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DOUBLE AND TRIPLE PHOTON DECAY OF METASTABLE 
3

P O ATOMIC STATES* 

. t 
Robert W. Schmieder 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

June 1973 

ABSTRACT 

The radiative decay of metastable nsnp 3P0 atomic states is found 

to occur only by odd parity multiphoton modes such as ElMl and 3El, in the 

absence of hyperfine structure. A detailed calculation of the ElMl rates for 

several members of the Be sequence is presented, in the nonrelativistic 

approximation. Only the general properties of 3El decay are presented. Among 

other results, the 3El rate is found to be zero if any two photons have the 

same energy, and its spectrum, unlike the symmetrical two-photon spectra, is 

found to be irregular and asymmetric, being peaked somewhat below half the 

transition energy • 
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INTRODUCTION 

In most atoms with two valence electrons, such as the Be, Mg, Ca, Zn, 

and Cd isoelectronic sequences, the lowest excited state is 3 nsnp P0 • Ener-

getically this state can radiatively dec~ only to the nsns 1s0 ground state, 

but due to the 0 -f-> 0 selection rule, this transition is strictly forbidden 

for all single photon modes. In reality, this transition is observed as a 

forbidden line in laboratory and astrophysical sources. 1 Bowen suggested that 

this transition is enabled by the interaction of the electrons with nuclear 

momehts. In isotopes with nonzero nuclear moments, the coupling of the nuclear 

spin I to the 3P 0 state produces a state of total angular momentum F = I # 0, 

thus circumventing the 0 -f-> 0 selection rule. This . idea was tested experimentally 

by Mrozowski,
2 

Kessler, 3 and by Deloume and Holmes,
4 

who showed that only the odd 

isotopes produce the emission line. Later calculations by Garstang5 gave rates 

for Mg I, Zn I, Cd I, and Hg I. Such calculations assume that the hyperfine 

structure mixes 3 3 the P
0 

and P
1 

states, and that spin-orbit and spin-spin 

interactions mix the ~ 
1 

with 1P 
1 

states, thus enabling the ~ 0 -+ 
1s0 transition 

to occur in the electric dipole (El) mode. 

In even isotopes, this mechanism is not possible--no single photon 

dec~ can occur. We must therefore consider multiphoton modes, for which 

0 -+ 0 is allowed. 

Two photon dec~ has been studied several times. in the past. In atoms, 

the 28 -+ lS transitions in hydrogenlike and heliumlike ions occur primarily by 

6 
the ElEl (or 2El) mode, and theory and experiment are in good agreement. A 

recent calculation by Johnson7 gave relativistic results for the 2El rate of the 

2
2s112 -+ 1

2s112 transition of hydrogenlike ions, and an estimate of the 2Ml rate. 

Eichler and Jacob
8 

have derived general properties of ELE1', ELML', and MLML' 
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modes, and Grechukhin9 has extended these calculations and applied them to 

nuclear transitions. Experimental evidence for double quantum emission in an 

isomeric transition has been presented by Alvager and Ryde.
10 I 
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MULTIPHOTON MODES 

Multiphoton modes are easily represented in terms of single photon 

modes. Each photon has associated with it (besides its frequency w, propagation 

+ "' vector k, and polarization£): 1) Multipolarity, (L), which is 1 for dipole, 

) ( ) (-l) L+l for 2 for quadrupole, etc.; and 2 Parity, P , which is 

electric (E) modes an'(i (-1)1 for magnetic (M) modes. Multiphoton modes 

are specified by listing (EL) or (ML) for each photon. A typical mode might be 

(ElE2Ml). Three properties of multiphoton modes are of interest: 1) 

Multiplicity, m, which is the total number of photons involved; 2) Total 

Multipolarity (L), given by 

m 

L = LLn 
n=l 

and 3) Total Parity (P) given by 

(1) 

(2) 

These parameters allow us to classify the various modes as in Table l. 

