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Abstract

Buckling and Topological Defects in Graphene and Carbon Nanotubes

by

Shuo Chen

Doctor of Philosophy in Engineering – Materials Science and Engineering

University of California, Berkeley

Professor Daryl C. Chrzan, Chair

Graphene is the strongest material ever discovered and has an extremely high Young’s
modulus (∼ 1 GPa). Although stretching the sp2 covalent bonds between carbon atoms is
very difficult, significant deflections do develop in graphene membranes. In fact, thermal
rippling naturally emerges in graphene at any finite temperature. Moreover, the topological
defects mediating plastic deformation often cause out–of–plane crumpling, an effective way
to reduce the total elastic energy of the topological defect. It is even possible to design
specific stress states to produce periodic wrinkles in graphene with adjustable wave lengths.

This work aims to understand how buckling influences the elastic and plastic behavior of
graphene–based nanostructures. While the elastic moduli may be straightforwardly comput-
ed using structure optimization techniques with applied test stresses, it is a nontrivial task
to obtain elastic properties at any specific temperature. Further, linear elastic theories are
not able to describe large buckling because the second order nonlinear terms in the defini-
tion of the Lagrangian finite strain tensor cannot be neglected. In addition, the existence of
topological defects and constraints need to be properly treated. Finally, buckling and defects
of a curved surface such as a nanotube is even more complicated and poses other intriguing
challenges.

To proceed, we employ Monte Carlo techniques to obtain fundamental elastic properties
of graphene at desired temperatures, which supplies useful inputs for a nonlinear continuum
model for graphene. This model not only takes into account, in a suitable manner, both
large out-of-plane buckling and interactions among edge dislocations with periodic boundary
conditions, but also serves as a handy tool for simulating nanoindentation experiments and
the controlled wrinkling of graphene. At last, we focus on the Stone–Wales defect mediated
plasticity of CNTs. Specifically, a kinetic Monte Carlo framework is designed to model the
defect dynamics over a long time scale. We find that in large nanotubes, a chain of closely
packed dislocations (called a “dislocation worm”) may have less buckling and lower formation
energy than the conventional dislocation glide under high tensile stresses.
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for a 85.2 Å long armchair CNT with periodic boundaries. Symbols represent
actual calculations, and lines are guides for the eye. In the left region (low
stress), dislocation glide is energetically preferred. In middle region, worms
are produced from arrays of dislocation dipoles. The number indicates the
number of dipoles introduced before it is favorable for the chain to break
into two worms. In the right region, CNT’s evolve according to the fracture
pattern and fail. The yield stress as a function of tube radius is also plotted
for reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



viii

4.9 The engineering strain versus time curve (dash line) at 2000 K after the forma-
tion of an initial Stone–Wales defect. The KMC time data from 40 stochastic
independent runs of the same KMC simulation are summarized in box plot-
s. Each box plot depicts the data through the five–number summaries, i.e.,
the smallest observation, lower quantile, median, upper quantile and largest
observation, plus possible outliers. . . . . . . . . . . . . . . . . . . . . . . . 48

4.10 Typical snapshots of CNT at several strains in the KMC simulation where
image S1–S6 correspond to point S1–S6 in Fig. 4.9. Image S1 shows the
nucleation a single SW defect, i.e., an edge dislocation dipole which glides by
one step in image S2. In image S3, S4 and S5, a chain of 5 dislocations is
formed and then breaks in the middle, leaving a single dislocation in one end.
This dislocation then glides in image S6. . . . . . . . . . . . . . . . . . . . . 49



ix

List of Tables

4.1 Defect Formation Energies in (7,7) carbon nanotube computed via DFT. . . 45
4.2 Defect Formation Energies in Graphene computed via DFT. . . . . . . . . . 45



x

Acknowledgments

I would like to express my deepest gratitude to my advisor and mentor Professor Daryl
C. Chrzan. His wisdom, knowledge and rigorous scientific attitudes have impressed and
benefited me tremendously. Without his guidance, advice and encouragement, I would never
finish this work. I am honored and proud to be one of his students.

Special thanks to Professor Elif Ertekin. She has given me many insightful suggestions
and I learnt a lot from her.

I am grateful to Professor John W. Morris, Professor Sanjay Govindjee, Proessor Mark D.
Asta and Professor Andrew Minor for serving as my committee members even at hardship.

Many thanks to the former COINS director Professor Jeffrey C. Grossman and the current
director Dr. William Mickelson for supervising my research in COINS.

Lastly, my biggest thanks to my dear family. Their support, care and love consist of the
most essential part of my life.



1

Chapter 1

Introduction

1.1 Motivations and Background

Recently, much research attention has been focused on graphene and carbon nanotubes
(CNTs) due to their many unique and interesting properties. They are important members of
the fullerene family which generally refers to macromolecules made of covalently bonded sp2

carbon atoms, for example, the famous buckyball (C60) whose structure resembles a soccer
ball with the truncated icosahedron pattern. Fig. 1.1 shows the trend of public interest
in graphene and carbon nanotubes using the search volume data for the keywords “carbon
nanotubes” and “graphene” collected through the Google search engine (www.google.com).
It is observed that while CNTs remain to be actively studied, graphene quickly draws lots
of attentions and becomes a hot research topic starting in 2007.

Graphene is a single layer of sp2–bonded carbon atoms densely packed in a honeycomb
structure that can be abstracted as a two–dimensional (2D) hexagonal lattice. A (single–
walled) carbon nanotube may be conceptually constructed by rolling up a graphene sheet into
a cylinder along some specific lattice vector l that determines the chirality of the nanotube.
For instance, in Fig. 1.2, assuming a1 and a2 are base vectors for a hexagonal lattice and
l = ma1 + na2 where m and n are integers, then rolling up the graphene along l produces
a CNT whose chirality χ = (m,n). A zigzag CNT has χ = (m, 0) while an armchair one
has χ = (m,m). The axis h of the nanotube may be written as h = m′a1 + n′a2 and the
requirement h · l = 0 leads to

m′(2m+ n) + n′(2n+m) = 0. (1.1)

In particular, for a zigzag CNT, 2m′ + n′ = 0 and for an armchair one, m′ + n′ = 0. If
periodic boundary conditions are imposed along the tube axis, then it is necessary that h be
a lattice vector (i.e. m′ and n′ be integers). The geometrical relationships discussed above
are useful to generate (pristine) CNTs for other simulation tasks.

The graphene lattice interconnected through covalent bonds between carbon atoms is
extremely strong as it has been shown that the Young’s modulus of graphite is around 1
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Figure 1.1: The search volume indices for the keywords “carbon nanotubes” and “graphene”.
The actual data (solid lines) are collected through www.google.com and the trends (dashed
lines) are estimated using local regression methods. The data are scaled to the average search
volume (ASV) of the keyword “carbon nanotubes” from 2004 to 2008. In this period, the
ASV of “graphene” is 0.21 times the ASV of “carbon nanotubes”.

GPa [44, 63]. In fact, graphene is widely accepted as the thinnest (one atom thick) and
yet the strongest material ever discovered. Although it seems difficult to stretch graphene
through in–plane tensile stresses, it is relatively easy to make a graphene membrane buckle
out–of–plane. In this dissertation, we are mainly concerned with two types of buckling (Fig.
1.3), one is known as the thermal rippling which occurs at any finite temperature and the
other one is the buckling induced by topological defects during plastic deformations. As we
will explore in detail in the following chapters, buckling is intrinsically a highly nonlinear
phenomenon that profoundly influences not only the elastic properties of graphene based
structures such as the effective elastic moduli and thermal expansion but also the plastic
behavior through effective screening of defect interactions.

According to the Mermin–Wagner theorem [33], at any finite temperature, the sponta-
neously developed out–of–plane thermal fluctuations will eventually destroy the long–range
translational symmetry of the 2D hexagonal lattice of graphene. Therefore, graphene, as a
2D crystal, should not exist in the thermodynamic limit. However, a graphene flake is still
well defined, but contains significant thermal ripples, as shown in the left panel of Fig. 1.3
where a 25.56 Å × 24.60 Å graphene sheet with 240 atoms naturally crumples at about 3500
K with an average deflection around 0.8 Å.

A well known example of topological defects in graphene (and other fullerenes) is the
Stone-Wales defect [52] that can be created by rotating a single carbon–carbon bond ap-



CHAPTER 1. INTRODUCTION 3

Figure 1.2: The structure of a monolayer graphene sheet (left) which can be wrapped into
a zigzag CNT (top right), an armchair CNT (bottom right) or CNTs with other chiralities.
The base vectors a1 and a2 define a two–dimensional hexagonal lattice.

proximately 90 degrees (breaking old bonds and/or forming new bonds if necessary). A
Stone–Wales defect consists of a pair of topological defects (identified as dislocations below),
each of which is composed of a pentagon and a neighboring heptagon. As illustrated in the
top panel of Fig. 1.4, rotating another bond at the shoulder of one heptagon will separate
this pair of topological defects by one lattice parameter a = 2.46 Å. In the continuum limit
(the bottom panel of Fig. 1.4), a bond rotation may be regarded as opening a cut in the
membrane and then displacing one edge of the cut by a relative to the other edge, producing
a pair of dislocations of opposite sign. The length of the Burgers vector of each dislocation
is b = a = 2.46 Å.

1.2 Outline

Chapter 2 discusses the thermal rippling and elastic properties of graphene. Besides
several useful temperature dependent relationships derived from Monte Carlo simulations
and rigorous fluctuation formulas, we emphasize how the system size impacts the magnitude
of thermal fluctuations, the elastic compliances and other thermodynamic functions.

