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Abstract

Measuring Astrophysical Parameters from Resolved Stellar Populations in the

Milky Way using Applied Statistics

by

Kevin A. McKinnon

Stars, as key building blocks of galaxies, retain information about the condi-

tions in which they formed and can therefore be used to trace galaxy formation and

evolution. Using data from the HALO7D survey, we measure chemical abundances

from stellar spectra of main sequence turn-off stars in the Milky Way (MW) stellar

halo. From these abundances, in combination with previously-measured velocities, we

show that the chemodynamical distributions of stars along four individual lines-of-sight

(LOS) are statistically different from one another, in agreement with a growing body of

evidence that suggests the the MW stellar halo is not as well-mixed as often assumed.

With the goal of improving our understanding of the MW merger’s history

by expanding precise chemodynamics measurements to additional LOS in the Galaxy,

we develop a technique for measuring precise proper motions (PMs) of stars in sparse

fields by combining archival Hubble Space Telescope (HST) images with Gaia data.

The resulting PMs are a median of 2.6 times more precise than Gaia alone in sparse

HST images of COSMOS, and we recover PMs for the ∼ 25% of sources that are too

faint for Gaia to constrain. This technique also enables us to simulate future missions,

such as the Roman Space Telescope. With these simulated observations, we design an

xxii



observation strategy that significantly improves parallax precision at no cost to PM

precision.

Chemical tagging experiments are hindered by unexpected, non-stellar signa-

tures in spectra, some of which can originate in the interstellar medium (ISM). To

increase the scientific potential of the APOGEE spectrograph, we present a detailed

accounting of light in APOGEE stellar spectra using a data-driven model of red clump

stars. These near-infrared, H-band spectra are well-described by this model, though

their residuals reveal a wealth of information about the intervening gas and dust in the

ISM. We characterize the non-stellar light to measure as many as 84 Diffuse Interstel-

lar Bands in the APOGEE wavelength range, ∼ 74 of which were previously unknown,

and show that these ISM-based features are likely impacting stellar chemical abundance

measurements.
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Chapter 1

Introduction

In a Lambda Cold Dark Matter (λCDM) cosmology, galaxies – which live inside

of dark matter halos – merge together over time to produce successively larger galaxies

until present day. Stars, which reside inside of these galaxies and halos, are born in gas

clouds that carry chemical and dynamical information about the conditions of their host

potential well at the time the star formed; in this way, measuring stellar properties allow

us to look back in time to understand the formation and evolution of galaxies. With

current technology, the most complete information about resolved stellar populations is

only available in the Local Group – encompassing the Milky Way (MW), Andromeda,

Triangulum, the Large and Small Magellanic Clouds, and a collection of other nearby

galaxies and clusters – making their study particularly valuable to constraining the

connection between stars, galaxies, and cosmology.

Broadly, there are two main types of direct data from stars that this work

focuses on: astrometry and spectroscopy. Stellar spectroscopy encodes information
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about a star’s evolutionary state (i.e. its surface temperature and pressure), the relative

abundance of different chemical elements, and the velocity of that star in the direction

of the line of sight (LOS). Astrometry at an instant in time allows us to measure the

2D position of a star, while multiple position measurements in time yields 2D motion

on the sky as well as parallax constraints. From these two techniques, we are able to

extract seven dimensional information (i.e. 3D positions, 3D velocities, and one or more

dimensions of chemical abundance).

Stars born in different environments – different galaxies or even gas clouds

within a galaxy – have different kinematic and chemical signatures due to changing

host masses, potential well distributions, and star formation histories (e.g., Eggen et al.

1962; Searle & Zinn 1978; Bullock & Johnston 2005; Helmi 2008). While individual 7D

measurements of stars may be useful for stellar physics, chemodynamical distributions

from populations of stars can reveal different groups of stars that were born together

and their average properties contain information about their origin. Ultimately, extreme

precision chemical and dynamical measurements may allow stars to be assigned to com-

mon birth clusters, which would lead to significant improvements in our understanding

of nucleosynthesis, chemical evolution, enrichment of the ISM, migration of stars, and

the merger history of the MW way. Thanks to an explosion in the amount and quality

of chemodynamical data for stars in the Milky Way – from RAVE (Steinmetz et al.

2006), SEGUE (Yanny et al. 2009; Rockosi et al. 2022), APOGEE (Wilson et al. 2012;

Majewski et al. 2016, 2017), Gaia-ESO (Gilmore et al. 2012; Gaia Collaboration et al.

2018), GALAH (De Silva et al. 2015; Martell et al. 2017), LAMOST (Zhao et al. 2012),
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H3 (Conroy et al. 2019a,b), and DESI (DESI Collaboration et al. 2016a,b), for example

– we’ve been experiencing a revolution in our understanding of our home Galaxy. Re-

cent work, for example, has found strong evidence for a massive merger of the MW with

a progenitor known as the Gaia-Sausage-Enceladus, which occurred approximately 10

billion years ago; the stars from this alien galaxy seem to dominate the inner ∼ 25 kpc

of the stellar halo (Helmi et al. 2018; Belokurov et al. 2018; Haywood et al. 2018).

Not unexpectedly, the story is never so simple as just collecting data and then

analysing it. Stellar light, on its journey to a telescope’s detector, can pass through a

combination of intervening gas and dust, the Earth’s atmosphere, and then finally the

telescope’s optics, all of which imprint signatures on that light. Detailed accounting

of all these sources and effects is important for properly attributing light to a star,

and therefore the inferences we make about its 7D properties. Astronomy has recently

entered its Big Data Era, but our surveys are only as good as the measurements we

make from them. The uniting theme of this thesis is that we are able to extract novel,

previously-obscured inferences about our Galaxy when we employ rigorous statistical

methods, especially in cases where measurement precision is a limiting factor. Under-

standing the data we collect and how best to model it is of extreme importance, so

developing our analysis techniques now has compounding dividends for the future.

1.1 Outline

The remaining text of this thesis is organized as follows. Chapter 2 performs

a 7D chemodynamical analysis of the HALO7D survey using newly-measured chemical
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abundances, Chapter 3 develops a Bayesian technique to measure improved positions,

parallaxes, and proper motions by combining HST and Gaia, and Chapter 4 models

APOGEE spectra to reveal a wealth of information about the interstellar medium.

In Chapter 2, we consider The Halo Assembly in Lambda Cold Dark Matter:

Observations in 7 Dimensions (HALO7D) survey, which measures the kinematics and

chemical properties of stars in the Milky Way (MW) stellar halo to learn about the

formation of our Galaxy. This survey is comprised of Keck II/DEIMOS spectroscopy

and Hubble Space Telescope-measured proper motions of MW halo main sequence turn-

off (MSTO) stars in the four CANDELS (Grogin et al. 2011; Koekemoer et al. 2011, PIs:

S. Faber, H. Ferguson) fields: COSMOS, GOODSN, GOODSS, and EGS. HALO7D

consists of deep pencil-beam fields, making it complementary to other contemporary

wide-field surveys. In Cunningham et al. (2019a) and Cunningham et al. (2019b),

the HALO7D survey is introduced and the radial velocities and proper motions are

measured. We present the [Fe/H] and [α/Fe] abundances for 113 HALO7D stars in

the Galactocentric radial range of ∼ 10 − 40 kpc along four separate pointings. Using

the full 7D chemodynamical data (3D positions, 3D velocities, and abundances) of

HALO7D, we measure the velocity anisotropy, β, of the halo velocity ellipsoid for each

field and for different metallicity-binned subsamples. We find that two of the four

fields have stars on very radial orbits, while the remaining two have stars on more

isotropic orbits. Separating the stars into high, mid, and low [Fe/H] bins at −2.2 dex

and −1.1 dex for each field separately, we find differences in the anisotropies between

the fields and between the bins; some fields appear dominated by radial orbits in all
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metallicity bins while other fields show variation in their orbits between the [Fe/H] bins.

These chemodynamical differences are evidence that the HALO7D fields have different

fractional contributions from the progenitors that built up the MW stellar halo. Our

results highlight the additional information available on smaller spatial scales compared

to results from a spherical average of the stellar halo.

In Chapter 3, we build a hierarchical Bayesian pipeline, BP3M, that measures

positions, parallaxes, and proper motions (PM) for cross-matched sources between Hub-

ble Space Telescope (HST ) images and Gaia, expanding on the recent GaiaHub (del Pino

et al. 2022) tool with the specific goal of improving motion measurements in sparse fields

(e.g. N∗ < 10 per image). Our publicly-available code measures accurate PMs that are

up to 13 times more precise than Gaia DR3 alone (e.g. for 20.5 < G < 21 mag and

a time baseline of ∼ 12 years) for nearby dwarf spheroidal galaxies. Using 787 HST

images in the sparse COSMOS field, we measure BP3M PMs for 2184 unique sources,

25% of which have no Gaia PMs (median BP3M PM uncertainty of 1.12 mas/yr for

G > 21 mag). Using 775 HST ACS/WFC images in the F814W filter, we find that the

on- and off-axis skew terms of the transformation parameters that map HST images

onto Gaia can be described by a time-varying function of HST ’s rotation, potentially

reducing the complexity of the transformation fitting by a factor of 2/3. The underlying

statistics of BP3M are general in that they apply to any two or more sets of position mea-

surements separated by time, regardless of telescope or instrument. Leveraging this, we

simulate Roman Space Telescope (Spergel et al. 2015) observations and find an observ-

ing strategy that produces the largest improvements on parallax precision at no cost to
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the PM uncertainty.

In Chapter 4, we investigate the impact of un-modelled ISM features and

other residuals on chemical tagging – the ability to identify groups of stars as having

been born together based on their chemical signatures – by detailed characterization of

light in APOGEE (Wilson et al. 2012; Majewski et al. 2016, 2017) stellar spectra. Using

∼ 55000 spectra of ∼ 17000 red clump stars (Bovy et al. 2014) from the APOGEE DR16

dataset (Jönsson et al. 2020), we create 2nd order polynomial models of the continuum-

normalized flux as a function of stellar parameters (Teff , log g, [Fe/H], [α/Fe], and Age).

The model and data show good agreement within uncertainties across the APOGEE

wavelength range, although many regions reveal residuals that are not in the stellar

rest-frame. We show that many of these residual features – having average extrema at

the level of ∼ 3% in stellar flux on average – can be attributed to incompletely-removed

spectral lines from the Earth’s atmosphere and Diffuse Interstellar Bands (DIBs) from

the intervening gas and dust of the ISM. After removing most of the remaining contam-

ination from the Earth’s sky, we identify 84 (25) absorption features that have less than

a 50% (5%) probability of being explained by chance alone, including all 10 previously-

known DIBs in the APOGEE wavelength range (e.g. Geballe et al. 2011; Zasowski et al.

2015; Elyajouri et al. 2017; Cox et al. 2014). Because many of these features occur in the

wavelength windows that APOGEE uses to measure chemical abundances, characteriza-

tion and removal of this non-stellar contamination is an important step in reaching the

precision required for chemical tagging experiments. Proper characterization of these

features will benefit Galactic ISM science and the currently-ongoing Milky Way Mapper
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program of SDSS-V (Kollmeier et al. 2017), which relies on the APOGEE spectrograph.

Finally, Chapter 5 summarizes the work in this thesis and presents some di-

rections for future research.
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Chapter 2

HALO7D III: Chemical

Abundances of Milky Way Halo

Stars from Medium Resolution

Spectra

2.1 Introduction

Owing to their long dynamical timescales, galactic stellar halos are long-lived

structures that preserve information about their origins. Within a ΛCDM cosmology,

galaxies are built up by merger events, each of which can contribute stars to the halo.

The positions, kinematics, and chemical properties of halo stars thus reveal a galaxy’s

mass assembly history and information about the dwarf galaxy progenitors that con-

8



tributed to it. By studying the stellar halo of our home Galaxy, we seek to place the

Milky Way (MW) in its cosmological context.

The chemodynamical properties of halo stars are powerful for constraining

masses, star formation rates and efficiencies, and accretion times of progenitors as well

as the total mass and shape of the MW gravitational potential (e.g., Eggen et al. 1962;

Searle & Zinn 1978; Bullock & Johnston 2005; Helmi 2008). While the positional cluster-

ing of stars from an accreted satellite is eventually washed out, the kinematic coherence

of accreted debris persists for much longer periods of time. Stellar atmospheric chemical

abundances are relatively stable over a star’s lifetime, and they are a direct result of

the environment in which it was formed; interstellar medium enrichment levels, star

formation rates, and formation lifetimes of a galaxy all impact the chemical makeup of

star-forming gas as a function of time.

As α elements (i.e. O, Ne, Mg, Si, S, Ar, Ca, Ti) can be produced at early

times in core-collapse events at relatively constant rates with iron, high [α/Fe] stars

tend to be formed at early times in a galaxy’s star-forming life. After enough time

(e.g. ∼ 330 Myr as measured by Maoz & Badenes 2010), and assuming sufficient star

formation, Type Ia supernovae “turn on” and create much of the iron we see in the

universe. This causes the [α/Fe] ratio to drop as [Fe/H] increases (Wallerstein 1962;

Tinsley 1980). The mass-metallicity relation of local dwarf galaxies (Kirby et al. 2013,

2017, 2020) reveals that the metallicity distribution function (MDF) of a galaxy is tied

to its mass; this arises because more massive systems have deeper potential wells that

are able to retain a greater fraction of their enriched gas from supernovae. While this
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relationship was determined for local dwarf galaxies that are observed today, recent

work (e.g. Leethochawalit et al. 2018, 2019; Naidu et al. 2022) has explored how these

mass-metallicity relations were different at earlier cosmic times. The star formation

and quenching time of a progenitor system are impacted during its accretion, but the

chemical properties of the accreted stars are linked to the mass, star formation rate,

and formation lifetime of their birth environment; this inter-relatedness enables the

inferences of progenitor properties from stellar halo chemical abundances (e.g., Lee

et al. 2015; Hasselquist et al. 2021; Horta et al. 2023; Cunningham et al. 2022).

At present time, a stellar halo is comprised of stars from many different pro-

genitor systems. Simulations of purely accreted stellar halos (e.g. Bullock & Johnston

2005; Robertson et al. 2005; Font et al. 2006a,b,c) have average stellar halo abundances

driven by their merger histories (e.g. Johnston et al. 2008), with average [α/Fe] tracking

accretion time of infalling dwarf galaxies and [Fe/H] tracking the mass/luminosity of

those dwarfs. Recent work with state-of-the-art simulations (e.g., Horta et al. 2023, us-

ing the Latte suite of FIRE-2 simulations; Hopkins (2015); Hopkins et al. (2018); Wetzel

et al. (2016)) have further refined our understanding of how the distributions of present-

day chemodynamical observables of stellar halo stars are dictated by the accretion times

and masses of disrupted dwarfs.

In addition to stars accreted from dwarf galaxy mergers, in-situ stars – those

formed in the potential well of the host galaxy – can be heated onto orbits similar to

accreted halo stars during merger events. As a result, the halo population is a combina-

tion of in-situ stars and those accreted during the many mergers a galaxy experiences
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throughout its history. Zolotov et al. (2009), for example, finds evidence from simula-

tions that the in-situ halo fraction of the inner regions traces how quiescent the recent

merger history has been; more recent mergers tend to cause the inner halo in-situ frac-

tion to decrease1. Using data from the H3 survey (Conroy et al. 2019b), Naidu et al.

(2020) find that the in-situ halo fraction drops from 60% to 5% of the total halo mass

when going from Galactocentric radii of 8 kpc to 20 kpc.

For this paper, “in-situ halo” refers to the progenitor high-α disk that was

kinematically heated through early merger events (Nissen & Schuster 2010; Bonaca et al.

2017, 2020; Haywood et al. 2018; Di Matteo et al. 2019; Amarante et al. 2020). This is

the so-called “Splash” of Belokurov et al. (2020). It is thus chemically similar to the thick

disk – that is, peaked towards relatively metal-rich [Fe/H] around −0.5 dex (Naidu et al.

2020) – but consists of stars on more isotropic orbits instead of predominantly circular

ones. Belokurov et al. (2020) show that their “Splash” sample has less net prograde

rotation and larger scatters in all velocity components compared to their “Thick Disk”

sample.

Thanks in large part to the Gaia survey (Gaia Collaboration et al. 2018), our

current picture of the MW’s formation history is becoming clearer: aside from the recent

interactions with Sgr and the LMC/SMC, the MW halo seems to have had a relatively

quiescent recent history. Recent work has shown that the inner ∼ 25 kpc of the stellar

halo is dominated by a single massive progenitor called Gaia-Sausage-Enceladus (GSE)

(Belokurov et al. 2018; Helmi et al. 2018; Haywood et al. 2018). The GSE is relatively

1While their definition of “in-situ stars” is different than ours, the dependence on fractional contri-
bution of in-situ halo stars as a function of merger history should be similar.
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metal-rich, with a peak [Fe/H] of ∼ −1.2 dex (Naidu et al. 2020), and radially biased

orbits. The GSE has a net rotation, ⟨vϕ⟩, that is consistent with 0 km s−1 (Belokurov

et al. 2020), and is estimated to have come from a 4:1 mass ratio merger approximately

10 Gyr ago (Helmi et al. 2018). While the GSE and in-situ halo dominate the bulk of

the inner regions of the stellar halo, there have been many other substructures identified

over the last five years (e.g. Myeong et al. 2019; Koppelman et al. 2019; Yuan et al.

2020; Naidu et al. 2020; Belokurov et al. 2020). There is growing evidence that 92% to

99% of the MW stellar halo stars can be associated with one of the currently known

progenitors (Naidu et al. 2020).

These detailed inventories of the MW stellar halo have helped constrain an-

swers to questions about our Galaxy, such as the approximate formation history, frac-

tional contributions from different progenitors, and range of progenitor properties. Many

of these studies rely on Gaia-based parallaxes and proper motions. Because of Gaia’s

apparent magnitude limit of G ∼ 20 mag, this means that these samples are either

focused on nearby main sequence (MS) halo stars when studying the local halo or more

distant evolved stars when studying the distant halo. These evolved stars are intrinsi-

cally less numerous/spatially dense than their MS counterparts, which means that much

of the distant-halo work has focused on average properties over large areas of the sky.

The Halo Assembly in Lambda Cold Dark Matter: Observations in 7 Dimen-

sions (HALO7D; Cunningham et al. 2016, 2019a,b) is complementary to contemporary

MW stellar halo surveys because it targets 3D positions, 3D velocities, and abundances

of main sequence turn-off stars at moderate halo radii (10 < r < 40 kpc). The HALO7D
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sample consists of Keck II/DEIMOS spectroscopy and HST-measured proper motions

for stars in the apparent magnitude range 19 < mv < 24.5 mag, making it a deep com-

plement to Gaia-based surveys. This paper, the third in the series, measures the 7-th

and final dimension of HALO7D stars: chemical abundances. The high spatial den-

sity of MS halo stars allows us to compare average chemodynamical properties along

different lines of sight (LOS). Cunningham et al. (2019b), for example, measure the

halo velocity anisotropy along the four HALO7D LOS and find variations between the

different fields.

In this paper, we describe the HALO7D data set in Section 4.2. We create

a Bayesian spectrophotometric pipeline to measure chemical abundances ([Fe/H] and

[α/Fe]) and stellar parameters (Teff , log g, Age, and distance) for MSTO stars without

known distances in Section 3.3 and present the resulting abundance measurements for

the HALO7D sample in Section 2.4. In Section 2.5, we combine our abundances with

previously-measured LOS velocities and proper motions from HALO7D (Cunningham

et al. 2019a,b) to measure the variation in average chemodynamical properties – such

as net halo rotation, ⟨vϕ⟩, and the velocity anisotropy parameter, β – using different

subsamples of the HALO7D stars. Our findings are summarized in Section 2.6. The de-

tailed tests on the outputs of our chemical abundance pipeline are described in Appendix

2.7.1, and then validated against well-studied globular clusters in Appendix 2.7.2. We

show the statistical significance of our kinematic measurements in Appendix 2.7.3.

13



Table 2.1: Summary of Targets in CANDELS Fields with line-of-sight velocities and
proper motions from Cunningham et al. (2019a) and Cunningham et al. (2019b).

l b Areaa N Halo Stars Catalog References
Field (deg) (deg) (arcmin2) with v3D

COSMOS 236.8 42.1 288 81 Muzzin et al. (2013);
Nayyeri et al. (2017)

GOODSN 125.9 54.8 166 32 Barro et al. (2019)
GOODSS 223.6 −54.4 160 20 Guo et al. (2013)

EGS 96.4 60.4 384 66 Barro et al. (2011)
Stefanon et al. (2017)

Total – – 998 199

aThe listed field area is the area covered with HST multi-epoch imaging.

2.2 Data

The HALO7D dataset consists of HST-measured proper motions and Keck

II/ DEIMOS spectroscopy for 199 main sequence turn-off (MSTO) MW halo stars in

four Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS;

Grogin et al. 2011; Koekemoer et al. 2011, PIs: S. Faber, H. Ferguson) fields: COSMOS,

GOODSN, GOODSS, and EGS. These fields are located at high Galactic latitudes –

meaning they have minimal foreground contamination from the MW disk – and they are

not located in regions of previously-known streams or substructure (e.g. Sagittarius).

While the stars that make up the HALO7D sample lie within the same footprints as

the CANDELS fields (see Figure 1 of Cunningham et al. 2019a) – and we refer to

them using the same field names – it should be noted that the HALO7D dataset does

not include every MSTO star found in the CANDELS fields. The first paper in this

series (Cunningham et al. 2019a) presents the DEIMOS spectroscopic dataset (see their

Section 2) and measures line-of-sight velocities with a hierarchical Bayesian pipeline
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Figure 2.1: Color-magnitude diagram of the 113 HALO7D stars with measured LOS
velocities and chemical abundances in HST filters (STMAG). Three MIST isochrones at
a distance of 20 kpc with typical MW halo properties are shown in black/grey to guide
the eye in this region of color-magnitude space; an increase (decrease) in distance causes
the isochrones to move down (up) vertically to fainter (brighter) apparent magnitudes.
The faint grey dots show the 86 HALO7D stars that do not have measured abundances.

called velociraptor. The second paper (Cunningham et al. 2019b) presents proper

motions measured from multi-epoch HST imaging (see their Section 2 and Table 2 for

a description of the HST Programs) and characterizes the halo velocity ellipsoid.

A detailed description of the HALO7D sample and the selection process are

presented in the first two papers in this series. To summarize the relevant information,

the fields were chosen because of their deep, multi-epoch HST astrometry and photome-

try, which enables proper motion measurements to much fainter magnitudes than Gaia.

HALO7D’s velocity sample consists of stars in the 19 < mv < 24.5 mag range and are

generally blue to minimize the impact of contamination by foreground disk stars; to see

the full CMD selection criteria, please see Section 2.2 and Figures 2 and 3 of Cunning-
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ham et al. (2019a). HALO7D is thus complementary to previous studies because it is

able to measure kinematics and chemical abundances for individual main sequence stars

at halo distances with high enough spatial sampling density to measure halo proper-

ties along individual lines-of-sight instead of measuring sky-averaged properties versus

Galactocentric radius.

The Keck II/DEIMOS spectroscopic observations were collected between March

2014 and April 2017 using the 600 line/mm grating with a 7200 Å central wavelength

configuration and 1” slitwidth. These medium resolution spectra (R ∼ 2000) consist of

8192 pixels, pixel spacing of ∼ 0.65 Å/pixel, and covering a typical wavelength range of

∼ 5000− 10000 Å. Each target was typically observed for ∼ 5− 6 hours over the course

of this time period, with a minimum of 2 and a maximum of 33 individual visits per

target. The raw spectroscopic data were reduced with the spec2d pipeline produced

by DEEP2 at UC Berkeley (Cooper et al. 2012). Table 2.1 shows a summary of the

observations in each field, Figure 2.1 shows a color-magnitude diagram for the 199 stars

in HALO7D with the colored points denoting the 113 stars for which we are able to

measure abundances. Figure 2.2 shows cumulative histograms of the combined spectral

signal-to-noise ratio (SNR) for the stars with abundances in each field, where we define

the combined SNR using a quadrature sum of the SNRs of the individual observations:

SNRcombined =

(
nobs∑
i

SNR2
i

)1/2

.

The median combined spectral SNRs are 62.2, 64.8, 95.8, and 71.3 Å−1 for COSMOS,

EGS, GOODSN, and GOODSS respectively and 67.2 Å−1 for the complete sample.
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Figure 2.2: Cumulative histograms of the combined spectral signal-to-noise ratios of
stars in the chemistry sample of HALO7D (colored points in Figure 2.1). The black
line represents the total sample. By design, GOODSN had more observations than the
other fields and thus shows higher combined SNRs. The median SNRs for each field
and the total sample are found in the text.

2.3 Measuring Stellar Parameters and Abundances

We create a Bayesian pipeline that uses stellar photometry and spectroscopy

to measure chemical abundances ([Fe/H], [α/Fe]), stellar parameters (Teff , log g, age),

and distances for our HALO7D stars. This technique relies on the library of MIST

isochrones2 (Dotter 2016; Choi et al. 2016; Paxton et al. 2011, 2013, 2015) and a set of

synthetic model spectra (described by Escala et al. (2019) in the blue, 4100 − 6300 Å,

and Kirby et al. (2008); Kirby (2011) in the red, 6300 − 9100 Å). The model spectra

are generated with the MOOG spectral-synthesis software (Sneden 1973), using the

ATLAS9 model atmospheres (Kurucz 1993; Kirby 2011). Each synthetic spectrum is

defined by a set of (Teff , log g, [Fe/H], [α/Fe]) values. For these spectra, [α/Fe] is the

2https://waps.cfa.harvard.edu/MIST/index.html
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total α-element abundance of a stellar atmosphere, where O, Ne, Mg, Si, S, Ar, Ca, and

Ti are the α-elements we consider.

Many techniques that measure chemical abundances and stellar parameters

from spectra using synthetic model spectra typically study populations of stars that have

photometrically-constrained distances (Kirby et al. 2010; Escala et al. 2019, for example)

or parallax measurements (Conroy et al. 2019b; Cargile et al. 2020). This means that

distance-degenerate parameters, such as log g, are able to be fixed and a smaller region

of parameter space needs to be explored. For the HALO7D sample, however, we deal

with MSTO stars with unknown distances. The absolute magnitudes of stars near

the MSTO vary much more than their colors, which means that the stars have large

distance uncertainties. As a result, we must explore larger regions of parameter space

and consider the relationships between distance and the possible stellar parameters. To

help constrain our abundance fits, we use the MIST isochrones, measured properties

of the MW stellar halo, and photometric observations of the stars in our sample to

create multi-dimensional, multi-modal prior distributions on the parameters of interest

for each star.

2.3.1 Generating Prior Distributions of Stellar Parameters

In building our priors, we use MIST isochrones in the range of 0.1 < age <

14.6 Gyr and −4.0 < [Fe/H] < 0 dex in steps of 0.2 Gyr and 0.02 dex respectively. The

current version of the publicly available MIST isochrones are only for [α/Fe] = 0 dex, so

we are not able to include this parameter in the isochrone-derived prior distributions;

we assume a flat prior in the range of −0.8 < [α/Fe] < +1.2 dex. These isochrones are
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then assigned weights based on average properties of the MW stellar halo, such as an

assumed metallicity distribution function (MDF) and age distribution. Our particular

choices of parameters for the halo priors are shown in Table 2.2. The [Fe/H] distribution

is chosen to have a moderately metal-rich peak and a width that is not overly constrain-

ing that is consistent with recent halo studies (e.g., Belokurov et al. 2018; Helmi et al.

2018; Mackereth et al. 2019; Conroy et al. 2019a). Similarly, the age distribution comes

previous studies such as Kalirai (2012) and Bonaca et al. (2020). As we show in Ap-

pendix 2.7.2, the abundances we measure are fairly insensitive to our choice of priors in

the spectral SNR range of our data.

The points within a particular isochrone each have an initial mass, MF606W −

MF814W color, MF814W absolute magnitude, Teff , and log g. The isochrone points are

weighted by integrating a Kroupa (2001) initial mass function (IMF) over the range of

masses within an isochrone to account for uneven mass spacing.

Until now, the isochrones have been weighted only by properties that are

generic to a halo population, but we now create unique prior distributions for the stellar

parameters of each star. We apply additional weights to the isochrone points for each

star separately using the observed photometry. Each star has observed apparent HST

magnitudes, mF606W and m814W , and corresponding uncertainties, σF606W and σF814W ,

which we have de-reddened using the dust maps of Schlegel et al. (1998) through the

dustmaps package in Python (Green 2018).

To give the isochrone points weights based on distances/absolute magnitudes,
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we use the MW stellar halo density profile of Deason et al. (2011):

dN

dV
∝


(

Rq

27 kpc

)−2.3
, Rq < 27 kpc

(
Rq

27 kpc

)−4.6
, Rq ≥ 27 kpc

where R2
q = x2 + y2 + (z/q)2 with q = 0.59. Accounting for volume elements and the

Jacobian between distance and distance modulus, the distance modulus prior is thus

p(µ) ∝ D3 · dN
dV . We marginalize over the distance modulus by taking equally spaced

values in µ that correspond to distances between 0.1 kpc and 500 kpc and comparing

the observed stellar magnitudes to the implied apparent magnitude of the isochrone

point at a given distance modulus. Overall, the weight of a given isochrone point ends

up as:

p(pi|[Fe/H], age) ∝ p(massi|[Fe/H], age) ·
nµ∑
j=0

[p(µj)·

N (Mi,F606W + µj |mF606W , σF606W )·

N (Mi,F814W + µj |mF814W , σF814W )]

where pi is the i-th point in an isochrone defined by ([Fe/H], age) which has absolute

magnitudes (Mi,F606W ,Mi,F814W ).

When comparing the MIST isochrones to HST photometry of stars in a hand-

ful of nearby globular clusters, we noticed that many of the isochrones required color

offsets as large as ∼ 0.02 mag to have better agreement with the data. To allow for a

potential mismatch between the MIST isochrones and the halo stars, we also marginal-
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ize over color offsets between −0.02 mag and 0.02 mag. This is much larger than the

typical photometric uncertainty of stars in the HALO7D sample (median uncertainty

in mF606W −mF814W of 0.006 mag), so this marginalization has a relatively large effect

in increasing the width of the prior distributions of stellar parameters.

For each star, the total weighting for a given isochrone point is thus a product

of its isochrone [Fe/H] and Age weighting, its mass weighting, and the weighting from

marginalizing over the distance modulus while comparing the photometry.

At a given color in an isochrone, there are generally three possible distances

corresponding to a star being on the main sequence, the subgiant branch, or the hor-

izontal branch. This results in our prior distributions having three local maxima: one

peak for each of the possible phases in a star’s evolution. Because it is generally more ef-

ficient to sample posterior distributions that are singly-peaked, we break each isochrone

up into these three phases. The prior probability of a particular phase in any given

isochrone is the fraction of the total weight of the isochrone in that phase. In this work,

phase = 0 corresponds to MS stars, phase = 1 corresponds to the sub-giant branch, and

phase = 2 corresponds to the horizontal branch3.

Finally, for each phase of each isochrone, we generate a 3D prior distribution

on (Teff , log g, and MF814W ) by passing the weighted isochrone points to a kernel-

density estimator (KDE) with a Gaussian kernel. We compute the KDE width by

measuring a standard deviation and mean of each of the parameters (Teff , log g, and

MF814W ) in the set of weighted isochrones, and normalize the measurements so that

3In the MIST parlance, our phase = 0 is also their phase = 0, our phase = 1 is their phase = 2, and
our phase = 2 is their phase = 3 and phase = 4.
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each individual parameter’s distribution corresponds to a unit Gaussian. The Gaussian

width used in the kernel density estimator is chosen to be 0.1, such that the width

is 10% of the standard deviation in each parameter. This KDE approach has the

benefit of allowing combinations of Teff , log g, and MF814W that do not fall perfectly

on the isochrone, meaning we are less reliant on the isochrones perfectly capturing the

relationships between stellar parameters.

Overall, the prior probabilities of the stellar parameters are described by:

p(θ⃗∗) =p(Teff , log g, [Fe/H], [α/Fe],M814W , age, phase)

∝p([α/Fe]) · p([Fe/H]) · p(age) · p(phase|[Fe/H], age)·

p(Teff , log g,M814W |[Fe/H], age,phase)

(2.1)

where p(Teff , log g,M814W |[Fe/H], age,phase) is calculated by evaluating the KDE gen-

erated from the isochrone points with that particular [Fe/H], age, and phase:

KDE[Fe/H],age,phase(Teff , log g,M814W ).

2.3.2 Preprocessing of Spectra

Before the spectral observations can be used in our abundance pipeline, we

must shift each of the spectra to the rest frame, continuum-normalize, identify useful

wavelength regions, and characterize a few quality-of-observation parameters such as

the line-spread function (LSF). For our chemical abundance pipeline, we do not coadd

the multiple spectral observations of a given star into a single observation. Instead, we

model each observation simultaneously. We choose this approach because the spectral
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observations were taken over the course of years and can have vastly different observing

conditions (e.g. seeing, line spread functions, wavelength solution offsets), which causes

their coadded spectrum to have washed-out/hard-to-model features. This section is

quite technical, so readers who are more interested in the big-picture steps of the abun-

dance pipeline may choose to skip ahead to Section 2.3.3 or to the results in Section

2.4.

Measuring Line Spread Functions

As a star’s light passes through the atmosphere to the telescope, its light

is spread out by the seeing we measure during data collection. It is adequate for

our purposes to assume the resulting shape is a Gaussian with a width that is the

FWHMseeing,i/2.355, where i ∈ {1, . . . , nobs} refers to the spectral observation number.

Accounting for the pixel scale and anamorphic factor allows us to convert this into a

width in units of Angstroms in the spectral dimension. Because of the 1” width of the

slits in the DEIMOS mask, any light outside of this width is truncated. The star’s

truncated-Gaussian light is further smoothed out as it passes through the instrument

and lands on the CCD. To characterize this additional amount of instrument smoothing

as a function of wavelength, we use arc lamp exposures4.

We identify peaks in the arc lamp spectrum and then fit those peaks with

a top-hat function convolved by a Gaussian, where the Gaussian width is unknown

and the top-hat width is set by the size of the slit. This is because the arc lamp

light fully illuminates each slit, producing a top-hat shape, before it passes through

4We use Kr, Xe, Ar, Ne for our red arcs, and the same elements plus Hg, Cd, Zn for our blue arcs.
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the instrument. In particular, we are interested in measuring the smoothing Gaussian

widths. The resulting widths as a function of wavelength are approximately quadratic

with a minimum near the chip gap. For each individual observation, we measure this

quadratic function on the blue- and red-chips separately, giving the additional smoothing

of the instrument as a function of wavelength. The final LSFi(λ) for the i-th observation

is then the seeing-defined truncated Gaussian convolved with the wavelength-dependent

instrument smoothing. In cases where the seeing is very good, such that virtually all

of the star’s light is completely inside of the slit (e.g. 3σseeing < slitwidth/2 which

implies a seeing FWHM of ∼ 0.39” for our slitwidth of 1”), the resulting LSFi(λ) is a

Gaussian with a total width that is the quadrature sum of the seeing Gaussian and the

instrument smoothing. In most cases, however, the seeing is large enough relative to

the slitwidth that we find it better to use the truncated-Gaussian-then-smoothed model

instead. During the fitting process, we allow for the instrument smoothing function to

change by a multiplicative factor between 0.5 and 1.5 to not be overly constraining.