Conservation of energy demands 

m 

L hwn = Ei - Ef 
n=l 

( 3) 

where Ei and Ef are the energies of the initial and final atomic states. This 

relation defines a hyperplane in m-dimensional space whose orthogonal ·axes are 

w • Any single dec~ is characterized by a single point on this hyperplane, 
n 

i.e. the values (w
1

, w2 , . .. w ) • 
m 

The observed spectrum depends on how many 
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photons are detected simultaneously. If all m are detected, then the 

spectrum is just the points on the m-dimensional hyperplane. If al1 but one 

photon (say w ) are detected, they form a continuum given by the projection m 

of the hyperplane onto the (m-1)-dimensional space perpendicular to the w 
m 

axis. Fewer detected photons requires successive projections onto smaller 

dimensional spaces. If only one photon (say w1 ) is observed (the "singles" 

spectrum), then the spectrum is the projection onto the w
1 

axis and is still 

a continuum. To the extent that the singles spectrum has structure, we can 

say that the photon energies are correlated. 

Conservation of linear momentum requires 

( 4) 

+ + 
where pi and pf are the momenta of the atom (as a whole) before and after the 

decay. This relation shows that the directions of propagation of the photons 

also form a continuum. Again, the actual distribution of directions depends 

on how many photons are detected. And to the extent that these distributions 

have structure, we can say that these directions are correlated. 

Conservation of angular momentum requires 

m 

[tn 
+ + 

= J. Jf , 
l. 

n=l 

+ 
where L represents the angular momentum carried by an L-pole photon. 

n 

( 5) 

+ 
L can 

n 

assume any integral value ~ 1 (the intrinsic photon "spin"). The "continuum" in 

this case is the set of multipole paths a transition may follow (e.g. ElE3 

and E2E2). 

i 

~: 

•• 

'1 
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Conservation of parity requires 

m 

TT 
n=l 

p 
n 

(6) 

where Pi and Pf are the parities of the initial and final atomic states. This 

relation allows photons with different parities to enter (e.g. ElM2 and ~UE2). 

The selection rules for multiphoton transitions are easily derived from 

the selection rules for the individual multipole operators. Each participating 

photon mode m~ be considered a virtual transition to an intermediate state. 

Hence the selection rules on ~J, ~t, ~s, etc. for the individual photons must 

be obeyed. 

There is no restriction on multiplicity; if otherwise allowed, a transition 

may occur by any number of photons, and the modes compete. The parity change rule 

severely limits the possible modes. 

The multipolarity relation (Eq. (5)) also severely limits the possible 

modes. In particular, for a Ji = 0 -+Jf = 0 transition, this rule disqualifies 

all single photon modes (L # 0) and forces all two photon modes to have the same 

multipolarity (11 = L2 ). 

These selection rules are easily applied to the nsnp 3P0 -+ nsns 1s0 

transition. The parity change and multipolarity rules permit only the 

following: (ElMl), (E2M2), (3El) and higher order modes. These modes are 

illustrated schematically in Fig. l. Of these, the ElMl rate is expected to 

be the largest. 

In the next section we present a detailed calculation of the ElMl rate 

of the transition 2s2p 3P0 -+ 2s2s 1s0 for some ions in the Be isoelectronic sequence. 
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CALCULATION OF THE ElMl RATE 

In second ord
1

er perturbation theory, the differential rate of two 

photon decey is given by 

(7) 

where Ei, Ef are the energies of the initial and final atomic states I i ) , If ) 

-+ -+ 
and hw1 , hw2 are the ~nergies of the two photons with propagation vectors k1 , k2 • 

The operator Hyy is an effective first-order operator of the form 

where 

H = - e~·A . y 

(8) 

(9) 

is the usual single photon perturbation operator involving the Dirac matrices 

-+ -+ 
a and the vector potential of the electromagnetic field A. The operator A is 

the usual energy denominator times a projection operator, summed over intermediate 

states. 

From Eq. (8) we want to pick out those terms in which one photon has 

El character, the other Ml character. The vector potential can be written as 

a sum over frequency and multipole components: 

A = L L [JtEL ( w) + ~L ( w) ] (10) 

w L 

in which electric (E) and magnetic (M) multipoles have also been separated. 

