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CONSIDERING RISK-TAKING BEHAVIOR IN TRAVEL 

TIME RELIABILITY 
 

 
ABSTRACT 
 
Travel time variability is increasingly being recognized as a major factor influencing 

travel decisions and, consequently, as an important performance measure in 

transportation management.  In this research project, we examine a number of questions 

related to travel time variability: How should travel time variability be quantified at both 

the section level as well as at the route level?; How do travelers value travel time and its 

reliability?; How much does the travel time reliability contribute to travelers’ route 

choices?; How much variation is there in travelers’ preferences regarding the potential 

tradeoff between reliability and travel time itself?; How can travel time variability be 

incorporated into the route choice models for transportation planning purposes?; and, 

How can the effects of travel time reliability be incorporated in considering risk-taking 

behavior in route choice models? Answering these questions can help in the design and 

evaluation of transportation planning and managing strategies. 

 

Keyword: Travel time variability, travel time reliability, mixed logit, route choice 

models, traffic assignment
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EXECUTIVE SUMMARY 
 
 

Recent empirical studies (Abdel-Aty et al., 1996; Small et al., 1999; Kazimi et al., 1999; 

Lam, 2000; Lam and Small, 2001; Ghosh, 2001; Bates et al., 2001; Noland and Polak, 

2002) suggest that travelers are interested in not only travel time saving but also 

reduction of travel time variability. Variability in network travel times introduces 

uncertainty for travelers such that they do not know exactly when they will arrive at their 

respective destinations. Thus, it is considered as a risk (or an added cost) to a traveler 

making a trip. This risk may be manifest in a willingness to pay a premium (e.g., through 

use of toll roads) to avoid congestion and to achieve greater reliability in travel times. 

 

Although travel time reliability ostensibly plays an important role in the traveler’s route 

choice behavior, there has been little basic research directed toward an understanding of 

the effects of reliability on the route choice decision making of the traveler; many 

questions remain unanswered. How to quantify travel time variability in both section 

level as well as route level, how do travelers value travel time and its reliability, how 

much does the travel time reliability contribute to travelers’ route choices, how much 

variation is there in travelers’ preferences regarding the potential tradeoff between 

reliability and travel time itself, and how to incorporate travel time variability into the 

route choice model for transportation planning purposes, and how to estimating travel 

time reliability considering risk-taking behavior in route choice models?  Answering 

these questions can help in the design and evaluation of transportation planning and 

managing strategies. The objective of this research is to develop methods to address the 

above questions. Specific research activities included in this report are: 

 

• Development of a GIS database to facilitate travel time variability analysis. 

• Development of computation procedures to calculate freeway travel time variability 

for both section level and route level. 
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• Development of a sound methodology to uncover the contribution of travel time 

reliability in route choice using real-time loop data from the California Advanced 

Transportation Management Systems (ATMS) Testbed at UC Irvine combined with 

real-world data from the State Route 91 Value Pricing Project in Orange County, 

California to estimate a mixed logit model that explicitly considers travelers’ risk 

perceptions and preferences in making route choice decisions under an uncertain 

environment. 

• Development of route choice models that account for the variations of travel time in 

the form of risk with perception errors and different behavioral preferences. 

• Integration of risk-taking behavior into the estimation of travel time reliability. 

• Conducting numerical experiments to examine the effects of incorporating travel time 

variability and risk-taking behavior into the route choice models and its impact on the 

estimation of travel time reliability under demand and supply variations. 

 

The significance of understanding travel time reliability (or reduction of travel time 

variability) is important both for the users as well as for traffic managers. From the users’ 

point of view, travel time variability reduction means more predictable travel times. 

Better predictable travel times imply improved scheduling matches since travel time can 

be predicted more precisely. For freight transportation, reduction of travel time variability 

can improve just-in-time inventory management. From the traffic managers’ point of 

view, less travel time variability means better stability of the quality of service. That is, 

there are less speed variations along a path (i.e., less stop and go conditions). This 

directly contributes to less fuel consumption and emission since there are fewer vehicles 

undergoing acceleration/deceleration cycles. It should be noted that travel time variability 

reduction is a direct measure of pollution emission without the need to resort to proxy 

variables, which may introduce inaccuracy in calculating vehicle emission. In addition, 

reducing travel time (or speed) variations has the potential to increase traffic safety (or 

decrease accident risk). Results in this research project contribute to better planning, 

management, and evaluation of transportation networks. 
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Recommendations 

The importance of travel time variability in route choice decisions that lead to aggregate 

demand on California’s freeways has been documented by this study. However, the 

understanding of the complex effects of travel time variability is still in its infancy and 

applications to transportation management have not yet been developed. The first step for 

advancement to the application stage is to build a database for detailed analysis.  As an 

example, a GIS-based database composed of the historic traffic data from freeways in 

Orange County, California, was developed under this project. The main purpose of such a 

database is to provide the analysis framework to analyze the potential impacts of travel 

time variability at both section-level as well as route-level. In day-to-day management, 

real-time traffic data used for traffic operations is often discarded without archiving, or 

archived in such a raw form that it presents a barrier to fusion with current field data. 

These historical archived traffic data can play an important role in real-time management 

by measuring freeway performance relative to travel time variability from a long-term 

perspective. We recommend that the type of database developed in this study be 

incorporated as standard practice in Caltrans TMCs as a foundation for better 

understanding travel time variability as a measure of transportation system reliability. 

The next step would be to identify the sources of travel time variability and to study how 

to remove the source of variability from the context of transportation system 

management. 

 

The results of this study confirm that travel time reliability can have significant influence 

on traveler’s route choice behavior and that it cannot be ignored in any model which 

purports to predict behavior or provide a basis for performance evaluation. In the study, 

we formulated traveler’s route choice as a mixed-logit model, with the coefficients in the 

model representing individual traveler’s preferences or tastes to travel time, reliability 

and cost, and applied the model to the California State Route 91 value-pricing project. 

Based on travelers’ choice of whether or not to pay a congestion-based toll in order to use 

express lanes, we were able to estimate how travelers value travel time and travel-time 

reliability. Using a Monte Carlo simulation procedure to simulate risk perceptions and 

preferences in making route choice decisions under an uncertain environment, numerical 
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results were also presented to examine what the aggregate impact of changes in 

variability caused by demand and supply variations might have on network assignment 

and how travelers with different risk-taking behaviors respond to these changes.  These 

models represent an initial foray into better understanding how individual travelers will 

react to the changing characteristics of the traffic patterns they experience in their daily 

commute.  Although encouraging, the results are as yet not generalizable for use in traffic 

management.  We recommend that, in conjunction with the formation of the databases 

noted above, additional investigation be pursued into development and calibration of a 

family of route choice/traffic assignment models that explicitly incorporate route travel 

time variability in the decisions of California motorists.  

 

The framework provided by this research is expected to be useful in examining what the 

aggregate impact of changes in variability caused by demand and supply variations might 

have on network assignment and how travelers with different risk-taking behaviors 

respond to these changes. Although this research project has addressed many questions 

related to travel time variability, our understanding of travel time variability is still in its 

infancy and applications to real-world transportation management have not yet 

developed. Further studies are needed to better understand travel time variability and how 

to use such measures for transportation management. 

 

Implementation Strategy 

The obvious implementation strategy for “regularizing” the compilation of the travel time 

variability databases essential for the framework would be to incorporate these 

calculation procedures in PEMS.  Presumably, this could be accomplished using the raw 

data input that already is part of PEMS, together with new route enumeration procedures 

that would identify likely paths between major decision points in the respective freeway 

networks.  A series of calibrated route choice models could also be incorporated in PEMS 

that would access both the historical travel time variability matrices associated with the 

potential routes, together with the real-time data already incorporated in PEMS. 
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Chapter One 

1. INTRODUCTION 
 

Travel time variability has recently become an important measure in transportation management 

and has begun being treated as a major factor influencing travel decisions. Recent empirical 

studies (Abdel-Aty et al., 1996; Small et al., 1999; Kazimi et al., 1999; Lam, 2000; Lam and 

Small, 2001; Ghosh, 2001; Bates et al., 2001; Noland and Polak, 2002) suggest that travelers are 

interested in not only travel time saving but also reduction of travel time variability. Variability 

in network travel times introduces uncertainty for travelers such that they do not know exactly 

when they will arrive at their respective destinations. Thus, it is considered as a risk (or an added 

cost) to a traveler making a trip. This risk may be manifest in a willingness to pay a premium 

(e.g., through use of toll roads) to avoid congestion and to achieve greater reliability in travel 

times. 

 

Although travel time reliability ostensibly plays an important role in the traveler’s route choice 

behavior, there has been little basic research directed toward an understanding of the effects of 

reliability on the route choice decision making of the traveler; many questions remain 

unanswered. How to quantify travel time variability in both section level as well as route level, 

how do travelers value travel time and its reliability, how much does the travel time reliability 

contribute to travelers’ route choices, how much variation is there in travelers’ preferences 

regarding the potential tradeoff between reliability and travel time itself, and how to incorporate 

travel time variability into the route choice model for transportation planning purposes, and how 

to estimating travel time reliability considering risk-taking behavior in route choice models?  

Answering these questions can help in the design and evaluation of transportation planning and 

managing strategies. The goal of this research project is to develop methods to address the above 

questions. Specifically, the objectives are to: 
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1. Develop a Geographical Information Systems (GIS) database to facilitate traffic analysis 

for freeways in Orange County, California. 

2. Develop computation procedures to calculate freeway travel time variability for both 

section level and route level. 

3. Develop a mixed logit model that explicitly considers travelers’ risk perceptions and 

preferences when choosing routes based on expected travel time and travel time 

variability. 

4. Estimate the mixed logit model using real-time loop data from the California Advanced 

Transportation Management Systems (ATMS) Testbed at UC Irvine combined with real-

world data from the State Route (SR) 91 Value Pricing Project in Orange County, 

California. 

5. Develop route choice models that account for the variations of travel time in the form of 

risk with perception errors and different behavioral preferences. 

6. Develop traffic assignment procedures for solving the risk-taking route choice models. 

7. Integrate risk-taking behavior into the estimation of travel time reliability. 

8. Conduct numerical experiments to examine the effects of incorporating travel time 

variability and risk-taking behavior into the route choice models and its impact on the 

estimation of travel time reliability under demand and supply variations. 

 

The significance of understanding travel time reliability (or reduction of travel time variability) 

is important both for the users as well as for traffic managers. From the users’ point of view, 

travel time variability reduction means more predictable travel times. Better predictable travel 

times imply improved scheduling matches since travel time can be predicted more precisely. For 

freight transportation, reduction of travel time variability can improve just-in-time inventory 

management. From the traffic managers’ point of view, less travel time variability means better 

stability of the quality of service. That is, there are less speed variations along a path (i.e., less 

stop and go conditions). This directly contributes to less fuel consumption and emission since 

there are fewer vehicles undergoing acceleration/deceleration cycles. It should be noted that 

travel time variability reduction is a direct measure of pollution emission without the need to 

resort to proxy variables, which may introduce inaccuracy in calculating vehicle emission. In 

addition, reducing travel time (or speed) variations has the potential to increase traffic safety (or 
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decrease accident risk). Results in this research project contribute to better planning, 

management, and evaluation of transportation networks. 

 

The report is organized as follows. Chapter Two reviews the route choice models and its 

applications in surface transportation. Chapter Three describes the GIS database development 

and computation procedures for calculating freeway travel time variability. Chapter Four 

discusses the Mixed Logit model used to estimate the value of time and value of reliability using 

real-time loop data from the State Route (SR) 91 Value Pricing Project in Orange County, 

California. Chapter Five explains the implementation of the traffic assignment procedures for the 

route choice models described in Chapter Two. Chapter Six integrates the risk-taking route 

choice models into the travel time reliability evaluation procedure. Chapter Seven provides a 

summary of the findings in this research project. 
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Chapter Two 

2. ROUTE CHOICE MODELS AND ITS SIGNIFICANCE IN 

SURFACE TRANSPORTATION APPLICATIONS 
 

Because the travelers’ selections of different paths will result in different levels of travel time 

reliability, travel time reliability analysis is closely related to the route choice problem.  It is well 

known that the route choice problem is one of the most fundamental topics in transportation 

studies since route choice modeling is widely applied in transportation planning, network design, 

intelligent transportation system (ITS), etc. Figure 2.1 depicts the role of route choice modeling 

in applications of surface transportation.  This framework consists of three basic applications: I. 

The Traffic Assignment Problem, II. Traffic Management and Control, and III. Traveler 

Information Systems.  Brief descriptions about each application are given in the following. 

 

Route Choice
Model

Performance
Measures

Transportation
NetworkTravelers

Traffic
ManagementInformation

III: Traveler Information
Systems

II: Traffic Management and
Control

I: Traffic Assignment Problem

 
 

Figure 2.1: Route Choice Model Applications 

 



 5

I: Traffic Assignment Problem 

The traffic assignment problem is the final step in the 4-step travel forecasting process (Ortuzar 

and Willumsen, 2001; Meyer and Miller, 2001).  Given constant travel demand between origin-

destination (O-D) pairs (i.e., travelers), and travel cost functions for each link of the network 

(i.e., transportation network), the traffic assignment problem is to determine the traffic flow 

pattern as well as network performance measures (e.g. total system travel time, vehicle miles of 

travel, vehicle hours of travel, fuel consumption and emission, etc.).  The key component, in the 

traffic assignment problem, is the route choice model which represents individual route choice 

decision between various O-D pairs such that traffic flow patterns for the whole transportation 

network can be predicted. In route choice models, congestion can be explicitly considered 

through the travel cost functions and the interactions with route choice decisions of the travelers. 

 

II: Traffic Management and Control 

Traffic management and control is a two-way game (Bovy and Stern, 1990).  That is, the traffic 

manager sets the traffic management and control strategies to regulate traffic based on the 

performance measures resulting from the aggregation of individual route choice decisions.  It 

should be recognized that the traffic management and control strategies, set by the traffic 

manager, can only influence (not control) the route choice decisions of travelers.  Thus, it is 

important to understand the factors that influence route choices so that better and more effective 

strategies can be developed to combat congestion.  Several studies on the commonly used 

management and control strategies, used to account for travelers’ route choices in a congested 

network, are listed in the following: 

 

• Ramp metering control (Yang et al., 1994; Yang and Yagar, 1994). 

• Signalized intersection control (Allsop, 1974; Allsop and Charlesworth, 1977; Fisk, 

1984; Cantarella et al., 1991; Van Vuren and Van Vliet, 1992; Smith and Van Vuren, 

1993; Yang and Yagar, 1995; Wong and Yang, 1997; Chiou, 1999; Wong and Yang, 

1999). 

• Road pricing (Ferrari, 1995; Yang and Lam, 1996; Yang and Bell, 1997; Yang and 

Huang, 1998). 
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III: Traveler Information Systems 

Traveler information systems are considered as a promising technology to improve traffic 

conditions by helping travelers making more efficient travel choices.  Unlike traffic management 

and control, the effectiveness of traveler information systems is determined by the quality of 

information disseminated to travelers, how travelers perceive the use of the information, and how 

they respond to such information (Adler and Blue, 1998).  In the real world, information is rarely 

perfect. Its quality depends on many factors such as the surveillance system, the ability of the 

system to filter and project traffic information, the timeliness of its dissemination, and most 

importantly the interaction between information and route choice decisions.  Many previous 

studies (e.g., van Vuren and Watling, 1991; Yang, 1998; Lo et al., 1999) assumed that the 

interaction between predicted information and route choice decisions is consistent with the 

Wardropian traffic flow patterns.  This is a rather strong assumption because it implies that 

predicted information will be correct (or perfect) in the future and that travelers’ route choice 

decisions comply with the user equilibrium principle. As illustrated in loop III of Figure 2.1, this 

circular relationship between predicted information and travelers’ route choice decisions is 

difficult to sustain in practice given that predicted information is rarely perfect and travelers do 

not necessarily respond to information according to the UE principle (Emmerink, 1997). 

 

From Figure 2.1, it can be clearly observed that route choice models are the core module for 

traffic assignment, traveler information system, and traffic control/management. Currently, the 

widely accepted route choice model (i.e., user equilibrium model) is based on strong 

assumptions that the network travel times are deterministic for a given flow pattern.  All travelers 

are perfectly aware of the travel times on the network and always capable of identifying the 

minimum travel time route (Sheffi, 1985; Patriksson, 1994; Bell and Iida, 1997). To overcome 

the deficiencies of the user equilibrium model, some researchers have proposed random utility 

models (i.e., stochastic user equilibrium models) to relax the assumption of perfect knowledge of 

network travel times, thus allowing travelers to select routes based on their perceived travel 

times (Dagazon and Sheffi, 1977; Fisk, 1980). Due to variations in travelers’ perceptions of 

travel times, travelers do not always choose the correct minimum travel time route. However, the 

assumption of network uncertainty remains unresolved. 
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Besides lacking the inclusion of network uncertainty into the route choice models, the criteria 

currently used (e.g. travel time, distance, or weighted travel time and distance) may not 

adequately reflect the behavior of travelers in congested networks, and more importantly their 

response to traffic management and information strategies (Dial, 1996, 1997; Blue et al., 1997, 

Park, 1998; Chen et al., 2000).  Given that there is an increasing use of innovative information 

and communication technologies to manage traffic, it is important to understand how route 

choice decisions are made. 

 

 

2.1 Route Choice Models 
The objective of a route choice model, in the traffic assignment problem, is to describe how 

individual route choice decisions, represented by an origin-destination trip table interacts with 

the transportation network represented by a set of link performance functions so that the resulting 

network loads are accurately predicted (Sheffi, 1985). In the available literature, several route 

choice models have been proposed which differ in: 

 

(1) Characterization of network travel times (i.e., deterministic or stochastic). 

(2) Traveler’s knowledge of network travel times (i.e., with or without perception error). 

(3) Route choice behavior 

a. Criterion/criteria used in route choice decision process. 

b. Route cost structure (i.e., additive or nonadditive). 

c. Route choice preference (e.g., risk averse or risk prone). 

 

Recently, Chen and Recker (2001) provided a classification scheme of the route choice models 

under the presence of congestion, using network uncertainty and perception error as follows: 
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Table 2.1: Classification of Route Choice Models 
 

 

 

 

 

 

Where 

 DN = Deterministic Network 

  SN = Stochastic Network 

  DUE = Deterministic User Equilibrium 

  SUE = Stochastic User Equilibrium 

 

The above classification scheme results in four distinct route choice models. In each model, the 

following common assumptions are made: 

 

• The travel time for every link on the network is assumed to be an increasing function of 

the flow of vehicles on the link. 

• Each traveler makes a rational route choice decision based on minimizing some criteria 

related to average travel times or some disutility measure based on average travel times 

and their variances as follows: 

 

   kkk VU ε+= ,       (2.1) 

 

where kV  is the systematic component of the disutility of route k; kε  is the random error 

term of route k; and kU  is the total disutility of route k. 

 

For comparison and discussion purposes, we define the following notation for the route choice 

models discussed in this chapter. 

 

 

Perception Error?  
No Yes 

No DN-DUE DN-SUE Network 

Uncertainty? Yes SN-DUE SN-SUE 
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 ax   Traffic flow of link a  

aC~   Perceived travel cost of link a  

ac   Measured travel cost of link a  

aε   Perception error of link a  

kC~   Perceived travel cost of path k  

rs
kc   Measured travel cost of path k  between OD pair rs  

rs
kε   Perception error of path k  between OD pair rs  

kV   Systematic component of the utility of route k 

kε   Random error term of route k 

kU   Total utility of route k 

kt   Average travel time of route k 

rs
kf   Traffic flow of path k  between OD pair rs  

rs
kU   Expected disutility of path k among OD pair rs  

*rs
kf   Equilibrium traffic flow of path k  among OD pair rs  

f   Vector of path flow rs
kf  

( )frs
kC   Expected utility for traveling of route k between r and s 

)~( rs
kCDU  Disutility value of path k  between OD pair rs  for given rs

kC~  

rs
kC~   Perceived travel cost of path k  between OD pair rs  

rs
kP   Probability of path k is taken between OD pair rs  

rs
akδ  Path link index matrix, rs

akδ  is equal to 1 for link a on path k  and 0 

otherwise 

( )[ ]kTE η  Expected utility of route k 

( )ktη  The utility function describing the risk-taking preference of travelers on 

route k 

( )kkT tf  The travel time probability density function (pdf) of route k 
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RS   OD pair Set 
rsχ   Path set of OD pair rs  

rsq    Traffic demand between OD pair rs  

rsu   Minimum travel cost between OD pair rs  

)](~[ XCS rs
rs  Satisfactory function of perceived path travel cost 

)(~ XC rs  Vector of perceived path travel cost for given OD pair rs  

)(XF f  Column vector of ),,( rsrsrs
k kRSrsU χπ ∈∀∈∀−  

)(XF π  Column vector of ),( RSrsqf rs

k

rs
k

rs

∈∀−∑
∈χ

 

π   Vector of the minimum expected disutility rsπ  
rsη   Expected disutility between OD pair rs  

F   Network mapping function that map traffic demand to path flow 
rsπ   The expected utility between OD pair r and s 

θ   A positive parameter 

 

 

2.2 The DN-DUE Model 
The DN-DUE model ignores both network uncertainty and perception error.  Essentially, this 

model assumes that travelers consider only the expected values of network travel times and they 

are perfectly aware of these expected travel times on the network. According to the utility 

function specified above, this means 

 

 [ ] kkk tTEV θθ −=−=  and   0=kε  ,    (2.2) 

 

where kt  is the average travel time of route k, and θ  is a positive parameter. 

 

The criterion used for route choice is to minimize the expected value of route travel time, which 

is obtained by adding up the average travel times on all the links belonging to the route. The 

choices of routes made by all travelers result in a network flow allocation such that all used 

routes between every origin-destination pair have equal average travel times and no unused 



 11

route has a lower average travel time according to Wardrop’s First Principle (1952). Since travel 

time variability is not considered in the route choice decision, all travelers in the DN-DUE model 

are implicitly assumed to be risk neutral. Depending on the route cost structure, formulations of 

the DN-DUE model include these four approaches: (i) mathematical programming (e.g., 

Beckmann et al., 1956; Sheffi, 1985), (ii) nonlinear complementarity problem (Aashtiani, 1979), 

(iii) variational inequality (e.g., Dafermos, 1980; Nagurney, 1999), and (iv) fixed point (Asmuth, 

1978). All four approaches can be used to formulate the additive traffic equilibrium problem 

(i.e., route cost structure is simply the sum of the link costs on that route). The additive 

assumption allows one to express route cost in terms of the sum of link costs, and also enables 

the problem to be solved without the need to store routes despite route flow variables remain in 

the constraint set (Gabriel and Bernstein, 1997; Lo and Chen, 2000). The Frank-Wolfe algorithm 

is perhaps the best known algorithm that takes advantage of this additive assumption when 

solving large-scale transportation networks. Although routes are generated in each iteration of 

the column generation procedure, the algorithm does not store or make direct use of the routes.  