We place a prior on this multiplicative factor that is a Gaussian centered at 1 and has

a width of 0.1 for each observation and allow the blue and red data to have different

multiplicative factors:

blue multphase,i ∼ N (1.0, 0.1)

red multphase,i ∼ N (1.0, 0.1)

25



Shift to Stellar Rest Frame and Pixel Masking

Next, we shift each of the nobs observations of a single star to stellar restframe

using the velociraptor-measured LOS velocities from Cunningham et al. (2019a).

Specifically, we use the median LOS velocity from each spectral observation’s posterior

distribution. The data wavelengths are then restricted to 4100 − 9100 Å because that

is the coverage of the synthetic model spectra we will compare to. We also mask out a

few additional wavelength regions, some before shifting to restframe and others after,

as listed in Table 2.3; these include telluric features, poorly-modeled (or un-modeled)

features in the synthetic model spectra, and regions where the wavelength solution of

the spectral reductions are unstable.

For our spectroscopic setup with DEIMOS, there are not many arc lamp lines at

particularly blue wavelengths, which makes anchoring the wavelength solution difficult

in this region. We find that the wavelengths on the red-chip (i.e. λ > 7200 Å) are robust

and that the blue-chip wavelengths are quite reliable down to λ ∼ 5500 Å, but they are

often unstable below λ ∼ 5000 Å. Using a handful of stars with previously-measured

stellar parameters and high SNR spectra, we cross-correlate with the best-fit synthetic

model spectrum at different wavelength locations to re-measure the wavelength solution

and compare it to the output of spec2d. Because the wavelength solution we measure

is using the stellar features at all wavelengths, this process is able to anchor the solution

using lines at the bluest wavelength where arc lines are not available. We find that

the offset as a function of wavelength is approximately linear for λ > 5000 Å on the

blue-chip, with the size of the maximum offset being ∼ 3 Å.
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Table 2.3: Masked spectral regions.

Masked Before Shift to Rest Frame
Name Region Masked (Å)

Unstable Wavelength Solutiona < 5000
B-Band (6864, 7020)
A-Band (7570, 7713)

Telluric Feature (7157, 7325)
Telluric Feature (8123, 8356)
Telluric Feature (8235, 8275)
Telluric Feature > 8933

Chip Gap ±20 at gap

Masked After Shift to Rest Frame
Name Region Masked (Å)

MgHb (5115, 5125)
Na D1, D2c (5885, 5910)
Ca I (λ6343) (6341, 6346)
Ca I (λ6362) (6356, 6365)

Hα (6559.797, 6565.797)
K I (λ7665) (7662, 7668)

V I (λ8116, λ8119), (8113, 8123)
Poor Arcturus Model d (8317, 8330)

Ca II (λ8498) (8488.023, 8508.023)
Ca II (λ8542) (8525.091, 8561.091)
Ca II (λ8662) (8645.141, 8679.141)
Mg I (λ8807) (8804.756, 8809.756)

aVery blue DEIMOS wavelengths tend to be extrapolations of a small number of arc lamp lines and are
not easily fixed with our correction prescription described in Section 2.3.2.

bThis molecular absorption feature is masked for stars that have more than 5% prior probability of
Teff < 5300K because the synthetic models currently do not include this feature.

cThis absorption feature is masked because of potential contamination from ISM absorption.
dFrom Kirby et al. (2008), this is a region where the model spectra were showed to poorly reproduce

the spectral features of Arcturus.
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With these lessons in mind, we decide to mask out wavelengths less than 5000 Å

for all spectra because the wavelength offset function tends to become non-linear in this

region. During the stellar parameter measuring process that we will discuss in Section

2.3.3, we fit each spectral observation with a linear wavelength offset function on the

blue-chip wavelengths to correct for these issues. Ideally, we would use more terms in the

wavelength offset function. However, we must balance the number of parameters being

fit per observation with computation time; we find that a linear correction function is a

good compromise. For spectra with SNR less than 20 Å−1, we mask out wavelengths less

than 5500 Å because this is where it becomes difficult to assess how well the wavelength

offset has been measured. For the same reason, we drop individual spectral observations

with SNR less than 3 Å−1.

Continuum Normalization

We then measure an initial continuum estimate for each spectrum and for each

possible stellar evolution phase, as defined in Section 2.3.1. We take the synthetic model

defined by the median stellar parameters of the corresponding prior distribution, degrade

it to the data quality using the LSFi(λ), and then divide the result from the observed

spectrum. This gives an approximate continuum assuming a particular phase; we then

smooth the resulting spectrum using a median boxcar of width 6.5 Å (i.e. approximately

10 pixels) to limit the impact of outliers such as poorly-removed skylines. This median-

binned spectrum is then fit with a cubic B-spline whose knots are spaced by 100 Å,

yielding an estimate of a given observation’s continuum assuming a particular phase,

cphase,i(λ). This process is repeated for each spectral observation and for each phase.
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Identifying Useful Wavelength Regions and Corrections to Wavelength So-

lutions

We also use these degraded model spectra to build prior distributions for the

parameters of the linear wavelength offset function, ∆λi(λ) = mλ,i · λ+ bλ,i. We cross-

correlate the synthetic model with the spectral data in steps of ∼ 100 Å. This gives

measures of the wavelength offset as a function of wavelength for a particular obser-

vation. We then fit a line to these offsets, taking the resulting fit’s mean, θ⃗λ,i, and

covariance matrix, VVV λ,i, to define the prior distribution as a multivariate normal distri-

bution,

mλ,i, bλ,i ∼ MVN 2(θ⃗λ,i, 10VVV λ,i)

where we inflate the covariance matrix by a factor of 10 so as not to be overly constrain-

ing.

Finally, we identify wavelength regions of the spectra that are particularly

useful for measuring stellar parameters. Using the prior distributions to define a useful

region of parameter space (e.g. 95% prior probability), we are able to define a grid

of equally spaced Teff , log g, [Fe/H], and [α/Fe] values for each phase. For each set

of parameters on the prior grid, we degrade the corresponding synthetic model to the

data quality and compare the model spectra to each other as well as to the continuum-

normalized spectral observations. This is done for two purposes. The first reason is

to determine wavelength regions that do not change significantly across the parameter

grid, which means they provide the least power for our likelihood measurements. We

choose to mask the 10% least useful pixels of each observation. This has the additional
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benefit of speeding up computations because we consider a smaller number of pixels; in

total, the masking of poorly-modeled, telluric, and low-likelihood information regions

leaves between 35− 55% of the data pixels (∼ 3000− 4500 of the original 8129 pixels)

for the likelihood measurements. The other reason is to better define the continuum

for each observation given a particular phase. For each set of parameters in our prior

grid, we divide the continuum-normalized data by the current synthetic model and

then fit a B-spline with 100 Å-spaced knots to the result, which defines the continuum

adjustment required to have the best agreement between that model and the data. The

new continuum for each phase is taken to be the initial continuum multiplied by the

new continuum adjustment of the model that had the minimum χ2 comparison. The

parameters that define the best model (i.e. minimum χ2) for each phase is where we

choose to begin our search of parameter space during the fitting process.

2.3.3 Fitting Spectra with Synthetic Models

With our prior distributions and rest frame, continuum-normalized spectra

in hand for each star, we begin the fitting process. The synthetic model spectra we

compare to are defined by a set of Teff , log g, [Fe/H], and [α/Fe] values according to

the model grid in Table 2.4. In cases where we draw a set of parameters that don’t lie

directly on the model grid, we linearly interpolate from the nearest neighboring models

using between 2 and 24 nearest neighbors in (Teff ,log g,[Fe/H],[α/Fe]) space. For each

observation of a given star, the synthetic model is smoothed with the corresponding

LSFi(λ) and re-sampled onto the data wavelengths.
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Table 2.4: Model spectrum grid spacing by parameter value from Escala et al. (2019,
Table 4).

Parameter Min. Value Max. Value Step

Teff (K) 3500 5600 100
5600 8000 200

log g (cm s−2) 0.0 (Teff < 7000 K) 5.0 0.5
0.5 (Teff > 7000 K) 5.0 0.5

[Fe/H] −4.5 (Teff ≤ 4100 K) 0.0 0.1
−5 (Teff ≤ 4100 K) 0.0 0.1

[α/Fe] −0.8 +1.2 0.1

The posterior probability for our parameters of interest is:

p(θ⃗∗, θθθspec|FFF ,ΣΣΣ) ∝p(θ⃗∗) · p(θ⃗spec) · p(FFF |θ⃗∗, θθθspec,ΣΣΣ)

∝p(θ⃗∗) ·
nobs∏
i=1

[
p(θ⃗spec,i) · p(f⃗i|θ⃗∗, θ⃗spec,i, σ⃗i)

]

∝p(θ⃗∗) ·
nobs∏
i=1

p(θ⃗spec,i) · npix∏
j=1

p(fi,j |θ⃗∗, θ⃗spec,i, σi,j)


(2.2)

where i corresponds to the spectral observation number, j corresponds to the pixel num-

ber within a spectrum, FFF = (f⃗1, f⃗2, . . . , f⃗nobs
) are the fluxes of the measured spectra

with corresponding uncertainties of ΣΣΣ = (σ⃗1, . . . , σ⃗nobs
), θθθspec = (θ⃗spec,1, . . . , θ⃗spec,nobs

)

are the set of spectral parameters for all observations, and θ∗ is the set of stellar param-

eters with p(θ∗) defined in Equation 2.1. Because the spectra for a given star are on a

common wavelength array, λj represents the wavelength of a given pixel, and fi,j is the

flux measured in that pixel for spectrum i, with corresponding flux uncertainty σi,j .

The θ⃗spec,i parameters include a blue- and red-side multiplier to the LSFi(λ),

and the slope and intercept for the linear wavelength solution correction of that obser-
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vation. Thus, the prior on the spectral parameters for each observation is:

p(θ⃗spec,i) = p(blue multi) · p(red multi) · p(mλ,i, bλ,i)

where p(blue multi) and p(red multi) are defined in Section 2.3.2 and p(mλ,i, bλ,i) is

defined in Section 2.3.2.

The likelihood of a particular spectrum’s flux measurement at a particular

pixel, p(fi,j |θ⃗∗, θ⃗spec,i), comes from a comparison with the synthetic model that has had

measured continuum applied. While the continuum we have measured in the previous

section does a good job of normalizing each spectrum, we allow for one final continuum

fit before evaluating the likelihood to have an optimal comparison. This is particularly

important in cases where there is significant line blanketing at blue wavelengths because

the original continuum definition may have removed the effects of line blanketing while

trying to normalize the fluxes. To this end, for every draw of parameters, we smooth

the corresponding synthetic model to the appropriate data quality, then divide it from

the continuum-normalized data; we then coadd the remaining noise spectra from the

different observations and fit the result with a final B-spline with 100 Å-spaced knots.

This process captures any remaining large-scale variations that are required to have

good agreement between a particular model and the data.

In words, the parameter measurement proceeds as follows:

1. Draw stellar parameters

(Teff , log g, [Fe/H], [α/Fe], M814W , age, phase) and spectral correction param-

eters (blue multi, red multi, mλ,i, and bλ,i for each of the i spectral observations)
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using Multivariate Normal proposal distributions;

2. Read in the high-resolution synthetic model defined by the current stellar param-

eters;

3. For each observation, smooth the synthetic model by LSFi(λ < λchipgap)·blue multphase,i

on the blue side and LSFi(λ > λchipgap) · red multphase,i on the red side to get the

data-quality model fluxes;

4. Define the new wavelength vector for each observation using the current linear

wavelength offset correction, ∆λi(λ) = mλ,i ·λ+ bλ,i, applied only to the blue side

(i.e. ∆λ(λ > λchipgap) = 0);

5. Re-sample the corresponding smoothed model onto this new wavelength array,

giving m⃗i;

6. For each observation, divide the continuum-normalized observation, f⃗i/c⃗phase,i, by

the re-sampled smoothed model, m⃗i, to get a noise spectrum that is centered at

1;

7. Coadd the noise spectra together, and fit the result with a B-Spline to account

for any missing continuum; this is the continuum adjustment vector a⃗;

8. For each observation, the likelihood is then

p(f⃗i|θ⃗∗, θ⃗spec,i) =
npix∏
j=1

N (fi,j |aj · cphase,i,j ·mi,j , σi,j);

9. Measure the posterior probability for a current draw using Equation 3.4;
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10. Use Metropolis-Hastings criterion to accept or reject the drawn parameters;

11. Repeat until the parameter samples have converged.

We use 500 MCMC walkers that are initialized with parameters drawn from

the prior distributions. These walkers are updated to new parameter values at each

iteration of the fitting process using the emcee package (Foreman-Mackey et al. 2013).

We generally require ∼ 500 iterations to reach convergence, so we choose to sample for

1500 iterations for each star. We use a conservative burn-in period that throws out the

first 70% of samples, keeping the most recent 30% as our posterior samples. Because we

need to consider multiple spectral correction parameters for each observation and we

consider each observation separately, this process can be quite computationally expen-

sive in both RAM and time. An example of the pipeline’s output posterior distributions

and model comparison are shown in Figure 2.3 for a star in the COSMOS field; in this

case, we see good agreement between the synthetic model and the data5.

One limitation of our process comes from the assumption that the flux measure-

ments at each pixel within an observation and between observations are uncorrelated,

though we know this not to be true because of our preprocessing steps. While a more

rigorous fitting approach would incorporate these correlations, we use the uncorrelated

assumption because it simplifies the calculations and increases computation speed.

To validate the results of our pipeline, we generate synthetic, HALO7D-like

spectral observations with known stellar parameters. The results of analyzing those

synthetic observations are shown in Appendix 2.7.1. The main takeaway is that the

5The data and model in the “Normalized Flux” panel have been smoothed slightly for the purpose of
visual comparison. The data used by the chemistry pipeline and shown in the “Flux Residual” spectrum
and histogram are the original, unsmoothed data.
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Figure 2.3: Posterior distributions and model comparison for a star in the COSMOS
field. The black points, lines, and contours in the corner plot on the left show the
posterior samples, and the orange histograms show 1d projections of the prior for a given
parameter. The titles above each histogram show the median and the 68% confidence
interval in that parameter. In the upper right corner, the star’s spectrum shows close
agreement with the best fit model (red line) as defined by the median parameters of
the corner plot. As described in Section 3.3, various wavelength regions of the data
have been masked out for the fitting process, including the central region of Hα. The
uncertainty-scaled flux residuals are shown in the lower panel, and the distribution of
these residuals show good agreement with the expected unit normal in the rightmost
panel.
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abundances agree with the known parameters for stars with combined spectral SNR>

20 Å−1. For SNR< 20 Å−1, we begin to see a bias in the abundances, so we omit any

stars with combined spectral SNR below this limit for the following analyses. We also

find that our posterior abundance distributions are slightly too narrow, requiring an

inflation of the posterior covariance by a factor of 1.312. This factor implies that our

posterior abundance distributions have widths that are approximately 1.31 times smaller

than needed to explain the disagreement with the expected values; this implies that

our systematic uncertainties in abundances are approximately 31% of the uncertainty

reported by the pipeline. All abundance uncertainties shown or reported in this chapter

have been inflated by this factor. Finally, we analyze MSTO stars in the well-studied

globular clusters of M2 and M92 in Appendix 2.7.2 and show that the pipeline is able

to recover results that are consistent with the literature.

2.4 Chemical Abundances of HALO7D Stars

In this section, we present our chemical abundance measurements for the

HALO7D dataset. Of the 199 stars from HALO7D with measured 3D velocities (which

we hereafter refer to as the “Velocity” sample), 113 had converged posterior results for

their chemical abundances (hereafter the “Chemistry” sample). The numbers per field

are summarized in Table 2.5 and the abundances are displayed in Figure 2.4. There

are several reasons why a star did not converge in the abundance pipeline, but the

two main factors are (1) the resulting posterior distribution peaking too close to the

edge of the model grid in at least one of the stellar parameters (i.e. Teff , log g, [Fe/H],

36



Table 2.5: Summary of HALO7D targets in each field for different measurements.

Field Nv3D
a Nabundances

b

COSMOS 81 36
GOODSN 32 21
GOODSS 20 16

EGS 66 40
TOTAL 199 113

aTargets that have measured vLOS and proper motions from Cunningham et al. (2019a) and
Cunningham et al. (2019b).

bTargets that have measured [Fe/H] and [α/Fe].

and α), and (2) having a combined spectral SNR< 20 Å−1 which makes constraining

the wavelength solution difficult and generally leads to unconstrained posterior distri-

butions. The latter reason effectively acts as a magnitude cut, which makes the faint

magnitude limit mF606W = 23 mag for EGS and GOODSN, 22.5 mag for COSMOS,

and 22 mag for GOODSS, instead of the mF606W = 24.5 mag of the original/complete

HALO7D sample. As a result, we expect that COSMOS and GOODSS cover slightly

nearer distances when compared to EGS and GOODSN.

Figure 2.4 shows the median [Fe/H] and [α/Fe] and corresponding posterior

uncertainty for individual stars colored by the field they belong to. The errorbars are

perpendicular lines that show the eigenvectors of the posterior covariance of the [Fe/H]

and [α/Fe] distribution, with the length corresponding to 1-σ in those eigenvectors. The

bulk of stars lie in the −2 < [Fe/H] < −1 region, and the vast majority of stars are

supersolar in [α/Fe] as we would expect for old, halo populations and has been seen by

previous studies (e.g. SDSS with Carollo et al. 2007, 2010, H3 with Conroy et al. 2019b,a;

Naidu et al. 2020, APOGEE with Helmi et al. 2018; Mackereth et al. 2019). GOODSN

(in green) has abundance distributions with smaller dispersions compared to the other
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Figure 2.4: Posterior chemical abundances of HALO7D stars colored by the field to
which they belong. The errorbars are perpendicular vectors that show the 1-sigma
eigenvectors of the posterior covariance matrices.

fields; this is partly because GOODSN stars generally have higher average SNR spectra

than the other fields (as seen in Figure 2.2), and thus have smaller posterior abundance

distributions, though it could also be that the GOODSN field is less chemically diverse

than the other fields. As we will discuss in Section 2.5, the kinematics and abundances

of the GOODSN stars are consistent with originating almost exclusively from the GSE

progenitor, whereas the other fields appear to have multiple contributions. Excluding

the clustering of GOODSN’s around [Fe/H] = −1.5 dex, the stars of each field occupy

the same regions of abundance space, and there isn’t an immediately obvious difference

between the fields when considering chemistry alone.
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Figure 2.5: Resulting population distribution of abundances for the HALO7D fields and
total Chemistry sample after fitting 2D multivariate Gaussians. The colored data points
show the median abundances, and the lines coming off of those points are perpendic-
ular 1-sigma eigenvectors showing the uncertainty in that median. The approximately
elliptical shapes show the region that the model predicts contains 68% of the popula-
tion data; these shapes are generated by taking samples of the population medians and
covariance matrices from the 2D Gaussian fitting process.

To compare the distributions of [Fe/H] and [α/Fe] in each field more quantita-

tively, we fit 2D multivariate normal distributions in a hierarchical model to each field’s

abundances independently. The abundances in each sample are assumed to follow a

2D Gaussian distribution whose mean and covariance we are measuring, and each star’s

posterior abundances are assumed to be draws from that population distribution. These

results are shown in Table 2.6 (labelled as the “Chemistry” sample) and Figure 2.5. The

field-colored datapoints show the median of the 2D distributions, the crosses show the 1-

σ uncertainties on the median, and the approximately elliptical shapes show the median
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region that the model predicts to contain 68% of data. These 2D fits show that all the

fields have similar median abundances and uncertainties. For the total sample, we find

⟨[Fe/H]⟩ = −1.65±0.06 dex, σ[Fe/H] = 0.64±0.05 dex, ⟨[α/Fe]⟩ = +0.28±0.03 dex, and

σ[α/Fe] = 0.24± 0.02 dex. As we show in Section 2.5, the fraction of disk contamination

in each field and for the total sample is relatively small, so the impact of foreground

disk stars on these abundance distributions is minimal.

Recent studies, such as the H3 survey (Conroy et al. 2019b,a), have found a

flat halo MDF (with respect to Galactocentric radius) that is peaked at −1.2 dex, has an

approximate scatter of 0.5 dex, and has a fairly significant tail towards low [Fe/H]. The

H3-measured MDF is generally more metal-rich than previous studies have measured.

As Conroy et al. (2019a) point out, many of the previous studies imposed [Fe/H] cuts

or targeted blue stars to minimize contamination from nearby MS stars, which biases

the MDF towards the metal-poor end (e.g. Carollo et al. 2007; Xue et al. 2015; Das &

Binney 2016), while H3 does not select targets based on color. The HALO7D survey

also targets blue stars, which may explain why we find a more metal-poor average of

−1.65 dex for our sample.

We estimate the impact of our selection function on the HALO7D results in

Figure 2.6. For the “No Selection” model, we take MIST isochrones and weight them

by

[Fe/H] ∼ N (−1.2, 1.0 dex)

age ∼ N (12, 2 Gyr)
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Figure 2.6: Resulting changes to the underlying MDF (purple) when the effective se-
lection functions in each HALO7D field are used. The vertical dashed lines show the
median of each distribution. HALO7D, like other surveys that target blue stars, results
in a bias towards lower [Fe/H].

mass ∼ Kroupa IMF

which produces the purple histogram6. We then take those weighted isochrones and

apply the observed HALO7D selection functions for each of the fields. This includes

masking points outside of the model grid in Table 2.4, as well as ensuring that the

resulting distributions in mf606W and mF814W are exactly what is observed in the

HALO7D Chemistry sample, producing the other histograms. The dashed vertical

lines show the locations of each distribution’s median [Fe/H]. From this, we see that

the HALO7D cuts on color, magnitude, and stellar parameters bias the measured MDF

6While our choice of σ = 1.0 dex in the [Fe/H] distribution is larger than the scatter measured
by Conroy et al. (2019a), we choose to use this simplified model as a reasonable approximation that
produces a significant number of low-[Fe/H] stars.
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towards lower [Fe/H] compared to the underlying model population, and the median is

shifted by ∼ −0.3 dex. When accounting for this bias, our median [Fe/H] of −1.65 ±

0.06 dex with a scatter of 0.64±0.05 dex is consistent with the H3 mean halo metallicity

of −1.2 dex.
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2.5 Chemodynamics with HALO7D

2.5.1 Anisotropy Parameter, β

The power of a survey like HALO7D comes from being able to consider multiple

dimensions together. We do this by computing field-averaged kinematics in the form of

the anisotropy parameter:

β = 1−
⟨v2ϕ⟩+ ⟨v2θ⟩

2⟨v2r ⟩
,

as was used in the analysis of Cunningham et al. (2019b). With this definition, β = 1

implies that a population is on entirely radial orbits, β = 0 is for a population with

isotropic orbits, and β → −∞ for a population with entirely circular orbits. We calculate

anisotropies, net halo rotation (⟨vϕ⟩), and the fraction of disk contamination (fdisk)

for our four fields and the total sample using the HALO7D stars that have chemical

abundance measurements. This is done by modeling the spatial densities, MDFs, age

distributions, and velocity component distributions for both the disk and the halo.

We first generate a “Thick Disk” and a “Halo” absolute magnitude probability

distribution for each star. As in Section 2.3.1, we do this by weighting MIST isochrones

using a Kroupa IMF, an age distribution, an [Fe/H] distribution, each star’s de-reddened

color, and a density profile for either the Thick Disk or MW stellar halo. These absolute

magnitude distributions give distributions on distances that we use in combination with

the previously-measured PMs and LOS velocities to calculate the kinematics for each

field. For both the disk and halo models, we use the posterior distributions in [Fe/H]

and age for each star as measured from the abundance pipeline; because of this, the
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Table 2.8: Velocity prior distributions for Disk and Halo model. These are the same
distributions used in the analysis of Cunningham et al. (2019b).

Component Distribution Functional Form

Halo p(vr) N (0, σr)
p(vϕ) N (⟨vϕ⟩, σϕ)
p(vθ) N (0, σθ)

Disk p(vRD
) N (0, 45 km s−1)

p(vz) N (0, 20 km s−1)
p(vT ) SKN (µ = 242 km s−1, σ = 46.2 km s−1, a = −2)

isochrone weighting – and therefore the distance distribution and corresponding velocity

measurements – for each star depends on the abundances we’ve measured. For the disk

isochrone weighting, we use the distributions shown in Table 2.7; the density profile is

chosen to match that of Cunningham et al. (2019b). For the halo isochrone weighting,

we use the same priors as in Table 2.2.

When these absolute magnitude distributions are combined with the LOS ve-

locities and proper motion measurements of Cunningham et al. (2019a,b), we have 3D

velocities and positions for each star when belonging to the disk or halo, which allow

us to measure the properties of the halo’s velocity ellipsoid. For the velocity compo-

nents, we assume the distributions shown in Table 2.8, where SKN is a skew-normal

distribution with shape parameter a. As before, these distributions are chosen to match

those of Cunningham et al. (2019b). To transform between the observer frame and a

Galactocentric one, we use r⊙ = 8.5 kpc, assume a circular speed of 235 km s−1, and

solar peculiar motion (U, V,W ) = (11.1, 12.24, 7.25) km s−1 (Schönrich et al. 2010). Our

calculations use a right-handed coordinate system such that ⟨vϕ⟩ < 0 corresponds to

prograde motion.

We fit for the unknown halo velocity components of ⟨vϕ⟩, σvr , σvθ , σvϕ , which
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are used to calculate the anisotropy parameter β, choosing a uniform prior on ⟨vϕ⟩, and

non-informative priors that are proportional to 1/σr,ϕ,θ for the dispersion components.

Because each star has the possibility of belonging to the disk or the halo, we fit the

population as a mixture model using fdisk, which is the fraction of contamination by

foreground disk stars. We note that the velocity ellipsoid parameters (i.e. ⟨vϕ⟩, σvr , σvθ ,

σvϕ) mentioned here and shown in the following tables and figures refer only to the halo

population; we fix the parameters of the disk model velocity distributions for each LOS

to those shown in the bottom of Table 2.7 based on the Besançon disk model (Robin

et al. 2003). During the fitting process, we marginalize over the absolute magnitude

distributions of each star to account for uncertainties in distance. The anisotropy results

for various HALO7D subsets are listed in Table 2.9. One key takeaway is that the disk

contamination is quite low in all the HALO7D fields for the chemistry sample, so we

are measuring the properties of a fairly clean halo sample. The small possible number

of disk stars in our sample is thus unlikely to bias the average abundances we present

in Section 2.4.
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2.5.2 Anisotropy and Abundances

Figure 2.7 reveals that the HALO7D fields have significant differences in their

kinematics, as was first seen in Cunningham et al. (2019b). We note that we are

considering a smaller subset of the HALO7D stars than was used in Cunningham et al.

(2019b), so we will not directly compare our measured kinematics. With the chemistry

sample of HALO7D, we find that GOODSN and EGS are more radially-biased than

GOODSS and COSMOS.

We also notice that all of the fields have significant net halo rotation, different

than the small or nearly zero net-rotation measured by Cunningham et al. (2019b) and

others (e.g., Belokurov et al. 2020; Bird et al. 2021). We also note a small apparent

correlation between fdisk and anisotropy. These may be due to distance systemat-

ics (Schönrich et al. 2011) or our choice to model the velocity ellipsoid with a single

Gaussian. Lancaster et al. (2019) find the halo velocity ellipsoid is well described by

two components, one non-rotating and radially-biased and a second non-rotating, more

isotropic population. We use a single component as more robust choice for our smaller

sample size. As a consequence, we focus our analysis on the trends in ⟨vϕ⟩ between

different subsamples.

To assess the statistical significance of the differences we see between the fields,

we assume a null hypothesis that the fields have the same halo velocity ellipsoid pa-

rameters that we find for the total population. After generating many simulations of

HALO7D-like data and measuring their anisotropies, we indeed find the differences we

see between the four fields are not likely to be explained by chance alone. A description
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and summary of these tests are presented in Appendix 2.7.3.

These anisotropy differences are also not likely explained by differences in β

as a function of average Galactocentric radius; between Galactocentric radii of 10 and

20 kpc, Loebman et al. (2018) finds an increase in median β from ∼ 0.5 to ∼ 0.6 using

simulated MW-like galaxies. This approximate trend of ∆β/∆r = 0.01 kpc−1 is not

likely to explain the large anisotropy differences between the HALO7D fields. Similarly,

various studies of different stellar populations in the MW stellar halo have found that

the anisotropy profile does not change significantly in the 10 to 20 kpc radial range

(e.g., Lancaster et al. 2019; Bird et al. 2019, 2021; Liu et al. 2022; Wu et al. 2022) after

stars associated with Sagittarius have been removed. In these studies, however, the β

measurements come from averages over the sky whereas the HALO7D sample is able to

compare along different lines of sight.

Anisotropy variations at different positions in the MW stellar halo have been

previously observed. Iorio & Belokurov (2021), for example, measure anisotropies of

RR Lyrae in bins of Galactic Z and R (see their Figures 3 and 7). While many of

their bins have high anisotropy (β ∼ 0.8), there are also a handful of regions with

isotropic measurements (β ∼ 0). It is possible that the more-isotropic HALO7D fields

may intersect with some of these regions.

One possible explanation for the variation in anisotropy among the fields is

differences in fractional contribution from different MW halo progenitors. For instance,

the highly radial EGS and GOODSN samples could indicate that these fields are dom-

inated by stars from the GSE – a progenitor that is marked by stars on strongly radial
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orbits with no net rotation (e.g., Belokurov et al. 2020, finds ⟨vϕ⟩ ∼ 0 km s−1) – while

GOODSS and COSMOS have more significant contributions from non-GSE sources.

Naidu et al. (2020), for instance, found that the halo fraction contributed by the GSE

peaks at rgal ∼ 20 kpc and that the in-situ halo contribution becomes minimal around

the same radius. Many other studies have found similar peaks in the fractional contri-

bution from a radial halo population in the rgal range of 10 to 20 kpc (e.g. Deason et al.

2018; Lancaster et al. 2019; Iorio & Belokurov 2021; Liu et al. 2022). Our HALO7D

fields cover the range of radii where the transition between the dominance of the in-situ

halo decreases and the dominance of the GSE peaks, so differences in their average

kinematics may be particularly sensitive to variation in the fractional contribution from

these structures. Because all the fields have similar average chemical abundance pat-

terns, we expect that all the fields have relatively large contributions from the GSE, and

that contributions from non-GSE sources likely cover the similar regions of abundance-

space, such as Wukong (Naidu et al. 2020; Yuan et al. 2020), Nereus (Donlon et al.

2022; Donlon & Newberg 2023), and the in-situ halo/Splash.

2.5.3 Anisotropy in [Fe/H] Bins

To explore the relationship between kinematics and chemistry, we split the

sample up into different [Fe/H] bins. Based on previous MW halo inventory studies,

the high [Fe/H] bin ([Fe/H] > −1.1 dex) is where we expect the largest fraction of

in-situ halo/disk stars and the mid [Fe/H] bin (−2 < [Fe/H] < −1.1 dex) is where we

expect stars from the GSE to dominate. The binned abundances and kinematics are

summarized in Tables 2.6 and 2.9 and Figure 2.8.
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All fields in the mid [Fe/H] bin have highly radial anisotropies and a small

net halo rotation (⟨vϕ⟩), which suggests that stars in this bin are chemodynamically

similar and thus may originate from a single progenitor. In the low and high [Fe/H]

bins, we notice differences in the kinematics between the fields. In particular, the high

[Fe/H] bin shows the largest differences in anisotropy between the fields, with EGS

having the most radial stars and GOODSS having the most circular stars. As before,

we test the probability of observing these results by chance alone and find that the

anisotropy differences in the high [Fe/H] bin are likely statistically significant; these tests

are summarized in Appendix 2.7.3. These anisotropy differences between the fields may

be caused by variations in the fractional contributions of different progenitors, which

changes the average kinematics we measure. These differences highlight the additional

information available on smaller spatial scales that a survey like HALO7D is able to

capture.

The mid [Fe/H] bin covers −2 < [Fe/H] < −1.1 dex in metallicity and spans

Galactocentric radii of ∼ 10 − 20 kpc in all fields. This is the radial and metallicity

range that other studies (e.g. Naidu et al. 2020) have measured the GSE to dominate

the halo. These facts, combined with the low net rotation and highly radial anisotropy

we measure in the mid [Fe/H] bins, are evidence that all the fields have a dominant

fractional contribution from the GSE in the −2 < [Fe/H] < −1.1 dex range. Because

we measure a non-zero ⟨vϕ⟩ of ∼ −30 km s−1 in this bin, GSE is almost certainly not the

only progenitor present in this bin; however, the relative contributions from prograde

structures must be relatively consistent between the different fields to produce a similar
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net rotation. The high [Fe/H] bin has the largest range of anisotropies and vϕ values

compared to the other bins. This is the bin that we expect to contain a significant

number of stars from the GSE, the in-situ halo, and a few other known MW progenitors

because its higher metallicity intersects with the MDFs of multiple structures. As a

consequence, this large number of progenitor options is likely causing the increased

variation we see in kinematics in this bin. Like the mid [Fe/H] bin, the low [Fe/H] bin

doesn’t show much variation between the chemodynamics of the fields.

The results from EGS and COSMOS are particularly useful to compare because

they have approximately the same number of stars in each of the [Fe/H] bins, which

limits the impact that sample size has on these comparisons. EGS has anisotropies

in each [Fe/H] bin that are quite radial and fairly consistent with each other, which

suggests that EGS is dominated by stars from a single progenitor in all [Fe/H] bins.

As explained in the previous paragraph, the origin of these stars may be the GSE,

as the EGS stars show the characteristic radial bias and low net rotation previously

measured for the GSE. For COSMOS, the anisotropy and net halo rotation change more

noticeably between the [Fe/H] bins. At high and low [Fe/H], the COSMOS anisotropies

are isotropic and the net rotations are prograde, which suggests that these bins have

significant contributions from sources other than that which produced the kinematics in

the mid [Fe/H] bin. Like the other fields, the COSMOS mid [Fe/H] bin has kinematics

and chemistry that are consistent with the GSE. A possible origin for the high-[Fe/H],

prograde stars in COSMOS is the in-situ halo, while the low-[Fe/H], prograde stars

may originate from the Wukong, Nereus, and/or the metal-poor tail of the in-situ halo.
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Because COSMOS is closer to the disk plane than any of the other HALO7D fields and

EGS is the farthest, the larger contribution of in-situ halo stars in COSMOS and a

smaller contribution in EGS is not unexpected. All the HALO7D fields are located far

away from any Sagittarius Stream debris, so this is not likely to explain the difference

in chemodynamics we observe between the fields.

In summary, the HALO7D fields show significant differences when considering

chemistry and kinematics together. Looking at different [Fe/H] bins reveals that all the

fields may have a significant fraction of stars from the GSE in the middle [Fe/H] bin

of −2 < [Fe/H] < −1.1 dex. EGS has similar kinematic properties in its high and low

[Fe/H] bins, and these are again consistent with debris from GSE. COSMOS, on the

other hand, has more variation in its kinematics across the [Fe/H] bins which suggests

it has larger fractional contributions from non-GSE sources. The high [Fe/H] bin has

properties consistent with a large fraction of in-situ halo stars, the mid [Fe/H] bin has

properties like the GSE, and the low [Fe/H] bin has properties like the metal-poor tail

of the in-situ halo, the Wukong progenitor, and/or the Nereus progenitor. This spatial

non-uniformity is compelling evidence that the MW stellar halo is not uniformly mixed

in its chemodynamical distributions.

