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Classical Limit of Fredholm Theory for Elastic and Inelastic
T g Scattering; Inability of Phase Space Integrals

to Describe Inelastic Transitions

. %
William H. Miller
Department of Chemistry and Inorganic Materials

Research Division, Lawrence Berkeley Laboratory,
University of California, Berkeley, California

Abstract

Using a classical phase space intcgrai to approximate certain
quaqtum mechanical operations, the classical limit of the Fredholm
‘determinant for a general multichannel scattering system is derived.
‘This statistical form of the classical limit of scattering is found to
give exactly the same '"classical S—matrix" for the case of potential
scattering as does a dynamical‘treatment of the classical limit. For
inelastic scattering, however, the classical S-matrix which results from
this Fredholm detérminant ié only an approximation to that obtained by
exact classical dynamics. Reasons for this failure of the statistical

'vcrsion‘of the classical limit for inelastic scattering are discussed.



I. INTRODUCTION

> we have dealt with the classical-

In two recent papers
limit ecigenvalue relation for general non-separable dynamical

systems. A particularly interesting feature of this study of

between
the bound-state problem is the correspondenciA? dynamical form

of the quantum condition and a statistical form. The dynamical

‘version involves an action integral along a particular classical
trajectory (the periodic trajectory of the system corresponding

to a given energy E), wherecas the statistical version is expressed
in terms of a phase space integral (the volume of phase space

with energy less than or equal'to the given value E). The practical
importance of this correspondence between statistical and dynamical
approaches lies in the fact that‘statistical methods are generally
much easier to apply than dynamics.

Analogous to thesé treatments of bound-state problems we
explore in this present paper the relationlbetween dynamical and
statistical approaches to the classical limit of scattering for
a general non-separable system. Thus it has previously been
"shown how one can use exact classical trajectories for a general
collision system to construct the classical-limit of the quantum
mechanical S-matrix (the '"classical S-matrix") for the scattering
processes. Corresponding to this dzngmical prescription for

obtaining the classical S-matrix, therefore, we wish to find the

statistical procedure (i.e., one based on phase space integrals)

which is related to it.
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In order to usc a formalism developed for bound-state
problems, one can always convert a scattering problem into a
bound-state one by some variation of "box normalization".4 The
statistical version of the classical limit of scattering can
then be obtained by invoking the statistical eigenvalue relation
established previously.2 As a particularly simple example of
how scattering is :elated to the box-normalized eigenvalue
problem, consider s-wave potential scattering; the WKB (i.e.,
classical limit) phase shift can be written as '

R R |

n(E) = f‘dr k(r) - /; dr k, B (1)

r
o

1 1
where k(r) ='{2u[E—V(r)yh2}2, k = (2uE/h2%)2, V(r) is the scattering

potential, E the collision energy, M the reduced mass, ro the
classical turning point (i.e., V(ro) = E), and R is some indefinitely
large value; Eq. (1) may be interpreted in terms of classical-
limit eigenvalues: Thus n(E),
R ' .
[a(E) + 3)m zf dr k(x), | (2)

r
(o]

is the classical-limit quantum number function [the inverse
function of the eigenvalue function E(n)] for the "potential
well" fofmed by the actual potential V(r) with an impenetrable
barrier imposed at r=R; Eq.(2) is the well-known Bohr-Sommerfeld
quantum condition for this box-normalized potential.. Similarly,
no(E), the quantum number function for thé potential well with
V(r) replaced by 0, is defined by the relation in Eq.(2) with
k(r) replaced by k. Eq.(l) for the phase shift is thué written
in terms of these quantum number functions as

5§
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N(E) = w[n(k) - HO(E)]- (3)

Scattering results are obtained, therefore, in terms of the
eigenvalues of the box-normalized system and those of its
unperturbed (VZ0) counterpart.