Chapter 3 presents a general nonlinear continuum theory for buckled edge dislocations in
a thin film with periodic boundaries. In particular, this theory is applied to compute disloca-
tion formation energies and the surface morphology of a free–standing graphene membrane.
The knowledge of elastic moduli of graphene obtained from Chapter 2 provides essential in-
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Figure 1.3: The thermal buckling (left) and the defect induced buckling (right) of a finite
sized free–standing graphene with periodic boundaries.

put parameters for the continuum model. It is shown that the dislocation formation energy
is effectively brought down through out–of–plane buckling and approaches a well defined
(but very high) value ∼ 6 eV in the thermodynamic limit. Thus, just like vacancies, a finite
density of dislocations is expected at any strictly positive temperature, which, according to
the 2D melting theory [17], implies that an infinitely large graphene sheet has a melting
point of 0 K.

Having studied dislocations in graphene, Chapter 4 focuses on topological defects in
CNTs and explores how buckling, tube dimensions and applied stresses together determine
the energetically favored defect pattern and the dynamics of plastic deformations. It is
proposed that under certain conditions, the plasticity of CNT is mediated through a line of
side by side Stone-Wales defects (named a “dislocation worm”) instead of dislocation glide
because of a subtle tradeoff between the buckling energy and the dislocation core energy.

Chapter 5 briefly reviews important results and points out possible directions for the
future work.
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Figure 1.4: The nucleation of a Stone–Wales defect and then a dislocation dipole in the
atomistic picture (top) or the continuum picture (bottom). The combination of a pentagon
and a neighboring heptagon can be identified as an edge dislocation.



6

Chapter 2

Elastic Properties of Graphene

2.1 Introduction

The mechanical properties of graphene have already been considered theoretically. Lier
and coworkers computed Young’s modulus and Poisson’s ratio for carbon nanotubes and
graphenes at 0 K by stress relaxation at fixed distortions using density functional theory
based methods [56]. Mounet and collaborators obtained the phonon spectrum of graphene at
different lattice parameters through an ab initiomethod and then applied the quasi-harmonic
approximation (QHA) to derive the free energies, the equilibrium lattice parameters and the
elastic moduli as a function of temperature [37]. At higher temperatures, the elastic constants
can be extracted directly from a Monte Carlo (MC) simulation without invoking the QHA
by averaging the elastic responses of carbon sheets to small deformations for a number
of sampled configurations [62]. It is also possible to model a carbon membrane as a thin
plate and relate its Young’s modulus with the vibration modes under appropriate boundary
conditions [24].

In this chapter, the elasticity of stress–free graphenes at several temperatures is studied
using Monte Carlo (MC) techniques with the isoenthalpic–isotension–isobaric (HtN) ensem-
ble [15]. An obvious advantage to working in the HtN ensemble is that the elastic compliance,
the thermal expansion coefficient, the heat capacity and many other interesting thermody-
namic functions can be derived rigorously from the statistics of (finite) strains and kinetic
energies [45] and thus are independent of the QHA. This approach has been applied success-
fully to three-dimensional bulk materials, (e.g., silicon [25]) and with simple modifications
can be applied in two-dimensional systems.

Our simulations confirm that a single-layered graphene may spontaneously develop ther-
mal ripples at finite temperatures [14, 34]. These ripples soften the elastic moduli effectively
in the sense that stretching a crumpled graphene sheet requires less force than stretching a
flat one. Furthermore, the predicted thermal expansion coefficient assume a very small or
even negative value at low temperatures, in accord with recent experiments [1].
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2.2 Simulation Methods

2.2.1 HtN Ensemble

The general framework of Metropolis MC using the HtN ensemble [16, 15] is employed as
follows. A flat, nearly square shaped monolayer graphene of N atoms is taken as the initial
configuration. Using three-dimensional Cartesian coordinates, the graphene membrane lies
in the x–y plane and periodic boundary conditions are imposed. The periodic supercell
is represented by a two by two matrix h, each column of which defines an edge of the
box. One MC step consists of, on average, N trials of moving a randomly selected atom
in the three-dimensional space plus one trial of changing the shape of the simulation box.
When the system is subjected to zero external pressure and zero thermodynamic tension,
the acceptance probability for a random perturbation follows [16]:

min

{
1,

(
A′

A

)N(
H − U(r′N)

H − U(rN)

)3N/2−1
}

(2.1)

where H is the constant enthalpy of the system, A = det(h) is the projected area of the
carbon membrane in the x–y plane, U(rN) is the potential energy computed through the
classical REBO potential [4], rN refers to the all the coordinates of N atoms, and the
quantities with and without primes correspond to the new and old configurations respectively.
The step size for each trial move is around 0.1 Å and is chosen adaptively depending on the
specified boundary conditions such that the acceptance probability is close to 50%.

Two cases are considered. In one case (call it case 2D), all atoms are confined in the x–y
plane but in the other case (call it case 3D), atoms are allowed to move in the z direction
to produce out–of–plane thermal fluctuations. In each case, simulations are performed for
six system sizes, namely, N = 60, 112, 240, 448, 836, 1560, and the enthalpies examined range
from -7.30 eV/atom to -6.20 eV/atom. A typical simulation runs 4×106 MC steps for case 2D
or 20×106 MC steps for case 3D. The first 1×106 steps and the remaining steps are used to,
respectively, obtain the thermal equilibrium state and compute various interested statistics.
The statistical errors are estimated from two stochastically independent MC simulations.

The in–plane finite strain tensor ε is defined in terms of the h matrix [46], namely, ε =
(J̃J−I)/2 where J = hh−1

0 is the Jacobian matrix, h0 corresponds to an undeformed reference
configuration, I is the two by two identity matrix and the tilde denotes the transpose of a
matrix. The thermodynamic tension t is associated with the in–plane stress tensor σ by [46]
t = (A/A0)J

−1σJ̃−1 where A = det(h) and A0 = det(h0). For stress–free graphene, σ (and
thus t) is fixed to zero. Fig. 2.1 summarizes the above settings.

Following Graben and Ray [16], the temperature T of the system can be evaluated through
⟨K⟩ = 3NkBT/2 where the kinetic energyK = H−U(rN) and kB is the Boltzmann constant.
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Figure 2.1: The setup of MC simulations within the HtN ensemble for anisotropic solids.

2.2.2 Fluctuation Formulas

The heat capacity at zero stress Ct = T (∂S/∂T )t, the thermal strain tensor βij =
(∂εij/∂T )t and the adiabatic elastic constant cSijkl = (∂tkl/∂εij)S are readily available us-
ing fluctuation formulas [45]:

⟨K2⟩ − ⟨K⟩2 = 3

2
N(kBT )

2(1− 3NkB
Ct

) (2.2)

⟨εijK⟩ − ⟨εij⟩⟨K⟩ = −3

2
N(kBT )

2βij

Ct

(2.3)

⟨εijεkl⟩ − ⟨εij⟩⟨εkl⟩ =
kBT

A0

(cS)−1
ijkl (2.4)

It is a standard exercise to derive the heat capacity at zero strain Cε = T (∂S/∂T )ε, the
thermal stress tensor bij = (∂tij/∂T )ε and the isothermal elastic constant cTijkl = (∂tij/∂εkl)T ,
for instance [59],

Cε = Ct/(1 +
A0T

Ct

βijβklc
S
ijkl) (2.5)

bij = −Cε

Ct

cSijklβkl (2.6)

cTijkl = cSijkl −
A0T

Cε

bijbkl. (2.7)

Given the elastic constant matrix c (and thus the elastic compliance matrix s = c−1), the
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in–plane Young’s modulus, shear modulus and Poisson’s ratio are calculated through

Y = 2/(s1111 + s2222) (2.8)

G = 1/(4s1212) (2.9)

ν = −s1122/Y. (2.10)

Note that Y , G and ν as defined above must be understood in an average sense. In this paper
both Y and G have the unit eV/Å2, respecting the two–dimensional nature of graphene (1.00
eV/Å2 corresponds to 47.76 GPa assuming the interlayer distance of 3.35 Å in graphite).

2.3 Results and Discussions

2.3.1 Thermal Rippling

Significant out-of-plane fluctuations are observed in all simulations. In particular, Fig.
2.2 shows two snapshots of a crumpled graphene consisting of 1560 atoms in the thermal
equilibrium state with the enthalpy fixed to be either −7.30 eV/atom or −6.20 eV/atom.
The maximal amplitude of the thermal ripples can reach as large as ∼ 4.0 Å at a high
temperature (in comparison, the bond length of graphene is about 1.42 Å). The rippling
gives rise to a nontrivial bending strain field [28] Fij = (1/2)∂iz∂jz whose spatial average
is given by F̄ij = (1/A)

∫
Fij dxdy where i, j can be either x or y. (The bending strain

will play an important role in constructing our continuum theory for buckled graphene
in the next chapter.) Given the atom positions of a wrinkled graphene sheet, it is not
hard to construct the surface morphology z(x, y) through interpolation and then F̄ij can be
numerically evaluated. It is found that the thermal rippling results in a nearly spherical
bending strain, i.e. F̄ij = F̄ δij, and F̄ varies from ∼ 0.27% (the top panel of Fig. 2.2) to
∼ 5.65% (the bottom panel of Fig. 2.2).