2.6 Summary

We have measured [Fe/H] and [α/Fe] abundances for 113 main sequence turn-

off MW stellar halo stars across four CANDELS fields in the HALO7D survey. By fo-

cusing on MSTO stars in the stellar halo at Galactocentric radii in the range 10−40 kpc,
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HALO7D is able to measure MW halo properties on smaller spatial scales than other

contemporary surveys. Our abundances are combined with the previously-measured

3D positions and 3D velocities from HALO7D (Cunningham et al. 2019a,b) to measure

the variation in average chemodynamical properties along each LOS; these properties

include the net halo rotation, anisotropy, and average abundances. To measure our

abundances for HALO7D, we have created a Bayesian pipeline that uses photomet-

ric and spectroscopic information to determine stellar parameters (Teff , log g, age, and

distance modulus) and chemical composition ([Fe/H], [α/Fe]) for MSTO stars without

known distances (Section 3.3). Our key results include:

1. The abundance patterns in each of the HALO7D fields agree with each other. The

average [Fe/H] of the full 113 star HALO7D Chemistry sample is −1.65 dex with

a scatter of 0.61 dex, which is more metal-poor than some recent contemporary

surveys (e.g., ⟨[Fe/H]⟩ ∼ −1.2 dex for Conroy et al. 2019a; Naidu et al. 2020), but

this is almost certainly because of our blue selection function. The average [α/Fe]

for the HALO7D Chemistry sample is +0.28 dex with a scatter of 0.24 dex, which

is in agreement with what we would expect for a sample drawn from a population

of old, metal-poor halo stars. (Section 2.4, Figures 2.4, 2.5)

2. The HALO7D fields separate in kinematic-space when we measure average prop-

erties like the anisotropy parameter β. EGS and GOODSN show more radially-

biased orbits and near-zero halo rotation compared to GOODSS and COSMOS

which have more isotropic orbits and fairly negative halo rotation. (Section 2.5.2,

Figure 2.7)
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3. Breaking the HALO7D fields into low, mid, and high [Fe/H] bins at −2.0 dex and

−1.1 dex shows differences in the chemodynamic makeup of the fields. All the

fields have similar anisotropy in the mid [Fe/H] bin, but the high and low [Fe/H]

bins show differences between the fields. EGS has relatively similar anisotropy

and net halo rotation between the [Fe/H] bins, all of which are similar to the

properties of Gaia-Sausage-Encaladus. COSMOS, on the other hand, has a mid

[Fe/H] bin with kinematics that are similar to the GSE, but its low and high

[Fe/H] bins have kinematics that suggests these bins have larger contributions

from prograde structures, such as the kicked-up disk/in-situ halo, the metal-poor

progenitors of Nereus and Wukong. These chemodynamical differences between

the fields, even at the same Galactocentric radii, suggest that the MW stellar halo

is not uniformly mixed along different lines of sight. (Section 2.5.3, Figure 2.8)

Future work will focus on studying the full 7D chemodynamic relationship of

our stars, such as using a MW potential model to estimate individual orbits, which will

allow us to better quantify the relative contributions from different progenitors in each

field. We are also in the process of expanding the HALO7D survey to include more LOS

and more stars along each LOS, which will allow us to measure how the chemodynamical

distributions change as a function of 3D position with the goal of contributing to a more

complete picture of our Galaxy’s accretion history.
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2.7 Appendices

2.7.1 Chemical Abundance Pipeline Internal Error with Fake Stars

We test the ability of our pipeline to recover input chemical abundances across

a range of stellar parameters and spectral SNR by generating fake stars with known

photometry and stellar parameters. We create two types of fake stars; those with single

spectral observations that model our real observations of globular cluster stars in M2

and M92 (see Appendix 2.7.2), and those with multiple spectroscopic visits that model

real HALO7D data. In each case, a fake star consists of (mF606W ,mF814W ) apparent

magnitudes and between one and ten separate spectral observations at a chosen SNR.

In the case of the globular cluster analog fake stars, we use the literature-

defined MIST isochrone to define the photometry and stellar parameters. We do this by

taking a real globular cluster star, and finding the closest point on the MIST isochrone

in terms of photometry; the fake star then inherits that point’s absolute magnitudes

(MF606W , MF814W ) and stellar parameters (Teff , log g) as well as the cluster distance,

age, and [Fe/H]. The [α/Fe] is randomly drawn from a uniform distribution in the range

of −0.2 dex to +0.6 dex. With the fake star’s stellar parameters and abundances defined,

we can smooth the corresponding synthetic model spectrum by the real globular cluster

star’s observed seeing and LSF, and then re-bin onto the observed DEIMOS wavelength

array. We next multiply the smoothed, continuum-normalized fake spectrum by an

estimate of the real star’s continuum (as described in Section 2.3.2) to obtain DEIMOS-

like observations for the fake star. Finally, the chosen SNR of the fake star’s spectrum

is used to apply flux noise and to define the flux uncertainty in each pixel. With the
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fake star having apparent magnitudes and a spectral observation at a chosen SNR, we

are able to feed it to the chemical abundance pipeline by following the process listed in

Section 3.3.

For the HALO7D-like fake star analogs, we follow a similar process as with

the globular cluster stars. To define the input parameters of the fake star, we use the

real HALO7D star’s posterior distribution from its analysis using the chemical abun-

dance pipeline; the fake star’s parameters are chosen to be the median of the posterior

distribution, and the apparent magnitudes are exactly those of the HALO7D star. The

corresponding synthetic model spectrum is repeated so that the fake star is given the

same number of spectroscopic visits/observations as the real HALO7D star that it is

based on. The seeing, LSF, and continuum of each real spectroscopic observation are

used to define the smoothing and continuum of the different fake spectral visits. Next,

a chosen SNR defines the resulting combined SNR of the different spectroscopic visits,

where the SNRs of the individual visits are chosen to follow the same ratio of the real

HALO7D star; the SNR of each spectroscopic visit sets the flux noise and the flux un-

certainty in each pixel. As with HALO7D stars, the apparent magnitudes and multiple

spectroscopic visits of the fake stars are processed through the chemistry pipeline.

For each real star that defines a set of stellar parameters and abundances,

we create fake stars with varying SNR from 5 Å−1 to 200 Å−1. These fake stars are

processed identically to the real stars following the methods of Section 3.3 to assess

the pipeline’s ability to recover the input parameters as a function of spectral SNR.

An example posterior distribution for one fake star with spectral SNR of 40 Å−1 and
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Figure 2.9: Posterior distributions for a fake star that has a single spectral observa-
tion with median SNR of 40 Å−1 with stellar parameters that are near the MSTO of
M2. The blue lines show the location of the fake star’s true parameters, the black
points/lines/contours show the posterior samples, and the orange histograms show 1d
projections of the prior for a given parameter. The titles above each histogram show
the median and the 68% confidence interval in that parameter.
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properties that place it near the MSTO of M2 (i.e. distance of 11 kpc, age of 13 Gyr,

[Fe/H] of −1.65 dex) is shown in Figure 2.9. The black points and lines show the

posterior samples that have good agreement with the blue lines which show the values

of the input parameters. In cases where the pipeline incorrectly measures log g – that is,

when the star is assigned the incorrect phase, placing it on one branch when it belongs

to another – we find that the chemistry is unchanged; specifically, the posterior [Fe/H]

and [α/Fe] samples are in agreement for each of the possible phases. Since we are

most interested in measuring abundances, we include stars with incorrectly-measured

posterior phase/log g.

The posterior chemical abundance distributions of the fake stars are then used

to assess the internal errors of our chemistry pipeline and the reasonableness of the

posterior uncertainties. The 2D abundance distance between the input truth and the

posterior median is measured using the covariance of the posterior [Fe/H] and [α/Fe]

samples; these distances should follow a chi-squared distribution with 2 degrees of free-

dom (DOF) and a scale of 1 if the posterior uncertainties are reasonable. While the

distribution we measure does indeed follow a chi-square with 2 DOF, we instead mea-

sure a scale factor of 1.31, meaning that our posterior widths need to be inflated by

this amount (i.e. the covariance matrix needs to be inflated by 1.312) to capture the

pipeline’s true uncertainty. All remaining stellar parameter measurements in this chap-

ter, including Figure 2.10 and all other figures, have had their posterior uncertainties

increased by this factor. After applying this inflation, we still noticed a slight bias in

the [Fe/H] and [α/Fe] results for fake stars with spectral SNR < 20 Å−1. As a result,
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Figure 2.10: Comparison of measured posterior [Fe/H], [α/Fe] and input truth for fake
spectra as a function of spectral signal-to-noise. Blue errorbar points show the 68%
confidence interval of the posterior around the median. The orange lines in the top
panels show the median and 68% scatter within SNR bins of 50 stars and the orange
lines in the bottom panels show the median 68% width of the posterior samples (and
corresponding 1-sigma uncertainty) in those same SNR bins. We remove observations
with spectral SNR < 20 Å−1 because the abundance uncertainties begin to show sys-
tematic biases at this level.
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we ignored real and fake stars with spectral SNR < 20 Å−1 from all analyses.

Plotting the difference between the posterior abundances and the input truth

versus input spectral SNR, as in Figure 2.10, shows that the pipeline recovers useful

(posterior disagreement < 0.25 dex) [Fe/H] above SNR ∼ 25 Å−1 and [α/Fe] above

SNR ∼ 45 Å−1. This is similar performance to other spectroscopic analysis pipelines

of DEIMOS data (e.g., Escala et al. 2019; Kirby et al. 2008). The uncertainty-scaled

difference between truth and posterior abundance is shown in Figure 2.11. These dis-

tributions show good agreement with the unit Gaussian (shown in orange), implying

that the posterior abundances and uncertainties are reasonable. Our choice of a uni-

form prior on [α/Fe] that has no correlation with the other stellar parameters can be

improved in the future with access to MIST isochrones that contain different values of

[α/Fe]; this flat [α/Fe] prior currently plays a part in causing the relatively large scatter

on our ability to recover [α/Fe] as compared to [Fe/H].

Our posterior uncertainties are relatively large compared to other pipelines

because of our large prior uncertainties in log g, which come from unknown distances.

Many other investigations that measure stellar abundances are able to use previously-

measured parallaxes or distances to tightly constrain the possible log g values, which

helps to return better-measured abundances from the same spectral SNR and to push

the limiting SNR to much lower values. Our necessarily diffuse distance priors cause the

pipeline to consider a wider range of models and thus return more uncertain abundances.

While a given star’s posterior [Fe/H] and [α/Fe] measurements are correlated

(as seen in Figure 2.9, as well as our other posterior distributions), we want to en-
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Figure 2.11: Uncertainty-scaled comparison of measured posterior [Fe/H], [α/Fe] and
input truth for fake spectra. The unit Gaussian (orange line) shows that the pipeline is
returning reasonable abundances and corresponding uncertainties.
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sure that the pipeline doesn’t produce a correlation in any population statistics (e.g.

group means and spreads) measured from a collection of stars. To test this, we fit a hi-

erarchical model using the ∆[Fe/H] and ∆[α/Fe]7 posterior distributions of all fake

stars to measure a pooled population mean and covariance matrix of a 2D Multi-

variate Normal. The posterior mean of the population distribution was centered at

(∆[Fe/H],∆[α/Fe]) = (0, 0) dex, corresponding spreads of (0.02, 0.01) dex, and a corre-

lation between ∆[Fe/H] and ∆[α/Fe] that is consistent with 0. Finally, we also perform

a prior sensitivity analysis by changing the parameters of the [Fe/H] and age distribu-

tions in Table 2.2 while re-analyzing the fake stars; we find that the posterior chemical

abundances are largely unchanged for fake stars with spectral SNR > 20 Å−1 when

using reasonable choices of the [Fe/H] and age distribution parameters. Therefore, the

pipeline does not induce artificial correlations in the population statistics.

2.7.2 Chemical Abundance Pipeline External Validation with Globu-

lar Clusters

In Appendix 2.7.1, we used fake stars with well-behaved data to test our chem-

ical abundance pipeline. In this appendix, we assess the pipeline’s ability to recover

chemical abundances using real data from well-studied globular clusters: M2 and M92.

M2 is at a heliocentric distance of 11 kpc and has an iron abundance of −1.65 dex

(Harris 1996, 2010 edition), which is relatively typical of MW halo stars. M92 is at

a heliocentric distance of 9 kpc and is quite metal poor with an average [Fe/H] of

−2.35 dex (Harris 1996, 2010 edition), so it is a fairly extreme test of our pipeline’s

7Here, ∆X = Xposterior −Xinput
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Figure 2.12: Color-Magnitude Diagram of the M2 and M92 globular cluster stars in HST
filters (STMAG) used in our validation sample. The HST photometry was calculated by
transforming ground-based photometry, which is why the uncertainties are quite large.
Both clusters have stars that are around the MSTO.

ability to measure abundances with hot, metal-poor stars on the MSTO. A CMD of the

stars used in our analysis is shown in Figure 2.12 to highlight that this sample includes

many stars around the MSTO, which makes this a good test for the pipeline’s accuracy

for HALO7D-like data. The photometry comes from Stetson et al. (2019). The spectral

observations have 20 < SNR < 100 Å and were observed with Keck II/DEIMOS in a

similar configuration to the HALO7D data; see Escala et al. (2019) for details. The

main differences between the DEIMOS configurations are that the GC data used a 0.8”

slitwidth and a central wavelength of ∼ 7500 Å instead of ∼ 7200 Å.

To transform the Johnson-Cousins photometry of Stetson et al. (2019), we use

the mu magnitudes and mu −mv colors of each cluster and align the literature MIST
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isochrone on the CMD data using the appropriate filters. With this, we find the closest

matching point on the isochrone to each star, which assigns an estimated mass to each

star. Using this mass estimate and the same isochrone in HST filters gives each star’s

approximate mF606W and mF814W magnitudes.

We use the same prior-building process for the GC stars as for the MW halo

stars. That is, the known distances, ages, and abundances of the clusters are not used;

instead, we assume that all the cluster stars are distributed like MW halo stars. While

this leads to larger posterior uncertainties than we could achieve using the known GC

parameters, it gives a better measurement of how well the pipeline will perform with MW

halo stars. These GC comparisons also function to show the insensitivity of the pipeline

to our choice of priors in Table 2.2; we know the prior distributions do not describe the

GC stars very well, so our ability to recover reasonable posterior abundances for stars

with spectral SNR > 20 Å−1 is not overly dependent on our priors.

For each cluster, we measure a population average and scatter in [Fe/H] and

[α/Fe] using the posterior distributions of each star. For M92, we measure an average

[Fe/H] of −2.31 dex with a scatter of 0.08 dex and an average [α/Fe] of 0.16 dex with a

scatter of 0.10 dex. For M2, we measure an average [Fe/H] of −1.64 dex with a scatter

of 0.10 dex and an average [α/Fe] of 0.19 dex with a scatter of 0.09 dex. These means in

[Fe/H] are consistent with the literature values quoted above. A significant contribution

to the scatter is that we force the priors to contain MW halo-like properties instead of

the properties of each cluster. This leads to stars with lower SNR spectra relying on

incorrect prior information, thereby increasing the scatter.
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Figure 2.13: Uncertainty-scaled comparison of measured [Fe/H] and [α/Fe] with pop-
ulation averages for stars in M92 and M2. The green lines show that a unit Gaussian
has good agreement with our results.
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We are most interested in assessing whether the pipeline returns abundance

measurements that are unbiased over the HALO7D range of spectral SNR and whether

the posterior uncertainties are reasonable. To that end, we compare the chemical abun-

dances to our population averages of [Fe/H] and [α/Fe] for the GCs instead of to lit-

erature values. This is shown in Figure 2.13, where the uncertainty-scaled [Fe/H] and

[α/Fe] distributions for both clusters agree with the unit Gaussian. This is evidence

that the pipeline is giving reasonable abundances for real stars with spectra like those

of HALO7D.

In addition to not being MW halo stars, and therefore not truly following the

assumptions that go into the priors, the cluster data is dissimilar to HALO7D in a few

other ways. First, all the GC data consists of a single spectroscopic observation per star

instead of multiple, which means that any systematic errors in an individual spectrum

are more likely to impact the results (e.g. poor wavelength solution, bad skyline removal,

vignetting). Second, the GC photometry comes from ground-based observations which

have significantly larger uncertainties than our HALO7D photometry measured with

HST; this large color uncertainty leads to significantly more diffuse priors for the GC

stars as compared to HALO7D stars. Third, the GC spectra have wavelength solutions

that are generally less well-behaved than HALO7D spectra because the observations

were calibrated with a single set of relatively red arc lamp exposures and didn’t use

a second set of bluer arc lamps as was done for the HALO7D observations. Finally,

the DEIMOS configuration for the GC stars is centered on ∼ 7500 Å instead of the

∼ 7200 Å used in HALO7D, which means that many of the GC spectra do not extend
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to wavelengths as blue as ∼ 5000 Å where many of the strongest [Fe/H] and [α/Fe]

features exist.

2.7.3 Statistical Significance of HALO7D Anisotropy Differences

To test the statistical significance of the differences we see in the anisotropy

measurements of the four HALO7D fields, we generate simulated HALO7D-like surveys

and measure their kinematics. For each HALO7D-like realization, we assume that

each of the four fields has the same number of stars as we observed: 40 in EGS, 36 in

COSMOS, 21 in GOODSN, and 16 in GOODSS. For the fraction of disk contamination,

we again use the values measured in our HALO7D analysis, such that 2 of the EGS

stars are disk contaminants, as are 2 of the GOODSN and GOODSS stars, and 1 of the

COSMOS stars; the remaining 106 of the 113 stars are halo stars.

We generate realizations of HALO7D that follow the same magnitude and color

limits in each of the four fields. For the disk stars, the [Fe/H]s are drawn from

[Fe/H] ∼1

6
SKN (µ = −1.05 dex, σ = 0.6 dex, a = −5)

+
5

6
N (µ = −0.54 dex, σ = 0.3 dex)

(2.3)

the ages are drawn from

Age ∼ N (µ = 10 Gyr, σ = 2 Gyr) (2.4)

and the masses and distance moduli are drawn from the prior distributions shown in

Table 2.7. The [Fe/H] distribution comes from an analytical approximation of the
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Figure 2.14: Comparison of the chosen prior Halo and Disk model MDFs. The Halo
model is a simple Gaussian centered at −1.5 dex with a scatter of 1.0 dex while the
Disk model is a mixture of a Gaussian and skew-normal distribution as described in
Equation 2.3. The Disk’s distribution comes from an analytical approximation of the
‘high-alpha disk” and “metal-weak thick disk” populations of Naidu et al. (2020).

“high-alpha disk” and “metal-weak thick disk” populations of Naidu et al. (2020), the

age distribution comes from another analytical approximation of the “high-alpha disk”

from Bonaca et al. (2020). The resulting prior MDFs for the Halo and Disk models are

compared in Figure 2.14.

The velocity components for the disk stars are drawn from the prior distribu-

tions in the bottom half of Table 2.8. For the halo stars, the [Fe/H], age, mass, and dis-

tance modulus are drawn from the prior distributions shown in Table 2.2. For the kine-

matics of each halo star, we assume that all four fields have the same halo velocity ellip-

soid that matches the values we measure for the total HALO7D population. Specifically,

⟨vr⟩ = ⟨vθ⟩ = 0 km s−1, ⟨vϕ⟩ = −47 km s−1, and (σr, σϕ, σθ) = (125, 70, 80) km s−1,
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which implies an anisotropy of β = 0.57. The velocity components for each halo star

are drawn from the distributions in the top half of Table 2.8.

With each star having a defined [Fe/H], age, mass, and distance modulus,

we use the corresponding MIST isochrone to get the apparent mF606W and mF814W

magnitudes, ensuring that the colors and magnitudes are within the limits that we

observe for each HALO7D field. The distance to each star is used to transform the

velocity components into proper motions and LOS velocities, which means that each

fake star has a set of observables that make them comparable to the HALO7D sample.

Each proper motion component is given an uncertainty equal to the median uncertainty

from the HALO7D sample: σµl·cos b = 0.17 mas year−1, σµb
= 0.16 mas year−1. For

the LOS velocities, we use Figure 7 of Cunningham et al. (2019a), which shows the

relationship between σVLOS
and a star’s apparent m606W magnitude for the HALO7D

sample; we capture this relationship as

σVLOS
(mF606W ) =(4× 10−11 km s−1) · exp

(
mF606W

0.86859 mag

)
+ 1.5 km s−1

which gives LOS velocity uncertainties of 1.6 km s−1 for m606W = 19 mag, 5.5 km s−1

for m606W = 22 mag, and 41.5 km s−1 for m606W = 24.5 mag.

As with the HALO7D sample, we generate absolute magnitude prior distribu-

tions assuming each star belongs to the Thick Disk and the Halo. With the absolute

magnitude distributions giving corresponding distance distributions, we are able to fol-

low the same steps as outlined in Section 2.5, fitting for the halo velocity components

(⟨vϕ⟩, σr, σϕ, σθ) and thick disk fraction, fdisk. We repeat this process for each real-
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ization of HALO7D and measure the median β for each of the simulated fields. We

keep results from the realizations that had a measured β for the total sample that is

within the 68% region of the real data’s total sample (i.e. only cases where the fake

star total sample’s median β agrees closely with the data’s βTOTAL = 0.57+0.07
−0.08); for our

200 realizations, we find 129 of the medians fall within this region, which agrees with

the expectation from a binomial distribution with p = 0.68 and n = 200. These results

are summarized in Figure 2.15, where the black points show the median β measured

for each of the 129 realizations. The dashed colored lines show the input anisotropy,

β = 0.57, while the shaded grey regions show the 68% region of the results we measure

for the real HALO7D data. The dashed grey lines and grey Xs show the median β we

measure for the real HALO7D data.

From the 129 simulated HALO7D realizations with total β in agreement with

the input value, we find only 3 cases that are similar to the results we measure from

the real HALO7D data. In particular, there are 3 realizations where the measured β is

within the 68% shaded regions in all four fields. The fractions of medians within each

field’s 68% region separately are approximately 31%, 26%, 48%, and 38% for GOODSS,

GOODSN, COSMOS, and EGS respectively. This works out to a 1.5% probability

of seeing data in all four shaded regions at the same time from chance alone, which is

similar to the 3/129 realizations we measure in this region. From this analysis, we reject

the null hypothesis that the anisotropy differences we see between the four HALO7D

fields are likely to be explained by statistical chance.

We repeat this analysis technique for the different [Fe/H] bins. We do this
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Figure 2.15: Distributions of median anisotropy β for 129 HALO7D-like realizations
for each field. The black points show the posterior median β for each realization, and
the histograms on the diagonal show their 1D distribution. The dashed vertical colored
lines show the input β that was used to generate the data. The grey dashed lines in the
histograms and the grey Xs in the scatter plots show the posterior median β we measure
for each field in the real HALO7D data. The grey-shaded regions show the 68% region
of the β distribution for the real data. There are only 3 black points that are within
the 4D hypercube defined by the grey-shaded region. This implies that the differences
in β that we measure for the real data are not likely explained by random chance.
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by again assuming that the input velocity components are those measured using the

total population in the real HALO7D data in that [Fe/H] bin (i.e. the values reported

in Table 2.9). We again create realizations of HALO7D data, this time drawing the

expected number of stars in each of the [Fe/H] bins so that the number of stars in each

field and each bin matches the totals shown in Table 2.6. As before, we keep only the

β medians from the realizations that agree with the 68% region of the βTOTAL for that

[Fe/H] bin; this works out to 140, 139, and 130 of the 200 total realizations for the high,

mid, and low [Fe/H] bins respectively. For the high [Fe/H] bin case, the β medians of

the realizations are shown in Figure 2.16. We find that β medians fall in all the grey

shaded regions only 3.3%, 18%, and 35% of the time for the high, mid, and low [Fe/H]

bins respectively; as with the real HALO7D data, we omit the GOODSS low [Fe/H] bin

measurements as well as the GOODSN high and low [Fe/H] bin measurements for having

too few stars. From these probabilities, we can see that the anisotropy distributions we

measure in the high [Fe/H] bin aren’t likely to be produced by random chance alone,

meaning the GOODSS, COSMOS, and EGS fields likely have different average halo

properties in this [Fe/H] bin. For the mid and low [Fe/H] bins, these differences are

not as statistically significant. In the case of the mid [Fe/H] bin, this is in line with

our expectations because the fields have similar β measurements in the HALO7D data,

suggesting that the velocity distributions of the stars in this [Fe/H] bin are more similar

between the fields. For the low [Fe/H] bin, these results tell us that the differences in

anisotropy we see between COSMOS and EGS in this bin could be produced by chance

alone approximately ∼ 2/5 of the time.
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Figure 2.16: Same as Figure 2.15, but for 140 realizations in the high [Fe/H] bin. The
GOODSN panels are omitted because they had too few stars in this [Fe/H] bin for a
useful analysis. There are only 6 black points that are within the 3D hypercube defined
by the grey-shaded region in this figure. This implies that the differences in β that we
measure for the real data are not likely explained by random chance.
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Chapter 3

BP3M: Bayesian Positions,

Parallaxes, and Proper Motions

derived from the

Hubble Space Telescope and Gaia

data

3.1 Introduction

High precision proper motions (PMs) of individual stars have dramatically

increased our understanding of kinematics in the Local Group. In particular, the Hub-

ble Space Telescope (HST ) has a rich history of providing the precise astrometry needed
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to make accurate motion measurements. This is thanks to detailed work over the last few

decades to characterize and correct HST geometric distortions, describe point spread

functions (PSFs), and define best practices for mapping images onto one another (e.g.

Anderson & King 2004, 2006; Anderson 2007; Bellini & Bedin 2009; Bellini et al. 2011).

As a result, the PMs measured from multi-epoch HST imaging have been used to study

key astronomical questions, such as the relative motion of the Milky Way (MW) and

M31 (Sohn et al. 2012; van der Marel et al. 2012), the mass of the MW (Sohn et al. 2018),

and measuring MW stellar halo kinematics along individual sight-lines (Cunningham

et al. 2019b).

More recently, the Gaia mission (Gaia Collaboration et al. 2018) has facili-

tated substantial leaps in Local Group science by providing full astrometric solutions

for millions of stars. In the MW, these results include the identification of our most

massive merger, the Gaia-Sausage-Enceladus (e.g Helmi et al. 2018; Belokurov et al.

2018; Mackereth et al. 2019), detailed inventories of the progenitors that built the MW

(e.g. Naidu et al. 2020), and nearly-complete catalogs on the motion of nearby globular

clusters (Vasiliev & Baumgardt 2021).

While both of these telescopes have and will continue to fundamentally alter

our knowledge about the local universe, they both have limitations. In HST ’s case,

the small field of view and relatively long observation times mean that only a small

portion of the sky has been observed at multiple epochs with significant time baselines.

For Gaia, their all-sky catalog necessarily does not see as faint as a standard HST

observation, and the precision of their astrometric solutions decreases fairly significantly
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for their faintest magnitudes (G ∼ 21 mag). Gaia’s fairly bright limiting magnitude for

stars with precise PMs restricts the spatial resolution on which it can measure average

kinematics in the stellar halo. Consequently, many of the previous studies cited above

focus on stellar populations over large portions of the sky when measuring the kinematics

of the MW stellar halo, but a growing body of work has shown the benefit of being able

to resolve (chemo)dynamics on small spatial scales (e.g. Cunningham et al. 2019b; Iorio

& Belokurov 2021; McKinnon et al. 2023). With better sky velocities, we can improve

constraints on the formation and evolution history of our Galaxy (e.g. Cunningham

et al. 2022, 2023, Apfel et al. in prep).

To reduce the effect of these limitations and to increase the astrometric con-

straining power of either telescope alone, recent studies have been exploring how to

combine information between datasets from different telescopes. Specifically, using

archival HST images that have long time baselines with Gaia, PMs that are factors of

10 to 20 times more precise than Gaia alone have been measured for dwarf spheroidal

galaxy and globular cluster stars (Massari et al. 2017, 2018, 2020; del Pino et al. 2022),

which have enabled internal velocity dispersion measurements. Techniques for cross-

telescope combinations will become even more important as the field progresses further

into the Big Data era of astronomy, especially as future missions come online (e.g.

Roman Space Telescope).

Regardless of where the astrometry comes from, PMs in the MW can be more

challenging to measure than PMs of distant sources. This is largely because the ap-

parent motion on the sky can be quite large and the motion from parallax can become
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significant. There are three main ways that a star can appear to move between succes-

sive images: (1) apparent offset because of statistical uncertainty on position, (2) offsets

due to parallax, and (3) offsets due to proper motion. In studies of distant sources, the

motion from parallax can often be ignored. In many cases with Gaia data, the uncer-

tainty on position is usually small enough that it can also be ignored. For distant stars,

then, all apparent motion is the result of proper motion, and the longer the time base-

line between observations, the more precise and accurate the PM measurements. When

the position uncertainties become large (e.g. for faint Gaia sources) and the parallaxes

become substantial (e.g. D < 1 kpc), then detailed and simultaneous accounting of

all three motion components becomes necessary. One additional difficulty in measuring

MW PMs, especially in studies of the stellar halo, comes from the fact that many lines

of sight are quite sparse; this limits the number of sources that can be used to constrain

the transformation parameters that align images from multiple epochs and impacts the

accuracy and precision of the resulting PMs.

While the GaiaHub pipeline of del Pino et al. (2022) was developed for and

performs well in populated fields, a key motivation of this work was to develop a com-

plementary pipeline that can also handle very sparse fields (e.g. N∗ < 10). To address

the challenges listed previously, we create a hierarchical Bayesian pipeline, named BP3M

(Bayesian Positions, Parallaxes, and Proper Motions), to simultaneously measure the

positions, parallaxes, and proper motions of all Gaia sources in an HST image while

also finding the best mapping of HST images onto Gaia. This package is publicly avail-

able and is designed to be used in combination with the GaiaHub code. The underlying

81



statistics are general in that they apply to any two or more sets of position measure-

ments separated by time, regardless of the telescope they come from. In this way, it is

also a useful tool for planning future observations.

In this chapter, we describe a standard approach for measuring PMs in Sec-

tion 3.2, which then motivates the statistics and pipeline, BP3M, we present in Section 3.3.

We examine and validate the pipeline’s outputs in Section 3.4, after which we run BP3M

on real, sparse fields in the MW in Section 3.5. In Section 3.6, we explore the vari-

ability of the transformation parameters between HST and Gaia as a function of time.

Next, we generate synthetic Roman-like observations in a sparse MW field to estimate

the impact of combining Roman and Gaia measurements in Section 3.7. Finally, our

complete set of results are summarized in Section 4.6.

3.2 Measuring Proper Motions

To measure the motion of stars, one traditionally identifies the positions of

sources at two epochs, measures the best transformation parameters between those two

images, and transforms the coordinates of sources in one image into the other. The final

offsets can then be used to measure the relative motion of each of the sources. When

mapping one image onto another, a standard approach (Anderson 2007) is to describe

the position of a source in the first image, (X,Y ), in coordinates of the second image

(X ′, Y ′) using: X ′

Y ′

 =

a b

c d

 ·


X

Y

−

X0

Y0


+

W0

Z0

 (3.1)
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where the (X0, Y0) and (W0, Z0) vectors are the center of rotation in each coordinate

system. The (a, b, c, d) matrix accounts for differences in pixel scale, rotation, and skew

as follows:

pixel scale ratio = PSR =
√
ad− bc

tan θ =

(
b− c

a+ d

)
on axis skew =

1

2
(a− d)

off axis skew =
1

2
(b+ c)

(3.2)

With this relationship, we see that there are 6 parameters that need to be fit

when transforming one image onto another8. In general, this would only require the

positions of 3 sources found in both images, but in practice, many more sources are

required to measure a robust transformation solution.

To be clear, this technique measures the change in (X,Y ) as a function of

time, but these measurements are relative to the population of sources in the image.

For instance, a collection of stars moving with the same proper motion will only have a

difference in translation at two epochs; fitting for transformation parameters will then

yield zero change in the relative positions of all the stars. This is still a very useful

technique in the cases where the relative motion of stars is of interest, such as for

measuring internal kinematics of clusters and galaxies.

To find the proper motion of the stars in an absolute reference frame, we

require known anchor points that have no motion (e.g. background stationary sources

8We only need to fit for either (X0, Y0) or (W0, Z0) because we can fix one vector and the other will
absorb those choices
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like galaxies and QSOs). An alternative approach is to cross-match the stars in an image

to an absolute-frame-calibrated survey to estimate the bulk velocity/average absolute

velocity of the sources, which is the technique that the GaiaHub pipeline (del Pino et al.

2022) employs. In a high level overview, the pipeline steps are as follows:

1. Following previous techniques for HST data reduction (e.g. Bellini et al. 2017,

2018; Libralato et al. 2018, 2019), fit HST images with different point spread

functions (PSFs) to identify sources and measure their positions using hst1pass

(Anderson 2022);

2. Cross-match HST sources with Gaia;

3. Find the transformation parameters that minimize the offsets between the HST

source positions and Gaia positions for each image;

4. With the best fit transformation parameters in hand, any remaining offsets are

divided by the time baseline to give the relative proper motion for each sources in

an image;

5. Use an average of Gaia-measured PMs to estimate the bulk velocity, giving proper

motions in an absolute frame;

6. Inverse-variance combine the multiple GaiaHub PM measurements of a star to get

a final PM and uncertainty.

As is shown in del Pino et al. (2022), the pipeline performs well, especially in the

medium density outskirts of nearby galaxies that it was developed for. Two key as-

sumptions are required for GaiaHub results to accurately describe a population (1) the
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parallax motion of the sources are insignificant, and (2) there are enough sources such

that their PM distribution is close to Gaussian. The second point is particularly im-

portant because the offsets between the sources in different images, which determines

the transformation parameters, are minimized when fitting for the transformation. If

there are a small number of sources, the individual offsets have an out-sized impact

on the resulting transformation parameters; sources with high offsets between images

(such as a fast-moving foreground star), can toque the transformation solution around

to try to reduce what is an intrinsically large separation. Similarly, in the limiting case

where an image contains 3 sources, we can find transformation parameters such that

there is no remaining offset, even if the sources truly have moved. In both cases, the

transformation parameters are different from the truth, and this impacts the proper

motion measurements of all sources in an image.

Motivated by the PM improvements that GaiaHub has shown when informa-

tion from Gaia and HST is combined together, we create a tool that enables Gaia+HST

PM measurements in sparse fields to study the MW stellar halo. Because these sparse

fields have low stellar density (e.g. < 20 Gaia sources per HST image) and can contain

a significant fraction of nearby sources (e.g. foreground disk and nearby halo stars,

which can have non-negligible parallax motion and relatively large sky velocities), our

pipeline cannot use the same assumptions that go into GaiaHub. This realization is what

ultimately informed our decision to model the motions and transformation parameters

simultaneously, though we emphasize that the following pipeline benefits immensely

from the GaiaHub project. Specifically, the PSF fitting to measure centroids in HST ,
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the cross-matching between HST and Gaia, and the initial measurements of the trans-

formation parameters from GaiaHub are integral components to the pipeline we present

in the remainder of this work.