Instead, it operates directly in the link-flow space using only two vectors of link flows to perform 

the convex combinations step to update its solution. Solution approaches, that use link-based 

variables, are sometimes known as link-based algorithms. Link-based solution algorithms for the 

additive traffic equilibrium problem include the enhanced Frank-Wolfe (FW) algorithm 

(LeBlanc et al., 1975; Fukushima, 1984; Weintraub et al., 1985; Janson and Gorostiza, 1987; 

Lee and Nie, 2001), PARTAN algorithm (LeBlanc et al., 1985; Florian et al., 1987; Arezki and 

Van Vliet, 1990), restricted simplicial decomposition (RSD) algorithm (Hearn et al., 1985), and 

origin-based algorithm (Bar-Gera and Boyce, 2002). There are also the route-based algorithms 

that solve the same problem explicitly using route-flow variables which require storing the links 

of each individual route. Solutions resulting from a route-based algorithm provide both the 

aggregate link-flow solutions and the individual route-flow solutions that are not readily 

available from a link-based algorithm. Route-based solution algorithms for the additive traffic 

equilibrium problem include the OD-based Frank-Wolfe algorithm (Chen, 2001; Chen et al., 

2002), disaggregate simplicial decomposition (DSD) algorithm (Larsson and Patriksson, 1992), 

and gradient projection (GP) algorithm (Bertsekas and Gafni, 1982; Jayakrishnan et al., 1994), 

and conjugate gradient projection algorithm (Lee et al., 2003). For a comprehensive review and 
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computational study of the route and link-based solution algorithms for the additive traffic 

equilibrium problem, refer to Chen et al. (2000, 2002) and Lee et al. (2002). 

 

When the route cost structure is non-additive (i.e., route cost structure is not a simple sum of the 

link costs on that route), it is no longer feasible to solve the problem with just link-flow variables 

since there is no simple way of converting the non-additive route cost to equivalent link costs. 

Non-additive traffic equilibrium problems must be formulated and solved explicitly in the route-

flow space. As adeptly discussed by Gabriel and Bernstein (1997), there are many situations in 

which the additive route cost structure is inadequate for addressing factors affecting a variety of 

transportation policies. Some of the examples include: (a) path-specific tolls and fares – most 

existing fares and tolls in the United States are not directly proportional to travel time or 

distance, (b) nonlinear valuation of travel time – small amounts of time are valued much less 

than larger amounts of time, and (c) emissions fees – emissions of hydrocarbons and carbon 

monoxides are a nonlinear function of travel times. Compared to the additive traffic equilibrium 

problem, there exist only a few solution algorithms for the non-additive traffic equilibrium 

problem. These include the nonsmooth equations/sequential quadratic programming (NE/SQP) 

method (Bernstein and Gabriel, 1997), gradient projection algorithm (Scott and Bernstein, 1998), 

gradient method with Armijo stepsize for solving Fischer’s gap function (Lo and Chen, 2000), 

and self-adaptive projection and contraction method (Chen et al., 2000, 2001). 

 

For a more detailed overview of route choice models, solution algorithms, and applications of the 

DN-DUE model, refer to Bell and Iida (1997), Cascetta (2001), Patriksson (1994), and Sheffi 

(1985). 

 

 

2.3 The DN-SUE Model 
Due to the unrealistic assumption that all travelers have perfect knowledge of the network 

conditions, Daganzo and Sheffi (1977) extended the Wardrop’s UE condition by introducing a 

perception error into the route choice process as follows: 

 

 [ ] kkk tTEV θθ −=−=  and   0≠kε  ,    (2.3) 
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In this model, each traveler is assumed to have some perceptions of the mean travel times on 

each link of the network, which include a random error term. Each traveler’s route choice 

criterion is to minimize the perceived value of the route travel time, which can be obtained by 

adding up the perceived travel times on all the links belonging to the route. The choices of routes 

by all travelers result in a network flow allocation such that no traveler can reduce his/her 

perceived travel time by unilaterally changing to another route (Sheffi, 1985). This definition is 

an extension of the UE model, known as the stochastic user equilibrium model. Similar to the 

DN-DUE model, all travelers in DN-SUE model are risk neutral since only the mean travel times 

are considered in the route choice decision process. 

 

Due to variations in travelers’ perceptions of travel times, travelers do not always select the 

correct minimum travel time route. Route choice models proposed under this approach can have 

different specifications according to modeling assumptions of the random error term. The two 

most commonly used random error terms are Gumbel (Dial, 1971) and normal (Daganzo and 

Sheffi, 1977) distributions, which result in the logit and probit-based route choice models. Logit-

based route choice models have a closed-form probability expression, an equivalent 

mathematical programming formulation (Fisk, 1980), and can be solved using both path 

enumeration techniques (Ben-Akiva et al., 1984; Cascetta et al., 1997, 2002) and column 

generation techniques (Bell et al., 1993; Bell, 1994; Chen and Alfa, 1991; Damberg et al., 1996; 

Leurent, 1997; Maher, 1998). The drawbacks of the logit model are: (1) the inability to account 

for path overlapping (or correlation) among routes and (2) the inability to account for perception 

variance with respect to trips of different lengths. These two drawbacks stem from the logit’s 

underlying assumptions that the random error terms are independently and identically distributed 

(IID) with the same, fixed variances (Sheffi, 1985).  Probit-based route choice models, on the 

other hand, do not have such drawbacks since it handles path overlapping and identical variance 

problems by allowing covariance between the random error terms for pairs of routes.  However, 

the probit model does not have a closed-form solution and it is computationally burdensome 

when the choice set contains more than a handful of routes.  Due to the lack of a closed-form 

probability expression, solving the probit-based route choice model requires either Monte Carlo 

simulation (Sheffi and Powell, 1982) or Clark’s approximation method (Maher and Hughes, 

1997). Other specifications of the random error term include uniform distribution (Burrell, 
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1968), gamma distribution (Bovy, 1990), and lognormal distribution (Von Falkenshausen, 1976; 

Cantarella and Binetti, 1998). 

 

Recently, there are renewed interests to improve the logit-based route choice model due to the 

importance of route choice models in Intelligent Transportation Systems (ITS) applications, 

particularly applications to advanced traveler information systems (ATIS). Several modifications 

or generalizations of the logit structure have been proposed to relax the IID assumptions.  These 

extended logit models include the C-logit (Cascetta et al., 1996), path-size logit (Ben-Avika and 

Bierlaire, 1999; Ramming, 2002), cross-nested logit (Prashker and Bekhor, 1998; Vovsha, and 

Bekhor, 1998), paired combinatorial logit (Bekhor and Prashker, 1999; Gliebe et al., 1999; 

Prashker and Bekhor, 1998, 2000), generalized nested logit (Bekhor and Prashker, 2001), and 

logit kernel (Bekhor et al., 2002). Despite the recent advancements in the logit model and its 

adaptations to the route choice problem, all of the above models do not address the issues of 

travel time variability and choice behavior under uncertainty. 

 

 

2.4 The SN-DUE Model 
The two route choice models presented above assume that the network travel times are 

deterministic for a given flow pattern.  In reality, path (link) travel times comply probability 

distributions for a given flow pattern and describes the variations of travel times on the network.  

Such variations could result from the differences in the mix of vehicle types on the network for 

the same flow rates, differences in driver reactions under various weather and driving conditions, 

differences in delays experienced by different vehicles at intersections, etc.  Variability in travel 

times introduces uncertainty for travelers, such that they do not know with certainty when they 

will arrive at their destination. Thus, it is considered as a risk (or an added cost) to a traveler 

making a trip. Route choice decisions under network uncertainty often involve tradeoffs between 

expected travel time and travel time variability. This observation is supported by recent empirical 

studies (Abdel-Aty et al., 1996; Ghosh, 2001; Kazimi et al., 2000; Lam, 2000; Lam and Small, 

2001; and Small et al., 1999) that found travelers are interested in not only travel time saving but 

also reduction of travel time variability. Abdel-Aty et al. (1996) found that travel time variability 

is one of the most important factors in route choice decisions. Specifically, about 54% of the 
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respondents in the survey indicated that travel time variability is either the most important or 

second most important reason for choosing their daily commute routes. Small et al. (1999) found 

that both passengers and freight carriers are strongly averse to the scheduling mismatches 

because they cannot predict precisely what their travel time will be. For this reason, they will pay 

a premium to avoid congestion and to achieve greater reliability in travel times. From the two 

value-pricing projects in Southern California in the United States, Ghosh (2001), Kazimi et al. 

(2000), Lam (2000), and Lam and Small (2001) consistently found that travelers are willing to 

pay a substantial amount to reduce variability in travel time. Suffice to say, travel time variability 

is an important factor for travelers when making their route choice decisions under risk or 

circumstances where they do not know, with certainty, the outcome of their decisions. 

 

In the SN-DUE model, network uncertainty is explicitly considered, but perception error is 

ignored. Instead, link travel times are explicitly treated as random variables. For a given set of 

flows, there is a probability density function (pdf) associated with the route travel times.  

Because the travel time variability is included in this model, different travelers may respond to 

such variations differently depending on their risk-taking preferences. The risk in this case is the 

variability associated with network travel times. 

 

 ( )[ ] ( ) ( ) kkkTkkk dttftTEV ∫−== ηθη  and  0=kε ,   (2.4) 

 

where ( )[ ]kTE η  is the expected utility of route k; ( )ktη  is the utility function describing the risk-

taking preference of the traveler on route k; and ( )kkT tf  is the pdf of route k. 

 

To the best of our best knowledge, Soroush (1984) might be the first to give an analytical 

formulation for the SN-DUE model as a nonlinear complementarity problem (NCP) formulation. 

Let nn RRF a:  (i.e., F is a mapping to itself). The NCP is a system of equations and 

inequalities stated as: 
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Find x such that 

 

 0≥x ,  0)( ≥xF , 0)( =⋅ xFxT ,     (2.5) 

 

where 












∀
∀=

sr
srkfx rs

rs
k

,,
,,,

π
 and 














∀−
∀−

=
∑
k

rsrs
k

rsrs
k

srqf
srkC

xF ,,
,,,)(

)(
πf

,    (2.6) 

( ) ( )( )[ ]ff k
rs
k TEC η=  is the expected utility for traveling on route k between r and s, 

rs
kf  is the flow on route k between r and s, 

f  is a vector of route flows, 
rsπ  is the expected utility between r and s, 
rsq  is the travel demand between r and s. 

 

The above NCP is for a fixed travel demand case, but it is easily relaxed to become elastic by 

changing the travel demands as a function of the expected utilities (see Nagurney, 1999).  Since 

travel time variability is explicitly considered in the SN-DUE model, different risk-taking 

preferences can be used to model how travelers respond to such variations in network travel 

times.  Depending on the behavioral nature of travelers, they can be classified as risk averse, risk 

prone, or risk neutral. For instance, a risk averse traveler will trade off a reduction in travel time 

variability with some increases in expected travel time, whereas a risk prone traveler may choose 

a route with a greater variability so as to increase the possibility of a smaller travel time. A risk 

neutral traveler would choose a route based on only expected travel time without consideration 

of its variability.  It should be noted that the risk neutral model in the SN-DUE model is 

essentially the same as the DN-DUE model in which each traveler makes his/her route choice 

based only on the mean travel times. 

 

In the SN-DUE model, travelers are assumed to have perfect knowledge of the variable nature of 

network travel times. In general, this model may be suitable for peak-hour traffic where regular 

commuters have a good idea of the mean and variance of network travel times. Recently, Yin 



 17

and Ieda (2001) applied this NCP formulation with quadratic disutility functions to assess the 

performance reliability of road networks. A gap function was used to first convert the NCP into 

an unconstrained optimization problem, and then applied a route-based algorithm, proposed by 

Lo and Chen (2000), to solve this smooth, unconstrained reformulation. Uchida and Iida (1993) 

used the notion of effective travel time (i.e., mean travel time + safety margin) to model network 

uncertainty in the route choice model. The safety margin is defined as a function of travel time 

variability that serves as a measure of risk averseness in their risk-based, route choice model. An 

effective travel time model requires the specification of travel time variability as an input 

depicting the stochasticity of the network, which may be difficult to obtain in the field. Because 

of this, Bell and Cassir (2002) provided an alternative approach based on game theory, that 

circumvents the need to specify, a priori, the travel time distribution. In this game, the network 

users seek the best routes, subject to link failure probabilities, that are selected by the demons 

trying to cause a maximum damage to network users. However, it should be recognized that 

there are a number of restrictive assumptions underlying this game theory formulation of risk 

averse route choice model. Recently, Liu et al. (2004) proposed a Mixed Logit model to 

formulate the SN-DUE case and the newly collected loop data from SR 91 in California is used 

to calibrate the unknown coefficient in the model. 

 

 

2.5 The SN-SUE Model 
In the SN-SUE model, both the variability of network travel times as well as traveler perception 

errors are accounted for as follows: 

 

 ( )[ ] ( ) ( ) kkkTkkk dttftTEV ∫−== ηθη  and  0≠kε .   (2.7) 

 

Mirchandani and Soroush (1987) were the first to propose this generalized traffic equilibrium 

model that incorporates both probabilistic travel times and variable perceptions in the route 

choice decision process.  In the SN-SUE model, each traveler i is assumed to have a variable 

perception error ( )iii N θµξ ,~  with ( )τµ ,0~ Ni  and ( )βαθ ,~ Gi , respectively.  In other 

words, the perception error for each traveler i is normally distributed with a variable mean iµ  
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and a variable variance iθ , where iµ is assumed to be normally distributed over the population of 

travelers with zero mean and τ  as the variance, and iθ is assumed to be gamma distributed over 

the population of travelers with parameters α and β .  This variable perception error allows each 

individual traveler to experience a different travel time for a given set of flows.  This is different 

from the probit-based DN-SUE model in which the random error term only accounts for the 

randomness of the travelers’ perceived travel times (i.e., ( )τξ ,0~ Ni ) and treats the randomness 

of link travel times in the form of expected values. 

 

Following Mirchandani and Soroush (1987), the perception error for traveler i for a link of unit 

travel time is assumed to be ( )iiatia N θµξ ,~1= . Then, the conditional perception error for a 

link with some travel time is ( )aiaiatatia ttN θµξ ,~= , and the conditional moment generating 

function1 (MGF) for the distribution of perception error is 
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
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
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

 +== ==
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1expexp ,    (2.8) 

 

where s is a real number. Hence, the MGF of the perceived travel time for traveler i for link a 

can be written as 

 

 ( ) ( )[ ]iat tsEsM
ia

~exp~ = .        (2.9) 

 

Using the definition that the perceived travel time is the sum of the expected link travel time and 

the individual perception error, the MGF of the perceived travel time for traveler i for link a 

becomes 

 

                                                 
1 Moment generating function is a convenient way to derive expressions for the means and standard deviations of 
functions of random variables (Ang and Tang, 1990). 
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Substituting ( )sM
atatia =ξ  into equation (2.10), we obtain 
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Thus, the MGF of the perceived travel time is specified in terms of the MGF of the actual travel 

time and the variable parameters of the traveler i perception error distribution. Using the 

perceived travel time derived from the MGF and the expected disutility for traveling route k 

between r and s from the systematic component of the utility function, the perceived expected 

utility can be expressed as follows: 

 