Another way to characterize the thermal fluctuations is to look at the standard deviation
of the out–of–plane atom displacements Dz versus that of the in–plane atom displacements
Dxy, as demonstrated in Fig. 2.3. An immediate observation is thatDz is significantly greater
than Dxy for all temperatures we have examined. In addition, at the same temperature, Dz

clearly increases with the system size whereas Dxy exhibits a much weaker size dependence.
It can be further shown that Dxy slightly drops (about 10%) when the thermal rippling is
manually turned off (case 2D), which may be explained by the coupling between the rippling
and the stretching modes in a two–dimensional membrane [42]. If such coupling can be
ignored, it may be deduced from the harmonic approximation that [42] ⟨|z(q)|2⟩ ∝ kBT/(κq

4)
for a stress–free sheet where z(q) is the Fourier component of z(x, y), κ is the bending rigidity.
Since the main contribution to Dz comes from z(q) with small |q| (the long wavelength
components), Dz should be approximately proportional to T , which is the case for T >∼ 1000
K. The increased Dz in large systems may lead to a very small or even negative thermal
expansion coefficient β (Fig. 2.4). In case 2D, β has virtually no size dependence and remains
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Figure 2.2: Snapshots of a wrinkled graphene with 1560 carbon atoms extracted from HtN
MC simulations. Each snapshot displays both the network of sp2 bonds of graphene and the
corresponding interpolated surface morphology. In the top panel, the enthalpy H is fixed to
be −7.30 eV/atom (∼ 371 K), while in the bottom panel, H = −6.20 eV/atom (∼ 4466 K).
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positive, while in case 3D, β continuously decreases as the system size increases and reaches
the value ∼ −1.92×10−7 for N = 1560 and H = −7.30 eV/atom (∼ 371 K). It appears that
β will be further reduced as the thermodynamic limit is approached.

Figure 2.3: The standard deviation of the out–of–plane displacements Dz and that of the
in–plane displacements Dxy as a function of temperature for different system sizes.

The thermal expansion coefficient is closely related to the lattice parameter a as a function
of temperature. We differentiate two types of lattice parameter in accordance with the
fact that the graphene sheet is significantly crumpled. The internal lattice parameter aint
associated with the average sp2 bond length indicates the actual size of the system, while
the external lattice parameter aext computed from the dimension of the 2D simulation box
tells the effective size of the system, which can be, at least in principle, straightfowardly
measured through experiments. Fig. 2.5 displays aint and aext for various system sizes at
different temperatures. The internal lattice parameter shows no obvious size dependence and
grows linearly with temperature, which behaves like conventional bulk materials. However,
be aware that the 3D case corresponds to a larger daint/dT than the 2D case because the bond
has more degrees of freedom for stretching in case 3D. Notice that the thermal expansion
coefficient β(T ) is proportional to daext/dT . Therefore, similarly to Fig. 2.4, we observe
strong size dependence of aext(T ) for case 3D but no such size dependence for case 2D.
It should be pointed out that β(T ) in Fig. 2.4 is calculated through evaluating the cross
variation of the strain tensor and the kinetic energy based on the fluctuation formula Eq.
2.3 rather than directly taking numerical derivatives of aext(T ).
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Figure 2.4: The linear thermal expansion coefficient β calculated using HtN MC simulations.

2.3.2 Elastic Moduli

The adiabatic and isothermal Young’s modulus, shear modulus can be easily calculated
from the fluctuation of strains according to Eq. (2.4) and (2.7). Fig. 2.6 summarizes the
main results. In general, both Y and G decrease as the temperature increases, which may be
simply explained using the Varshni model [58]. In addition, the presence of thermal ripples
reduces the elastic moduli and such reduction increases with the system size. For instance, for
N = 1560 and H = −7.30 eV/atom (∼ 371 K), the artificially flattened graphene (case 2D)
has YS ∼ 18.63 eV/Å2 ∼ 0.8900 TPa which agrees with the density functional theory based
calculations [56], while the crumpled graphene (case 3D) has YS ∼ 12.51 eV/Å2 ∼ 0.5973
TPa, showing a reduction of YS over 30%. This modulus softening effect due to the thermal
rippling can be understood qualitatively as follows: the evident out–of–plane crumpling of
graphene (see Fig. 2.2) effectively folds the membrane. Therefore, an infinitesimal test stress
must unfold the membrane first and this unfolding does not stretch many covalent bonds
as in the case of pulling a nearly flat graphene. In other words, while case 2D reflects the
true strength of a network of bonded carbon atoms, case 3D only tells the strength of a
folded network because the strains in Eq. (2.4) do not include the bending components
Fij. However, since thermal rippling always exist in a free–standing graphene at any finite
temperature, the real experiments may be more faithfully simulated by case 3D. If one is
more interested in the isothermal elastic moduli such as YT and GT , Eq. 2.7 can be applied.
YT is found to be smaller than YS but the difference is small (< 5% for case 2D and < 1%
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Figure 2.5: The top panel displays the internal lattice parameter aint =
√
3⟨b⟩ where ⟨b⟩ is

the average bond length. The bottom panel shows the external lattice parameter aext = L/N
where L is the total length of the four edges of the simulation box and N is the number of
primitive cells along these edges.
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for case 3D). Moreover, GT is almost identical to GS within numerical errors, as it should
be according to Landau and Lifshitz [28].

Fig. 2.7 shows adiabatic and isothermal Poisson’s ratios, both of which assume positive
values in the examined temperature range. Again, we recognize the already familiar size
dependence pattern, i.e., obvious size dependence for case 3D and nearly no size dependence
for case 2D, which is compatible with Fig. 2.6 about elastic moduli. Notice that the Poisson’s
ratio continuously drops down, say, at room temperature as the system dimension decreases.
It is possible that the Poisson’s ratio of a large enough free–standing graphene film may
reach a negative value.

To test the elastic isotropy of graphene at finite temperatures, define ξ = (s1111 −
s1122)/(2s1212). Note that while ξ = 2(1 + ν)G/Y = 1 for elastic isotropic materials, large
values of ξ usually suggests highly anisotropic elastic constants. In the top panel of Fig. 2.8,
ξ ≡ 1 for all system sizes and temperatures in case 2D. Nevertheless, ξ tends to increase
with the temperature and the system size in case 3D since thermal rippling destroys the
symmetry of the graphene lattice and large systems plus high temperatures often result in
large out–of–plane crumpling (see Fig. 2.3). It is known that for 2D anisotropic materials,
the Young’s modulus or the Poisson’s ratio is generally not a single constant. Therefore, Y
defined in Eq. 2.8 and ν defined in Eq. 2.10 should be understood in an average sense in
case 3D.

To gain further insights into the anisotropic elasticity, the bending rigidity κ are plotted
against the mean local mean curvature H in the bottom panel of Fig. 2.8. Notice that
the bending energy per unit area can be written as κH2/2 [28]. As the plot suggests, the
short wavelength components of the thermal ripples traveling in different directions may
have different bending rigidities. Recall that the elastic moduli of a spontaneously wrinkled
graphene sheet largely depend on how difficult to unfold the thermal ripples with applied test
stresses, so the elastic responses to test stresses are also generally direction dependent, which
implies an anisotropic elastic behavior. Although all the graphene samples concerned here
are nearly square, it turns out that the shape of the simulation box also causes anisotropy.
For a concrete example, consider a rectangular system of size L1 = 12.78 Å and L2 = 12.30
Å which has Y1 ≈ Y2 ∼ 19 eV/Å2 at T ∼ 370 K (where Yi are measured along the edge Li,
i = 1, 2). However, if we keep L1 fixed and double L2, then Y1 ∼ 19 eV/Å2 but Y2 ∼ 16
eV/Å2.

2.4 Conclusions

In summary, we have studied the temperature and size dependent elastic properties
of graphene at zero stress and external pressure using the MC techniques with the HtN
ensemble. The morphology of a graphene sheet at different temperatures is computed and
the magnitude of the out–of–plane fluctuations of carbon atoms is shown to increase with the
system size. The strong thermal rippling in large graphene membranes not only decreases
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Figure 2.6: The temperature dependent and size dependent adiabatic/isothermal elastic
moduli. Both the young’s modulus Y (the top panel) and the shear modulus G (the bottom
panel) decrease as the temperature increases. Moreover, the thermal rippling effectively
brings down the moduli. The system becomes unstable (sublimation) when the temperature
reaches ∼ 5500 K (case 2D) or ∼ 4500 K (case 3D). It is also seen that the adiabatic shear
modulus is nearly the same as the isothermal shear modulus.
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Figure 2.7: The adiabatic Poisson’s ratio νS (the top panel) and the isothermal Poisson’s
ratio νT (the bottom panel) of several system sizes at different temperatures.
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the thermal expansion coefficient and the elastic moduli, but also leads to a large deviation
from the isotropic elasticity.
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Figure 2.8: The top panel demonstrates the thermal rippling induced anisotropic elasticity
quantified by ξ = (s1111 − s1122)/(2s1212) (ξ = 1 for isotropic materials). Note that ξ may be
calculated according to either adiabatic or isothermal elastic compliances, but the results are
almost identical. The bottom panel suggests that thermal ripples propagating in different
directions may have different bending rigidities.
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Chapter 3

Continuum Theory of Dislocations in
Graphene

3.1 Introduction

Free–standing graphene sheets and many other types of flexible membranes might be ab-
stracted as two-dimensional manifolds embedded in a three-dimensional space. The internal
strain field developed by defects such as disclinations and dislocations in these thin films can
be screened effectively by nontrivial out–of–plane buckling [48]. Buckling is a critical factor
in predicting defect formation energies that reflect a subtle balance between stretching and
bending energies [48].

The well known Stone-Wales defect in graphene may be viewed as a tightly bounded
edge dislocation dipole in a two-dimensional hexagonal lattice [12]. The formation energy
and the defect core structure of a Stone-Wales defects and other dislocation dipoles have been
studied extensively within many theoretical frameworks [12, 9, 23, 47, 64, 40]. This chapter
is devoted to developing a continuum theory to study the interplay between buckling and
dislocations in graphene (or more generally, in any flexible membrane). This interplay leads
to substantial screening of the strains arising from a dislocation, and consequently yields
a well-defined formation energy for a single dislocation [43, 48]. The theory enables rapid
computation of the total energy of collections of defects, and thereby allows exploration of
metastable buckled states.

