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Abstract

Motivated by the discovery of apparent Edgeworth Cycles in many re-

tail gasoline markets, this paper extends the Maskin & Tirole [1988] theory

of Edgeworth Cycles to a wide range of more complicated and realistic

settings. Taking a computational approach to search for Markov Perfect

Equilibria, I examine models involving duopoly and triopoly, differenti-

ation, capacity constraints, and different sharing rules, discount factors

and initial beliefs about price leading behavior. I find Edgeworth Cycles

in equilibrium in many scenarios outside the homogenous-good Bertrand

mold. Cycle characteristics and average markups depend on the scenario.

JEL Classification: D43, L11, L13
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1 Introduction

Several authors have recently documented an interesting price cycling phenom-

enon in many retail gasoline markets in Canada. The price cycles are high-

frequency, tall relative to marginal costs and sharply asymmetric. These authors

(Noel[2003a], Noel[2003b], Eckert[2003]) argue the cycles both appear and be-

have very similar to the Edgeworth Cycles of Maskin & Tirole[1988].

To see the visual similarity between the empirical and theoretical cycles,

compare Figure 1, taken from Noel[2003b], with Figure 2 taken from Maskin

& Tirole[1988]. Figure 1 shows retail prices for a representative major branded

station and a representative independent along with the wholesale price for the

city of Toronto during 2001. The interval between consecutive data points is just

12 hours. The graph clearly shows the asymmetry in price movements. When a

station increases price, it does so by 13% on average and as much as 25%. Two

consecutive increases are effectively non-existent. Yet other stations respond to

a competitor increase almost immediately. In contrast, when prices decrease,

they do so by less than 2% per period and the overall decrease is spread out

over many periods. The pricing pattern is similar to that of Figure 2, which

shows the path of the market price in a theoretical Edgeworth Cycle.1 I refer

the reader to the abovementioned papers for further evidence that the cycles

behave consistent with the theory of Edgeworth Cycles.

In this article, I turn my attention to the underlying theory. The theoretical

market structure under which Edgeworth Cycles are derived is highly simplified

1For a specific numerical example. Marginal costs in the example are zero.
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— typically it assumes a dynamic, symmetric Bertrand duopoly game with per-

fectly homogeneous goods. Yet the apparent discovery of Edgeworth Cycles in

retail gasoline markets underscores the point that Edgeworth Cycles can exist

in real world environments that do not fit the simple Bertrand mold. Hence, it

is important to develop the theory more fully to learn under which competitive

environments we can observe Edgeworth Cycles. Conversely, we will be able

to make inferences about the underlying environment in markets where these

cycles are found.

To answer these questions, I extend the original theory of Edgeworth Cycles

along many new dimensions. I consider models involving such real world com-

plications as horizontal differentiation, capacity constraints, and markets with

more than two firms. I also consider different assumptions about discount fac-

tors, market elasticities, and beliefs about leader-follower behavior. The main

goal of this article is to see under which models (and model-specific parame-

ter assumptions) Edgeworth Cycles can still exist in equilibrium, and how the

characteristics of the cycles differ with the environment. In order to investi-

gate so many different scenarios, I use a computational dynamic programming

algorithm to search for equilibria.

The results show that Edgeworth Cycles are an equilibrium under a wide

range of scenarios, not just the simple Bertrand assumption. They can easily be

found in modestly differentiated goods markets. They can also easily be found

in the presence of capacity constraints as long as those constraints are not very

tight. Moreover, I show that cycles are not confined to duopoly settings but
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exist in triopoly as well. In the tripoly case, interesting coordination challenges

arise. Delayed starts and even false starts in resetting cycles become a part of

the equilibrium cycle process. The emergence of a price leader can help in this

regard.

The shape of the Edgeworth Cycles also varies in interesting ways with the

specific scenario. Variation in the aggressiveness of firms directly impacts the

amplitude, period, and asymmetry of the cycles. In many scenarios, price leaders

and followers emerge and impact the cycle in different ways. Therefore the

cycle shape contains important information about the underlying competitive

environment. Also, average markups vary dramatically across scenarios.

Taken together, the results show that Edgeworth Cycles are robust to many

more scenarios than previously assumed. Real world markets in which they have

been documented indeed do not fit the simple Bertrand mold. Edgeworth-like

cycles are regularly observed in many Canadian retail gasoline markets and have

also been observed in several west coast U.S. retail gasoline markets in the 1960s

and 1970s.2

As mentioned, previous theoretical work has maintained the straight Bertrand

assumption for analytical tractability. In the original game-theoretic model of

Maskin & Tirole[1988], the authors assume a symmetric Bertrand duopoly, in

which firms alternate in setting prices. They show that there are two sets of

2For the U.S., see Allvine & Peterson(1974) and Castanias & Johnson(1993). For Canada,
see Noel[2003a], Noel[2003b], Eckert[2002] and Eckert[2003]. Prior research on oligopoly pric-
ing in Canadian retail gasoline markets (for example, Slade[1987,1992] or Godby et al.[1997])
find asymmetric price movements but do not report Edgeworth Cycles as a possible source.
For Edgeworth Cycles in an experimental setting, see Kruse et al. (1994).
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possible Markov Perfect equilibria under these conditions — focal price equilib-

ria and “Edgeworth Cycle” equilibria. The former is characterized by constant

prices in equilibrium, the latter by an interesting and asymmetric cycle. In an

Edgeworth Cycle, firms repeatedly undercut one another to steal the market,

until price reaches marginal cost. At that point, a war of attrition ensues with

each firm mixing between raising price and remaining at marginal cost. Eck-

ert[2003] extends this to the case when two firms share the market unequally at

equal prices and finds Edgeworth Cycles still exist in equilibrium.

The concept of Edgeworth Cycles dates back to Edgeworth[1925] who con-

siders two identically capacity constrained firms. The author postulates that

after undercutting brings firms close to their capacity constraints, one could

raise price and profitably serve the residual demand. Maskin & Tirole[1988]

show that capacity constraints are not a prerequisite, and one of the findings in

the current article is that, contrary to Edgeworth, stronger capacity constraints

make Edgeworth Cycles less likely, not more.

The paper is organized as follows. Extensions of a homogeneous-good Bertrand

duopoly in section 2. The differentiated goods model appears in section 3, and

the Bertrand triopoly model appears in section 4. Section 5 concludes.