Substituting Eqs. (9) and (10) into Eq. (8) we find (with a slight notation change): 
I 

I 

ff, 
' ' 

I 
\I 

' 
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(11) 

plus terms (ElEl), (MlMl), and higher multipoles. InEq.(ll), 

1\(w) = \ In ><nl 
L_.E - E - hw i n · 

(12) 
n 

where In } is one of the atomic eigenstates. 

If we approximate the exact Dirac states with Pauli states , we can 

make the usual approximation 

++ 1 ++ h + + 
a • A + ~ A • p + 2mc a • V X A (13) 

++ A+ 
and in the dipole approximation (k•r << 1), the El operator becomes HEl a:: eE•R, 

+ 
where eR is the total electric dipole moment of the atom, while the Ml operator 

A A + + + + 
becomes HMl a:: ~0k x E•(L + 28), where ~0 (L + 28) is the total magnetic dipole 

moment (~ = eh/2mc). 
0 

Returning to Eq. (7) we note that the total tr~sition probability 

3+ 3+ 3+ 2 
will involve integrating over d k

1 
and d k2 • Using hw = hkc and d k = k dk d~, 

we can use the a-function to immediately perform, sey, the dk2 integration. 

From all these considerations, we derive the following expression for 

the total transition rate (sec-1 ): 

(14) 

0 
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and 

M = 

In these f9rmulas, 
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(15) 

(17) 

and is the total transition energy; v . = (E - E. )/h; ( 1 , E2 are parallel to 
. n1 n 1 

-+ -+ 

(16) 

the electric field of the photons which have propagation vectors k1 , k2 ; AVG means 

the average over all polarization and propagation directions, as well as the sum 

over final and average over initial substates: 

AVG = 1 \ 

1J:T L 
l 

(18) 

I 

'if 

where [J.] = 2J. + 1. The sum L: runs over all possible states that can be coupled -.·. 
1 1 n 

to I i ) and I f > • 

An important aspect of Eq~ (16) is the fact that the sums may be differen't 

-+ -+ 
due to different coupling. The operator L + 2S can couple only states of the 
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same principle quantum number. 'rhus, I i ) and In ) must be in the same fine 

structure multiplet for the first two terms (ElMl), whereas In) 

be in the same multiplet for the last two terms (MlEl). For the 

transition, this means 

and I :f ) must 

~ + 18 
0 0 

(19) 

and the last two terms of Eq. (16) are zero. We shall drop these terms in the 

following. 

We now proceed to a detailed evaluation of the ElMl rate. For the 

moment we retain some generality by using li) = IY. n. (1. 8. )J. M. ) = IJ. M. >, 
~ ~ ~ ~ ~ ~ ~ ~ 

etc. We want to examine the operators (in Eq. (16)) 

(ElMl)OP 

We expect these operators to have certain symmetry properties of 

importance, and to elucidate these properties we shall use spherical tensor 

11 A A A + + + 
algebra. First, since £, k x £, R, and 1 + 28 are vectors, or first rank 

++ 
tensors, and A•B = A•B, we can write 

12 The recoupling is facilitated by using basis tensor operators 

1 

I M (JlJ2) -· [ 

mlm2 

The reduced operator components R and (1 + 28) can be written as 

(22) 
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(23) 

(24) 

. . . 13 
where ( II II ) are reduced matrix elements using Edmond's convention. The 

operators A1 and A2 are scalars, since the energy denominators do not depend 

on M , and EM jJ M ) ( J M J = projection operator onto the J state. 
n --n n n n n n 

Putting Eqs. (23) and (24) into Eq. (21) and using standard recoupling 

formulas gives 

(25) 

. . L th 
where W( ) is a Racah coefficient and { } is an L -rank tensor. 

