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Abstract 

I characterize the pure strategy Nash-Bertrand equilibrium in a setting where two finns at 

different locations supply a homogenous good at constant marginal production cost. A 

representative consumer incurs travel costs to the finn for each unit purchased; these travel costs 

increase with the amount of travel to each firm. The unique Nash-Bertrand equilibrium price 

exceeds the sum of the marginal production cost and the marginal external travel cost. 

Asy1mnetric equilibria lead to an inefficient distribution of travel between finns. Link tolls or 

subsidies can be useful to improve the distribution of traffic, but also reduce the welfare costs 

from imperfect competition. 

JEL: D43, D62, L13, RIO, R41 
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1. Introduction 

The spatial economics literature emphasizes that spatial dispersion of consumers 

and producers implies imperfect competition ( e.g. [8,9]). Spatial dispersion leads to 

transport, and transport often takes place under congested conditions. It is then relevant 

to ask how congestion affects prices under imperfect competition, in a given transport 

network with given locations of firms and consumers. This paper studies Nash-Bertrand 

competition in a model with one representative consumer and two firms. The motivation 

for choosing Nash-Bertrand competition is that it is the most competitive type of 

imperfect competition. It is the smallest departure from the standard assumption of 

perfect competition, which is implicit in most of the congestion pricing literature. Other 

forms of oligopoly are briefly mentioned. 

Several congestion pricing studies look at the implications for tolls, of private 

ownership of road infrastructure under various types of market structure (e.g. [6,7]), but 

imperfect competition between suppliers at substitute travel destinations under public 

ownership of the network, has largely been neglected. Yet it is arguably extremely 

common. 

My main findings are that transport costs as such generate no rents; transport cost 

differences generate rent for the fim1 with the cost advantage; congestion generates 

market power, even in the absence of cost differences. 1 More specifically, when 

consumers pay for transport and transport costs increase with trip volumes, there is a 

unique Nash-Bertrand equilibrium with positive profits. The equilibrium price is higher 

1 'Rent' refers to the situation where fixed capacity of some factor allows positive markups (i.e. price 

exceeds marginal production cost). 'Market power' means that positive markups are possible, regardless of 

capacity restrictions. 
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than the sum of the marginal production cost and the marginal external cost of 

congestion. The intuition for this result is that congestion creates monopoly power. 

The implication for transport policy is that there is no need for pure Pigouvian 

congestion tolls2
, as the marginal external congestion costs are covered by the 

equilibrium prices. Instead, the welfare-maximizing link toll is non-positive in a 

symmetric cost structure. Positive tolls may be useful under asymmetric costs, as 

asymmetry implies an inefficient distribution of traffic over the network. Increasing 

network capacity is beneficial, not only because it reduces transport costs per se, but also 

because it weakens firms' market power. These qualitative results carry through under 

Nash-Cournot behavior and under collusion. 

Previous studies of Nash-Bertrand competition with convex marginal production 

costs [4,5,14] assume that the firms incur all production costs. This would also be the 

case in our model when firms deliver the good at the consumer location. Under this 

assumption, and when production costs are identical, there exists a continuum of pricing 

equilibria, among which the zero-profit equilibrium. The Nash-Bertrand equilibrium in 

these models depends to some extent on the sharing rule, that is on the assumption on 

firms' market shares when several firms charge the same price. This is not the case in the 

present model, where consumers incur transport costs, so that in equilibrium the 

consumer equilibrium constraint must be satisfied. This uniquely determines firms' 

market shares. In other words, the equilibrium constraint acts as a sharing rule. 

2 Under first-best conditions, Pigouvian tolls are tolls that equal the marginal external congestion cost on 

each link in the network. 
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Section 2 introduces the model and characterizes the Nash-Bertrand equilibrium. 

Brief comparisons are made with the Nash-Coumot equilibrium and the collusion 

outcome. Section 3 discusses policy implications, and section 4 concludes. 