2 Bertrand Duopoly

The basic model I consider is the following extension of Maskin & Tirole[1988].

Two infinitely-lived profit-maximizing firms compete in a homogeneous Bertrand
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pricing game by setting prices in an alternating fashion — one firm sets its price

in even periods and the other in odd periods — and once set, the price for that

firm is fixed for two periods. Therefore, if firm 1 adjusts its price in period t,

p1t = p
1
t+1 and p

2
t = p

2
t−1. Prices are chosen from a discrete price grid. Marginal

cost, ct, is also allowed to vary over time, and is chosen by nature from a discrete

cost grid. Each firm earns current period profits of

πit(p
1
t , p

2
t , ct) = D

i(p1t , p
2
t ) ∗ (pit − ct) (1)

where

Di(p1t , p
2
t ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
D(pit) if pit < p

j
t

θiD(pit) if pit = p
j
t

0 pit > p
j
t

for i 6= j (2)

The parameter θi ∈ [0, 1], Pi θ
i = 1 specifies the fraction of market demand

firm i receives at equal prices.

The strategies of each firm are allowed to depend only on the payoff-relevant

state in each period. Therefore, a firm’s strategy depends only on the price set

by the other firm in the previous period, and current marginal cost which it

learns prior to setting its price. The equilibrium concept is that of a Markov

Perfect Equilibrium (MPE), and the equilibrium strategies are given by R1, R2,

where (p1t )
∗ = R1(p2t−1, ct), (p2t )∗ = R2(p1t−1, ct) and p

j
t−1is the price chosen by
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firm j is period t− 1 which remains in effect in period t.3

Let V 1(p2t−1) be the firm 1’s value function when firm 2 adjusted its price

to p2t−1 in the previous period, firm 1 adjusts its price in the current period,

and the current marginal cost ct is not yet known. Let W 1(p1s−1) be firm 1’s

value function when it has set price p1s−1 in the previous period, firm 2 is about

to adjust its price, and the current cost is not yet known. V 1 and W 1 can be

written as

V 1(p2t−1) = E
c

µ
max
pt

£
π1t (pt, p

2
t−1, ct) + δ1W

1(pt)
¤¶

(3)

W 1(p1s−1) = E
c

µ
E
ps

£
π1s(p

1
s−1, ps, cs) + δ1V

1(ps)
¤¶

(4)

and similar equations are found for V 2 andW 2. The firm-specific discount factor

is δi. The inside expectation inW 1 is taken with respect to the distribution ofR2

and both the outside expectation inW 1 and the expectation in V 1 is taken with

respect to the distribution of c.4 To choose the best response price, given the

current rival price p2t−1 and current cost ct, firm 1 maximizes π1t (pt, p
2
t−1, ct) +

δ1W
1(pt) (ie. V 1 without the expectation.) Firm 2 acts in a similar way.

The original Maskin & Tirole[1988] model can be recovered from this setup

simply by setting θi = 1
2 , δ1 = δ2, and ct = c for all t. The Eckert[2003]

extension can be recovered by setting δi = δ for all i, and ct = c for all t but

allowing θi to differ from 1
2 so that firms share the market unequally at equal

3 See Maskin & Tirole (2001) for general properties of MPEs (not simply with alternating
moves games).

4This formulation implicitly assumes there is no persistence in c, a point to which I will
return.
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prices. Since marginal costs are constant and known in these models, each Ri

does not depend on c and the expectations in V i and W i over c vanish.

From this starting point, I extend the basic model to a wide range of sce-

narios. Because of the number of variants, I employ a computational dynamic

programming algorithm to solve for the value functions V i andW i and the best

response functions Ri. There is a challenge in doing this because the MPE are

generally mixed strategy equilibria and an algorithm based on pure strategies

will not converge. One could solve for the probability (or probabilities) analyt-

ically if one knew exactly at which opponent price (or prices) the mixing would

occur, but this is not known ex ante.

To circumvent this problem, I adapt the model in such a way to ensure it

always has a pure strategy equilibrium. I do this by allowing marginal costs

to fluctuate within a specified band period by period. To see how this works,

imagine the equilibrium in a constant marginal cost world would call for a firm

to set pH with probability 1
2 and pL with probability

1
2 . I replicate this by having

the firm draw a new ct from the marginal cost distribution in the current period.

If that draw is above the median, the firm in equilibrium will choose pH and

if below, it will choose pL. Effectively, the current realization of marginal cost

does the required “mixing”. The resulting pure strategy equilibrium involves a

best response for firm i, Ri(pjt−1, ct) that depends on both p
j
t−1 and ct.

Given that the mixing probabilities are unknown ex ante, I choose a very

fine grid of possible marginal costs (to replicate the mixing probability to within

0.00025) and a uniform distribution to cover the band evenly. While the pur-
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pose of including fluctuating marginal costs is to solve the “mixing problem”,

the resulting cost process is necessarily an abstraction. For example, current

period marginal cost is assumed independent of previous draws, the distribution

is assumed uniform and finally, marginal cost can change each period although

any given price changes every two. These simplifications avoid significant di-

mensionality problems in the computation, as explained in the footnote.5 As

my purpose is to study Edgeworth Cycles under a variety of market structures,

these assumptions are not important to the results. The cost band is narrow

and the particular process within that band is of little importance.

The system is converged when fixed point vectors V i and W i are found. At

each iteration k, I update all four value functions as follows. To update V 1

and W 2, I calculate the best response function of firm 1, (p1)∗ = R1(p2, c),

to every possible prior period price p2 and cost realization c. I then calculate

the net present value of profits for each firm (given each p2, c, R1(p2, c), and

V 2k−1(p
1) and W 1

k−1(p
1) from the previous iteration). Next, for each p2, I cal-

culate the expectation over c of each firm’s profits. This expectation is the new

V 1k (p
2) and W2

k (p
2). I update V 2 and W 1 similarly.6

5 In the current setup, V i and W i depend only on previous price and so are #p vectors,
where #p is the number of points on the price grid. Adding persistence in marginal costs —
perhaps as a simply random walk process — means that V i and W i must each contain #p ∗#c
elements (and must converge elementwise), where #c is the number of points on the cost grid.
In examples that follow, #p is 20 but #c ∗ #p is 40,000. Also, with any distribution other
than uniform, either a greater #c would be necessary to achieve the same 0.00025 standard
error, or the cost grid would have to be spaced unevenly with more points near the peak of
the distribution.