 ( )[ ] ( ) ( ) kkTkk tdtftTE
k

~~~~~~
~∫−= ηθη ,      (2.12) 

 

where ( )[ ]kTE ~~η  is the perceived expected utility of route k; ( )kt
~~η  is the perceived utility 

function describing the risk-taking preference of the traveler on route k; and ( )kkT tf ~~  is the 

perceived pdf of route k.  The values of both ( )[ ]kTE ~~η  and kT~  are unobserved and will be 

different from the values of ( )[ ]kTE η  and kT .  Because ( )[ ]kTE ~~η  is a function of a variable 

perception error, where both iµ  and iθ  are randomly distributed across the population of 

travelers, the perceived expected utility will differ from traveler to traveler. Hence the route 

choice probability can be stated as follows: 

 

 ( )[ ] ( )[ ]( ) srkKklTETEobP rs
rs

l
rs

k
rs

k ,,,~~~~Pr ∀∈≠∀≥= ηη ,  (2.13) 
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where rs
kP  is the probability of choosing route k between r and s, kT~  and lT~  are the perceived 

travel time of route k and route l between r and s; and rsK  is the set of routes between r and s. 

 

Given the travel demands between all origin-destination (OD) pairs ( rsq ) and the route choice 

probabilities ( rs
kP ), the route flow assignment is simply 

 

 srkqPf rs
rs

k
rs

k ,,, ∀= .        (2.14) 

 

The link flow on each link can then be calculated as 

 

 afx rs
ka

r s k

rs
ka ∀=∑ ∑ ∑ ,δ ,       (2.15) 

where rs
kaδ  is one if link a is on route k between r and s, and zero otherwise. 

 

Following the work of Daganzo (1983) and Cantarella (1997), the SN-SUE model can be 

formulated as a fixed-point problem. 

 

 ( )( )[ ]( ) qfPf ∗∗ = TE ~~η ,        (2.16) 

 

where ∗f  is a vector of equilibrium path flows; P  is matrix of route choice probabilities; and q  

is a vector of OD travel demands.  Existence of solutions of the fixed-point formulation can be 

analyzed through Brouwer’s theorem (see pages 653-658 in Cascetta (2001)) for the theoretical 

properties and solution algorithms for the fixed point formulation).  Since the feasible set is non-

empty (for any given positive travel demands with at least one route serving between each 

origin-destination pair), compact, and convex, and the expected utility function is continuous, the 

fixed-point formulation will admit at least one solution. 

 

Similar to the SN-DUE model, travelers in the SN-SUE model can be either risk averse, risk 

prone, or risk neutral based on the assumptions about the behavioral preference of the travelers. 
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Risk neutral travelers in the SN-SUE model are the same as the DN-SUE model since all 

travelers make their route choice decisions solely based on the mean network travel times.  A 

critical difference is that the SN-SUE travelers use the perceived expected utility (as opposed to 

expected utility in the SN-DUE model) as the route choice criteria.  Hence, equilibrium is 

achieved when no traveler can reduce his/her perceived expected disutility by unilaterally 

changing to another route. 

 

Recently, there has been an increasing interest in this class of route choice models. Tatineni et al. 

(1997) conducted experiments on a large-scale network in the Chicago Area to compare the 

traffic loadings of the DN-DUE, DN-SUE, and SN-SUE models; Boyce et al. (1999) and Liu et 

al. (2002) extended the SN-SUE model to a dynamic setting; and Chen et al. (2000), Chen and 

Recker (2001), and Chen et al. (2002) applied all four route choice models to evaluate network 

capacity reliability and travel time reliability of road networks. 
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Chapter Three 

3. GIS DATABASE DEVELOPMENT AND CALCULATION OF 

FREEWAY TRAVEL TIME VARIABILITY 
 

3.1  Introduction 
Travel time variability has recently become an important measure in transportation system 

management and has begun being treated as a major factor influencing travel decisions. Despite 

its increasing importance, the travel time variability has not been widely quantified in practice, 

let alone used in real applications.  In this chapter, a real case study is conducted to describe how 

the travel time variability is measured in the existing freeway system of Orange County, 

California. 

 

Bates et al. (1987) and Small et al. (1999) have described three distinct factors on travel time 

variability. These factors include inter-day variability, inter-period variability, and inter-vehicle 

variability. Sources of such seasonal or day-to-day variation are regarded as results from demand 

fluctuations, accidents, road construction, and weather conditions. Personal driving styles and the 

behavior of traffic control devices along a route are reasons for causing travel variability.  Abdel-

Aty et al. (1996) have found that travel time variability is the most important factor for choosing 

the route from a survey. Perceiving that changes in departure times are also consequence of 

changes in congestion, Small et al. (1999) have attempted to fit an econometric model that treats 

scheduling considerations using preference survey data, and calibrated the value of reliability in 

terms of reduction in travel time variation. Lam and Small (2001) have also evaluated the value 

of travel time and reliability using the difference between the 90 percentile and median of travel 

time.  Although there have been empirical and theoretical findings addressing the importance of 

travel time variability, less attention has been paid to estimating or calculating the travel time 

reliability.  Recently there have been some efforts on quantifying such travel time variability 
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(Levinson and Zhang, 2001; Richardson, 2003; Lomax 2003).  Travel time variability is treated 

as a way of measuring travel reliability (Lomax, 2003; Chen et al., 2003). 

 

This case study incorporates existing freeway traffic surveillance systems to provide systematic 

measures of travel time variability. While real-time traffic data are a useful source for traffic 

operations, their long-term analysis provides precious information in identifying non-recurrent 

traffic conditions from temporal and spatial traffic variations. The main purpose of this case 

study is to develop a database to help understand traffic variability of point measures and route-

level measures by incorporating existing traffic surveillance systems.  This case study develops 

an integrated GIS database for traffic analysis in Orange County, California, and reports 

temporal and spatial traffic variability as measures of travel reliability. 

 

 

3.2 Building Database 
 

3.2.1 Overview 

The main source of data for calculation of travel time variability is the Testbed’s direct link to 

Caltrans District 12 TMC that provides real-time data links from area freeways directly to 

dedicated Testbed research laboratories located at University of California, Irvine (UCI). 

Currently, both historical freeway data (all Caltrans District 12 systems) and real-time freeway 

data are available in the Testbed lab PTL network via a CORBA interface.  In this study, travel 

time variability is analyzed during a year period from March 2001 to February 2002, and the 

original lane-by-lane thirty-second data are aggregated into five-minute interval by loop detector 

stations. 

Figure 3.1 shows the overall procedure of the travel time variability computation using the 

existing loop detector data from the UCI ATMS Testbed.  This procedure consists of three major 

parts. 

 

• Part 1: Analysis of Point/Section Measures  

• Part 2: Analysis of Route-based Measures 

• Part 3: Development of GIS (Geographical Information Systems) Database 
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The first part is to analyze traffic measures based on the existing loop detector stations. After 

calculating speeds at each point, section travel times are calculated for each section defined by 

the location of loop detectors. The focus of this part is to investigate travel time variability at the 

section level. 

 

The second part is to calculate route-based travel time between freeway ramps. This part 

calculates route travel times for all feasible routes enumerated based on section travel times on 

the corresponding routes. An interest is to investigate how the variability of section travel times 

affects the route travel time. From drivers’ points of view, route travel time and its variability are 

of more concern than those in sections. 

 

The third part is to incorporate the section and route travel time measures into a GIS database to 

visualize and manage travel time and variability measures. Although the GIS database is used to 

visualize all information at the initial stage, the tasks in the first and second part are conducted 

within the GIS database. 

 

 
 

Figure 3.1: Overall Procedure for Travel Time Variability 
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Tasks in this chapter can be broken down into six parts: 

 

Task 1: Data aggregation into five-minute interval 

Task 2: Point speed calculation 

Task 3: Define freeway sections, origins, destinations, and enumerate feasible paths  

Task 4: Calculation of section travel times and variability 

Task 5: Calculation of route travel times and variability 

Task 6: GIS database construction 

Task 7: Data analysis 

 

The core part of this study is to analyze various travel time variability measures. Standard 

deviations are defined as measures of travel time variability. More specifically the normalized 

standard deviations are evaluated as representative measures of section travel times and route 

travel times. Travel time variability can be caused either by travel demand changes and/or by 

traffic incidents. In this study, travel time variability is viewed from three different angles. 

 

• Day-to-day variability 

• Within-day variability 

• Spatial variability 

 

The first variability is the day-to-day variation that makes difficult the prediction of travel time 

by travelers or system operators. The reliable transportation infrastructure will provide smaller 

day-to-day variation. The second variability is within-day variation that displays how much the 

traffic pattern fluctuates during a day or a given period of day. As a similar variability as a route 

level, spatial variation is defined as variability that drivers are experiencing while driving along a 

route. 
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3.2.2 Traffic Data and Data Availability 

As described above, this study uses one-year historical traffic data from March 2001 to February 

2002. Freeway traffic data for all of Orange County are available from the UCI Testbed research 

laboratory. The original data are available in the following format: 

 

• vds id and timestamp 

• lane and loop count 

• volume, occupancy, and status 

 

The current UCI Testbed provides traffic counts and occupancy for each lane at each detector 

station, every thirty seconds. In this study, lane-by-lane traffic data were aggregated into each 

detector station with five-minute intervals, in order to obtain valid traffic data from each point. A 

simple method was applied in aggregating traffic measures. All lane-by-lane data available 

during a five-minute interval is used, and the average was taken as a representative measure. 

Figure 3.2 shows loop detector stations in the study area. 
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Figure 3.2:  Loop Detector Stations in Study Area 

 

Loop detectors in Orange County are classified into mainlines, on-ramps, off-ramps, freeway-to-

freeway connectors, etc., and each detector station includes lane-by-lane traffic data. Since our 

main interests are investigating travel time on mainline freeways, this study only considered 

traffic data from the main-line loop detector stations. In the study area, there are 499 mainline 

loop detector stations.  However, many loop detector data were missing during the study period. 

Table 3.1 shows the number of loop detector stations by available data rate.  Due to freeway 

construction and communication problems, a quarter of detectors were not functioning, and only 

a 61.3% of loop stations were able to provide more than 50% of traffic data. 
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Table 3.1: Loop Detector Data Availability 

 

% available data Number of 
detector stations % Cumulative number 

of detector stations % 

95 - 100% 0 0.0% 0 0.0% 
90 - 95% 0 0.0% 0 0.0% 
85 - 90% 1 0.2% 1 0.2% 
80 - 85% 18 3.6% 19 3.8% 
75 - 80% 76 15.2% 95 19.0% 
70 - 75% 68 13.6% 163 32.7% 
65 - 70% 61 12.2% 224 44.9% 
60 - 65% 41 8.2% 265 53.1% 
55 - 60% 24 4.8% 289 57.9% 
50 - 55% 17 3.4% 306 61.3% 
45 - 50% 8 1.6% 314 62.9% 
40 - 45% 9 1.8% 323 64.7% 
35 - 40% 2 0.4% 325 65.1% 
30 - 35% 1 0.2% 326 65.3% 
25 - 30% 3 0.6% 329 65.9% 
20 - 25% 9 1.8% 338 67.7% 
15 - 20% 3 0.6% 341 68.3% 
10 - 15% 7 1.4% 348 69.7% 
5 - 10% 4 0.8% 352 70.5% 
0 - 5% 23 4.6% 375 75.2% 

0% 124 24.8% 499 100.0% 

 
 

3.2.3 Reliability of Traffic Data Estimates by Data Availability 

Since the aggregated, five-minute traffic data are based on the available samples during the five-

minute interval, the quality of traffic data depends upon the data availability or the sample rate. 

In order to determine which loop detectors to include in the database, with respect to the data 

availability, we investigated potential errors by the sample rate using the Monte Carlo simulation 

technique. The experiment was conducted with the data on I-405, where reliable data were 

provided during the period. In this experiment, we randomly chose a given percentage of 

samples and estimated the five-minute aggregate measures. The averaged aggregated measures 

from the sample were compared with the actual average value (true mean) with a sample of 

100%. After repeating the experiment for 30 times, we compared MAPE (Mean Absolute 

Percentage Error) as in equation below, as an overall performance measure. In this experiment, 

we used three traffic measures, volume, occupancy, and speed. However, speeds used in this 
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experiment were estimated from volume and occupancy assuming a g-factor because speeds 

were not available in single loop detectors as in Orange County. 
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,        (3.1) 

where 

 N  = the total number of samples, 

nx  = nth sample, 

x  = true mean traffic measure. 

 

Figure 3.3 and Figure 3.4 show two sample cases of simulation experiment results. The first 

figure shows changes of measures with various sample rates during the experiment period (4:00 

– 10:00 AM).  The estimation errors decrease when approaching the peak time periods and may 

have been due to an increase in samples during the peak hour. In order to see the impact of 

congestion level on the estimates, we also compared the estimation errors (MAPE) with respect 

to the level of occupancy, as shown in the second figure. In most cases, the estimation errors 

were lowest when the traffic occupancy levels were within 10 – 20%. Another comparison, 

shown in Figure 3.3 (d) and Figure 3.4 (d), showed the estimated speeds with the true mean 

speeds. Figures 3.3 and 3.4 show that estimates with 10% sample may result in large range of 

errors while the estimates with more than 50% of data provide reasonable estimates with small 

errors. 
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(a) Volume estimation error by sample rate 
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(b) Occupancy estimation error by sample rate 
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(c) Speed estimation error by sample rate 
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(d) Comparison of speed estimate with true mean 
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Figure 3.3:  Quality of Estimates by Sample Rates (Detector on I-405, postmile 3.04) 
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(a) Volume estimation error by sample rate 
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(b) Occupancy estimation error by sample rate 
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(c) Speed estimation error by sample rate 
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(d) Comparison of speed estimate with true mean 
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Figure 3.4:  Quality of Estimates by Sample Rates (Detector on I-405, Postmile 3.86) 
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Overall errors, in terms of MAPE, are compared in Figure 3.5 with respect to the data 

availability. Certainly, as the sample rate increases, the error decreases. As shown in the figure, 

the simulation experiment shows that traffic data with a sample of 40% will be able to provide 

estimates with less than 5% of MAPE for all three traffic measures (volume, occupancy, and 

speed). Data with a 20% of samples are expected to provide estimates with less than 10% of 

MAPE. These errors are contributed by speed variation of lanes and the temporal variability of 

traffic measures during a five-minute period.  In this study, we chose the sample rate of 20% as a 

minimum data requirement, which may provide estimates with less than 10% error. 
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Figure 3.5:  MAPE of Aggregated Measures by Sample Rates 

 

Out of 499 mainline loop detector stations, we included 338 loop detector stations into our 

analysis after eliminating 161 loop detectors that include less than 20% data points during the 

analysis period (March 2001 – February 2002).  Missing data at the loop detector stations for 

further analysis were interpolated using the yearly mean value of the corresponding five-minute 

period.  The completed dataset includes traffic volume and occupancy for every five-minute 

period during 52 weeks. 
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3.2.4 Estimation of Speed and Section Travel Time 

Loop detectors in Orange County are single loop detectors that provide only traffic volumes and 

occupancies, requiring the estimation of  the travel speeds by assuming a so-called “g-factor,” 

the summation of the average vehicle length, and the effective detection length.  The average 

speed, u , can be calculated as: 

  

o
qgu
×

×
=

5280 ,          (3.2) 

where 
=q flow rate (veh/h) 
=o occupancy 

 

The most critical value in calculating the speed is the assumed g-factor. In fact, applying 

appropriate g-factors is a key in estimating speeds from single loop detector data.  This study 

calculates a g-factor representing each hour for each loop detector station as follows: 

 

Step 1: Calculate initial g-factor by assuming the free-flow speed (75 mph) when the occupancy 

is lower than 0.06. 

Step 2: Find an average g-factor representing each hour interval based on the identified initial g-

factors over the 53 weeks. 

Step 3: Apply smoothing parameter (0.9) for the next time period 

 

)1()1()(ˆ)1(ˆ +⋅−+⋅=+ tgptgptg ,       (3.3) 

where 

=+ )1(ˆ tg g-factor for time step t+1, 

=+ )1(tg initial average g-factor for time step t, 

 p = smoothing parameter (0.9). 

 

By applying the above procedure, representative g-factors for each hour of day are calculated for 

all 388 loop detector stations.  These g-factors are basic information for speed calculations in this 

study. Based on these g-factors, speeds are calculated every five-minute period, for all 52 weeks. 
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In this study, a freeway section corresponds to a mainline loop detector station.  Within a section, 

a corresponding detector is located in the middle of the section as depicted in Figure 3.6. Based 

on the sections and corresponding estimated speeds, travel times for each section are calculated 

for every five-minute interval during the one-year analysis period. 

 

 
 

Figure 3.6:  Section Definition and the Corresponding Detector Location 

 

 

3.2.5 Route Travel Time Estimation 

3.2.5.1 Build a Network for Travel Time Study 

To find the feasible paths in the test area, the test network is constructed based on the loop 

detector position.  As described in Figure 3.6, a node is set to be a median point between two 

adjacent loop detectors and a link is defined by two nodes. Based on the on-ramp and off-ramp 

locations, zones are defined as starting and ending points of trips. 

 

For the route travel time analysis, we defined a smaller size network in the Irvine area, where 

alternative routes can be found and more reliable data are available. As a result, the total number 

of nodes in the network is 281 and of links is 345. Although there are 48 possible zones, in the 

smaller study network, we defined 10 representative zones for route travel time calculation as 

shown in Table 3.2 and Figure 3.7. 
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Table 3.2:  Zones in the Network 

 Zone ID Freeway Entrance/Exit Street 

1 I-5 Junipero Serra 

2 I-5 Oso park 

3 I-5 Tustin Ranch 

4 I-5 4th street 

5 SR-55 Fair 

6 SR-55 Edinger 

7 SR-55 4th street 

8 I-405 Culver 

9 I-405 Harbor 

10 SR-73 New port coast 
 

 

 
 

Figure 3.7:  Selected Zones in the Test Network 
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3.2.5.2 Enumeration of Feasible Routes 

For the purposes of this study, feasible routes between an origin and a destination, we 

determined using the all-feasible-path enumeration algorithm developed by Kim et al. (2004).  

The algorithm is based on conventional tree building algorithms. While general tree building 

algorithms only store the shortest paths or specific paths from an origin node to all other nodes, 

the all-path algorithm stores all paths from an origin to all other nodes. Similarly to conventional 

tree building algorithms, the all-path algorithm also branches spans to all nodes. The algorithm is 

divided into two sub-algorithms: 1) spanning branches and 2) sorting and storing paths. Since 

this all-path algorithm searches all feasible paths, the number of paths drastically increases as the 

network size increases. In this study, the number of feasible paths is constrained by the relative 

path length compared to the shortest route. In other word, the algorithm searches all paths that 

are shorter than α times the shortest path. Here, α is specified by users. This algorithm is more 

flexible and general than the conventional k-shortest path algorithm in that the number of paths 

for each OD pair is not fixed but determined depending on the network topology and the α value. 

The detail algorithm is described as follows. 

 

Notation 
n
bBR : The nth link on a branch b, 
n
bBN : The nth node on a branch b, 

n
bBC : The branch cost of the branch b until link n, 

n
bBRClosed _ : If n

bBR is closed, 1, otherwise, 0, 

)(mNC : The travel cost from origin to node m, 
start
imLink )(  : The ith link emanating from node m, 

))(( start
imLinkC  : The link cost of start

imLink )( , 

])([ start
imLinkI : The head node of start

imLink )( , 

])([ start
imLinkJ : The tail node of start

imLink )( , 

nstart
imLinkJoPath ]])([][[ =nth link on a path from origin to ])([ start

imLinkJ , 

α : A parameter for bounding a branch. 

 



 37

Step 1. Initialization 

Set 00 =bBR , 00 =bBC , 

Set n=1, 

mmNC ∀∞=)( , 

m=o, 

 

Step 2. Spanning branches 

If n
bBC + ]))([())(( 11

startstart mLinkJNCmLinkC ⋅≤ α , then set srart
b mLinkBR 1
1 )(= . 

If ])([ 1
startmLinkJ is already visited by n

bBR , srartmLink 1)(  does not be added to 

n
bBR , 

n
bBRClosed _ =1, 

Otherwise, n
bBRClosed _ =1, 

If there is another link emanating from the origin, b=b+1, 

 

Step 3. Storing paths 
nstart

imLinkJoPath ]])([][[ = n
bBR  for all branches b, 

 

Step 4. Stopping criteria 

For all branches, if n
bBRClosed _ =1, then stop, 

Otherwise, n = n+1, go to Step 2. 

 

The path enumeration algorithm above identifies numerous alternative routes for a given OD 

pair. In this study, the paths were bounded up to 30% longer than the shortest path by applying 

1.3 as the parameter for bounding a branch (α value). By applying the above algorithm, a total of 

170 paths were identified. These paths are included for further path travel time analysis. 
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3.2.5.3 Path Travel Time Calculation 

With the five-minute interval section travel time data, the time-dependent path travel times are 

calculated. These path travel times are also calculated every five-minute departure interval at the 

origin. In other word, travel times for a path connecting an origin and a destination is calculated 

by departure time at the origin, based on the time-dependent section travel times. Figure 3.8 

shows an example calculation of the travel time of path k with four consecutive sections. The 

travel time at a section is selected based on the time when a driver would drive after traveling the 

previous sections. The path travel time departing at time t is obtained by summing the 

corresponding section travel times. 

 

 
 

Figure 3.8:  Calculation of Path Travel Time 

Path k  
Link1  Link2  Link3  Link4  

0. t0: Departure 
Link1 travel time:  τ1 at t0 

1. t0+τ1: t0+lΔt≤t0+τ1< t0+(l+1)Δt 
Link2 travel time:  τ2 at t0+l∆t 

2. t0+τ1+τ2: t0+mΔt≤t0+τ1+τ2< t0+(m+1)Δt 
Link3 travel time:  τ3 at t0+m∆t 

3. t0+τ1+τ2+τ3: t0+nΔt≤t0+τ1+τ2+τ3< t0+(n+1)Δt 
Link4 travel time:  τ4 at t0+n∆t 

τ1  

τ2  

τ3  

τ4  

Path travel time TTk= τ1+τ2+τ3+τ4 
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3.2.6 GIS Database Construction 

3.2.6.1 Overall Procedure for GIS DB 

The objective of this part is to construct a base framework for utilizing Geographic Information 

Systems (GIS) and base database to analyze the travel time variability. There are many 

commercially available GIS software packages, such as ArcView GIS, ArcInfo, ArcGIS, 

MapInfo, TransCAD, and GeoMedia. Since UCI has unlimited access to the ArcView GIS and 

ArcGIS, which are the most popular packages for GIS users, and their segmentation and 

referencing tool make it useful for the analysis of transportation data, this research has utilized 

the ArcGIS produced by the Environmental Systems Research Institute (ESRI), Inc. 

 

Traffic data used in this project is collected from loop detectors in Orange County area. Since the 

one-year data set is based on five-minute intervals and all 499 detectors, manipulated in the 

project, the size of the data is over 50,000,000 records. Because of this, database management 

systems (DBMSs) such as Oracle, MS-SQL server, Informix, Sybase, and MySQL are necessary 

to efficiently manage the huge database. MySQL, which is the world’s most popular open source 

database server, was selected for this project. 

 

After preparing two computer packages, GIS and database, a basemap is required for displaying 

traffic road network, traffic facilities, and features such as loop detector location, accident 

location, etc. Although Topologically Integrated Geographic Encoding Referencing (TIGER) 

files are freely available as a basemap, the TIGER files are not accurate enough for this project. 

Therefore, a map produced by Navigation Technology Corp. (NavTech) was used in this project. 

The NavTech map included several data layers including road network discriminated by the 

functional class and attribute data, and included more accurate information than other digital 

maps. However, the NavTech map was still impertinent to directly use it for the project, because 

each highway layer should be separated from the highway layer for using “Linear Referencing”. 

 

In this project, the detector location and accident location are referred by highway postmile, 

which are declared by Caltrans, but the NavTech map cannot identify the highway postmile. 

Since most traffic related data sets are collected by different agencies, or collected for different 

purposes, a common referencing system is required for integrating all data sets. As mentioned, 
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the detector location and accident location, as the reference events, are referred on the NavTech 