Following Landau and Lifshitz [28], an elastic thin plate with topological defects can be
characterized completely by the von Kármán equations with proper boundary conditions
[48]. Instead of explicitly solving these complicated differential equations in real space [48],
we assume periodic boundary conditions and directly minimize the total elastic energy of
the system with respect to the strain field in Fourier space, a technique originally developed
by Mura [38], later extended by Daw [6] and recently applied by Ertekin and coworkers to
calculate the energy of Stone-Wales defects in flat graphene sheets and carbon nanotubes
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[12, 13]. Our theory incorporates both the curvature contribution to the total energy and the
image forces of dislocations due to periodicity, and immediately facilitates the comparison
between the continuum and the atomistic methods.

3.2 Continuum Methods

3.2.1 Nonlinear Elastic Theory

In general, the bending of a flat membrane with large deflections can be described [28] by
an in–plane displacement field u(X) = (u1, u2) and an out–of–plane displacement function
f(X) at each point X = (x1, x2) referenced to the initial flat state in the two–dimensional
space spanned by the orthogonal unit vectors x̂1 and x̂2. The deformation map X → X′ =
(x1 + u1, x2 + u2, f) (see Fig. 3.1a) introduces the total strain uij = εij + Fij which is a
sum of the distortion strain εij = (∆ij + ∆ji)/2 with ∆ij = ∂iuj and the bending strain
Fij = ∂if∂jf/2. Notice that in accordance with the assumption of large deflections, the
nonlinear term Fij must be included in the total strain [28]. As illustrated in Fig. 3.1b, the
bending strain can be significant even when the total strain vanishes. The stretching energy
Es and the bending energy Eb of the membrane can be written as [48] (here and thereafter
the summation rule is assumed and each index ∈ {1, 2})

Es =
1

2

∫
d2Xcijkluijukl (3.1)

Eb =

∫
d2X(

1

2
κH2 + κGK) (3.2)

where cijkl is the elastic constant, κ and κG are the rigidities for the mean curvature H
and the Gaussian curvature K, respectively. The total elastic energy Et = Es + Eb. When
|∇f | ≪ 1, we have the following approximations [48]

H = ∇ ·

(
∇f√

1 + |∇f |2

)
≈ ∇2f (3.3)

K =
det(∂i∂jf)

(1 + |∇f |2)2
≈ det(∂i∂jf). (3.4)

Imposing periodic boundary conditions makes κG a irrelevant parameter. Indeed, as
shown in Fig. 3.2 a two–dimensional manifold with periodic boundaries is topologically
equivalent to a 2-torus whose Euler characteristic χ is exactly zero. According to the Gauss-
Bonnet theorem [35], the total Gaussian curvature of the membrane

∫
d2XK = 2πχ therefore

vanishes and we are left with

Eb =
1

2
κ

∫
d2XH2 ≈ 1

2
κ

∫
d2X(∂i∂if)

2. (3.5)
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Figure 3.1: A sketch of the deformation map from a flat membrane to a buckled one (left)
and an example of the bending strain for an unstretchable paper (right).

The periodic boundary conditions also permit the Fourier expansion of the stretching and
the bending energies [48, 6],

Es =
A

2

∑
G

cijkl(∆̃ij(G) + F̃ij(G))(∆̃kl(−G) + F̃kl(−G)) (3.6)

Eb ≈
Aκ

2

∑
G

∑
i,j

(G2
iG

2
j)|f̃(G)|2 (3.7)

with A the area of the membrane in the flat reference state, ∆̃(G), f̃(G) and F̃ij(G) the
Fourier transforms of ∆(X), f(X) and Fij(X) respectively, cijkl the elastic constants and κ
the bending rigidity for the mean curvature H. The approximation in Eq. (3.7) is H ≈ ∇2f ,
valid when |∇f | ≪ 1. Also note that F̃ij(G) depends on f̃(G) explicitly.

Figure 3.2: A continuous deformation (homeomorphism) between a periodic plane and a
2-torus.
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The existence of N dislocations forces the topological constraints [48]

αk = ϵij∂i∆jk =
N∑

β=1

bβkδ(X−Xβ) (3.8)

where bβ is the burgers vector of the dislocation β at Xβ, αk is the two-dimensional Nye
dislocation density tensor [38], ϵij is the permutation tensor and δ(·) is the Dirac delta
function. Rewriting Eq. (3.8) in Fourier space yields

iAϵijGi∆̃jk =
N∑

β=1

bβk exp(−iG ·Xβ). (3.9)

The solution to Eq. (3.9) consists of inhomogeneous and homogeneous parts [6], i.e. ∆̃ =
∆̃inh + ∆̃hom with

∆̃inh
jk =

i

AG2

N∑
β=1

(G× ẑ)jb
β
k exp(−iG ·Xβ) (3.10)

∆̃hom
jk = −iGjχ̃k. (3.11)

Here ẑ = x̂1 × x̂2 is the dislocation line vector. The free parameter χ̃k can be determined
by substituting Eq. (3.10) and (3.11) into Eq. (3.6) and then minimizing the total elastic
energy with respect to {χ̃k(G)}, which leads to

cijklGiGkχ̃j = −icijkl(∆̃
inh
ij + F̃ij)Gk. (3.12)

This is a 2× 2 linear equation for (χ̃1, χ̃2) and can be solved easily.
At this moment, Et is readily written as a function of {f̃(G)} only and it is a straightfor-

ward exercise to explicitly derive an analytical expression for ∂Et/∂f̃(G). Next, a nonlinear
programming algorithm [50, 49] is then employed to numerically find the local optimal so-
lution of the bending modes {f̃(G)} and the corresponding total elastic energy Et. Finally,
Eqs. (3.10), (3.11) and (3.12) are applied to obtain the distortion ∆̃ij(G) and Eqs. (3.6) and
(3.7) are invoked to find the stretching energy Es and the bending energy Eb, respectively.

One way to ensure the absolute convergence of the Fourier summuation in Eq. (3.6) is to
smear the singularity of u(X) by replacing the delta function in Eq. (3.8) with a Gaussian
distribution [6], i.e.

δ(X−Xβ) → 1

πr2c
exp

(
−(X−Xβ)2

r2c

)
(3.13)

where rc is the dislocation core radius. In the Fourier space, the smearing requires that [6]
the term exp(−iG ·Xβ) on the right hand side of both Eq. (3.9) and Eq. (3.10) be multiplied
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by the factor exp(−G2r2c/4). We further assume that the function f(X) is smooth enough
such that the Fourier summation in Eq. (3.7) is also absolutely convergent.

It is worthwhile to point out that given Eq. (3.1), (3.2) and (3.8), the variation of Et in
the real space with respect to u(X) and f(X) leads to a modified version of the von Kármán
equations [48], a set of coupled nonlinear second-order partial differential equations which
are generally very difficult to solve.

3.2.2 A Working Example

The most important input parameters for the continuum model include cijkl, κ and rc.
Given an ab initio or classical potential, cijkl at 0 K may be obtained through the second-
order derivatives of the potential with respect to strains, and κ at 0 K can be conveniently
determined by fitting the equation Eb = κπL/r where Eb is the bending energy of a tube with
length L and radius r. It is even possible to calculate cijkl and κ at finite temperatures using
Monte Carlo simulations and fluctuation formulas [15, 32]. In order to tune and benchmark
the continuum model for graphene, we employ the classical REBO potential [4] and compute
the Young’s modulus Y = 16.93 eV/Å2, the shear modulus G = 6.90 eV/Å2 and the bending
rigidity κ = 1.38 eV, all at 0 K. Since graphene is an elastically isotropic material, the cijkl
tensor depends on Y and G only. The dislocation core radius rc is chosen to be 0.94 Å,
an empirical value that appears to be reasonable in many cases. At finite temperatures, we
may employ the MC techniques with the HtN ensemble [15] as described in chapter 2 to
determine the elastic constants (in case 2D).

In Fig. 3.3, the continuum model is employed to calculate the strain field of a pair of
dislocations separated by 6a where a = 2.46 Å is the lattice parameter for the hexagonal
lattice of a flat graphene sheet. Notice that periodic boundary conditions are imposed.
Evident out-of-plane crumpling around 3 Å is observed. Moreover, the curl of the strain
field is nonzero around each dislocation, in accordance with Eq. 3.8. Once the total strain
field is known, the displacement field may be obtained by integration along, say, paths that
do not intersect the defined displacement cut. As expected, the computed displacement has
a jump across the cut.

3.3 Results and Discussions

3.3.1 Continuum Model vs. Atomistic Model

Consider the elementary case of a single dislocation dipole with one dislocation fixed and
the other gliding. The continuum model is employed to calculate {f̃(G)} from which the
real space membrane surface f(X) is constructed. Afterwards, in the atomistic model the
corresponding defected sheet of atoms are bent according to f(X) and then relaxed using
the conjugate gradient method with periodic boundary conditions. In Fig. 3.4, we explore
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Figure 3.3: The total/bending strain field computed by the continuum model for a graphene
membrane with a dislocation dipole. The top left panel sketches the 2D hexagonal lattice
for graphene and labels the dislocation positions and the Burgers vectors (the two small
arrows). The top right panel displays the defect induced out-of-plane buckling. The bottom
left panel illustrates the total strain field around one dislocation. The bottom right panel
shows the displacement field in the horizontal direction.
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such an example for a 59.18 Å × 51.25 Å graphene sheet with 1152 atoms. Starting from
a Stone-Wales defect at step 1, the moving dislocation glides by one lattice parameter (2.46
Å) along its slip plane at each of the following steps. Notice that when buckling is forbidden,
one recovers linear elastic theory [6, 12].