6Pakes & McGuire (1994,2001), Ericson & Pakes (1995), Pakes(2000) and others suggest
techniques for reducing computational burden such as using an polynomial approximation for
the value function and making efficient use of symmetry. Because of the discrete and jumpy
nature of the best response functions I describe below (and resulting “waviness” of the value
function), I choose to use the precise, but slow, algorithm in the text. I use symmetry between
firms to reduce the burden where possible, but since most specifications are asymmetric in
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In the Maskin & Tirole model, multiple Edgeworth Cycle equilibria and mul-

tiple focal price equilibria exist. Therefore I test a wide range of starting values

in each scenario in case there are multiple equilibria. Interesting, I routinely

find the same equilibrium each time regardless of the starting values attempted,

except as noted. In particular, I have not replicated both Edgeworth Cycle and

Focal Price equilibria in the same scenario. This may be due to the fluctuating

marginal cost assumption or because of the instability of the one of the equilib-

ria. For consistency, all reported results use starting values for V i and W i that

would be the outcome in a single period static game (ie. if discount factors were

zero) except as noted.

2.1 Undercutting, Matching,and Relenting

The baseline case is the simple two-firm Bertrand model with linear inverse

demand curve given by D(p) = a− bp. To fix an example for discussion, let a =

20 and b = 1. Prices are chosen from a discrete price grid pi = {x}, x = 0..20.

Marginal cost in each new period is drawn randomly from a discrete uniform

cost grid in the range ct = {x/2000}, x = 0..2000. Also, set the equal-price

sharing rule θi = 1
2 and the discount factor δi = 0.95 for each firm.

The key difference between this specification and previous works is that I

allow for fluctuating marginal costs. In this case, I still easily find Edgeworth

Cycles in equilibrium. In the figure appendix, I report the equilibrium best

response functions Ri(pjt−1, ct) in the top panel of Figure 3 and the equilibrium

nature, this is of limited value.
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price paths over 40 periods in the bottom panel.7

With minimal practice, one can glean all the pertinent information in the

best response figure in a single glance. For this first example, I discuss the

mechanics of firm 2’s best response function, depicted with circles, in more

detail. First, any circle placed immediately below the 45◦ line represents an

undercut of one notch on the price grid by firm 2. For example, firm 2’s response

to any p1 ∈ [9, 14] is to undercut by a single notch. A circle placed further below

the 45◦ line represents a larger and more aggressive undercut. The figure shows

that firm 2 aggressively undercuts any p1 ∈ [15, 20] down to 14 and undercuts

any p1 ∈ [5, 7] down to 4 (and as explained below, it sometimes undercuts p1 = 8

to 4 as well.)

Matching firm 1’s price is represented by a circle directly on the 45◦ line,

as can occur in response to p1 = 1 or 2. When firm 2 responds by raising its

price back to the top of the cycle, which I call “relenting”, we observe circles

far above the line, as can happen in response to p1 ∈ [0, 4]. Had firm 2 wanted

to respond by raising its price only slightly instead, which I call “stepping up”

(and not observed in this example), we would see a circle only slightly above

the line.

Often, firm 2 will respond to firm 1 by mixing between two or more actions

(more accurately, its action depends on realized marginal cost). This is seen

as multiple circles on the same vertical line. In this example, it happens at

p1 = 8 (where firm 2 mixes between undercutting to 7 and undercutting to

7Because the price grid is discrete, the displayed best response functions are also discrete.
I have, however, connected the dots in the price path figures to facilitate presentation.
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4), p1 = 3 or 4 (mixing between undercutting and relenting), p1 = 2 (mixing

between undercutting, matching, and relenting), and p1 = 1 (mixing between

matching and relenting).8

Reading firm 1’s best response function is similar: undercuts are represented

by triangles to the left of the 45◦ line, relenting and stepping up are to the right,

and multiple triangles on the same horizontal line represent mixing.

Firms exhibit several interesting behaviors along the cycle. First, since the

monopoly price in the static Bertrand game is 10 to 11, the first undercut from

the top of the cycle is to a price substantially greater than the static monopoly

price. This allows firms to operate more often through the most profitable

section of the demand curve.

Second, undercutting proceeds in an orderly fashion, one notch at a time,

through the most profitable prices. Then firms become more aggressive when

price reaches 8. If marginal cost is high enough, a firm will aggressively undercut

to 4 (and if not, it undercuts to 7 and the opponent with certainty undercuts

to 4 the next period). A price of 4 opens up the possibility that the other firm

will relent (setting price back to 15) the very next period.9

Third, once prices become low, firms play an increasingly passive strategy.

Each firm would prefer not to be first to raise price since it would mean losing

its turn of being the low price supplier to the market. Should price reach 1 or

8For readability, I do not report the exact mixing probabilities (or scale the size of the
symbols) in the graphs when multiple responses are possible. It is always the case that
undercutting occurs at lower marginal costs than matching, and matching occurs at lower
marginal costs than relenting or stepping up.

9Although excluded from the diagram to reduce clutter, the probability of relenting in-
creases as the price falls from 4 to 1, and is certain from a price of 0. (Since 0 is not a
response to any price, though, it does not occur on the equilibrium path.)
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2, firms often use a matching strategy, accepting a split of the market at very

unprofitable prices and then passing the turn back to its opponent. Unlike the

quick and certain length of the relenting phase, the length of the undercutting

phase is greater and more uncertain.

Finally, relative a static Bertrand game, the average market price consumers

face and firms receive in the simulations is relatively high. At 8.5, it is close to

the average static monopoly price of 10.5 but off the highest static competitive

price of 2.

2.2 A Price Leader and the Step-Up Strategy

In the previous example, the firms were symmetric and equally likely to relent

first. But one can easily imagine situations in which otherwise symmetric firms

fall into a pattern in which the same firm becomes a consistent price leader

in raising prices. The leader relents first each time because it knows the fol-

lower never will; the follower never relents because it knows the leader always

will. Computationally, I find this asymmetric equilibrium after making a small,

random perturbation in the starting values in V i for one of the firms.

In Figure 4, firm 1 is the consistent price leader and firm 2 is the follower.