For more general collision systems (i.e., ones with internal
degrees of freedom) it is also possible to extract the S-matrix
from a consideration of the box-normalized eigenvalue problem;
the theoretical machinery for doing this is Fredholm theory.
[Although present day discussions of Fredholm theory do not
resemble this Box normalization appr&ach, it originated from
such considerations.é] Rather than follow the box normalization_
procedure directly, therefore, we develop the classical phase
space approximation for the Fredholm determinantband then appeal
to the general results of Fredholm theory to construct the
S-matrix. Section II discusses the classical limit of Fredholm
theory as it applies to potential scattering, and Section III
carries this out for the more genéral case of ineiastic scattering.

This statistical version of the classicai limit of Fredholm
theory is seem to reproduce the usual classical S-matrix for
the case of potential scattering, but it is unfortunately not
‘able to provide the correct description of inelastic scattering.

Reasons for'thié failure are discussed in Secfion IVv.
II. POTENTIAL SCATTERING

For a géneral discussion of Fredholm theory (as it applies
to scattering) the reader is referred to the text by Newtons;

a clcar summary of the basic results is also contained in the



recent work by Reinhardt and co-—workers7 who have shown that
the Fredholm approach can also be a useful tool for quantum
mechanical computations. In what follows we shall simply extract
the results of the general theory which are required for our
purposes.

The S-matrix for potential scattering (a one-dimensional

matrix in this case) is given in terms of the Fredholm determinant

A(k) by
S = A(~-k)/A(k), ' (4)
. 1 :
where k = (2uE/h2%)?, E being .the collision energy; since
, . .
A(-k) = A(k) , o (5)

one sees that § is a complex number of unit modulus. The Fredholm
determinant is in turn given by formal expression

1

A(k) = det[(E-H) (E-H,) ~1, | (6)

where H = H0+V is the Hamiltonian operator for the system, and
V is the scattering interaction. By the determinant of an operator
A one means the determinant of its matrix representation in some

complete set of states:
det{A] = det|<i]alji>]. (7)

To evaluate the determinant of an operator, it is convenient

to employ‘the identity
det[A] = exp[tr(gnA)], ' ' (8)
where tr{(2nA) means the trace of the operator &n A; i.e.,

tr(&nA) = I <i|fnA|i>, : ' (9
i
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where the sum is over some complete set of states. Combining
Eqs.(6) and (8), one has

n A(k) = tr{zn[(E—H)(E—Ho)'l]}. (10)

All of the‘above equations of this Section are exact quantum
mechanical relations; the statistical version of the classical
limit approximation for the Fredholm determinant is obtained by

.using a phase space integral to evaluate the trace in Eq.(10).
Thus if B is some operator which is expressed in terms of

op

the coordinate and momentum operators T and p as B(r _,p__),
op op op°" op

then the phase space approximation for its trace is

tr(Bop) h-ljfdrjrdp B(r,p), | , | (11)

where B(r,p) is the same function of the classical variables r

R

and p that B‘ is of r and p_ _; h = 27h is Planck's constant.
, op op op
Since all the operatoré of interest for our purposes are
Hamiltonians, there is no ambiguity about the appropriate
correspondence with the classical functions.
With the phase space approximation of Eq.(ll); Eq.(lO)

. becomes
o] [+ e

Ln A(k) ='h—1J/‘dﬁ/[ dp {Qn[E—H(p,r)] - 2nIE-Ho(p,r)]}, (12)
0 o OO
and the classical Hamiltonian functions are

H(p,r) = p2/2u + V(r) ‘ (13a)
H (p,r) = p?/2u ; o . . (13b)

the domain of integration is, as indicated, all of phase space.