2. Nash-Bertrand equilibrium 

2.1 Assumptions 

Consider a transport network that connects the representative consumer's 

residence to two firms, A and B, as in Figure 1. The firms supply a perfect substitute, so 

that consumer demand is the sum of both firms' output: q = qA + q8 . Marginal 

production costs c;, i = A, B are taken to be constant. The firms' prices are PA and p B· 

Travel to the firm is costly and paid for by the consumer. Average travel costs a; increase 

with link volume ( a; = a; [ q;], a'; = 01/aq; > 0, i = A, B ). This means that there is a 

congestion extemality: a'; q;, i = A, B . 3 Demand decreases with the generalized price g, 

the sum of time costs and prices: q = q [g], arag < 0. 

The next section characterizes the interior market equilibrium under Nash-Bertrand

type competition between firms, and then discusses symmetric and asymmetric cases. 

Section 2.3 deals with corner solutions. Under Nash-Bertrand competition, firms select 

3 With a single consumer, there would be no congestion externality. In contrast, I assume N identical 

representative consumers, and normalize N to I. As each consumer makes one trip to either firm for each 

unit purchased, the demand curve of a representative consumer can be viewed as the aggregation over 

consumers with a different willingness to pay for the good, but with equal and constant marginal values of 

time. If each consumer buys one or zero units, this is consistent with the standard Hotelling approach to 

recovering a continuous aggregate demand function from discrete individual demands. 
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prices independently and they commit to supplying all forthcoming demand at the 

selected price [14: 117]. I restrict attention to pure strategy equilibria. 

Figure 1 Model structure 

Firm A 

Link A 

Consumer 

Link B 

Firm B 

2.2 Interior solutions 

I assume in this subsection that the market equilibrium is interior: both firms supply 

positive quantities. Section 2.3 shows that an interior solution holds when transport costs 

do not strongly differ between firms at the equilibrium level of demand. At an interior 

solution, it must be true for consumer equilibrium that a A [ q A] + p A = a 8 [ q 8 ] + p 8 = g 

and that q [g] = qA + q 8 . Given consumer equilibrium, the effect on the generalized price 

of a unilateral price change by firm A is: 

dg 

dpA 
(1) 

PB 

This allows writing the demand effect of the price change as follows (holdingp8 

constant): 
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From the last equality in (2), aq a'
8 

dqs - dqA = dqs , and from (1), 
ag dpA dpA dpA 

dqA = a's dqB __ l_ so that dqB = aq a' dqB - a's dqB +-1- or: 
d · d · ' d a 8

d · d , ' rpA aA rpA aA rpA g rpA aA rpA aA 

dq s = 1 > 0 as aq < 0 . 

dpA , [1 aq , a'sJ ag 
a A --a as+-, 

g QA 

(3) 

Since firm B's profits are tr 8 = ( p 8 - c) q 8 and p s was kept constant, (3) implies 

dtr 
that --8 > 0. 

dpA 

Next consider A's profit maximization problem. Since tr A = (PA -c )qA, for any 

givenp8, profit maximization requires: 

(4) 

Using (2) and (3), this is equivalent to: 

(5) 

or: 

1 
a'----

A aq 1 
(6) 

---ag a's 
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Similarly, for firm B: 

1 
a'-----

s ?Jq I 
(7) 

---
?Jg a'A 

In a Nash-Bertrand equilibrium, (6) and (7) must simultaneously hold. Clearly, 

the equilibrium markups increase with both congestion externalities, and each markup is 

always at least as large as the congestion externality on that firm's link. Note that, 

though prices increase with congestion, profits will decrease when marginal (private and 

social) transport costs become sufficiently high. Congestion allows charging markups, 

but also reduces demand through increased generalized prices. 

The fact that prices more than cover marginal external congestion costs has 

implications for the welfare-maximizing link tolls. As the expressions for optimal link 

tolls for the general case become intractable, this issue is studied for the symmetric case 

in the next subsection. In addition, the next sections discuss the properties of the 

equilibrium under symmetric and asymmetric cost functions in more detail, and briefly 

compare the Nash-Bertrand, the Nash-Cournot and the collusion-outcomes. 