(Note the absence of a horizontal line of circles in the upper left.)

The behaviors of the firms now differ in interesting ways that impact the

shape of the cycle. Relative to the leader and to itself in the previous case,

follower behavior is especially aggressive at high and moderate prices and es-

pecially passive at low prices. From the top of the cycle, its first undercut is
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to a price very close to the static monopoly price. Since firm 1 will surely be

first to relent, firm 2 has less incentive to delay the bottom of the cycle into the

future and instead takes a large profit currently. Firm 2 may then undercut by

as much as five notches, causing firm 1 to relent again sooner.10 In contrast,

firm 1 is less aggressive than in the previous case, preferring to undercut more

slowly and relent less often.

Once prices get low, firm 2 suddenly becomes passive. In response to low

prices, it may either match price or instead simply “step up” its price just above

that of firm 1 (as shown by circles just above the 45◦ line). Though not observed

on the equilibrium path, this step up strategy is important as it guarantees the

leader will relent.

The resulting cycle is more rapid, smaller in amplitude, and less asymmetric

relative to the previous case.

As expected in a price game, there is a profit advantage to the follower.

Firm 2 enjoys profits 50% higher than the leader, and 24% higher than in the

symmetric case. The leader’s profits fall by 17%. Consumers are also better off,

with an average price of 7.7, or 10% lower than in the symmetric case.11

2.3 Elasticities, Discount Factors, and Sharing Rules

To see how the aggregate elasticity of demand affects cycles, I examine a series

of demand curves by changing the parameters a and b to pivot around the point

10Undercutting to 5 yields a 2
3
probability that firm 1 will relent in the next period. Un-

dercutting to 3 guarantees it.
11For each symmetric equilibria, these two additional equilibria — one for each firm as the

price leader — are easily found. I return to the practice of symmetric starting values hereafter.
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(10,10). Cycles are easily generated for all values of a and b, consistent with

the notion that the primary gain to undercutting is from stealing the existing

consumer base, rather than creating new consumers. But the shapes differ. With

relatively more elastic demand curves, firms are less aggressive in undercutting,

more often proceeding by one notch at a time. This is because they can serve

a relatively larger market at low prices and can thus be more patient during

the war of attrition. The best response function and cycles for the more elastic

case a = 15, b = 0.5 are shown in Figure 5. With relatively less elastic curves,

aggressive multi-notch undercutting near the bottom is more common and the

cycles progress more quickly.12

I also find Edgeworth Cycles in equilibrium for all tested pairs of discount

factors δi ∈ (0, 1).13 Consider first the case of a common discount factor. When

the discount factor is relatively lower, the first undercut from the top of the

cycle will come closer to the static monopoly price. Then, since firms are less

interested in hastening the next relent (and the greater profits that comes with

it), undercutting proceeds more slowly, by one notch at a time even through

lower prices. The downward slope of the cycle loses its concavity and becomes

more linear (until matching at very low prices adds some convexity). Extended

matching at low prices is more likely.14

12Rather than pivot around (10,10), I also simulated parallel shifts in demand and piv-
ots around the quantity intercept (of 20) with descriptively similar results — less aggressive
the more elastic. Pivoting around the price intercept yields a set of identical best response
functions since the elasticity at a given price is unchanged.
13 δi = {0.01, 0.05x, 0.99}, .x = 1..19. Even when δi = 0, Edgeworth Cycles is still one

possible type of equilibrium, since when prices are at marginal cost, a firm is indifferent across
all p ≥ c. Any p > c will create a cycle.
14 It is interesting to note that while economists describe such firms (with low δ) as less

patient, some non-economists may view these firms as being more patient since they routinely
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For example, in the case of δi = 0.5 (not shown), the first undercut is to 11

or 12 and undercutting is always by one notch at a time down to 2. Matching or

undercutting still occurs with 61% probability from a price of 2 and matching

still occurs with 22% probability from 1. The cycles are thus shifted downward

in price, and longer in duration. Consumers are better off: the average price is

5.8 in this scenario, 44% below the static monopoly price and 31% below the

baseline δi = 0.95 case.15

If firms have different discount factors, the equilibrium is a mix between the

asymmetric equilibria of the previous section and low discount factor equilibria

discussed above. First, the most patient firm (with the highest δ) emerges as

the consistent price leader and relents first every time. For example, assume

this is firm 1 with δ1 = 0.95 > δ2 (cases not shown). Because firm 1 puts

greater weight on future profits, it has the greater incentive to move prices back

to the top of the cycle. From there, firm 2 undercuts to a price close to the

static monopoly price — and the lower the discount factor, the closer — until at

a discount factor of about δ2 = 0.5, it undercuts directly to it. And while firm

1 undercuts by one notch at a time except near the very bottom, firm 2 plays

an aggressive stategy at moderate prices, often undercutting by several notches

at once. The higher firm 2’s discount factor, the more it does of this, the lower

its δ2, the less it does (choosing instead to undercut by one notch). Firm 2

turns passive at low prices, either matching or standing ready to play the step

up strategy at very low prices to avoid relenting.

wait out a war of attrition longer than high-δ firms.
15When δi = 0.99, average price rises to 9.2, 11% higher than the δi = 0.95 case.
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Conditional on δ1, changing δ2 has little effect on average prices, which is

about 7.7 for δ1 = 0.95. Although the cycle top is lower with lower δ2, firm 2

does not aggressively undercut from moderately high prices as much, and these

effects tend to cancel out. Lower δ1 (with δ1 > δ2) leads to lower average prices

as before.

Next I briefly consider an unequal sharing rule at equal prices, θi. Eck-

ert[2003] also considers unequal sharing rules and solves for an analytical equi-

librium in the context of constant marginal costs. An unequal sharing rule would

arise if some consumers have a slight preference for one firm at equal prices, or

perhaps if consumers randomly choose equally priced stores but the stores are

owned in different numbers by the firms. I find that Edgeworth Cycles exist in

equilibrium with unequal sharing rules and fluctuating marginal costs.

Consider the extreme case of θ1 = 1 (and δ1 = δ2 = 0.95), shown in Figure

6. In this case, firm 1 captures the entire market at equal prices. Because it

can earn more profit at low prices than its opponent (simply by matching), firm

1 has less incentive to relent first. Therefore firm 2 emerges as the consistent

price leader, relenting to a price of 12 each time.

