time series residuals.

5.5.4 Comparison of results

Here, we describe other implemented models, compared with the proposed deep learning

model. All of the neural network models are trained using the ADAM optimizer. The batch

size and epochs are set to 512 and 400, respectively. All experiments are implemented with

Keras [33]. We used a grid search method for finding the optimum deep neural network

architectures which have the best performance and most efficient computational time.

The input matrix is X ∈ Rs×w×k, where the number of sensors is s = 597, the time window is

w = 6, and there are k = 3 features, including flow, occupancy and speed. For FCNN, LSTM,

CNN and the proposed multi-kernel CNN-LSTM models, the input dimension is reshaped to

have appropriate dimensions. The data for all models is scaled into range of [0, 1]. For the

models without a time series decomposition component, including FCNN, LSTM and CNN,

we transform the non-stationary data into stationary data by subtracting all input values,

from time stamp t− w to time stamp t, and output values, from time stamp t + 1 to t + h,

91

from the value at time step t. Detrending of time series for the models with decomposition

component is as follows. The residual time series are stationary. To feed trends and seasonal

components to a neural network, we make them stationary by subtracting each time window

from its last value St and Tt. To recover the output, we add the predicted value to sum of

St and Tt. The output matrix is Y ∈ Rs×h×k̄, where the size of horizon h = 4 for 15-min,

30-min, 45-min and 60-min prediction in the resulting tables and k̄ = 1 only for traffic flow

prediction.

As illustrated in primary traffic flow prediction studies, the traffic flow patterns are similar

in the same hours and weekdays. The first baseline model (Ave-weekday-hourly) is to use

average of traffic flow of each sensor as a time-table for each time t, given a weekday and

hours of day. The short-term prediction for each sensor is obtained using average values in

the training data. The second baseline model (current value) is to use current value of traffic

flow xt for the prediction horizon xt+h.

In this section, we describe the implemented neural network models. A fully-connected

neural network (FCNN) architecture with three fully connected layers of (500, 300, 200)

hidden units, Xavier initialization, and an ReLU activation function is implemented. A

DBN with greedy layer wise pretraining of autoencoders finds a good initialization for a

fully-connected neural network. A fine tuning step for stacked auto encoder finishes the

training. We consider 30 epochs for pretraining each layer. An LSTM neural network is

capable of capturing long-term temporal patterns. However, in most of the studies, LSTM

models have a shallow architecture, because they are slow to converge. An LSTM model

with two layers of 400 and 200 hidden units is implemented. The hidden unit of second

layer is connected to a fully connected layer. Also the input is reshaped from a vector to

a matrix of two dimensions (w, s × k). To use a convolutional neural network, the input

matrix is reshaped to three dimensions (w, s, k). The first two dimensions are image-like

representation of time series data and the third dimension is the channel, which includes

92

traffic flow, speed and occupancy. The optimum implemented deep CNN model has four

layers with a max-pooling and a batch normalization. The number of filters are (16, 32, 64,

128), the kernel size is (5, 5), and max-pooling layers reduce the dimension by two in each

layer. It follows by two fully connected layers.

The CNN-LSTM model captures short-term and spatial patterns in convolutional layers, and

temporal patterns in LSTM layers. Two convolutional layers are applied on all input sensors

with filters of size (16, 32). The output of CNN layer is connected to LSTM layer. An

LSTM layer has the size of (300, 150) units, followed by a fully connected layer. The model

C-CNN-LSTM is a clustering based CNN-LSTM, in which a multi-kernel convolutional layer

extracts spatial, short-term patterns from time series residuals. The clusters are obtained in

Section 5.5.3.

A pretrained autoencoder decoder is applied to each cluster of sensors to generate a robust

output. Each layer is connected to a dropout layer with rate of 0.3. As the average size of

clusters is nearly 10 and standard deviation is 4, described in section 5.5.3, we use a same

architecture for all of the clusters, which has 5 fully-connected layers and the size of (40,

20, 10, 20, 40) units, and an ReLU activation function. The pretraining has 60 epochs. The

weights are loaded into the proposed model in fine tuning step.

The cluster based CNN-LSTM with an autoencoder (C-CNN-LSTM-DA) is the proposed

model in section 5.4 which uses clustering of time series residuals, trends, and seasonal along

with an autoencoder. The proposed architecture, in section 5.4, consists of two convolutional

layers with ReLU and max-pooling layers with filters of size (32, 64). It follows by two fully

connected layers, two 2-dimension convolutional LSTM for capturing long-term patterns

with hidden units of size (16, 32).

93

5.5.5 Performance metrics

To evaluate the performance of the proposed model, mean absolute error (MAE), mean abso-

lute percentage error (MAPE) and root mean square error (RMSE) are used as performance

metrics, defined in equations 5.6,

MAE(y, ȳ) =
1

n

n∑
i=1

|yi − ȳi|

MAPE(y, ȳ) =
1

n

n∑
i=1

|yi − ȳi|
yi

× 100 (5.6)

RMSE(y, ȳ) =

√√√√1

n

n∑
i=1

(yi − ȳi)2

where actual values are y and predicted values are ȳ. Also, the number of data points in

testing data is n = t̄ × s, where t̄ is the number of time stamps or temporal features, and

s is the number of sensors or spatial features. These performance metrics are a measure

of similarity between actual traffic flow and predicted traffic flow. In spatio-temporal data,

the prediction error can dramatically change over various spatial or temporal features, e.g.

some of the locations are more difficult to predict, or the prediction error increases in peak

hours with high traffic fluctuations. Hence, we define statistical indicators to evaluate the

performance of the models over spatial and temporal features.

5.5.6 Spatial performance metrics

To evaluate the performance of models over spatial features, we describe a spatial statistical

indicator. A spatial standard deviation is obtained by sstd =
√

1
|S|
∑

i∈S(ei − ē)2, where S is

the set of spatial features or sensors, ē = 1
|S|
∑

i∈S ei is the mean error, and ei is prediction

94

Table 5.3: Evaluation of the models for the traffic flow forecasting problem.