The integral over momentum can be carried out by elementary



-

‘4

Vol oUog 6 g

methods, and one obtains

(o]

J/‘dp Ln(E-H) - Rn(E—HO) = 2mifh[k - k(r)], (14)

- 00

1 1
where k = (2UE/R%)2 and k(r) = {2u[E-V(r)]/h?}?%; if E - V(r) < O,

then k(r) = iIk(r)l. Eq.(12) thus becomes

tn A(k) = -—i_/( dr k(r) - k, e (15)
or -
ACk) = exp(6 - in) (16)
where '
I, \
6 =./rdr |k (r) |
Q
R .
n = lim / dr k(r) - [Rdr k,
R->o0 ro 0

T being the classical turning point; i.e;, 6 is real, and n is
the WKB phase shift.
With the Fredholm determinant given by Eq.(16), Eq.(l4)

then gives the S-matrix as

S = exp(ZinWKB). : - (17)

v

This is the usual result which is a;so obtained by a strictly
dynamical approach. |

Before concluding this discussion of potential scattering,
it is useful to note a few details of the replacement of k by
. =k in applying Eq.(4) to the phase integral in Eqs.(15) and (16).

In classically allowed regions'(r>ro) one has



k{r) » -k{(r)

when k is replaced by -k; in classically forbidden regions

(r<ro), however, one has
-ik(r) = |k(x)| » |k(r)| = -1k(x).

With regard to k =+ -k, therefore, the real (imaginary) part of
k(r) is considered to be an odd (even) function of k. For this
reason the contribution to the coordinaté integral in Eq. (15)
from classically forbidden regions cancels out in the ratio

in Eq.(4).
ITI. INELASTIC SCATTERING

Now>suppose there are internal éegrees of-freedom in addition
to the scattering (translational) degree of freedom. The intérnal
degrees of freedom are quantized in the initial and final
asymptotic régions, and the S-matrix is the matrix of transition
probability amplitudes from initial internal states (or channels)
to final internal states (or channels); the dimension of the
S-matrix is the number of energeticélly accessible intermnal
states (the number of open chénnels).

The Fredholm determinant is still given formally by Eq.(6),
but one must now consider it to be an independent function

(sign-wise at least) of all the channel momenta; i.c.,

A(k) = ACkp ky,.-) = exp {cr[zncm-u)cE-uo)‘l]} : (18)

where the asymptotic momentum (in units of h) for channel i is

1
k; = [2u(B-e) /%1%,

S
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E being the (fixed) total cnergy and €, the internal energy of

i

internal .state i. The channel momenta {ki} are all related to
one another through their definition in Eq.(l19), and the only
sense in which they are considered independent in Eq.(18) is
that one needs to change the sign of some of them and'not to
change the sign of others.

The S~matrix is given in terms of the Fredholm determinant

of Eq.(18) by

wn
]

A, () /8 () | (20a)

n
i

[s

1
- 3
i,] 1,185,357 81,3 (0/80D1%, (20b)

where 1 # j, and

“k,,..l) ' (21a)

Ai(k) = A(kl,kz,..., 5

2;... —ki,..., —kj,...). (21b)

Ai,j(k) =‘A(k1,k
As in the preceeding Section we use a c¢lassical phase space
integral to calculate A(E) and then constrqct'the S-matrix by
using Eqs.(20) and (21).

For notational convenience we assume there to be just one
internal degree of freedom; the freatment is identical for any
number of internal degrees of freedom. With the phase space
integral approximation to the trace in Eq.(lS), one has

2n 0 [-9) : 0o )
Ln A(1~<) =,h—2 f dq / dn h fdr fdp [Za(E-H) - .Q,n(E-Ho).],
0 0 - 0o - .