The undercutting phase is especially interesting. Firm 1 chooses to match

relatively high prices rather than undercut them, since it can steal the market

at this higher price anyway. Firm 2 continues to undercut by one notch every

time (unless it relents). When price falls to 7, firm 1 then aggressively undercuts

to 4 to hasten firm 2’s next relent. Average price along the cycle is similar to

the baseline case at 8.3. While the top of the cycle is lower, high prices are
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matched and in effect longer.

With θ1 = 1 but lower discount factors, firm 1 matches through increas-

ingly more moderate prices. When δi = 0.5, for example (not shown), firm 2

undercuts all prices by one notch and firm 1 matches all prices down to 2 (or

until firm 2 relents). The cycle is visually pleasing with a gentle downward slope

that is linear through all prices, until matching adds convexity at the bottom.

Because firm 1 matches everywhere, the cycle period is longer. Average market

price falls to 6.8.

For intermediate values of θ1 ∈ (0.5, 1), firm 2 continues to be the consistent

price leader and continues to undercut by one notch at a time when not relenting.

The follower firm 1 continues to aggressively undercut moderate prices to hurry

firm 2’s next relent. But in response to high prices, firm 1’s behavior depends

on θ1. With θ1 closer to 0.5, firm 1 more often undercuts high prices by one

notch, and with θ1 closer to 1, it more often matches.

In summary, Edgeworth Cycles are robust to a wide range of elasticities,

discount factors, sharing rules, and price leading behavior. The shape and

speed of the cycles depends upon the scenario.

2.4 Capacity Constraints

Edgeworth Cycles result from a firm’s short term incentive to steal market share

by undercutting price. However, this incentive is diminished if the firm is ca-

pacity constrained and cannot serve the entire market at the new lower price.

Moreover, there is residual demand left over when an opponent’s constraint
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binds so a firm may prefer a relatively high price for this reason. Many in-

dustries, including gasoline markets, have capacity constraints on at least some

firms. Can Edgeworth Cycles still exist when one or more firms operate under

capacity constraints? The answer is yes, provided the constraints are not too

tight.

Demand is recast as

Di(p1t , p
2
t ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min{Ki,D(pit)} if pit < p

j
t

min{Ki,D(pit)−min[Kj , θjD(pjt)]} if pit = p
j
t

min{Ki,max[0,D(pit)−min[Kj ,D(pjt)]]} pit > p
j
t

for i 6= j

(5)

where Ki is the maximum output, or capacity, of firm i. Capacities are exoge-

neously given.16 Marginal cost is assumed to be ct for all units up to Ki and

infinity thereafter. I return to the situation where θi = 1
2 and δi = 0.95, and

allow Ki to take on integer values in [0, 20].

I first consider the case of equal capacities, K1 = K2. For large capacities,

Ki ≥ 10, I easily find Edgeworth Cycles in equilibrium. However, for relatively

small capacities, Ki < 10, the incentive to undercut is so diminished that only

Focal Price equilibria appear instead.

With capacities large enough to support Edgeworth Cycles, the shape of the

cycles itself depends on the tightness of the constraints. With Ki ≥ 15, the best

16 Some models of endogeneous capacity choice in other contexts include Kreps &
Scheinkman (1983), Saloner(1987), and Kovenock & Roy (1998), and Reynolds & Wilson
(2000).
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response function diagram is identical to the basecase of Figure 3 and the cycles

very similar.17 As Ki falls toward 10, the undercutting phase becomes more

linear and longer and the Edgeworth Cycles thus become less rapid and more

asymmetric. The reason is that when a firm’s capacity-constrained opponent

undercuts the firm in the following period, it leaves residual demand for the

firm. Having made a smaller undercut in the previous period allows the firm

to serve that residual demand at a higher price. As a result, firms are more

reluctant to undercut by multiple notches at once, and the undercutting phase

is more linear. Because constrained firms make fewer profits at low prices, firms

are more likely to relent a bit sooner as well. Relents are still to a price of 15.

In Figure 7, I show the case of Ki = 10. The sales-weighted average price

in this case is 8.27, only 3% below that the baseline case. The smoother under-

cutting through the bottom half of the cycle tends to lower the average, but the

fact that firms no longer set very low prices on the equilibrium path and the

fact that the higher priced firm still makes sales tends to raise it.

Using a wide range of starting values, I find only Focal Price equilibria below

Ki = 10.18 The best response functions and equilibrium price path are shown

in Figure 8 for the case of Ki = 9. In this case, the focal price is 7 and firms

carry 28% excess capacity. The excess capacity allows firms to stand ready to

undercut a price of 6 down to 5 (with positive probability) to punish defection

17The mixing probabilities differ.
18While I cannot claim each equilibrium to be unique, the fact that all attempted sets of

starting values reach the same one suggests it that the derived equilibria may be most stable.
See Maskin & Tirole (1988) for a discussion of multiple equilibria with constant marginal
costs.
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from the original focal price. From 5, firms play a war of attrition, mixing

between matching or resetting the focal price.

As Ki decreases below 9, there are two opposing effects on the focal price.

First, it becomes more costly to punish defections from a given focal price (by

undercutting further), since a firm has less capacity. This suggests a lower focal

price with lower Ki (reducing the incentive to defect in the first place) and

firms producing closer to capacity.19 However, because capacities are smaller,

the market-clearing price that would occur with full capacity production rises.

The former effect dominates with high Ki and the latter dominates at lower K.

For example, when Ki = 8, the focal price falls to 6 and excess capacity falls

to 13%. Thereafter, focal prices begin to rise again, but at a relatively slower

rate than if the first effect were not present. At Ki = 7, the focal price is 7

although excess capacity is now only 7%. Once Ki ≤ 5, excess capacity falls to

zero and only the second effect remains. The focal price is then the same as the

full-capacity market clearing price (pi = 10 at Ki = 5, pi = 12 at Ki = 4, etc.).

For all cases (K2 = j, j = 0..19) in which only one firm (firm 2) is con-

strained, I find Edgeworth Cycles in equilibrium (except K2 = 0). The strong

asymmetric shape, however, becomes less and less pronounced as the constraint

on firm 2 tightens.