Symmetric equilibrium 

Symmetry requires that cA =c8 =cand aA[q]=a8[q]=a[q]. This directly 

implies that the market equilibrium is interior: both firms supply positive quantities, as 

this leads to lower transport costs at any demand level, and this is preferred by the 

consumer. I prove that this leads to equal market shares and equal prices (symmetric 

equilibrium). Assume the equilibrium is not symmetric, by postulating that qA > q8 
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(with no loss of generality). Since the congestion function is convex, this implies 

Assume first that the congestion function is linear, so that a 1A = a 1s. Also let 

a 1A qA -a's qs = E > 0. Subtracting (7) from (6) produces: 

(8) 

The asymmetric equilibrium with qA > qs would require that PA > Ps and that aA > as 

(by convexity of the congestion function), i.e. that a A + p A > as + p s. This is not 

compatible with consumer equilibrium, so the Nash-Bertrand equilibrium is symmetric: 

Next assume that the congestion function is strictly convex, so that qA > qs 

implies a 1A > a's. This also leads to the untenable implication that PA > Ps, as 

substituting (6) and (7) in the consumer equilibrium constraint implies: 

cJq l cJq l 
> 0. (9) 

--- ---
cJg a's cJg a1 

A 

The inequality holds because the (positive) difference in the first term cannot be 

outweighed by the second term. When the difference in quantities is small ( q A "'" q s) but 

the slopes of the travel cost function strongly differ ( a 1A » a 1s ), the first term is large 

and the second term converges to the inverse of the elasticity of demand, so that the 

overall term remains positive. Conversely, when the first tenn goes to zero (which is the 
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case when qA approaches q8 for a very small difference in congestion conditions), so does 

the second one. In other words, the difference converges to zero as the system moves 

towards a symmetric equilibrium. 

Consequently the equilibrium is symmetric and the price is given by: 

p - C = _!_ a 'q dg . 

[

a'aq -2] 
2 a' aq -1 

(10) 

ag 

This expression says that the Nash-Bertrand equilibrium price depends on marginal 

external congestion costs and on the price elasticity of demand. As in (6) and (7), the 

markup exceeds the marginal external congestion cost (here equal to _!_a' q ) since the 
2 

bracketed tern1 in ( 10) is larger than one. 

Equation (10) is reminiscent of the collusion (monopoly) price in a market with 

congestion. In the symmetric model, the markup that maximizes the profit from 

collusion is as follows4
: 

q--a q- a q--
2 ag 1 ag g , 1 
1 , aq [ , aq 2] 

p - C = - aq = 2 a' q aq = lcqg I + a 2 q . 
(11) 

ag ag 

where £ = aq g < 0 qg ag q . 

The second expression of the right-hand-side clarifies that the monopoly markup exceeds 

the duopoly markup specified in (10). The third expression says that the monopoly price 

4 This is the symmetric version of the general expression derived in appendix 1. 
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takes account of the elasticity of demand with respect to the generalized price, and 

internalizes the congestion externality (which is equally divided over both links). 

Symmetry is desirable for the monopolist because it minimizes transport costs for any 

given level of demand and differences in transport costs are not profitable. The analogy 

with [11: 141-142] is clear from observing that the monopolist's markup over marginal 

social cost is inversely related to the elasticity of demand. 

The presence of congestion hence gives the Nash-Bertrand competitors some 

degree of monopoly power, in contrast to the standard Nash-Bertrand case with constant 

marginal production costs. In the case of Nash-Bertrand competition with symmetric but 

strictly convex marginal production costs that are internal to the firm [4,5,14], a 

continuum of Nash-Bertrand equilibria are possible (among which is the zero-profit 

equilibrium). In the present case, however, the equilibrium is unique because of the 

consumer equilibrium constraint. The consumer incurs the transport costs, instead of the 

firm incurring an increasing production cost that is 'hidden' from the consumer. The 

generalized price equilibrium condition prevents the possibility of multiple equilibria, as 

it is decisive for the distribution of demand over firms. 5 

The following limit cases allow comparing the symmetric Nash-Bertrand and the 

monopoly ( collusion) prices, denoted by pD and pM respectively: 

5 In this sense, the consumer equilibrium condition is a sharing rule. When no congestion is present, the 

Nash-Bertrand equilibrium depends on assumptions on the sharing rule (e.g. equal sharing or capacity 

sharing, cf. [5,14: 120]). 