Baseline models neural networks models proposed models
Horizon Metric current-value Ave-weekday-hourly FCNN DBN LSTM CNN CNN-LSTM C-CNN-LSTM C-CNN-LSTM-DA

15 min
MAE 24 27.1 16.3 15.5 14 16 13.6 12.3 12.1
RMSE 36 43.2 28.1 27 25 27.4 24.8 23.1 22.7

30 min
MAE 31 27.1 16.9 15.9 14.4 16.2 14.3 12.7 12.4
RMSE 45 43.2 29 28 26.2 28.4 26.0 23.4 22.9

45 min
MAE 38 27.1 17.1 16.2 14.9 16.8 15 12.9 12.8
RMSE 54 43.2 29.8 29 28.1 29.3 28.2 23.4 23.1

60 min
MAE 44 27.1 17.6 16.5 15.2 17.2 15.1 13.3 13.3
RMSE 63 43.2 30.8 29.3 28.4 30.1 28.1 23.8 23.7

error in sensor i. Also, the maximum and minimum of ei is represented, as the best case and

worst case prediction error over various locations. We also define p%− error as the number

of sensors, out of 380 sensors, where their prediction error is at least p percent better than

other models’ prediction error. This analysis illustrate the performance of the proposed

model over various spatial features in Section 5.5.9. It also shows that the model is well

generalized over various locations of a transportation network.

5.5.7 Temporal performance metrics

In Section 5.5.10, statistical indicators are defined to represent the performance of the

proposed model over temporal features. A temporal standard deviation is obtained by

tstd =
√

1
|T|
∑

t∈T(et − ē)2, where T is the set of time slots, ē is the mean error and et

is the error at time stamp t. Because the performance of the forecasting models can vary

in different traffic states, various types of time slots T are selected to evaluate TSTD. As

our case study is traffic flow data, and there is a weekly periodic patterns, we consider T as

week days and hours of a day. Also, a split on off-peak hours and peak hours is examined

in Section 5.5.10.

95

Table 5.4: Spatial statistical indicators for 15-min traffic flow forecasting.

Spatial statistical indicators Number of sensors out of 380
Models Metrics Mean SSTD Min Max 1%-error 5%-error 10%-error

FCNN
MAE 16.3 8.7 8.0 33.2 0 0 0
RMSE 28.1 14.1 10.8 53.0 0 0 0
MAPE 16 3.0 11.2 20 0 0 0

CNN-LSTM
MAE 13.6 7.2 7.3 28.5 0 0 0
RMSE 24.8 11.5 9.8 45.3 0 0 0
MAPE 14.8 2.4 11.0 19 0 0 0

C-CNN-LSTM-DA
MAE 12.4 5.8 6.8 24.6 380 366 301
RMSE 22.9 9.8 9.5 43.2 372 328 281
MAPE 13.8 1.9 10.5 17.6 334 269 203

5.5.8 Performance results on test data

In the first analysis, we compare the performance of models for the traffic flow prediction

problem. The results are illustrated in Table 5.3. The comparison is for prediction horizons

of 15-min, 30-min, 45-min and 60-min. In this section, mean of prediction error is the

performance metric. The training errors are very close to testing errors. It shows that

there is a low bias and variance in the neural network models. Hence, to briefly illustrate the

results, we only represent the testing error throughout experimental results. The first model,

current-value, has a good performance for very short-term prediction horizon; however, its

performance dramatically reduces for longer prediction horizons. The second baseline model

uses the average of weekly-hourly table. It has the lowest performance on this dataset,

although there are repeated weekly patterns on traffic flow data. The performance of neural

network models are significantly better than the baseline models. The LSTM model has a

better performance than FCNN, BN and CNN models, demonstrating its strength in time

series forecasting problems. CNN-LSTM models better capture short-term and long-term

patterns. Two models, C-CNN-LSTM and C-CNN-LSTM-DA, have better performance due

to explicitly separating spatial regions. The performance of C-CNN-LSTM and C-CNN-

LSTM-DA is almost quite close. In next sections, we illustrate that the model with the

autoencoder component has a better performance in existence of missing data.

96

5.5.9 Performance results over spatial features

Prediction error of the neural network models can be different over spatial features, as

they have different patterns and structures. To illustrate the performance of models over

spatial features, in Table 5.4, the spatial statistical indicators of forecasting models are

presented. To briefly show the results, we only consider FCNN, CNN-LSTM and C-CNN-

LSTM-DA for 15-min prediction horizon. As illustrated in Section 5.5.6, mean, spatial

standard deviation, minimum and maximum of prediction errors are presented. Also, for

each model, the number of sensors which have p% lower prediction error than other two

models is illustrated. Spatial standard deviation error represents that the prediction error

significantly is different in various locations. The reason is that traffic flow data have different

characteristics in different locations. Also, the minimum and maximum prediction error of

the proposed model is lower than the other models. The results show that 380 sensors, out

of 380 sensors, have at least 1% lower MAE than other models. Also 366 and 301 sensors

have 5% and 10% lower MAE than other models, respectively. Zero values of p%− error for

FCNN and CNN-LSTM models show that there is not any sensor with at least 1% lower

error than the proposed model. These analyses on MAE, RMSE and MAPE illustrate that

the proposed forecasting model, not only have better mean prediction error, but also its

performance is better over all spatial features.

5.5.10 Performance results over temporal features

Statistical indicators of temporal features are evaluated in this section. A temporal standard

deviation error (TSTD) is defined in section 5.5.7. We evaluate temporal statistical indicators

in different week days. The proposed model has MAE of 12.4, 12.8, 12.3, 12.2, 12.0, 11.6,

11.8 for 15-min prediction horizon over 7 weekdays. The standard deviation is 0.37. Also,

the standard deviation of MAE for FC-NN and CNN-LSTM is 0.46 and 0.59. These low

97

Table 5.5: Temporal statistical indicators for 15-min traffic flow forecasting.

Temporal statistical indicators
Models Metrics Mean TSTD Min Max

FCNN
MAE 16.3 11.9 2.1 35.0
RMSE 28.1 21.3 3.1 54.1
MAPE 16 8.1 1.1 41.3

CNN-LSTM
MAE 13.6 11.0 2.1 31.7
RMSE 24.8 20.5 3.0 52.4
MAPE 14.8 6.4 1.0 36.0

C-CNN-LSTM-DA
MAE 12.4 9.8 1.9 29.1
RMSE 22.9 17.3 3.0 45.1
MAPE 13.8 4.9 1.0 29.1

values of temporal standard deviations represent that performance of these models is almost

the same in different days of a week. However, in the rest, we illustrate that the prediction

error has a high standard deviation over different hours of the day.

In Table 5.5, the statistical indicators over various weekly-hourly time stamps is examined,

as traffic flow data have repeated patterns over one week. The available dataset has 5-min

time stamps, 288 time stamp per day. The total number of weekly-hourly time stamps

are 7 multiplied by 288. The average prediction error over such time stamps is obtained,

and statistical indicators is illustrated in the table. The high value of temporal standard

deviation error illustrate high variation of prediciton error over hours of a day. It shows that

prediction error significantly changes in different traffic states. Minimum prediction error

occurs during low traffic flow values and all models almost have same minimum values. The

output of models is comparable in such traffic flow states. However, CNN-LSTM models

outperform other models in peak hours, when there is a high fluctuation in the data and it

has a more complex structure. The result of maximum prediction errors in three examined

models illustrate that the proposed model significantly reduces the maximum prediction

error over weekly-hourly time slots.