map using “Linear Referencing Technique” in ArcGIS. To efficiently query and analyze the 

traffic data from MySQL, it is very important to design the database structure. Other analysis 

would be processed with spatial analysis of GIS, database functionalities, and visual 

programming. Figure 3.9 shows the process for this part. 
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Figure 3.9:  Task Process for GIS Database 
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4.2.6.2 Linear Referencing for Map Editing 

To match events on the GIS map, coordinate data is required. Likewise, x-y coordinates are 

required to represent loop detector locations and accident locations on the GIS map. Although 

the loop detector location data have x-y coordinates, as described in Table 3.3, locations do not 

exactly match with the highway links in the GIS map. Fortunately, both the loop detector data 

and the accident data have the postmile attribute in their records and all point events related to 

them can be positioned on the GIS map using Linear Referencing System in ArcGIS. Instead of 

x-y coordinates, linear features such as highways, streets, railroads, rivers, and telephone lines 

can be recorded by using a single relative position (ESRI, 2001). That is, all event features can 

be identified by a known measurement, such as postmiles on the linear feature. For example, 

1204198 VDS in Table 3.2 identifies the position on 0.65 miles away from the starting point of 

the I-5. The postmile attribute rather than x-y coordinates is used in identifying the location of 

VDS.  Table 3.4 represents types of loop detectors. 

 

Table 3.3: Data Format for Loop Detector Data 

VDS_ID Class FWY 
Name 

Dir Postmile Latitude Longitude Location 

1204198 ML 5 N 0.65 33.405577 -117.59843 S. LUIS REY 
1204209 FR 5 N 1.24 33.41139 -117.60107 MAGDALENA 
1204211 ML 5 N 1.26 33.41196 -117.6014 MAGDALENA 
1204204 OR 5 N 1.26 33.413536 -117.60217 MAGDALENA 

1204228 FR 5 N 1.83 33.416473 -117.60365 EL CAMINO 
REAL 

1204230 ML 5 N 1.83 33.418488 -117.60458 EL CAMINO 
REAL 

1204222 OR 5 N 1.84 33.421011 -117.60672 EL CAMINO 
REAL 

1204242 FR 5 N 2.45 33.425546 -117.6093 PRESIDIO 
1204244 ML 5 N 2.47 33.427031 -117.61036 PRESIDIO 
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Table 3.4: Description of Loop Detector Types 

VDS type Description VDS type Description 

CD Collector/distributor HF HOV off ramp to arterial 
CH HOV collector/distributor HI HOV mainline Ingress 
FC Off collector/distributor HN HOV on ramp to arterial 
FF Fwy/Fwy connector HV Mainline HOV 
FH HOV off collector/distributor ML Mainline 
FR Off ramp NH HOV on collector/distributor 
HB HOV fwy/fwy connector OC On collector/distributor 
HE HOV mainline egress OR On ramp 

 

 

Since all detector locations and accident locations are based on each highway postmile, all routes 

for linear referencing should be composed by each highway (e.g., I-5, I-405, SR-55, SR-22, etc.). 

Therefore, it is necessary to separate highway layers by highway name. Also, each highway layer 

should be separated by the direction because all highway layers have the direction such as north 

bound, south bound, east bound and west bound. An additional separation process is required for 

loop detectors, since loop detectors are discriminated by the detector type or location such as 

mainline, on-ramp, off-ramp, freeway to freeway, HOV, etc. Figure 3.10 shows an example of 

the route expansion by highway name and Figure 3.11 is an example of adding a ramp and a 

collector. 
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Before adding links of CA-55 After adding links of CA-55 

 

Figure 3.10: An Example of the Map after Adding Links 

 

Before adding ramp and collector After adding ramp and collector 

 

Figure 3.11: An Example of the Map after Adding Ramps and Collector Links 
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Routes are defined in GIS by using linear referencing. A route consists of one or more line 

features sequentially connected. Since each route has an identifier stored in a field and an 

associated measurement system, attributes are assigned to a route. Then, all events along a linear 

feature can be identified by this measurement system. Using the “Create Route Wizard” tool of 

the linear referencing in Arc Toolbox of ArcGIS, routes are generated. Both the detector layer 

and the accident data layer should be separated similar to a route layer. 

 

4.2.6.3 Projection of Detector Location and Accident Location on GIS Map 

Based on route layers and separated event layers for detector location, detector locations on the 

highway layer are projected using the “Route Events Geoprocessing Wizard” tool of ArcMap. 

This operation derives point events from point features by locating the features along a route 

reference. Figure 3.12 depicts some of the mainline detector locations, projected on the GIS map 

using linear referencing. The example shows how detectors are properly located in GIS map. 

 

 

Before matching ML detector location After matching ML detector location 

 

Figure 3.12: An Example of the Projection of ML Detector on GIS Map 

 

Likewise, since there is no longitude and latitude data in the accident dataset, the linear 

referencing method is required to project the accident locations on the GIS map. Once creating a 

route feature class from a line feature class using Create Routes Wizard of Arc Toolbox in 

ArcGIS, accident locations along the routes can be identified. Figure 3.13 depicts the revised 

location of accidents and detectors by using linear referencing. 
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Figure 3.13: Location of Accident and Detector 

 

 
3.2.7 Database Management and Analysis 

3.2.7.1 MySQL for Database Management 

Traffic volume and occupancy data are added to the database. Since ArcGIS or MS-Access has a 

limitation to handle and build the big database, MySQL version 5.0.0 was employed to build and 

handle all base datasets. Then, the MySQL database is linked to ArcCatalog of ArcGIS using 

ODBC (Open Database Connectivity) driver. Table 3.5 represents the merged traffic data table. 

In the table, VDS_ID and time_code are set as the primary key, and others are set as the Index 

key. 
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Table 3.5: Structure of the Database in MySQL 

ID VDS_ID Time_code Weekday Volume Occupancy Speed 

1 1204198 
2001-03-01 

00:00:00 
Wed 370 0.009 N/A 

2 1204198 
2001-03-01 

00:05:00 
Wed 256 0.01 N/A 

3 1204198 
2001-03-01 

00:10:00 
Wed 244 0.01 N/A 

M  M  M  M  M  M  M  

5245479 1209438 
2002-02-28 

23:50:00 
Wed -9 -9 . 

52454880 1209438 
2002-02-28 

23:55:00 
Wed -9 -9 . 

 

 

3.2.7.2 Linking SAS for Statistical Analysis 

Although the basic statistics can be obtained from the database, using SQL (Structured Query 

Language), commercial statistical analysis software can make more powerful analysis than using 

a DBMS alone. ODBC (Open Database Connectivity) driver enables other programs to access 

the database for further statistical analysis. ODBC driver is usually used when independent or 

simultaneous access to different data sources is required. Recent DBMSs support ODBC that 

provides a way for client programs to access a variety of databases or data sources. MySQL have 

also released a 32-bit ODBC driver, known as MySQL ODBC 3.51 Driver. In this study, the 

database, built using MySQL, is connected to ArcGIS and SAS for effective data management 

with GIS capability and further statistical analysis. Figure 3.14 shows a database connection to 

SAS using ODBC. 
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Figure 3.14: ODBC Connection Architecture (source: www.mysql.com) 

 

 
Figure 3.15: Connecting MySQL Database to SAS 
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3.3 Analysis of Section Travel Time Variability 
 
3.3.1 Measures of Section Travel Time Variability 

Section travel time variability is firstly measured using our traffic database. While many existing 

studies have investigated traffic variables in terms of traffic volume, occupancy, speed, and/or 

travel time itself, this study focuses on analyzing the variability of section travel times. In this 

study, the variability is measured from two different aspects. The first aspect is the variability of 

day-to-day travel time, and the second one is within-day variability. Table 3.6 shows the 

difference between day-to-day travel time variability and within-day variability. 

 

Table 3.6: Measuring Travel Time Variability for Each Section 

Day (d) Time (t) 3/1/01 3/2/01 …… D …… 2/28/02 
Day-to-day 
Variability 

00:00-00:05 
00:05-00:10 
00:10-00:15 

: 
t 
: 

23:45-23:50 
23:50-24:00 

τl,1,1 

τl,1,2 

τl,1,3 

: 
: 
: 

τl,1,187 

τl,1,188 

τl,2,1 

τl,2,2 

τl,2,3 

: 
: 
: 

τl,2,187 

τl,2,188 

…… 
…… 
…… 
…… 
…… 
…… 
…… 
……

τl,d,1 

τl,d,2 

τl,d,3 

: 
: 
: 

τl,d,187 

τl,d,188 

…… 
…… 
…… 
…… 
…… 
…… 
…… 
…… 

τl,3651 

τl,365,2 

τl,365,3 

: 
: 
: 

τl,365,187 

τl,365,188 

DVl,1 
DVl,2 
DVl,3 

: 
: 
: 

DVl,187 
DVl,188 

Within-day 
Variability WVl,1 WVl,2  WVl,d  WVl,365  

 

The day-to-day variability is measured to investigate how the travel time for a given time of day 

is fluctuating day-to-day. The higher variability of travel time implies that travel times are hard 

to predict from both travelers and system operator’s point of view, which may lead to travelers’ 

earlier departure for them to avoid the late arrival at destination. A standard deviation of data 

usually represents the level of data fluctuation. In this study, standard deviation and normalized 

standard deviation are used as measures of variability. The normalized standard deviation is 

calculated in order for the measures to be comparable, regardless the difference in length or 

travel time. Accordingly, three basic statistics, mean, standard deviation, and normalized 

standard deviation, are calculated, and the day-to-day travel time variability is represented by the 

(normalized) standard deviation. The time interval t in this study is five-minutes, and the analysis 
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period can be all weekdays during a one-year period or a specified period.  A special interest is 

whether the travel time variability differs by day or month. 

 

ltτ  = 
D

Dd
ldt

N

∑
∈

τ
,          (3.4) 

ltσ  = 
( )

D

Dd
ltldt

N

∑
∈

− 2ττ
,        (3.5) 

ltV  = 
lt

lt

T
σ

,          (3.6) 

where, 

ltτ  = Average travel time of section l for time interval t during the period of D  

ltσ  = Standard deviation of travel time of section l for time interval t during the period of 

D 

ltV  = Normalized standard deviation of travel time of section l for time interval t   during 

the period of D 

ldtτ = travel time of section l for time interval t on day d 

ND = the total number of days during the period of D 

 

The other travel time variability is measured during a given period, within a day, which we call 

within-day travel time variability. Such variability can be measured during an hour period or 

during a day period. The within-day variability explains how much the traffic pattern fluctuates 

during a given period within a day. Certainly, the measures will vary by the period applied.  

When a day is applied, within-day variability can be a representative value for a day; however, 

such a daily fluctuation may not be a meaningful measure from a traveler’s standpoint. Rather, a 

traveler may be concerned about the possible fluctuation during the period when he/she travels. 

In such circumstance, the within-day travel time variability, during a time of day, may be more 

meaningful. In this study, the within-day variability during an hour period and during a day 

period are compared since there is no consensus on the analysis interval. 
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ldpτ  = 
P

Pt
ldt

N

∑
∈

τ
,          (3.7) 

ldpσ  = 
( )

P

Pt
ldpldt

N

∑
∈

− 2ττ
,        (3.8) 

ldpV  = 
ldp

ldp

T
σ

,          (3.9) 

where  

ldpT  = Average travel time of section l during a given time period P within a day d  

ldpσ  = Standard deviation of travel time of section l during a given period P within a day 

d 

ldpV  = Normalized standard deviation of travel time of section l during a given period P 

within a day d 

ldtT = travel time of section l at time t on day d 

NP = the total number of time intervals during a given period P 

 

 

3.3.2 Day-to-Day Travel Time Variability 

3.3.2.1 Measures of Day-to-Day Travel Time Variability 

The measures of day-to-day travel time variability are calculated every five-minute interval for a 

day by loop detector station based on all weekdays (a total of 251 weekdays except holidays 

during the year). This statistic is to show how a travel time during a given five-minute interval is 

different from other days’ travel time during the same five-minute period. Accordingly, each 

section of freeway has 288 measures of day-to-day travel time variability for each five-minute 

interval. 

 

In order to compare the difference between sections, the each time interval’s variability measures 

measured over a year period are averaged for a given period (NT), 288 five-minute intervals for a 

day, or 12 five-minute intervals for an hour, as shown equations below. 
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T

∑
∈= , 

T

Tt
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l N
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σ
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T
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V

∑
∈=       (3.10) 

 

Table 3.7 compares daily average and morning peak hour (7:00 – 8:00 AM) day-to-day travel 

time variability by loop detector stations. In the table, travel time variability of a representative 

section for each directional freeway is compared as an example. The average speeds were 

calculated from the average travel time for comparison purpose. The average normalized 

standard deviations (N-STD) are comparable to each other as the same magnitude, since they 

were normalized by dividing by the average travel time. In this example, SR-22 eastbound shows 

the largest travel time variation in daily average while the I-405 southbound shows the largest 

during morning peak hour. However, note that these measures do not represent overall freeway’s 

travel time variability since such variability measures vary by location. When being compared 

between daily average and AM peak average, the sample average travel time during AM peak is 

50% higher than daily average, the average travel time variability, STD or N-STD, during AM 

peak is almost double or more than the whole day average. This means that both travel time and 

its variability are larger during morning peak hour. 
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Table 3.7: Day-to-Day Travel Time Variability by Loop Detector Stations 

Daily average 7:00 - 8:00 

Freeway vds_id Travel 
time (sec) 

Speed 
(mph) STD N-STD 

Travel 
time 
(sec) 

Speed 
(mph) STD N-STD 

5N 1204532 35.89 69.22 5.13 0.1216 62.76 39.58 28.43 0.4442
5S 1205182 25.80 57.91 4.26 0.1485 45.93 32.53 12.47 0.2738

405N 1201510 51.62 61.03 10.02 0.1667 47.67 66.08 6.01 0.1256
405S 1201805 37.11 57.72 8.16 0.1585 95.70 22.38 50.56 0.5211
22E 1202785 52.77 36.84 13.39 0.2295 72.88 26.67 21.48 0.2959
22W 1202840 28.36 70.44 3.69 0.1255 29.82 67.00 3.86 0.1293
55N 1210172 22.41 65.06 3.74 0.1325 29.23 49.89 7.60 0.2300
55S 1203284 33.76 59.71 6.01 0.1392 99.10 20.34 33.65 0.3426
57N 1202263 92.53 55.44 15.45 0.1305 85.13 60.26 14.95 0.1662
57S 1202422 64.95 64.57 9.30 0.1166 139.28 30.11 50.64 0.3623
91E 1208226 51.13 53.86 11.96 0.1682 40.35 68.25 2.36 0.0586
91W 1208260 16.75 63.95 2.83 0.1607 24.56 43.60 5.78 0.2359

Average 42.76 59.65 7.83 0.1498 64.37 43.89 19.82 0.2655
 

 

4.3.2.2 Time-of-Day Travel Time and Day-to-Day Variability 

Travel time of a section changes over time, as does its travel time variability.  Figure 3.17 shows 

changes of the normalized STD as a measure of travel time variability. Each section of freeway 

shows different patterns. The patterns of travel time variability look similar to the levels of traffic 

congestion, as they show higher variability during AM or PM peak hours. In many cases, each 

direction of freeway shows the opposite pattern. For example, while the I-405 southbound shows 

very high variation during AM peak hours, the northbound shows higher variation during PM 

peak hours. SR-57 and SR-91 also show very clear distinction between directions. 

 
Figure 3.18Figure 3.18 shows changes in average travel times during time of day, with the 

interval of plus/minus one standard deviation (±σ ). Assuming that the travel time pattern 

follows a normal distribution, the travel time for any five-minute period during any weekday will 

fall within the range with probability of 68.27% (the shaded area in Figure 3.16). The known 

probabilistic distribution can be used as a way of identifying abnormal traffic conditions. 

Presumably, abnormally short or long travel times are results of traffic incidents or drastic 

demand changes by an event. 
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Figure 3.16: Normal Distribution 
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Figure 3.17: Day-to-Day Travel Time Variability 
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Figure 3.18: Day-to-Day Average Travel Time and Range of Variability 
Note: Middle line shows mean travel time; upper and lower lines show ± one standard deviation 
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4.3.2.3 Relationship Between Travel Time and Day-to-Day Variability 

In general, the standard deviation of travel time is known to be highly correlated with travel time 

as well as the day-to-day travel time variability. Table 3.8 shows the correlations between day-

to-day average travel times and their standard deviations. These correlations were calculated 

based on 288 data points representing each five-minute intervals. The correlations between travel 

times and standard deviations are mostly greater than 0.9, and the average correlation for the 

sample locations is 0.945. The correlations between travel times and the normalized STDs are 

not as high as those between travel times and STD, but still show fairly high values (0.772 on 

average). 

 

Table 3.8: Correlation Between Travel Time and Its Day-to-Day Variability 

Correlation 
Correlation vds_id Between travel times 

and their STD 
Between travel times and 

their N-STD 
5N 1204532 0.972002 0.894451 
5S 1205182 0.938999 0.775226 

405N 1201510 0.977827 0.885063 
405S 1201805 0.957295 0.867532 
22E 1202785 0.977886 0.757644 
22W 1202840 0.786967 0.589239 
55N 1210172 0.961554 0.899053 
55S 1203284 0.964463 0.674607 
57N 1202263 0.964427 0.824285 
57S 1202422 0.974965 0.872792 
91E 1208226 0.951549 0.695800 
91W 1208260 0.907648 0.530446 

Average 0.944632 0.772178 
Note: based on 288 five-minute data 

 

3.3.2.4 Does Travel Time Variability Differ by Month or by Weekday? 

We have measured day-to-day travel time variability based on all weekday during a one-year 

period. In this section, we investigate how such day-to-day variability possibly differs by month 

or by weekday. With the same sections of freeways, firstly, average travel times and their N-

STDs are compared. As shown in Figure 3.19, monthly average travel times are similar over the 

year period. However, the monthly average N-STDs are a little lower during the summer months. 
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In addition, the variability measures are a bit higher during December compared to other months. 

This may have been due to many seasonal activities during December. 
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(a) Average Travel Time by Month 
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(b) Average Travel Time Variability by Month 

 

Figure 3.19: Travel Times and Their Day-to-Day Variability by Month 

 

Figure 3.20 compares the day-to-day travel time variability during weekdays. In this case, both 

travel times and their variability do not show significant difference overall. However, SR-91 



 59

eastbound shows a slightly longer travel time and higher variation on Friday. This is interpreted 

as characteristics of SR-91 that attracts heavy traffic during weekend travel. 
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(a) Average Travel Time by Weekday 
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(b) Average Travel Time Variability by Weekday 

 

Figure 3.20: Travel Times and Their Day-to-Day Variability by Weekday 
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3.3.3 Within-Day Travel Time Variability 

3.3.3.1 Measures of Within-Day Travel Time Variability 

The measures of within-day travel time variability are calculated for an hour interval or for a day 

with five-minute travel time data. This statistic shows how travel time fluctuates during a given 

period. In order to compare the difference between sections, daily within-day variability and 

hourly variability are calculated for each day and averaged over a year period.  

 

As shown in Figure 3.21, each freeway section shows different within-day travel time variability 

by each time of day. Table 3.9 provides average measures of daily within-day travel time 

variability and hourly variability during the AM peak, and compares measures of within-day 

variability with those of day-to-day variability. Of course, the daily measures of within-day 

variability are greater than those during the AM peak. On average, measures of daily variability 

are 2.3 times bigger than those of the AM peak’s. Measures of daily within-day variability are 

greater in most sample locations when compared with day-to-day variability, but measures of 

day-to-day variability are greater than those of within-day during the peak hour. That is, based 

on hourly measures, day-to-day shows larger variability. 

 

Table 3.9: Within-day Travel Time Variability 

Daily average variability Variability during 7 - 8 Freeway vds_id Day-to-day Within-day Day-to-day Within-day 
5N 1204532 0.1216 0.2798 0.4442 0.2556 
5S 1205182 0.1485 0.3332 0.2738 0.2072 

405N 1201510 0.1667 0.3783 0.1256 0.0502 
405S 1201805 0.1585 0.5408 0.5211 0.2470 
22E 1202785 0.2295 0.5843 0.2959 0.1842 
22W 1202840 0.1255 0.2008 0.1293 0.0508 
55N 1210172 0.1325 0.3662 0.2300 0.3790 
55S 1203284 0.1392 0.6357 0.3426 0.3901 
57N 1202263 0.1305 0.4642 0.1662 0.1180 
57S 1202422 0.1166 0.3666 0.3623 0.2520 
91E 1208226 0.1682 0.6880 0.0586 0.0302 
91W 1208260 0.1607 0.3637 0.2359 0.1194 

Average 0.1498 0.4335 0.2655 0.1903 
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Figure 3.21: Within-Day Travel Time Variability 
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Figure 3.22: Measures of Within-Day Variability in GIS Map 

 

Figure 3.22 shows measures of travel time variability in the GIS map. In the map, the larger dots 

indicate higher travel time variability. Some portions of I-5, SR-22, and SR-91 show larger travel 

time variability. Figure 3.23 compares the relationship between day-to-day variability and 

within-day variability based on one-hour variability measures in normalized standard deviation. 

Although the relationship varies by freeway section, the overall correlation coefficient for all 

sample locations is 0.8078. Figure 3.24 shows both day-to-day and within-day travel time 

variability as one standard deviation range from mean travel time. As addressed before, day-to-

day variability shows larger band than with-day variability. 
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Figure 3.23: Relationship Between Within-Day Variability and Day-to-Day Variability 
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Figure 3.24: Mean Travel Time and Its Variability 
Note: one standard deviation range 
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3.4 Analysis of Route Travel Time Variability 
 

3.4.1 Measures of Route Travel Time Variability 

In the previous section, we have investigated on measures of travel time variability within a point 

or a section of freeway level. However, from the travelers’ point of view, the travel time and its 

variability along their travel route are more important than those at a point or a section. This 

section deals with such travel time and variability measures in the route level and compares these 

measures between possible alternatives. 

 

Route travel time variability is measured in three aspects, day-to-day and within-day, as in the 

section travel time variability and spatial. In this study, the spatial variability is defined as 

variation of speeds along a route. Such spatial variability addresses the level of smoothness of 

traffic along a route, and potentially higher spatial variation may lead to unsafe traffic 

maneuvers. In that regards, such spatial variability could be a measure for drivers to consider 

their route decision. These three measures of route travel time variability are computed as 

follow: 

 

Day-to-day variability 
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Within-day variability  
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Spatial variability  
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where 

k = path 

d = day 

t = departure time 

t’ = time at the link for the trip departing at time t at the origin 

s = section 

DN = the number of days 

TN = the number of time intervals 

PN = the number of time intervals during a given period P 

kSN = the number of sections on path k  

kdtτ = Travel time of path k at time t on day d 

ktτ  = Day-to-day average travel time of route k at time t  

kdPτ = Within-day average travel time of route k during period p on day d  

kt
DTDσ  = Standard deviation of day-to-day route travel time on path k at time t  

k
DTDσ  = Average standard deviation of day-to-day route travel time on path k  

kdP
WIDσ  = Standard deviation of within-day route travel time on path k during period p on 

day d  

kP
WIDσ  = Average standard deviation of within-day route travel time on path k during 

period p 

dtsu = Speed of section s at time t on day d 

dtu = Spatial average speed for the trip departing at time t on day d 

kdt
Sσ  = Standard deviation of speeds on path k departing at time t on day d 

k
Sσ  = Average standard deviation of speeds on path k  

 

 

3.4.2 Route Travel Time and Variability among Alternative Routes 

As described in section 3.2.5.1, we chose 10 zones and enumerated 170 feasible paths using our 

path enumeration algorithm. Table 3.10 shows path travel times and variability for some 

interesting origin and destination pairs, that include multiple feasible paths. The percentage of 
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the fastest among other alternative routes is also included in the table to compare with mean 

travel time and travel variability measures. The percentage of the fastest is based on all five-

minute intervals over the whole one-year period, and the fastest path found from our database is 

not necessary the most common path by drivers. In most cases, the measures of day-to-day route 

travel time variability during peak hour is greater than those during the morning peak hour. This 

information will be precious when coupled with the actual driver’s route choice data.  Analyzing 

drivers’ route choice behavior, associated with measures of route travel time variability, is of 

interest. Such variability measures will also be an important factor in travel time information 

systems especially when much uncertainty exists. 

 

Table 3.10: Route Travel Time and Variability Between Alternatives 

Daily Travel Variability Variability 7:00 – 
8:00 AM Origin Dest. Path

Mean 
travel 
time 
(min) 

Day-to-
day 

With-in 
day Spatial Day-to-

day 
With-in 

day 

% of 
the 

fastest 

1 20.35  1.4576 1.9635 16.525 3.0921 1.3112 0.8 
2 19.93  1.4330 1.9439 14.940 3.1343 1.3587 25.4 1 7 