The matrix elements M = (fj(ElMl)
0
pJi). are easily found using 

(26) 

where C( ) is a Clebsch-Gordon coefficient in the notation of Rose.
14 

Having fo·und fi (Eqs;, (25), (26)), we can write J[J 2 
directly, and this 

will involve the product C(J. L Jf; M. M Mf)C(J. L' Jf; M. M' Mf), which, when 
1 . 1 1 1 

summed over Mi and Mf as required by AVG (Eq. (18)), gives o11 , oMM,. The result 

is 
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\' (J IIRIIJ )(J HL + 2SIIJ. )W(llJfJ. ;LJ ) 
Ln f' n n l. l. n 

(27) 

We now specialize to Ji = Jf = 0, so. [Ji J = 1, W(~lOO; LJn) 
0 ·. ·. 

Thus, M = 0 and {£
2

(k
1 

x £
1

)}
0 

= -(1//3) £
1

•(k
1 

x £
1

) 

where lf i and t.f f represent J = 0 states, and tf n must therefore represent 

J = 1 states o 

Now consider the angular averages of Eqo (28), which.has the form 

(29) 

If AVG 1 represents the integrals of Eq. (18), then 

l A£ kA X E 12 : lA£ kA X A£ 12 -! 
2o 1 1 AVG' 1° 2 2 AVG' - 3 (30) 

and 
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(31) 

The vanishing of the cross terms is in contrast to the ElEl case~ where 

lA A 12 the correlation is the same (e.g. c
1

·c2 ) for both terms. 
. 2 

With this result, we can write the complete average of jMj as 

1 I\' +27 L..n (32) 

where 

(33) 

Now consider the possible states 1./ that can n -
1 

(.{Jf = s
0

• The selection rules show immediatelythat 

possible. The sums over n are to be carried out over 

couple with (/ i = 3P 0 
1 3 

only 1 0 = ' P are · ..,.n 1 

1P1 and ~l states 

and 

separately. However, since neither R nor L + 2S can mix singlets and triplets, 

it is clear that the dec~ can proceed only if the states ~ are not purely . n 

singlet or triplet. Spin-orbit and spin-spin interactions which mix 1P1 and 3P1 

states are therefore necessary. 

3 In order to simplify the notation, we shall represent the 2s2p ·P multiplet 

(which contains the metastable state j2s2p 3P 
0 

) simply as j3P J ) , J = 0, 1, 2, 

and the ground state j2s2p 1s
0 

) simply as j1s
0 

) • Other states (with different 

principle quantum numbers) will be written as, e.g., ln1P
1

) and jn3P1 ) • 

Assuming that the spin-orbit and spin-spin interactions are small, we 

can use first order perturbation theory to write 

'i 
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I lp ) \' I n :, 3pl ) n 1 + ~n' ann' 

(34) 

where the coefficients ann' and bnn' involve a matrix element divided by an 

energy difference~ 

Upon substituting Eqs. ( 34) into Eqs. ( 33) and ( 32), we have 

\' xfni \' t 
~ n v + v = ~ n L n' ann ' 

ni 1 

+ Ln Ln' bnn' 

(
1s

0
11Rlln1P

1
)(n' 3P

1
11L + 2SII 3P

0
) 

v(nlPl - 3Po) + vl 

But all (n3P111L + 2SII3p0 ) = O, except the single element 

(35) 

( 3P 111 L + 2SII 3P 0 ) = - 12 connecting fine structure levels. Hence the double sums 

of Eq. (35) are reduced to single sums, and Eq. (32) becomes 

(36) 

where 

and 

( 3t3) 

is the singlet-triplet mixing coefficient, H1 being the spin-orbit, spin-spin, 

etc. interaction hamiltonian. 
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Equations ( 36) - ( 38), together with Eqs. ( 14) and , ( 15) are now in 

' a form for numerical calculation. Needed are the mixing coefficients, the 

matrix elements of R for the resonance lines, and the various energy levels. 

1 
It is emphasized that the sum extends over all the n P1 states, including the 

continuum, but that only one 3P1 state enters. 