Next experiment is to compare peak and off-peak hours. In peak hours, the evolution of traffic

flow possibly affect congestion propagation in network. Therefore, the time series residuals

come from the evolution of traffic and are meaningful spatial patterns. On the other hand,

98

(a) Traffic flow prediction with FCNN(b) Traffic flow prediction with C-
CNN-LSTM-DA

Figure 5.9: An example of traffic flow data for one sensor over one week is shown, where
the blue line is predicted values, and the red dots are the actual values. The proposed
model outperforms FCNN in peak hours, while they have comparable performance in off-
peak hours. The black circles represent peak hours, where the predicted values are closer to
actual values in the proposed model.

Figure 5.10: The proposed model can better capture residual patterns. Some of the big
fluctuations are meaningful residual patterns, and can be predicted.

in off-peak hours, traffic flow is based on free flow speed and without any congestion. Such

traffic state is easily predictable by most of the models. In Fig. 5.9, the output of the C-

CNN-LSTM-DA and FCNN models are shown. Among neural network models, the FCNN

model has the worst traffic flow prediction performance, while C-CNN-LSTM-DA is the best

in Table 5.3. The C-CNN-LSTM-DA model has better performance in peak hours of the

days, when there are high values of time series residuals. It shows the weakness of FCNN for

capturing spatial patterns. In off-peak hours, all neural network models have comparable

performance, as there is not complex patterns in the data.

In Table 5.6, we compare the performance of the models for peak and off-peak hours. We

select FCNN, LSTM and the proposed model. This table compares residual-MAE and MAE.

99

For residual MAE, we detrend traffic flow prediction and find MAE error. For off-peak hours,

LSTM has a comparable performance to the proposed model, as it simply capture long-term

patterns. However, the performance of C-CNN-LSTM-DA is significantly better than the

LSTM model in peak hours. In Fig. 5.10, we plot the comparison of LSTM and C-CNN-

LSTM-DA. It shows that the C-CNN-LSTM-DA model captures big values of residuals

compared to the LSTM model, as they are the result of traffic congestion, and not a random

noise. The results show that the proposed model is better capable of capturing spatial

patterns than the LSTM model.

Table 5.6: Performance evaluation of three models for traffic flow forecasting in peak and
off-peak hours

Flow State Metric MLP LSTM C-CNN-LSTM-DA

Off-peak hours
Residual MAE 6.1 4.3 4.4

MAE 12.3 11.9 11.8

Peak hours
Residual MAE 12.2 11.1 8.2

MAE 18.3 16.8 13.8

5.5.11 Performance results with missing data

Here, we evaluate the performance of the models, when there is missing data. In preprocess-

ing steps, we select the sensors which do not have missing data. Then, we generate random

blocks of missing values in the test data. Each block is related to one randomly selected

sensor at a random starting time. The length of missing blocks are generated with a normal

distribution with mean value of 2 hours and standard deviation of 0.5. The performance of

the models is evaluated on missing values.

The results are illustrated in Table 5.7. To briefly describe the results, we only show the

30-min prediction horizon. The performance of the C-CNN-LSTM-DA model is better than

other models. However, in Table 5.3, the performance of C-CNN-LSTM and C-CNN-LSTM-

DA are very close. The results show that C-CNN-LSTM-DA is more robust to missing

data. In Fig. 5.11.a, we illustrate that the prediction error of the LSTM model increases in

100

existence of missing data. The figure shows a reduced increase of prediction error in C-CNN-

LSTM-DA. In other words, the plot shows the increase of the prediction error in existence

of missing data. Fig. 5.11.b shows the difference of predicted values between LSTM and

C-CNN-LSTM-DE.

(a) The increase in prediction er-
ror is illustrated.

(b) In a block of missing values, the prediction of
the LSTM and the proposed model are illustrated.

Figure 5.11: Prediction results with random missing data

Table 5.7: The MAE and RMSE of forecasting models with randomly generated missing
data.

Metric LSTM CNN-LSTM C-CNN-LSTM C-CNN-LSTM-DA

MAE 16.7 16.5 14.1 13.1

RMSE 28.8 28.9 25.2 23.9

5.5.12 Hypothesis testing

In the previous sections, the performance of deep learning models are evaluated using some

standard performance metrics, such as MAE and RMSE. In addition, we define temporal and

spatial statistical indicators, and evaluate forecasting models over different spatio-temporal

states. The results show that the proposed model has better performance (lower MAE

and RMSE) than other baseline and state-of-the-art models. Here, we use a statistical test

which shows whether the difference of forecasting models are statistically significant. We

use the Diebold Mariano (DM) test, as introduced in [42], which has become a well accepted

hypothesis testing method.

Given em1
ts as the difference of actual flow and predicted flow in model m1 at time stamp t

101

and sensor s, and an evaluation function f(.), such as MSE or MAE, a null hypothesis and

an alternate hypothesis between two models m1 and m2 are defined as follows,

H0 : E(f(em1
ts)) = E(f(em2

ts)) (5.7)

Ha : E(f(em1
ts)) 6= E(f(em2

ts)) (5.8)

The null hypothesis indicates that the difference between expected prediction errors is zero.

We can also represent the null hyposthesis with d = E(f(em1
ts) − f(em2

ts)) = 0. An alternate

hypothesis indicates that the performance of one model is significantly different than the

other one. A statistical test evaluates these hypotheses. We can reject the null hypothe-

sis if the p-value is lower than the significance level α (or if the DM test value is not in

range of [−Zα
2
, Zα

2
]). If we reject the null hypothesis, then we conclude that the forecasting

performance of the proposed model is significantly better than other models.

To apply the DM test on spatio-temporal data, we consider independent tests for spatial

and temporal features. In some previous works, other researchers used independent DM

tests for some specific time stamps, e.g. hours of a day [70], and independent DM tests

for different locations and time horizons [56]. Such analysis shows that the accuracy of a

forecasting model is significantly better than other models for specific temporal or spatial

states. We follow such a procedure to test the statistical significance of forecasting models.