Let Et and EA
t be the total elastic energies computed from the continuum theory and

the REBO potential respectively. As shown in the top panel of Fig. 3.4, for both flat and
buckled sheets, Et and EA

t match quite well at all steps except the initial one. If we define
the relative error δ to be ∆E/EA

t where ∆E = Et − EA
t , then for the flat sheet, at step 1,

δ1 = −10.19%, while for the remaining steps, the average error δ̄ is only −0.28% ± 0.54%;
for the buckled sheet, δ1 = −8.63% and δ̄ = 3.20% ± 0.72%. The fact that the latter |δ̄|
is bigger may be attributed to the approximation in Eq. (3.7) which is no longer good in
regions with significant bending. For example, in the bottom panel of Fig. 3.4, when X is in
the vicinity of a dislocation, |∇f(X)| reaches its maximum value ∼ 0.62, a value that makes
the assumption |∇f(X)| ≪ 1 questionable. It is recognized that the continuum model tends
to underestimate the total energy for a Stone-Wales defect (δ1 < 0) and results in systematic
large errors (|δ1| > |δ̄|). The two dislocations within a Stone-Wales defect are very near to
each other and this short ranged interaction between dislocations is not described well by
the current theory.

However, it is surprising to see that the continuum theory works for such small systems
as in Fig. 3.4. In fact, we have examined even smaller system of 29.59 Å × 25.63 Å
with 288 atoms and the continuum theory still matches well with the REBO potential.
Furthermore, the continuum method can deal with more complex dislocation patterns other
than a single dipole. We have studied a dislocation quadrupole where one pair of dislocations
is stationary and the other pair moves together which first glides and then climbs (Fig. 3.5).
Again, the continuum theory not only identifies important bending modes of the membrane
but also nicely captures the trend of the total energy change. It should be clear that in
this example, the total mass is still conserved because two dislocations with opposite signs
climb simultaneously. One drawback of our present theory is that only the conservative
movements of dislocations are incorporated. Various types of nonconservative movements
such as the climb of a single dislocation inevitably introduces vacancies and are not discussed
here. Nevertheless, it is very interesting to understand the interactions between vacancies
and dislocations in buckled membranes, which deserves further investigations in the future.

As we have emphasized before, buckling has an important impact on the total elastic
energy. To illustrate this point, denote Ê as energy per area and expand Eq. (3.6) as Ês =
Ê∆

s + ÊF
s + Ê∆F

s where Ê∆
s , Ê

F
s and Ê∆F

s are energies due to ∆̃, F̃ and the interaction term
∆̃F̃ , respectively. Focusing on the bottom panel of Fig. 3.4, although the free membrane has
a fixed zero total strain, its sine–like shape implies a nonzero bending strain F11 = 3.58%,
F22 = 0.95% and F12 = 0 associated with a positive bending energy. However, at the same
time the stretching energy is greatly reduced because of the interaction term Ê∆F

s . More
specifically, for the flat sheet Êt = Ês = Ê∆

s = 6.71 meV/Å2, while for the buckled sheet
Ê∆

s = 31.74 meV/Å2, ÊF
s = 28.10 meV/Å2, Ê∆F

s = −57.93 meV/Å2, Êb = 1.72 meV/Å2
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Figure 3.4: A comparison between the continuum model and the atomistic model (REBO)
in the case of a dislocation dipole. The top panel shows the dislocation dipole energies calcu-
lated through the continuum method and the REBO potential in a graphene membrane that
is either forced to be flat or is allowed to buckle. At each step, one dislocation is stationary
and the other one is moving along the slip plane e1. The bottom panel presents the buckled
membrane surface at the last step as well as the corresponding optimized atom configura-
tion where a pair of neighboring pentagon and heptagon stands for a two-dimensional edge
dislocation.
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Figure 3.5: A comparison between the continuum model and the atomistic model (REBO) in
the case of a dislocation quadrupole. The top panel shows the dislocation quadrupole energies
calculated through the continuum method and the REBO potential in a graphene membrane
that is either forced to be flat or is allowed to buckle. At each step, one dislocation dipole
is stationary and the other one is moving along the slip plane e1 and then climbs together.
The bottom panel presents the buckled membrane surface at the last step as well as the
corresponding optimized atom configuration.
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and thus Ês = 1.92 meV/Å2, Êt = 3.64 meV/Å2. Now, it is obvious that Ê∆F
s is the only

term that actually decreases Es and Et.

3.3.2 Finite Dislocation Energy

As we have seen in Fig. 3.4, the dipole formation energy Et is reduced due to buckling.
In addition, it appears that the energy approaches a constant as the distance r between
the two dislocations increases. Plotting Et as a function of r/b for large systems (Fig. 3.6)
where b = 2.46 Å is the Burgers vector, the trends clearly suggest that for flat graphenes
the formation energy of a single dislocation Ed(r) = Et(r)/2 follows Ed(r) ∼ log(r), whereas
for buckled graphenes, Ed(r) ∼ 12.33/2 = 6.17 eV when r is big. The results are in good
agreement with the earlier argument that the energy of a buckled dislocation is finite in an
infinite large system [43, 48]. Indeed, according to Seung and Nelson [48], the buckling radius
rb ∼ 127κ/(Y b) = 4.21 Å and thus Ed(∞) ∼ (8π)−1Y b2 log(rb/rc) ∼ 6.11 eV which is close
to our value 6.17 eV.

Recall that in the theory of two–dimensional melting [17], a flexible membrane will melt
into a hexatic phase at any finite temperature in the thermodynamic limit due to the fact
that a finite Ed(∞) is eventually dominated by the entropy term [48] ∼ 2kB log(r/rc). In
other words, an infinite graphene sheet cannot maintain its crystalline structure because the
long–range translational order is destroyed by the simultaneous dissociation of dislocation
pairs [17].

However, in practice, graphene is a well defined two–dimensional crystal at least at room
temperature. The reason for that is the extremely high value of Ed(∞). As a crude estimate
[17], a sheet with size r will melt when Ed(∞) ∼ 2kBT log(r/rc). Therefore, for a melting
temperature Tm = 300 K, r ∼ rc exp(Ed(∞)/(2kBTm)) ∼ 1041 m which is much greater than
the diameter of the observable universe (∼ 1027 m)! Nevertheless, Tm = 4000 K corresponds
to a much smaller and reasonable r ∼ 700 nm for a real experiment.

3.3.3 Applications

The continuum theory can be extended to handle other interesting situations. For in-
stance, i) suppressing the buckling at the boundaries is equivalent to a group of linear con-
straints:

∑
G1

f̃(G) = 0 for any G2 and
∑

G2
f̃(G) = 0 for any G1; ii) applying an external

in–plane stress field σij(X) and a pressure p(X) normal to the membrane can be modeled by
adding a work term −A

∑
G(σ̃ij(G)∆̃ij(−G) + p̃(G)f̃(−G)) to Es where σ̃ij(G) and p̃(G)

are the Fourier transform of σij(X) and p(X) respectively.
The controlled rippling of graphene recently realized in experiments [1] can be modeled

using the continuum theory. As illustrated in Fig. 3.7), a graphene ribbon of Lx = 118.36 Å
and Ly = 25.63 Å with buckling suppressed at its edges along the x–direction is subjected
to an in–plane compressing stress σxx = −0.2 eV/Å2. Such boundary conditions lead to
periodic wrinkles with a wavelength λ ∼ Lx/4 = 29.59 Å which matches very well with a
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Figure 3.6: The dipole formation energy Et as a function of distance r between the two
dislocations consisting of the dipole. The x–axis r/b where b = 2.46 Å is set either in the
regular scale (the top panel) or in the logarithmic scale (the bottom panel). The graphene
sheet could be flat or buckled. The dipole orientation is similar to that in Fig. 3.4. Three
system sizes are considered, namely, size S is 59.18 Å × 51.25 Å, size M is 118.36 Å × 102.51
Å and size L is 177.55 Å × 153.76 Å.
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general theory of wrinkling [5] that estimates λ ∼ 2
√
πLy(κ/σxx)

1/4 = 29.08 Å. The angle
of the wrinkles can also be adjusted by applying a shear stress [60]. As shown in the bottom
panel of Fig. 3.7, the addition of a shear of 0.1 eV/Å2 tilts the wrinkles by ∼ 57 ◦.

Figure 3.7: The shear stress controlled wrinkling of graphene. Edges in the x–direction are
constrained to have no buckling. A compressing stress produces periodic wrinkles (the top
panel) which could be slanted by the addition of a shear stress (the bottom panel).

It is a familiar fact that an in–plane pulling or shearing stress encourages plastic de-
formations and the nucleation of corresponding dislocations. However, carefully designed
normal loadings may also effectively decrease the defect formation energy. Fig. 3.8a and
3.8b demonstrate the creation of a pair of dislocations separated by 6b in a 44.39 Å × 25.63
Å membrane with edges that are constrained to have no buckling. The loading P follows
a Gaussian distribution with Pmax = 1.00 eV/Å3 = 0.16 TPa and a standard deviation 1.0
Å, which is a simple model for the force field of a probe–like nanoindenter. Removing the
loadings results in a mechanically stable defected sheet (Fig. 3.8c) with a total elastic energy
12.77 eV. In comparison, the dipole nucleated in the loaded membrane (Fig. 3.8a) has a
much lower formation energy, only 1.17 eV. It is also found that there is a mechanically
metastable state as shown in Fig. 3.8e. The elastic energy of this state is 12.94 eV. By
pressing down (e.g. Fig. 3.8d) or pulling up the bubble around a dislocation, it is possible
to go back and forth from the stable state to the metastable state.