F6r heavy ions, the nsnp ~l state lies appreciably lower than any 

other ~l state, (c.f. Fig. 2) hence one value of en' namely 

( 39) 

3 is considerably larger than all other en's. In other words, the nsnp P
1 

state 

mixes predominantly with nsnp ~l and very little with any other nsn'p 1P1 

states. Under this condition we can use the definition 

(gf)3 = 4mn v(3P - ls )l(ls 11Ril3P·)I2 T 1 o o 1 
(40) 

with 

(41) 

to rewrite the transition probability as 

(42) 

where a, a
0

, and c are the usual atomic c.onstants, and 

- 3 3 [( 1 ) 2 ( . l ) 2] 
F( Y) = Y ( 1 - Y) (S + y )( 11 + y ) + ( B + 1 - y )( 11 + l - Y) ( 43) 

' I 
I 
I 
I 

i 

·~ 

l 
4, 

! 
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and S == v(
1

P1 - 3P0 );v0 , n == v(
3
P1 - 3P0 )/v0 , with y = v/v

0
• 

The spectrum seen as single photons is given by F(y), where 0 ~y ~ 1 

corresponds to the interval 0 ~ v
1 
~ v0 • A plot of F(y) for Be-like phosph9rus 

(P XII) is shown in Fig. 3. It is clearly symmetric about v
0
/2, and resembles 

the co~tinuous spectra of 2El modes, except for the central dip. This dip 

origin~tes from the small value of n = v(~1 - ~0 )/v0 ; larger values, say 

3 3 .. 
v(n P1 - P0 )/v0 do not enter because of the ~n = 0 selection rule on the Ml 

transition. 1 This dip may be slightly exaggerated due to neglect of higher n P 
1 

states. For heavier ions, near Z = 20, this should be less than 10%, 

1 but will be more serious for lighter ions since for them the 2s2p P
1 

state is 

not as well isolated from higher 
1

P1 states. A plot of F(y) for Be itself 

is practically identical to Fig. 3, being perhaps 15% larger. We can therefore 

guess that there will probably be a. very slight central dip for Be, if any, 

and that the area. under F(y) is perhaps 50% more than the area. 

for Z = 20. Hence the major Z dependence of the transition probability is in 

the coefficient of F(y) qy. 

The Z dependence of the transition probability is easy to determine from 

15 Eq. (42). The (gf)
3 

values have been computed by Ga.rstang, and have the strong 

16 1 3 
Z dependence shown in Fig. 4. The energy levels of the 2s2p P1 , 2s2p P0 , and 

3 2s2p P
1 

states of Be-like ions are plotted in Fig. 5, which shows that the fre-

quencies appearing in Eq. (42) all depend linearly on Z, giving a. net z4 
dependence. 

The overall z dependence is therefore z4 
times the strong dependence of (gf)3 times 

the weak dependence of F(y). 

In computing the total tra.nsi tion probability of the ElNl mode, the rate f'or 

P XII (Z = 15) was computed directly, and then scaled for other ions. The results 

are listed in Table 2. The accuracy is probably about 5%, and is relatively better 

for higher Z ions. If no other processes compete with this mode, the lifetime in 

Ca XVII is about 10 days, while that for Mg IX is about 4. 3 years. 



-16-

THE E2M2 MODE 

The E2M2 mode occurs via ~he 1 ' 3D2 states, which. are mixed 
I 

by H1 in the same wa;y as the 1 •3p1 states. In this· case, however, the M2 

-+ . 3 3 
operator involves R, and couples the P0 state to all n D2 states. The 

spectrum will also be symmetrical about v0/2, but the total rate should be less 

than the ElMl rate by about 10-lO z4, hence should never compete. 

PHOPERTIES O.F' 3El DECAY 
I . 

The 3El rate is probably smaller than the ElMl 

rate. However, experimentally it would be easy to distinguish this mode, even 

in the presence of considerable background. This is because a triple 

coincidence measurement strongly rejects single and double coincidence events. 

An analysis of multiple coincidence measurements is given in the appendix. 

Rather than presenting a complete evaluation of the 3El rate, we shall derive 

some basic properties of this mode from a consideration of the symmetry 

properties of the operators. 