(a) ~; ➔ 0 ⇒ PM -c ➔ +oo; PD -c ➔ a'q 

(b) 
cJq M l I D l I 

cJg ➔ +oo ⇒ p -c ➔ 2 a q;p -c ➔ 2 a q 

() ' Q M q . D Q 
(12) 

c a ➔ ⇒ p - c ➔ - cJq / , p - c ➔ 

Jag 
max 

(d) a' ➔ +oo ⇒ PM -c ➔ pmax -c; PD -c ➔ p 2 -c 

Case (a) shows that market power in the Nash-Bertrand case is limited because of price 

setting behavior. While the monopoly markup increases as the elasticity of demand 

decreases, the Nash-Bertrand markup never exceeds the total external congestion cost in 

the network (i.e. it never exceeds double the external congestion cost on the link to each 

firn1). When demand becomes very elastic, cf. (b), the monopoly markup and the Nash

Bertrand markup converge to the marginal external congestion cost on the link to each 

firm. Perfectly elastic demand hence forces the firms to internalize the externality, that is 

to charge the marginal social cost of producing and transport the good. Case ( c) shows 

that in the absence of congestion, the standard monopoly and Nash-Bertrand outcomes 

are obtained. This confirms the conclusion that congestion generates market power under 

both types of market structure. Lastly, (d) says that when congestion becomes extremely 

high, a monopolist will charge a price approaching the choke-off price6 and the 

duopolists charge half the monopoly markup. A monopolist will charge what the market 

will bear, while the duopolists equally split the market and jointly charge what the market 

will bear. 

6 The choke-off price is that price at which the demand curve cuts the Y-axis (assuming that it does so). 

The result also requires assuming that as a' ➔ +00 , then a ➔ +oo, so that the generalized price 

converges to infinity and demand converges to zero. 
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While demand in the symmetric Nash-Bertrand equilibrium is below the socially 

optimal level, it is efficiently produced. This can be seen from the fact that the marginal 

social costs of producing and transporting the good are equal for both firms, cf. (14 ). 

Network assignment (the distribution of traffic over the network) hence is optimal, in the 

sense that it minimizes travel costs for the given level of demand. 

(13) 

Using the consumer equilibrium condition, (6) and (7), (13) becomes: 

(14) 

Efficient production of the equilibrium quantity does not imply that the 

equilibrium quantity is socially optimal, so that link tolls or subsidies are potentially 

useful. Appendix 2 presents a detailed analysis of the welfare-maximizing link tolls for 

the symmetric case, assuming that government is a Stackelberg leader. Given symmetry, 

the link tolls are equal, since otherwise a production inefficiency is introduced. In 

particular, when welfare consists of consumer surplus, profits and toll revenues, and 

when both links can be tolled, the implicit expression for the optimal uniform toll is: 

-a•[q- ~~J_l' 
og a' 

(15) 

where CD= oq g <0 and a=_!_[a•- 0 l 1 l ~ a <0. 
og q 2 _g_ __ 1--a'_g_ 

og a' 2 og 
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The last term in (15) is equal to minus the firms' markup in excess of marginal 

external congestion costs minus network congestion. So, this term is a subsidy, which is 

the sum of the firms' markup in excess of (link) congestion and network congestion costs 

( as opposed to link congestion, which is taken into account by firms; government 

introduces a subsidy equal to network congestion, since that is what matters from the 

social point of view). 

The first term relates to the weighted elasticity of demand. The weight may take 

either sign. When negative, the first term is positive and reduces the subsidy (second 

term) that alleviates the suboptimality in demand following from imperfect competition. 

Detailed analysis shows that the first term is decreasing in the elasticity of demand and 

increasing in the slope of the congestion function, with the opposite directions holding for 

the second term. Also, the first term never more than outweighs the second one, so that 

the upper bound for the optimal toll is zero. This upper bound is approached as demand 

becomes less elastic and congestibility of the network is reduced. To conclude, in the 

symmetric case welfare is improved by a uniform link toll that is non-positive. The 

subsidy essentially brings demand closer to the socially optimal level, i.e. the level 

obtained under pure competition. 

Asymmetric equilibria 

Since the basic properties of the symmetric outcome continue to hold in 

asymmetric cases, the discussion here is limited to the simplest type of asymmetry: linear 

congestion functions with different intercepts. More general cases are presented in 

Appendix 3. When both congestion functions are linear but the intercept on link A is 
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larger,Ihavethat aA >a8,a'A =a'8, cA =c8 . Thissituationcanbethoughtofas 

representing links of equal capacity but different length. 