We obtain the number of sensors, out of 380, for which the accuracy of the proposed model

is statistically significant compared with the MLP and the LSTM models. We select MLP

and LSTM models as the worst and best implemented neural networks. We compare these

models with the best CNN-LSTM model (C-CNN-LSTM-DA), which is the best proposed

model in this chapter. We perform a two-sided DM test with 1%, 5% and 10% significance

levels. Table 5.8 shows that a large number of sensors have statistically significant lower MAE

102

and MSE. Some of the sensors have a very smooth traffic flows. Most of the models easily

predicts their traffic flow data. In such sensors, the accuracy of the proposed model is almost

the same as LSTM and it is not statistically significant. Also, another conclusion is that the

MAE and MSE increases for longer time horizons, e.g. h = 12 or 60-min prediction horizon.

For a longer prediction horizon, the model differences are not statistically significant, which

can be result of higher fluctuations in some of the sensors. However, based on the analysis

in Section 5.8, the main difference of the performance of proposed model and other models

is for peak hours. Hence, we examine the DM test only for peak hours. For 1% significance

level, the number of sensors for which the proposed model has statistically significantly lower

MAE and MSE values, are 366 and 358. However, the p-value for all of the sensors is less

than 5%. Hence, for 5% significance level, the proposed model has statistically significant

lower prediction error in all sensors.

Table 5.8: The number of sensors, out of 380, for which the proposed model has statistically
significant lower MAE and MSE.

Models Metric α 15min 30min 45min 60min

MLP

MAE
1 380 380 380 380
5 380 380 380 380
10 380 380 380 380

MSE
1 380 380 380 380
5 380 380 380 380
10 380 380 380 380

LSTM

MAE
1 380 358 308 290
5 380 358 316 290
10 380 358 331 305

MSE
1 371 313 281 245
5 376 323 292 268
10 380 335 317 290

5.6 Conclusion and future work

This chapter proposes a new deep learning framework for spatio-temporal forecasting prob-

lems. The full results of this study were first published in [16]. We illustrate the application

103

of this framework on traffic flow data. The proposed framework consists of several compo-

nents, each of which are carefully designed based on spatio-temporal patterns. In Section

5.2 and 5.3, we described the main spatio-temporal patterns in traffic data. We thoroughly

analyze the performance of the proposed model compared with other implemented models.

Table 5.3 shows the comparison of the baseline, state-of-the-art neural network models, and

the proposed CNN-LSTM models. The C-CNN-LSTM models have the lowest prediction

error. In Table 5.6, we evaluate the prediction of time series residuals. In off-peak hours, the

performance of the proposed model is the same as the LSTM model. However, the proposed

model has better performance in peak hours. We use a large number of traffic sensors in our

experimental results. This large data set allows us to better evaluate models over various

types of spatial and temporal features. In Section 5.5.9 and 5.5.10, we analyze prediction

errors over various spatial and temporal features. Also, the Diebold-Mariano test shows

that the proposed model has statistically significant lower prediction error. Moreover, we

show that the pretrained autoencoder decoder, as the last component of C-CNN-LSTM-DA,

reduces prediction error where there are missing data, Fig. 5.11.

While deep learning models have a great success in various domains, such as computer

vision or natural language processing, there are few studies that develop new deep learning

models for spatio-temporal problems. This study demonstrates the effectiveness of designing

new neural network architectures considering specific properties of spatio-temporal problems.

While the focus of our work is on the forecasting problem, related models can be developed for

other spatio-temporal problems, such as anomaly detection, missing data imputation, time

series clustering, and time series classification problems. In addition, we focus on traffic flow

data which has non-linear correlation in neighboring spatial and temporal features. Other

types of spatio-temporal problems have their unique spatial and temporal patterns. The

proposed model can be applied on various spatio-temporal applications, but with proper

attention given to their unique spatial, short-term and long-term patterns.

104

Bibliography

[1] California. pems, http://pems.dot.ca.gov/, 2017.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: a system for large-scale machine learning. In
OSDI, volume 16, pages 265–283, 2016.

[3] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah. Time-series clustering–a decade
review. Information Systems, 53:16–38, 2015.

[4] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised real-time anomaly detection
for streaming data. Neurocomputing, 262:134–147, 2017.

[5] M. Ahmed and A. N. Mahmood. Novel approach for network traffic pattern analysis
using clustering-based collective anomaly detection. Annals of Data Science, 2(1):111–
130, 2015.

[6] O. Y. Al-Jarrah, P. D. Yoo, S. Muhaidat, G. K. Karagiannidis, and K. Taha. Efficient
machine learning for big data: A review. Big Data Research, 2(3):87–93, 2015.

[7] B. Anbaroglu, B. Heydecker, and T. Cheng. Spatio-temporal clustering for non-
recurrent traffic congestion detection on urban road networks. Transportation Research
Part C: Emerging Technologies, 48:47–65, 2014.

[8] M. Y. Ansari, A. Ahmad, S. S. Khan, G. Bhushan, et al. Spatiotemporal clustering:
a review. Artificial Intelligence Review, pages 1–43, 2019.

[9] C. F. Ansley and R. Kohn. On the estimation of arima models with missing values.
In Time series analysis of irregularly observed data, pages 9–37. Springer, 1984.

[10] R. Asadi and M. Ghatee. A rule-based decision support system in intelligent haz-
mat transportation system. IEEE Transactions on Intelligent Transportation Systems,
16(5):2756–2764, 2015.

[11] R. Asadi and S. S. Kia. Cycle flow formulation of optimal network flow problems and
respective distributed solutions. IEEE/CAA Journal of Automatica Sinica, 6(5):1251–
1260, 2019.

105

http://pems.dot.ca.gov/

[12] R. Asadi, S. S. Kia, and A. Regan. Cycle basis distributed admm solution for optimal
network flow problem over biconnected graphs. In 2016 54th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton), pages 717–724. IEEE,
2016.

[13] R. Asadi and A. Regan. A convolution recurrent autoencoder for spatio-temporal
missing data imputation. arXiv preprint arXiv:1904.12413, 2019.

[14] R. Asadi and A. Regan. A convolutional recurrent autoencoder for spatio-temporal
missing data imputation. International Conference on Artificial Intelligence (ICAI
2019), 2019.

[15] R. Asadi and A. Regan. Spatio-temporal clustering of traffic data with deep embedded
clustering. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on
Prediction of Human Mobility, pages 45–52, 2019.

[16] R. Asadi and A. C. Regan. A spatio-temporal decomposition based deep neural network
for time series forecasting. Applied Soft Computing, 87:105963, 2020.

[17] G. Atluri, A. Karpatne, and V. Kumar. Spatio-temporal data mining: A survey of
problems and methods. ACM Computing Surveys (CSUR), 51(4):83, 2018.