First we review some known properties of 2El decay. The operator 

involved is 

Using the same recoupling techniques we applied to Eq. (21) we find 

(2El)OP = L (JfURUJ ) (J URIIJ. ) n n n ~ 

2 

L W ( ll J f J i ; L J n) 

L=O 

(44) 

(45) 

I' 
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where 

1 Ak = ____ ..__ 
\) . + \)k 
n~ 

(46) 

The general features of the 2El spectrum are easily obtained from these 

formulas. 
2 . 2 1 

For Jf = J i, such as 2 s112 -+ 1 s112 and 2 s0 -+ 
1 1 s0 , L = 0 and the 

expression involves sums of terms like 

2vni + vl + v2 
= ~--~--~~--~~~ (v . + v

1
)(v . + v

2
) 

(47) 
n~ n~ 

which is a broad, flat-topped distribution peaking at v0/2. The same is true 

for J. - Jf = ± 2, which requires L = 2. 
~ 

But for J. 
1 

\)l - \)2 
= ~------~~------~ (v . + v

1
)(v . + v

2
) 

n~ n~ 

1 
1 s0 , L = 1 and we have sums of 

(48) 

which has a zero at v1 = v2 = v0/2. This zero is a direct consequence of the 

symmetry properties and does not involve any dynamical quantities. From this 

simple relation, we deduce that the spectrum must be symmetrical about v
0
;2, 

where it is zero, and must have two humps, one on each side of v
0
/2. 

Now we apply these same techniques to the 3El decay mode. The dif-

ferential rate of three photon decay is 

( 49) 

where the operator H in the nonrelativistic 3El approximation is proportional to 
yyy 
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A -+ f A -+' A -+ A. -+ ' A -+ A -+ 
(3El)OP = e:l•R A2 e:2•R A3 e:3•R + e:2•R Al e: •R A3 e:3·R 1 

I 

A -+ I A -+ A -+ A -+ I A -+ A -+ + e:l.R A3 e:3•R A2 e: •R + e:2·R A3 e:3·R Al e: •R 2 1 

A -+ f A -+ A -+. A -+ I A -+ A -+ 
+ e:3·R Al e: • R A2-e:2•R + e:3·R A2 e:2·R Al e: ·R (50) 1 1 

where the prime indicates there are different intermediate states. Assuming 

the transition takes place as J. -+ J -+ J -+ Jf' the recoupling of Eq. (50) 
~ n m 

leads to 

( 3El ) OP = L L ( J ~I Rll J m )( J mil Rll J n )( J nil Rll J i ) 

m n 

[ 

1 + 
X (-1) 

J. - J 
~ n 

J - J + L 
+ (-1 ) m f 

J - J + L 
+ (-1 ) f m 

1 1 K 

J J 1 
m n 

Jf Ji L 

where Ak is given in Eq. (46) and 

A' = 1 
k \) . + \)k 

m~ 

k = 1, 2 (52) 

. I 

(51) 

-. 
i .. _ 

! 
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The various selection rules for 3El decay are easy to determine from the 

triangular relations on the 6-j and 9-j coefficients. Clearly, !J
1

- Jfl ~ 3. 

If !Ji- Jfl = 3, then only the L = 3, K = 2 term is nonzero, and the transition 

has an "even" character, similar to the jJi - Jfl = 2 2El decey. 

For the 3P0 ~ 
1s0 transition, w~ have Ji = Jf = o, requiring L = 0, 

K = l. The square bracket in Eq. (51) reduces to 

(53) 

Putting in A.k and A.~ from Eqs. ( 46) and (52), we obtain 

(54) 

x vnm (v . + v
1

)(v . + v
2

)(v . + v
3

)(v . + v
1

)(v . + v
2

) (v . 
m1 m1 ~ n1 n1 n1 

where 

(55) 

is the triple scalar product of the three polarization vectors, which is 

independent of the coupling scheme. 

The only limitation on the photon frequencies is that their sum 

represent the transition energy: 

(56) 
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This equation is plotted in Fig. 6(a). Any point on the equilateral triangle 

represents .a possible decay. Associated with each point is a decay rate, which 

is zero for points on the edges and possibly elsewhere. 