First I show that qA < q8 in equilibrium. Assume on the contrary that qA = q8 . 

Consequently aA > a8 . To satisfy the consumer equilibrium constraint, this must imply 

PA < p8 . From inspection of (6) and (7), Nash-Bertrand equilibrium under the given 

assumptions requires p A = p 8 • So equal market sharing is not an equilibrium. Assume 

next qA > q8 . Consumer equilibrium then requires PA< p8 while Nash-Bertrand 

equilibrium implies p A > p 8 , so the initial assumption is untenable. Therefore q A < q 8 • 

Next consider the equilibrium marginal social costs: 

(16) 

Using the consumer equilibrium condition, (6) and (7), (16) becomes: 

(17) 

This says that the marginal social cost at fim1 A, the firm with the cost disadvantage, is 

larger than that at fim1 B. The equilibrium is inefficient, as the same demand could be 

satisfied more cheaply. The inefficiency is resolved by increasing qs and decreasing qA, 

keeping q constant, which can be achieved using a toll on link A or a subsidy on link B 

that equalizes marginal social costs on both links. The inefficiency caused by imperfect 

competition as such, i.e. the suboptimal level of demand, is not affected ( cf. (15)). 
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Nash-Cournot solution 

For completeness, consider the case ofNash-Cournot competition. The first-order 

condition for profit maximization for firm A, holding constant q 8 , is: 

(18) 

Since q = q A + q 8 and I assume N ash-Cournot behavior dq = 1. Also, using the 
dqA 

qB 

demand function: dq = dg dg and, using the consumer equilibrium constraint: 
dqA qB dq dqA 

dg = a 'A+ dp A Combining these expressions with ( 18) produces: 
dqA dqA 

(19) 

For a Nash-Cournot equilibrium, (20) needs to hold simultaneously with (19). 

(20) 

Clearly the Nash-Cournot equilibrium markup is always larger than the Nash-Bertrand 

markup, and always smaller than the markup under collusion. The general case of 

collusion, of which the symmetric collusion case was discussed above, is somewhat less 

transparent, and is relegated to appendix 1. 
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2.2 Corner solutions 

In a comer solution one fim1 satisfies all demand. With no loss of generality, 

assume that aA > a8 . Suppose transport costs to Bare sufficiently below those to A, such 

that qA = 0 and q8 = q > 0. For this to be a consumer equilibrium, it is required that 

p 8 - c :S:: a A [ 0] - a8 [ q] . This condition says that at the equilibrium demand, firm A 

cannot profitably enter the market, and this determines the maximum markup that firm B 

can charge as a monopolist. 

It is clear that firm B will never voluntarily share the market, as (a) sharing the 

market is possible only when firm A makes nonnegative profits, which requires an 

increase in the generalized price, hence a demand decrease, hence lower demand to firm 

B, and (b) sharing the market involves competition, which cannot increase firm B's price. 

Sharing the market thus involves reduced profits to firm B. 

So, for a given transport cost configuration, market sharing is fully demand 

driven: if firm B does not satisfy all demand at its maximum monopoly price 7, firm A 

enters the market and Nash-Bertrand competition results. 

Transport policies that reduce the cost asymmetry may be beneficial, as they can 

generate a switch from the monopoly to the duopoly solution (whereas in the interior case 

they could only alleviate the inefficiency cost associated with the asymmetry). This can 

be obtained by imposing a toll on travel to link B. 

7 It is of course possible that firm B makes maximal monopoly profits at a price below the threshold. Then 

the monopoly outcome is obtained. I further abstract from this case, assuming that market demand is 

sufficiently high. 
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3. Policy implications 

While the simplicity of the model prevents definitive conclusions, it has 

implications for policy. The transportation economics literature extensively studies the 

desirability and feasibility of Pigouvian congestion tolls (for an overview, cf. e.g. [3]). 