The loadings in Figs. 3.8a and 3.8b might be realized using two scanning probes. Exper-
imentally, it is probably more simple to apply a single probe. Even in this case, the probe
can be used to reduce the defect formation energy, though the reduction is much reduced in
comparison to the two probe case. Figure 3.9 shows deformation under a single probe before
and after the introduction of a dislocation dipole. In this case, Et is reduced from 12.77 eV
to 7.93 eV.
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Figure 3.8: Modeling nanoindentation of a defected graphene sheet with buckling suppressed
at all boundaries. External normal loadings produce a buckled surface (panel a) which
facilitates the nucleation of a dislocation dipole (panel b). After the loadings are removed,
the system sits in a mechanically stable state with an either upward or downward bubble
around each dislocation (panel c). The upward bubble can be pressed down (panel d), leading
to a metastable state where both bubbles are downward (panel e).



CHAPTER 3. CONTINUUM THEORY OF DISLOCATIONS IN GRAPHENE 32

Figure 3.9: Similar scenarios as Fig. 3.8a and 3.8b except that the normal loading is exercised
by a single probe.

3.4 Conclusions

In summary, a nonlinear continuum model is developed to describe dislocations in a
crystalline membrane with large deflections. Under periodic boundary conditions, the topo-
logical constraints imposed by dislocations are transformed into a set of algebraic equations
in Fourier space. The total energy subjected to these constraints are minimized, giving
in–plane strains and out–of–plane displacements. When applied to graphene. The elastic
energies and bending modes computed from the continuum theory match well with more
detailed atomistic models. Furthermore, it is found that buckling effectively screens the
elastic field of dislocations, which results in a well defined formation energy (∼ 6.17 eV) for
a single dislocation in the thermodynamic limit. Therefore, we may assume the familiar Ar-
rhenius law to calculate the density of dislocations in a free–standing graphene. In practice,
the continuum theory provides an efficient approach to simulate many interested mechanical
properties of graphene sheets.
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Chapter 4

Plasticity in Carbon Nanotubes

4.1 Introduction

Recent experiments into the nature of deformation and plasticity in graphene and carbon
nanotubes (CNTs) suggest that the mechanical properties of two dimensional systems are
complex and unique in their own right. The intrinsic strength of these carbon–based systems
is predicted to exceed that of any known material [44], an expectation that is quantitatively
supported by newly reported experimental measurements [44, 30]. Images of topological de-
fects in graphene and single–walled carbon nanotubes (SWNTs) have been directly obtained
via high resolution transmission electron microscopy [18, 53], indicating that defects accu-
mulate near kinks in the plastic deformation of the tube [53]. Experimental observations of
the intrinsic ripples in graphene [34], and computational explanations thereof [14] indicate
that buckling and bending play an active role in the deformation. We present in this chapter
theoretical and computational evidence for a novel deformation mechanism in CNTs and pos-
sibly other sp2 carbon systems: a stress–dependent cooperative motion of dislocations that
gives rise to plasticity. This deformation mechanism exists alongside more conventional dis-
location glide, and arises from a complex and unique interplay between buckling, plasticity,
and intrinsic defect core energies which can only occur in two–dimensional systems.

Graphene, CNTs and other sp2 carbon systems can be thought of as two–dimensional
manifolds that are free to deform (bend, stretch, buckle, etc.) in the three–dimensional
space in which they are embedded. Plastic deformation in sp2 carbon systems is proving
to be a very interesting phenomenon. Although direct experimental investigations into the
nature of the deformation of carbon membranes have only recently become accessible, the
existence of defects analogous to dislocations in conventional three–dimensional materials
were previously predicted and explored computationally [31, 12, 13, 8, 7, 64]. Experimental
efforts [22, 21, 20, 19] have also been undertaken to elucidate how topological (e.g., Stone–
Wales) defects and their motion enable plastic deformation in these systems. For instance,
CNTs have been shown to undergo elongations of over 280% at high temperature under
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tensile loads [22]. This elongation is accompanied by a reduction in nanotube diameter and
the movement of kinks along the nanotube axis, indicating a defect–mediated mechanism of
plastic deformation operational at the nanoscale. Indeed, it has long been appreciated that
understanding stability, deformation, and plasticity in graphene–based systems is critical for
exploiting their unique properties in real world applications.

Developing theories of plasticity in CNTs and other sp2 carbon systems is a nontrivial
endeavor. The fact that one must model large volumes of material limits progress. Even more
limiting, however, is the fact that plastic deformation takes place on time scales much longer
than can typically be addressed within direct atomic scale molecular dynamics (MD) methods
[39, 41, 54]. In this chapter, we develop a Monte Carlo sampling framework that can efficiently
sample the phase space consisting of all possible C–C bond rotations in an sp2 carbon
network. Our approach discovers a novel topological defect pattern that is intrinsically
different from other well documented ones, for example, vacancies [18, 29], glide [61], brittle
fracture [61], sublimation of carbon dimers [7, 8], carbon ad-dimers [51], etc. This pattern
emerges as an array of closely packed edge dislocations with alternating signs and is generally
favored in tubes with large radii and under high tensile stresses. We further investigated the
energetic stability of this pattern and its competing mechanisms such as dislocation glide
and brittle fracture. The temperature effects on the formation of various defect patterns and
the plasticity of CNTs are studied using kinetic Monte Carlo (KMC) simulations.

4.2 Simulation Methods

4.2.1 KMC Scheme

Our model relies on the following assumptions to sample the potential energy surface
(PES). First, the system maintains sp2 bonding and a constant number of atoms and bonds,
i.e., N carbon atoms and 3N/2 bonds (when periodic boundary conditions are imposed).
Second, generation of four sided rings and enneagons is prohibited. The topology of the
system is used to characterize the states accessible from the current state by C-C bond
rotations. That is, in each Monte Carlo step, a single bond rotation drives the system from
the current state to the next. For instance, starting from a defect free carbon membrane, the
rotation of the first bond creates a Stone-Wales defect. Subsequent rotations can annihilate
the original Stone-Wales defect, create an additional Stone-Wales defect, create an octagon
that leads to strain localization and brittle failure, or move an existing dislocation by one
Burger’s vector (Fig. 4.1). The atomic configuration of each state is optimized subject to
the constraint that its bonding topology is fixed. In this way, PES local minima are sampled.

The classical REBO potential [4] is employed for most of our investigations. We are pri-
marily interested in armchair (n, n) CNTs that are believed to be ductile at low strain and
high temperature [39]. Stress relaxation and creep “experiments” are implemented by apply-
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Figure 4.1: The migration of a sp2 carbon system from one state to another by bond rotations.
Each rotation involves four atoms, e.g., those labeled with A, B, C, D. The topology of the
system is changed by breaking two old bonds (AC and BD) and forming two new bonds (AD
and BC).
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ing a constant displacement per unit length or force, respectively, along the tube. Periodic
boundary conditions are employed. The force normalized by the initial tube circumference
is defined as the engineering stress. Geometric optimizations at each step are implement-
ed by the fast inertial relaxation engine (FIRE) [2]. Forces are computed using analytical
derivatives of the REBO potential. The root mean square force of the optimized structures
is less than 10−4 eV/Å.

Within KMC transition rates from the current state to all eligible next states are defined
to be rij = ν exp(−Eact

ij /kBT ) where rij is the transition rate from state i to state j, Eact
ij

is the corresponding energy barrier, ν is the attempt frequency, T is the temperature and
kB is the Boltzmann constant. The residence time on the current state and the choice of
the next state are determined in the standard manner [3]. We consider two formulations.
In the first, rates are determined entirely by initial and final state energies. The second
approach incorporates explicit energy barriers, which turns out to be a tricky issue and will
be discussed in detail in the next section.

A typical KMC step involves a large number of atomic scale relaxations. First, each bond
is identified. The bond rotation is applied, and the atomic scale structure determined, along
with the change in energy. The energy barrier is then calculated if necessary. For N atoms,
the system contains 3N/2 bonds and there are two possible rotations per bond for a total of
3N minimizations and saddle point identifications per KMC step. The approach is general,
and can incorporate PESs computed using empirical and first principles approaches.

4.2.2 Energy Barriers

Unfortunately, PESs predicted by the classical REBO potential [4] are not smooth enough
to have well defined Hessian Matrices at every point. The nonanalytic behavior frustrates
saddle point identification methods. To illustrate this point, the PES of creating one Stone-
Wales defect within a buckyball, C60, is constructed along two chosen reaction coordinates
[11] while relaxing all other degrees of freedom (Fig. 4.2a). The REBO potential leads to a
PES with cusps whereever two sheets of the energy surface characterized by differing bonding
topologies meet. These cusps are probably due to the bond breaking and forming during the
defect nucleation and the fact that the REBO potential computes the total energy as the
sum of all bond energies.

Therefore, as an alternative, we use an ad hoc pseudo reaction coordinate method to
estimate energy barriers. Since each bond rotation only affects the bonding of four atoms [11],
e.g., atoms A, B, C, D in Fig. 4.1, we define AB ·CD as a pseudo reaction coordinate, where
AB represents a vector connecting atom A to atom B, etc. Several constrained optimizations
along a path varying the reaction coordinate are executed to locate the transition state
between the initial and final states. Several points between the initial and final configuration
are sampled. At each point, AB ·CD is fixed to some value and the total energy is obtained
through a constrained structural optimization. The peak value of the energy path along
the reaction coordinate is estimated by the choosing the maximum of a natural cubic spline



CHAPTER 4. PLASTICITY IN CARBON NANOTUBES 37

passing through the sampled points.
Fig. 4.2b shows an example of the energy path in the case of C60. For each saddle point,

we sample 10 points along the pseudo reaction coordinate. The configurations are chosen
near the initial and final states. The bond in question is rotated in 0.171 radian increments
for five increments from each of the endpoints. The peak value is identified at 5.0 eV using
a natural spline interpolation, in comparison with 6.2 eV using an ab initio approach [11].
Fig. 4.2b shows a comparison between the saddle point determined in this fashion and the
PES predicted by the REBO potentials.