From Eq. (54), we see that the 0 ~ 0 rate is zero whenever any two 

photons have the same energy. This is shown in Fig. 6(b), in which the 

perpendicular. bisectors form "nodal lines" that divide the spectrum into six 

separate regions. The 3El rate also vanishes if the intermediate states have 

the same energy (v = (E - E )/h = 0), and in the limit that one photon has 
nm n m 

zero energy, (v1 = 0, etc.). 

The frequency condition, Eq. (56) s~zys that for any value of v
3

, the 

other two photons form a continuum between 0 ·and v0 - v3• That is, if we do 

a triple coincidence experiment, and then select only those events having 

one photon with energy hv
3

, then the other two photons in those events will 

form a continuum between 0 and v0 - v
3

• 

If, on the other hand, we only detect two coincident photons, letting 

v
3 

be any value whatever, then we get a double continuum, represented by the 

projection of the triangle of Fig. 6(a) onto the v1 , v2 plane as in Fig. 6(c). 

Any point within the 45° triangle is a possible pair of values for v1 , v2• The 

rate associated with these points shows the zeros along the projected nodal 

lines, and probably rises to a broad maximum somewhere within each of the 6 

triangular regions. 

We now ask what we would observe if we detected only single photons. 

To get this we must project Fig. 6(c) onto the v1 axis. This is most easily 

done by dividing the figure into 3 sets of triangle pairs (indicated by similar 

shading). Since Fig. 6(b) shows each of the 6 triangles to be identical (or 

mirror imaged) we infer that the "volumes" of each triangular hump are equal, 
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and are equal to 1/6 of the total 3El transition rate. Furthermore, the peaks 

must lie in pairs at three values of v1 • Thus, we can correlate with 

each pair of triangl~s in Fig. 6(c) a peak.on the A(v
1

) vs v1 plot of Fig. 6(d). 

The three peaks have equal area but different shapes. The total 3El singles 

spectrum is given by the sum of these three peaks, and is plotted as a heavy 

line. 

The surprising result is that the 3El spectrum is not symmetrical. 

about v0/2, like the two photon dec~s. Instead, it is irregular, and peaked 

somewhat below v
0

/2. This is understandable in the sense that if we detect 

one photon at v
0
/2, the remaining photons have many possible ways to use the 

remaining energy, all giving two photons below v0/2. 

It m~ be anticipated that the singles spectra of higher multiplicity 

multiphoton modes mEl become peaked at lower and lower energies. 
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CONCWSION 

I 

There may be some astrophysical application of these results. In supernovae 

rich in heavy elements, the energy balance could be affected by loading a sink 

of long-lived metastable atoms which would return the energy some months or years 

later. Also, the metastable component could serve as a probe of ion abundances 

in regions of much smaller density than stellar atmospheres. In both cases, 

knowledge of the lifetimes would be needed. 
I 

The prospects for laboratory detection of these dec~ modes are 

probably not good. The only real possibility would be to collect enough 

metastables that even a small specific activity could be detected, as is now 

done for long-lived isotopes. Under such conditions, however, the collisional 

quenching would have to be suppressed. The appendix shows that should these 

dec~s become experimentally accessible, separation of ElMl and 3El modes 

would not be difficult. 

l 
' i • 
i 
j 

.~. 
i 
I 
I 
I 

i 
. l 
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Appendix 

ANALYSIS OF MULTIPHOTON COINCIDENCE COUNTING EXPERIMENTS 

(n) 
Let R be the decay rate of n-photon decays. If we use N detectors, 

the true coincidence rate due to these decays will be 

E (n)() n! (n) 
= fN I e N I ( n-N) I R . (Al) 

where 

E = (A2) 

is the product of the detector efficiencies and f~n)(e) is an angular correlation 

function that depends on the positions of the detectors. The total true 

coincidence rate will be the sum over all multiphoton modes: 

T = ~ T(n) 
N L..n N 

In addition, there will be accidental coincidences at the rate 

where 2T is the resolving time of the coincidence circuitry and 

R = L n R(n) 
n 

is the total single photon rate. 

The total coincidence rate using N detectors is therefore 

CN =TN + ~ 

= E \' [f(n)(e) nl + (2TR/.J-l] R(n) 
n L..n N Nl (n-N)! 