3.2.1 COSMOS Test Sample

Figure 3.1: Histogram of the number of GaiaHub cross-matched sources between Gaia
and HST for the 787 HST images in COSMOS within 0.5 deg of the field’s center.
There is a median of 10 Gaia sources in each HST frame, and a total of 2184 unique
Gaia sources.

To test performance in sparse MW halo fields, we turn to the COSMOS field

(Nayyeri et al. 2017; Muzzin et al. 2013) from the Cosmic Assembly Near-infrared Deep

Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011; Koekemoer et al. 2011,

PIs: S. Faber, H. Ferguson). COSMOS is located at a high Galactic latitude and near the

Galactic anti-center (l = 236.8 deg, b = 42.1 deg) and boasts HST imaging that covers
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Figure 3.2: Comparison of the PMs measured by Gaia and GaiaHub for the 2184 COS-
MOS stars discussed in Figure 3.1. While the PMs generally fall along the one-to-one
line (bashed black diagonals in the left 2 panels), the PM measurements do not agree
within their uncertainties. This is largely because the GaiaHub pipeline was not tuned
for small numbers of sources per HST image or for the large PMs seen in the MW stellar
halo.

a large area of sky: ∼ 2.25 deg2 was imaged by ACS/WFC in 2003, and 288 arcmin2 of

that area (i.e. ∼ 3.6%) was imaged again in 2009. From simulated COSMOS-like data

– presented in detail in Appendix 3.9.2 – PMs of halo and foreground disk stars in our

magnitude range (i.e. 16 < G < 21.5 mag) can regularly be as large as ∼ 100 mas ·yr−1

in size.

We analyse all COSMOS HST images within a 0.5 deg radius of the field’s

center, which is ∼ 35% of the total COSMOS area. Figure 3.1 shows a histogram of the

number of sources matched between the HST frames and Gaia for the 787 HST images

in our analysis. In these HST images, GaiaHub finds 2184 unique Gaia sources, with a

median of 10 sources per image and a maximum of 23 sources per image.

A comparison of the Gaia- and GaiaHub-measured PMs for these COSMOS

sources is presented in Figure 3.2. In general, the GaiaHub and Gaia PMs follow the

one-to-one line, but they are quite far from agreeing within their uncertainties, as is
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especially evident in the rightmost panel. Because GaiaHub is not tuned for sparse

fields or for large PMs, it is not surprising to see these disagreements.

3.3 Bayesian Positions, Parallaxes, and Proper Motions:

The BP3M Pipeline

We build a hierarchical Bayesian tool, BP3M, that measures transformation pa-

rameters to map HST images onto Gaia while also simultaneously measuring the PMs,

parallaxes, and positions for the sources in an image. While it may appear computa-

tionally prohibitive to measure PMs, parallaxes, position of all stars in an image and the

transformation parameters simultaneously, a few statistical tricks – namely conjugacy

between likelihood and prior distributions – make this approach feasible. The pipeline is

able to consider multiple HST images concurrently in a proper Bayesian fashion, which

can significantly improve precision for the different motion components of each source.

The python-based code of BP3M is publicly available on Github9.

We use the Gaia-measured positions, parallaxes, and PMs and corresponding

uncertainties/covariance as prior distributions to describe each source position over time.

This improves the measured astrometric solution because the priors allow the measured

positions of the sources to be compared to their expected positions at the epoch of each

image, rather than compare the individual position measurements at each time. This

approach is quite general in that it does not require identifying a clean kinematic sample

or reference stars and background sources. In many cases, bright foreground stars with

9https://github.com/KevinMcK95/BayesianPMs
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well-measured Gaia astrometry can serve as anchors that help define the transformation

solution.

Throughout the statistics presented in this section and Appendix 3.9.1, we

refer to HST and Gaia in the subscripts of the variables, but there is nothing about

this math or its implementation in BP3M that restricts us to only these telescopes.

The statistical statements are generally true for any collection of measurements with

at least two positions of the same source – it applies to HST+HST , HST+Roman,

HST+Gaia+Roman, etc – though there are a minimum of three sources per image

needed to be able to measure the 6 transformation parameters.

3.3.1 The Statistics

This subsection will be quite technical in detail, so readers that are less inter-

ested in the formal statistics are encouraged to skip to Section 3.3.2.

First, we define many of the key variables and parameters in Table 3.1. While

we are ultimately concerned with the proper motions in RA and Dec, it is convenient to

work in a 2D plane projection (e.g. what a CCD sees) when comparing images. Because

Gaia’s measurements don’t correspond to positions in a true image, we follow GaiaHub’s

approach of transforming the Gaia coordinates into XY coordinates on a pseudo image

89



T
ab

le
3
.1
:
D
efi

n
it
io
n
s
o
f
fi
tt
in
g
p
ar
am

et
er
s.

In
ge
n
er
al
,
H

re
fe
rs

to
an

H
S
T

va
lu
e,

G
re
fe
rs

to
an

G
a
ia

va
lu
e,

an
ap

os
tr
op

h
e

in
d
ic
at
es

a
p
ri
o
r
m
ea
su
re
m
en
t,

j
re
fe
rs

to
th
e
H
S
T

im
ag

e
n
u
m
b
er
,
an

d
i
re
fe
rs

to
th
e
so
u
rc
e
in
d
ex
.

P
a
ra
m
et
er

D
es
cr
ip
ti
on

(a
j
,b

j
,c

j
,d

j
)

T
ra
n
sf
o
rm

at
io
n
m
at
ri
x
p
ar
am

et
er
s
fo
r
th
e
j-
th

H
S
T

fr
am

e
to

th
e
j-
th

p
se
u
d
o
G
a
ia

fr
am

e
(X

0
,j
,Y

0
,j
)

C
en
te
r
co
or
d
in
a
te

in
th
e
j-
th

H
S
T

fr
am

e
(W

0
,j
,Z

0
,j
)

C
en
te
r
co
o
rd
in
at
e
of

j-
th

p
se
u
d
o
G
a
ia

fr
am

e
(X

′ H
,i
,j
,Y

′ H
,i
,j
)

O
b
se
rv
ed

co
or
d
in
at
e
of

i-
th

so
u
rc
e
in

th
e
j-
th

H
S
T

fr
am

e

σ
H
,i
,j

G
a
i
a
H
u
b
-m

ea
su
re
d
p
ix
el

p
os
it
io
n
u
n
ce
rt
ai
n
ty

(i
n
b
ot
h
x
an

d
y
)
th
e
i-
th

so
u
rc
e
in

th
e
j-
th

H
S
T

fr
am

e
(X

′ G
,i
,j
,Y

′ G
,i
,j
)

O
b
se
rv
ed

co
or
d
in
at
e
of

i-
th

so
u
rc
e
in

th
e
j-
th

p
se
u
d
o
G
a
ia

fr
am

e

P
S
H
,j

P
ix
el

sc
al
e
of

th
e
j-
th

H
S
T

fr
am

e
P
S
G
,j

P
se
u
d
o
p
ix
el

sc
al
e
of

j-
th

p
se
u
d
o
G
a
ia

fr
am

e

θ⃗′
T i
=

(α
′ i,
δ′ i)

G
a
ia
-m

ea
su
re
d
p
os
it
io
n
v
ec
to
r
fo
r
th
e
i-
th

so
u
rc
e

(σ
′ α
∗,
i,
σ
′ δ,
i,
ρ
′ α
∗,
δ,
i)

G
a
ia
-m

ea
su
re
d
p
os
it
io
n
u
n
ce
rt
ai
n
ti
es

an
d
co
rr
el
at
io
n
fo
r
th
e
i-
th

so
u
rc
e

p
lx

′ i
G
a
ia
-m

ea
su
re
d
p
ar
al
la
x
fo
r
th
e
i-
th

so
u
rc
e

σ
′ p
lx
,i

G
a
ia
-m

ea
su
re
d
p
ar
al
la
x
u
n
ce
rt
ai
n
ty

fo
r
th
e
i-
th

so
u
rc
e

µ⃗
′T i

=
(µ

′ α
∗,
i,
µ
′ δ,
i)

G
a
ia
-m

ea
su
re
d
P
M

ve
ct
or

fo
r
th
e
i-
th

so
u
rc
e

(σ
′ µ
α
∗
,i
,σ

′ µ
δ
,i
,ρ

′ µ
α
∗
,µ

δ
,i
)

G
a
ia
-m

ea
su
re
d
P
M

u
n
ce
rt
ai
n
ti
es

an
d
co
rr
el
at
io
n
fo
r
th
e
i-
th

so
u
rc
e

∆⃗
θT

=
(∆

α
∗ i
,∆

δ i
)

T
ru
e
p
os
it
io
n
o
ff
se
t
ve
ct
or

fo
r
th
e
i-
th

so
u
rc
e

p
lx

i
T
ru
e
p
a
ra
ll
ax

fo
r
th
e
i-
th

so
u
rc
e

µ⃗
′T i

=
(µ

α
∗,
i,
µ
δ,
i)

T
ru
e
P
M

ve
ct
or

fo
r
th
e
i-
th

so
u
rc
e

t G
=

J
2
01

6.
0

T
im

e
o
f
G
a
ia

fr
a
m
e
ob

se
rv
at
io
n

t H
,j

T
im

e
of

j-
th

H
S
T

fr
am

e
ob

se
rv
at
io
n

∆
t j

=
t H

,j
−
t G

T
im

e
b
et
w
ee
n
G
a
ia

an
d
j-
th

H
S
T

fr
am

e
(n
eg
at
iv
e
fo
r
ol
d
er

H
S
T

im
ag

es
)

⃗
∆
p
lx

i,
j

O
ff
se
t-
p
er
-p
a
ra
ll
ax

ve
ct
or

fo
r
i-
th

so
u
rc
e
b
et
w
ee
n
G
a
ia

an
d
j-
th

H
S
T

fr
am

e

90



using

rG,i,j = sin (δG,j,0) sin
(
δ′G,i

)
+ cos (δG,j,0) cos

(
δ′G,j

)
cos
(
α′
G,i − αG,j,0

)
rad2pixG,j =

180

π
· 3600 · 1000 · PS−1

G,j pixels/radian

XG,i,j = XG,j,0 − rad2pixG,j ·
cos
(
δ′G,i

)
sin
(
α′
G,i − αG,j,0

)
r

YG,i,j = YG,j,0 + rad2pixG,j ·

cos (δG,j,0) sin
(
δ′G,i

)
r

−
sin (δG,j,0) cos

(
δ′G,i

)
cos
(
α′
G,i − αG,j,0

)
r



(3.3)

where the (α′
G,i, δ

′
G,i) are the Gaia-measured coordinates of source i are in radians,

(αG,j,0, δG,j,0) are the coordinates of the center of the Gaia pseudo image when consid-

ering HST image j, (XG,j,0, YG,j,0) are the pixel coordinates of the center of the Gaia

pseudo image, and the (XG,i,j , YG,i,j) coordinates of source i in the Gaia pseudo image

are in pixels. The chosen pixel scale for each Gaia pseudo image is set to the nominal

HST pixel scale that it is paired with (e.g. 50 mas·pixel−1 for HST ’s ACS/WFC). Then,

changes in the RA and Dec can be transformed to changes in XY using the Jacobian

matrix:

JJJ i,j =


dXG,i,j

dα∗′G,i

dXG,i,j

dδ′G,i

dYG,i,j

dα∗′G,i

dYG,i,j

dδ′G,i


which is usually very close to

JJJ j =
1

PSG,j

−1 0

0 1


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when (∆α∗,∆δ) are in mas and (∆XG,i,j ,∆YG,i,j) are Gaia pseudo pixels. We note

that this simplification only holds for small FOV detectors. In the cases of large PMs

and large time baselines, the off-diagonal elements can start to become important, so

we opt to use the more general version in our pipeline.

To set up the probability model, there are a few remaining key terms that we

need to define:

RRRj =

aj bj

cj dj


which is the transformation matrix for the j-th HST frame to the j-th pseudo Gaia

frame,

VVV H,i,j =

σ2
H,i,j 0

0 σ2
H,i,j


which is the GaiaHub-measured pixel position covariance matrix for the i-th source in

the j-th HST frame,

VVV θ,i =

 σ′2
α∗,i ρ′α∗,δ,i · σ′

α∗,i · σ′
δ,i

ρ′α∗,δ,i · σ′
α∗,i · σ′

δ,i σ′2
δ,i


which is the Gaia-measured position covariance matrix for the i-th source, and finally

VVV µ,i =

 σ′2
µα∗,i ρ′µα∗,µδ,i

· σ′
µα∗,i · σ

′
µδ,i

ρ′µα∗,µδ,i
· σ′

µα∗,i · σ
′
µδ,i

σ′2
µδ,i


which is the Gaia-measured PM covariance matrix for the i-th source. In these equations

and the ones that will follow, our convention is to show matrices (and matrices of
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matrices) using a bold-faced typesetting.

The fundamental relationships between the prior Gaia measurements and the

true parameter for source i are given by:

θ⃗′i = θ⃗i + ∆⃗θi

p(∆⃗θ
′
i|∆⃗θi) = N

(
∆⃗θ

′
i|∆⃗θi,VVV θ,i

)
p(plx′i|plxi) = N

(
plx′i|plxi, σ′

plx,i

)
p(µ⃗′

i|µ⃗i) = N
(
µ⃗′
i|µ⃗i,VVV µ,i

)
which says that the measured values are offset from the true values by noise dictated by

their measured uncertainties. While we have explicitly included a mean for the Gaia-

measured position offset vector ∆⃗θ
′
i to be as general as possible, in practice ∆⃗θ

′
i = 0⃗

because Gaia has no expected offset from the positions it reports. In the form of the

probability statements above, we have assumed that there is no correlation between,

for example, parallax and µα∗, which is not exactly correct because Gaia has measures

for these correlations. Our choices, however, make the following math easier, though

it comes at the cost of some additional constraining power from the Gaia priors being

ignored. The Gaia-measured correlations between these parameters are indeed included

in future sections of this work when we compare the BP3M distributions to Gaia’s results.

Future versions of the BP3M pipeline will work to incorporate these prior correlations,

which will lead to even tighter posterior distributions on position, parallax, and PMs.

While it may seem nonphysical, Gaia observed parallax measurements can

be negative (Lindegren et al. 2018), but it is important to remember that the observed
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parallax values define the mean of a distribution whose width/uncertainty usually places

a large amount of probability in positive parallaxes; in this way, we must treat the Gaia

astrometric measurements as distributions and not individual points. Luri et al. (2018),

for example, explain how the definitions of motion on the sky (both by Gaia as well as

in this work) technically allow for negative observed parallax values, which is especially

likely to occur when the position measurement as a function of time is relatively large

compared to the size of the parallax motion (e.g. see their Section 3 and Figure 2); as a

result, they remind the reader that the Gaia observed parallaxes should not be thought

of as a direct measurement of distance, and instead, distances need to be estimated

by proper statistical modelling of the information contained in the astrometric solution

distributions.

For sources where there are no Gaia-measured parallaxes and PMs, we find it

convenient to put a population/global prior on the PMs and parallaxes:

p(plxi|p̂lx, σp̂lx) = N
(
plxi|p̂lx, σp̂lx

)
p(µ⃗i|µ̂,VVV µ̂) = N (µ⃗i|µ̂,VVV µ̂)

which says that there are some global distributions for the parallaxes and PMs that

the true values originate from. While we are free to play with the parameters of the

population distributions, we note that they do need to be Gaussian in form so that we

retain the necessary conjugacy. We choose to use diffuse hyperpriors, with the goal of

minimally impacting the sources with Gaia-measured parallaxes and PMs while offering

some guidance to the sources without. In the future, the parallax global prior could
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be made more constraining in cases where the distances are better known (e.g. clean

populations of extra-Galactic stars) or using a magnitude-dependent parallax prior to

better incorporate our understanding of the distribution of stars in the MW. Similar

changes could also be made to the PM global prior. For the current version of the

pipeline, which focuses on faint stars in the MW stellar halo and extra-Galactic sources,

we choose the parallax prior to have a mean of 0.5 mas and width of 10.0 mas. For

the PM prior, we use the sources with Gaia-measured PMs to estimate a mean and

covariance matrix, and then we multiply that covariance matrix by a factor of 102 to

guard against the possibility that some of the sources without Gaia PMs are significantly

different in their PM from the other sources.

The information linking Gaia to HST image j for source i is then given by:

∆⃗dG,i,j =

XG,i,j

YG,i,j

−RRRj ·

XH,i,j −X0,j

YG,i,j − Y0,j

−

W0,j

Z0,j


∆⃗mi,j = µ⃗i ·∆tj + plxi · ⃗∆plxi,j − ∆⃗θi

∆⃗dG,i,j ∼ N
(
JJJ i,j · ∆⃗mi,j ,VVV d,i,j = JJJ i,j · VVV θ,i · JJJT

i,j +RRRj · VVV H,i,j ·RRRT
j

)

which says that the measured offset between the Gaia and HST positions (after applying

the transformation) in the pseudo Gaia image is distributed around the offset implied

by the sum of the motion from PM, parallax, and uncertainty in position. We note that

this relationship ignores the impact that radial motion has on changing the distance to

a star between observations – and therefore the magnitude of the proper motion and

parallax – though this is a safe assumption because the distance change is almost always
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extremely small.

The ⃗∆plxi,j term, which we refer to as the parallax offset vector, is a 2D

vector that defines the direction and magnitude of the offset between two observations

as a result of parallax motion for a source with a parallax of 1 mas; in this way, the

parallax offset vector can be multiplied by any parallax value (i.e. plxi · ⃗∆plxi,j) to find

the appropriate offset in (∆α∗,∆δ) between two observations as a result of parallax

motion. To measure the ⃗∆plxi,j , we use the HST and Gaia observation times, (tH,j , tG),

the position of the source in Gaia, (α′
i, δ

′
i), and built-in functions of astropy (Astropy

Collaboration et al. 2013, 2018, 2022). Examples of the parallax motion for different

positions on the sky are shown in Figure 3.3, where the Gaia observation time (i.e.

J2016.0) is at the origin and the orbits trace out the parallax motion over the course

of a year; the parallax offset vector at any time is simply the vector that connects the

corresponding point on the ellipse to the origin.

With the above definitions in hand, we can use the distributions on the ∆⃗dG,i,j

vectors for all the sources in all images we are considering to construct the following

likelihood distribution:

p(XHXHXH ,YHYHYH ,XGXGXG,YGYGYG |⃗a, b⃗, c⃗, d⃗, W⃗0, Z⃗0,µµµ,plxplxplx,∆θ∆θ∆θ)

=

n∗∏
i=1

nim∏
j=1

N
(

⃗∆dG,i,j |JJJ i,j · ∆⃗mi,j ,VVV d,i,j

)

We note here that we have purposefully chosen omit writing out the dependency on a

few of the explanatory variables (e.g. ∆tj , the covariance matrices) for ease of reading

the math.
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Figure 3.3: Examples of parallax in the plane of the sky for different lines-of-sight. The
origin (black point) is the time that corresponds to Gaia observations (i.e. J2016.0),
and each ellipse is the path that a star with a parallax of 1 mas sweeps out on the sky
over the course of a year, with the direction of motion shown by the arrowhead.

From Bayes’ Law, we arrive at the following posterior:

p
(
a⃗, b⃗, c⃗, d⃗, W⃗0, Z⃗0,µµµ, p⃗lx,∆θ∆θ∆θ|XHXHXH ,YHYHYH ,XGXGXG,YGYGYG, p̂lx, σp̂lx, µ̂,VVV µ̂

)
∝

nim∏
j=1

[p(aj , bj , cj , dj ,W0,j , Z0,j)] ·

n∗∏
i=1

{
p(µ⃗′

i|µ⃗i) · p(µ⃗i|µ̂,VVV µ̂) · p(plx′i|plxi) · p(plxi|p̂lx)·

p(∆⃗θi) ·
nim∏
j=1

N
(

⃗∆dG,i,j |JJJ i,j · ∆⃗mi,j ,VVV d,i,j

)

(3.4)

97



where p(aj , bj , cj , dj ,W0,j , Z0,j) is the prior distribution on the transformation param-

eters and the remaining distributions have been defined above. In many of our initial

analyses, we chose to use a flat prior on the transformation parameters, which yielded

reasonable results. However, we soon realized that there are relatively tight constraints

for our expectations of the pixel scale ratio and skew terms when using HST ACS/WFC

images, which will be discussed more in Section 3.6. To that end, when using HST

ACS/WFC data, we choose to employ a few relatively diffuse priors on the skews, pixel

scale ratio, and HST angle, as well as the (W0,j , Z0,j) vector:

p(skewj |HST ACS/WFC) = N
(
skewj |µ = skew′

j , σ = 5× 10−4
)

p(PSRj |HST ACS/WFC) = N
(
PSRj |µ = PSR′

j , σ = 5× 10−4
)

p(θj) = N
(
θj |µ = θ′j , σ = 1◦

)
p(W0,j) = N

(
W0,j |µ = W ′

0,j , σ = 10 pixels
)

p(Z0,j) = N
(
Z0,j |µ = Z ′

0,j , σ = 10 pixels
)

where we use the same prior on both the on- and off-axis skew terms. The prior means

of each distribution come from the parameters measured by the previous iteration of

transformation parameter fitting; in the case of the first iteration, we use the GaiaHub

outputs. In this way, we tell the pipeline that the transformation solution is likely nearby

the previous iteration’s solution, while the relatively large widths allows the values to

change significantly if necessary. To transform from priors in angle, skews, and PSR,
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we need to account for a transformation Jacobian:

JJJTR,j =



d on skewj

daj

d off skewj

daj

dPSRj

daj

dθj
daj

d on skewj

dbj

d off skewj

dbj

dPSRj

dbj

dθj
dbj

d on skewj

dcj

d off skewj

dcj

dPSRj

dcj

dθj
dcj

d on skewj

ddj

d off skewj

ddj

dPSRj

ddj

dθj
ddj



such that

p(aj , bj , cj , dj) = p(on skewj , off skewj ,PSRj , θj) · |JJJTR,j|.

The detailed steps to find the posterior conditional distributions for each mo-

tion component of source i are given in Appendix 3.9.1. In the end, that work yields

the following important distributions:

p(plxi |⃗a, b⃗, c⃗, d⃗, W⃗0, Z⃗0, . . . )

p(µ⃗i|plxi, a⃗, b⃗, c⃗, d⃗, W⃗0, Z⃗0, . . . )

p(∆⃗θi|µ⃗i,plxi, a⃗, b⃗, c⃗, d⃗, W⃗0, Z⃗0, . . . )

where the ellipsis refers to the other variables that each distribution depends on. One

key takeaway from the statistics in Appendix 3.9.1 is that the conjugacy between all

distributions (i.e. all distributions are normally distributed/Gaussians) allows us to

fairly easily combine multiple distributions to arrive at well-defined and closed-form

posterior distributions.

With these posterior conditionals in hand, we can perform the following steps

for each source for a given set of transformation parameters:
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1. Draw samples of plxi from p(plxi| . . . );

2. Use those plxi samples to draw samples of µ⃗i from p(µ⃗i|plxi, . . . );

3. Use those (µ⃗i,plxi) samples to draw ∆⃗θi samples from p(∆⃗θi|µ⃗i,plxi, . . . ).

Once we have samples of the PMs, parallaxes, and position offsets for each source, we

can calculate the posterior probability of a set of transformation parameters. We do

this by marginalizing over the individual samples of the PMs, parallaxes, and position

offsets using Bayes’ Law such that

p(⃗a, b⃗, c⃗, d⃗, W⃗0, Z⃗0| . . . ) =
p(⃗a, b⃗, c⃗, d⃗, W⃗0, Z⃗0,µµµ, p⃗lx,∆θ∆θ∆θ| . . . )∏n∗

i=1 p(µ⃗i, plxi, ∆⃗θi |⃗a, b⃗, c⃗, d⃗, W⃗0, Z⃗0, . . . )
.

which is independent of the particular values of the PMs, parallaxes, and positions of

each source. This relationship is the magic that makes the simultaneous fitting of the

6 transformation parameters per image and 5 motion parameters per source feasible;

because we can quickly draw the PM, parallax, and position samples directly from a

known posterior distribution given a set of transformation parameters, we can efficiently

calculate the posterior probability of the transformation parameters alone. These prob-

abilities then allow us to sample from the posterior distribution on the transformation

parameters using a Metropolis-Hastings MCMC algorithm. Then, for each sample of

transformation parameters, we can sample from the posterior conditional distributions

of parallaxes, PMs, and position offsets for each source. In this way, the uncertainty of

the transformation fitting is propagated to the resulting PM, parallaxes, and positions.
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3.3.2 The Pipeline

In terms of implementing the statistics in the BP3M pipeline, the general steps

are as follows:

1. Read in the position, parallax, PM data from Gaia, where it exists, and the

corresponding positions in the HST frames;

2. Use the GaiaHub transformation parameter values as starting guesses;

3. Using sources with Gaia priors on PM, estimate the global PM distribution;

4. Simultaneously fit the transformation parameters and stellar motion using MH-

MCMC, using only sources with Gaia priors when measuring the transformation;

5. Identify outliers (e.g. bad cross-matches between Gaia and HST );

6. Re-estimate the global PM distribution using the new posteriors;

7. Repeat the fitting process using the non-outlier sources, including sources without

Gaia priors;

8. Check if the list of outliers has changed substantially, and stop if it hasn’t.

This process requires a minimum of two iterations to achieve good results, though it

isn’t uncommon for the outlier list to change enough that a third iteration is required.

In terms of processing time, running BP3M on a 2016 MacBook Pro for an HST image

with ∼ 200 sources takes approximate 15 minutes to complete its analysis, while an

image with ∼ 10 sources can be analysed in around 5 minutes. Increasing the number

of HST images being analysed together effectively multiplies the computation time by
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the number of images; this is largely because we need to fit 6 additional transformation

parameters for each additional image, and necessarily need to increase the number of

MCMC walkers and number of MCMC iterations. Best practice is to analyse all images

independently before combining them to save time on searching the transformation

parameter space.

Because the HST images are mapped onto the global reference frame of Gaia,

the transformation parameters that BP3M measures are also useful in constraining non-

Gaia sources. Once the best set of transformation parameters between HST and Gaia

have been measured, we can return to the list of all sources in the HST image as

measured by GaiaHub, which can include sources much fainter than Gaia can see (i.e.

G > 21.5 mag). When comparing multiple HST images at various epochs, these faint

sources can be cross-matched with each other to recover their PMs and parallaxes to

much fainter magnitudes. While the pipeline currently offers this feature, it is currently

untested and unoptimized, but preliminary results suggest this approach will be fruitful.

It may prove particularly useful in very sparse fields where the number of Gaia sources

in each HST image is small, but the shared source list between the HST frames is large.

3.3.3 Caveats

One key assumption that is built in to GaiaHub – and therefore BP3M – comes

from how HST sources are cross-matched with Gaia. A HST source is matched with a

Gaia source if they are nearest neighbours within some angular distance of each other

(e.g. GaiaHub default of 5 HST pixels, ∼ 250 mas). This works quite well in medium to

low density regions where the stars are likely far enough from each other with respect
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to their motion between images. In high-density regions (e.g. disks of nearby galaxies

like M31) or for fast moving stars, the closest pair of sources successive images aren’t

necessarily the correct matching. While future versions of our pipeline may address this

better (e.g. re-wind the Gaia star’s using their PMs, where they exist) to reduce this

confusion, we stress that our work focuses on the low to medium density regions where

the cross-matching assumptions are valid.

As a back-of-the-envelope test, the cross-matching technique is a good assump-

tion when the average distance between stars in an HST image is twice as large as the

average position change from proper motion:

ρ
−1/2
∗ > 2 ·∆t · µ̄. (3.5)

where ρ∗ is the stellar number density in area on the sky. We can use this equation

to determine different limits for choices of time baselines, densities, and average proper

motion sizes. For example, with ACS/WFC’s 4096 × 4096 pixel detector with pixel

scale of 50 mas · pixel−1, a time baseline of 15 years, and an average proper motion of

100 mas ·yr−1, we find that there would need to be greater than 4660 stars in the image

for there to be a significant amount of confusion in the cross-matching; as these numbers

are similar to HST images in the COSMOS field, this implies that sparse regions in the

halo have very low risk of incorrect cross-matching. In denser regions, like nearby

galaxies, a time-baseline of 15 years and average proper motion of 5 mas · yr−1 implies

that a limiting stellar number density of 1/9 pixel−2 = 4.4 × 10−5 mas−2. In practice,

we would like the factor of 2 to be even larger (e.g. 5 or 10) to be safe, but this sets
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the threshold. Future versions of the pipeline will likely explore improvements to the

cross-matching between HST and Gaia using the posterior motion measurements from

BP3M.

3.4 Pipeline Validation

We test the pipeline in four key ways: (1) using synthetic data where we know

the input transformation parameters and stellar motions perfectly, (2) using well-studied

nearby dwarf spheroidal (dSph) galaxies, (3) using cross-matches with an external QSO

catalog, and (4) using cross-matches with a PM catalog in COSMOS derived from

multi-epoch HST imaging.

3.4.1 Comparison with Synthetic Data

To understand how the pipeline performs in sparse halo fields, we first gen-

erate synthetic, COSMOS-like data. This process is described in detail in Appendix

3.9.2. In summary, the synthetic sources are a mix of foreground thick disk stars and

halo stars covering the 16 < G < 21.5 mag range with realistic Gaia measurements

and uncertainties of position, parallax, and proper motion. Like with real Gaia data,

sources with G > 21 mag have no Gaia-measured PMs or parallaxes. We create syn-

thetic HST observations of these sources – as well as the corresponding GaiaHub-like

outputs that BP3M expects to use for initial guesses of the transformation parameters

– while varying the numbers of sources per HST image and time baselines. Finally,

the synthetic images are analysed by BP3M. We emphasize that creating synthetic data
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Figure 3.4: Corner plot of the posterior samples (black points, lines, and histograms)
of the transformation parameters when fitting an image with 200 stars with a 15 year
time-baseline. The blue lines show the locations of the input parameters used to create
the synthetic data, and the values of the transformation matrix (a, b, c, d) have been
multiplied by 1000 for clarity. The chosen input parameters are representative of real
transformation solutions measured by GaiaHub for HST ACS/WFC images.

105



with different configurations (e.g. transformation parameters, time baselines, stellar

velocities and distance distributions) is quite straightforward using our technique, and

it is not necessarily restricted to only HST -like observations. Our method is a useful

avenue for estimating the impact that future observations or telescopes can have on

stellar motion measurements as well as designing best practices. We expand upon this

further in the case of Roman in Section 3.7.

While the exciting comparison with real data will follow in Section 3.4.2, we

begin by testing the pipeline on synthetic data to see how well we can recover the input

transformation parameters and stellar motion (i.e. position, parallax, and PM) used to

generate the synthetic HST image. Figure 3.4 shows the posterior distributions on the

transformation parameters that BP3M measures for one synthetic HST image that has

200 sources and a 15 year time baseline from Gaia; the black points and histograms

show the posterior draws, while the blue lines show the true values used to generate

the image. The posterior distribution and the input values agree very strongly with

each other. The chosen input transformation parameters are representative of real

transformation solutions as measured by GaiaHub.

We repeat this process of generating synthetic images while changing the num-

ber of sources and the time baseline, and then measure how far the posterior distribution

is from the truth. Specifically, we use the posterior samples of the transformation pa-

rameters (e.g. the black points in Figure 3.4) to define a 6D posterior mean vector, v⃗,

and corresponding 6× 6 covariance matrix, VVV v⃗. The 6D distance between the posterior
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Figure 3.5: 6D distance of the transformation parameters (i.e. the parameters in Fig-
ure 3.4) from their true values for 300 realizations of synthetic HST images with time
baselines from 5 to 15 years and number of sources from 5 to 200. The blue histogram
shows the data, while the orange curve is the expected distribution; the agreement be-
tween these histograms show that the BP3M pipeline does a good job of recovering the
input transformation parameters within their uncertainties.

mean vector and the truth vector, v⃗′, is then defined as

D =
(
(v⃗ − v⃗′)T · VVV −1

v⃗ · (v⃗ − v⃗′)
)1/2

. (3.6)

This is analogous to the 1D case of dividing the absolute difference between a

mean value and the truth by the uncertainty. Likewise, the units of D can be thought

of as the number of σ between the truth and mean, and we will use this definition

(for varying dimensions of v⃗) when studying residuals throughout this work. When we

analyse 300 synthetic HST images with time baselines between 5 and 15 years from Gaia

and 5 to 200 sources per image, we get the blue histogram in Figure 3.5; the orange

distribution shows the expected outcome – namely, a χ2 distribution with 6 degrees
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Figure 3.6: Comparison of posterior PMs for 200 synthetic COSMOS-like stars with
a 15 year time baseline from Gaia. The upper left panel shows the true PM values
(red points), and the dark blue outline circles highlight PMs that are too faint for
Gaia to have measurements. The upper middle and right panels show the offsets of the
measured PMs from the truth for both the synthetic Gaia data and the BP3M posteriors;
in the BP3M panel, the blue points are star that have Gaia-measured PMs and parallaxes,
while the orange points are those without Gaia-measured priors. The bottom two panels
compare the PM vector uncertainty size between Gaia and BP3M, with the right panel
showing the division of the black points by the blue points from the left panel.

of freedom and a scale of 1.0 – which agrees well with the measured outputs. This

result shows that the pipeline does a good job of recovering the input transformation

parameters within the posterior uncertainties.

Next, we analyse how well the pipeline is able to recover the true motions of

the sources in each synthetic image. An example of this is shown in Figure 3.6 for the

same synthetic image that is considered in Figure 3.4. When showing BP3M results,

we color the sources by whether there are Gaia-measured parallaxes and PMs to be

used as priors; blue points designate sources with (“Gaia Prior”) and orange points

108



designate sources without (“No Gaia Prior”). To be precise, all of the sources have

Gaia-measured priors on their position at J2016.0, but not all sources have Gaia priors

on their parallaxes and PMs.

The first key takeaway from this figure is that the BP3M PMs are clustered closer

to the true values (i.e. the origin in the upper middle and right panels) when compared

to Gaia alone; the scale of the BP3M panel is a factor ∼ 2 times smaller than that of of

the Gaia panel. Next, the bottom panels show that the size of the PM uncertainty has

decreased significantly when HST information is combined with Gaia using BP3M; the

left panel compares the PM uncertainties, while the right panel shows how much smaller

the BP3M PM uncertainties are compared to the Gaia PM uncertainties as a function of

magnitude. As a whole, this figure shows that combining the HST and Gaia data not

only increases PM precision, it also increases accuracy. To be clear, BP3M is not simply

shrinking the Gaia PM distribution around the same mean as a result of an increased

time baseline and number of images, it is truly improving the astrometric solution of

each source.