In all cases, the unconstrained firm 1 emerges as the consistent price leader

19The result is similar to Benoit & Krishna (1987) and Davidson & Denekere (1990) who
show that excess capacities can support higher collusive prices in pricing supergames. Also see
Brock & Scheinkman (1985), Rotemberg & Saloner (1986), Haltiwanger & Harrington (1991)
and Bagwell & Staiger (1996) for discussions of maximum sustainable cartel prices in various
contexts.
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in relenting. The cost to relenting first is relatively lower for firm 1 since it will

still serve residual demand in the current period at its new higher prices. Given

that firm 1 will relent first, firm 2 plays a familiar strategy: undercutting less

aggressively near the top, more aggressively near the bottom, and then matching

or stepping up at very low prices. For K2 ≥ 15, the best response function looks

very similar to that in Figure 4.

As constraints tighten on firm 2 from K2 = 15 down to 6, the cycle becomes

more rapid, smaller in amplitude, and less asymmetric. Since firm 1 is willing

to relent sooner (since more residual demand is available), firm 2 is willing to

undercut more aggressively through lower prices to hasten it. Firm 1 relents to

a price closer to the monopoly price each time. In Figure 9, I report the case of

K2 = 7 showing the rapid, low amplitude cycle.

There is one-time discrete upward shift in cycle duration when K2 falls from

6 to 5. The capacity constraint is now tight enough that firm 2 elects to match

very high prices rather than undercut, since it can still sell to capacity when

matching. Duration increases from 4 periods on average to 6. However, firm

2 is still increasingly aggressive in undercutting moderate and low prices, and

cycle duration begins to decrease again as K2 falls toward zero.

It may at first appear that the cycle is no longer present by the time K2 = 2.

Firm 1 always sets price to 9 or 10 depending on cost, and firm 2 always sets

a price of 7. But these are not different “focal” prices — in fact, it is a hyper

cycle where firm 2 undercuts on every turn by just enough to force firm 1 to

relent on every turn. While firm 2 could have sold to capacity by just matching
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price, firm 1 would have then responded with an undercut and leave zero sales

for firm 2 in the next period. Hence, it undercuts to force the relent. (Off the

equilibrium path, firm 2 matches most prices as one may have expected.) It is

similar for K2 = 1. Once K2 ∼= 0, we observe firm 1 simply setting the static

monopoly price each period.

Average sales-weighted prices edge up as well with lower K2. At K2 = 7,

it is 7.3 but then rises to 9.8 when K2 = 3 and ultimately 10.5 (the static

monopoly price) when K2 = 0.

In summary, when firms have identical capacity constraints, I find Edgeworth

Cycles in equilibrium unless the constraints are too tight. I find focal prices that

first fall and then rise as constraints tighten even more. When only one firm

is capacity constrained, I again find Edgeworth Cycles at all constraint levels

except very close to zero. The cycles become more rapid, smaller in amplitude

and less asymmetric with a tighter constraint. High-price matching can also

occur with relatively tight constraints.

3 Differentiated Product Model

Most industries are characterized by at least some product differentiation. With

differentiation, the incentive to undercut is diminished since some consumers will

remain loyal to the opponent’s product. Can Edgeworth Cycles still exist when

the goods are differentiated? The answer is yes, provided the differentiation

is not too great. I illustrate with an alternating moves Hotelling model of
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horizontal differentiation.

Consumers tastes are uniformly distributed over a univariate product space

that has support [0,1]. Firm 1’s product is located at point 0 and firm 2’s

product is at point 1. Each consumer h has unit demand and receives utility in

time t of

uiht =

⎧⎪⎪⎨⎪⎪⎩
vi − pit − τziht if purchase from firm i

0 if do not purchase at all
(6)

where vi is the intrinstic value of the product of firm i, pit is the price charged

by firm i, and zih is the distance in product space between consumer h’s most

preferred product (which may not be produced) and product of firm i. Let τ

is the disutility per unit of distance between the preferred and the purchased

product.20 Since no firm will price above the intrinsic value of its product, let

the top of the grid sup(pi) = vi.

If the prices are low enough that all consumers make a purchase, which

occurs when (v1 + v2)− (p1t − p2t ) ≥ τ , the market share of firm i is given by

sit(p
1
t , p

2
t ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2 +

(vi−vj)
2τ − (pit−pjt)

2τ if
¯̄̄
(vi − pit)− (vj − pjt)

¯̄̄
≤ τ

1 if (vi − pit)− (vj − pjt) > τ

0 if (vj − pjt)− (vi − pit) > τ

i 6= j

(7)

If prices are high enough that not all consumers are served at those prices, then

20For a consumer whose preferred product is at yh ∈ [0, 1], z1h = yh and z2h = 1− yh.
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firm i’s share is

sit(p
i
t) =

vi − pit
τ

(8)

Letting H be the total number of consumers in each period, current period

profits to firm i is

πit(p
1
t , p

2
t , ct) = H ∗ sit(p1t , p2t ) ∗ (pit − ct) (9)

which is substituted into the equations for V i and W i given above.

By construction in this model, aggregate elasticity is zero while all consumers

are served, and −2t when not all served.

3.1 Cycles in Differentiated Markets

I find Edgeworth Cycles in equilibrium for mildly differentiated goods markets,

but not for more highly differentiated goods markets. To illustrate, assume

v1 = v2 = 10, so the price grid is pi = {x}, x = 0..10, the marginal cost

grid as before, δi = 0.95 and θi = 1
2 . Now consider variation in the degree of

differentation, τ .21

First, because an undercut of one notch steals the entire market for all

τ ≤ 1, all such cases are identical and the Edgeworth Cycles found replicate the

homogeneous goods situation (with a zero aggregate elasticity demand curve).

Firms undercut by one notch at a time through all prices, except from 6 and 4

where it is by two, and they may match at prices of 2 and 1. Firms relent back

21 I examine the set τ = {1 + 0.05x, 2 + x}, x = 0..10.
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to 10 from prices as high as 4. (Case not shown.)

When τ > 1, the market is meaningfully differentiated in that not all con-

sumers will switch in response to a minimum undercut. In Figure 10, I describe

the case of τ = 1.1. Edgeworth Cycles can indeed exist in mildly differentiated

goods markets. Given this τ , an undercut of one notch steals an additional 45%,

of the market, leaving the other firm with 5%.22 Average sales weighted price is

5.2, well below the static monopoly price of pm(v, τ) = v− τ
2 = 9.45, but above

the average static competitive price of 2.1.