(A3) 

(A4) 

(A5) 

(A6) 
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Written out in full, for 1, 2, 3, and 4 detectors, the coincidence rates are 

1 

1 
- C = R 
e:l 1 

c = 
e:le:2e:3. 3 

(2T) 2R3 

+ • ~·. 

+ f( 3 )( e) 
3 

R(3) + 4r( 4)(e) 
3 

R(4) + ••• 

(A7) 

(A8) 

(A9) 

1 
c4 ( 2T) 3R4 + f( 4 )(8) R(4) + ••• = 

e:le:2e:3e:4 4 
(Alb) I. 

Note that there are no true coincidences when there is only one detector and when 

there are fewer coincident photons than detectors. 

In this work we are concerned with whether true triple coincidences (3El) 

could be observed against a strong background of double photon ( ElMl) decey. 
! 

Thus, we require 

If we say f( 3 )(e) ~ 1, and assume that in 
3 

+ ••• 

(2) 
the R term dominates, we have the criterion 

(All) 

(Al2) 

(Al3) 

If the resolving time is 2T ~ 10-6 sec, and the two photon rate R( 2 ) ~lO-B 
. . i ' 

then the 3El rate must be R( 3 ) > 10-31 sec-1 which is a certainty. 

I i 

i 
i 
I 

~ 
I 

\ 
I 

1' 
! 
i 
i 
I 

l 
I 
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Alternatively if we assume R( 3)/R( 2 ) ~ 10-4, then R( 2 ) must be less than 

4 -1 .· . 
~ 10 sec , which is also certain. Thus, detection of 3El against the ElMl 

background would not be difficult, assuming they are both above the noise level. 



* 
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Table I. Classification of multiphoton modes by parity, multipolarity, 
and multiplicity. 

p L m = 1 m = 2 m = 3 m = 4 

~"-'' 
1 El 

+ 1 Ml 

·~ + 2 E2 2El 

2Ml 

2 M2 ElMl 

3 E3 ElE2 3El 

MlM2 2Ml,El 

+ 3 M3 E2Ml 2El,Ml 

ElM2 3Ml 

+ 4 E4 ElE3 2El,E2 4El 

2E2 EJJ.11M2 2El,2Ml 

MlM3 2Ml,E2 4Ml 

2M2 

4 M4 ElM3 2El,M2 3El ,Ml · 

E2M2 ElMlE2 3Ml,El 

E3Ml 2Ml,M2 

,J) 
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FIGURE CAPI'IONS 

Fig. 1. Virtual transitions in various modes for the nsnp Jpo ~ nsns 1s0 

decay. The arrows represent photons of El, Ml, E2, etc.,. character, while 

the dotted lines represent the singlet-triplet mixing due to the spin-orbit, 

spin-spin, etc. interaction n1 • 

Fig. 2. Energy level diagram for the Be-like ion P XII. The fact that the 

2£2£' levels are substantially lower than any 2£3£' levels is the basis 

for one approximation used in t:Qe calculations. 

Fig. 3. · Spectrum of single photons in the ElMl decey of the 2s2p 3P 0 level of 
I. 

P XII. 

Fig. 1· Values of (gf)
3 

computed by Garstang5 for the 2s2p 3P1 ~ 2s2s 
1s0 

,I • • transJ.tJ.on. 

Fig. 5. Energy levels of certain states in the Be isoelectronic sequence. 
I; 

Fig. 61. Spectra of the 3El decay in a Ji = 0 ~ Jf = 0 transition. (a) The 

3-plane triangle. Any decey is represented by a point on this plane. (b) 

Front view of the triangle showing nodal lines where the transition probability 

is zero, and the 6 regions of equal volume transition probability I(v1v2v
3

) 

plotted perpendicular to plane of triangle. (c) Projection of (b) onto the 

v1 v2 
plane, when one photon is unobserved. (d) Single photon spectrum, 

showing contributions from various regions of the 3-plane triangle. These 

contributions are found by projecting (c) onto the v1 axis. 
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United States Government. Neither the United States nor the United 
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responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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