More generally, the approach produces a reasonable description of the energy surface. In
load–free (6,6), (5,5) and (4,4) tubes, the activation energy barrier of a single Stone-Wales
defect is, respectively: 9.4 eV, 9.1 eV, 8.9 eV in ab initio [10] and 8.7 eV, 8.5 eV, 8.1 eV in
our calculations; in the (5,5) tube, the activation energy of the same defect at 0.06, 0.12 and
0.15 strain is, respectively: 6.5 eV, 3.9 eV, 3.0 eV in ab initio [10] and 7.1 eV, 4.7 eV, 3.1
eV in our calculations. Our approach thus yields satisfactory trends.

4.3 Results and Discussions

4.3.1 Dislocation Worms

As a first step, we consider a simple relaxation model in which transition rates are de-
termined solely by the differences between initial and final energies, and the process that
is most rapid is always selected. These simulations are economical, and enable the identi-
fication of candidate deformation mechanimsms. A (10,10) CNT 47.073 Å long composed
of 2760 atoms and including 4140 bonds is modeled. Periodic boundary conditions are em-
ployed. Two constant engineering stress “experiments” are carried out by initially loading
the tube with a fixed engineering stress of 1.105 eV/Å2 (initial strain of ∼ 7.8%) and a fixed
engineering stress of 1.635 eV/Å2 (initial strain of ∼ 13.0%), respectively. The results are
summarized in Fig. 4.3, Fig. 4.4, Fig. 4.5 and Fig. 4.6.

At low stress, as shown in Fig. 4.3, after the initial plastic event of creating a simple
edge dislocation dipole separated by three burgers vectors, subsequent deformation steps
simply separate the dipole. This process is equivalent to dislocation glide in 3D. One striking
difference, however, is that the motion of dislocations in CNT leads to non-negligible buckling
of the tube near the dislocations (Fig. 4.4). At high stress, as shown in Fig. 4.5 and Fig.
4.6, one sees a very different deformation pattern. The initial step is, again the creation
of a simple dislocation dipole. The following steps, however, are very different. Instead of
the dislocation gliding as at low stress, subsequent steps lead to the formation of a chain of
dislocation dipoles with no net Burgers vector. Eventually, the dipole chain breaks, yielding
two edge dislocations of opposite sign, each screened by an array of dislocation dipoles.
The subsequent steps either lengthen these arrays by the creation of an additional dipole
immediately in front of the dislocation array or shorten them by the annihilation of the
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Figure 4.2: The 2D PES of creating a Stone-Wales defect in C60 computed by the classical
REBO potential a) and the energy profile along the pseudo reaction coordinate b) where
the maximum point (the red square) is identified through natural splines (the dotted blue
line) based on 10 sampled points (the blue dots). For comparison, it also shows in b) the
projection (the solid black line) of 2D PES in a).
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Figure 4.3: Contour plots of strain energy in (10,10) CNTs under low axial stress (1.105
eV/Å2). The dislocations are labeled by circles with arrows indicating the glide direction.

Figure 4.4: Contour plots of local tube radius correspond to Fig. 4.3. It is observed that
carbon membranes are significantly buckled around the two gliding dislocations.



CHAPTER 4. PLASTICITY IN CARBON NANOTUBES 40

Figure 4.5: Contour plots of strain energy in (10,10) CNTs under high axial stress (1.635
eV/Å2). The dislocation chains/worms are highlighted by double arrows. Image 1–3 show
the breaking of a long dislocation chain From image 3 to panel 4, two short dislocation chains
are formed by annihilating several dislocation dipoles. Image 5 and 6 depict the worm-like
motion of one chain.
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Figure 4.6: Contour plots of local tube radius correspond to Fig. 4.5. A comparison among
these plots and those in Fig. 4.4 reveals that isolated dislocations introduce more buckling
than dislocation worms.
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trailing dipole. In this way, the two dislocation arrays glide away from each other along the
slip plane in a cooperative manner, which resembles the motion of a caterpillar or worm and
we henceforth refer to the dislocation screened by dipoles as “dislocation worms” (Fig. 4.7).

The appearance of worms at high stress is, at first, puzzling. Within linear elasticity
theory, the worms accommodate the same level of plastic strain per step as an isolated
dislocation. But in contrast, they have a larger number of dislocation cores, and one expects,
a larger net dislocation core energy. This dislocation core energy increase must be balanced
by another contribution to the energy.

Examination of two relaxed atomic scale configurations with equivalent plastic strain
reveals the source of this additional energy: given equal plastic strain, dislocation glide is
associated with a greater level of buckling within the CNT than an array of dislocation
dipoles. Isolated defects generated through glide have long–ranged stress fields and con-
sequently high local strain energies (Fig. 4.3). These strain energies can be relieved by
buckling that introduces a curvature change in the carbon membrane near the defects at the
cost of shortening the tube length, and yielding less macroscopic strain. On the other hand,
dislocation worms produce less strain energy than isolated dislocations because the elastic
fields of closely packed dislocations are able to effectively screen each other (Fig. 4.5). In this
case, less buckling is required to relax strain energies and thus the CNT is shortened less,
but the total dislocation core energy increases. At lower stresses, the reduced macroscopic
strain is not as costly as the introduction of more dislocation core energies, and glide ensues.
At higher stresses, screening dipoles increase the core energy, but enable larger macroscopic
strains with each step.

4.3.2 Mechanisms of Plastic Deformation

Since the buckling energy is dependent on the radius of the CNT, it is expected that
the worm length is dependent on both the applied stress and the tube radius. In addition,
even when screened, the dislocations interact over long ranges. Hence the worm length
should also vary as a function of local stresses, the boundary conditions (e.g. the imposed
periodicity), the total plastic strain, etc. To demonstrate this dependence, we construct a
plastic deformation map (Fig. 4.8) wherein we identify the number of dislocation dipoles
formed during nucleation of individual worms under constant engineering stress conditions
with periodic boundary conditions. In addition, Fig. 4.8 identifies regions of the map in
which the nanotube simply fails in a brittle fashion (energetically) and shows the yield
strength of the armchair CNTs, here defined as the stress for which the formation energy of
a Stone-Wales defect is equal to zero.

Several trends emerge. First, larger radii nanotubes lead to a longer chain of dislocation
dipoles for a given applied stress. Second, tubes with larger radii display a transition between
simple dislocation glide and worm mediated glide at a finite applied stress. Such transitions
might be observable using modern microscopy techniques. Third, in the limit of zero mean
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Figure 4.7: (a) An illustration of the nucleation of two worms containing (nominally) three
dislocations. At time step (1), a dipole is nucleated. At time (2), a second dipole adjacent
to the first is nucleated. Time (3) sees the nucleation of a third dipole pair, and time (4)
the fourth. At time (5), the central dipole annihilates, leaving two worms of nominal length
three moving the directions shown. This nucleation event would be assigned to region 4 in
Fig. 5, because the worm forming structure contains four dipoles. (b) An illustration of the
motion of the worm on the right at time (5) in part (a). This worm contains three to five
dislocations. At time (1), the worm is in it shortest state. At time (2), the worm begins
nucleating a forward dislocation pair(gray, circled). By time (3), the pair is completely
formed, and the worm in its longest configuration. At time (4), the trailing dislocation pair
begins annihilating (gray, circled). At time (5), the rearward pair has completely annihilated,
and the worm is again in its shortest state. The net result is the advancement of the worm
by a distance equal to twice the length of the Burgers vector.
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Figure 4.8: The map of plastic deformation mechanisms by tube radius and axial stress for a
85.2 Å long armchair CNT with periodic boundaries. Symbols represent actual calculations,
and lines are guides for the eye. In the left region (low stress), dislocation glide is energetically
preferred. In middle region, worms are produced from arrays of dislocation dipoles. The
number indicates the number of dipoles introduced before it is favorable for the chain to
break into two worms. In the right region, CNT’s evolve according to the fracture pattern
and fail. The yield stress as a function of tube radius is also plotted for reference.
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curvature, i.e. infinite large radius, the CNT essentially becomes graphene with plasticity,
according to the map, dominated by dislocation worms.

We have also conducted total energy electronic structure calculations of various defect
configurations in graphene and carbon nanotubes in order to ensure that the patterns emerg-
ing from the REBO description persist within more accurate computational methods. The
total energy electronic structure calculations reported here are conducted within Density
Functional Theory (DFT) [27, 26], employ pseudopotentials [57] and invoke the local den-
sity approximation to the exchange correlation energy. Single–particle states are expanded
via a plane–wave basis set. The calculated lattice constants and bulk moduli are in good
agreement with experimental measurements and other theoretical results, and for each cal-
culation we have ensured convergence with respect to both the k–point mesh and the plane
wave cutoff. Tables I and II summarize the results obtained for a (7,7) carbon nanotube
(192 atom supercell) and a 180 atom graphene supercell, respectively.

(7,7) Carbon Nanotubes
strain ezz 0% 3.6% 11.0%

Defect Formation Energies from DFT (eV)
SW 4.05 1.68 -3.48
glide 6.89 3.03 -6.25
worm 7.72 2.80 -7.60

Glide vs. Worm Energy (eV)
Eg − Ew (DFT) -0.83 0.23 1.35
Eg − Ew (REBO) -2.54 -1.04 0.42

Table 4.1: Defect Formation Energies in (7,7) carbon nanotube computed via DFT.