However, with a bit more differentiation (τ ≥ 1.25), Edgeworth Cycles are

replaced by Focal Price equilibria. The case of τ = 1.25, when a one-notch

undercut steals an additional 40% of the market, is shown in Figure 11. The

focal price is 7. Off the equilibrium path, firms stand ready to undercut a price

of 6 down to 3 (with positive probability) to punish defection from the original

focal price. From 3, firms mix between matching or resetting the focal price.

As τ increases higher above 1.25 (but still below 6 when the no purchase

option will become a factor), there are two opposing effects on the equilibrium

focal price. First, it becomes more costly to punish defections from a given

focal price since a greater undercut would be needed to have an impact. This

works to reduce the sustainable focal price. However, consumers are willing to

pay a higher price as products become more differentiated. The former effect

dominates with lower τ and the latter dominates at higher τ . For example, when

τ ≥ 2, firms no longer credibly threaten to further undercut an undercut from

22This best response function diagram is identical to the previous τ ≤ 1 case. Small
differences in the mixing probabilities still exist.
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the focal price...only to match it with positive probability. Hence, the focal price

falls to 5 when τ = 2 but then climbs back up to 7 as τ rises up to 6.23

When τ exceeds 6, firms compete against the no purchase option rather than

each other and prices must fall gradually to provide zero utility to the consumer

at 1
2 . Once τ ≥ 9, firms no longer serve the middle consumers in equilibrium

and each sets its own monopoly price of 5 or 6 (depending on cost) thereafter.24

Therefore, Edgeworth Cycles are robust to a small amount of product differ-

entiation. However, we should not expect to find Edgeworth Cycles in markets

that sell highly differentiated products. Focal prices are more likely.

4 Bertrand Triopoly

Earlier studies have focused on the duopoly Bertrand model for its analytical

tractability. But can Edgeworth Cycles still exist when there are more than two

firms? In this section, I show that Edgeworth Cycles are still an equilibrium

outcome in a Bertrand triopoly. However, in contrast to the two firm case,

coordination problems in relenting can occur. There are “delayed starts” in

which following firms do not follow immediately and even “false starts” in which

the relenting firm returns to the bottom when others do not follow soon enough.

In the three firm game, each firm can adjust its price every third period and

its price is fixed for the following two. Firm 1 adjusts its price in period t, firm 2

23At τ = 2, a one-notch undercut steals an additional 25% of the market. At τ = 6, it steals
only 8%.
24Recall that when all consumers are served, the monopoly price is pm = v − t

2
and falls

with τ . When not all consumers are served, which requires τ > v − c, the static monopoly
price is pm = (v+c)

2
and is independent of τ .
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in t+1, and firm 3 in t+2 before returning to firm 1 again. The value functions

for firm 1 are:

V 1(p2t−2, p
3
t−1) = E

c

µ
max
pt

£
π1t (pt, p

2
t−2, p

3
t−1, ct) + δ1W

1(p3t−1, pt)
¤¶

(10)

W 1(p3s−2, p
1
s−1) = E

c

µ
E
ps

£
π1s(p

1
s−1, ps, p

3
s−2, cs) + δ1U

1(p1s−1, ps)
¤¶

(11)

U1(p1r−2, p
2
r−1) = E

c

µ
E
pr

£
π1r(p

1
r−2, p

2
r−1, pr, cr) + δ1V

1(p2r−1, pr)
¤¶

(12)

The value function V 1(p2t−2, p3t−1) is the expected future profits of firm 1 at a

time t when it is firm 1’s turn to adjust its price, given that firm 2 set price

p2t−2 two periods before (p2t−2 = p2t−1 = p2t ), firm 3 set price p3t−1 in the previous

period (p3t−1 = p3t = p3t+1), and ct is not yet known. Similarly, the value function

W 1(p3s−2, p1s−1) is firm 1’s expected future profits at a time s when it is firm 2’s

turn to adjust its price and U1(p1r−2, p2r−1) is its expected future profits at time

r when it is firm 3’s turn to adjust price. V 2, W 2, U2, V 3, W3, and U3 are

similarly defined.

The per period profit function is

πit(p
1
t , p

2
t , p

3
t , ct) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(pit)(p
i
t − ct) if pit < p

j
t and p

i
t < p

k
t

θi

θi+θj
D(pit)(p

i
t − ct) if pit = p

j
t , p

i
t < p

k
t

θiD(pit)(p
i
t − ct) if pit = p

j
t = p

k
t

0 if pit > p
j
t or p

i
t > p

j
t

for i 6= j 6= k

(13)
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Therefore the lowest priced firm serves the market, or if two or more firms have

the lowest price, they split the market according to the sharing rule θi, i = 1..3.

Again, to fix an example for discussion, let D(p) = 20− p and θi = 1
3 . Because

of the additional computational demands of the three firms model, I allow for

200 points on the cost grid, ct = {x/200}, x = 1..200.25

If we believe that the interval of time between firm i’s moves should not

change regardless of how many firms there are, then firms should care about

its profits three periods hence in the three firm model as it would two periods

hence in the two firm model. To adjust for this, I use a discount factor of

δ1 = δ2 = δ3 = 0.967 in the base case.26 If instead we believe that the time

interval between consecutive price changes by different firms should not change,

δi = 0.95 would again be used. Results are very similar between the two.

4.1 Cycles in Triopoly

I find Edgeworth Cycles continue to be an equilibrium in triopoly. An example

of the market price path is given in the top panel of Figure 12. Best response

functions are not shown.

The process underlying the three-firm cycle is the same as the two firm

case. If the minimum price of the other two firms are greater than 14, the

third firm undercuts to 14 and captures the market. The undercut is to a price

substantially greater than the monopoly price of 10 to 11.

From there, the active firm undercuts the lowest priced firm by one notch on

25Mixing probabilities can be replicated to within 0.0025.
260.9673 ∼= 0.952
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the grid in response to prices from 14 all the way down to 7. Hence, undercutting

is orderly and firms take turns serving the market through the most profitable

range of prices. Once the minimum price of the other two reaches 6, a firm may

undercut by one notch as usual if cost is high, but would instead aggressively

undercut to 3 if cost is low. The aggressive play pushes the market through

the low prices faster and also pressures opponents into relenting earlier. If the

minimum price of the other firms reaches 4 or lower, the active firm — if it does

not relent — responds by undercutting by one notch or by passively matching

the lowest price. Matching can occur down to a price of 1 on the equilibrium

path, as observed in the last trough of the diagram. When a firm attempts to

lead prices back to the top of the cycle, it sets its price to 16.