3 18.75  0.5814 1.6368 9.514 0.7958 0.9604 73.8 
1 15.35  0.8557 1.9484 13.944 2.3266 1.4634 22.8 
2 15.92  0.8413 1.8559 13.343 2.0893 1.0943 0.0 2 5 
3 13.97  0.1829 0.3444 9.909 0.2382 0.3533 77.2 
1 15.51  0.9341 2.1919 12.477 2.3741 1.4972 32.9 
2 16.01  0.9170 2.1117 11.483 2.1381 1.1216 0.0 
3 15.84  0.9231 2.1731 17.676 2.1925 1.1800 0.4 
4 17.65  0.9646 2.2426 13.657 2.3813 1.4587 0.0 

2 9 

5 14.38  0.2565 0.4329 13.727 0.2563 0.3752 66.6 
1 10.97  0.9000 1.3482 28.742 0.6787 0.7837 71.0 3 10 
2 11.03  0.8441 1.3547 17.142 0.6347 0.7114 29.1 
1 17.11  0.7946 1.3377 10.896 0.5580 0.4310 32.2 
2 17.86  0.8466 1.9678 12.025 0.5060 0.3501 11.1 6 1 
3 17.06  0.7659 1.2282 14.029 0.5798 0.4227 56.7 
1 14.67  0.7218 2.0851 12.132 0.4492 0.2942 34.1 
2 14.33  0.6717 1.4115 10.221 0.5094 0.3778 58.3 6 2 
3 14.57  0.6491 1.2214 12.868 0.5303 0.3719 7.6 
1 14.72  0.7759 2.0250 11.160 0.4943 0.2615 79.2 
2 16.58  0.8357 2.2202 11.122 0.5036 0.3008 0.0 
3 18.06  0.8471 2.1987 12.528 0.5152 0.2898  0.0 

9 2 

4 14.92  0.3779 0.5072 14.595 0.6326 0.3971  20.8 
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3.4.3 Changes in Route Travel Time and Variability 

This section reports an example of travel time and its variability to show details of route travel 

time analysis. The example route runs from the south to the north along I-5 and I-405. 

 

 
Figure 3.25: Test Route 

 

3.4.3.1 Changes in Travel Time and Travel Time Distribution by Departure Time 

First, we investigate changes in both travel time and its distribution by departure time. As shown 

in Figure 3.26, the route travel time changes in respect to time. The overall pattern is similar to 

changes in section travel time as reported in the previous section. Figure 3.27 shows travel time 

distributions during different time periods based on travel times during five-minute over the 

whole one-year period. While the distribution for all day appears as Gamma distribution in 

shape, each period shows different shapes with different ranges (deviation). For instance, during 

the morning peak (7 – 8 AM), the range of travel times is wider than other periods. 

 

3

8 

10

5 

9 

6 

4 7 

2

1 



 68

0
5

10
15
20
25
30
35

0:
00

2:
00

4:
00

6:
00

8:
00

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

Depa rt u re  Time

Tr
av

el
 T

im
e 

(m
in

) 

 
Figure 3.26: Route Travel Time by Departure Time 
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Figure 3.27: Travel Time Distribution by Departure Time Period 



 69

3.4.3.2 Day-to-Day Travel Time Variability 

In fact, travel time distributions in the previous section explain characteristics of each route 

travel time. These distributions are mixture of both day-to-day and within-day variability. In this 

section, measures of day-to-day travel time variability are reported. Figure 3.28 shows the range 

of route travel times with ± one standard deviation of each five-minute interval, and Figure 3.29 

shows changes in day-to-day variability by departure time. As in the section travel time cases, 

the route travel time variability is also highly correlated with the travel time itself. Figure 3.30 

shows their linear relationship. The correlation coefficient between travel time and its standard 

deviation (variability) turns was 0.84. 
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Figure 3.28: Range of Day-to-Day Travel Time by Departure Time 
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Figure 3.29: Day-to-Day Variability of Travel Time by Departure Time 
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Figure 3.30: Relationship Between Travel Time and Day-to-Day Travel Time Variability 

 

 

3.4.3.3 Within-Day Variability of Route Travel Time 

Within-day variability can be measured either by day or by hour. In this section, a one-hour 

period is applied to compare the within-day variability with the day-to-day variability. In Figure 

3.31, both variability measures are based on one-hour period. Although both measures are also 

highly correlated with each other, as shown in Figure 3.32, the measures of day-to-day 

variability are greater than those of within-day. 
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Figure 3.31: Route Travel Time Variability in Both Day-to-Day and Within-Day 
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Figure 3.32: Relationship Between Day-to-Day Variability and Within-Day Variability 

 

 

Table 3.11 shows the relationships among travel time, day-to-day variability, and within-day 

variability. As shown in Figure 3.32, day-to-day variability is highly correlated with both within-

day variability, and travel time. The correlation between travel time and within-day variability is 

relatively lower than the others. 
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Table 3.11: Correlation Among Travel Time, Day-to-Day Variability, and Within-Day 
Variability 

 

 Travel time Day-to-day 
variability 

Within-day 
variability 

Travel Time 1.00 0.8458 0.7404 

Day-to-day 
variability - 1 0.8919 

Within-day 
variability - - 1 

Note: based on one-hour average measures 

 

 

3.5 Concluding Remarks 
Recently the importance of travel time variability has been widely perceived by researchers and 

practitioners. However, the understanding of travel time variability is still in its infancy and 

applications to transportation management have not yet been developed. The first step for 

advancement to the application stage is to build a database for detailed analysis. 

 

This chapter has developed a GIS-based database composed of the historic traffic data from 

freeways in Orange County, California. The main purpose of the database is to provide the 

analysis framework to analyze the travel time variability in both section-level as well as route-

level. In many cases, traffic data is used for traffic operations without storing the data. The 

archived traffic data can play an important role as a way of measuring freeway performance. 

Such historic data enables us to analyze such travel time variability from a long-term 

perspective. The database developed in this chapter is expected to help researchers and 

practitioners understand travel time variability as a measure of transportation system reliability 

by providing the analysis framework. The next step is to identify the sources of travel time 

variability and to study how to remove the source of variability from the context of 

transportation system management. 
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In this chapter, three measures of travel time variability were identified, such as day-to-day 

variability, within-day variability, and spatial variability. These measures characterize each 

section of freeway and/or each route between an origin and a destination. While the section-level 

variability is based on traffic data, the route-level travel variability is more concerned with the 

traveler’s point of view and the affects of variability on their route choice. Further studies are 

needed to better understand the travel time variability and how to use such measures for 

transportation management. 
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Chapter Four 

4. MIXED LOGIT ROUTE CHOICE MODEL 
 

Travel time reliability has generally been surmised to be an important attribute of transportation 

systems. In this chapter, we study the contribution of travel time reliability in travelers’ route 

choice decisions. Traveler’s route choice is formulated as a mixed-logit model, with the 

coefficients in the model representing individual traveler’s preferences or tastes towards travel 

time, reliability and cost. Unlike the traditional approach involving the use of traveler surveys to 

estimate model coefficients and thereby uncover the contribution of travel time reliability, we 

instead apply the methodology to real-time loop detector data, and use genetic algorithm to 

identify the parameter set that results in the best match between the aggregated results from 

traveler’s route choice model and the observed time-dependent traffic volume data from loop 

detectors.  Based on freeway loop data from California State Route 91, we find that the estimated 

median value of travel-time reliability is significantly higher than that of travel-time, and that the 

estimated median value of degree of risk aversion indicates that travelers value a reduction in 

travel time variability more highly than a corresponding reduction in the travel time for that 

journey. Moreover, travelers’ attitudes towards congestion are not homogeneous; substantial 

heterogeneity exists in travelers’ preferences of travel time and reliability. Our results validate 

results from previous studies involving the California State Route 91 value-pricing project that 

were based on traditional traveler surveys and demonstrate the applicability of the approach in 

travelers’ behavioral studies. 

 

 

4.1  Introduction 
It is accepted that a wide range of factors influences the route choice of individual travelers.  In 

addition to such factors as perceived travel time, monetary cost, comfort, and safety, the 
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reliability of travel time has been generally conceded to be an important factor, particularly for 

trips, such as journey-to-work, where time constraints (e.g. arrival time) may impose significant 

penalties on an individual. Reliability, by its nature, implies something about the certainty or 

stability of travel time of any particular trip under repetition. As such, reliability is closely 

associated with the statistical concept of variability. Variability could result from the differences 

in the mix of vehicle types on the network for the same flow rates, differences in driver reactions 

under various weather and driving conditions, differences in delays experienced by different 

vehicles at intersections, and such random incidents as vehicle breakdown and signal failure, etc. 

Variability in network travel times introduces uncertainty for travelers in that they do not know 

with certainty when they will arrive at their respective destinations. This risk (or added cost) to a 

traveler making a trip may be manifest in a willingness to pay a premium (e.g., through use of 

toll roads or HOV lane) to avoid congestion and to achieve greater reliability in travel times.   

 

Although travel time reliability ostensibly plays an important role in the traveler’s route choice 

behavior, there has been little empirical work directed to an understanding of the effects of 

reliability on the route choice decision making of the traveler; many questions remain 

unanswered.  How do travelers value travel time and its reliability, how much does the travel 

time reliability contribute to travelers’ route choices, and how much variation is there in 

travelers’ preferences regarding the potential tradeoff between reliability and travel time itself?  

Answering these questions can help in the design and evaluation of transportation planning and 

operation strategies, but requires that this attribute be accounted for explicitly in the modeling of 

travelers’ choice.  

 

The above questions could be studied either through direct or indirect methods (Jackson and 

Jucker, 1981).  The direct method involves posing a series of questions to a sample of travelers 

in a certain population, usually either as a revealed preference (RP) survey, in which the actual 

behavioral response to the traffic condition is reported, or as a stated preference (SP) survey, in 

which a traveler’s behavior in hypothetical scenarios is reported.  The indirect method involves 

inferring the answers to these behavioral questions from observed data describing the flows on 

alternative routes connecting an origin-destination pair. 
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Most previous research, that has attempted to address issues of reliability using direct methods, 

has analyzed RP data and/or SP data. Abdel-Aty et al. (1996) conducted a study to investigate 

the effect of travel time variability on route choice using repeated measurement SP data. Their 

results indicated the significance of both the degree of travel time variation and traffic 

information on route choice. Bates et al. (2001) provided a comprehensive overview of the 

theory underlying the valuation of reliability, and discussed the empirical issues in data 

collection. Because of the difficulties of finding real choice situations with sufficient variation, to 

allow statistically reliable estimates to be obtained for RP data, they acknowledged the value of 

SP data, and applied SP data in the study of valuation of reliability in passenger rail services. 

Although SP is usually de facto the only realistic possibility for data collection, Lam and Small 

(2001) leveraged the opportunity of a road pricing project and measured values of travel time 

and reliability from 1998 RP data on actual behavior of commuters on State Route 91 (SR91) in 

Orange County, California. Recently, Small et al. (2002) continued their previous studies by 

combining both RP and SP data on SR 91 to empirically identify the varied nature of traveler 

preference for travel time and reliability. They found that highway users exhibit substantial 

heterogeneity in their valuation of travel time and reliability. 

 

However, both RP and SP data have drawbacks. Although a greater level of detail data could be 

obtained from the survey from the individual traveler, and these data may lead to a higher degree 

of accuracy for the estimation, data collection for the survey of large sample size and its 

following analysis are time-consuming and expensive. For SP data, it is not sufficient to say that 

the response to hypothetical situations really reflects traveler’s behavioral choice to actual 

situations. For instance, because people tend to overstate the time delays they actually 

experienced, it is common that they respond more to a given actual time saving than to a 

hypothetical time saving of the same amount. Therefore, the estimated value of travel time may 

be lower than the actual. Although there is a general econometric tradition for favoring RP data, 

there are often serious problems in achieving the level of detail in data that is ideally required. In 

the study of travel time reliability, as noted by Bates (2001), it is virtually impossible to find RP 

situations where there is sufficient perceived variation to allow statistically reliable estimates -- 

notable exceptions to this are the studies conducted by Lam and Small (2001) and Small et al. 

(2002) with the California State Route 91 value-pricing project. 
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Alternatively, advancements in traffic surveillance and monitoring technologies, including real-

time data from inductive loop detectors, can provide valuable aggregated information that 

ostensibly resulted from the disaggregated individual travel route choices. Instead of surveying 

motorists on their choices in the direct method, we propose an indirect method to answer some 

behavioral questions, in such a way, that the estimated choice probability resulting from a route 

choice model matches the revealed probability exhibited in the real-time loop detector data. To 

the best of our knowledge, there are but very few research studies that investigate behavioral 

issues using the indirect method, and this chapter aims to fill this gap. 

 

In this chapter, traveler’s route choice is formulated as a mixed-logit model (also known as 

random coefficient logit and logit kernel), which generalizes the standard logit model by 

allowing the coefficient associated with each observed variable to vary randomly across 

individuals (McFadden and Train, 2000; Bhat, 2001; and Bhat and Castelar, 2002). The 

coefficients in the model represent individual traveler’s preferences or tastes toward travel time, 

reliability and cost. To find the distribution of the model coefficients and thereby uncover the 

contribution of travel time reliability in the dynamic route choice, we use Genetic Algorithm 

(GA) to identify the parameter set that results in the best match between the aggregated results 

from traveler’s route choice model and the observed time-dependent traffic volume data from 

loop detectors. 

 

We apply the proposed approach to measure value of time (VOT), value of reliability (VOR), 

and degree of risk aversion (DORA) simultaneously using data on actual travel behavior drawn 

from a real pricing context. A recent value pricing project on a major commuting highway, State 

Route 91 (SR91) in Orange County, California, gives travelers the option to travel free on the 

regular lanes or to pay a time-varying price for express travel on toll lanes situated along the 

median of the highway.  Based on their respective choices of whether or not to pay a toll for the 

congestion-free travel, we observe the outcome from the choice probability between the two 

parallel routes in the form of loop detector data on thirty-second averages of count and 

occupancy. We find that travel time reliability plays an important role in traveler’s decision 

making for route choice. Moreover, the results indicate that travelers value travel-time reliability 

substantially higher than they do travel-time savings. Our results validate results from such 
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previous studies as Lam and Small (2001) and Small et al. (2002), and demonstrate the 

applicability of our approach in travelers’ behavioral studies. 

 

 

4.2  Route Choice Structure and Formulation 
Travelers’ route choice among the available options will reflect their perception of the costs and 

benefits associated with each option. If the costs or benefits are perceived to be uncertain, the 

choice will be influenced by the travelers’ attitude to that uncertainty. We incorporate the 

stochasticity of route travel time as a measure of the risk associated with the selection of specific 

routes. On the basis of the perceived distribution of network travel times, travelers are assumed 

to behave differently when considering routes for which their perceived travel times have a 

probabilistic component. Some are risk averse, choosing routes with longer expected travel times 

but smaller variations. Others, the risk takers, may choose routes with shorter expected travel 

times but greater variations in travel time reliability. 

 

In modeling this behavior, we assume that the individual traveler has a subjective probability 

distribution of travel time for each available route. Additionally, we assume that there exists an 

objective distribution of travel time based on actual measurement over a suitably defined time 

period. This stochastic travel time reflects the intrinsic fluctuations in the transportation network, 

as noted, due to particular weather conditions, unpredictable lane closures, traffic accidents, etc. 

It is not necessarily the case that the subjective and objective probability distributions over route 

travel time are identical. They may differ, and when this is the case, the existence of perception 

errors is witnessed). However, for travelers in peak-hour commuting trips, it seems reasonable to 

assume that these two distributions are the same, i.e., drivers have no misperceptions of either 

travel time or travel time variation. This is the case for the model considered here; we leave the 

incorporation of traveler’s perception errors for future studies. 

 

We assume that travelers consider travel time, travel-time reliability (i.e., risk), and out-of-

pocket monetary cost (such as toll) in their choice of route. Moreover, we assume that they value 

any tradeoff between travel time and travel-time reliability differently depending on individual 

tastes, and that such tastes are distributed in the population in a manner that covers a spectrum in 
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terms of the degree of risk aversion. We further assume that drivers are rational and are 

maximizing some utility measure, and suggest a common disutility functional form, but with 

coefficients (disutility weights) that reflect individual’s preference. Traveler’s perceived 

disutility is a function of the route travel time, travel time variability, monetary cost, and the 

individual traveler’s attitude toward these three variables at each time. Specifically, we assume 

that the traveler is faced with a choice among rsP  alternative freeway routes between a freeway 

on-ramp origin r and a corresponding freeway off-ramp s. In this formulation, we assume that 

surface street travel is irrelevant to the choice and that the freeway origin and destination are 

fixed. There exists a choice set of route alternatives that is known to the individual, consisting of 

R different routes. Under these assumptions, the disutility to traveler n of travel, commencing at 

time t, along path p linking on-ramp origin r and off-ramp destination s is specified as: 

 

npnpnnp txtU εβ += )()( ' ,        (4.1) 

 

where )(txnp  is a vector of observed variables (including alternative specific constants), nβ  is a 

corresponding coefficient vector that may vary over individuals but does not vary across 

alternatives or time, and npε is an unobserved extreme value random term that captures the 

idiosyncratic effect of all omitted variables that are not individual specific. npε  is assumed to be 

identically and independently distributed across all choice occasions and independent of )(txnp  

and nβ . 

 

Since we assume that the traveler’s subjective distribution is identical to the objective 

distribution of route travel time, we omit n from the subscripts of )(txnp . Therefore, )(tx p  is a 

vector of observed variables based on the actual measurements from the field. Specifically, 

 
)]'(),(),([)( tCtRtTtx pppp = ,        (4.2) 

 

where Tp(t) measures route travel time, Rp(t) measures travel-time reliability, and Cp(t) is the 

monetary toll cost.  Therefore, the value of travel time (VOT), value of travel-time reliability 

(VOR), and the degree of risk aversion (DORA) are defined as: 
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where [ , , ]'T R C
n n n nβ β β β= , a vector of coefficients reflecting individual n’s particular tastes 

toward travel time, reliability, and monetary cost. As the notation indicates, the models we 

consider are specified so that VOT, VOR, and DORA depend on the individual traveler n but not 

on the choice instant t. nDORA  reflects the degree of risk aversion, i.e., the extent to which travel 

time variability is undesirable to traveler n. The larger the value of DORA, the higher the 

perceived cost of uncertainty, and the more risk averse the traveler. 

 

Preference heterogeneity is introduced by assuming that the coefficients nβ  are random 

variables. These coefficients are assumed to vary over travelers based on individual 

characteristics in the population with density ( )f β . This density is a function of parameters Θ  

that represent, for example, the mean and the covariance of the β ’s in the population. This 

specification, known as “mixed” logit or “random coefficients” logit, is identical to the standard 

logit except that β  varies over decision makers rather than being fixed. As such, the probability 

that traveler n will select path p, conditioned on nβ , is given by: 

 
( )
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t

np n t
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eL t
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′
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=
∑

β x

β xβ         (4.6) 

 

The unconditional probability is the integral of ( ; )np nL tβ  over the distribution of all possible 

values of nβ , i.e., 
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Equation (4.7) is the general form for the so-called Mixed Logit probability. Train (2002) 

provides an excellent overview of the properties of such models and procedures for their 

estimation. Choice probabilities can be estimated using Monte-Carlo simulation to integrate the 

computationally difficult parts of the preference distribution. Assuming that the parameters of 

( )f β  are Θ , the unbiased estimator npP
(

for npP can be obtained as follows: 

 

1. Select trial values for Θ . 
 

2. Draw Q values of β  from ( )f β Θ ; label the qth such value qβ  
 
3. Calculate ( ; ) ; 1, 2, ,q

npL t q Q=β K  
 
4. Compute average simulated probability as: 
 

1

1( ) ( ; )
Q

q
np np

q
P t L t

Q =

= ∑ β
(

        (4.8) 

 

An issue of terminology arises with Mixed Logit models (Train, 2002). There are two sets of 

parameters in a Mixed Logit model. First, we have the parameters β , which enter the logit 

formula. These parameters have density ( )f β . The second set of parameters describes this 

density. For example, if we assume that β is normally distributed with mean b and covariance W, 

then b and W are parameters that describe the density ( )f β . 

In this section, we assume that the parameters nβ  have independent normal distributions. If we 

further place the traveler in one of the M groups defined by their access to information (the 

assumption being that more risk adverse travelers may be more inclined to search out travel-time 

information), we would specify .);,(~ MmWbN mm ∈β  With the assumption that the random 

parameters Tβ , Vβ , Cβ  for time, reliability and cost have normal distributions, i.e., 

~ ( , )T T TN b Wβ , ~ ( , )V V VN b Wβ , ~ ( , )C C CN b Wβ , the parameter sets that need to be 
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estimated are { , , , , , }T T V V C Cb W b W b W ⊂Θ . The estimation of Θ  will define VOT, VOR, and 

DORA, and thereby uncover the relative roles of travel time and travel time reliability in route 

choice, as well as identify the distribution of the population along the risk dimension. We let Ω , 

called the parameter space, denote the set of all possible values that parameters Θ could assume. 

The estimation of Θ  is to search Ω  and find the best Θ  satisfying certain criteria. Traditionally, 

these parameters in the Mixed Logit model are estimated based on RP and/or SP data by 

simulated maximum likelihood estimation (Small et al, 2002). However, since our observed data 

are aggregated responses in the form of loop counts rather than the individual responses of each 

traveler, we use a genetic algorithm to identify the parameter set that results in the best match 

between the aggregated results from traveler’s route choice model and the observed time-

dependent traffic volume data from loop detectors. We provide details of this procedure in the 

next section. 

 

 

4.3  Estimation Procedure and Solution 
Traditionally, the parameters in the mixed logit model are estimated based on RP and/or SP data 

by simulated maximum likelihood estimation (SMLE), as described in Train (2002). However, 

since our observed data are aggregated responses in the form of loop counts rather than the 

individual responses of each traveler, the essential concept of our estimation procedure is to find 

the set of parameter values that results in the best match between the aggregated results from 

traveler’s route choice model and the observed time-dependent traffic volume data from the loop 

detectors. Therefore, the problem considered here is a minimization program of the difference 

between the volume data generated from the mixed logit route choice model (we assume the 

dynamic origin-destination matrix is given) and the observed loop counts. Because the route 

choice probability in the minimization program does not admit a closed form, as shown in 

Equation (4.7), gradient-based optimization methods require expensive computational effort to 

calculate the derivatives numerically and often result in finding a local optimal solution. We 

therefore adopt genetic algorithm to solve the minimization program. 
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4.3.1 Estimation  