Graphene Sheet
strain ezz 0% 1.9% 8.4%

Defect Formation Energies from DFT (eV)
SW 4.88 3.87 -0.78
glide 10.09 8.78 0.22
worm 8.99 7.55 -1.81

Glide vs. Worm Energy (eV)
Eg − Ew (DFT) 1.10 1.23 2.03
Eg − Ew (REBO) -0.13 0.20 1.15

Table 4.2: Defect Formation Energies in Graphene computed via DFT.
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A (7,7) carbon nanotube represented by a 196 atom supercell under tensile loads of
0%, 3.6%, and 11.0% strain was initially considered. In this system, we find that again,
worms are favored over glide at high strains where buckling is suppressed (e.g., at 3.6% and
11.0% strain), while as expected, in the unstrained nanotube where buckling is favorable,
the formation energy for the isolated dislocation (glide) is lower than that of the worm. By
comparison, for the same system now described by REBO, glide is favored for the unstrained
and 3.6% strained system, while worms are favored at 11.6% strain. Thus, the trends
obtained by the two methods are similar, although in DFT the transition from glide– to
worm– mediated deformation takes place at even smaller strains. We also compared the same
defect formation energies in a 180 atom graphene sheet at strains of 0%, 1.9%, and 8.4%. In
this system, we find that DFT always favors worms over glide for all strains, while REBO
does in fact favor glide at 0% strain (although only by 0.13 eV) and then quickly transitions
into worm–mediated deformation before 1.9%. Thus, the DFT calculations demonstrate that
qualitatively, the patterns described by the REBO description persist, although it appears
that DFT favors worm formation over isolated dislocations even more strongly than the
empirical potentials (i.e., the transition line between glide and worms in Fig. 4.8 is pushed
towards the left).

4.3.3 Plasticity at Finite Temperatures

Finally, we explored the effects of introducing temperature and computed energy bar-
riers for each bond rotation. KMC simulations are used to model a constant engineering
stress experiment with a (10,10) armchair CNT (800 atoms and 1200 bonds) loaded with
an engineering stress of 1.0 eV/Å2 (∼ 7.0% initial elastic strain) along the tube axis. The
temperature is fixed at 2000 K, below the sublimation temperature of CNT (∼ 2500 K).

Fig. 4.9 and Fig. 4.10 summarize simulation outcomes of 40 runs of the same KMC
simulation with different random seeds. At each selected strain, the KMC time data are
represented by a box plot [55] where the box shows the 0.25 quartile, the sample median and
the 0.75 quartile, and the whiskers indicate the sample minimum and the sample maximum,
and plus symbols suggest possible outliers. The initial Stone–Wales defect is nucleated from
the defect-free material, taking 81.5 seconds on average (assuming ν = 1013 sec−1), and
then the tube elongates rapidly, in accordance with previous results [36]. Along the strain–
time curve, some snapshots of the system extracted from a typical KMC run suggest that
the plasticity is achieved by a combination of different mechanisms, e.g., dislocation glide,
defect nucleation, defect annihilation, etc. We note that the formation of dislocation chains
persists, even when energy barriers are included, indicating that this plasticity mechanism
should in fact occur alongside other mechanisms in experiment. It is also noted that the
strain increment from one snapshot to the next is not uniform, although in all cases, the
origin is the movement of an edge dislocation by one Burgers vector. If ∆e(XY) is used
to indicate the strain increment from the snapshot X to Y, then qualitatively we have
∆e(BC) ≈ ∆e(CD) > ∆e(AB) ≈ ∆e(EF) > ∆e(DE). Interestingly, the process BC or CD
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increases a dislocation chain; AB or EF makes a dislocation glide; DE annihilates a defect.
If plasticity is mediated by worms, one might expect this to have an impact on measured

properties. For example, the number of slip planes intersected by dislocation cores comprising
a single worm is certainly larger than that of isolated dislocations. If dislocations on differing
slip planes interact with contact forces, worms will increase the extent of this interaction
substantially, possibly yielding an increase in hardening rate.

4.4 Conclusions

In summary, we have developed a phase space sampling approach to study topological
defect dynamics in CNTs. We have discovered a new defect pattern, “dislocation worms”,
that are energetically favored in large CNTs under high axial stresses. In comparison with
dislocation glide, dislocation worms lead to less buckling of the carbon membrane and hence
allow more effective plastic elongation along the axial direction. More specifically speaking,
nanotubes with smaller curvatures are more easy to buckle, which, as discussed in Chapter 3,
provides an effective way to reduce the elastic energy of a dislocation dipole. However, such
buckling shortens the tube length and therefore decreases the work done of imposed tensile
stresses and increases the total energy. It is postulated that the higher the tensile stresses the
greater the total energy increase. To explore the strain–time relationship in strain relaxation
experiments at finite temperatures, we employ KMC techniques that enable modeling of more
realistic time scales by explicitly reflecting computed energy barriers. It is generally true
that the nucleation of the first Stone–Wales defect is the strain rate controlling step, and
subsequent steps may produce various complicated defect patterns through bond rotations.
Some of these patterns are recognized as dislocation worms or dislocation glide.
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Figure 4.9: The engineering strain versus time curve (dash line) at 2000 K after the formation
of an initial Stone–Wales defect. The KMC time data from 40 stochastic independent runs
of the same KMC simulation are summarized in box plots. Each box plot depicts the data
through the five–number summaries, i.e., the smallest observation, lower quantile, median,
upper quantile and largest observation, plus possible outliers.
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Figure 4.10: Typical snapshots of CNT at several strains in the KMC simulation where
image S1–S6 correspond to point S1–S6 in Fig. 4.9. Image S1 shows the nucleation a single
SW defect, i.e., an edge dislocation dipole which glides by one step in image S2. In image
S3, S4 and S5, a chain of 5 dislocations is formed and then breaks in the middle, leaving a
single dislocation in one end. This dislocation then glides in image S6.
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Chapter 5

Conclusions

5.1 Key Results and Comments

To understand the elastic properties of free–standing graphene membranes, we employ
MC methods within the HtN ensemble which allows rigorous calculations of the elastic com-
pliances and thermal expansion coefficients from fluctuation formulas. Thermal ripples spon-
taneously develop and their average amplitude increases with the system size, in consistent
with the Mermin–Wagner theorem. At high temperatures, the elongation of carbon–carbon
covalent bonds expands the graphene membrane, but at the same time the thermal fluctu-
ations effectively folds the membrane, leading to reduced thermal expansion coefficients. In
addition, the effective elastic moduli are decreased because an infinitesimal test stress shall
easily unfold the crumpled surface instead of stretching many strong sp2 bonds.

It is very important to realize that in continuum theories of thin plate (for example, the
theory developed in Chapter 3), one must use the elastic constants computed in the case
when the thermal rippling is manually suppressed [28]. Nevertheless, in real experiments,
since thermal rippling always exists, one expects to observe decreased and size dependent
elastic properties for a free–standing graphene sheet. Even if the graphene is attached to a
substrate, the surface roughness (which may be determined through atomic force microscopy)
associated bending strains should be taken into consideration when measuring the elastic
moduli.

A transferable, effective but conceptually simple continuum theory is formulated to de-
scribe the edge dislocations in graphene or any elastic membranes with periodic boundary
conditions. The knowledge of temperature dependent elastic properties of graphene ob-
tained from previous MC simulations provides necessary inputs to the continuum model.
The long–range stress field of dislocations puts a flat membrane into a mechanical unstable
state which inevitably results in large out–of–plane buckling. The formation energy of a
single dislocation is then greatly reduced to a constant finite value near 6 eV.

When a graphene sheet is wrapped into a CNT and assuming no defect induced buckling,
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then the same amount of plastic deformation along the tube axis may be obtaind by gliding
a dislocation n steps or creating n Stone-Wales defects forming a “dislocation worm”. The
former is usually energetically preferred because it introduces less dislocation cores than the
latter when n > 1. However, the dislocation associated buckling persists and shall shorten
the tube length. Geometric relaxations of defected CNTs suggest that the glide pattern
generally leads to a shorter tube length than the worm pattern. Notice that under nonzero
tensile stresses, a larger plastic elongation corresponds to a greater total energy decrease.
Therefore, it is possible that the worm pattern has a lower total energy than the glide pattern
as long as the imposed axial tension is large enough to offset the additional defect core energy
of the dislocation worm.

5.2 Future Work

Although the classical REBO potential is employed in the MC simulations to understand
the elastic properties of graphene, given extra computation resources, it is straightforward
to run the same simulations with more sophisticated potentials based on ab initio theories in
order to obtain more accurate temperature dependent elastic constants. Using our continuum
model, it is then easy to calculate the dislocation energy as a function of temperature, a
relationship that is tricky to obtain within atomic scale models.

The parallelized KMC algorithm used in Chapter 4 can model the defect dynamics in
graphene in a much longer time scale than conventional MD methods, but it is still com-
putation intensive and time consuming. An alternative approach is to combine the KMC
technique with the continuum theory. The state of the system can be naturally described
by the positions and Burgers vectors of all dislocations as well as the Fourier components
of out–of–plane displacements. For simplicity, it may be further assumed that there is no
energy barrier for perturbing the membrane surface morphology and the barrier of creating
a new dislocation is proportional to the formation energy of this dislocation.

The continuum theory might be extended to compute the buckling of dislocations in
CNTs by taking into account the nonlinear terms in the total strain tensor in the cylindrical
coordinate system and imposing appropriate topological constraints for dislocations.
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