4.2 Delayed and False Starts

I say “attempts to lead prices back to the top” because in contrast to the two

firm case, immediate following by the other two firms is no longer guaranteed.

There can be “delayed starts” in cycle resetting, and in some instances “false

starts.”

A delayed start occurs when a firm must wait more than one turn (three

periods) for others to follow it to the top of the cycle. The top panel of Figure

12 shows an example of a delayed start around the third peak. It is easily

identified by an extended flat line at the top of the cycle. After a high cost

draw and facing a minimum opponent price of 3 (previously set by firm 2), firm

3 is the first to relent to the top. But with a low cost draw in the next period,

31



firm 1 finds it more profitable to undercut to a price of 2 rather than follow

firm 3. The result is that firm 3 sits at the top of the cycle and makes no sales

for two consecutive turns (six periods in all) instead of the usual one. Longer

delays can also occur.

A false start occurs when a firm abandons its effort to reset prices higher

altogether and returns immediately to the bottom with the other firms. Two

examples of false starts are shown in the bottom panel of Figure 12. They take

on the appearance of double peaks along the price path — the first and third

main peaks show false starts. (The reader will note the second peak is another

example of a delayed start.)

Consider the first false start in the figure. In this case, firm 2 relents first

after facing a low minimum opponent price of 3 (set by firm 1) and suffering a

very high cost draw. Unfortunately for firm 2, firm 3 and then firm 1 receive

favorably low cost draws in the following two periods and — rather than follow

— continue to undercut each other. Had its next cost draw been high, firm 2

would have remained at the top for another turn, as occurs with a delayed start.

In this example, however, its receives a cost draw low enough that it is more

profitable to abandon its position at the top of the cycle and match firm 1’s

price at the bottom. This action delays the resetting of the cycle but greatly

increases the probability (up from zero) that the others will relent first.

In simulations, false starts occurred in 6% of all attempted relents (ie. all

peaks) and delayed starts occurred in an additional 13%.

The coordination problems of delayed starts and false starts make it more
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challenging and costly to be first to reset the cycle. As a result, firms hesitate in

relenting and market prices tend to be fall closer toward the band of marginal

costs.27 This is easily seen in a comparison of Figures 3 and 12. The average

market price on the equilibrium path is now 7.2, 16% lower than in the two firm

case.

When δi = 0.63, average market price falls further to 5.51.28 Firms undercut

by only one notch even through lower prices and extended matching at prices

of 1 and 2 are commonplace. False starts and delayed starts are also more

common, and the delays are often two or more turns instead of one.

In summary, Edgeworth Cycles can exist in equilibrium even in a triopoly

setting. They progress similar to the two firm case, except that coordination

problems in cycle resetting can occur. The emergence of a consistent price

leader — or more specifically a price leading order — is useful for reducing these

coordination problems.

5 Conclusion

Prior theoretical work on Edgeworth Cycles has largely been restricted to the

symmetric homogeneous-goods Bertrand duopoly case for its analytic tractabil-

ity. In this article, I employ a computational approach in order to search for

Edgeworth Cycles under a wide assortment of competitive models involving

such real world complications as differentiated goods, capacity constraints, and

27With lower discount factors (for example, δi = 0.5), the troughs become deeper and
coordination problems become more prevalent.
28Comparable to the δi = 0.5 two firm case, as (0.63)3 = (0.5)2.
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a triopoly market structure.

In a framework that allows for fluctuating marginal costs, I show that Edge-

worth Cycles can exist in many scenarios beyond the simple Bertrand mold.

They can exist in a differentiated goods market provided the differentiation is

not too great. They can exist in capacity constrained markets as long as the

constraints are not too tight. If differentiation is sufficiently great or capacity

constraints sufficiently tight, focal prices appear instead. Edgeworth Cycles can

also exist in triopoly situations, although firms deal with coordination problems

— delayed starts and false starts — that do not occur in the two firm model. I also

find the existence of Edgeworth Cycles is robust to assumptions about discount

factors, elasticities, sharing rules, and price leading behavior. The shape of the

cycle is impacted by the aggressiveness of the firms and varies across scenarios.

Therefore, the discovery of Edgeworth Cycles in a particular market and its

shape carries important information about the competitive environment in that

market.

This article was motivated by the discovery of apparent Edgeworth Cycles

in some Canadian retail gasoline markets. This article shows that consumers

may still consider gasoline as a differentiated product, but the differentiation

must be relatively small. Capacity constraints on major firms can exist but

cannot be too tight (the symmetric constraint case). Small independents can

be very tightly constrained but still induce Edgeworth Cycles (the asymmetric

constraint case) — the constraint just cannot be very close to zero.

The absence of coordination problems in these retail gasoline markets sug-
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gests the emergence of a consistent price leader and relenting order. Noel[2003b]

argues this is true in the case of Toronto. In Figure 1 above, we observe the

major firm depicted always relents before the independent and there are no false

starts. We also observe that the independent exhibits follower attributes, often

aggressively undercutting through moderate prices and then passively matching

(or making smaller undercuts) at low prices.

This article is an important step to understanding the range of environments

condusive to Edgeworth Cycle activity. Edgeworth Cycles are indeed a real and

important economic phenomenon in need of more study. This is especially

true as new technologies create increasingly real-time markets (in electricity,

long distance telephone, internet shopping, etc.) where relatively homogenous

products, frequent purchases, and low switching costs may work to generate

Edgeworth Cycles in these areas.
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Figure 3: Symmetric Bertrand Duopoly
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Figure 4: Consistent Price Leader
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Figure 5: Elastic Demand
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Figure 6: Sharing Rule: θi = 1
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Figure 7: Capacity Constraints: Ki = 10
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Figure 8: Capacity Constraints: Ki = 9
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Figure 9: Capacity Constraint: K2 = 7
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Figure 10: Differentiated Goods: τ = 1.1
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Figure 11: Differentiated Goods: τ = 1.25
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Figure 12: Symmetric Bertrand Triopoly
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