[18] M. Azimi and Y. Zhang. Categorizing freeway flow conditions by using clustering
methods. Transportation Research Record, 2173(1):105–114, 2010.

[19] Q. Ba, K. Savla, and G. Como. Distributed optimal equilibrium selection for traffic
flow over networks. In IEEE Conference on Decision and Control, 2015.

[20] B. Bae, H. Kim, H. Lim, Y. Liu, L. D. Han, and P. B. Freeze. Missing data imputation
for traffic flow speed using spatio-temporal cokriging. Transportation Research Part
C: Emerging Technologies, 88:124–139, 2018.

[21] J. Barros, M. Araujo, and R. J. Rossetti. Short-term real-time traffic prediction meth-
ods: A survey. In 2015 International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), pages 132–139. IEEE, 2015.

[22] J. Béjar, S. Álvarez, D. Garćıa, I. Gómez, L. Oliva, A. Tejeda, and J. Vázquez-Salceda.
Discovery of spatio-temporal patterns from location-based social networks. Journal of
Experimental & Theoretical Artificial Intelligence, 28(1-2):313–329, 2016.

[23] D. P. Bertsekas. Network optimization: continuous and discrete models. Citeseer, 1998.

[24] R. J. Bessa, A. Trindade, and V. Miranda. Spatial-temporal solar power forecasting
for smart grids. IEEE Transactions on Industrial Informatics, 11(1):232–241, 2015.

[25] E. Bolshinsky and R. Friedman. Traffic flow forecast survey. Technical report, Com-
puter Science Department, Technion, 2012.

106

[26] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations
and Trends R© in Machine Learning, 3(1):1–122, 2011.

[27] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[28] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally con-
nected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[29] L. Caggiani, M. Ottomanelli, R. Camporeale, and M. Binetti. Spatio-temporal clus-
tering and forecasting method for free-floating bike sharing systems. In International
Conference on Systems Science, pages 244–254. Springer, 2016.

[30] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li. Brits: Bidirectional recurrent
imputation for time series. In Advances in Neural Information Processing Systems,
pages 6776–6786, 2018.

[31] H. B. Celikoglu and M. A. Silgu. Extension of traffic flow pattern dynamic classifi-
cation by a macroscopic model using multivariate clustering. Transportation Science,
50(3):966–981, 2016.

[32] X. Cheng, R. Zhang, J. Zhou, and W. Xu. Deeptransport: Learning spatial-temporal
dependency for traffic condition forecasting. arXiv preprint arXiv:1709.09585, 2017.

[33] F. Chollet et al. Keras, 2015.

[34] M. Y. Choong, L. Angeline, R. K. Y. Chin, K. B. Yeo, and K. T. K. Teo. Vehicle
trajectory clustering for traffic intersection surveillance. In 2016 IEEE International
Conference on Consumer Electronics-Asia (ICCE-Asia), pages 1–4. IEEE, 2016.

[35] J. Chow. Informed Urban Transport Systems: Classic and Emerging Mobility Methods
toward Smart Cities. Elsevier, 2018.

[36] H. Chunchun, L. Nianxue, Y. Xiaohong, and S. Wenzhong. Traffic flow data mining
and evaluation based on fuzzy clustering techniques. International Journal of Fuzzy
Systems, 13(4), 2011.

[37] A. F. Costa, M. S. Santos, J. P. Soares, and P. H. Abreu. Missing data imputation via
denoising autoencoders: The untold story. In International Symposium on Intelligent
Data Analysis, pages 87–98. Springer, 2018.

[38] C. F. Daganzo. The cell transmission model: A dynamic representation of highway
traffic consistent with the hydrodynamic theory. Transportation Research Part B:
Methodological, 28(4):269–287, 1994.

[39] C. De-Wang. Classification of traffic flow situation of urban freeways based on fuzzy
clustering [j]. Communication and Transportati0n Systems Engineering and Informa-
tion, 1, 2005.

107

[40] S. Deng, S. Jia, and J. Chen. Exploring spatial–temporal relations via deep convolu-
tional neural networks for traffic flow prediction with incomplete data. Applied Soft
Computing, 2018, 2018.

[41] A. Dharwadker and S. Pirzada. Graph Theory. CreateSpace Independent Publishing
Platform, 2011.

[42] F. X. Diebold and R. S. Mariano. Comparing predictive accuracy. Journal of Business
& economic statistics, 20(1):134–144, 2002.

[43] Y. Duan, Y. Lv, Y.-L. Liu, and F.-Y. Wang. An efficient realization of deep learning
for traffic data imputation. Transportation research part C: emerging technologies,
72:168–181, 2016.

[44] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

[45] D. C. Gazis and C. H. Knapp. On-line estimation of traffic densities from time-series
of flow and speed data. Transportation Science, 5(3):283–301, 1971.

[46] L. Gondara and K. Wang. Mida: Multiple imputation using denoising autoencoders.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 260–272.
Springer, 2018.

[47] S. Guo, Y. Lin, S. Li, Z. Chen, and H. Wan. Deep spatial-temporal 3d convolutional
neural networks for traffic data forecasting. IEEE Transactions on Intelligent Trans-
portation Systems, 2019.

[48] X. Guo, L. Gao, X. Liu, and J. Yin. Improved deep embedded clustering with local
structure preservation. In IJCAI, pages 1753–1759, 2017.

[49] L. Gupta, D. L. Molfese, R. Tammana, and P. G. Simos. Nonlinear alignment and
averaging for estimating the evoked potential. IEEE Transactions on Biomedical En-
gineering, 43(4):348–356, 1996.

[50] S. Hajiseyedjavadi, Y.-R. Lin, and K. Pelechrinis. Discovering functionality of urban
regions by learning low-dimensional representations of a spatial multiplex network. In
Proceedings of the Third Mining Urban Data Workshop (MUD 2018), 2018.

[51] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[52] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

[53] W. Huang, G. Song, H. Hong, and K. Xie. Deep architecture for traffic flow predic-
tion: deep belief networks with multitask learning. IEEE Transactions on Intelligent
Transportation Systems, 15(5):2191–2201, 2014.

108

[54] X. Huang, Y. Ye, L. Xiong, R. Y. Lau, N. Jiang, and S. Wang. Time series k-means:
A new k-means type smooth subspace clustering for time series data. Information
Sciences, 367:1–13, 2016.

[55] Y. Jia, C. Zhou, and M. Motani. Spatio-temporal autoencoder for feature learning in
patient data with missing observations. In 2017 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pages 886–890. IEEE, 2017.

[56] P. Jiang and Z. Liu. Variable weights combined model based on multi-objective opti-
mization for short-term wind speed forecasting. Applied Soft Computing, page 105587,
2019.