The particular pattern of PM uncertainties (i.e. a lower branch around 0.2 mas·

yr−1 and an upper branch around 1.5 mas ·yr−1) is a consequence of our choices in mod-

elling the synthetic data, which is detailed in Appendix 3.9.2. As a brief summary, the

HST position uncertainties are based on real GaiaHub-analysed sources as a function of

magnitude in COSMOS. At a given magnitude, some of the sources have well-measured

positions, while others are less constrained, which leads to the PM uncertainty bifurca-

tion shown in Figure 3.6.
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When considering the uncertainty on a vector, there are a few different ap-

proached one can take. In this work, we are concerned with 2D vectors (e.g. positions,

PMs), 3D vectors (e.g. parallax plus 2D PM), and 5D vectors (i.e. 2D position, parallax,

and 2D PM) of the different motion components. Because the different components of

these vectors can have differing units, and because there can be substantial correlations

in the covariance matrices we measure, we choose not to use the standard metric of the

quadrature sum of the individual uncertainties of each component. Instead, when we

compare vectors that have associated covariance matrices, we are interested in how much

the size of that covariance matrix has changed, which includes the effect of correlation.

We define the size of a vector’s uncertainty to be the determinant of the covariance

matrix to the 1/2d power, where d is the vector’s number of dimensions:

||σv⃗|| = |VVV v⃗|1/2d (3.7)

where VVV v⃗ is the covariance matrix of v⃗. With this definition, the area/volume created

by the vector’s covariance matrix, i.e. the determinant |VVV v⃗|, is equal to the area/volume

of a purely diagonal covariance matrix:

VVV ||σv⃗ || =



||σv⃗||2 0 . . . 0

0 ||σv⃗||2
...

...
. . . 0

0 . . . 0 ||σv⃗||2


.

In this case, the resulting uncertainty size allows for the correlations between parameters
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to impact the certainty about the vector’s position, which serve to shrink the volume

defined by that covariance matrix. For the remainder of this work, where we compare

the uncertainty sizes of different vectors between Gaia and BP3M, we will be using the

vector uncertainty size definition of Equation 3.7.

As an illustrative example, a highly-correlated measurement might have large

uncertainties in all of the individual vector components, but the probability distribution

implied by its covariance matrix covers only a small volume of parameter space owing to

the high correlation between the components. Here, the quadrature sum of individual

uncertainties would yield a large result, implying we know little about the true value

of the vector, whereas the vector uncertainty size in Equation 3.7 would return a small

value. This small value tells us that the volume of possible values that the vector can

occupy is quite small because of the relationship between the dimensions. For a 2D

vector v⃗T = (x, y), the vector uncertainty size is given by:

⟨σv⃗⟩ =
(
σ2
x · σ2

y ·
[
1− ρ2x,y

])1/4

where σx and σy are the corresponding uncertainty in each of the vector components

and ρx,y is the correlation coefficient between x and y.

To account for differences that individual realizations might have on the poste-

rior BP3M PMs, we repeat the measurements of Figure 3.6; that is, we create 5 separate

synthetic HST images that have 200 sources and a time baseline of 15 years. For the dif-

ferent realizations, the list of randomly chosen sources all come from the same synthetic

catalog of COSMOS-like data, but each realization will have a slightly different set of
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Figure 3.7: Comparison of BP3M-measured posterior PM’s with the truth for 5 sets of
synthetic HST images, each with 200 sources and a 15 year time baseline from Gaia.
The points are colored by whether the BP3M sources have Gaia parallax and PM priors
(blue), or are too faint to have Gaia parallax and PM priors (orange). The uncertainty
lines are the eigenvalues of the posterior covariance matrix, scaled so that each line
corresponds to 68% probability. All the points are clustered around (0,0), implying
that BP3M recovers trustworthy PMs.

true PMs, parallaxes, positions, magnitudes, and numbers of sources with/without Gaia

priors. The differences of the posterior PMs from the truth for these 5 × 200 = 1000

sources are shown in Figure 3.7, where the sources with Gaia-measured parallaxes and

PMs are in blue and the converse are in orange. As expected for a well-behaved pipeline,

the difference distribution clusters around the origin, and we see that the sources with

Gaia priors on their motion have smaller posterior uncertainties than those without. Of

course, the PMs are only 2 of the 5 dimensions of the vector measured for each source, so

we also compare the 5D vector (2D position, parallax, 2D PM) to the truth, again using

the distance definition of Equation 3.6; this distribution for the 1000 stars in Figure 3.7

is given as the blue histogram in Figure 3.8, and it shows remarkable agreement with
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Figure 3.8: Comparison of uncertainty-scaled distance of the 5D posterior vectors (i.e.
2D position, parallax, and 2D proper motion) from the truth. The blue histogram
represents the BP3M data for the 1000 synthetic stars in Figure 3.7, and the orange
histogram is the expected distribution (χ2 with 5 degrees of freedom and a scale of 1.0).
The agreement between these two curves is evidence that the pipeline is recovering good
posterior 5D vectors with realistic uncertainties.

the expected χ2 distribution with 5 degrees of freedom and a scale of 1. These figures

show that the pipeline recovers the true positions, parallaxes, and proper motions of all

sources within their posterior uncertainties.

Finally, we explore the impact that the number of sources in an image have

on the PM improvement factor when comparing BP3M to Gaia. An example analysis

of a synthetic HST image with 10 sources and a 15 year time baseline is given in

Figure 3.9. While the pipeline again finds good agreement between the PMs and

the truth, the median PM improvement factor over Gaia alone is only 1.39 for the

sources in this synthetic image, which is much smaller than the median factor of 8.3

seen for the sources in the 20.5 < G < 21 mag range of Figure 3.6. This is largely

113



Figure 3.9: Same as Figure 3.6, but with 10 synthetic COSMOS-like stars. The PM
improvement factor is less significant than in the bottom right panel of Figure 3.6, owing
to the larger uncertainty in the transformation parameter fitting because of the smaller
number of sources.

because the smaller number of sources aren’t able to place as strong a constraint on

the transformation parameters’ distribution, and the larger transformation parameter

distribution propagates to the PM distributions of individual sources.

We leave out example figures exploring the effect that a changing time baseline

has on the posterior PMs because it follows expectations exactly; namely, for the same

position uncertainty between two images, a smaller time baselines leads to larger PM

uncertainties (e.g. Equation 2 of del Pino et al. 2022).

Our synthetic analysis also allows us to measure the improvement factors in

the parallaxes and 2D position vectors of the sources. These results show, not unex-

pectedly, that the precision of these measurements is strongly tied (but not limited) to
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the magnitude of the source, the time baseline between images, the number of sources

per image, and the position on the sky’s effect on the shape and orientation of the

parallax motion. Because we cannot change time baselines of archival HST images, we

will explore observation strategies for future missions in Section 3.7 that allow BP3M to

maximally improve 5D precision.

That said, there are a few general lessons about trying to improve parallax

and position precision that we will list here. First, it is difficult to improve on the

Gaia-measured parallax or position vectors when using only one HST image (i.e. one

HST in combination with Gaia). When multiple HST images with common targets are

analysed together, then the parallaxes and positions begin to show improvement. In

particular, multiple HST images taken very nearby in time (e.g. the multiple exposures

taken to guard against cosmic rays) are useful for improving the position uncertainty,

but don’t offer much information to the parallax.

Next, if the time baselines from Gaia are taken in multiples of a year, then

the parallax orbit (e.g. see Figure 3.3) is sampled at the same time, which results in

no additional information about the parallax motion. Instead, if the observations are

spaced around the parallax orbit to have maximum offset from Gaia (and each other

when considering multiple HST exposures), then the parallax precision can be improved.

Finally, measurements that are closely spaced in time (i.e. within the same

year, but still some time separation) are able to break the degeneracy between the PMs

and parallaxes because the PMs – at least for low sky velocity stars – do not amount to

much motion in one year, whereas the parallax motion can be significant. Conversely,

115



a long time baseline, regardless of the offset within each year, is able to escape the

largest impact of the PM-parallax degeneracy because the PM motion is generally a

more significant contribution to the total offset; even if even if the parallax motion is

completely attributed to PM motion, the large time baseline serves to reduce its effect.

3.4.2 Comparison with Nearby Dwarf Spheroidals

We analyse HST images using BP3M in nearby dSph galaxies to see how the

posterior PMs and parallaxes compare to Gaia. This serves as a test with real data,

as well as more proof that BP3M is improving the astrometric solutions for the sources

it measures. We also show how analysing multiple HST images together impact the

resulting PM and parallax precision.

A comparison of the Gaia and BP3M PMs is presented in Figure 3.10 for the

Fornax dwarf spheroidal. For the BP3M PMs, 6 HST images at the same epoch (time

baseline from Gaia of 12.8 years) with a total of 198 unique sources are analysed to-

gether. While this figure is similar to Figure 3.6, the top panels are slightly different

in that they show PM measurements instead of offsets from known PMs of synthetic

data. Sources without Gaia-measured parallaxes and PMs are colored orange orange in

the BP3M panel, which show larger uncertainties than the sources with Gaia priors in

blue. The axes of the Gaia and BP3M panels have been set to cover the same range of

values for easier visual comparison. The upper right panel shows the difference between

the Gaia and BP3M PMs, with uncertainties that are the same as shown in the Gaia

panel; that is, we do not combine the BP3M and Gaia uncertainties because the Gaia

uncertainties have been used to inform the BP3M distributions. As before, the lower
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Figure 3.10: Comparison of PMs using 6 HST images of Fornax dSph analysed con-
currently; these HST images were all taken using ACS/WFC in the F775W filter at
the same epoch and same RA and Dec. The exposure time of each image is ∼ 250 sec
and the time offset from Gaia is 12.8 years. The panels are similar to Figure 3.6, ex-
cept the upper panels show measured PM values instead of offsets from known PMs of
synthetic data; the upper left panel shows Gaia measurements, the middle panel shows
BP3M posteriors (colored by whether Gaia-measured PMs exist for each source), and the
right panel shows a comparison between the Gaia and BP3M measurements (with Gaia
PM uncertainties). The Gaia and BP3M panels covers the same range of PM values to
visually show the improved clustering in the BP3M panel.
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Figure 3.11: Same as Figure 3.10, but analyzing 10 HST images of Draco concurrently.
These HST images were all taken using ACS/WFC in the F606W filter at the same RA
and Dec, with an average exposure time of ∼ 215 sec. The images span three epochs,
with time offsets from Gaia of 11.2, 9.2, and 2.2 years.

panels compare the PM uncertainties. Figure 3.11 shows another PM comparison, this

time using 10 HST images of the Draco dwarf spheroidal, taken at 3 different epochs

(baselines of 11.2, 9.2, and 2.2 years from Gaia).

First, these figures show a significant tightening of the PMs when Gaia and

HST are combined using BP3M. This suggests that the increase in PM precision is not

at the cost of PM accuracy. We emphasize that the sample of stars used in the BP3M

analysis were not cleaned in any way to focus only on galaxy members, highlighting the

general nature of our pipeline; for BP3M foreground bright stars are often useful anchors

for the transformation fitting owing to their well-measured Gaia positions, parallaxes,

and PMs.
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Figure 3.12: Comparison of parallax and proper motion improvement factor to Gaia
(i.e. size of Gaia parallax or PM uncertainty divided by size of BP3M parallax or PM
uncertainty) for Fornax dSph as a function of the number of HST images used. These
measurements concern the same data presented in Figure 3.10. While the most signifi-
cant improvement happens when combining a single HST image with Gaia (i.e. factor
of ∼ 10 for G = 21 mag), there is still a ∼ 25% improvement between considering one
HST image and considering six. There is also a very slight improvement on the parallax
uncertainties at the faintest magnitudes (∼ 2% − 4%), though the HST observations
occurring at the same approximate time make it difficult to improve the parallax preci-
sion.

We next repeat the BP3M analysis while varying the number of HST images

considered together to explore the effect this has on the posterior PMs and parallaxes.

The resulting improvement factors as a function of magnitude are given in Figures 3.12

and 3.13 for Fornax and Draco respectively, with the legend displaying the time base-

lines from Gaia for the different sets of HST images. In the case of Fornax, the most

significant improvement in PM occurs when analysing a single HST with Gaia (i.e. a
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Figure 3.13: Same as Figure 3.12, but for Draco instead of Fornax. These measurements
concern the same data presented in Figure 3.11. Note that the number of images jumps
from 5 to 10 on the colorbar. In contract to the Fornax results, there is a more-noticeable
improvement in the parallax uncertainties at the faintest magnitudes when the number
of images increases. This is likely a result of the HST images occuring at different
epochs.

median PM precision increase by a factor of ∼ 8.6 for 20.5 < G < 21 mag), though there

is still an additional improvement when the remaining five HST images are brought in

(∼ 14% improvement for for 20.5 < G < 21 mag). The parallax uncertainties, however,

do not improve very significantly for any of the images, though there is a slight, ∼ 1%,

precision increase at the faintest magnitudes. This is likely because the HST images

are taken at a single epoch and the time baseline is quite close to a one year multiple of

Gaia’s observation date (i.e. only offset by 20% of a year); this means that the parallax

orbit is being sampled repeatedly in a small area at the same approximate time, which
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does not lead to significant increases in parallax precision.

For Draco, increasing the number of HST images does substantially improve

the PMs for each image added; considering 10 HST images together with Gaia improves

the PM precision by a median factor of ∼ 13 for 20.5 < G < 21 mag compared to a

median factor of ∼ 7.8 when only one HST image is used. The parallaxes also see

noticeable change in precision as a function of HST images analysed. While the time

offsets from Gaia are again only ∼ 20% of a year, the HST images are spread over three

epochs. In the case of Fornax, we effectively have measurements of positions for each

source at two different times (i.e. a single epoch of HST images plus Gaia) while the

Draco data have measurements of positions at four different times; for the Draco stars

then, there is smaller set of parallax and PM combinations that can explain those four

position measurements per source than if there were only two position measurements. It

is likely that the improvement in the parallax precision also contributes to the increase

in PM precision because the degeneracy between the different types of apparent motion

become less entangled. However, the time offsets of the HST images from Gaia and

from each other are not optimally spaced in the parallax orbit (i.e. near the apocenters),

resulting in a median parallax precision increase by a factor of ∼ 1.18 for the faintest

magnitudes (G > 20.5 mag).

To confirm that the BP3M PMs are a true improvement in the astrometric

solution compared to Gaia alone, we measure internal kinematics. Specifically, we fit a
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2D Bayesian population model of the form:

µ̂T = (µ̂α∗, µ̂δ)

ΣΣΣ =

 σ2
µα∗ ρ · σµα∗ · σµδ

ρ · σµα∗ · σµδ
σ2
µδ


p(σµα∗) ∝ 1

p(σµδ
) ∝ 1

p(ρ) ∝ 1

p(µ̂|ΣΣΣ) ∝ 1

µ⃗i ∼ N (µ̂,ΣΣΣ) ,

µ⃗′
i ∼ N

(
µ⃗i,VVV µ⃗i

)
,

(3.8)

where µ̂ and ΣΣΣ are the population mean and covariance matrix we wish to measure,

µ⃗i is the true PM of star i, µ⃗′
i is the observed PM of star i with covariance matrix of

VVV µ⃗i
, and we have chosen to use flat priors on the components of the ΣΣΣ matrix. This

model allows us to capture the population distribution that describes the data while

also accounting for the 2D uncertainties in the individual PM measurements. We fit for

the population mean and covariance matrix when using both the Gaia PMs and the

BP3M PMs. We restrict the analysis to stars within 2σ of 2D distance of the median

PM of the population to ensure a relatively clean kinematic sample. The result of this

fitting process for both Fornax and Draco are summarized in Table 3.2.

In general, there is good agreement between the measured population distribu-

tion parameters, though the uncertainties on the BP3M-measured population statistics
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are significantly smaller (factor of ∼ 3 − 4 in the population mean and scatter) on ac-

count of the improved PM uncertainties. These results suggest that BP3M is not only

shrinking the PM uncertainties, it is also truly moving the Gaia PMs closer towards

their true values.

3.4.3 Comparison with QSOs

Figure 3.14: Proper motions of the 46 sources in the COSMOS field that are nearest
to a previously-identified QSO. The PMs are colored by whether Gaia-measured PMs
and parallaxes were available as priors. The proper motion uncertainties are such that
all of these proper motion measurements are consistent with stationary.

As an additional method of validating the BP3M posterior PMs and their uncer-

tainties, we cross-match the ∼ 2000 unique COSMOS sources mentioned in Section 3.2

with the MILLIQUAS QSO catalog10 (Flesch 2023). There are 46 sources in the QSO

10https://heasarc.gsfc.nasa.gov/W3Browse/all/milliquas.html

124

https://heasarc.gsfc.nasa.gov/W3Browse/all/milliquas.html


Figure 3.15: QSO proper motion distance from stationary, scaled by their uncertainties.
The orange histogram shows the expectation if the uncertainties explain all the non-zero
sizes of the PMs, with errorbars giving the 68% region on the density in each bin for
a sample size of N = 46; the two distributions agree quite well by eye, suggesting that
the posterior PM uncertainties are reasonable and trustworthy.

list that have COSMOS sources within 10 mas, so we run the HST images that contain

these sources through the BP3M pipeline, with the resulting posterior PMs shown in

Figure 3.14. As expected, the PMs are closely distributed around the origin.

Next, we use the PM uncertainties to measure the 2D distances of the PMs

from stationary, and then compare these measurements to the expected distribution;

the result of this process is shown in Figure 3.15. The expected distribution (orange

histogram) for an equivalent sample size agrees quite well with the measured one (blue

histogram). This is additional and external evidence that the BP3M posterior PM dis-

tributions are reasonable and trustworthy.
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Figure 3.16: Posterior BP3M PMs for 25 sources in the COSMOS field that are shared
with the HALO7D survey. The “HST” designation in the axis labels refer to the PMs
of Cunningham et al. (2019b), which use HST images alone to measure PMs.

3.4.4 Comparison with HST -measured PMs

Like in Section 3.4.3, we identify sources in our COSMOS sample that are

shared with an external survey; in this case, we cross-match with the COSMOS sample

of the HALO7D survey (Cunningham et al. 2019a,b; McKinnon et al. 2023). The

HALO7D PMs are described in Cunningham et al. (2019b); to summarize, the PMs are

measured using multiple epochs of HST imaging with the absolute reference frame being

defined by registration with background galaxies. These HST+HST PMs are therefore

a result of traditional PM measurement techniques. We compare the 25 sources that are

shared between our sample and HALO7D in Figure 3.16, which shows the BP3M PMs

have strong agreement with their HST -only counterparts. As in the other comparisons

we have presented, the distribution of 2D differences between the PM measurements

agree statistically with our expectations, providing the final piece of validation for the

BP3M outputs.
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3.5 Proper Motions in Sparse Fields: COSMOS

Figure 3.17: Posterior BP3M PMs for the 2184 unique sources in the COSMOS field (i.e.
same sources referred to in Figure 3.1). While each source may fall in multiple HST
image, we only show the PMs measured from analysing a single HST image with Gaia.
The PMs are colored by whether Gaia-measured PMs and parallaxes were available
as priors. The PM uncertainties of the sources with Gaia priors (blue points) are, on
average, much smaller than those without Gaia priors (orange points).

Using the HST images of the COSMOS field discussed in Section 3.2.1, we

run BP3M on all images within 0.5◦ of the field’s center. This includes all regions of

COSMOS with multi-epoch HST imaging (near the center), as well as single-epoch-

only HST regions. The posterior PMs we measure for the 2184 unique sources that are

found in common between the HST images andGaia are shown in Figure 3.17, where the

sources are colored by whether or not they have Gaia-measured PMs and parallaxes. As
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a quick sanity check, this PM distribution visually agrees with our expectations based on

the synthetic COSMOS data created using previously-measured velocity distributions

for the MW thick disk and stellar halo11. While each source may appear in multiple

HST frames, we only show the results from analysing each HST image separately, and

the displayed PM is from the posterior distribution with the smallest uncertainty.

We also compare the BP3M PMs and uncertainties to the corresponding Gaia

PMs in Figure 3.18, where we again see excellent agreement between the two samples

(top panels). The middle and bottom panels show the improvement on the PM uncer-

tainty that BP3M measures by combining HST and Gaia, especially for the ∼ 25% of

sources that had no Gaia-measured PMs; the median PM uncertainty for sources with-

out Gaia priors is found to be ∼ 1.12 mas ·yr−1. While many of the brightest magnitude

sources – those most likely to be at or near saturation in the HST images – show no

improvement on Gaia’s PMs, the faintest magnitude sources (20.25 < G < 20.75 mag)

have a median PM improvement factor of 2.62. As mentioned for the small-source-count

case in Figure 3.9, the less extreme improvements in PM we see in sparse fields are likely

the result of larger uncertainty in the transformation parameters, which propagates to

the PM uncertainties of all sources in an image.

The BP3M transformation parameters could likely be pinned down much more

precisely by identifying stationary sources in each image. For example, by finding the

centroids in each HST image that are clearly associated with extended sources and

background galaxies, then updating the priors in parallax and PM to a narrow distri-

11see the 2D PM distribution in Appendix 3.9.2, but note that the points are colored based on
belonging to the halo or thick disk, not whether there are Gaia priors on parallax and PM.
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Figure 3.18: Comparison of posterior PMs and corresponding uncertainties between
Gaia and BP3M for the same COSMOS sources as Figure 3.17. The different PM values
agree with each other within their uncertainties across a range of PM sizes. For many of
the bright sources (G < 19 mag), their HST detection has a large position uncertainty,
which leads to no improvement over the Gaia-measured PMs. For fainter targets (G >
19 mag), where the Gaia PM uncertainty increases and the HST positions are better
measured, there is a significant improvement in the PM uncertainty. Approximately
25% of the COSMOS sources have no Gaia-measured PM, and these sources have a
median PM uncertainty of ∼ 1.12 mas · yr−1.129



Table 3.3: Median uncertainty in proper motion for the COSMOS stars in Gaia, BP3M
with Gaia priors, and BP3M without Gaia priors in the 20 < G < 21.5 mag range.
While the median uncertainties in the Gaia sample are smaller than the medians from
the BP3M without Gaia priors sample, the former has significantly fewer stars than the
latter and does not reach as faint. As shown in the middle panel of Figure 3.18, the
Gaia COSMOS data extend only to G ∼ 20.75 mag, while the BP3M sample extends to
G ∼ 21.5 mag.

Number of Median ||σµ⃗i
||

Sample Sources (mas/yr)

Gaia 375 1.01
BP3M, Gaia Prior 375 0.43

BP3M, No Gaia Prior 534 1.10

bution around 0⃗, the transformation solution can be improved by these anchor points.

This would reduce the posterior width of the transformation parameter distributions

for each image, especially for particularly sparse images, which would also reduce the

posterior widths in the PMs for all of the sources in an HST image. Exploring the

impact that known stationary targets can have on the BP3M PMs will be the focus of

future work.

The median PM uncertainties in the 20 < G < 21.5 mag range are summarized

for the COSMOS sample in Table 3.3. First, the BP3M sample that has Gaia parallax

and PM priors has a significant increase in precision compared to Gaia alone. Second,

the Gaia COSMOS sample (20 < G < 20.75 mag) has a similar median PM uncertainty

to the BP3M sample without Gaia priors (20.75 < G < 21.5 mag), but the latter has

contains significantly more stars. Effectively, BP3M substantially increases the number

of stars in a single LOS with Gaia-quality PMs at the faintest magnitudes.

An typical MW stellar halo isochrone (i.e. Age = 12 Gyr and [Fe/H] =

−1.2 dex, see Appendix 3.9.2) has a main sequence turn-off (MSTO) around an ab-
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solute magnitude of MG ≈ 3.9 mag. For MSTO stars with apparent magnitudes in

the 20 < G < 20.75 mag range, this translates to a distance range of ∼ 17 − 23 kpc.

Using the median PM uncertainties in Table 3.3, this would imply an uncertainty in

velocity on the sky in the range of ∼ 79− 112 km · s−1 for the Gaia-alone sample versus

a ∼ 33− 48 km · s−1 range for the BP3M sample with Gaia priors. For the BP3M sample

without Gaia priors, the apparent magnitude range of 20.75 < G < 21.5 mag translates

to a distance range of ∼ 23− 33 kpc, and results in a sky velocity uncertainty range of

∼ 122− 172 km · s−1 when using the median PM uncertainty for this subsample.

Like with the dwarf spheroidal data, many of these COSMOS sources appear

in multiple HST images. Future work will analyse these images concurrently, allowing

for the best possible PM measurements of the COSMOS sample. This may also likely

yield improvements on the parallax precision, especially for sources in the multi-epoch

HST regions of the field. Finally, there are many HST sources that are too faint to

have Gaia counterparts, but they nonetheless appear in multiple HST frames. For these

sources, future versions of BP3M can use the HST -to-Gaia transformation parameters

for each image to identify the positions of these sources in a global reference frame as a

function of time, and thus determine their best fit PMs and parallaxes.

3.6 Time Stability of Transformation Parameters

While the offset and rotation terms of the transformation parameters will

always need to be measured for every image, we explore the possibility of describ-

ing the pixel scale ratio and the skew terms as a function of time and HST orienta-
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Table 3.4: Number of HST images analysed with BP3M in different nearby galaxies,
clusters, and MW halo fields in different filters of ACS/WFC.

Name Number of HST Images
F555W F606W F775W F814W

COSMOS 0 0 0 640
Fornax dSph 0 0 6 0
Draco dSph 0 38 0 0

Sculptor dSph 0 0 11 0
47 Tucanae 10 17 2 22

Arp2 0 0 0 6
E3 0 5 0 0
IC10 0 0 0 6

IC1613 0 0 0 24
Leo A 0 0 0 12
Leo I 0 0 0 21
Leo T 0 35 0 12

NGC2419 0 0 0 6
NGC205 0 1 0 0
Pal1 0 6 0 6
Pal2 0 0 0 5

SAG DIG 0 4 0 9
Terzan8 0 2 0 6

TOTAL 10 108 19 775

tion. The transformation parameter measurements come from BP3M analyses of various

nearby galaxies, clusters, and patches of the MW stellar halo using different filters of

ACS/WFC. The breakdown of number of HST frames per field and per filter is sum-

marized in Table 3.4.

In particular, the PSR is expected to change as a function of HST ’s oribt;

specifically, a “breathing” of the telescope as it expands and contracts from changes in

solar radiation as it passes in and out of the Earth’s shadow. We attempt to quantify

this breathing by fitting a time-varying sinusoid to the PSRs we measure from 775

F814W ACS/WFC images, the result of which is shown in Figure 3.19. While we

recover the nominal HST orbit time of ∼ 95 minutes as the best fit-period, we do not
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Figure 3.19: PSR measurements from 775 F814W filter images taken with of ACS/WFC
as a function of observation time and a comparison of the data with a time-varying
sinusoid of the form A · sin(t · 2π/P − ϕ) + H. The model has a best fit period of
∼ 95 min so only the best fit height and amplitude are displayed with the grey line and
shaded region. From the uncertainty scaled residuals in lower panel, we see that the
data are not well-described by this model.

see good agreement between the data and the model; the residuals suggest that the PSR

uncertainties would need to be a factor of ∼ 2.6 times larger to explain the disagreement.

Allowing for more complicated models, we find that the best function to describe the

PSR measurements versus time is of the form

PSR(θ, t) =PSR0◦,2000 +mPSR · (t− 2000) + (A2000 +mA · (t− 2000)) · sin θ (3.9)

where θ refers to the same HST angle in Equation 3.2, PSR0◦,2000 is the pixel scale

ratio at HST angle of θ = 0◦ in the year 2000, A2000 is the sinusoid amplitude in the
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Figure 3.20: Histogram of the measured PSRs from different filters of ACS/WFC. Above
each histogram is the population mean and scatter for that filter as listed in Table 3.5.

year 2000, and (mPSR,mA) are the slopes of the PSR and amplitude with time. This

functional form allows for the sinusoid amplitude to change linearly with time, as well

as for the vertical offset to change linearly with time. When we fit this model to the

data, we find that the PSR uncertainties would need to be 1.5 to 2 times as large as

they currently are, which is an improvement over the “breathing” model but is still

unsatisfactory in terms of describing the data. This may be in line with recent findings;

Hoffmann & Kozhurina-Platais (2020), for example, measure the PSR when mapping

47 Tucanae HST images onto Gaia DR2 (see their Figure 3), which seems to show a

trend that is more complicated than a single sinusoid or linear relationship as a function

of time.

From our initial tests, it appears that the best approach for measuring transfor-

mation parameters is to fit the PSR independently in each image, though the relatively
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Table 3.5: Result of Bayesian population fit to the Pixel Scale Ratios in different filters
of ACS/WFC.

Filter Nimages Mean Scatter

F555W 10 0.994530 1.6× 10−5

±5× 10−6 ±4× 10−6

F606W 108 0.994533 2.2× 10−5

±2× 10−6 ±1× 10−6

F775W 19 0.994546 2.3× 10−5

±5× 10−6 ±4× 10−6

F814W 775 0.994518 6.5× 10−5

±2× 10−6 ±2× 10−6

narrow range of values indicate that we could benefit by using a fairly strong prior on

this parameter. The PSR population statistics (i.e. mean and scatter) that describe

each of the filters that we have measurements for are presented in Table 3.5 and Fig-

ure 3.20; these population statistics are measured using a 1D analog of the model in

Equation 3.8.

We next explore the on- and off-axis skew terms. Beginning with some set of

transformation parameters for some orientation of the telescope

RRR =

a b

c d

 , (3.10)

a set of on- and off-axis skew values are defined by the on and off diagonal elements

respectively, as given by Equation 3.2. It is fairly trivial to show that applying a rotation

(remembering that θ is positive in our definition when clockwise) to RRR, i.e.

 cos θ sin θ

− sin θ cos θ

 ·RRR (3.11)
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causes a change in the skew terms such that the new set of skews (on′, off ′) are related

to the previous set of skews, (on, off), by that same rotation matrix:

on′

off ′

 =

 cos θ sin θ

− sin θ cos θ

 ·

on

off

 . (3.12)

If the skew terms aren’t changing significantly over time, then Equation 3.12

implies that we should be able to fit for some (on0, off0) vector that every other set of

skew measurements are just some rotation away from. To be careful, we assume that the

(on0, off0) vector is different for the various HST instruments/detectors and filter and

instrument; in practice, we only have dense enough sampling in time and HST rotation

to apply this analysis to the F814W ACS/WFC images in our sample.

We fit for the (on0, off0) vector using the same 775 F814W ACS/WFC images

that were used to measure the PSR population statistics, and a comparison of the model

and data are shown in Figure 3.21. While the model does a good job of tracing the

on and off skews as a function of rotation, the (uncertainty-scaled) residuals are quite

large, and it appears as though there may be a trend in the residuals as a function

of observation time (3rd panel from the top). The uncertainty-scaled 2D distance of

the data from the Equation 3.12 model is shown in Figure 3.22, where the orange

histogram shows the expected distribution if the model described the data within their

uncertainties, and the green histogram is the best fit distribution. Only residuals with

2D distances less than 5σ are included to enable good agreement between the shape

of the best fit distribution and the data histogram, which removes 57 relatively large
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Figure 3.21: Best fit to the on and off skew measurements of F814W filter images taken
with of ACS/WFC as a function of HST rotation as described by Equation 3.12. While
there is generally good agreement between the best fit model and data, there are some
points that disagree, and there are potentially trends in the residuals with the number
of stars in each image and the time the observation was taken.
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Figure 3.22: 2D residual distance from Figure 3.21 with the expected distribution (or-
ange) and the best fit one (green). We have removed 57 of the 775 measurements where
the residual 2D distance is greater than 5σ. The blue data distribution does not match
the expectation, instead, its best fit curve implies that the skew term distribution width
needs to be a factor of 1.28 larger.

outliers. The best fit distribution suggests that the on and off axis uncertainties would

need to be a factor of 1.28 times larger to account for the differences between the model

and data.

Taking the skew model one step further, we introduce time evolution by allow-

ing the (on0, off0) vector to change linearly with time:

on(θ,t)

off(θ,t)

 =

 cos θ sin θ

− sin θ cos θ

 ·

mon · (t− 2000) + on(0◦,2000)

moff · (t− 2000) + off(0◦,2000)

 (3.13)

where (on(0◦,2000), off(0◦,2000)) are the skew values at 0◦ in the year 2000, and (mon,moff )

are the time slopes of the on and off skew terms respectively. The residuals of this model

are shown in Figure 3.23. Now, much of the residual trend with observation time has

138



Figure 3.23: Same as the lower three residual panels of Figure 3.21, but now using
the time-varying model of Equation 3.13. The residuals show that the model does a
better job of describing the skew terms over time (middle panel) compared to the time-
independent model of Equation 3.12.

been removed (middle panel). Figure 3.24 shows the 2D distance residuals between

the model and the data; the best fit residual distribution is smaller – requiring the

skew uncertainties to be only 1.15 times larger than measured – and only 13 skew

measurements are removed for having distances greater than 5σ. Given a model that

perfectly describes the data within their uncertainties, we would expect that 0 of the

skew measurements would be removed and the best fit residual distribution would have

139



a width of 1.

Figure 3.24: Same as Figure 3.22, but now using the residuals of Figure 3.23 from the
time-varying model of Equation 3.13. We have removed 13 of the 775 measurements
where the residual 2D distance is greater than 5σ. While the blue data distribution does
not match the expectation (best fit σ is greater than 1), its shape has better agreement
with the best fit curve and has a smaller width than the results from the non-time
varying residuals of Figure 3.22.

We repeat this skew fitting process for increasing polynomial orders of the time

term in the (on0, off0) vector, keeping track of the number of measurements of the 775

total within 5σ of the model as well as the Uncertainty Scale factor. The results of this

are summarized in Table 3.6. In the highest order cases, there are still a small number

of measurements that are outliers, and the best models imply that the uncertainty on

the skew terms should be inflated by 7% (i.e. posterior covariance multiplied by a factor

of 1.072).

These results are quite promising in that they suggest the skew terms can

almost completely be described as a function of HST rotation and time. In this case,
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Table 3.6: Results of fitting different time-varying models to the on- and off-axis skew
terms using 775 F814W ACS/WFC images. The first column is the order of time-
variation in the (on0, off0) vector; the 0th and 1st time order entries correspond to
the models in Equation 3.12 and 3.13 respectively. The second column is the number
of measurements, of the 775 total, that are within 5σ of the current best fit model,
which are used to estimate the best fit Uncertainty Scale (e.g. the σ values of the green
distributions in Figures 3.22 and 3.24) in the third column. A model that completely
describes the data would have 775 in the second column and 1.00 in the third column.

Time-Variation Nimages < 5σ Uncertainty Scale
Order

0 718 1.28
1 762 1.15
2 770 1.10
3 769 1.07
4 769 1.07
5 771 1.07

2 of the 6 transformation parameters are completely determined – or, can have an

extremely strong prior placed on them – which could significantly aid in our ability to

measure the remaining parameters and therefore the stellar motions. Future work should

focus on getting more complete time and HST rotation sampling to better constrain

these relationships, as well as to make similar measurements using the additional HST

instrument, detector, and filter combinations.

3.7 Modelling Future Missions

The mathematics presented in Section 3.3 are quite general in that they apply

to any two or more sets of position measurements of stars. In this way, we are able to

model the effect that future missions (e.g. Roman) will have on PM measurements for

different time baselines, telescope orientations, and transformation parameters. While

it is not required to consider synthetic Roman measurements in combination with Gaia,
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we focus on comparisons with Gaia to show the improvement that Roman will bring in

PMs, and emphasize how careful planning on the observation times allow for improved

constraints on parallax measurements.

When it comes to making synthetic, COSMOS-like Roman observations, we

follow the same process as with the synthetic HST images explained in Appendix 3.9.2.