- OO

| ' - (22)
where the normalization factor is h-2 since there are two

degrees of freedom. Since an integral over all phase space is
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CONTINUE ‘ .
FORMAT {21X» *INTENSITY AS A FUNCTION OF WAVELENGTH WITH FILM THIC

XKNESS AS A PARAMETER ON A *, A10s * ELECTRODE*,///7)

FORMAT (10Xs *WAVELENGTH*s 4Xs 91119///)

FORMAT (10Xs *PHASE CHANGE®*s/s 10Xs *METALMs 9Xs 9F11le2s/)
FORMAT (10Xs *FILM THICKNESS#345Xy ®#INTENSITY*,5//)

FORMAT (13Xs I4y 7Xs 9F11e4)

FORMAT (10Xes *TOTAL¥*s 9Xs 9F11e2s ///)

SToP

END

FUNCTION RIC(WAVLTH) ‘
THIS FUNCTION GIVES REFRACTIVE INDEX OF THE SOLUTION AT A SPECIFIED
WAVELENGTH USING A POLYNOMIAL OF 6 TERMS,

COMMON /RICOM/ BsNO

DIMFENSION B(20,8)

REAL A

A=WAVLTH v

C=0.0 ‘ .

A=A/4000

DO 601 K=1yNO

C=C+(RIK)*¥(AR¥ (K~ 1)))

CONTINUE

RIC=C

RETURN

END

FUNCTION REFRXC (SCALE, LAMBDA)

THIS FUNCTION GIVES REFRACTIVE INDEX OF THE SOLUTION FROM THE SCALE

" READINGS OF THE REFRACTOMETER.
FOR THE NEW PRISM (749-1)

REAL NPRISs PC(8)s LAMB
LAMB=L AMBDA/4000 ’
APRIS=0.0174533%68,0
PC(1)=2,1098525761
PC(2)==148465725697
PC(3)=2,4203415165

PCl4)= -1,6347815115
PC(5)=Ne5602598970
PC{6)==-0,07738411013
NPR15=0¢_

DO 701 J=116
NPRIS=NPRIS+PC{JI*(LAMB*%(J=-1))
CONTINUE
AMEAS=2440-{2,0%SCALE) /3,0
AMEAS=AMEAS#0,0174533
ACALC=ASIN(SIN(AMEAS)/NPRIS)
APRIM=APRIS~ACALC
REFRXC=SIN(APRIM)%*NPRIS
RETURN

END
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MAXTMA AND MINIMA OF INTENSITY AS A FUNCTION OF wAVELZNGTH ON A

S PULAZIZATION
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independent of the particular canonical variables one uses to
carry out the integral, in Eq.(22) we have chosen the usual
translational coordinate and momentum (r,p) for the translational
degrec of freedom, buﬁ have used the action-angle variables
(hn,q) for the internal degree of freedom. The factor h has been
.included explicitly in the definition of the action variable,

so that the quantity n is dimensionless and is the classical
equivalent of the quantum number of the internai degree of
freedom. In terms of these canonica} variables the Hamiltonian

functions are
H = p?/2u + €(n) + V(r,q,n)
B = p2/2u + e(n),
where €(n) is the eigenvalue function for the isolated internal
‘degree of freedom, and V is the scattering interaction.
Just as in the case of potential scattering, the integral

over the translational momentum can be carried out by elementary

means, and upon doing this Eq.(22) becomes

[ 2 ™
£n A(E) = -7 J{ dn (2ﬂ)-1 J{ dq J[m;r'k(f,q;n) - k(n), (23)
0

0o 0

where the momenta are defined as
| 1
k(n) = {2u[E - e(n)]/h%}2

1
k(r,q,n) = {2u[E - e(n) - V(r,q,n)]/h?}2.

Classically, of course, n is a continuous variable, whereas
quantum mechanically it is quantized.‘ To make the appropriate

identification with the discrete internal states, therefore, we
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make the replacement .
o :
/dn > E , , | | (24)
) n

where the sum is over all integer values of n. Eq.(23) thus

becomes
' 27 © '
Ln A(B) = —ij{:(Zﬂ)-l;ghdq j[ dr k(r,q,n) - k(n). (25)
0
n .