Consider freeway trips originating from origin O located at on ramp r during time interval 

o ot t−∆ . The total number of such trips is evident from the thirty-second loop counts Q at r as: 

30

0
( ) ( )

ot

r o r o
j

Q t Q t j
∆

=

= −∑ .        (4.9) 

 

Since the dynamic O-D matrix ( ) ( )O t D t→  is presumed to be known, the total number of trips 

originating at O = r, and bound for destination D = s, during time interval o ot t−∆  is given as: 
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From Equation (4.7), the expected number of these trips to use any path p is given by: 
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For any loop station i on the path { },1, 2, ,p r i s= K K , we denote the travel time from origin r to 

loop station i for trips starting at time 0t  as *( )i ot t . Then the expected time at which the flow 

contribution from ( )p
rs oQ t  first will be counted (i.e., show up in the loop count poll) is *( )i ot t ; the 

expected end of the contribution from ( )p
rs oQ t  will occur at *( )i o ot t t+ ∆ , or 30ot∆  polls later.  

For purposes of identification, we expand the notation on *( )i ot t  to include reference to path p 

from r to s, i.e., 

 
* *( ) ( ; )i o i o rst t t t p→ ,         (4.13) 
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where rsp  denotes path p from on-ramp r to off-ramp s. Consider the observed loop count at 

some station i on the path rsp  over the time interval ot t−∆ , i.e., 

30
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i i
j

Q t Q t j
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=

= −∑ .         (4.14) 
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Then, an estimate of ˆ ( )iQ t  is given by: 
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Alternatively, using the estimate for ( )p
rs oP t  given by Equation (4.7), 
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.     (4.18) 

 

ˆ̂ ( )iQ t  is a function only of known values and the unknown parameters of ( )f β Θ . A standard 

approach to selecting the values of Θ  is to minimize the mean square error (MSE) between the 

estimate ˆ̂ ( )iQ t  and its true (observed) value ˆ ( )iQ t over some specified time period 1 2t t t≤ ≤ , i.e., 
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or, for distinct 30-second counting intervals, 
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4.3.2 Solution Method 

Our solution method to Equation (4.20) is based on genetic algorithms (GAs). GAs are heuristic 

search algorithms that attempt to search the solution space in a “smart” manner on the basis of 

natural selection and natural genetics. When using GAs to solve an optimization problem, each 

solution is encoded in a string (called chromosome), which is the concatenation of sub-strings 

corresponding to the set of decision variables. The entire population of such strings (solutions) is 

called a generation. Operators such as selection, crossover, and mutation are applied to parent 

chromosomes to create child chromosomes. The performance of each chromosome is evaluated 

by a fitness function, which corresponds to the objective function of the optimization program. 

Chromosomes that have high fitness values have high opportunities to reproduce, by cross-

breeding with other chromosomes in the population. Detailed discussions of general GAs are 

available in Goldberg (1989). 

 

The convergence of GAs has been proven by Holland (1975). Although not guaranteed to find 

the optimal solution, GAs often are successful in finding a solution with high fitness. GAs are 

also considered robust because at any time step of a search (or generation), GA progresses 

towards the optimal solution from a population of points, instead of starting the search at a single 

point, which increases the likelihood that the global, rather than a local, optimum will be found 

(Gen and Cheng, 2000). The population-based search procedure, together with stochastic 

operators used in GAs for reproducing child chromosomes in the next generation, are essential 

concepts for GAs to locate better solutions for complex and noisy objective functions than do 

such conventional techniques as gradient-based search methods. 
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The GA procedure used in the estimation of parameter set Θ  that satisfies the condition defined 

by Equation (4.20) is summarized in Figure 4.1. The first step in the estimation procedure is to 

generate a number of random individuals as the initial population, each carrying a chromosome 

that represents a feasible solution. From the initial population, each chromosome is first decoded 

into the actual parameter values and fed into the mixed-logit dynamic route choice model 

described in Section 4.2. Since the O-D matrices are given, traffic assignment based on the 

mixed-logit route choice model can be preformed. The fitness function, in which the objective 

function of Equation (4.20) is embedded, is then evaluated using the estimated volumes from the 

route choice model and the observed volumes from the field data. If the stopping criterion is not 

met, a set of GA operators (including selection, crossover and mutation) are applied to the 

chromosomes in the current population to produce offspring. The reproduction cycle including 

decoding of chromosomes and fitness evaluation is repeated until the stopping criterion is met or 

the predetermined number of generations is reached. The major components in this genetic-

algorithm-based estimation procedure, including encoding and decoding genetic chromosomes, 

evaluating the fitness of each chromosome, and reproducing child chromosomes by selection, 

crossover and mutation, are described in the following. 
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Figure 4.1: GA-based Estimation Procedure 

GA (fit_threshold, max_generation, p, r, m) 
 
       fit_threshold: a threshold specifying the termination criteria.  
       max_generation: maximal generations will be performed in the procedure. 
       p: the number of chromosomes (solutions) to be included in the population. 
       r: the fraction of population to be replaced by crossover at each generation (step). 
       m: the mutation rate.  
 

1. Initialize population G: Generate p chromosomes at random. 

2. Decode each chromosome in the population G. 

3. Evaluate: Compute fitness for each chromosome in the population G. 

4. While (fitness of best chromosome is less than fit_threshold or  

                   the number of generations is less than max_generation)  do 

       Create a new generation of chromosomes, Gnew:  

• Select: Probabilistically select (1-r)*p members from the current population G, 

and add to the new generation Gnew. 

• Crossover: Probabilistically select (r*p)/2 pairs of chromosomes from the 

current population G. For each pair, produce two offspring by applying the 

crossover operators. Add all offspring to the new generation Gnew. 

• Mutate: Choose m percent of the new generation Gnew with uniform 

probability. Apply the mutation operator. 

• Update: G = Gnew. 

• Evaluate:  Compute fitness for each chromosome in the new generation. 

• Find the highest fitness chromosome. 

5. Decode the chromosome with the best fitness and obtain the best solution to this 

problem. 
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4.3.2.1 Encoding and Decoding Chromosomes 

To apply GA to a given problem, a suitable encoding scheme for the parameter set must first be 

determined.  Of the various encoding methods that have been proposed, the most popular 

representation structures are binary vector and floating vector (Gen and Cheng, 2000). Because 

of its ease of implementation, a binary encoding method was applied to represent the parameter 

set in this research.  

 

In binary encoding, each decision variable is represented by a binary substring, and these 

substrings are concatenated to form a longer string, i.e., the chromosome, which represents the 

set of decision variables. The length of the substring is determined by the range of the decision 

variable and the level of precision. Let x be the real-valued decision variable and let it have a 

domain [xmin, xmax].  The length of the binary string used to represent x can be obtained from: 

 

)1)1((log minmax
2 ++

−
=

D
xxINTL ,  (4.21) 

 

where L is the length of binary string, D is the desired precision of variable x, and INT is the 

truncate operation to convert a real number into an integer. Then the decoding from a binary 

string to a real variable x is computed as: 

 

12
*)( minmaxmin −

−+= L

Axxxx ,       (4.22) 

 

where A is the value of binary string base 10. 
 

To identify xmin, xmax and D, a preliminary analysis and understanding of variable x is required. 

Specifically, if variable x is very sensitive, the desired precision needs to be higher. As a result, a 

longer string would be used in the representation scheme for variable x. 

 

In our study, the parameter sets that need to be estimated are { , , , , , }T T V V C Cb W b W b W ⊂Θ , 

which contain 6 decision variables. Each parameter is represented by 6 binary bits, so the 
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chromosome which represents the parameter set will have 36 binary bits. An example of genetic 

representation is shown in Figure 4.2. 

 

100010 001001 010101 100001 000001 111000 
bT WT bV WV bC WC 

 
Figure 4.2:  An Example of Genetic Representation of 6 Decision Variables with 36 Bits 

 

 

4.3.2.2 Fitness Function 

A fitness function is required to measure the “goodness” of each chromosome. The fitness 

function used here is the linear scaling of the objective function in the minimization program of 

Equation (4.20), which represents how well the estimate volume ˆ̂ ( )iQ t  and its true (observed) 

value ˆ ( )iQ t  match, as shown in Equation (21): 
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where fk is the fitness value of the kth chromosome and a and b are the scaling factors. Linear 

scaling is introduced to avoid two significant difficulties in the fitness proportionate selection 

process: premature convergence termination at early generations, and stalling at late generations 

(Goldberg, 1989). Parameters a and b are selected so that the average fitness is mapped to itself 

and the best fitness is increased by a designed multiple of the average fitness. 

 

4.3.2.3 Selection Process 

Selection is an operation through which chromosomes are picked for reproduction with a 

probability proportional to their fitness. In this study, a combination of fitness proportionate 

selection and elitism strategy is adopted for the reproduction process. In the fitness proportionate 

selection, also called roulette wheel selection, the probability that a chromosome will be selected 

is given by the ratio of its fitness to the fitness of the entire population, as shown in the 

following: 
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where qk is the probability of selecting chromosome k to produce offspring, fk is the fitness value 

of the kth chromosome in the current generation and pop_size is the population size. 

 

The elitism strategy keeps a certain number of the top chromosomes that have the highest fitness 

values and propagates to the next generation. This procedure ensures that the best solution in the 

next generation is not worse than the one in the current generation. 

 

4.3.2.4 Crossover Operation 

The crossover operator produces two new offspring from two parent strings, by copying selected 

bits from each parent. The bit at position i in each offspring is copied from the bit at position i in 

one of the two parents. The choice of which parent contributes the bit for position i is determined 

by an additional string called the crossover mask. With the crossover mask, crossover operation 

can be performed at single-point or two-point, as illustrated in Figure 4.3. In our study, both 

single-point crossover and two-point crossover are used. 

 

 Parent Strings Crossover Mask Offspring 

Single-point crossover    

 1110100100 1111100000 1110101010 

 0000101010  0000100100 

Two-point crossover    

 1110100100 0011110000 1100100100 

 0000101010  0010101010 

 

Figure 4.3:  Illustration of Crossover Operation (ten bits string is used as an example) 
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4.3.2.5 Mutation Operation 

Mutation is a process to overcome the local optimum problem. Each bit of a selected string is 

allowed to mutate according to a predetermined mutation probability, thereby reducing the 

likelihood that the search process will get stuck in a local optimum. 

 

 

4.4  Empirical Data Collection and Processing 
 

4.4.1 Study Site 

We apply the proposed method to newly collected data, concerning route choice in the California 

State Route 91 value-pricing project. The SR 91 toll lanes, located between the SR 91/SR 55 

junction in Anaheim, CA and the Orange/Riverside County Line, are the world's first fully-

automated privately operated toll lanes (Sullivan, 2000). The express lanes extend approximately 

about ten miles along the former median of the Riverside Freeway (SR 91), connecting rapidly 

growing residential areas in Riverside and San Bernardino Counties to job centers in Orange and 

Los Angeles Counties to the west. SR 91 in eastern Orange County includes four regular freeway 

lanes (91F) and two express lanes (91X) in each direction. Motorists who wish to use express 

lanes must register and carry identifying electronic transponders (the so-called FasTrak) to pay a 

toll that varies hourly according to a preset schedule. Tolls in the express lanes vary hour-by-

hour to control demand and maintain free flow traffic, in contrast to often congested traffic 

conditions in the adjacent free lanes. Tolls on westbound traffic during morning commute hours 

ranged from $1.65 (at 4-5 a.m.) to $3.30 (at 7-8 a.m., Monday-Thursday). Within the SR 91 

corridor, the Eastern Toll Road (ETR) competes with the 91X for trips to Irvine and vicinity. 

However, since the 91X has no entrance or exit between its starting and ending points, ETR 

users must use the highly congested 91F for access. 

 

We regard the SR 91 toll road portion as a two-route network. One route is the 91X, and the 

other is 91F, both 10 miles in length. This gives motorists the option to travel free on regular 

roads or to pay a time-varying price for congestion-free express travel on a limited part of their 

journey. Because of the toll pricing structure, observation is that traffic consistently moves at a 
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free-flow speed of approximately 75mph, even during peak hours on this facility. Consequently, 

we assume that travel time on 91X is deterministic (reliable) and equal to 8 minutes, 

corresponding to a speed of 75 mph. However, the free lanes are often congested during the 

morning peak hours (5-9 a.m.), and travel time on the 91F is rather stochastic and unreliable, 

presenting a relatively “clean” real-world experimental environment to study the relative 

contributions of travel time and travel-time reliability in the route choice decision process. 

 

4.4.2 Travel Time Reliability Data Collection and Processing  

Obtaining accurate measures of travel conditions, especially the appropriate measurement of 

travel time reliability, is a formidable task. We use actual field measurements (floating cars) of 

travel time on 91F taken at different times during morning peak period. Our data was obtained 

from the study of Small et al. (2002). The data consists of peak period travel time on 91F for 11 

days: first on October 28, 1999, and then on July 10-14 and September 18-22, 2000. Data were 

collected from 4:00am to 10am on each day, and include a total of 210 observations of travel 

time along the 10-mile stretch of 91F at different times of day encompassing the morning peak 

period. Interested readers may refer to their paper for more details on the travel time data 

collection and processing techniques. 

In order to construct measures of travel time and its reliability, we consider both the central 

tendency and the dispersion of the travel time distribution. Measures of central tendency include 

the mean and the median, and measures of dispersion include the standard deviation, the inter-

quartile difference such as the 90th-50th or 80th-50th, ratio of standard deviation to mean, and 

percent of observations that exceed the mean by some specific threshold, etc. The nature of these 

measures is that they are positive, monotonically increasing functions of variability. We assume 

that motorists, especially commuters in the morning peak hours, are concerned with the 

probability of significant delay, and are likely to pay particular attention to the upper tail of the 

distribution of travel times. Among the candidate measures that capture this effect, we arbitrarily 

use the difference between the upper quartile and the median. To make our results comparable to 

Small et al. (2002), we use the same measures of central tendency and dispersion, i.e., median 

and the 80th-50th percentile differences. 
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Figure 4.4 shows the raw field observations of travel time savings (i.e., the difference between 

the 91F and 91X travel times over the 10-mile stretch). The non-parametric estimates of mean, 

median, and 80th percentile are calculated and displayed. Median time savings reach a peak of 

5.6 minutes around 7:15 a.m. Figure 4.5 shows the median travel time savings and the 80th-50th 

percentile differences. The latter reaches a peak around 8:10 a.m. Correlations between these two 

measures are insignificant. 

 

Figure 4.4: Travel Time Saving (From the study of Small et al., 2002) 
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Figure 4.5: Measurements of Travel Time and Its Variability 

 

4.4.3 Volume Data Collection and Processing  

Along the stretch of SR 91, under consideration, loop detector stations are spaced at a distance of 

one every mile. Each loop detector station includes 6 loops covering all lanes of 91F and 91X. 

Volume data were collected using 30-second loop detector data and aggregated into five-minute 

intervals. The data consists of volumes on 91X, 91F, and ETR for 30 weekdays from September 

17 to November 16, 2001. Since our study is concerned with the traveler’s choice probability 

between 91X and 91F, the volume data of ETR was subtracted from 91F because ETR users 

have no option but to use 91F. Figure 4.6 shows the traffic flow on both 91X and 91F. As shown 

in Figure 4.7, the percentage of travelers taking 91X reaches a peak at around 8:00 a.m. 
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Figure 4.6: Traffic Flow on SR91 (September 18, 2001) 

 
 

 

Figure 4.7: Percentage of Travelers Taking Toll Lanes from Loop Detector Data 
(September 18, 2001) 
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4.5  Results and Analysis 
After data collection and processing, we applied the GA algorithm to identify the parameter set 

that produced the best match to the volume data revealed from the loop detectors. The 

parameters used in the GA algorithms are shown in Table 4.1. To evaluate each chromosome, the 

choice probability estimated from mixed-logit was calculated using 2,000 random draws from a 

normal distribution of the components of β  for the Monte-Carlo simulations. The convergence 

of the GA is shown in Figure 4.8, which displays the decreasing MAER values with the number 

of generations.  

 

To estimate the parameters Θ  with certain confidence level, we performed 30 GA runs with the 

volume data from 30 days, with each GA run corresponding to the volume data from one 

particular day. Figure 4.9 shows the identified values for parameters Θ  with 30 GA runs (The 

standard deviation Sd is given instead of variance W). The statistical estimates of parameters Θ  

from these 30 GA runs are shown in Table 4.2. 

 

Table 4.1: Control Parameters for the GA 

Population size 20 
Maximal Number of Generations 50 
Chromosome Length Per Parameter 6 
Crossover probability 0.6 
Mutation probability 0.033 
Elitism flag 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 97

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Number of Generations

M
A

ER

 
 

Figure 4.8: GA Convergence Curve with Best Fitness Values 

 

Table 4.2: Estimated Parameter Values 

Parameters Range Estimated Value  
(Median / [5%-ile, 95%-ile]) 

bT [10, 40] 15.39 / [11.05, 20.34] 

SdT [0, 10] 5.28 / [0.77, 9.07] 

bV [10,40] 25.66 / [20.08, 29.38] 

SdV [0, 10] 6.14 / [2.54, 9.38] 

bC [1, 2] 1.26 / [1.0, 1.81] 

SdC [0, 1] 0.55 / [0.04, 0.94] 
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Figure 4.9: Best Estimated Parameters with 30 GA Runs 

 

From the estimated statistical distributions of the parameter estimates, travelers’ implied VOT, 

VOR and DORA, and the extent of their heterogeneity can be determined by Monte-Carlo 

simulations. We performed 2,000 random draws from normal distributions of β  

( ),(~ TTT WbNβ , ),(~ VVV WbNβ , ),(~ CCC WbNβ ), and calculated VOT, VOR and 

DORA using Equation (4.3 - 4.5). Percentile values, including 25%-ile, 50%-ile (median), and 

75%-ile, were then obtained from the 2,000 values of VOT, VOR and DORA. Travelers’ 

heterogeneity is measured as the inter-quartile difference, i.e., the difference between the 75th 

and 25th percentile values, because it is unaffected by high upper-tail values occasionally found 

in the calculation of ratios. We repeated this process for every parameter set 

},,,,,{ CCVVTT WbWbWb  identified by the 30 GA runs. The estimates of the median and 

heterogeneity of VOT, VOR, and DORA are shown in Table 4.3. In Table 4.3, we note that the 

confidence interval represents uncertainty due to statistical error, not heterogeneity. A positive 
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5th percentile value means the quantity is significantly greater than zero according to a 

conventional one-sided hypothesis test at a 5 percent significance level. 

 

Table 4.3: Estimated Values of Time and Reliability 

 Median Estimate 90% Confidence Interval 
[5%-ile, 95%-ile] 

Value of Time ($/hour)  
Median  12.81 [8.66, 16.08] 
Heterogeneity (75th-25th) 8.72 [4.16, 16.73] 
Value of Reliability ($/hour)  
Median  20.63 [12.81, 28.47] 
Heterogeneity (75th-25th) 13.06 [5.62, 23.44] 
Degree of Risk Aversion (DORA)  
Median  1.73 [1.26, 2.13] 
Heterogeneity (75th-25th) 0.97 [0.41, 1.75] 

 

As shown in Table 4.3, the median value of time is $12.81, and the median value of reliability is 

$20.63. Since median time savings in our data peaks at 5.6 minutes in the rush hour and 

unreliability peaks at 3 minutes, the average commuter would pay $1.20 to realize time savings 

and pay $1.03 to avoid this possibility of unanticipated delay. In other words, travelers with the 

median VOT and VOR would save $2.23 from travel time and its reliability if they use 91X, but 

they need to pay $3.30 for the toll. So less than half travelers will choose to use the express 

lanes, and this is confirmed from the loop detector data, as shown in Figure 4.7. Regarding 

travelers’ heterogeneity towards travel time and its reliability, both measures of heterogeneity in 

the cases of VOT and VOR are more than 60% of their median values, indicating that commuters 

exhibit a wide distribution of preferences for speed and reliability. By recognizing the 

heterogeneity in travelers’ preference and offering choices that caters to their preferences, road 

pricing policies can increase transportation efficiency. 

 

Similar results for the median values of VOT and VOR are found in the study of Small et al. 

(2002). In their study, they estimated VOT and VOR using the combination of RP and SP data. 

The median value of VOT estimated from RP data is $20.20, and $9.46 from SP data. Our 

results, in this regard, falls between these two values.  In terms of VOR, the estimated median 

value from their study using RP data is $19.56, which is very similar with our result. Their 
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estimate of VOR from SP data is not comparable to ours since different measures of un-

reliability are used. Our results validate the analysis from their study and demonstrate the 

applicability of an approach based on conventional loop data in the study of travelers’ behavior. 

The median value of DORA is 1.73, i.e., the disutility caused by certain amount of travel time 

unreliability is 1.73 times more than that caused by travel time of the same amount. For instance, 

assuming the commuting alternatives are a 20-minute commuting with essentially no possibility 

of significant delays and a commuting alternative that normally takes 10 minutes but has a 

variability of about 6 minutes. If the traveler has a DORA equal to 1.73, he/she will be almost 

indifferent between these two choices. A traveler with a DORA greater than 1.73 is more risk 

averse and will choose the first alternative. In other words, travelers with DORA greater than 1.0 

value more highly a reduction in variability than a comparable reduction in the mean travel time. 

These travelers are willing to go out of their way to decrease the possibility of a delay, either 

because they dislike the risk of being delayed or dislike the discomfort normally associated with 

a delay, such as stop and go traffic. From the operator’s point of view, this finding implies that 

traffic management strategies aimed at reducing travel time variability, such as incident 

management, deserve serious attention. 
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4.6 Summary 

It is generally accepted that travel time reliability can have significant influence on traveler’s 

route choice behavior and that it cannot be ignored in any model which purports to predict 

behavior or provide a basis for evaluation. With respect to the valuation of reliability, such direct 

methods as revealed preference surveys and/or state preference surveys have been used 

extensively in previous studies. In this chapter, we proposed an indirect method to study the 

contribution of travel time reliability in traveler’s route choice behavior. We formulated 

traveler’s route choice as a mixed-logit model, with the coefficients in the model representing 

individual traveler’s preferences or tastes to travel time, reliability and cost. Unlike the 

traditional approach to estimate these coefficients with RP and/or SP data by simulated 

maximum likelihood estimation, we adopt genetic algorithm to identify the coefficients that 

enable the flows resulting from route choice model to best match the time-dependent traffic 

volume data obtained from loop detectors. Such an approach eliminates both the cost and biases 

inherent to RP and SP survey techniques. 

 

We applied the proposed method to newly collected data concerning route choice in the 

California State Route 91 value-pricing project. Based on travelers’ choice of whether or not to 

pay a congestion-based toll in order to use express lanes, we are able to estimate how travelers 

value travel time and travel-time reliability. We find that the estimated median value of travel-

time reliability is substantially greater than that of travel-time, and the median value of degree of 

risk aversion is greater than 1, indicating that travelers value more highly a reduction in 

variability than in the mean travel time saving for that journey. Moreover, travelers’ attitude 

towards congestion is not homogeneous; in fact, substantial heterogeneity exists in travelers’ 

preference of travel time and reliability. The results of our study yield important insights into 

commuters’ route choice in general and the tradeoffs among travel time, reliability, and 

monetary cost. Our results validate the analysis from some previous studies and demonstrate the 

applicability of the approach in the study of travelers’ behavior. 
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Chapter 5 
 