The main differences are that we use the appropriate pixel scale (i.e. 110 mas · pixel−1)

and (i.e. 18 CCDs with 4096 × 4096 pixels arranged in a 6 × 3 layout) detector di-

mensions as stated by the Roman specifications (Spergel et al. 2015). For the position

uncertainty of centroids in Roman images, we assume an average uncertainty of 0.01 pix-

els, which is approximately what can be measured with HST (e.g. Bellini et al. 2011).

While we recognize that the position accuracy changes as a strong function of signal-

to-noise/magnitude, we adopt a single value instead of modelling uncertainty versus

magnitude to show a reasonable but optimistic set of measurements. With the cur-

rently planned launch of late-2026/early-2027, we choose to set the first observation

time as 2027, with followup observations near the middle of the mission lifetime (i.e.

2029), and again at the end (i.e. 2032).

Comparing the FOV of HST ’s ACS/WFC to that of the Roman detector, the

novel observatory will see an area of sky that is 89.5 times larger than HST. How-

ever, each 4096 × 4096 CCD in Roman, which sees 4.84 times more sky than HST ’s

ACS/WFC, will likely need to be fit independently for its transformation parameters

(e.g. small rotational offsets and differences in skew and focus). Because there are a

median of 10 sources in common between HST and Gaia in COSMOS, we assume that
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an equivalent observation with Roman would have 48 sources in common with Gaia per

CCD. We generate synthetic images at the 3 Roman epochs, allowing for some offsets

in time to test different strategies to improve the parallax measurements. Specifically,

we make the observations occur at

1. All Roman observations at year-multiples of the Gaia observation time,

∆ t = [11.0, 13.0, 16.0] years;

2. All Roman observations at half-a-year offset from the Gaia date,

∆ t = [11.5, 13.5, 16.5] years;

3. The first Roman observations at the parallax orbit apocenter farthest from Gaia,

then offset by a quarter year for the other epochs, ∆ t = [11.39, 13.64, 16.14] years;

4. The first Roman observations at the parallax orbit apocenter farthest from Gaia,

then alternating offsets by half a year for the other epochs,

∆ t = [11.39, 13.89, 16.39] years.

The resulting position, parallax, PM uncertainties from analysing these Roman

observations concurrently is given in Figure 3.25, where the two bottom-most panels

show the 3D (i.e. parallax, PM) and 5D (i.e. position, parallax, PM) vector uncertain-

ties. This figure reveals many important lessons about the impact that relatively small

time offsets of observations within a year have on the stellar measurements.

First, our particular choices in position uncertainty and time baselines have

resulted in minimal improvement in the position uncertainty of the sources (top panel).

In the second panel from the top, however, the different observing strategies lead to vast
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Figure 3.25: Comparison of the uncertainties on position, parallax, and proper motion
for 48 synthetic Roman-observed stars in the COSMOS field. The points are colored
by the time baseline offsets from Gaia for Roman observations at 2027, 2029, and 2032.
Note that some of the y-axes are in log scale while others are linear. The two bottom-
most panels correspond to the 3D vector of parallax and PM, and the 5D vector of
position, parallax, and PM; the units of these axes are a result of our definition of
vector uncertainty in Equation 3.7.
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differences in the resulting parallax precision. Focusing on the third panel shows that

all of the different observing strategies result in final PM uncertainties that are almost

exactly the same, suggesting that achieving better parallaxes and positions has minimal

cost to the PM precision. We emphasize, however, that this is only after analysing all

3 epochs together; when considering a single epoch at a time, sources without Gaia

priors (i.e. G > 21 mag) do indeed have significantly larger PM uncertainties if there

is an offset from the Gaia date as a result of the degeneracy between PM and parallax

motions. While the Roman science goals are not defined by obtaining best possible PMs

and parallaxes, our analysis highlights the difference that careful survey planning can

have on the resulting astrometric precision.

Of the observing strategies we consider (including many that are not repre-

sented in Figure 3.25), the best choice for improving positions and parallaxes was to

use an alternating-parallax-orbit-apocenters approach, which is the 4th option in the

list above and the red points in the Figure. This strategy suggests that the parallax is

most improved – and therefore the degeneracy between PM and parallax motions most

disentangled – when we use the average parallax orbit of the sources in a given LOS

(e.g. the blue orbit in Figure 3.3 for COSMOS) to identify the points in time that are

most distant from each other. Then, we first observe at the time that is most offset from

the Gaia observation time, and subsequent observations alternate by half a year such

that they jump back and forth between the two apocenters. This approach also appears

to have a large improvement on the position uncertainty, likely caused by the repeated

sampling of the source’s position at the same time in the parallax orbit. Originally, we
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had expected that observing the farthest apocenter from Gaia with following observa-

tions a quarter of a year ahead and behind it (i.e. list option 3 and the green points in

Figure 3.25) would better trace the parallax orbit, thereby recovering the most precise

parallaxes, but this is not the case.

One way to visualize why the alternating apocenter approach gives the best

improvement comes from thinking about the lines that connects the positions of the stars

at successive measurements. These slopes/angles of these lines are generally defined by

the PM of each star, but there are also offsets from the parallax motion. To measure

the largest effect from parallax, we desire that those lines have the largest differences in

their angles with respect to the previous measurement in time, which generally occurs a

half year interval apart. The largest possible offset happens when we alternate between

the two apocenters of the parallax orbit.

While we are not actually fitting for these lines/angles with BP3M, the informa-

tion they represent is contained in the expected source position as a function of time.

It is therefore a useful way to visualize the differences between the future position of

the source produced by the possible combinations of the PM and parallax implied by

the Gaia prior. Plotting these angles versus time for the different possible tracks of a

source reveals that some points in time have a larger range of angle values than others.

It is those times when the certainty about the source’s position is least constrained,

so having a measurement at that time does a lot to improve the understanding of the

source’s motion. As expected, the largest scatter in the angles occurs about half-a-

year offset from whatever starting time we consider, and the largest possible separation
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occurs when alternating between the parallax orbit apocenters. As time increases, the

relative impact of the parallax motion on the total observed motion decreases, assuming

the source has some non-zero PM, so the best parallax constraints are achieved when

measuring the position multiple times over the course of the same year.

We recognize that our search of the best observing strategy has been non-

exhaustive, so there may be an even better option that we have yet to consider. Future

work will focus on identifying the best parallax-improvement approach when using 3

epochs by considering all combinations of time offsets (e.g. say 100 different offsets for

each epoch, and then analyses of all possible combinations).

3.8 Summary

We have presented the statistics that describe, in general, how positions of

sources from two or more sets of images (from any telescope or instrument) should be

combined in a Bayesian hierarchical framework to measure transformation parameters

between the images, as well as distributions on the positions, parallaxes, and proper

motions for the individual sources. We use these statistics to created BP3M – a pipeline

that builds off of GaiaHub – to combine archival HST and Gaia data to measure reliable

positions, parallaxes, and PMs in the absolute reference frame of Gaia. We have tested

this pipeline using a combination of synthetic HST -like images of the MW stellar halo,

nearby dwarf galaxies, and catalogs of QSOs, showing in all cases that the BP3M PMs

are both accurate and precise, especially for magnitudes where Gaia has large PM

uncertainties (19 < G < 21 mag) or no PM measurements at all (21 < G < 21.5 mag).
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Our key results include:

1. For time baselines of 10 to 13 years, the BP3M pipeline is able to measure PMs

of stars in nearby dwarf spheroidals with uncertainties that are, on average, 8 to

13 times more precise than Gaia alone for 20.5 < G < 21 mag (Section 3.4.2,

Figures 3.10 and 3.11);

2. For the sparse fields of COSMOS (median 10 sources shared with Gaia per HST

image), we measure a median PM improvement factor of 2.62 for sources with

Gaia-measured PMs, and find a median PM uncertainty of 1.12 mas ·yr−1 for the

∼ 25% of sources without Gaia-measured PMs (Section 3.5, Figure 3.18);

3. Using the BP3M-measured transformation parameters for HST ACS/WFC images,

we find that pixel scale ratio is best left as a free parameter when measuring

transformations, but that the on- and off-axis skew terms may be explained as a

function of HST ’s angle and time (Section 3.6, Figures 3.20, 3.21, 3.23, Tables 3.5

and 3.6);

4. After generating synthetic Roman-like observations in a COSMOS-like field, we

find an observing strategy that significantly increases parallax and position preci-

sion at no cost to PM precision (Section 3.7, Figure 3.25).

Broadly speaking, future work for this project can be broken into two parts:

(1) improvements to the BP3M pipeline, and (2) analyses of BP3M results. For the first

type of next steps, we plan to:

• Speed up computation time, especially when analysing multiple HST images to-
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gether;

• Allow for cross-matching between multiple HST images for sources that are too

faint for Gaia (i.e. G > 21.5 mag) to measure HST+HST PMs;

• Include the correlation terms between the PMs, parallaxes, and positions from

Gaia (i.e. correlation between parallax and µα∗) for increased posterior precision;

• Use the Gaia-measured distributions on PMs, parallaxes, and positions (where

they exist) to assign probabilities to cross-match options in the HST images, so

that BP3M can also improve on the cross matching, which might be particularly

important for more dense regions.

For applications of the BP3M pipeline, our future endeavours will include:

• Expand our COSMOS analysis to include the entire ∼ 2 square degree region, and

combine different sets of HST images to extract the best possible BP3M PMs and

parallaxes;

• Use the BP3M COSMOS PMs and parallaxes to constrain the MW disk and halo

kinematics with unprecedented accuracy along a single LOS (e.g. similar to the

analysis of Cunningham et al. 2019b);

• Analysis of large number of HST images that are well spaced in time and use

different rotation angles (e.g. 47 Tucanae) to better constrain the pixel scale ratio

and skew terms as a function of time and HST rotation for different instruments,

detector, and filter combinations;
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• Exhaustive search of time offsets between 3 epochs of Roman-like observations to

determine the strategy that maximized the parallax precision.

3.9 Appendices

3.9.1 Motion Statistics

Here, we present the detailed accounting needed to derive the posterior condi-

tional distributions in proper motion, parallax, and position for a given source. Using

the posterior distribution of Equation 3.4, we can write out the posterior full conditional

on the motion components (i.e. µ⃗i,plxi, ∆⃗θi) for source i:

p
(
µ⃗i,plxi, ∆⃗θi |⃗a, b⃗, c⃗, d⃗, W⃗0, Z⃗0, . . .

)
∝p
(
plx′i|plxi

)
· p
(
plxi|p̂lx, σp̂lx

)
· p
(
µ⃗′
i|µ⃗i

)
·

p (µ⃗i|µ̂,VVV µ̂) · p
(
∆⃗θi

)
·

nim∏
j=1

N
(
∆⃗dij |JJJ ij · ⃗∆mij ,VVV d,ij |⃗a, b⃗, c⃗, d⃗, W⃗0, Z⃗0

)

Because of its lack of coefficients, it is easiest to solve for the posterior full

conditional on ∆⃗θi first:

(
∆⃗θi|µ⃗i, plxi, . . .

)
∼ N

ΣΣΣθ,i =

VVV −1
θ,i +

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij

−1

,

µ⃗θ,i = ΣΣΣθ,i ·

VVV −1
θ,i · ∆⃗θ

′
i +

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij ·

(
plxiplxiplxi · ⃗∆plxij +∆tj∆tj∆tj · µ⃗i − JJJ−1

ij · ∆⃗dij

)])
where we use bold-faced versions of scalars to represent the corresponding identity
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matrix version of that number, such as

plxplxplxi = plxi · III2×2.

We have also included a term for the Gaia-measured position offset vector ∆⃗θ
′
i to be as

general as possible, but this vector is just 0⃗ because Gaia has no measured offset from

the positions it reports.

With these results in hand, and using

p(µ⃗i, plxi| . . . ) =
p(µ⃗i, plxi, ∆⃗θi| . . . )
p(∆⃗θi|µ⃗i,plxi, . . . )

,

we can plug in ∆⃗θi = µ⃗θ,i in to p
(
µ⃗i,plxi, ∆⃗θi| . . .

)
to get p(µ⃗i,plxi| . . . ). This works

out to:

p(µ⃗i,plxi| . . . ) ∝ exp

(
− 1

2σ2
plx,i

(
plxi − plx′i

)2) · exp

(
− 1

2σ2
p̂lx

(
plxi − p̂lx

)2)
·

exp

(
−1

2

(
µ⃗i − µ⃗′

i

)T · VVV −1
µ,i ·

(
µ⃗i − µ⃗′

i

))
·

exp

(
−1

2
(µ⃗i − µ̂)T · VVV −1

µ̂ · (µ⃗i − µ̂)

)
·

exp

(
−1

2

(
µ⃗θ,i − ∆⃗θi

′)T
· VVV −1

θ,i ·
(
µ⃗θ,i − ∆⃗θi

′))
·

exp

−1

2

nim∑
j=1

(
plxiplxiplxi · ⃗∆plxij +∆tj∆tj∆tj · µ⃗i − µ⃗θ,i − JJJ−1

ij · ∆⃗dij

)T
· JJJT

ij · VVV −1
d,ij · JJJ ij ·

(
plxiplxiplxi · ⃗∆plxij +∆tj∆tj∆tj · µ⃗i − µ⃗θ,i − JJJ−1

ij · ∆⃗dij

))

The next easiest term to solve for is µ⃗i. If we rewrite µ⃗θ,i to be in terms of µ⃗i,
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then we get:

AAAµ,i =

ΣΣΣθ,i ·
nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij ·∆tj



B⃗µ,i = ΣΣΣθ,i·

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij · JJJ−1
ij · ∆⃗dij − VVV −1

θ,i · ∆⃗θ′i − plxi ·
nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij · ⃗∆plxij


µ⃗θ,i = AAAµ,i · µ⃗i − B⃗µ,i.

Then we have:

N
(
µ⃗θ,i − ∆⃗θi

′
,VVV θ,i

)
=⇒ N

(
µ⃗i|ΣΣΣµ,θ,i =

[
AAAT

µ,i · VVV −1
θ,i ·AAAµ,i

]−1
, µ⃗µ,θ,i = AAA−1

µ,i ·
[
∆⃗θi

′
+ B⃗µ,i

])

Similarly, we can define:

CCCµ,ij =∆tj∆tj∆tj −AAAµ,i

⃗Dµ,ij = JJJ−1
ij · ∆⃗dij − B⃗µ,i − plxiplxiplxi · ⃗∆plxij

⃗∆mij − JJJ−1
ij · ∆⃗dij = CCCµ,ij · µ⃗i − D⃗µ,ij

so that we have:

N
(

⃗∆mij − JJJ−1
ij · ∆⃗dij ,

[
JJJT
ij · VVV −1

d,ij · JJJ ij

]−1
)

=⇒ N
(
µ⃗i|ΣΣΣµ,d,ij =

[
CCCT

µ,ij · JJJT
ij · VVV −1

d,ij · JJJ ij ·CCCµ,ij

]−1
, µ⃗µ,d,ij = CCC−1

µ,ij · D⃗µ,ij

)
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and we find that the posterior full conditional on µ⃗i is given by:

p(µ⃗i|plxi . . . ) ∝N
(
µ⃗′
i − µ⃗i,VVV µ,i

)
· N (µ⃗i − µ̂,Vµ̂Vµ̂Vµ̂) ·

N
(
µ⃗i|ΣΣΣµ,θ,i =

[
AAAT

µ,i · VVV −1
θ,i ·AAAµ,i

]−1
, µ⃗µ,θ,i = AAA−1

µ,i ·
[
∆⃗θi

′
+ B⃗µ,i

])
·

nim∏
j=1

N
(
µ⃗i|ΣΣΣµ,d,ij =

[
CCCT

µ,ij · JJJT
ij · VVV −1

d,ij · JJJ ij ·CCCµ,ij

]−1
, µ⃗µ,d,ij = CCC−1

µ,ij · D⃗µ,ij

)

=N

ΣΣΣµ,i =

VVV −1
µ,i + V̂µ̂Vµ̂Vµ

−1 +ΣΣΣ−1
µ,θ,i +

nim∑
j=1

ΣΣΣ−1
µ,d,ij

−1

,

µ⃗µ,i = ΣΣΣµ,i ·
[
VVV −1

µ,i · µ⃗
′
i + Vµ̂Vµ̂Vµ̂

−1 · µ̂+ΣΣΣ−1
µ,θ,i · µ⃗µ,θ,i

+

nim∑
j=1

ΣΣΣ−1
µ,d,ij ·CCC

−1
µ,ij · D⃗µ,ij


Using the same arguments as before, we can plug µ⃗i = µ⃗µ,i into p (µ⃗i,plxi| . . . )

to get p (plxi| . . . ):

p(plxi| . . . ) ∝ exp

(
− 1

2σ2
plx,i

(
plxi − plx′i

)2 − 1

2σ2
p̂lx

(
plxi − p̂lx

)2)
·

exp

(
−1

2

(
µ⃗µ,i − µ⃗′

i

)T · VVV −1
µ,i ·

(
µ⃗µ,i − µ⃗′

i

)
− 1

2
(µ⃗µ,i − µ̂)T · VVV −1

µ̂ · (µ⃗µ,i − µ̂)

)
·

exp

(
−1

2

(
µ⃗θ,i − ∆⃗θi

′)T
· VVV −1

θ,i ·
(
µ⃗θ,i − ∆⃗θi

′))
·

nim∏
j=1

exp

(
−1

2

(
plxiplxiplxi · ⃗∆plxij +∆tj∆tj∆tj · µµ,i − µ⃗θ,i − JJJ−1

ij · ∆⃗dij

)T
· JJJT

ij · VVV −1
d,ij · JJJ ij ·

(
plxiplxiplxi · ⃗∆plxij +∆tj∆tj∆tj · µµ,i − µ⃗θ,i − JJJ−1

ij · ∆⃗dij

))
.
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We can then rewrite the definition of µ⃗µ,i to be more helpful:

µ⃗µ,i = ΣΣΣµ,i·
[
VVV −1

µ,i · µ⃗
′
i +AAAT

µ,i · VVV −1
θ,i ·

[
∆⃗θ

′
i −ΣΣΣθ,i ·

{
VVV −1

θ,i · ∆⃗θ
′
i

+

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij ·
(
plxiplxiplxi · ⃗∆plxi − JJJ−1

ij · ∆⃗dij

)


+

nim∑
j=1

CCCT
µ,ij · JJJT

ij · VVV −1
d,ij · JJJ ij ·

[
JJJ−1
ij · ∆⃗dij +ΣΣΣθ,i · VVV −1

θ,i · ∆⃗θ
′
i − plxiplxiplxi · ⃗∆plxij

+ΣΣΣθ,i ·
nim∑
j=1

(
JJJT
ij · VVV −1

d,ij · JJJ ij ·
{
plxiplxiplxi · ⃗∆plxij − JJJ−1

ij ∆⃗dij

}) .

Next, we rewrite B⃗µ,i with plxi in mind to get:

B⃗µ,i = ΣΣΣθ,i ·

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij · JJJ−1
ij · ∆⃗dij − VVV −1

θ,i · ∆⃗θ′i

−plxi ·
nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij · ⃗∆plxij


= ΣΣΣθ,i ·

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij · JJJ−1
ij · ∆⃗dij − VVV −1

θ,i · ∆⃗θ′i


− plxi ·ΣΣΣθ,i ·

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij · ⃗∆plxij

= plxi · ⃗Aplx,µ,i − ⃗Bplx,µ,i

where

⃗Aplx,µ,i = −ΣΣΣθ,i ·
nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij · ⃗∆plxij

⃗Bplx,µ,i = ΣΣΣθ,i ·

VVV −1
θ,i · ∆⃗θ′i −

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij · JJJ−1
ij · ∆⃗dij

 ,
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which gets us to:

µ⃗µ,i = ΣΣΣµ,i ·
[
VVV −1

µ,i · µ⃗
′
i + Vµ̂Vµ̂Vµ̂

−1 · µ̂+ΣΣΣ−1
µ,θ,i ·AAA

−1
µ,i ·

(
∆⃗θi

′
+ plxi · ⃗Aplx,µ,i − ⃗Bplx,µ,i

)
−

nim∑
j=1

ΣΣΣ−1
µ,d,ij ·CCC

−1
µ,ij ·

(
plxi · ⃗Aplx,µ,i − ⃗Bplx,µ,i + plxi · ⃗∆plxij − JJJ−1

ij · ∆⃗dij

)
= plxi ·ΣΣΣµ,i ·

ΣΣΣ−1
µ,θ,i ·AAA

−1
µ,i · ⃗Aplx,µ,i −

nim∑
j=1

ΣΣΣ−1
µ,d,ij ·CCC

−1
µ,ij ·

(
⃗Aplx,µ,i + ⃗∆plxij

)
+ΣΣΣµ,i ·

[
VVV −1

µ,i · µ⃗
′
i + Vµ̂Vµ̂Vµ̂

−1 · µ̂+ΣΣΣ−1
µ,θ,i ·AAA

−1
µ,i ·

(
∆⃗θi

′
− ⃗Bplx,µ,i

)
+

nim∑
j=1

ΣΣΣ−1
µ,d,ij ·CCC

−1
µ,ij ·

(
⃗Bplx,µ,i + JJJ−1

ij · ∆⃗dij

)
= plxi · C⃗plx,µ,i − D⃗plx,µ,i

where

C⃗plx,µ,i = ΣΣΣµ,i ·

ΣΣΣ−1
µ,θ,i ·AAA

−1
µ,i · ⃗Aplx,µ,i −

nim∑
j=1

ΣΣΣ−1
µ,d,ij ·CCC

−1
µ,ij ·

(
⃗Aplx,µ,i + ⃗∆plxij

)

D⃗plx,µ,i =−ΣΣΣµ,i ·
[
VVV −1

µ,i · µ⃗
′
i + Vµ̂Vµ̂Vµ̂

−1 · µ̂+ΣΣΣ−1
µ,θ,i ·AAA

−1
µ,i ·

(
∆⃗θi

′
− ⃗Bplx,µ,i

)
+

nim∑
j=1

ΣΣΣ−1
µ,d,ij ·CCC

−1
µ,ij ·

(
⃗Bplx,µ,i + JJJ−1

ij · ∆⃗dij

) .
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Similarly, we can rewrite µ⃗θ,i as:

µ⃗θ,i = ΣΣΣθ,i ·
[
VVV −1

θ,i · ∆⃗θ
′
i

+

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij ·
(
plxi · ⃗∆plxij − JJJ−1

ij · ∆⃗dij

+∆tj∆tj∆tj ·
(
plxi · ⃗Cplx,µ,i − ⃗Dplx,µ,i

))]
= plxi ·ΣΣΣθ,i ·

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij ·
(

⃗∆plxij +∆tj · ⃗Cplx,µ,i

)
−ΣΣΣθ,i ·

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij ·
(
∆tj · ⃗Dplx,µ,i + JJJ−1

ij · ∆⃗dij

)
− VVV −1

θ,i · ∆⃗θ
′
i


= plxi · ⃗Eplx,θ,i − ⃗Fplx,θ,i

where

⃗Eplx,θ,i = ΣΣΣθ,i ·

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij ·
(

⃗∆plxij +∆tj · ⃗Cplx,µ,i

)

⃗Fplx,θ,i = ΣΣΣθ,i ·

nim∑
j=1

JJJT
ij · VVV −1

d,ij · JJJ ij ·
(
∆tj · ⃗Dplx,µ,i + JJJ−1

ij · ∆⃗dij

)
− VVV −1

θ,i · ∆⃗θ
′
i

 .

We also rewrite ⃗∆mij − JJJ−1
ij · ∆⃗dij as:

⃗∆mij − JJJ−1
ij · ∆⃗dij = plxi · ⃗∆plxij +∆tj · µ⃗i − µ⃗θ,i − JJJ−1

ij · ∆⃗dij

= plxi · ⃗∆plxij +∆tj ·
(
plxi · ⃗Cplx,µ,i − ⃗Dplx,µ,i

)
−
(
plxi · ⃗Eplx,θ,i − ⃗Fplx,θ,i

)
− JJJ−1

ij · ∆⃗dij

= plxi ·
[

⃗∆plxij +∆tj · ⃗Cplx,µ,i − ⃗Eplx,θ,i

]
−
[
∆tj · ⃗Dplx,µ,i − ⃗Fplx,θ,i + JJJ−1

ij · ∆⃗dij

]
= plxi ·Gplx,d,ij − H⃗plx,d,ij
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where:

G⃗plx,d,ij =
[

⃗∆plxij +∆tj · ⃗Cplx,µ,i − ⃗Eplx,θ,i

]

H⃗plx,d,ij =
[
∆tj · ⃗Dplx,µ,i − ⃗Fplx,θ,i + JJJ−1

ij · ∆⃗dij

]
.

Finally, we can make use of the following relationship to deal with the multi-

variate Gaussians that contain the plxi factors:

N
(
a · X⃗ − Y⃗ ,VVV

)
=⇒ N

(
a|σ2 =

[
X⃗T · VVV −1 · X⃗

]
, µ = σ2 ·

[
X⃗T · VVV −1 · Y⃗

])
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to arrive at:

p(plxi| . . . ) ∝N
(
plxi|σ̂2

plx, p̂lx
)
· N

(
plxi|σ2

plx,i,plx
′
i

)
·

N
(
plxi|σ2

plx,µ,i =
[
C⃗T
plx,µ,i · VVV −1

µ,i · C⃗plx,µ,i

]−1
,

µplx,µ,i = σ2
plx,µ,i ·

[
C⃗T
plx,µ,i · VVV −1

µ,i ·
(
D⃗plx,µ,i + µ⃗′

i

)])
·

N
(
plxi|σ2

plx,µ̂,i =
[
C⃗T
plx,µ,i · Vµ̂Vµ̂Vµ̂

−1 · C⃗plx,µ,i

]−1
,

µplx,µ̂,i = σ2
plx,µ̂,i ·

[
C⃗T
plx,µ,i · Vµ̂Vµ̂Vµ̂

−1 ·
(
D⃗plx,µ,i + µ̂

)])
·

N
(
plxi|σ2

plx,θ,i =
[
E⃗T

plx,θ,i · VVV −1
θ,i · E⃗plx,θ,i

]−1
,

µplx,θ,i = σ2
plx,θ,i ·

[
E⃗T

plx,θ,i · VVV −1
θ,i ·

(
F⃗plx,θ,i + ∆⃗θi

′)])
·

nim∏
j=1

N
(
plxi|σ2

plx,d,ij =
[
G⃗T

plx,d,ij · JJJT
ij · VVV −1

d,ij · JJJ ij · G⃗plx,d,ij

]−1
,

µplx,d,ij = σ2
plx,d,ij ·

[
G⃗T

plx,d,ij · JJJT
ij · VVV −1

d,ij · JJJ ij · H⃗plx,d,ij

])
= N

plxi| ˆσplx,i
2 =

σ̂−2
plx + σ−2

plx,i + σ−2
plx,θ,i + σ−2

plx,µ,i + σ−2
plx,µ̂,i +

nim∑
j=1

σ−2
plx,d,ij

−1

,

ˆµplx,i = ˆσplx,i
2 ·
[
σ̂−2
plx · p̂lx + σ−2

plx,i · plx
′
i + σ−2

plx,θ,i · µplx,θ,i

+σ−2
plx,µ,i · µplx,µ,i + σ−2

plx,µ̂,i · µplx,µ̂,i

+

nim∑
j=1

σ−2
plx,d,ij · µplx,d,ij


thereby completing the set of posterior full conditionals, all of which are Gaussians, that

we need to quickly sample PMs, parallaxes, and position offsets for source i given a set

of transformation parameters.
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3.9.2 Generating Synthetic, COSMOS-like Data

Figure 3.26: Distributions on age (left panel) and [Fe/H] (right panel) for the MW halo
(blue) and thick disk (orange) populations used to create synthetic stars. The halo
population makes up 28% of the total population (green), while the disk is the other
72%.

Following a similar approach to McKinnon et al. (2023), we define mass, age,

[Fe/H], and distance distributions for both a MW thick disk and a MW halo population.

We also define distributions for the Galactocentric 3D velocities for the halo and thick

disk. The distributions for each parameter that go into generating a synthetic star are

summarized in Table 3.7. The particular choices for the velocity distributions come

from the MW halo velocity ellipsoid measurements of Cunningham et al. (2019b), as

do the distance modulus distributions. For the age distributions, we use an analytical

approximation of the age distributions presented in Bonaca et al. (2020). The [Fe/H]

distributions are again analytical approximations of the results presented in Conroy

et al. (2019a) and Naidu et al. (2020). The age and [Fe/H] distributions are displayed

in Figure 3.26, where the distributions have been scaled by their contribution to the

total halo population. After consulting a Besançon model (Robin et al. 2003) along a

COSMOS-like LOS in the 16 < G < 21.5 mag range, we choose to set the fraction of
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Figure 3.27: Color-magnitude diagram of synthetic COSMOS-like stars, colored by
whether the stars belong to the MW halo (blue) or thick disk (orange). The histograms
along the right and top edges include the total population (green). The halo population
makes up 28% of the total population, while the disk is the other 72%.

the number of observed stars that belong to the halo (i.e. “halo fraction”) to 28%.

Using these distributions and the halo fraction, we draw stellar parameters

(i.e. mass, age, and [Fe/H]) for each synthetic star, and then interpolate to that point

using the MIST isochrones12 (Dotter 2016; Choi et al. 2016; Paxton et al. 2011, 2013,

2015). This interpolated point yields the color and absolute magnitude of each syn-

thetic star. After we draw distances, we can measure the apparent magnitudes for each

star, and then perform rejection sampling to get a sample of stars that fall within a

particular range in magnitude and/or color. A color-magnitude diagram is shown in

Figure 3.27 for the COSMOS-like stars we generate, with histograms along the top and

12https://waps.cfa.harvard.edu/MIST/index.html
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Figure 3.28: Distance distributions of synthetic COSMOS-like stars, colored by whether
the stars belong to the MW halo (blue) or thick disk (orange).

right edges showing the distribution of the halo (blue), thick disk (orange), and total

(green) populations. A histogram of the LOS distance to each synthetic star is given in

Figure 3.28.

Next, for each synthetic star, we draw the 3D velocity components based on

whether that star belongs to the halo or the thick disk. Using the stellar position on the

sky and distance allow us to transform those Galactocentric velocities into observable

velocities13. This yields the proper motions shown in Figure 3.29.

To create outputs that the BP3M pipeline expects, the next step is to create

synthetic HST images and corresponding Gaia measurements. For synthetic Gaia un-

certainties on position, parallax, and proper motion, we look at real Gaia-measured

stars within 1 degree of the COSMOS field center; the resulting uncertainties in each

dimension are shown in Figure 3.30 as a function of magnitude (blue points) with a

13To transform between the observer frame and a Galactocentric one, we use r⊙ = 8.1 kpc, assume a
circular speed of 235 km s−1, and solar peculiar motion (U, V,W ) = (11.1, 12.24, 7.25) km s−1 (Schönrich
et al. 2011).
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Figure 3.29: Proper motions of synthetic COSMOS-like stars, colored by whether the
stars belong to the MW halo (blue) or thick disk (orange).

median-binned line overlaid (orange). In cases where the data do not extend as faint as

needed, we linearly extrapolate from the median binning.

We use a similar approach when it comes to modeling the uncertainties in

the HST image positions. Specifically, we use the ∼ 2000 real COSMOS stars from

Section 3.5 to look at the GaiaHub-measured HST position uncertainties as a function

of magnitude, and this is shown in Figure 3.31. When we go to assign HST position

uncertainties to the synthetic stars, we identify the 10 nearest real COSMOS stars in G

magnitude and randomly select one of those stars to bequeath its position uncertainty

to the synthetic one.
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Figure 3.30: Gaia Position, parallax, and proper motion uncertainties as a function of
magnitude from all Gaia sources within 1 degree of the COSMOS field center. The blue
points are the Gaia-measured values and the orange lines are a median-binning of those
data, with a linear extrapolation where no Gaia measurements exist.

Figure 3.31: Centroid position uncertainty in HST pixels as a function of magnitude
as measured by GaiaHub for the ∼ 2000 real COSMOS stars in Figure 3.17, where
the y-axis is in log scale. In general, the brighter magnitude sources have larger HST
position uncertainties because they are more likely to be saturated in the COSMOS
exposures. At the faintest magnitudes, there are some sources with large HST position
uncertainties because their PSF-fitting was not as well-constrained as some other faint
sources.
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With all of the true properties of the synthetic star defined, we can create Gaia-

like measurements of the position, parallax, and uncertainty by applying some noise

corresponding to the uncertainties we’ve defined. Those true positions and motions

can then be played forward or backward in time until reaching the correct epoch of

the synthetic HST image. After choosing the transformation parameters that map the

synthetic HST image onto the synthetic Gaia data, we can apply the correct HST

position noise, and then save the outputs in the same .csv files that BP3M expects as

inputs. The final step of the process is to run BP3M on the newly-generated synthetic

HST images.
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Chapter 4

Data-driven Discovery of Diffuse

Interstellar Bands with APOGEE

Spectra

4.1 Introduction

Stellar spectra capture the parameters of a star’s evolutionary state and record

the chemical composition of the material in which it formed. Small samples of high

resolution stellar spectra have been used to describe the individual element abundance

distributions of the Milky Way (MW) in the local neighbourhood (e.g. Edvardsson et al.

1993; Feltzing & Gustafsson 1998; Prochaska et al. 2000; Bensby et al. 2003). With the

advent of large surveys – such as RAVE (Steinmetz et al. 2006), SEGUE (Yanny et al.

2009; Rockosi et al. 2022), APOGEE (Wilson et al. 2012; Majewski et al. 2016, 2017),
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Gaia-ESO (Gilmore et al. 2012), GALAH (De Silva et al. 2015; Martell et al. 2017),

LAMOST (Zhao et al. 2012), and H3 (Conroy et al. 2019b) – has come the ability to

map abundances across the disk, bulge, and halo of our Galaxy (e.g. Bergemann et al.

2014; Rojas-Arriagada et al. 2014; Nidever et al. 2014; Hayden et al. 2015; Buder et al.

2019, 2022; Wylie et al. 2021; Eilers et al. 2022). These large data ensembles have also

enabled new, statistically-motivated questions to be tackled about topics such as the

underlying dimensionality of individual abundance distributions and the information

content of stellar spectra (e.g. Mitschang et al. 2014; Ting et al. 2015; Price-Jones &

Bovy 2018; Ness et al. 2019, 2022; Ting et al. 2019; Feeney et al. 2021; Weinberg et al.

2022; Griffith et al. 2022). The answers to these questions are key to understanding

the origin of individual elements and the utility of those elements to reconstruct the

assembly history of the MW.

Chemical tagging – the ability to distinguish co-natal stars based on chemical

abundances derived from spectra – is one of the foundational ideas of stellar surveys.

Understanding the conditions that create particular populations of stars informs our

stellar physics models and puts constraints on models of galaxy formation and evolution.

In theory, stars that are born together were formed from the same gas cloud and thus

share a chemical signature in their atmospheres. In practice, the level of precision

required for chemical tagging is not currently feasible (< 0.02 dex; Ness et al. 2019).