[57] Y. Kamarianakis and P. Prastacos. Forecasting traffic flow conditions in an urban net-
work: Comparison of multivariate and univariate approaches. Transportation Research
Record, 1857(1):74–84, 2003.

[58] M. G. Karlaftis and E. I. Vlahogianni. Statistical methods versus neural networks
in transportation research: Differences, similarities and some insights. Transportation
Research Part C: Emerging Technologies, 19(3):387–399, 2011.

[59] B. H. Kim and R. Baldick. A comparison of distributed optimal power flow algorithms.
IEEE Transactions on Power Systems, 15(2):599–604, 2000.

[60] Y. Kim, P. Wang, and L. Mihaylova. Structural recurrent neural network for traffic
speed prediction. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5207–5211. IEEE, 2019.

[61] S. Kisilevich, F. Mansmann, M. Nanni, and S. Rinzivillo. Spatio-temporal clustering.
In Data mining and knowledge discovery handbook, pages 855–874. Springer, 2009.

[62] T. Koide, H. Kubo, and H. Watanabe. A study on the tie-set graph theory and network
flow optimization problems. International Journal of Circuit Theory and Applications,
32(6):447–470, 2004.

[63] T. Koide and H. Watanabe. A theory of tie-set graph and tie-set path-a graph theoret-
ical study on robust network system. In Circuits and Systems, 2000. IEEE APCCAS
2000. The 2000 IEEE Asia-Pacific Conference on, pages 227–230. IEEE, 2000.

[64] V. Kolmogorov and A. Shioura. New algorithms for the dual of the convex cost network
flow problem with application to computer vision. Mathematical Programming, 2007.

[65] M. Konkol. Fuzzy agglomerative clustering. In International Conference on Artificial
Intelligence and Soft Computing, pages 207–217. Springer, 2015.

[66] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

109

[67] W. C. Ku, G. R. Jagadeesh, A. Prakash, and T. Srikanthan. A clustering-based ap-
proach for data-driven imputation of missing traffic data. In 2016 IEEE Forum on
Integrated and Sustainable Transportation Systems (FISTS), pages 1–6. IEEE, 2016.

[68] S. V. Kumar and L. Vanajakshi. Short-term traffic flow prediction using seasonal arima
model with limited input data. European Transport Research Review, 7(3):21, 2015.

[69] T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi. Time series forecasting
using a deep belief network with restricted boltzmann machines. Neurocomputing,
137:47–56, 2014.

[70] J. Lago, F. De Ridder, and B. De Schutter. Forecasting spot electricity prices: Deep
learning approaches and empirical comparison of traditional algorithms. Applied En-
ergy, 221:386–405, 2018.

[71] I. Laña, I. I. Olabarrieta, M. Vélez, and J. Del Ser. On the imputation of missing
data for road traffic forecasting: New insights and novel techniques. Transportation
research part C: emerging technologies, 90:18–33, 2018.

[72] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and
A. Y. Ng. Building high-level features using large scale unsupervised learning. arXiv
preprint arXiv:1112.6209, 2011.

[73] L. Li, J. Zhang, Y. Wang, and B. Ran. Missing value imputation for traffic-related time
series data based on a multi-view learning method. IEEE Transactions on Intelligent
Transportation Systems, 2018.

[74] Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

[75] Q. Liu, B. Wang, and Y. Zhu. Short-term traffic speed forecasting based on attention
convolutional neural network for arterials. Computer-Aided Civil and Infrastructure
Engineering, 33(11):999–1016, 2018.

[76] W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing. Discovering spatio-temporal
causal interactions in traffic data streams. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1010–1018.
ACM, 2011.

[77] Z. Liu, S. Sharma, and S. Datla. Imputation of missing traffic data during holiday
periods. Transportation Planning and Technology, 31(5):525–544, 2008.

[78] I. Lobel and A. Ozdaglar. Distributed subgradient methods for convex optimization
over random networks. Automatic Control, IEEE Transactions on, 56(6):1291–1306,
2011.

[79] Q. Lu, F. Chen, and K. Hancock. On path anomaly detection in a large transportation
network. Computers, Environment and Urban Systems, 33(6):448–462, 2009.

110

[80] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang. Traffic flow prediction with big data:
a deep learning approach. IEEE Transactions on Intelligent Transportation Systems,
16(2):865–873, 2014.

[81] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang. Traffic flow prediction with big data:
a deep learning approach. IEEE Transactions on Intelligent Transportation Systems,
16(2):865–873, 2015.

[82] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang. Learning traffic as images: a deep
convolutional neural network for large-scale transportation network speed prediction.
Sensors, 17(4):818, 2017.

[83] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang. Long short-term memory neural net-
work for traffic speed prediction using remote microwave sensor data. Transportation
Research Part C: Emerging Technologies, 54:187–197, 2015.

[84] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[85] S. Mac Lane. A combinatorial condition for planar graphs. Seminarium Matemat.,
1936.

[86] K. Ø. Mikalsen, F. M. Bianchi, C. Soguero-Ruiz, and R. Jenssen. Time series cluster
kernel for learning similarities between multivariate time series with missing data.
Pattern Recognition, 76:569–581, 2018.

[87] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long. A survey of clustering with deep
learning: From the perspective of network architecture. IEEE Access, 6:39501–39514,
2018.

[88] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel. Distributed optimization
with local domains: Applications in mpc and network flows. Automatic Control, IEEE
Transactions on, 60(7):2004–2009, 2015.

[89] L. Muñoz, X. Sun, R. Horowitz, and L. Alvarez. Traffic density estimation with the cell
transmission model. In Proceedings of the 2003 American Control Conference, 2003.,
volume 5, pages 3750–3755. IEEE, 2003.

[90] A. Muralidharan and R. Horowitz. Imputation of ramp flow data for freeway traffic
simulation. Transportation Research Record, 2099(1):58–64, 2009.

[91] A. M. Nagy and V. Simon. Survey on traffic prediction in smart cities. Pervasive and
Mobile Computing, 50:148–163, 2018.

[92] K. Nakayama, C. Zhao, L. F. Bic, M. B. Dillencourt, and J. Brouwer. Distributed
power flow loss minimization control for future grid. International Journal of Circuit
Theory and Applications, 43(9):1209–1225, 2015.

111

[93] R. P. D. Nath, H.-J. Lee, N. K. Chowdhury, and J.-W. Chang. Modified k-means
clustering for travel time prediction based on historical traffic data. In International
Conference on Knowledge-Based and Intelligent Information and Engineering Systems,
pages 511–521. Springer, 2010.