One may furthervsimply matters by noting that, just as in
the previous section, the energeticaily forbidden regions of
phase space in the integfals in Eq.(25) will cancel when one
constructs the ratios of Fredholm determinants in Eq.(20). This
follows from‘the discussion at the eﬁd of Section II. This means

thdt Eq.(25) is of the form
In A(k) = E(k) -1}'_;, n(k.), (26)

where E(k) is real and an even function of all the channel
momenta, and

27 ) , R
n(kn) = (2'rr)_l j{ dg lim ‘jf dr k(r,q,n) - .}rdr k(n)l]; (27)

0 R0
r 0

n(kn) is an odd function of kn and is seen to be the WKB pha;e
shift for the frozen internal degree of freedom (i.e., fixed n
and q), which is then averaged over the angle variable q.

From Eq.(26) for the Fredholm determinant, it is easy to
see that the determinants in Eq.(21) are given by

8,(k) = A(k) exp[2in(k,) ] : (28a)

Ay (&) = AK) exp[2in(k,) + 2in(k)1, ", (28b)

MY
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so that the S-matrix clements of Eq.(20) are
Si,i = exp[Zin(ki)] (292a)
Si,5 = 0, 1 # 3. . | (295)

There are no inelastic transitions in this approach,

thercfore, and the elastic scattering is only an approximation

to the exact classical dynamics. Eq.(29a) is, in fact, a

classical-limit version of the sudden approximation for the

elastic scattering in channel 1i.
IV. DISCUSSION

- The short-comings of this statistical version of the classical-

limit of inelastic scattering are probably most directly related

to the asymptotic degeneracy that is inherent in a multi-channel

scattering system. Thus in establishing the correspondence between
statistical and dynamical quantum conditions2 it was essential
that there was only one periodic trajectory of the system for
a given energy. If other periodic trajectories exiSted,.they
had to be related to some constant of the motioh (such as total
angular momentum) or a discrete symmetry of the system and
explicitly removed; the eigenvalue problem could then be considered
sepérately for each value oflthe conserved quantity or discrete
symmetry; there then being oniy one periodic trajectory of the
system at the given energy for that particular subspace.

For a multi-chénnel scattering systeﬁ, hbwever, there are
N (N = number of open channels) degene;ate quantum states of

the system, corresponding to the N different internal states
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which can be the initial state. When the system is enclosed

in a finite box, these N degencrate states are split--only in
the limit of an infinite box does the degeneracy appear.
Furthermore, this degeneracy is not related to any constant
of motion or discrete symmetry--rather it is associated/with

constants of the motion of the unperturbed Hamiltonian to and

from which the system evolves asymptotically.
Corresponding to this quantum degeneracy, there is thus
more than one "periodic'" classical trajectory for the system
at a given energy. [Periodicity comes about here only artificially
by reflection from the wallsuof the large "box'"; the appropriate
trajectories are actually the aperiodic scattering trajectories.]
Similarly, these several '"periodic" trajectories cannot be
classified acéording to any discrete or continuous symmetry of
the system; i.e., there is no way to decompose (or féctor) the
dynamical problem so that there is only one "periodic" trajectory
per énergy per subspace. As noted above, this difficulty is
directly related to the asymptotic degeneracy that is an
intrinsic feature of scatteriﬁg systems with internal degrees
of freedom; for in a bound state situation degeneracies can
always be related to some symmetry of the system and thus
explicitly removed (i,e., there are no accidental degeneracies).
Onc might imagine classifying the various "periodic"
classical trajectories of the scattering system by the '"constants
of the motion" which are simply the initial conditions of the
individual trajectories. Initial conditions, however, although
they are constants of integratioﬂ of the equations of ﬁotion,

are not integral constants of the motion in the usual sense

Y . ’



¢
f
P
L.
L
£
L.
Yesins
-
Ny
-
N
o,
e
[
e
Yot

14

(i.e., functions of the coordinates and momenta--but not

\
involving the time explicitly--which remain constant in time).
Such an approach, too, introduces dynamics per se and clearly

foils the attempt to develop a theory based solely on phase

space integrals.
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