5. IMPLEMENTATION OF THE ROUTE CHOICE MODELS 
 

In this chapter, implementation issues of the route choice models described in Chapter Two are 

discussed. Detailed traffic assignment procedures are provided for readers interested in 

implementing the route choice models. In addition, numerical results are provided to examine the 

effects of route choice models on network flow allocations. 

 

 

5.1 Implementation Issues 
All four route choice models described in Chapter Two can be implemented using the Frank-

Wolfe (FW) based algorithm. The main differences, between the route choice models, are the 

criterion used to determine the search direction and the one-dimensional search schemes used to 

determine the step size. Table 5.1 briefly summarizes the criterion and line search scheme used 

in the FW based algorithm to implement the four route choice models. 

 

Table 5.1: Implementation of the Route Choice Models 

Route Choice Model Search Direction Step Size 

DN-DUE Minimize expected travel time Bisection 

DN-SUE Minimize expected perceived travel time 1/n 

SN-DUE Minimize expected disutility 1/n 

SN-SUE Minimize expected perceived disutility 1/n 

 

Before describing the implementation details, we discuss the issues involved in implementing the 

four route choice models. These issues include: (a) the estimation of link travel times and 
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variance, (b) the assumptions with regard to the perception error distributions, (c) the estimation 

of travel disutility functions for describing different risk-taking behavior, (d) the estimation of 

link disutilities, and (e) the choice of stochastic loading used in the FW-based traffic assignment 

procedure. 

 

5.1.1 Estimation of Link Travel Times and Variance 

All four route choice models account for congestion effects using a travel time function which is 

modeled as an increasing function of flow of vehicles on the link. Each traveler makes a rational 

route choice decision based on minimizing some criteria related to average travel times or some 

disutility function based on average travel times and their variances. Link travel times and 

variances are assumed to be directly dependent on the flow on the link. The link travel time 

function used in the route choice models is the standard Bureau of Public Road (BPR) function 

given below: 
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where v t ca a
f

a, , and  are the flow, free-flow travel time, and capacity on link a. Depending on the 

availability of data to estimate travel time variability, these links are assumed either to have 

deterministic travel times that vary only with their flows or to follow certain distribution that 

characterizes the variation associated with the time moving along the link. 

 

5.1.2 Assumptions on Perception Error 

Due to the unrealistic assumption that all travelers have perfect knowledge of the network 

conditions, the SUE models relax the perfect knowledge assumption by introducing a perception 

error into the route choice process to allow for variations in travelers’ perceptions of network 

conditions. For the DN-SUE model, each traveler i is assumed to have some perceptions of the 

expected travel time for each link a which include a random error term. In this research, we use 

the probit model to account for perception error in the DN-SUE model. The randomness of the ith 

traveler’s perceived travel time on link a is assumed to follow a normal distribution as follows: 
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( )a
i
a N τξ ,0~ ,          (5.2) 

 

where the mean of the perception error is assumed to equal zero and the variance of the 

perception error is assumed to equal τa. Sheffi (1985) suggests relating the variance of the 

perception error to the free-flow travel time by setting 

 

 f
aa tβτ = ,          (5.3) 

 

where β is a proportionality constant (i.e., the variance of the perceived travel time over a road 

segment of unit travel time at free flow. For the SN-SUE model, each traveler i is assumed to 

have a variable perception error 

 

( )i
a

i
a

i
a N θµξ ,~ ,         (5.4) 

 

where ( )a
i
a N τµ ,0~  and ( )aa

i
a G βαθ ,~  (Mirchandani and Soroush, 1987). The parameter of 

i
aµ  is assumed to be normally distributed over the population of travelers with an expected value 

equal to zero and a variance that is proportionally to the free-flow travel time on link a. The 

parameter i
aθ  is assumed to gamma distributed over the population with parameters aα  and aβ . 

This variable perception error allows each individual traveler to experience a different travel 

time for a given set of flows. This is different from the probit-based DN-SUE model, which only 

accounts for the randomness of the travelers’ perceived travel times (i.e., ( )τξ ,0~ Ni ) and treats 

the randomness of link travel times in the form of expected values. 

 

5.1.3 Estimation of Travel Disutility Functions 

Travel time variability introduces uncertainty for travelers such that they do not know exactly 

when they will arrive at the destination. Thus, it is considered as a risk (or an added cost) to a 

traveler making a trip. To model the travelers’ attitudes towards risk, disutility functions are 

needed to represent different risk-taking behaviors. Depending on the behavioral nature of 
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travelers, they can be classified as risk neutral, risk averse, or risk prone. Since a risk neutral 

traveler would choose a route based on only expected travel time without consideration of risk 

(or travel time variability), we simply model the risk neutral travelers using either the DN-DUE 

model or the DN-SUE model depending on whether perception error is considered or not. 

 

For the SN-DUE and SN-SUE models, following the study by Tatineni et al. (1997), we also use 

the exponential functional form to describe risk averse and risk prone behaviors. Suppose that 

the travelers’ disutility (without perception error) has the following forms: 

 

Risk Averse: U(T) = a1 [exp(a2 T) – 1],       (5.5) 

 

Risk Prone: U(T) = b1 [1 – exp(-b2 T)],       (5.6) 

 

where T is the travel time in minutes for a given path, a1, a2, b1, and b2 are positive parameters to 

be estimated. The parameters a2 (b2) are a measure of risk aversion (proneness). As a2 (b2) gets 

larger, the traveler becomes more averse (seeking) to risk. 

 

To estimate the parameters of the disutility function given in Equations (5.5) and (5.6), we need 

to make assumptions on how travelers value route travel time according to their risk-taking 

behavior. For illustration, the estimation of parameters for the risk averse case are explained. 

Suppose that all travelers have a disutility of 1 unit for a route that is 5 minutes, and they are 

indifferent between a route that has a travel time of 3.33 minutes for certain and a route that has 

an equal chance of having a travel time that is either close to zero minute or is equal to 5 minutes 

(i.e., an average of 2.5 minutes on this route). Travelers who took the longer travel time route 

(3.33 minutes) would pay a risk premium of 0.83 minute (i.e., 3.33 – 2.5) to avoid uncertainty. 

This is a typical behavior for risk averse travelers. Given these two assumptions, two equations, 

to solve for the values of the two parameters a1 and a2, are established as follows: 

 

U(5) = a1 [exp(a2 5) – 1] = 1.0       (5.7) 

 

U(3.33) = a1 [exp(a2 3.33) – 1] = 0.5       (5.8) 
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Solving the above equations for a1 and a2 give the following disutility function for a risk averse 

traveler: 

 

U(T) = 0.309 [exp(0.289 T) – 1]        (5.9) 

 

Using similar assumptions for the risk prone travelers, the disutility function for a risk prone 

traveler is: 

 

U(T) = 1.309 [1 – exp(-0.289 T)]        (5.10) 

 

For the risk neutral behavior, we can use the DN-SUE model, which uses a linear disutility 

function, by setting the disutility equal to the expect travel time. The shapes for these different 

risk taking behaviors are provided in Figure 5.1. For details of the derivation of the parameters 

for the disutility function can be found in Tatineni (1996) and Soroush (1984). 
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Figure 5.1: Disutility Functions for the Risk-Taking Route Choice Models 
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5.1.4 Estimation of Link Disutilities  

Recall from Section 2.5, the perceived link travel times are obtained using the moment 

generating function (MGF) to link the variable perception error of the traveler and the 

distribution of link travel times. The perceived link travel time for individual i is given in 

equation (2.11) and is repeated here for convenience. 
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where s is a real number, i
aµ  and i

aθ  are the parameters of the perception error of individual i 

conditioned on link a.  Using equation 5.11, the first and second order moments can be derived 

easily taking the first and second derivatives with respect to s and evaluate it at s = 0 as follows: 

 

( ) ( )i
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( ) ( )( ) a
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where at  and 2
aσ  are the mean and variance of travel time on link a. 

 

To estimate the perceived link disutilities, we incorporate the perceived link travel times into the 

travel disutility functions for each risk-taking behavior. Suppose that the traveler’s perceived 

disutility function, )~(~ TU , is exponential with respect to T~  and is given by 
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T~  is the perceived travel time for a given path. We note that when b is positive, then the 

disutility function is convex and travelers are “constant risk averse”, that means the risk 

averseness does not change when travel time varies; however, when b is negative, then the 

disutility function is concave and travelers are “constant risk prone”, that means the risk 

proneness does not change when travel time varies. The expected perceived disutility of path k is 

 

)()sgn(
])~exp([)sgn(

])~exp()sgn([~

~ bMb
TbEb

TbbEU

aT

k

kk

=
=

=

.        (5.16) 

 

Since link travel times are assumed to be statistically independent, we can rewrite the above 

formula as below, 
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Substitute equation (5.11), we get 
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where i
aµ and i

aθ  are sampled from ),0( τN  and ),( βαG . The expected perceived disutility of 

path k is therefore: 
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Using the parameters estimated in equation (5.9), the perceived link disutilities for the risk averse 

behavior can be derived as follows: 
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When the travelers have no perception error, the perceived distribution of link travel times is 

equal to the actual distribution of link travel times (i.e., 0=i
aµ  and 0=i

aθ ). The link disutilities 

are just a function of the behavioral type (e.g., risk averse behavior) and the distribution of travel 

times: 
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Using the parameters estimated in equation (5.10), the perceived link disutilities and link 

disutilities for the risk prone can also be similarly derived as follows: 
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and 
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The details of the derivation can be found in Tatineni (1996) and Soroush (1984). 

 

5.1.5 Choice of Stochastic Loading  

For the probit-based DN-SUE model, there exists no closed-form solution for the route choice 

probability. A Monte Carlo simulation sampling technique is performed to construct a stochastic 

loading (Sheffi, 1985). At each iteration of the solution algorithm, the OD flows have to be 
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loaded on the minimum perceived travel time routes between each OD pair. To find the 

minimum perceived travel time routes, at every iteration, several sets of perception errors are 

sampled and the routes with the lowest perceived travel times are found for each sample. Instead 

of a single all-or-nothing loading, the OD flows are then averaged among every route between 

the origin and the destination. The stochastic flows estimated thus are averaged between 

successive iterations of the solution algorithm based on a pre-specified averaging rule until 

terminating criterion is satisfied. This Method of Successive Averages (MSA), as it is generally 

known, is used to solve the probit-based DN-SUE model (Sheffi and Powell, 1982). 

 

An advantage of using the exponential functional form to represent risk-taking behavior is that 

the disutility associated with a route can be estimated by summing the link disutilities on a given 

route (see Section 5.1.4). This allows the classical Dijkstra-type shortest path algorithm to be 

used in the stochastic loading step to find the minimum expected disutility route in the SN-DUE 

model and the minimum expected perceived disutility route in the SN-SUE model. 

 

 

5.2 Traffic Assignment Procedures 
The implementation of the DN-DUE and the DN-SUE models is based on the FW algorithm and 

the method of successive averages (MSA) algorithm, respectively. The details of these two 

algorithms are well described in the excellent text by Sheffi (1985): pages 119-120 for the FW 

algorithm and page 327 for the MSA algorithm.  For the SN-DUE and the SN-SUE models that 

account for network uncertainty and risk taking behavior, both can  also be solved using the 

MSA algorithm with a different criterion used to perform the stochastic network loading 

procedure to determine the search direction. Here we provide the detailed steps for implementing 

these four route choice models. 

 

5.2.1 Implementation of the DN-DUE Model  

The criterion used in the DN-DUE model is to minimize the expected value of route travel time, 

which can be obtained by adding up the average travel times of all the links belonging to the 

route. The overall flowchart of the traffic assignment procedure for solving the DN-DUE model 

is given in Figure 5.2 and summarizes below: 
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Figure 5.2: Flowchart for Solving the DN-DUE Model 

 

 

Step 0: Initialization. Generate an initial path for each OD pair. 
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Step 1: Increment iteration counter. n n= + 1 . 

 

Step 2: Update link travel time. t n t x n aa a a( ) [ ( )],= − ∀1 . 

 

Step 3: Direction Finding. Perform all-or-nothing assignment. 

 

3.1  Solve the shortest path problem: k n r srs ( ), ,∀ . 

3.2   Augment path k nrs ( ) to the path set )1( −nK rs  if it is not already in the set: 

If k n K nrs rs( ) ( )∉ −1 , then ( ) ( ) ( ) srnKnknK rsrsrs ,,1 ∀−∪= ; otherwise, tag the 

shortest path among the paths in )1( −nKrs  as k nrs ( )  and set 

( ) ( ) srnKnK rsrs ,,1 ∀−= . 

 

3.3 Perform all-or-nothing assignment: srqh rs
rs

nkrs
,,)( ∀= .  

3.4 Determine auxiliary link flows: 
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Step 4: Line Search. Find the value of αn that solves: 
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Step 5: Move. Update path and link flows. 
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Step 6: Convergence Test. Terminate the algorithm if it satisfies the stopping criterion (the 

current solution, ( )nxa , is the set of equilibrium link flows); otherwise, go to Step 1. 
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5.2.2 Implementation of the DN-SUE Model  

The criterion used in the DN-SUE model is to minimize the expected perceived value of route 

travel time, which can be obtained by adding up the perceived travel times of all the links 

belonging to the route. The overall flowchart of the traffic assignment procedure for solving the 

DN-SUE model is given in Figure 5.3 and summarizes below: 
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Figure 5.3: Flowchart for Solving the DN-SUE Model 

 

Step 0: Initialization. Generate an initial path for each OD pair. 

 

0.1   Set xa ( )0 0= , t t x aa a a= ∀[ ( )],0 and ∅=)0(rsK . 

0.2 Set iteration counter n = 1. 

0.3 Solve the shortest path problem:k nrs ( ) , K n k n K n r srs rs rs( ) ( ) ( ), ,= ∪ − ∀1 . 

0.4 Perform AON assignment: f q r sk n
rs

rsrs ( ) , ,= ∀  .  
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0.5  Assign path flows to links: anfnx rs
ka

Rr Ss nKk

rs
ka

rs

∀= ∑ ∑ ∑
∈ ∈ ∈

,)()(
)(

δ . 

 

Step 1: Increment iteration counter. n n= + 1 . 

 

Step 2: Update link travel time. t n t x n aa a a( ) [ ( )],= − ∀1 . 

 

Step 3: Direction Finding. Perform a stochastic assignment based on perceived travel times. 

 

3.1 Set temporary path set ( ) srPrs ,,0 ∀∅= , set ( ) aya ∀= ,00  and 

( ) srkhrs
k ,,,00 ∀= , and set inner iteration counter 1=m . 

3.2  Draw perception errors from a Normal distribution: ( ) aN a
m
a ∀,,0~ 2σε . 

3.3  Compute perceived link travel times: ( ) antt m
aa

m
a ∀+= ,~ ε . 

3.4  Solve the shortest path problem based on perceived travel times: ( ) srmkrs ,, ∀ . 

3.5   Augment path ( )mkrs  to the path set )1( −mPrs  if it is not already in the set: 

If ( ) ( )1−∉ mPmk rsrs , then ( ) ( ) ( ) srmPmkmP rsrsrs ,,1 ∀−∪= ; otherwise, tag the 

shortest path among the paths in )1( −mPrs  as ( )mkrs  and set 

( ) ( ) srmPmP rsrs ,,1 ∀−= . 

3.6 Perform all-or-nothing assignment: srqg rs
rs

nkrs
,,)( ∀= .  

3.7 Determine temporary link flows: 
( )

.,)( )()( agmu rs
amk

rs
mk

Rr Ss mk
a rsrs

rs

∀= ∑∑ ∑
∈ ∈

δ  

3.8 Average auxiliary link flows: ( ) ( ) ( ) ( )[ ] ammumymmy aaa ∀+−−= ,11  

3.9 Average auxiliary path flows: 

( ) ( ) ( ) ( ) ( )[ ] ( ) srmPkmmgmhmmh rs
rs

mk
rs
k

rs
k rs

,,,11 ∈∀+−−=  

3.10 If a specified criterion (i.e., m M≥ , where M is the maximum number of inner 

iterations) is met, then step and go to Step 3.11.  Otherwise, set counter m=m+1 

and go to Step 3.2. 
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3.11 Update path set: If ( ) ( )1−∉ nKmP rsrs , then ( ) ( ) ( ) srnKmPnK rsrsrs ,,1 ∀−∪=  

and tag all the shortest paths found in the inner iteration as ( )nkrs ; otherwise, tag 

the shortest paths among the paths in )1( −nKrs  as ( )nkrs  and set 

( ) ( ) srnKnK rsrs ,,1 ∀−= . 

 

Step 4: Line Search. Set αn = 1/n 

 

Step 5: Move. Update path and link flows. 

5.1 Set path flows: ( ) .,,)],1([)1()( )( srnKknfhnfnf rs
rs

k
rs

nkn
rs

k
rs

k rs
∈∀−−−−= α  

5.2 Assign path flows to links: anfnx rs
ka

Rr Ss nKk

rs
ka

rs

∀= ∑ ∑ ∑
∈ ∈ ∈

,)()(
)(

δ  

 

Step 6: Convergence Test. Terminate the algorithm if it satisfies the stopping criterion (the 

current solution, ( )nxa , is the set of equilibrium link flows); otherwise, go to Step 1.  

 

 

5.2.3 Implementation of the SN-DUE Model  

The criterion used in the SN-DUE model is to minimize the expected value of route travel 

disutility, which can be obtained by adding up the disutilities of all the links belonging to the 

route. The link disutilities are a function of average travel time, travel time variability, and the 

disutility function describing travelers’ risk-taking behavior. The overall flowchart of the traffic 

assignment procedure for solving the SN-DUE model is given in Figure 5.4 and summarizes 

below: 
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Figure 5.4: Flowchart for Solving the SN-DUE Model 

 

 

Step 0: Initialization. Generate an initial path for each OD pair. 

 

0.1   Set xa ( )0 0= , t t x aa a a= ∀[ ( )],0 and ∅=)0(rsK . 

0.2 Set iteration counter n = 1. 

0.3 Solve the shortest path problem:k nrs ( ) , K n k n K n r srs rs rs( ) ( ) ( ), ,= ∪ − ∀1 . 

0.4 Perform AON assignment: f q r sk n
rs

rsrs ( ) , ,= ∀  .  

0.5  Assign path flows to links: anfnx rs
ka

Rr Ss nKk

rs
ka

rs

∀= ∑ ∑ ∑
∈ ∈ ∈

,)()(
)(

δ . 

 

Step 1: Increment iteration counter. n n= + 1 . 

 



 117

Step 2: Update link travel time. t n t x n aa a a( ) [ ( )],= − ∀1 . 

 

Step 3: Direction Finding. Perform a stochastic assignment based on the link disutilities. 

 

3.1 Set temporary path set ( ) srPrs ,,0 ∀∅= , set ( ) aya ∀= ,00  and 

( ) srkhrs
k ,,,00 ∀= , and set inner iteration counter 1=m . 

3.2  Compute link disutilities using equation (4.21) and equation (4.23): aU m
a ∀, . 

3.3  Solve the shortest path problem based on link utilities: ( ) srmkrs ,, ∀ . 

3.4   Augment path ( )mkrs  to the path set )1( −mPrs  if it is not already in the set: 

If ( ) ( )1−∉ mPmk rsrs , then ( ) ( ) ( ) srmPmkmP rsrsrs ,,1 ∀−∪= ; otherwise, tag the 

shortest path among the paths in )1( −mPrs  as ( )mkrs  and set 

( ) ( ) srmPmP rsrs ,,1 ∀−= . 

3.5 Perform all-or-nothing assignment: srqg rs
rs

nkrs
,,)( ∀= .  

3.6 Determine temporary link flows: 
( )

.,)( )()( agmu rs
amk

rs
mk

Rr Ss mk
a rsrs

rs

∀= ∑∑ ∑
∈ ∈

δ  

3.7 Average auxiliary link flows: ( ) ( ) ( ) ( )[ ] ammumymmy aaa ∀+−−= ,11 . 

3.8 Average auxiliary path flows: 

( ) ( ) ( ) ( ) ( )[ ] ( ) srmPkmmgmhmmh rs
rs

mk
rs
k

rs
k rs

,,,11 ∈∀+−−=  

3.9 If a specified criterion (i.e., m M≥ , where M is the maximum number of inner 

iterations) is met, then step and go to Step 3.10.  Otherwise, set counter m=m+1 

and go to Step 3.2. 

3.10 Update path set: If ( ) ( )1−∉ nKmP rsrs , then ( ) ( ) ( ) srnKmPnK rsrsrs ,,1 ∀−∪= , 

and tag all the shortest paths found in the inner iteration as ( )nkrs ; otherwise, tag 

the shortest paths among the paths in )1( −nKrs  as ( )nkrs  and set 

( ) ( ) srnKnK rsrs ,,1 ∀−= . 

 

Step 4: Line Search. Set αn = 1/n  
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Step 5: Move. Update path and link flows. 

5.1 Set path flows: ( ) .,,)],1([)1()( )( srnKknfhnfnf rs
rs

k
rs

nkn
rs

k
rs

k rs
∈∀−−−−= α  

5.2 Assign path flows to links: anfnx rs
ka

Rr Ss nKk

rs
ka

rs

∀= ∑ ∑ ∑
∈ ∈ ∈

,)()(
)(

δ  

 

Step 6: Convergence Test. Terminate the algorithm if it satisfies the stopping criterion (the 

current solution, ( )nxa , is the set of equilibrium link flows); otherwise, go to Step 1.  

 

 

5.2.4 Implementation of the SN-SUE Model  

The criterion used in the SN-SUE model is to minimize the expected perceived value of route 

travel disutility, which can be obtained by adding up the perceived disutilities of all the links 

belonging to the route. The link perceived disutilities are a function of average travel time, travel 

time variability, assumption of perception error distribution, and the disutility function 

describing travelers’ risk-taking behavior. The overall flowchart of the traffic assignment 

procedure for solving the SN-SUE model is given in Figure 5.5 and summarizes below: 
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Figure 5.5: Flowchart for Solving the SN-SUE Model 

 

 

Step 0: Initialization. Generate an initial path for each OD pair. 

 

0.1   Set xa ( )0 0= , t t x aa a a= ∀[ ( )],0 and ∅=)0(rsK . 

0.2 Set iteration counter n = 1. 

0.3 Solve the shortest path problem:k nrs ( ) , K n k n K n r srs rs rs( ) ( ) ( ), ,= ∪ − ∀1 . 

0.4 Perform AON assignment: f q r sk n
rs

rsrs ( ) , ,= ∀  .  

0.5  Assign path flows to links: anfnx rs
ka

Rr Ss nKk

rs
ka

rs

∀= ∑ ∑ ∑
∈ ∈ ∈

,)()(
)(

δ . 

 

Step 1: Increment iteration counter. n n= + 1 . 
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Step 2: Update link travel time. t n t x n aa a a( ) [ ( )],= − ∀1 . 

 

Step 3: Direction Finding. Perform a stochastic assignment based on the perceived link disutilities. 

 

3.1 Set temporary path set ( ) srPrs ,,0 ∀∅= , set ( ) aya ∀= ,00  and 

( ) srkhrs
k ,,,00 ∀= , and set inner iteration counter 1=m . 

3.2  Draw perception errors: ( ) aN i
a

i
a

m
a ∀,,~ θµε . 

3.3  Compute perceived link disutilities using equation (4.20) and equation (4.22): 

aU m
a ∀,~ . 

3.4  Solve the shortest path problem based on perceived link disutilities: ( ) srmkrs ,, ∀ . 

3.5   Augment path ( )mkrs  to the path set )1( −mPrs  if it is not already in the set: 

If ( ) ( )1−∉ mPmk rsrs , then ( ) ( ) ( ) srmPmkmP rsrsrs ,,1 ∀−∪= ; otherwise, tag the 

shortest path among the paths in )1( −mPrs  as ( )mkrs  and set 

( ) ( ) srmPmP rsrs ,,1 ∀−= . 

3.6 Perform all-or-nothing assignment: srqg rs
rs

nkrs
,,)( ∀= .  

3.7 Determine temporary link flows: 
( )

.,)( )()( agmu rs
amk

rs
mk

Rr Ss mk
a rsrs

rs

∀= ∑∑ ∑
∈ ∈

δ  

3.8 Average auxiliary link flows: ( ) ( ) ( ) ( )[ ] ammumymmy aaa ∀+−−= ,11  

3.9 Average auxiliary path flows: 

( ) ( ) ( ) ( ) ( )[ ] ( ) srmPkmmgmhmmh rs
rs

mk
rs
k

rs
k rs

,,,11 ∈∀+−−=  

3.10 If a specified criterion (i.e., m M≥ , where M is the maximum number of inner 

iterations) is met, then step and go to Step 3.11.  Otherwise, set counter m=m+1 

and go to Step 3.2. 

3.11 Update path set: If ( ) ( )1−∉ nKmP rsrs , then ( ) ( ) ( ) srnKmPnK rsrsrs ,,1 ∀−∪= , 

and tag all the shortest paths found in the inner iteration as ( )nkrs ; otherwise, tag 

the shortest paths among the paths in )1( −nKrs  as ( )nkrs  and set 

( ) ( ) srnKnK rsrs ,,1 ∀−= . 
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Step 4: Line Search. Set αn = 1/n  

 

Step 5: Move. Update path and link flows. 

5.1 Set path flows: ( ) .,,)],1([)1()( )( srnKknfhnfnf rs
rs

k
rs

nkn
rs

k
rs

k rs
∈∀−−−−= α  

5.2 Assign path flows to links: anfnx rs
ka

Rr Ss nKk

rs
ka

rs

∀= ∑ ∑ ∑
∈ ∈ ∈

,)()(
)(

δ  

 

Step 6: Convergence Test. Terminate the algorithm if it satisfies the stopping criterion (the 

current solution, ( )nxa , is the set of equilibrium link flows); otherwise, go to Step 1.  
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5.3 Numerical Experiments 
In this section, we present some numerical results using the four route choice models discussed 

above. The numerical experiment is constructed to show the effects of using different criteria in 

the route choice models on the network assignment results, particularly focusing how travel time 

variability on certain links affect network flow allocations. Figure 5.6 depicts the network 

topology of the Sioux Falls network. In this network, there are 24 nodes, 76 links, and 182 OD 

pairs. The OD table is provided in Table 5.2, and the network characteristics (link free-flow 

travel time and link capacity) are provided in Table 5.3. 

 

5.3.1 Experimental Setup  

(1) Link Travel Time and Travel Time Variability 

Sixteen links (highlighted in Figure 5.6) are selected to have a travel time variability (i.e., 

standard deviation of travel time) that is equal to 70% of its free-flow travel times. All 

other links are assumed to have no travel time variability. The link cost function is of 

Bureau of Public Road (BPR) type. 

 

(2) Perception Error 

For the DN-SUE model, each traveler i is assumed to have a fixed perception error 

( ) ( )01.0,0,0~ NNi =τξ  sampled from a normal distribution (Sheffi, 1985). For the SN-

SUE model, each traveler i is assumed to have a variable perception error 

( )iii N θµξ ,~ where ( ) ( )15.0,0,0~ NNi =τµ  is sampled from a normal distribution, 

and ( ) ( )5.0,01.0,~ GGi =βαθ  is sampled from a Gamma distribution (Mirchandani and 

Soroush, 1987). 
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Figure 5.6: The Sioux Falls Network 
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Table 5.2: Origin-Destination Trip Table (x103 veh/hr) 

 1 2 4 5 10 11 13 14 15 19 20 21 22 24 
1  1.20 1.20 1.20 0.98 1.00 1.14 0.90 0.86 0.82 0.54 0.54 0.70 0.67
2 1.20  1.14 1.18 1.00 1.02 0.82 0.86 0.85 1.18 0.54 0.62 0.61 0.54
4 1.20 1.14  1.20 0.98 0.97 0.86 0.82 0.76 0.73 0.56 0.58 0.54 0.73
5 1.20 1.18 1.2  1.03 0.88 0.83 0.80 0.74 0.66 0.73 0.74 0.85 0.54
10 0.98 1.00 0.98 1.03  1.21 0.82 0.90 1.20 1.06 0.86 0.82 0.88 0.54
11 1.00 1.02 0.97 0.88 1.21  0.85 1.20 1.01 0.86 0.67 0.55 1.00 0.95
13 1.14 0.82 0.86 0.83 0.82 0.85  0.79 0.78 0.62 0.54 0.56 0.61 1.20
14 0.90 0.86 0.82 0.80 0.90 1.20 0.79  1.20 1.03 0.86 0.79 0.82 1.03
15 0.86 0.85 0.76 0.74 1.20 1.01 0.78 1.20  1.20 1.15 1.04 1.20 0.83
19 0.82 1.18 0.73 0.66 1.06 0.86 0.62 1.03 1.20  1.20 1.01 1.00 0.73