[94] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. Automatic Control, IEEE Transactions on, 54(1):48–61, 2009.

[95] V. Niennattrakul and C. A. Ratanamahatana. Shape averaging under time warping.
In Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology, 2009. ECTI-CON 2009. 6th International Conference on, volume 2, pages
626–629. IEEE, 2009.

[96] J. Paparrizos and L. Gravano. Fast and accurate time-series clustering. ACM Trans-
actions on Database Systems (TODS), 42(2):8, 2017.

[97] B. Park, C. J. Messer, and T. Urbanik. Short-term freeway traffic volume fore-
casting using radial basis function neural network. Transportation Research Record,
1651(1):39–47, 1998.

[98] Q. Peng and S. H. Low. Distributed algorithm for optimal power flow on a radial
network. In 53rd IEEE Conference on Decision and Control, pages 167–172. IEEE,
2014.

[99] F. Petitjean and P. Gançarski. Summarizing a set of time series by averaging:
From steiner sequence to compact multiple alignment. Theoretical Computer Science,
414(1):76–91, 2012.

[100] N. G. Polson and V. O. Sokolov. Deep learning for short-term traffic flow prediction.
Transportation Research Part C: Emerging Technologies, 79:1–17, 2017.

[101] X. Qiu, Y. Ren, P. N. Suganthan, and G. A. Amaratunga. Empirical mode decompo-
sition based ensemble deep learning for load demand time series forecasting. Applied
Soft Computing, 54:246–255, 2017.

[102] X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga. Ensemble deep
learning for regression and time series forecasting. In Computational Intelligence in
Ensemble Learning (CIEL), 2014 IEEE Symposium on, pages 1–6. IEEE, 2014.

[103] L. Qu, L. Li, Y. Zhang, and J. Hu. Ppca-based missing data imputation for traffic flow
volume: A systematical approach. IEEE Transactions on intelligent transportation
systems, 10(3):512–522, 2009.

[104] L. Qu, Y. Zhang, J. Hu, L. Jia, and L. Li. A bpca based missing value imputing
method for traffic flow volume data. In 2008 IEEE Intelligent Vehicles Symposium,
pages 985–990. IEEE, 2008.

112

[105] B. Ran, H. Tan, Y. Wu, and P. J. Jin. Tensor based missing traffic data completion with
spatial–temporal correlation. Physica A: Statistical Mechanics and its Applications,
446:54–63, 2016.

[106] F. Rempe, G. Huber, and K. Bogenberger. Spatio-temporal congestion patterns in
urban traffic networks. Transportation Research Procedia, 15:513–524, 2016.

[107] S. Rezaei, K. Kim, and E. Bozorgzadeh. Scalable multi-queue data transfer scheme
for fpga-based multi-accelerators. In 2018 IEEE 36th International Conference on
Computer Design (ICCD), pages 374–380. IEEE, 2018.

[108] A. W. Sadek, G. Spring, and B. L. Smith. Toward more effective transportation
applications of computational intelligence paradigms. Transportation research record,
1836(1):57–63, 2003.

[109] H. Sak, A. Senior, and F. Beaufays. Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. In Fifteenth annual conference of the
international speech communication association, 2014.

[110] S. Salvador and P. Chan. Toward accurate dynamic time warping in linear time and
space. Intelligent Data Analysis, 11(5):561–580, 2007.

[111] J. L. Schafer and M. K. Olsen. Multiple imputation for multivariate missing-data
problems: A data analyst’s perspective. Multivariate behavioral research, 33(4):545–
571, 1998.

[112] T. Seo, A. M. Bayen, T. Kusakabe, and Y. Asakura. Traffic state estimation on
highway: A comprehensive survey. Annual reviews in control, 43:128–151, 2017.

[113] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo. Deep
learning for precipitation nowcasting: A benchmark and a new model. In Advances in
neural information processing systems, pages 5617–5627, 2017.

[114] N. Z. Shor. Minimization methods for non-differentiable functions, volume 3. Springer
Science & Business Media, 2012.

[115] M. A. Silgu and H. B. Celikoglu. Clustering traffic flow patterns by fuzzy c-means
method: some preliminary findings. In International Conference on Computer Aided
Systems Theory, pages 756–764. Springer, 2015.

[116] B. L. Smith and M. J. Demetsky. Short-term traffic flow prediction models-a compar-
ison of neural network and nonparametric regression approaches. In Systems, Man,
and Cybernetics, 1994. Humans, Information and Technology., 1994 IEEE Interna-
tional Conference on, volume 2, pages 1706–1709. IEEE, 1994.

[117] S. Soheily-Khah, A. Douzal-Chouakria, and E. Gaussier. Generalized k-means-based
clustering for temporal data under weighted and kernel time warp. Pattern Recognition
Letters, 75:63–69, 2016.

113

[118] J. Tang, G. Zhang, Y. Wang, H. Wang, and F. Liu. A hybrid approach to integrate
fuzzy c-means based imputation method with genetic algorithm for missing traffic vol-
ume data estimation. Transportation Research Part C: Emerging Technologies, 51:29–
40, 2015.

[119] A. Tascikaraoglu. Evaluation of spatio-temporal forecasting methods in various smart
city applications. Renewable and Sustainable Energy Reviews, 82:424–435, 2018.

[120] A. Tascikaraoglu and B. M. Sanandaji. Short-term residential electric load forecasting:
A compressive spatio-temporal approach. Energy and Buildings, 111:380–392, 2016.

[121] J. Tastu, P. Pinson, E. Kotwa, H. Madsen, and H. A. Nielsen. Spatio-temporal analysis
and modeling of short-term wind power forecast errors. Wind Energy, 14(1):43–60,
2011.

[122] D. A. Thomas and J. F. Weng. Minimum cost flow-dependent communication net-
works. Networks, 48(1):39–46, 2006.

[123] Y. Tian, K. Zhang, J. Li, X. Lin, and B. Yang. Lstm-based traffic flow prediction with
missing data. Neurocomputing, 318:297–305, 2018.

[124] M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, H. Bobarshad, V. Alves, and
N. Bagherzadeh. Catalina: In-storage processing acceleration for scalable big data
analytics. In 2019 27th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 430–437. IEEE, 2019.

[125] P. Tzirakis, M. A. Nicolaou, B. Schuller, and S. Zafeiriou. Time-series clustering with
jointly learning deep representations, clusters and temporal boundaries.

[126] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pages 1096–1103. ACM, 2008.

[127] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of machine learning research, 11(Dec):3371–3408, 2010.