From the present analysis it follows that network pricing is useful for equalizing marginal 

social costs across links and firms. For given network capacity, asymmetric interior 

equilibria are inefficient as the equilibrium demand level can always be met at a lower 

social cost. Pure Pigouvian tolls, however, are not desirable in a symmetric equilibrium 

because prices will more than cover marginal external congestion costs even without 

them. So, in contrast to most of the literature on congestion tolls, I find that pure 

Pigouvian tolls are unnecessary or even harmful as a demand management instrument, 

while they can improve network use. Instead, the welfare-maximizing (uniform) toll is 

found to be negative. Note however that, when starting from a comer solution, the 

introduction of a congestion toll potentially changes market structure: a monopoly can be 

transfonned into a Nash-Bertrand duopoly. This increases competition, with the 

associated benefits for consumers. 

Like tolls, decisions on network capacity and the distribution of capacity between 

destinations can affect firms' market power. The implication is that optimal investment 

rules in road or network capacity should not only refer to travel time savings (as in the 

standard capacity investment rule, cf. e.g. [11 ]), but also to changes in market power. 

This point is related to [ 1 O] where monopolistic behavior on behalf of two firms with 

different production cost functions and non-congestible transport is assumed. 
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The model also sheds some light on the question whether land developers can or 

should be charged for new or additional capacity that their development requires [12: 

1945-1946]. If adding a link induces market structure to change from a monopoly to a 

duopoly, arguably the link should be publicly financed. Charging the developer would 

increase his marginal production costs, so reducing the probability of entry. It should be 

noted, however, that questions regarding financing roads and market entry are decisions 

on provision and financing of new capacity. The Nash-Bertrand model has less to say 

about this than the Nash-Cournot model, where the quantity decision may be viewed as a 

decision on capacity. While it was shown above that Nash-Cournot competitors will 

charge higher markups than Nash-Bertrand competitors, results on tax incidence are 

differ between both (cf. [1] for a discussion of tax incidence in a Nash-Cournot model). 

The relevance of the present model to other network industries is limited, as in 

these industries congestion is manageable by the network operator. If the operator 

maximizes social welfare, the cost minimizing assignment is obtained for any demand 

level. If the operator maximizes profits, network congestion becomes a strategic variable 

(as is the case in the electricity industry, cf. e.g. [2]). 

4. Conclusion 

I have characterized the pure strategy Nash-Bertrand equilibrium in a setting 

where two firms at different locations supply a homogenous good at constant marginal 

production cost. A representative consumer incurs travel costs to the firm for each unit 

purchased, and these travel costs are increasing in the amount of travel to each firm. It 

was found that the unique Nash-Bertrand equilibrium price exceeds the sum of the 

marginal production cost and the marginal external travel cost, and that asymmetric 
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equilibria lead to an inefficient distribution of travel between fim1s. Congestion tolls then 

may be useful to improve the distribution of traffic, but optimizing demand requires a 

subsidy. 

I mention some caveats. First, the analysis could be extended to general networks 

used by different types of consumers. Restricting the analysis to one consumer type rules 

out the potential benefits from product differentiation. In a transport context, value 

pricing [13] holds potential benefits, also under imperfect competition. Second, multiple 

purpose trips (trip chaining, e.g. commuting and shopping) could be considered. Finally, 

the results are contingent on the exogeneity of location. Introducing location choice will 

increase the model's realism. 
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Appendix 1 Collusion pricing rule when both plants produce 

With collusion, the following program is solved: 

maxPA,Pa (1r=(pA -c)qA +(Ps -c)qs). 

The first order conditions read: 

qA+(pA-c)dqA +(ps-c)dqs =0 
dpA dpA 

qs+(ps-c)ddqs +(pA-c)ddqA =0 
'Ps 'Ps 

(21) 

(22) 

On using the properties of the consumer equilibrium, and after rewriting, these conditions 

become: 
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(23) 

These conditions imply that each plant's markup exceeds the marginal external 

congestion cost of traveling to the plant (second term on RHS). It also depends on the 

markup at the other plant. The next equation is obtained by substituting one first order 

condition in the other, and shows that the markup at one plant takes account of the 

elasticity of demand and that it optimally trades off congestion conditions of both plants: 

a'A ( q, (1-~a', )(1-~a', )+q, )+a', q( 1-~a', J 
a' + a ' - cJq I a ' a' 