The difficulties around chemical tagging become even more severe if there

are unknown or unmodeled features in a spectrum, especially if those features impact

wavelength regions used for measuring chemical abundances. In the visible and infrared
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(IR) regimes, the largest and most obvious source of non-stellar signal comes from the

Earth’s atmosphere. Because of detailed measurements of the night sky’s effects as well

as knowing the rest-frame that spectral features are produced in, astronomers are able

to account for and remove the bulk of Earth’s atmosphere’s signature. However, many

spectra suffer from imperfect skyline and telluric removal, which leaves residual features

capable of confusing spectral analysis pipelines.

Another (often ignored) source of contamination comes from intervening dust

and gas along the line-of-sight (LOS) to a star. Due to the velocity offset between

gas/dust clouds and stars, spectral features from the Interstellar Medium (ISM) can

appear at different wavelength locations in a set of observations at different LOS in the

Galaxy. This issue is complicated further when the identification or central wavelength

of an ISM-based feature is unknown or poorly constrained. Without a complete and

accurate model of a star’s light, it is often difficult to know a priori whether a particular

residual feature is caused by non-stellar sources or is simply unknown physics/missing

chemical species in the model.

One common detection and characterization method for diffuse interstellar

bands (DIBs) is to measure a feature’s presence in multiple spectra of different stars

and then to show correlations between ISM properties (e.g. extinction from dust) and

that feature’s strength. Efforts to detect, characterize, and map these DIBs have histor-

ically been focused on the optical regime, though a growing number of studies have been

exploring the near-IR (e.g. Joblin et al. 1990; Geballe et al. 2011; Cox et al. 2014; Za-

sowski et al. 2015; Elyajouri et al. 2016, 2017; Tchernyshyov & Peek 2017; Tchernyshyov
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Table 4.1: Most precise measurements of rest-frame wavelengths for currently-known
DIBs that fall inside of the wavelength regions covered by the APOGEE spectrographa.
DIBs that fall between the wavelength coverage of the three APOGEE detectors have
been omitted.

λ0 (Å) Reference

15225± 10 Geballe et al. (2011)
15272.42± 0.04 Zasowski et al. (2015)
15616.13± 0.07 Elyajouri et al. (2017)
15651.38± 0.07 Elyajouri et al. (2017)
15671.82± 0.03 Elyajouri et al. (2017)

15990± 10 Geballe et al. (2011)
16231.1± 0.5 Cox et al. (2014)
16571.5± 0.5 Cox et al. (2014)
16582.5± 0.5 Cox et al. (2014)
16592.5± 0.5 Cox et al. (2014)

aThe Cox et al. (2014) values have been converted from their reported Air wavelengths to Vacuum.

et al. 2018; Smoker et al. 2023). For instance, the ten currently-known DIBs that fall in

the near-IR H-band (1.51−1.7 µm) wavelengths seen by the APOGEE spectrograph are

summarized in Table 4.1, which is in stark contrast to the thousands of known optical

DIBs. It is particularly important to understand sources of IR features as this regime

is able to peer through the dusty regions of our Galaxy’s disk.

Astronomy’s burgeoning “Big Data Era” has facilitated the development of

novel data-driven approaches to understanding stellar spectra that are less reliant on

underlying physical models. A few successful techniques to characterize stellar light

include using deep learning (Leung & Bovy 2019), polynomial models of stellar labels

(e.g. The Cannon; Ness et al. 2015), and non-Gaussian Processes (e.g. Feeney et al.

2021). One significant benefit of data-motivated models is that they can describe stellar

features – and correlations between features – in spectra that are currently unknown to
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physics-based models. Additionally, the data models do not rely on many of the simpli-

fying assumptions that are common in synthetic models (e.g. local thermal equilibrium,

1D radial stellar models and atmospheres). Finally, data-driven models are especially

useful when the physics is not well constrained, such as in the low-density environments

of the ISM that are currently impossible to recreate on Earth. As a star’s light passes

through intervening gas and dust on its way to our telescopes, it is imprinted with ISM

signatures from many chemical species whose identities and properties are generally

unknown. Detailed characterization of all the signatures in a spectrum are therefore

important in disentangling the origin of various spectral features – which furthers the

science goals of both abundance measurements and ISM studies.

Currently, the Milky Way Mapper (MWM) program of SDSS-V is using the

APOGEE spectrograph to collect millions of stellar across all regions of the MW to

understand its formation history and the physics of it stars (Kollmeier et al. 2017);

any improvements in the APOGEE reduction pipeline will therefore have compounding

effects on the MWM science goals. Finally, better constraints on near-IR DIBs can be

studied with tomography techniques (e.g. Tchernyshyov & Peek 2017; Tchernyshyov

et al. 2018) to develop a more complete picture of our Galaxy’s ISM.

In this chapter, we describe the APOGEE spectra and stellar parameters used

in our analysis in Section 4.2 and then present a data-driven model of those spectra in

Section 4.3. In Section 4.4, we study the spectral residuals to show that DIBs, tellurics,

and skylines are responsible for many of the relatively-large remaining features. We

remove the Earth-based residuals to detect and characterize the remaining DIB features

170



Figure 4.1: Left: Histograms of the number of spectroscopic visits per star. The bin
width has been set to 1. The median and mean number of visits per star are shown
with vertical red lines. There is a total of 55028 individual visit spectra for the 17104
RC stars in our sample. Right: Histogram of the median spectral SNR for each visit
used in our analysis, with mean and median shown with vertical red lines.

in Section 4.5. Finally, we summarize our results in Section 4.6.

4.2 Data

This work makes extensive use of stellar spectra, abundances, and parameters

of Red Clump (RC) stars in the MW as measured by the APOGEE spectrograph (Wilson

et al. 2012; Majewski et al. 2016, 2017) on the Sloan Telescope at the Apache Point

Observatory as a component of the Sloan Digital Sky Survey (SDSS; York et al. 2000;

Eisenstein et al. 2011; Blanton et al. 2017). The RC sample – defined by Bovy et al.

(2014) using stellar parameters and simulated stellar evolution – boasts high spectral

signal-to-noise ratios (SNR) as well as precise stellar parameters and abundances. These

properties make the RC sample an ideal population for data-driven modelling and for

studying non-stellar residuals.

The APOGEE spectra cover the H-band (∼ 15000− 17000 Å) with high reso-
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lution (R ∼ 22500) and fine pixel spacing (∆λ ∼ 0.2 Å ·pixel−1). The publicly-available

spectral data are given in the rest-frame of each star. Our analysis uses the individual

visit spectra instead of the combined visit spectra to account for changes in the LOS

velocity – and, therefore, the location of non-stellar features – of each observation. Dis-

tributions of the number of visits per star and the median spectral SNR of the individual

visit spectra are given in Figure 4.1.

The spectra were analysed by the APOGEE Stellar Parameter and Chemical

Abundances (ASPCAP Garćıa Pérez et al. 2016) pipeline. We use the ASPCAP Teff ,

log g, [Fe/H], and [α/Fe] measurements and uncertainties from Data Release 16 (DR16;

Jönsson et al. 2020), while stellar ages come from the catalogue of Sit & Ness (2020).

As exemplified in Figure 4.2, the stars in our sample occupy a relatively narrow range

in stellar parameters and abundances. After noticing a minor secondary peak near

([Fe/H], [α/Fe]) = (−0.6,+0.2) dex in the [α/Fe] versus [Fe/H] panel, we removed stars

with abundances above the red line to ensure that our modelling only focuses on a single

chemical population.

For the individual visit spectra in our sample, we remove pixels that have

SNR < 50 pixel−1. We also set the maximum pixel SNR to 200 pixel−1 as recommended

by ASPCAP, which suggests that the “uncertainty floor floor is at the level of 0.5%”14.

Because of known superpersistence issues in the blue detector, we mask out spectral

observations where the fiber number is ≤ 100; this selection removes approximately

6500 RC stars that do not have a single observation with a fiber number greater than

100. Finally, following the approach of Price-Jones & Bovy (2018), we remove data

14see https://www.sdss4.org/dr16/irspec/spectra/
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Figure 4.2: Distribution of the stellar parameters for the 17104 RC stars in our sample.
The red line in the [Fe/H] versus [α/Fe] plot near the center of the figure shows where
we mask out approximately 2600 stars that lie above this relationship; we do this to
keep the 2D abundance distribution singly-peaked.
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Table 4.2: Pixel bitmasking of spectraa.

Bitmask Name

0 Pixel marked as BAD in bad pixel mask
1 Pixel marked as cosmic ray in ap3d
2 Pixel marked as saturated in ap3d
3 Pixel marked as unfixable in ap3d
4 Pixel marked as bad as determined from dark frame
5 Pixel marked as bad as determined from flat frame
6 Pixel set to have very high error (not used)
7 No sky available for this pixel from sky fibers
12 Pixel falls near skyline

aThis is a subset of Table 1 in Price-Jones & Bovy (2018), which masks use of the bitmask definitions
of Holtzman et al. (2015)

from pixels that have any of the bitmask flags listed in Table 4.2.

These APOGEE individual visit spectra in the stellar rest-frame, along with

the Sit & Ness (2020) ages and ASPCAP parameters and abundances, are used in

combination to build data-driven models in Section 4.3, which are the basis of our

analysis.

4.3 Modelling RC Spectra

4.3.1 Preprocessing Spectra

First, we continuum normalize the individual visit spectra using iterative B-

spline fitting. At each iteration, the B-spline is defined by 50 Å-spaced knots. For the

first iteration, all flux measurements in a spectrum are used to define the initial spline.

For subsequent iterations, the new spline is measured using only flux values that are

within 3σ (in flux uncertainty) for fluxes below the spline or 5σ for fluxes above the
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spline. This masking of fluxes is done to ensure that strong absorption features do not

overly impact the continuum measurement.

We iterate the spline fitting up to 100 times per spectrum, but stop iterating

if the current iteration’s spline is very similar to the previous one:

∑
i

|c′i,j,k − ci,j,k|
ci,j,k

< 1× 10−5

where ci,j,k is the continuum spline value at pixel i from the previous iteration and

c′i,j,k is the current iteration’s continuum spline value at pixel i for observation/visit

number k of star j. This condition is such that the summed absolute fractional change

is smaller than 0.001%, which tends to occur when the subset of fluxes being masked

hasn’t changed from one iteration to another. This process usually only takes a handful

of iterations (i.e. ≤ 5), and virtually all of the spectra converge on a spline well before

the 100 maximum iterations.

To capture any remaining continuum, we repeat this continuum-fitting process

after the first model fit to define a continuum-adjustment B-spline. We divide each

individual visit spectrum by the previously-defined continuum spline and the best-fit

model to get an approximate noise spectrum that may still have some continuum trends

in it. We then use the same iterative B-spline fitting process as above, but using 25 Å-

spaced knots and a 3σ threshold above and below for masking. The finer-spaced knots

and the narrower threshold are because the residual spectrum ideally only consists of

noise and any trends larger than ∼ 20 Å likely arise from an incomplete initial continuum

removal.
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The continuum-normalized flux in pixel i for spectral observation k of star j

is then yi,j,k = fi,j,k/ci,j,k with corresponding uncertainty of σi,j,k = σf,i,j,k/ci,j,k, where

fi,j,k and σf,i,j,k are the raw flux and uncertainty values. The continuum-normalized

fluxes are then used as the inputs for the data-driven modelling.

4.3.2 Modelling Flux using Stellar Labels

Following the approach of Ness et al. (2016), we define the continuum-normalized

flux in each pixel to be a 2nd-order polynomial of stellar labels (see also Price-Jones &

Bovy 2018). We note that a key difference between these bodies of work is the stellar

labels used in the fitting: Price-Jones & Bovy (2018) uses Teff , log g, and [Fe/H], Ness

et al. (2016) uses the same, but also includes [α/Fe] and mass, while our model uses

Teff , log g, [Fe/H], [α/Fe], and age. The vector of stellar labels in our analysis for star
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j is therefore given as

x⃗j =



T 2
eff,j

Teff,j × log gj

Teff,j × [Fe/H]j

Teff,j × [α/Fe]j

Teff,j ×Agej

Teff,j

log g2j

...

[Fe/H]2j

...

[α/Fe]2j

...

Age2j

...

1



(4.1)

such that the vector contains all the parameters to the first and second powers, cross

terms, and a constant. Our model of the continuum-normalized fluxes is defined as

yi,j,k = x⃗Tj · θ⃗i + εi,j,k (4.2)
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where θ⃗i are the coefficients for the stellar label terms in Equation 4.1 for pixel i and

εi,j,k ∼ N (0, σi,j,k) (4.3)

describes the noise as a result of the uncertainty in a pixel’s flux. This functional form

implies that the data likelihood at pixel i is

likelihoodi =

n∗∏
j

nobs,j∏
k

N
(
yi,j,k|x⃗Tj · θ⃗i, σi,j,k

)
. (4.4)

We then see that the likelihood at a given pixel is maximized when

n∗∑
j

nobs,j∑
k

(
yi,j,k − x⃗Tj · θ⃗i

σi,j,k

)2

(4.5)

is minimized, which occurs when

θ̂i =

 n∗∑
j

nobs,j∑
k

1

σ2
i,j,k

x⃗j · x⃗Tj

−1

·

 n∗∑
j

nobs,j∑
k

yi,j,k
σ2
i,j,k

x⃗j

 , (4.6)

which defines the best-fit coefficient vector at pixel i for a set of normalized fluxes,

uncertainties, and stellar labels.

To propagate the uncertainties on the stellar parameters to the model coef-

ficients, we repeatedly draw realizations of the stellar parameters for each star and

remeasure the best-fit coefficients at each pixel. After 500 iterations, we take the me-

dian of the best-fit coefficients to be the coefficients of final model. The residual flux
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Figure 4.3: Comparison of best fit model (red line) and normalized flux (blue line) for
one RC star with median SNR of 105 pixel−1. The residuals in the lower left panel
and the right panel have been scaled by their corresponding uncertainties. The orange
histogram in the right panel is the best fit normal distribution, which shows that this
star has good agreement with the data (mean near 0, standard deviation near 1) and
that the difference between the data and model are larger than expected by the flux
uncertainties at the level of ∼ 15%. The gaps in the data around 15850 Å and 16450 Å
correspond to the wavelength gaps between the three APOGEE CCDs.

for pixel i of observation k of star j is defined to be

ri,j,k,l = yi,j,k − x⃗Tj,l · θ̂i,l, (4.7)

for realization l of the stellar parameters draws, x⃗j,l, which yields a best-fit coefficient

measurement of θ̂i,l. To propagate the uncertainty on the stellar labels – and therefore

the uncertainty on the best-fit coefficients – to the residuals, we also repeatedly measure

the residual flux values for the 500 realizations, giving samples of ri,j,k,l. The final

residual flux, r̂i,j,k, is taken to be the median of these realizations, with an uncertainty
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that is given by

σ2
r,i,j,k = σ2

i,j,k + var (ri,j,k,1, . . . , ri,j,k,500) , (4.8)

where var (ri,j,k,1, . . . , ri,j,k,500) is the variance of the 500 residual measurements at a

given pixel for a given spectrum. In words, the residual uncertainty is a quadrature

sum of the normalized flux uncertainty and the propagation of the best-fit coefficient

uncertainty.

A comparison of the best fit model and data for a single observation of one

star in our sample is shown in Figure 4.3. The uncertainty-scaled residual distribution

for this star is close to the expected unit Gaussian distribution (mean of 0, standard

deviation of 1), which shows that the model does a good job of capturing the information

in the spectrum. If we assume that the fluxes and uncertainties reported by APOGEE

accurately describe the data, then the best-fit Gaussian to the residual distribution

(orange histogram) having a width of ∼ 1.15σ implies that there is information in this

star’s spectrum that the model does not capture at the level of ∼ 15% of the flux

uncertainties.

If we instead look at the uncertainty-scaled residual distribution across all

observations and all pixels, we get the distribution shown in Figure 4.4. As before,

the distribution is quite similar to the unit Gaussian, which suggests that the model

performs well across all the spectral observations in our sample. Again, that the width

is greater than 1σ reveals that there may be more information in the spectra than the

model is able to describe.

Using the residual histogram and best-fit Gaussian distribution in Figure 4.4,
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Figure 4.4: Distribution of uncertainty-scaled residuals for ∼ 3 × 108 pixels from all
∼ 5 × 105 spectral observations of ∼ 17000 stars in our sample (blue histogram). The
orange histogram is the best fit Gaussian, which shows that the residuals are centered
near zero and have a standard deviation near 1, as would be expected if the model and
flux uncertainties perfectly describe the observed fluxes. Because the best fit Gaussian
width is ∼ 1.16, the model doesn’t perfectly describe the data within their uncertainties,
as is expected if there is non-modelled information remaining.

we vertically align the distributions so that they have the same height at their peaks so

that we can quantify their difference in the wings (i.e. excess in the data over the expec-

tation). First, we find that the data excess in the wings corresponds to ∼ 3.3% of the

total pixels. Next, we draw many realizations of residual flux measurements from each

bin in the blue data histogram where the data counts exceed the expected distribution.

The results of this process are summarized in Figure 4.5, where the blue curve shows the

median distribution of the size of flux residual in excess of the expectation. The blue

point above the histogram shows the median and 68% region of the distribution, and

the grey histograms show individual realizations of residual flux draws. In summary,

the residuals that are not explained by the model have a median size of ∼ 2.9% of the

stellar flux, with a 68% region covering 2% to 5% of the stellar flux.
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Figure 4.5: Distribution on the size of residual fluxes that are in excess of the best-fit
Gaussian in Figure 4.4. The grey histograms show different realizations of measuring
the excess, while the blue histogram shows the median of these realizations. The blue
point at the top of the figure summarizes the median and 68% region of the distributions,
revealing that the non-Gaussian excess of residuals is ∼ 3% of the stellar flux on average.

4.4 Structure in Residuals

To further explore the residuals, we begin by looking for trends in the flux

residuals as a function of wavelength (in stellar rest-frame) and other explanatory vari-

ables. In many APOGEE pixels, we find that the model almost perfectly describes the

data; for instance, the pixel summarized in the left panels of Figure 4.6 shows a residual

distribution (scaled by the residual uncertainties) that agrees very well with the unit

Gaussian. When the stars are split up into different heliocentric velocity (VHELIO) bins

– as is shown in the left middle panel – we see little difference between the residual dis-

tributions, and no obvious trend in those distributions’ medians or standard deviations

(left bottom panels).

On the other hand, there are some pixels where the residual distributions are
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Figure 4.6: Residual fluxes scaled by their uncertainty (i.e. [normalized
flux−model]/uncertainty) for all the stars in two different APOGEE pixels. The wave-
length of each pixel, in stellar rest-frame, is listed above the top panel in columns of
figures. By highlighting a single pixel, we focus on the residual information from all of
the spectra at a particular stellar rest-frame wavelength. Left: A well-modelled pixel,
where the uncertainty-scaled flux residuals (blue in top panel) follow the expected unit
normal (orange in top panel). In the middle panel, the residuals are binned by he-
liocentric velocity (number of spectra in each bin given by N∗ in the legend), and we
see no differences between the velocity bins. The bottom two panels show the median
and standard deviations of the velocity-binned histograms, again showing no noticeable
trend in the residuals with velocity. Right: A pixel where the residuals do not follow a
unit Gaussian, or any Gaussian for that matter. After binning by heliocentric velocity
in the middle panel, and plotting the binned medians and standard deviations in the
bottom two panels, we see a noticeable trend in the median and width of the residual
distribution with velocity.
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distinctly non-Gaussian and have widths that are much larger than 1σ. An example of

this is shown in the right panels of Figure 4.6 for a pixel near the central wavelength

of the strongest known DIB in the APOGEE wavelength range (e.g. λ0 = 15272.42 Å,

from Zasowski et al. 2015). Breaking the stars up into VHELIO bins in the middle right

panel, we now see significant differences between the residual distributions’ shapes as

well as their medians and widths (right bottom panels. In general, the extreme velocity

bins have more positive residual medians and smaller standard deviations while the

moderate velocity bins have negative residual medians and larger widths.

We next look at the trends in the residuals with heliocentric velocity across

neighbouring pixels at different wavelength cutouts. First, we sort the stars by their

heliocentric velocity and then smooth the residuals (using a combination of inverse

variance weighting and Gaussian smoothing based on VHELIO at each pixel for each

residual spectrum) to produce Figure 4.7. Each of the 18 panels show the smoothed

residuals using 21 APOGEE pixels (i.e. width of ∼ 4 Å) centered on a particular feature,

with the central wavelength of that feature listed on the right edge of the cutout. These

regions correspond to 15 elemental features used by ASPCAP to measure abundances

(these are the same central wavelengths as used by Feeney et al. 2021), 1 region we

identify as having minimal visible features (i.e. continuum), 1 region where we notice a

large amount of residual Earth-based contamination, and 1 region around the strongest

DIB in the APOGEE wavelength range.

The y-axis of each panel in Figure 4.7 corresponds to wavelength relative to

the central wavelength label on the right of each plot, with blue wavelengths at the top
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Figure 4.7: Smoothed residual spectra of all RC stars with |VHELIO| < 100 km/s, sorted
by the star’s VHELIO. Each column corresponds to a residual spectrum and each row
corresponds to a pixel/wavelength, with bluest wavelengths at the top and reddest
wavelengths at the bottom. This image focuses on 18 different features (wavelengths
listed on the right edge of the figure) with each panel consisting of 21 pixels; these cutouts
include 15 elemental features, 1 region we’ve identified as being mostly continuum, 1
region of high telluric contamination, and 1 region near the strongest known DIB in
APOGEE (15272 Å feature). The residual spectra have been Gaussian-smoothed in the
horizontal direction with a kernel width of 5 km/s. Some elemental regions (e.g. the
DIB region, 3rd from the top) show a residual minimum that moves through the element
window as a function of heliocentric velocity; this can be explained as an unmodelled
residual feature that is not in the same reference frame as the star.
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and red wavelengths at the bottom. The x-axis is the sorted list of heliocentric velocities

of the stars such that a vertical column in this figure corresponds to a single residual

spectrum of a particular observation with that velocity.

By eye, some of the wavelength cutouts (e.g. Fe, Ni, C, Cr, continuum) show

small amplitude in smoothed residuals and not much correlation with heliocentric ve-

locity. Other cutouts (e.g. K, DIB, P, sky, Na, Yb) show relatively strong trends in

residuals with VHELIO.

Focusing on the DIB panel in particular, we see a residual minimum (i.e. an

absorption feature) move through the cutout as a function of heliocentric velocity. This

is because the strong DIB feature, while present in many of the APOGEE spectra,

appears at different wavelength locations in the stellar rest-frame spectrum as a result

of the offset between the velocity of the star and the velocity of the DIB-producing

source. The wavelength of a DIB feature in a star’s rest-frame spectrum is given by:

λrest,∗ = λrest,DIB ·
(
1 +

v∗ +∆v

c

)
·
(
1 +

v∗
c

)−1
(4.9)

where λrest,DIB is the wavelength of the DIB in its own rest-frame, v∗ is the star’s

heliocentric velocity, and ∆v is the LOS velocity offset between the DIB source and the

star. Because DIB features will show up at different wavelength locations in the stellar

rest-frame spectra, our model is not able to describe the feature and thus leaves DIB

residuals behind. Similarly, features from the Earth’s sky are also likely to show up

as residuals because they too appear at different wavelengths in the stellar rest-frame
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spectra:

λrest,∗ = λrest,Earth ·
(
1 +

v∗
c

)−1
. (4.10)

For the Earth-based features, sorting by heliocentric velocity means that the

features will occur at similar wavelength locations, which is why they appear strength-

ened in the velocity-sorted, smoothed residual panels. Comparing the features in the

sky and the DIB panels, we also notice a difference in the horizontal width of the fea-

tures; DIB features are known to be quite broad, so it agrees with expectations that the

DIB panel residual has a visually larger width than, for example, the width of the local

maximum diagonal stripe in the left half of the sky panel. Based on this difference, the

narrow width of features in the P and Ce panels suggest these residuals are likely caused

by the Earth instead of DIBs, while the large width of the residual minima stripes in

the K and Na panels may originate from DIBs.

The particular pattern seen in the DIB panel of Figure 4.7 is a result of the

average RC heliocentric velocity having a correlation with the average ISM heliocentric

velocity in the MW disk. Because the RC stars in our sample are generally quite old

(average of ∼ 2.8 Gyr, from Figure 4.2), they have had a longer time to kinematically

decouple from the gaseous disk they were likely born in. In the Galactocentric cylindrical

radius range of our stellar sample – 95% of the APOGEE RC sample is within 6.4 < R <

13.4 kpc with a median at 10.1 kpc – the gaseous disk has been seen to have relatively flat

rotation at ∼ 220 km/s (e.g., from the HII measurements of Brand & Blitz 1993). Using

RC stars from APOGEE and GALAH, Khanna et al. (2019) measure rotation velocities

that are also relatively constant (210 < Vϕ < 230 km/s) in the 6 < R < 11 kpc region
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Figure 4.8: Binned heliocentric velocity in the Galactic disk for the RC stars in the
APOGEE DR16 sample with |Z| < 0.75 kpc. The dashed circle of radius 8 kpc and the
horizontal dashed line intersect at the approximate location of the sun.

for |Z| < 0.75 kpc. In particular, their R > 9 kpc measurements – where approximately

75% of our APOGEE RC stars fall – shows remarkably stable Vϕ ∼ 215 km/s. This

suggests that RC stars can be thought of as belonging to a rigidly rotating disk that is

spinning ∼ 5 km/s slower than the gaseous disk.

When we sort the DIB-based features by heliocentric velocity, we are largely

sorting by azimuthal angle, as can be seen in Figure 4.8. If we assume both the RC

stars and the ISM are described by rigid-rotating disks, then there is an average stellar

VHELIO and an average DIB VHELIO for each bin in azimuthal angle; it is the relationship
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Figure 4.9: Tracing the 15272 Å DIB feature location to estimate the velocity offset
between DIB sources and RC stars. The smoothed residual data are the same as the
3rd-from-top panel of Figure 4.7. The white points showing the approximate location of
the residual minimum at each pixel in stellar rest-frame, and the orange line shows the
best fit line to these data. Using the known rest-frame wavelength of this DIB feature,
the orange line is used to infer the VHELIO of the DIB source as a function of stellar
VHELIO.

between the average stellar VHELIO and average DIB VHELIO that produces the pattern

in the DIB panel. We can explore this relationship explicitly by tracing the location

of the DIB minimum as a function of stellar rest-frame wavelength. This is done in

Figure 4.9, where the orange best fit line to the DIB minimum location and the known

rest wavelength of the DIB feature allow us to estimate the DIB source velocity as a

function of stellar VHELIO.

We next compare the relationship we measure for gas VHELIO as a function of

stellar VHELIO to our expectations. To that end, we assume the RC stars all belong to a

rigidly rotating disk with Vϕ ∼ 215 km/s. Similarly, we assume there is also a gaseous

disk rotating at Vϕ ∼ 220 km/s. For each RC star in Figure 4.8, we use the star’s

Galactic position to obtain the expected velocity vector from the rotating stellar disk,

which is then transformed into a heliocentric velocity after accounting for the sun’s

position and motion15. We follow a similar procedure for generating the simulated

15We use the same values for solar position and motion as
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VHELIO of the gas, but we now need to assume a distance from the sun to the DIB

source along each LOS. To be agnositic of the exact DIB source distance, we choose

a fraction of the total LOS distance to each star, and use those new implied Galactic

coordinates and the gas disk to measure VHELIO for the intervening gas. We repeat this

process for distance fractions of 100%, 50%, 10%, and 1% of the total distance to each

star.

A comparison of the velocity difference between simulated gas and simulated

stars is shown in Figure 4.10, where the data points are colored by the different fractional

distances of the gas. The orange line is the result of using the best fit line in Figure

4.9 with the known rest-frame wavelength of the DIB to measure heliocentric velocity

of the DIB as a function of stellar VHELIO; to be clear, the orange line in Figure 4.10

is not a fit to the simulated data. We see good agreement between the orange line and

the simulated cases when the DIB sources are, on average, between 1% and 50% of the

distance to the stars. This implies that the velocity offset function we measure from the

location of the DIB minimum in the stellar rest-frame is caused by a source that is in

the foreground of the stars, as we would expect for an ISM-based absorption feature.

Additionally, we see that the gas velocity offset in the simulated data has a

relatively tight correlation with stellar velocity. This is ultimately what causes the

pattern we see in the DIB panel of the smoothed residual in Figure 4.7; for the RC

sample, stellar velocity has an approximately linear relationship with the gas offset

Khanna et al. (2019):
(X,Y, Z)⊙ = (−8, 0, 0) kpc

and
(U, V,W )⊙ = (11.1, 241.92, 7.25) km/s.
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Figure 4.10: Simulated comparison of the difference in heliocentric velocity between gas
and stars when the intervening gas is at different fractions of the stellar LOS distance.
The simulated stellar disk is rotating at 215 km/s while the simulated gaseous disk is
rotating at 220 km/s, and measurements are generated for each RC star in Figure 4.8.
The orange line is the result of using the known DIB rest-frame wavelength with the
orange line in Figure 4.9 to estimate DIB velocity as a function of stellar velocity. The
agreement between the orange line and the results of placing the DIB sources between
1% and 50% of the distance to each star suggests that the DIB absorption feature is
being produced by intervening material, as we would expect. The tight relationship
between ∆VHELIO and VHELIO explains why binning in stellar heliocentric velocity for
the RC sample leads to increased DIB residual strength in Figure 4.7.

velocity, so the wavelength location of a DIB in the stellar rest-frame, Equation 4.9,

effectively becomes a function of stellar velocity alone. This explains why sorting by

VHELIO amplifies DIB signals and causes their location to move smoothly in wavelength.

By comparing the apparent strength of residual spectral features with vari-

ous parameters, we found a slight correlation in residual strength with spectral SNR.

In particular, residual spectra with lower median SNR show higher levels of contam-

ination, especially in wavelengths regions where tellurics and skylines are known to

occur. We shift the residual spectra to the observer reference frame using each observa-
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Figure 4.11: Inverse-variance coadded residual spectra in the observer reference frame
in different spectral SNR bins. The blue shaded regions highlight where the strongest
telluric features (caused by CO2) occur in APOGEE. The top panel shows the raw
coadded residual spectra, and each combined spectrum has a similar median SNR of
∼ 550 pixel−1; this panel demonstrates that the residual spikes of the lower SNR bins
are larger than those of the high SNR bins. The bottom panel takes the coadded
spectra from the top panel and subtracts off the combined spectrum of highest SNR
bin (yellowest line in top panel) to better highlight the difference between the spectra
of the SNR bins.

tion’s LOS velocity to allow for Earth-based features to align in wavelength. We then

inverse-variance combine residual spectra in different spectral SNR bins, which yields

the coadded spectra shown in Figure 4.11; the combined uncertainty in each of the SNR

bins are approximately the same, with median combined SNRs of ∼ 550 pixel−1. The

top panel shows the coadded residual flux in 10 different SNR bins, and this panel re-

veals that the extrema of the low SNR bins are generally larger in magnitude than the
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extrema of the higher SNR bins. The bottom panel is a similar plot, but now the spec-

trum of the highest SNR bin has been subtracted from all the spectra of the other SNR

bins to highlight the change in residuals as a function of SNR. The faint blue regions

in both panels corresponds to the strongest telluric absorption region in APOGEE (e.g.

see Figure 19 of Nidever et al. 2015).

In even the highest SNR bins, the residual features are commonly on the order

of 1% − 2% of the stellar flux, and as high as 4% − 5% in the extreme cases. The

structure we observe in our residual spectra reveals that a complicated combination

of Earth-based features and DIBs are common across the APOGEE wavelength range.

These trends of residuals with spectral SNR and heliocentric velocity highlighted in this

work are what prompted the authors of Ness et al. (2022) to include SNR and VHELIO

as explanatory variables in their regression fitting to measure the relationship between

abundances and stellar evolutionary state.

We posit that the non-stellar residuals seen in Figure 4.7 may be responsible

for the larger-than-expected scatter in the some of abundance distributions measured

by ASPCAP (e.g. Zasowski et al. 2019; Jönsson et al. 2020); some elemental abundances

(e.g. Na) are determined by flux measurements at a small number of pixels, so the pres-

ence of DIBs at those wavelengths may have a relatively large impact. If we attribute a

large portion of the residual excess in Figure 4.5 to non-stellar features, then it wouldn’t

be unexpected to see a large effect from features with local minima that are ∼ 3% of

the stellar flux.
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4.5 Removing Skylines and Tellurics to Identify Diffuse

Interstellar Bands

To identify the DIBs present in the residual spectra, we first need to charac-

terize and remove the more common contamination from Earth-based features. One

advantage of isolating the Earth-based residuals versus the DIBs is that we are easily

able to shift to the rest-frame of the skyline and telluric residuals.

Because almost all the spectra have residual Earth-based features, but not

all spectra have DIB contamination, it is useful to split the residual spectra up into

two groups: those with and without the strongest DIB feature. Once we have these

two groups, we can study the Earth-based contamination using the low-DIB-strength

group. Those results can then be used to remove the Earth-based contamination from

the high-DIB-strength group.

To accomplish this, we need to rank the spectra by their DIB strength. We

fit an inverted Gaussian to the strong DIB feature that is present around 15272 Å DIB

in each residual spectrum, after shifting to the heliocentric frame using the VHELIO for

each observation; an example of this is show in Figure 4.12. This allows us to measure

a LOS velocity and equivalent width for the strong DIB in each residual spectrum. We

then use the EW measurements to define a low- and a high-DIB-strength group; residual

spectra that failed to fit an absorption feature near 15272 Å DIB were automatically

assigned to the low-DIB-strength group, and then a threshold of EW = 1 × 10−2 Å
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Figure 4.12: Fitting the 15272 Å DIB feature with an inverted Gaussian to the residuals
of the spectrum in Figure 4.3. The blue data points show the residual data, the red line
shows the best fit inverted Gaussian model with a 68% error envelope, and the dashed
vertical black line marks the rest-frame wavelength of the 15272 Å DIB feature.

was chosen to divide the spectra with DIB detections to ensure an approximately equal

number of spectra (∼ 21000) in the low- and high-DIB-strength groups. For the residual

spectra in the high-DIB-strength group, the 15272 Å DIB EW is compared to the K-

band reddening in Figure 4.13 with data points colored by the EW bins used in our

later analysis.

For the low-DIB-strength group, we fit a 2nd-order polynomial model to the

observer-frame residual fluxes at each pixel using a process similar to what is described

in Section 4.3.2. In this case, however, the stellar label vector in Equation 4.1 is replaced
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Figure 4.13: Equivalent width strength of the 15272 Å DIB feature versus K-band
reddening for the spectra in our sample with well-measured 15272 Å DIB features. The
different colors correspond to the 10 different EW bins used later in combining the
residuals. There are approximately 2100 residual spectra per bin.

by

x⃗j =


SNR2

j

SNRj

1

 (4.11)

and the data we are fitting are the residuals in the observer frame. This model enables

us to quantify the predictive power of SNR alone to describe the spectral residuals that

are not captured by our five label model from Section 4.3.2.

Examples of the resulting best-fit model for different SNR bins are shown in
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Figure 4.14: SNR-modeled residual spectra in the observer rest-frame. The colors of
the spectra in this figure correspond to the SNR values in the colorbar above the top
panel, and not the EW bins in Figure 4.13. The blue shaded regions highlight where
the strongest telluric features (caused by CO2) occur in APOGEE.
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Figure 4.14. Overall, this model captures much of the behaviour we see in the coadded

residuals of Figure 4.11. There are a few regions that stand out visually (e.g. in the

blue shaded regions where CO2 telluric features are particularly strong) that have a

saw-toothed shape to the residuals; this is a shape that can be created by subtracting

two Gaussians with the same width but a slight offset in mean. We suggest that these

Earth-based residuals are caused by a wavelength mismatch between the raw spectra

and the sky models being subtracted.