[128] C. Wang, X. Li, X. Zhou, A. Wang, and N. Nedjah. Soft computing in big data
intelligent transportation systems. Applied Soft Computing, 38:1099–1108, 2016.

[129] J. Wang, W. Deng, and Y. Guo. New bayesian combination method for short-term
traffic flow forecasting. Transportation Research Part C: Emerging Technologies, 43:79–
94, 2014.

[130] L. Wang, Z. Wang, H. Qu, and S. Liu. Optimal forecast combination based on neural
networks for time series forecasting. Applied Soft Computing, 66:1–17, 2018.

[131] M. Wang, A. Ailamaki, and C. Faloutsos. Capturing the spatio-temporal behavior of
real traffic data. Performance Evaluation, 49(1-4):147–163, 2002.

114

[132] S. Wang, J. Cao, and P. S. Yu. Deep learning for spatio-temporal data mining: A
survey. arXiv preprint arXiv:1906.04928, 2019.

[133] Y. Wu, A. Ribeiro, and G. B. Giannakis. Robust routing in wireless multi-hop net-
works. In Information Sciences and Systems, 2007. CISS’07. 41st Annual Conference
on, pages 637–642. IEEE, 2007.

[134] Y. Wu, H. Tan, L. Qin, B. Ran, and Z. Jiang. A hybrid deep learning based traffic flow
prediction method and its understanding. Transportation Research Part C: Emerging
Technologies, 90:166–180, 2018.

[135] L. Xiao, M. Johansson, and S. P. Boyd. Simultaneous routing and resource allocation
via dual decomposition. Communications, IEEE Transactions on, 52(7):1136–1144,
2004.

[136] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering
analysis. In International conference on machine learning, pages 478–487, 2016.

[137] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convo-
lutional lstm network: A machine learning approach for precipitation nowcasting. In
Advances in neural information processing systems, pages 802–810, 2015.

[138] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong. Towards k-means-friendly spaces:
Simultaneous deep learning and clustering. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3861–3870. JMLR. org, 2017.

[139] S. Yi, J. Ju, M.-K. Yoon, and J. Choi. Grouped convolutional neural networks for
multivariate time series. arXiv preprint arXiv:1703.09938, 2017.

[140] G. Yu, J. Hu, C. Zhang, L. Zhuang, and J. Song. Short-term traffic flow forecasting
based on markov chain model. In Intelligent Vehicles Symposium, 2003. Proceedings.
IEEE, pages 208–212. IEEE, 2003.

[141] H.-F. Yu, N. Rao, and I. S. Dhillon. Temporal regularized matrix factorization for
high-dimensional time series prediction. In Advances in neural information processing
systems, pages 847–855, 2016.

[142] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie. Accelerated dual descent for
network flow optimization. Automatic Control, IEEE Transactions on, 59(4):905–920,
2014.

[143] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[144] W. Zhang, Y. Yu, Y. Qi, F. Shu, and Y. Wang. Short-term traffic flow prediction based
on spatio-temporal analysis and cnn deep learning. Transportmetrica A: Transport
Science, 15(2):1688–1711, 2019.

115

[145] Y.-F. Zhang, P. Thorburn, W. Xiang, and P. Fitch. Ssim-a deep learning approach for
recovering missing time series sensor data. IEEE Internet of Things Journal, 2019.

[146] Z. Zhang, M. Li, X. Lin, Y. Wang, and F. He. Multistep speed prediction on traffic
networks: A deep learning approach considering spatio-temporal dependencies. Trans-
portation Research Part C: Emerging Technologies, 105:297–322, 2019.

[147] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu. Lstm network: a deep learning
approach for short-term traffic forecast. IET Intelligent Transport Systems, 11(2):68–
75, 2017.

[148] X. Zheng, W. Chen, P. Wang, D. Shen, S. Chen, X. Wang, Q. Zhang, and L. Yang.
Big data for social transportation. IEEE Transactions on Intelligent Transportation
Systems, 17(3):620–630, 2016.

[149] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao. Time series classification using
multi-channels deep convolutional neural networks. In International Conference on
Web-Age Information Management, pages 298–310. Springer, 2014.

[150] T. Zhou, G. Han, X. Xu, Z. Lin, C. Han, Y. Huang, and J. Qin. δ-agree adaboost
stacked autoencoder for short-term traffic flow forecasting. Neurocomputing, 247:31–38,
2017.

[151] L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang. Big data analytics in intelligent
transportation systems: A survey. IEEE Transactions on Intelligent Transportation
Systems, 20(1):383–398, 2018.

[152] Y. Zhuang, R. Ke, and Y. Wang. Innovative method for traffic data imputation based
on convolutional neural network. IET Intelligent Transport Systems, 2018.

116

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Spatio-temporal traffic data
	Machine learning problems in traffic data
	Traffic flow prediction
	Imputing incomplete traffic data
	Clustering of traffic flow data

	Outline and contributions

	Distributed network flow problem
	Introduction
	Preliminaries
	Notation
	Graph theory
	Eliminating affine equality constraints in optimization problems

	Problem definition
	A cycle-basis distributed ADMM solution
	Minimum search variable
	Constructing cyber layer to solve the optimal power flow in a distributed manner

	Numerical example
	Conclusion and future research

	Spatio-temporal clustering of traffic data
	Introduction
	Technical background
	Problem definition
	Autoencoders
	Deep embedded clustering

	Spatio-temporal clustering
	Experimental results
	Dataset
	Temporal clusters
	Spatial clusters

	Conclusion and future work

	Spatio-temporal missing data imputation
	Introduction
	Preliminaries
	Problem definition
	A denoising autoencoder

	A convolutional-recurrent deep neural network encoder decoder framework
	A CNN-BiLSTM autoencoder
	Missing data imputation using latent feature representations

	Experimental results
	Dataset
	Preprocessing
	Baseline missing data imputation models
	Autoencoder models
	Comparison of results
	Discussion on multiple missing data imputation
	Latent feature representation

	Conclusion and future work

	Spatio-temporal forecasting
	Introduction and literature review
	Background
	Contributions of the work

	Problem definition
	Technical background
	Dynamic time warping
	Fuzzy hierarchical clustering
	Convolutional layer
	Convolution-LSTM layer
	A denoising stacked autoencoder

	Methodology
	Preprocessing
	Neural network models

	Experimental analysis
	Dataset
	Pattern analysis in traffic data
	Fuzzy hierarchical clustering
	Comparison of results
	Performance metrics
	Spatial performance metrics
	Temporal performance metrics
	Performance results on test data
	Performance results over spatial features
	Performance results over temporal features
	Performance results with missing data
	Hypothesis testing

	Conclusion and future work

	Bibliography