A B /cJg A B 

1 
p -c=---

A cJq/ 
/cJg 

. (24) 

Appendix 2 Welfare optimizing tolls - symmetric case 

I derive the welfare optimizing tolls, restricting attention to the fully symmetric and 

linear8 version of the model, as more general configurations become intractable. In 

deriving the optimal tolls, I assume that the social welfare maximizer is a Stackelberg 

leader, who takes firms' reaction functions into account. Firms and consumers take tolls 

as parametric. When welfare is the sum of consumer surplus, profits and tax revenues, it 

is maximized through the following program: 

q 

W = f P [ q] dq - gq + ( p A - c) q A + ( p 8 - c) q 8 + t A q A + t 8 q 8 • (25) 
0 

Using the reaction functions, see (6) and (7), this becomes 

8 This means constant partial derivatives of the demand and congestion functions. 
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q 

w = f p [ q] dq - gq + ( q A )2 
0 

1 
a'-----

A dq 1 
---

1 
a'-----

s aq 1 
---

ag a's dg a'A 

With symmetry, total demand is split equally between firms, who charge the same prices. 

Consequently, a welfare-optimizing toll should be equal on both links. If tolls differed 

between links, demand would not be split equally across firms, and this leads to 

inefficient provision of total demand because of the consumer equilibrium constraint. So, 

the first order condition takes the following form, where t denotes the uniform link toll: 

t = Jq ( 1-½)-a•q+ ~~J_. (27) 

dt ag a' 

The last term of this expression is equal to minus the firms' markup in excess of marginal 

external congestion costs: government increases demand by offsetting this part of the 

markup by an equal subsidy. The second term reflects network congestion, as opposed to 

link congestion (which is the other part of the firms' markup): government increases 

demand through a subsidy equal to network congestion, not link congestion (since 

network congestion is what matters from the social point of view). 

Th fi . fu h . S. dq aq dg . b . e 1rst term ments rt er attention. mce - =--,rt can e wntten as 
dt ag dt 

_!j__ll - - 1-J From the consumer equilibrium constraint for the symmetric case, aq 
2 

dg . 

ag dt 

dg 

dt 

dp +1 
dt From the reaction functions: dp = __!!_ E [-1, 0], where 

dt 1-a 

a = _!_ a'- 1 ag < O [ l 
aq 

2 aq _ J_ 
1 

_ I_ a , aq . 
Using these expressions, the implicit equation for 

ag a' 2 ag 
the optimal tax becomes: 
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1- _!_ a I CJq 

1
_ 2 ag 
2(~ + 1) 

1-a 

-a•[q- ~~J_l' 
og a' 

(28) 

where £qg = oq g < 0. The weight for this elasticity may take either sign. The 
og q 

numerator of the weight's second term is larger than 1, and the denominator is between 0 

and 2, so that the second term takes any positive value. When it exceeds one, the weight 

becomes negative, and the entire first term is positive. In other words, the first term may 

reduce the subsidy (second term) that alleviates the suboptimality in demand following 

from imperfect competition. 

On closer inspection, it can be shown that (a) the first term increases as the slope of the 

congestion function increases, (b) the first term increases as the elasticity of demand 

decreases, ( c) the (negative) second term increases as the slope of the congestion function 

decreases, and ( d) the (negative) second term increases as the elasticity of demand 

increases. The first term becomes positive for low demand elasticities and large slopes of 

congestion functions, but it never outweighs the subsidy from the second term. The 

optimal tax approaches zero as congestion becomes very small and demand is inelastic. 

Appendix 3 Asymmetric interior Nash-Bertrand equilibria 

(a) Linear congestion functions with different intercepts 

This case is discussed in the text. 

(b) Convex congestion functions with different intercepts 

This set of cost conditions is characterized by 

aA >a8 ,a'A[q]=a'8 [q], a'A[qA]>a'8 [q8 ] whenqA >q8 , cA =c8 . Some algebra 

shows that, as in case (a), qA < q8 and MSCA > MSC8 . 

(c) Different single crossing quasi-convex congestion functions 

I now allow different convex congestion functions, with the only restriction that they 

cross at most once. By the same reasoning as before, qA < q8 and MSCA > MSC8 • 
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