As shown in Nidever et al. (2015), the APOGEE telluric and sky removal

performs very well in most cases. Holtzman et al. (2018) further shows improvement

in APOGEE’s Earth-feature removal; however, they also point out that the APOGEE

reduction pipeline’s approach is to flag and ignore pixels near particularly strong telluric

and sky lines instead of a more computationally expensive approach that might achieve

smaller residuals. Of particular interest, Figure 3 of Holtzman et al. (2018) reveals the

same saw-tooth residuals that we see in our Figure 4.14, with their figure focusing on

the 15680−15800 Å region that is sensitive to tellurics from CO2. While the APOGEE

reduction process works well for their science goals, our analysis has shown that detailed

accounting of Earth’s atmosphere’s light can reveal previously-hidden information.

By looking at the wavelengths and shapes of the Earth-based features in Figure

4.14, we can see that some of the smoothed residual patterns in Figure 4.7 are likely

explained by the night sky. The Ce panel of Figure 4.7, for example, shows a repeating

alternation of residual fluxes from low to high, which is visually dissimilar to the DIB

panel which shows a single feature moving through the cutout window. The Ce panel’s
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central wavelength of 15789.1 Å places it in a region of saw-toothed features in Figure

4.14, so this mottled pattern that appears after sorting by heliocentric velocity is likely

the result of these saw-tooth shapes constructively and destructively combining.

While this SNR-dependent Earth-residual model performs well in describing

the observer-frame residuals, we choose to not use this model in our subsequent DIB

analysis without extensive further testing. Instead, we remove skyline and telluric fea-

tures by pairing up residual spectra in the low- and high-DIB-strength groups based on

spectral SNR. That is, for each high-DIB-strength residual spectrum, we identify a low-

DIB-strength residual spectrum with median spectral SNR that is within 5 pixel−1 of

the high-DIB-strength spectrum’s SNR. We ensure that each low-DIB-strength residual

spectrum is used only once.

Once each high-DIB-strength residual spectrum has a corresponding low-DIB-

strength residual spectrum, we subtract each pair and add their uncertainties in quadra-

ture in the observer frame. This has the effect of removing the Earth-based residuals

from the high-DIB-strength residual spectra while leaving the possible DIB features rel-

atively untouched. The spectra are then shifted from the observer frame to the 15272 Å

DIB rest-frame using the velocity measured in the inverted-Gaussian fitting for the

high-DIB-strength spectrum in the pair.

The next step is to break the spectra up into different bins based on the

strength of the 15272 Å DIB. We define 10 DIB-strength bins such that approximately

2100 spectra are in each bin; these are shown by the different colors in Figure 4.13. We

then combine the residual spectra in these bins using population fitting to measure a
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population mean and uncertainty/standard deviation at each pixel. The precise statis-

tics used for this combination are explained in Appendix 4.7.1, but the key takeaway

is that the population fitting takes into account both the uncertainty in each residual

measurement as well as the spread in those measurements to give back realistic means

and uncertainties at each pixel.

The results of this population-fitting process are shown in Figure 4.15, where

the colors denote the same DIB-strength bins as in Figure 4.13. The vertical red lines

show the locations of the previously-known DIBs in Table 4.1; by eye, the increasing

DIB-strength bins show increasing depth of features at most of these wavelengths. For

the 15225 Å feature, the large literature uncertainty in central wavelength may suggest

that the true central wavelength of that DIB should correspond to one of the features

near 15250 Å instead. We also notice additional absorption features (e.g. slightly

redward of 15700 Å) that have shapes similar to the previously-known DIBs.

We recognize that all the DIB features are likely not in the same rest-frame

as the 15272 Å DIB, as they might be produced by different intervening clouds along

the sight-line to each star and therefore have different relative LOS velocities. However,

the velocity difference between DIB sources along a single LOS aren’t likely to be large

enough to shift the wavelength by more than a few APOGEE pixels. For instance, the

vast majority of the 15272 Å DIB velocities we measure are in the ±30 km/s range, so at

∼ 16000 Å, a 10 km/s velocity offset would manifest as a ∼ 0.5 Å offset in wavelength.

When we combine spectra in each DIB-strength bin, we may slightly reduce the signal

of DIB features from other sources because of a combination of wavelength offsets and
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Figure 4.15: Coadded residual spectra in the 15272 Å DIB rest-frame colored by the
15272 Å DIB strength as shown in Figure 4.13. The vertical red lines show the rest-
frame wavelengths of the previously-known DIB features in Table 4.1. There are many
newly discovered features in emission and absorption that scale as a function of EW bin,
making them new candidate DIB features. 35 of the possible DIBs we detect – which
we will later measure to have significant correlation with the 15272 Å DIB strength –
are shown by the blue points above the spectra with widths showing the region we use
as a cutout when measuring equivalent widths.
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their strength not correlating with the 15272 Å strength, but we still expect to detect

their presence. Our decision to use the 15272 Å DIB rest-frame will, however, preserve

the strength of features that are being produced by the 15272 Å DIB source, so this

technique is particularly useful for identifying DIBs that correlate with the strongest-

DIB. For future work where extremely precise central wavelengths are needed or the

goal is to find every possible DIB in the APOGEE wavelength range, one approach

would be to cross-correlate the residual spectra using different wavelength cutouts to

find the velocities that amplify the signals of all DIBs.

To identify possible locations of DIBs, we smooth the highest DIB-strength

residual spectrum (i.e. the darkest purple line in Figure 4.15) with a Gaussian kernel

width of 5 pixels; after some visual vetting, this yields 133 local maxima and minima

as possible DIBs in emission and absorption. Of the possible DIBs, we highlight the

locations of 35 features in Figure 4.15 that we will ultimately find are likely produced

by the same source that produces the 15272 Å DIB; we choose to not show all 133

possible features for visual clarity. As expected, this step finds features nearby to all

of the previously-known DIBs. Many of the local extrema we find are likely spurious

detections, but we choose to err on the side of testing too many extrema versus applying

a more complicated thresholding at the detection step. For each local extremum, we

then step redward and blueward from that wavelength in the smoothed spectrum until

the slope is near 0 to define a useful wavelength region around each feature. We then

manually check these regions to confirm that they cover the entirety of an apparent

feature, tweaking the boundaries where necessary. This defines the wavelength cutouts
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we will later use for measuring the EW strength of the possible DIBs and for quantifying

DIB detection probabilities. The list of possible features agree well with the features

we find when we smooth a population-combined spectrum using all ∼ 21000 residual

spectral pairs; we choose to use the feature locations from the highest DIB-strength

spectrum instead of the total population because the signal from true DIBs will be

strongest in the high DIB-strength bin.

As mentioned in the last few paragraphs, the central wavelengths we measure

in the 15272 Å DIB rest-frame for DIBs that are produced by a different source may

be offset from their true value by a few pixels, but this is still an improvement on the

wavelength location for a few of the previously-known DIBs in Table 4.1. Additionally,

because the spectra in each DIB-strength bin are a combination of ∼ 2100 individual

residual spectra, a systematic velocity offset between different DIB sources would be

required to produce a significant shift in the central wavelength location. This implies

that our central wavelength measurements are likely within a handful of pixels of the

true rest-frame wavelength of each DIB feature. To be conservative, we estimate the

uncertainty on the central wavelengths of the possible DIBs to be ∼ 1 Å.

We next measure the equivalent width of the local extrema in each of the DIB-

strength bins of Figure 4.15. Using the wavelength cutouts defined above, we empirically

integrate the flux. Specifically, we use the 5 pixels at the edges of each cutout (3 inside,

2 outside of the cutout) to define an average flux and wavelength on the blue and red

edge; these blue and red average fluxes define a line for each DIB-strength bin that we

use at the local continuum measurement. After subtracting off the local continuum line
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Figure 4.16: Equivalent width strength of a previously-unknown DIB feature near
15706 Å for the different EW bins shown in Figure 4.13. The “Window” in the ti-
tle defines the width of the wavelength cutout, and the dashed vertical green line in the
right panel shows the location of the local minimum identified in the smoothed highest
DIB-strength residual spectrum. The black horizontal line in the left panel and the cor-
responding grey shaded region are the population mean and width of the current DIB
EW measurements (i.e. population fit to the y-axis values). This particular feature’s
EW shows a fairly strong correlation with the strength of the 15272 Å DIB.

for each bin, we perform a trapezoid numerical integration to measure the area of the

feature. To propagate uncertainties in the flux, we repeated sample flux measurements

– including the fluxes used to measure the local continuum line – to get a distribution

on the empirical EW for each bin. The EW measurements we report are the median and

standard deviation of those realizations. An example of the resulting EW measurements

is shown in the left panel of Figure 4.16 for the possible DIB near 15706 Å, with a cutout

of the feature shown in the right panel for the different DIB-strength bins.

To characterize how much the EW measurements change between the bins, we

perform a population fit to the EW measurements of the possible DIB feature (e.g. the

y-axis values of the left panel); this population fit again follows the approach detailed

in Appendix 4.7.1, and an example of the resulting medians on the population mean
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and width are shown with a black line and grey region in the left panel of Figure 4.16.

We are particularly interested in the population width because a large width indicates

that the EW measurements between the bins are quite different.

Of course, each possible DIB feature may only be a spurious detection; that is,

a feature may only show up in the highest DIB-strength bin by random chance alone.

To determine the significance of a detection, we repeat the binning, combining, and

EW-measuring process, but this time, we bin randomly. To be clear, instead of using

the strong-DIB-strength ranking to bin our spectra, we assign spectra randomly into

10 different bins, with the same ∼ 2100 spectra per bin. Using random binning, we

expect that the features in each bin will be quite similar to each other, as will their EW

measurements.

To quantify exactly how strong a detection is (i.e. its significance above ran-

domness), we also measure the population width of the EW measurements from random

binning. In particular, we are interested in how the population width distributions com-

pare between the random binning and the binning by the strong-DIB-strength cases.

To account for the variation in the random binning that might occur by chance alone,

we repeat the random binning 5 times. The resulting population width distributions of

the populations agree quite well between the realizations for each possible feature. This

implies that our results aren’t overly sensitive to the particular choice in random bin-

ning. To be careful, however, we average the population width distributions from the 5

random realizations together. Measurements from this point on that refer to “random”

come from the “averaged random” results.
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Recognizing that strong-DIB-strength might not be the only/best parameter

to explain the change in a feature’s strength between bins, we explore a few additional

binning options: [Fe/H], median spectral SNR, and AK reddening. Respectively, these

can be thought of as testing for features that are the result of residual chemical infor-

mation that the model did not capture, remaining Earth-based contamination or other

SNR effects, and DIBs that correlate with the amount of LOS dust but don’t originate

from the 15272 Å DIB source. As before, we sort by a given parameter and then bin

the spectra so that there are approximately 2100 spectra per bin. In every case, we

measure EWs in each bin at each possible feature, and then use those EWs to measure

a population width distribution, which are then compared to the results from random

binning. An example of these population width distributions for the different sorting

parameters is shown in the left panel of Figure 4.17; in the right panel, samples from

the random distribution have been subtracted from samples in the other distributions

to get a distribution of σSORT − σRANDOM.

We can then directly integrate these population width difference distributions

to measure the probability that the population width for a given sorting parameter is

greater than the population width from random sorting. In cases where none of the

probabilities are greater than 50%, we decide that randomness alone likely produced

the observed feature. We also use the medians of these distributions to determine which

sorting parameter yields the greatest difference from random, implying that a particular

feature is best explained by that parameter. Because the relationship between each fea-

ture’s EW measurements and a given sorting parameter is potentially complicated (i.e.
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Figure 4.17: Comparison of the population width distributions of EW measurements
around the possible DIB absorption feature shown in Figure 4.16 when sorted and binned
by different parameters. In each case, we measure the EW of the possible DIB feature
from the combined residual spectra in different parameter bins, and then measure the
population width of the EW measurements (e.g. the shaded grey region of Figure 4.16).
Left: Distributions on the EW population widths for different parameter bins; the
black histogram is the resulting average of 5 realizations of random sorting and binning.
Right: Distribution on the difference between the population widths in the left panel
and the random population width. In this case, the largest population width is achieved
after binning by DIB-strength, suggesting that the absorption feature in Figure 4.16 is
best correlated with 15272 Å DIB-strength.

not a simple functional form), we argue that our approach is a cautious, statistically-

motivated way of making detections without assuming a parameterized relationship.

We are simply answering the question: “Which of the sorting parameters produces the

largest difference in EW measurements between the bins?” If a feature has its best

sorting from DIB-strength, it may suggest that feature is produced by the same source

as the 15272 Å DIB. If the best sorting is AK , it may be that feature is still truly a

DIB, but that it has a different source than the 15272 Å DIB.

We summarize the probabilities from all the sorting parameters for all 133

possible features in Figure 4.18. At our best estimate of the wavelength for each feature,

207



F
ig
u
re

4
.1
8:

S
u
m
m
a
ry

of
th
e
p
ro
b
a
b
il
it
ie
s
th
at

a
p
ar
ti
cu

la
r
so
rt
in
g
p
ar
am

et
er
’s

p
op

u
la
ti
on

w
id
th

of
E
W

m
ea
su
re
m
en
ts

is
gr
ea
te
r
th
an

ra
n
d
o
m

ch
a
n
ce

ca
n
ex
p
la
in

(e
.g
.
th
e
le
ge
n
d
va
lu
es

in
th
e
ri
gh

t
p
an

el
of

F
ig
u
re

4.
17

)
fo
r
al
l
p
os
si
b
le

D
IB

fe
at
u
re
s.

T
h
e
p
os
si
b
le

D
IB

w
av
el
en

gt
h
s
a
re

o
u
r
b
es
t
es
ti
m
at
es

of
ea
ch

fe
at
u
re
’s

ce
n
tr
al

w
av
el
en

gt
h
;
th
e
ex
ac
t
lo
ca
ti
on

s
of

th
e
fe
at
u
re
s

th
at

ar
e
b
es
t
d
es
cr
ib
ed

b
y
A

K
or

D
IB

-s
tr
en

gt
h
so
rt
in
g
ar
e
gi
v
en

p
ro
v
id
ed

in
a
la
te
r
ta
b
le
.
T
h
er
e
ar
e
0
p
os
si
b
le

D
IB

fe
at
u
re
s

w
h
er
e
th
e
m
a
x
im

u
m

p
ro
b
a
b
il
it
y
o
f
al
l
so
rt
in
g
p
ar
am

et
er
s
is
le
ss

th
an

50
%
,
m
ea
n
in
g
th
at

n
on

e
of

th
e
fe
at
u
re
s
ar
e
b
es
t
ex
p
la
in
ed

b
y
ch
an

ce
al
on

e.
A
t
ea
ch

p
os
si
b
le

D
IB

w
av
el
en

gt
h
,
th
e
fo
u
r
so
rt
in
g
p
ar
am

et
er
’s

p
ro
b
ab

il
it
ie
s
ar
e
p
lo
tt
ed

in
a
ve
rt
ic
al

li
n
e;

th
e

so
rt
in
g
p
a
ra
m
et
er

w
it
h
th
e
m
ax

im
u
m

m
ed

ia
n
p
op

u
la
ti
on

w
id
th

is
en

la
rg
ed

co
m
p
ar
ed

to
th
e
ot
h
er
s.

O
f
th
e
13

3
p
os
si
b
le

D
IB

fe
at
u
re
s,
55

sh
ow

th
e
la
rg
es
t
d
iff
er
en

ce
fr
o
m

ra
n
d
om

w
h
en

b
in
n
ed

b
y
15

27
2
Å
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a vertical line of 4 points are plotted to show the probability above random for each of

the different sorting parameters; the point with the highest median population width

is enlarged compared to the others, provided that the maximum probability above

random is greater than 50% (i.e. there is only one enlarged point per feature). These

probabilities reveals that 0 of the features are best explained by random chance alone

(i.e. spurious detections), while the other 55, 25, 29, and 24 features correlate best with

the 15272 Å DIB strength, [Fe/H], AK , and spectral SNR respectively. Comparing to the

previously-measured DIBs (vertical red lines), we recover > 93% detection probabilities

in each case. Apart from the 15225 Å DIB – which finds best sorting using AK – all

remaining previously-measured DIBs in Table 4.1 have best sorting from DIB-strength.

These results may suggest that most of the previously-known DIBs in APOGEE are

produced by the same source/species along each LOS while the remaining DIB has a

different origin.

While we may not have perfectly captured the central wavelength or cutout

region around each of the possible features, we emphasize that our process is likely biased

towards calling a true DIB spurious than the other way around. A more rigorously-

defined cutout region and fitting of the local continuum would likely yield stronger

detection signals than we report, suggesting there may be even more DIB features

than we discover. Highly-detailed analyses in the future may reveal DIBs that are not

included in our results, and possible DIBs we classify as having non-ISM origin may be

found to have significant signal.

In general, the average probability above random for detected features is higher
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Table 4.3: Number of the 133 possible DIBs with best sorting parameter detection
probabilities above different thresholds.

Probability Number of Detected DIBs by SORT Parameter Number below
Threshold DIB-strength [Fe/H] AK SNR Threshold

0.50 55 25 29 24 0
0.68 51 23 24 22 13
0.95 22 5 3 9 94
0.99 11 1 0 3 118

for the DIB-strength sorting compared to the other sorting parameters (e.g. mean

PrDIB = 0.89 versus mean PrAK
= 0.83). This is likely a consequence of our choice to

bin in the 15272 Å DIB rest-frame; as discussed previously, DIBs from other sources

with slightly different rest-frames will experience a reduced signal, so their difference

from random is not as strong. Table 4.3 lists the number of features in each bin with

detection probabilities (i.e. probability above random) above various thresholds. This

is equivalent to asking how many of the enlarged points persist above changing heights

of the shaded grey region in Figure 4.18. We notice that the number of detected features

in the AK sorting drops off faster than the number of features in the DIB-strength bin,

and this again is likely caused by binning in the 15272 Å DIB rest-frame.

Linking the resulting DIBs back to the features seen in Figure 4.7, many of

the element windows occur near newly-detected DIBs. The Na panel, for instance,

is near a detected feature at 16382.1 Å that is best explained by AK sorting with

93% probability above random. This feature likely explains the diagonal streak in the

smoothed residuals of the Na panel. It may also be responsible for increasing the scatter

in Na abundances that ASPCAP reports, emphasizing the need to account for DIBs in

future stellar abundance pipelines.
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To summarize the patterns in the VHELIO-sorted, smoothed residuals, the Fe,

Ni, C, and Cr panels show minimal residual features suggesting these windows are free of

significant non-stellar light. Like the DIB panel, the K, Mn, Co, Na, and Yb panels have

nearby detected DIB features that likely explain their broad diagonal stripes. The P,

Mg, Ce, Cu, Al, and even the continuum panels have narrower diagonal stripes like the

sky panel and have no significant nearby detected DIBs, suggesting that these patterns

are almost exclusively explained by Earth-based residuals. The O panel is unique in

that it shows a mix of both DIB signal (i.e. broad emission near the right edge) and

telluric residuals (i.e. narrower diagonals near the middle).

As an initial step towards identifying the chemical species that producing each

DIB, we compare the central wavelength locations to known hydrogen transitions in

the APOGEE wavelength range. The newly-detected DIB in Figure 4.16, for instance,

is within 1 Å of the Brackett series n = 15 to n = 4 transition (λ0 = 15705.0 Å),

suggesting that atomic hydrogen in the ISM is a probable source of this feature. That

we are able to detect features at many known hydrogen wavelengths without a priori

searching there bodes well for our general methods.

A complete summary of the 84/133 DIBs whose best sorting parameter is either

DIB-strength or AK is listed in Table 4.4. Eight of the features are in emission and the

remaining seventy-six are in absorption. All wavelengths are given in the 15272 Å DIB

rest-frame, and the Wavelength Range column gives the window we used to measure

the EWs; the continuum wavelengths are defined by the 5 pixels nearest to the values

in the Wavelength Range column. By summing the probabilities above random, we
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expect that 73.3 of the 84 DIB detections are truly DIBs. For features that have central

wavelengths within 2 Å of a known hydrogen recombination line, we give the name of

the series and level. Many of these newly-discovered DIBs occur in the same wavelength

regions that were obscured by incomplete skyline and telluric removal; this, combined

with their sub-percent sizes, explains why our analysis has been able to reveal these

features for the first time.
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Å
)
in

b
in

(Å
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(Å
)

T
ra
n
si
ti
o
n
b

T
y
p
e

(Å
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4.6 Summary

We have created data-driven models of RC stellar spectra using ∼ 5.5 × 105

individual observations of ∼ 1.7× 105 stars from the APOGEE dataset. The modeling

uses five parameters – Teff , log g, [Fe/H], [α/Fe], and age – to predict the spectra, and

the resulting models agree quite well with the data (residual Gaussian mean near 0

and width of ∼ 1.16σ) across the APOGEE wavelength range. This implies that these

five labels are sufficient to explain the majority of information present in the spectra.

Consequently, there is not a substantial amount of residual information that may be

leveraged for pursuits such as chemical tagging. Though the residuals of the data-

minus-model are relatively small (∼ 3% of stellar flux on average), it is very important

to understand and isolate their astrophysical origin. We discover that there are many

pixels where the residuals suggest that a significant number of non-stellar features are

also present in the stellar spectra. We identify which of these features are likely Earth-

based and which are likely Diffuse Interstellar Bands. We find 84 possible DIBs in

APOGEE spectra that have less than 50% probability of appearing by chance alone,

including all previously-discovered DIBs in this wavelength region.

Our key results include:

1. The residuals of our data compared to the model show correlations with heliocen-

tric velocity, which we show is evidence that many of these residual features are

not in the stellar rest-frame, such as skylines, tellurics, and DIBs. These residual

features appear at the level of 3% of the stellar flux on average (Section 4.3.2,

Figure 4.5; Section 4.4, Figures 4.6, 4.7, and 4.11);
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2. The size of Earth-based residuals appear anti-correlated with spectral SNR. The

shape of these residuals suggest that they may be removed by correcting for a

wavelength offset between the sky model and raw observations (Section 4.5, Figure

4.14);

3. After removing the Earth-based residuals, we combine residual spectra in the rest-

frame of the strongest DIB in the APOGEE wavelength range (λ0 = 15272 Å).

We detect 84 DIB features in absorption (including all of previously-measured

DIBs) and emission that show highest correlation in strength with either K-band

reddening (AK) or EW strength of the 15272 Å DIB feature (Section 4.5, Figures

4.15 and 4.18, Tables 4.3 and 4.4).

Future work based on our results will focus on measuring the impact that

unaccounted-for DIB and Earth-based features have on ASPCAP-measured abundances.

It would also be worthwhile to compare the DIB wavelengths to lines produced by chem-

ical species (i.e. more than just atomic hydrogen) that are known components of the

ISM, as well as to correlate the new DIB strengths with additional tracers of ISM density.

Another useful undertaking that would advance this work is detailed joint modelling of

the DIBs, skylines, tellurics, and stellar spectra in APOGEE. A complete understanding

of all sources of spectral features is necessary for chemical tagging experiments, and this

will have the added benefit of improving our understanding of the ISM.
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4.7 Appendix

4.7.1 Spectral Combinations

Our analysis, like many studies involving spectroscopy, requires the combi-

nation of multiple spectral observations. The standard approach would be to use an

inverse-variance weighted combination using the fluxes and corresponding uncertainties

at each pixel, but this results in a combined uncertainty that is often overly constrain-

ing and which becomes smaller for any increase in the number of observations. Instead,

we argue that fitting a population-level distribution is generally the better approach

when combining spectra, particularly in cases where the uncertainty on the combined

measurement is important. This technique returns population-level means and vari-

ances that incorporate the uncertainties in each individual measurement as well as the

dispersion in those measurements.

As an illustrative example, two flux measurements of the same star in one

pixel might differ from one another by an amount larger than is described by their un-

certainties; this case is displayed in Figure 4.19. Combining these measurements using

inverse-variance weighting (black line) produces a mean that is, again, statistically far

away from either measurement and has a high confidence (small uncertainty). If we

instead fit a population-level distribution (red line), the resulting population width we

measure is much larger than the inverse-variance width so that the population distri-

bution can capture the large distance between the data16.

For another example, consider set of N normalized flux measurements that

16While this is a helpful visual example, we should be cautious about performing population fits on
a very small number of measurements.
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Figure 4.19: Example of the differences between the inverse-variance weighted combina-
tion of multiple data measurements and Bayesian population-level distribution fitting.
The lines show normal distributions that define each set of measurements, and the points
above the distributions show the mean and standard deviation of each distribution. The
blue and orange lines correspond to the two data measurements while the other two lines
correspond to different methods of combining those data.

all have SNR of 10 pixel−1. The inverse-variance weighted combination will return an

uncertainty of
(
10/

√
N
)

pixel−1, which will clearly decrease in size as we add more

measurements, regardless of how similar or disparate those measurements may be to

one another. Using population fitting instead, the distribution of the population width

becomes narrower and can converge on an underlying true width, assuming one exists.

This is illustrated in Figure 4.20.

For this chapter’s analysis of residuals17, we consider the measured/observed

residual flux at pixel i for star j to be ri,j with corresponding uncertainty σr,i,j . Then, we

define the following hierarchical statistical model that describes the relationship between

17NOTE: for this example, we are assuming that each star has one observation for clarity of the math,
but the approach is easily expanded to include multiple observations of the same star.

223



Figure 4.20: Illustration of the impact that the population size has on the distribution of
the population width/uncertainty as measured from Bayesian population fitting. The
vertical dashed black line shows the input true population width that was used to
generate the data, and the points above the distributions show the median and 68%
region for each distribution.

the individual measurements, their uncertainties, and the population distribution:

p (σ̂r,i) ∝ 1

p (r̂i|σ̂r,i) ∝ 1

(
r′i,j |r̂i, σ̂r,i

)
∼ N

(
r̂i, σ̂

2
r,i

)
(
ri,j |r′i,j , σr,i,j

)
∼ N

(
r′i,j , σ

2
r,i,j

)
where r̂i is the population mean of the residual fluxes in pixel i, σ̂r,i is the population

width/uncertainty/standard deviation of the residuals in pixel i, and r′i,j is the true

residual flux for star j in pixel i. We have chosen flat priors on the population parame-

ters, though these could be changed to other distributions if there was good reason for
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it (e.g. Gaussian for p (r̂i|σ̂r,i)). The full posterior distribution is then:

p(r̂i,σ̂
2
r,i, r

′
i,1, . . . , r

′
i,n∗ |ri,1, σ

2
i,1, . . . , ri,n∗ , σ

2
i,n∗)

∝ p (r̂i, σr,i) ·
n∗∏
j

N
(
r′i,j |r̂i, σ̂2

r,i

)
· N

(
ri,j |r′i,j , σ2

r,i,j

) (4.12)

We next see that the posterior full conditional on r′i,j is given by:

p(r′i,j |r̂i, . . . ) ∝ N
(
r′i,j |r̂i, σ̂2

r,i

)
· N

(
r′i,j |ri,j , σ2

r,i,j

)
= N

(
r′i,j |µr′,i,j , σ

2
r′,i,j

) (4.13)

where

σ2
r′,i,j =

[
σ̂−2
r,i + σ−2

r,i,j

]−1

and

µr′,i,j = σ2
r′,i,j ·

[
σ̂−2
r,i · r̂i + σ−2

r,i,j · ri,j
]
.

We can then use these results to integrate over r′i,j in the full posterior distri-

bution of Equation 4.12 to find the marginal posterior of (r̂i|σ̂r,i,data):

p (r̂i|σ̂r,i, data) = N
(
µr̂,i, σ

2
r̂,i

)
(4.14)

where

σ2
r̂,i =

 n∗∑
j

(
σ̂2
r,i + σ2

r,i,j

)−1

−1
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and

µr̂,i = σ2
r̂,i ·

 n∗∑
j

(
σ̂2
r,i + σ2

r,i,j

)−1 · ri,j

 .

Using Bayes’ Law, we can find the marginal posterior for p (σ̂r,i|data) as:

p(σ̂r,i|data) ∝ p(σ̂r,i) · σ̂1/2
r,i ·

n∗∏
j

(
σ̂2
r,i + σ2

r,i,j

)−1/2 · exp

− (ri,j − r̂i)
2

2
(
σ̂2
r,i + σ2

r,i,j

)2
 (4.15)

With the functional forms of the distributions in Equation 4.14 and 4.15 in

hand, we are able to draw samples of (r̂i, σ̂r,i|data) fairly quickly. First, we evaluate

p(σ̂r,i|data) for a reasonable range and number of σ̂r,i values, then we use those proba-

bilities to draw σ̂r,i samples. Next, we use those σ̂r,i samples to draw samples from the

(r̂i|σ̂r̂,i,data) Gaussian distribution, which is an relatively easy and efficient step. Once

we’ve repeated this process a sufficient number of times, we can take the median of the

(r̂i, σ̂r,i|data) samples as our best estimate of the underlying population mean and width.

Sometimes, like in the main text of this work, we are also interested in the distribution

on (r̂i, σ̂r,i|data) itself, and this technique allows us to study this distribution.
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Chapter 5

Summary and Future Directions

The content of this thesis has focused on making precise and statistically-

rigorous astrophysical measurements using resolved stellar populations in the Milky

Way. In Chapter 2, we show that the 7D chemodynamical distributions along four dif-

ferent MW halo LOS are statistically different using the HALO7D survey. In Chapter 3,

we build a hierarchical Bayesian pipeline that is able to measure precise positions, par-

allaxes, and proper motions of stars, even in sparse fields, by leveraging the information

from both HST and Gaia. In Chapter 4, we build a model of APOGEE spectra that

does a good job of describing the data, and in doing so find that a significant amount of

the residual features in the spectra can be explained by previously-unknown signatures

from the ISM.

More specifically, Chapter 2 presents [Fe/H] and [α/Fe] abundances for 113

main sequence turn-off MW stellar halo stars across four fields in the HALO7D sur-

vey. Combining these abundances with HALO7D catalog 3D velocities and distance
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constraints, we measure net halo rotation and anisotropy in each LOS as a function of

chemical abundance. Recent work has discovered the Gaia-Sausage-Enceladus (GSE;

e.g. Helmi et al. 2018; Belokurov et al. 2018; Haywood et al. 2018), which contributes up

∼ 70% of the halo stars at a Galactocentric radius of 20 kpc (Naidu et al. 2020) and is

in line with theoretical predictions that the inner regions of the Milky Way stellar halo

should be dominated by a small number of massive progenitors (e.g. Robertson et al.

2005). Our results agree with GSE debris dominating the inner halo, but variations

we measure in the average kinematics in different [Fe/H] bins for the HALO7D fields

suggest that the fractional contribution of various MW progenitors is not the same in

each LOS. This supports a growing body of evidence (e.g. Iorio & Belokurov 2021) that

finds the inner regions of the MW stellar halo are not uniformly mixed.

In Chapter 3, we combine HST and Gaia data to measure precise stellar

motion, even in sparse fields (e.g. N∗ < 10 stars per HST image). We present the

general statistics that allow 2D positions of sources from any two or more images to be

combined in a consistent, Bayesian way. This technique simultaneously measures the

transformation parameters that allow images to map onto one another as well as finding

the posterior distributions on positions, parallaxes, and proper motion for each source.

To apply these techniques, we build a python-based program, BP3M, that combines

archival HST images with Gaia data. This pipeline is able to measure PMs that are a ∼

13 times more precise for faint sources (20.5 < G < 21 mag) than Gaia alone when using

HST images of nearby dwarf spheroidals with time baselines of ∼ 10− 13 years. BP3M

also measures improved PMs for ∼ 2000 sources in the sparse COSMOS field, 25% of
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which are too faint for Gaia to measure PMs; the median PM precision improvement for

faint sources (20.25 < G < 20.75 mag) is a factor of 2.6, and the median PM uncertainty

for sources without Gaia PMs is 1.12 mas/yr. By analysing ∼ 1000 HST images, we

show that the on- and off-axis skew terms of the standard 6 parameter transformation

equation are likely described as a function of HST rotation and observation time, thereby

reducing the number of fitting parameters per image by a factor of 2/3. In the final

section of this chapter, we use simulated Roman observations to find a survey strategy

that is able to significantly improve parallax precision at no cost to the PM precision.

Finally, in Chapter 4 we identify the sources of key residuals in APOGEE

stellar spectra whose currently-unmodelled presence contain important information for

ISM science as well as chemical tagging experiments. We use a clean sample of ∼ 50, 000

Red Clump stellar spectra from the APOGEE survey to build a polynomial model of

stellar labels. Studying the residuals of this model compared to the data, we notice that

many of the resulting features can be attributed to DIBs from the ISM and incompletely-

removed sky lines or tellurics. Through careful removal of Earth-based residuals, we

isolate and characterize 84 possible DIBs, which amounts to an ∼ 8 times increase

in the number of detected DIBs in the APOGEE wavelength region. A handful of

these newly-detected DIBs are shown to impact the wavelengths that APOGEE uses

to measure abundances, potentially explaining a larger-than-expected scatter in some

APOGEE abundance distributions.

Expanding upon the work presented in this thesis will continue to improve our

understanding of stellar physics, the ISM, and the formation and evolution of the MW.
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Some possible next steps, including some that are currently underway, are:

• Apply the BP3M pipeline to a large set of HST images that are well-sampled in

time and rotation angle across all HST filters (e.g. using the 47 Tucanae test

bed). This would help pin down which of the parameters in the transformation

solution are able to be defined by functional form instead of a free parameter.

This would significantly simplify the problem of mapping one image onto another,

which would have a huge benefit to sparse fields where there are only a handful

of sources from which to learn the transformation.

• Improved simulation of future telescope missions for use with BP3M to design best-

practice strategies that enable all measurements from different surveys to maxi-

mally benefit one another. In specific cases – for example, in measuring proper

motions in M31’s disk (Dey et al. 2023) – detailed planning with a BP3M-like

technique can find an optimal approach that meets or exceeds the science goals.

• Build a model of the APOGEE DIBs that can be used to clean up the stellar

spectra, then repeat the ASPCAP abundance measurements to identify the impact

of non-modelled DIBs. While this isn’t likely to reach chemical tagging limits of

precision, the cleaned spectra and stellar labels may be a step in creating models

whose residuals are able to constrain the intrinsic spread in abundances for co-

natal stars.

• Previously, the lack of multi-epoch HST regions in the MW halo restricted a

HALO7D-like survey to a small number of LOS. With BP3M functioning in sparse

fields, any archival HST images with large enough time baselines in the MW
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halo are accessible, making a HALO7D Extension survey feasible. In current

work using simulations of MW-like stellar halos (Apfel et al. inc. McKinnon, in

prep.), observed chemodynamical distributions in a handful of LOS are enough

to distinguish which simulated halo, and therefore merger history, produced those

data.

As the field continues down the path of Big Data Astronomy, we must remember that our

choices in analysis techniques plays a vital role in the amount and quality of information

we can learn.
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Barro, G., Pérez-González, P. G., Gallego, J., et al. 2011, ApJS, 193, 13
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