20 0.54 0.54 0.56 0.73 0.86 0.67 0.54 0.89 1.15 1.20  1.20 1.20 0.55
21 0.54 0.62 0.58 0.74 0.82 0.55 0.56 0.79 1.04 1.01 1.20  1.20 1.20
22 0.70 0.61 0.54 0.85 0.88 1.00 0.61 0.82 1.20 1.00 1.20 1.20  1.03
24 0.67 0.54 0.73 0.54 0.54 0.95 1.20 1.03 0.83 0.73 0.55 1.20 1.03  
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Table 5.3: Link Characteristics of the Sioux Falls Network 

Link 
No. 

Capacity 
(1,000 veh 
per hour) 

Length 
(mile) 

Free-flow 
travel time 

(hour) 

Link 
No. 

Capacity 
(1,000 veh 
per hour) 

Length 
(mile) 

Free-flow 
travel time 

(hour) 
1 25.90 3.6 0.06 39 5.09 2.4 0.04 
2 23.40 2.4 0.04 40 4.88 2.4 0.04 
3 25.90 3.6 0.06 41 5.13 3.0 0.05 
4 4.96 3.0 0.05 42 4.92 2.4 0.04 
5 23.40 2.4 0.04 43 13.51 3.6 0.06 
6 17.11 2.4 0.04 44 5.13 3.0 0.05 
7 23.40 2.4 0.04 45 15.65 2.4 0.04 
8 17.11 2.4 0.04 46 10.32 2.4 0.04 
9 17.78 1.2 0.02 47 5.05 3.0 0.05 
10 4.91 3.6 0.06 48 5.13 3.0 0.05 
11 17.78 1.2 0.02 49 5.23 1.2 0.02 
12 4.95 2.4 0.04 50 19.68 1.8 0.03 
13 10.00 3.0 0.05 51 4.99 4.8 0.08 
14 4.96 3.0 0.05 52 5.23 1.2 0.02 
15 4.95 2.4 0.04 53 4.82 1.2 0.02 
16 4.90 1.2 0.02 54 23.40 1.2 0.02 
17 7.84 1.8 0.03 55 19.68 1.8 0.03 
18 23.40 1.2 0.02 56 23.40 2.4 0.04 
19 4.90 1.2 0.02 57 15.65 2.4 0.04 
20 7.84 1.8 0.03 58 4.82 1.2 0.02 
21 5.05 6.0 0.10 59 5.00 2.4 0.04 
22 5.05 3.0 0.05 60 23.40 2.4 0.04 
23 10.00 3.0 0.05 61 5.00 2.4 0.04 
24 5.05 6.0 0.10 62 5.06 3.6 0.06 
25 13.92 1.8 0.03 63 5.08 3.0 0.05 
26 13.92 1.8 0.03 64 5.06 3.6 0.06 
27 10.00 3.0 0.05 65 5.23 1.2 0.02 
28 13.51 3.6 0.06 66 4.89 1.8 0.03 
29 5.13 3.0 0.05 67 10.32 2.4 0.04 
30 4.99 4.8 0.08 68 5.08 3.0 0.05 
31 4.91 3.6 0.06 69 5.23 1.2 0.02 
32 10.00 3.0 0.05 70 5.00 2.4 0.04 
33 4.91 3.6 0.06 71 4.92 2.4 0.04 
34 4.88 2.4 0.04 72 5.00 2.4 0.04 
35 23.40 2.4 0.04 73 5.08 1.2 0.02 
36 4.91 3.6 0.06 74 5.09 2.4 0.04 
37 25.90 1.8 0.03 75 4.89 1.8 0.03 
38 25.90 1.8 0.03 76 5.08 1.2 0.02 
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(3) Disutility Function 

To model the travelers’ attitudes towards risk, an exponential disutility function is used to 

represent the risk averse behavior of the travelers. 

 

( ) ( )1~~ ~

1
2 −= kTa

k eaTη ,       (5.24) 

 

where kT~  is the perceived travel time distribution on route k; a1, and a2 are positive 

parameters to be estimated. The parameters a2 is a measure of risk aversion. As a2 gets 

larger, the traveler becomes more averse to risk. With appropriate boundary conditions, 

the final form of the disutility function used in the implementation is: 

 

( ) ( )1310.0~~ ~22.7 −= kT
k eTη .       (5.25) 

 

Both SN-DUE and SN-SUE models used the above perceived disutility function as the 

criterion in the route choice decision. The only difference between these two models is 

that SN-DUE is without perception error (i.e., ( ) ( )0,0,~ NN iii =θµξ ) and SN-SUE is 

with perception error (i.e., ( )iii N θµξ ,~  where the parameters are set as above). 

 

5.3.2 Comparison of Different Route Choice Models  

Table 5.4 provides some aggregate measures (total travel time, number of used routes, and 

number of routes per OD pair) that can be used to compare the assignment results from the four 

route choice models. In terms of total travel time, the DN-DUE model has the lowest value, 

followed by the DN-SUE, SN-SUE, and SN-DUE models. Since the DN-DUE and DN-SUE 

models are based on the assumption that travelers choose routes to minimize expected 

(perceived) travel times, it can be expected to have lower total travel time when compared to the 

two SN route choice models. That is, the risk averse travelers in the SN-DUE and SN-SUE 

models are willing to choose routes that are longer to avoid the sixteen risky links containing 

travel time variability. This observation can be verified by comparing the link-flow patterns 

provided in Table 5.5. Indeed, the flow allocations to these sixteen risky links are much less than 

those allocated by the two risk neutral models (DN-DUE and DN-SUE). Between the DN-DUE 
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and DN-SUE models, the DN-SUE model has a slightly higher total travel time. This is probably 

due to the perception error. However, it should be recognized that the DN-SUE model could 

have lower total travel time than the DN-DUE model in certain situations. As for the SN-DUE 

and SN-SUE models, the perception error in the SN-SUE model may overshadow the risk averse 

behavior and cause some travelers to use the risky links that result in a slightly lower total travel 

time than those in the SN-DUE model which assumes to have perfect knowledge about the 

variable nature of network travel times. In terms of the number of routes and number of routes 

per OD pair, the DN-DUE model is the lowest (1.12 routes per OD or 204 routes in total) and 

highest for the SN-SUE model (6.68 routes per OD or 1215 routes in total).  This set of results 

can be explained using arguments similar to above. 

 
Table 5.4: Aggregate Measures from the Four Route Choice Models 

 DN-DUE DN-SUE SN-DUE SN-SUE 
Total travel time 
(Thousand vehicles hour) 21.88 24.60 47.89 41.38 

Number of used 
paths* 204 944 600 1215 

Number of paths 
per OD pair 1.12 5.19 3.30 6.68 

       * Only the path with path flow greater than 0.01 (Thousand vehicles) are counted 
 

Table 5.5 provides the link-flow results on the sixteen links containing travel time variability for 

all four route choice models. As expected and mentioned above, traffic flows assigned to these 

risky links are much lower for the SN-DUE and SN-SUE models compared to those in the DN-

DUE and DN-SUE models. This is because the risk averse travelers in the SN-DUE and SN-

DUE models choose routes to avoid these risky links. Between the DN-DUE and DN-SUE 

models (without and with perception error), no particular trend can be observed within the subset 

of network links. As for the SN-DUE and SN-SUE models, it appears that the flow allocations 

by the SN-DUE model are similar those assigned by the SN-SUE model in this set of risky links. 

In general, we would expect some distinct differences between the DUE and SUE models, but 

these differences might be overshadowed by the congestion level as illustrated in Sheffi and 

Powell (1981). As the congestion level increases, the differences between the DUE and SUE 

models become more and more similar. This leads us to examine the effects of the congestion 

level. 
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Table 5.5: Link-Flow Results from the Four Route Choice Models (thousand vehicles) 

Link ID  DN-DUE DN-SUE SN-DUE SN-SUE 
27 5.012 8.597 0.158 1.222 
28 10.879 10.710 0.229 3.337 
29 3.395 3.405 0.095 1.371 
32 5.008 8.250 0.161 1.409 
34 7.039 7.957 3.532 4.911 
40 7.034 7.983 3.550 4.741 
41 3.940 6.130 0.294 1.849 
43 10.884 10.558 0.243 2.978 
44 3.952 6.091 0.300 2.079 
45 6.634 8.116 0.306 2.515 
48 3.395 3.609 0.095 1.050 
48 6.020 4.418 0.227 1.314 
52 6.021 4.328 0.229 1.002 
53 6.020 5.570 3.065 3.263 
57 6.652 8.105 0.307 2.412 
58 6.021 5.659 3.094 3.285 

 

 

5.3.3 Comparison of Route Choice Models under Different Demand Levels 

To examine the effect of congestion, we vary the demand by uniformly multiplying the trip table 

in Table 5.2 by a demand control factor of 0.6, 0.8, 1.2 and 1.4. The original trip table has a 

control demand factor of 1.0. To assess the effect of congestion in flow allocations of the four 

route choice models, we use the link flows obtained from the DN-DUE model as the benchmark, 

and calculate the deviations for each of the other three route choice models as follows: 

 

∑ ⋅
−

=
a

DUEDN
a

Model
a

DUEDN
a

x

xx
Dev %100_

_

,       (5.26) 

 

where Dev is the link-flow deviations from the DN-DUE model; Model  here refers to one of the 

DN_SUE, SN_DUE and SN_SUE models; and a refers to all links in the network or just the 

sixteen links containing travel time variability. 
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Table 5.6 provides the link-flow deviations of the three route choice models for different demand 

control factors. For each route choice model, two sets of link-flow deviation results are provided: 

one for all links in the network and the other for the sixteen risky links. As the demand control 

factor increases, the deviations get smaller for both sets of links (risky links in the DN-SUE 

model is exceptional because this set of links may not reflect the effects of congestion). This 

suggests that congestion does play a role in the flow allocation of the route choice models. 

Intuitively, this result is expected since all route choice models are assumed to be flow-

dependent based on the BRP function. As the level of congestion increases, there are less 

alternative routes for those with no perception error. Hence, the DN-DUE and DN-SUE models 

would have similar flow allocations. This result agrees with the study by Sheffi and Powell 

(1981). As for the SN-DUE and SN-SUE models, the criterion used for route choice is different 

(i.e., both average travel time and travel time variability) and the route choice behavior is also 

different (i.e., risk averse as opposed to risk neutral); thus, the flow allocations would also be 

different from the DN-SUE model. However, the flow differences for all links between the SN-

DUE and SN-SUE models are minor as the demand control factor increases. 

 

Table 5.6: Link-Flow Deviation Comparison as a Function of Demand Control Factor 

DN-SUE SN-DUE SN-SUE Demand 
Control 
Factor 

All 
Links 

Risky 
Links 

All 
Links 

Risky 
Links 

All 
Links 

Risky 
Links 

0.6 17.9 20.6 80.7 96.3 65.8 75.6 
0.8 13.9 21.4 73.3 91.9 61.6 68.0 
1.0 12.5 21.2 66.8 83.8 59.0 60.4 
1.2 11.7 18.4 60.2 78.0 56.0 53.0 
1.4 11.4 14.7 55.3 75.9 50.7 47.1 
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5.3.4 Summary 

In this chapter, we described the implementation of traffic assignment procedures for solving the 

four route choice models described in Chapter two. In addition, numerical experiments were 

conducted to examine the effects of using four route choice models on network flow allocations. 

The results showed that there are significant differences on the flow allocations between the risk 

neutral travelers (in the DN-DUE and DN-SUE models) and the risk averse travelers (in the SN-

DUE and SN-SUE models) when there are travel time variability in the network. This is because 

of the criterion (expected disutilities rather than expected travel times) and the risk averse 

behavior used in the route choice decision process. Considering several recent empirical studies 

on travel behaviors, they all suggested that travel time variability is an important factor for 

travelers when making their route choice decisions. Thus, it is necessary to incorporate travel 

time variability into the route choice model to enhance the predictive capability of the route 

choice model.  In addition, it is important to systematically examine the behavioral issues related 

to perceptions of travel time variability and risk preferences and how these issues affect 

individual route choice decisions and collectively on network assignment results. 
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Chapter Six 

6.  Travel Time Reliability 
 

 

6.1 Introduction 
The potential sources of disruption to transportation networks are numerous, ranging from one 

extreme of major exceptional events (e.g., natural or man-made disasters) to the other extreme of 

minor regular events (e.g., daily recurrent congestion). The scale, impact, frequency, and 

predictability of these abnormal events also vary enormously. Disruptions to the transportation 

network can have a major impact not only on economic productivity but also on our daily lives. 

The negative impacts of transportation disruptions can be pervasive. Perhaps, the best example to 

illustrate the vulnerability of transportation networks is the air traffic network after the 9/11 

Event. It completely halted all commercial air traffic in the United States and the impacts on 

travel disruptions and economic losses were spread worldwide. 

 

In fact, the transportation system has been identified as the most important lifeline (Nicholson 

and Du , 1997) in the event of a disaster (e.g., earthquakes, floods, tornadoes, hurricanes, 

landslides, and others), Disasters of these kinds in recent years have exposed the vulnerability of 

lifeline systems and the need to mitigate the risk consequent to failure of these systems.  In 

particular, recent events such as the 1989 Loma Prieta, 1994 Northridge, California, the 1995 

Kobe, Japan, and the recent earthquakes in Turkey, Taiwan, Mexico, and India have provided 

compelling evidence that transportation systems are of paramount importance to restoring 

normalcy. Because the restoration of other lifelines (e.g., water supply, electrical power, sewer, 

communication, and others) depends strongly on the ability to move people and equipment to 

damaged sites, an unreliable transportation system would therefore hinder the restoration process 

and increase not only economic loss but also fatalities that are difficult to quantify. 
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Moreover, when planning a reliable transportation system, one should consider not only 

disasters, but also everyday disturbances, such as traffic congestion arising from daily traffic 

peaking or irregular traffic accidents.  The reliability of the transportation system reflects the 

quality of service it would normally provide under different disruptions. In the 21st century, Iida 

(1999) argued that because of increased value of time, travelers would desire a more stable 

transportation system with less travel time uncertainty so that they can be confident of arriving at 

their destination on schedule. In addition, the value of time has increased in recent years due to 

increased economic activity and improvements in the quality of life. Road networks are now 

required to have high degree of reliability to ensure drivers smooth travel under normal traffic 

flow fluctuations and to avoid serious unexpected delays due to disruptions within the network. 

These new requirements have generated an urgent need for better understanding of road network 

reliability under recurrent and non-recurrent congestion. 

 

 

6.2 Review of Transportation Reliability Measures 
Reliability is generally defined as the probability that the system of interest has the ability to 

perform an intended function or goal (Ang and Tang, 1990.). Traditionally, transportation 

network reliability studies were primarily concerned with two problems: connectivity reliability 

and travel time reliability (Bell and Ida, 1997). Connectivity reliability is concerned with the 

probability that network nodes are connected (Iida, and Wakabayashi, 1989). Travel time 

reliability is concerned with the probability that a trip between a given OD pair can be made 

successfully within a given time interval or a specified level-of-service (Asakura and 

Kashiwadanu, 1991; Asakura, 1998; Bell et al, 1999).  Recently, the reliability of transportation 

networks has become an increasingly important issue due to its critical status as the most 

important lifeline in the restoration process following the occurrence of a disaster (Nicholson and 

Du, 1997). It has attracted many researchers to develop various indicators to assess the reliability 

of a transportation network. Here we summarize these reliability indicators in Table 6.1 and 

briefly describe them below. 

 

Connectivity reliability is concerned with the probability that network nodes are connected. A 

special case of connectivity reliability is the terminal reliability which concerns the existence of a 
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path between a specific O-D pair (Iida, and Wakabayashi, 1989). For each node pair, the network 

is considered successful if at least one path is operational. A path consists of a set of roadways or 

links which are characterized by zero-one variables denoting the state of each link (operating or 

failed). Capacity constraints on the links are not accounted for when determining connectivity 

reliability. This type of connectivity reliability analysis may be suitable for abnormal situations, 

such as earthquakes, but there is an inherent deficiency in the sense that it only allows for two 

operating states: operating at full capacity or complete failure with zero capacity.  The binary 

state approach limits the application to everyday situations where arcs are operating in-between 

these two extremes.  Therefore, the reliability and risk assessment results obtained through this 

approach may be misleading for normal conditions. 

 

Travel time reliability is concerned with the probability that a trip between a given O-D pair can 

be made successfully within a given time interval and a specified level-of-service (Asakura and 

Kashiwadanu, 1991; Bell et al., 1999). This measure is useful when evaluating network 

performance under normal daily flow variations. Bell et al. (1999) proposed a sensitivity analysis 

based procedure to estimate the variance of travel time arising from daily demand fluctuations.  

Asakura (1998) extended the travel time reliability to consider capacity degradation due to 

deteriorated roads. He defined travel time reliability as a function of the ratio of travel times 

under the degraded and non-degraded states. This definition of reliability can be used as a 

criterion to define the level of service that should be maintained despite the deterioration certain 

links in the network. Chen and Recker (2001) further examined the effects of considering risk-

taking behavior in the calculation travel time reliability. 

 

Travel demand reduction is concerned with the probability that decrement rate of OD flow is less 

than a given intolerable value under a degradable network. Nicholson and Du (1997) provide two 

definitions to evaluate the reduction of travel demand: OD sub-system and system reliabilities. 

The decrement rate of OD flow is defined as the ratio of the travel demand reduction due to 

degradation of network over the travel demand of a non-degradable network. The flow 

decrement rate can vary between zero (i.e., no degradation) and unity (i.e., degradation is so 

severe that the travel demand is zero). A system surplus was also suggested as a performance 

measure to assess the socioeconomic impacts of the system degradation. 
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Travel demand satisfaction reliability (DSR) is concerned with the probability that the network 

can accommodate a given travel demand satisfaction ratio. This ratio is defined as the 

equilibrium travel demand (i.e., travel demand that can be satisfied by using the transportation 

network) over the latent travel demand (i.e., total travel demand that intends to use the 

transportation network). The latent travel demand is the sum of the equilibrium travel demand or 

the satisfied travel demand and non-satisfied travel demand stemmed from the latent demand 

events (LDE) such as horseracing or weekend events. The key feature of this reliability measure 

is that it attempts to distinguish the difference between recurrent travel demand and latent travel 

demand under a degradable transportation network. 

 

Encountered Reliability is concerned with the probability that a trip can be made successfully 

without encountering link degradation on the least (expected) cost path. Level of information to 

the users is important in the encountered reliability since users will often try to avoid degraded 

links and links which may be degraded. In addition, different users may behave differently. Risk 

averse users are concerned with avoiding disruptions that they are willing to travel longer, while 

risk neutral users will still travel on their preferred routes based on expected cost considerations 

regardless of the probability of encountering disruptions along their preferred routes.   

 

Capacity reliability is concerned with the probability that the network capacity can accommodate 

a certain volume of traffic demand at a required service level (Chen et al., 1999, 2000, 2002).  

Link capacities for a road network can change from time to time due to various reasons such as 

the blockage of one or more lanes due to traffic accidents, and are considered as random 

variables.  The joint distribution of random link capacities can be experimentally obtained or 

theoretically specified.  Capacity reliability explicitly considers the uncertainties associated with 

link capacities by treating roadway capacities as continuous quantities subject to routine 

degradation due to physical and operational factors.  Readers may note that when the roadway 

capacities are assumed to take only discrete binary values (zero for total failure and one for 

operating at ideal capacity), then capacity reliability includes connectivity reliability as a special 

case. This measure addresses the issue of adequate capacity planning for a highway network in 

order to accommodate the growing passenger traffic demand. It has the potential of being useful 
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at the system level, in planning roadway capacity expansion projects, and planning the timing 

and location of various road improvement projects. 
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Table 6.1: Principal Characteristics of Definitions of Road Network Reliability 
(Modified from Lam and Zhang, 2000) 

 
Reliability Aspect for Reliability 

Index Uncertainty Performance 
Indicator 

Probability 
Definition Users  Planners 

Connectivity 
(Iida and 

Wakayabashi, 
1989) 

Disruption 
of road links 

θc =1 if 
connect and 
θc=0 if 

disconnect 

Connected 
and 

disconnected 
network 

Minimal 
Usefulness 

Good 
Usefulness

Travel time 
(threshold 

based) 
(Asakura and 
Ksahiwadani, 

1991) 

Fluctuation 
of daily 

traffic flow 

Specified 
travel time θt

Travel time 
less than a 
specified 

value 

Good 
Usefulness 

Good 
Usefulness

Travel time 
(level-of-

service base) 
(Asakura, 

1998) 

Degradable 
link 

capacity 

Specified 
network 

service θL 

Service level 
less than a  
specified 

value 

Minimal 
Usefulness 

Good 
Usefulness

Travel demand 
reduction 

(Nicholson and 
Du, 1997) 

Degradable 
link 

capacity 

Intolerable 
decrement 
rate of OD 

flow θo 

Decrement 
rate less than 
a specified 

value 

Minimal 
Usefulness 

Good 
Usefulness

Travel demand 
satisfaction 
(Lam and 

Zhang, 2000) 

Degradable 
link 

capacity 

Demand 
ratio 

Travel 
demand 

satisfaction 
ratio greater 

than a 
specified 

value 

Good 
Usefulness 

Minimal 
Usefulness

Encountered 
reliability 
(Bell and 

Schmocker, 
2002) 

Disruption 
or 

degradation 
of road links 

Least costs 

Not 
encountering 

a link 
degradation 

Good 
Usefulness 

Minimal 
Usefulness

Network 
capacity 

(Chen et al., 
1999, 2000, 

2002) 

Degradable 
link 

capacity 

Required 
demand 
level θD 

Network 
reserve 
capacity 

greater than a 
specified 

value 

 Minimal 
Usefulness 

Good 
Usefulness
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6.3 Travel Time Reliability Evaluation Procedure 
In this research, we are primarily interested in the effects of route choice models on estimating 

travel time reliability under demand and supply variations. Travel time reliability is concerned 

with the probability that a trip between a given OD pair can be made successfully within a given 

time interval and at a specified level-of-service (Asukura and Kashiwadani, 1991; Bell et al., 

1999). Under this reliability measure, there are two potential measures - path travel time 

reliability and OD travel time reliability - that are of interest to the travelers and traffic managers 

(Bell et al., 1999). Path travel times are computed by summing up the link travel time on a given 

route. For the OD travel times, they are computed as a weighted average of the path travel times, 

where the weights are the path flows. 

 

• Path travel time reliability is defined as the probability that the travel time of a given path is 

within an acceptable threshold.  

• OD travel time reliability is defined as the probability that the weighted average travel time 

of a given OD pair is within an acceptable threshold.  

 

Travelers are more concerned about the path travel time reliability, because it directly affects 

their route choice decisions. OD travel time reliability measures all relevant paths used by 

travelers to define an aggregate measure for the level-of-service between a given OD pair. Thus, 

traffic managers or planners can use the OD travel time reliability as a proxy to evaluate the 

performance of a given OD pair (i.e., OD sub-system reliability in terms of travel time). Similar 

to the system and OD sub-system reliability measure defined by Nicholson and Du (1997), the 

OD travel time reliability can also be extended to the system level to measure the performance of 

the whole network. 
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Travel Time Reliability Estimation Procedure 

The travel time reliability evaluation procedure presented below is based upon a Monte Carlo 

simulation framework developed by Chen and Recker (2001). Link capacities (Ca ) and OD 

demands ( Qrs ) are treated as random variables.  Assuming that the random variables Ca  and Qrs  

follow a known probability distribution, a random variate generator is used to generate the values 

of Ca  for each link and Qrs  for each OD pair that preserve the provided distribution properties 

(e.g., mean, variance, correlation, etc.). For each set of link capacities and OD demands 

generated, four different route choice models discussed above are used to estimate the OD and 

path travel time reliabilities. 

 

The travel time reliability procedure is described as follows: 

Step 0:  Set sample number k := 1. 

Step 1: Generate a vector of OD demands ),,( KK rsk Q=Q  and/or a vector of arc 

capacities ),,( KK ak C=C . 

Step 2: Perform DN-DUE, DN-SUE, SN-DUE, and SN-SUE route choice models with 

same the OD demand vector kQ  and arc capacity vector kC . 

Step 3:  Collect statistics from Step 2 to compute travel time reliability.  

Step 4: If sample number k is less than the required sample size kmax , then increment 

sample number k k:= + 1 and go to Step1.  Otherwise, terminate the procedure. 
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6.4 Numerical Experiments 
The travel time reliability evaluation procedure is demonstrated using a small network depicted 

in Figure 6.1. This network consists of 5 nodes, 7 links, and 2 OD pairs. The base demand for 

OD pairs (1, 4) and (1, 5) are 15.0 and 18.8, respectively. 
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Figure 6.1: Test Network 

 
 

The free-flow travel times, for each link on the network, as well as, the ideal capacity values, are 

shown in Table 6.2. The link travel time function, used in the route choice models, is the 

standard Bureau of Public Road (BPR) function given below: 
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where v t ca a
f

a, , and  are the flow, free-flow travel time, and capacity on link a. 
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Table 6.2: Link Free-flow Travel Times and Ideal Link Capacities 

Link 
# 

Free-flow travel 
time (min) 

Capacity
(veh/min)

Travel time 
variability (min) 

1 4.0 25.0 4.0 
2 5.2 25.0 0.52 
3 1.0 15.0 0.1 
4 5.0 15.0 0.5 
5 5.0 15.0 0.5 
6 4.0 15.0 0.4 
7 4.0 15.0 0.4 

 

6.4.1 Experimental Setup  

In order to model the risk-taking route choice models (i.e., SN-DUE and SN-SUE), we assume 

that all links in the network have some variability associated with their travel times. For link 1, 

the variability (e.g., standard deviation2) of the travel time is assumed to be 100 percent of the 

link’s free-flow travel time. For all other links, the travel times are assumed to vary up to 10 

percent of the link’s free-flow travel time. 

 

Travel time variability introduces uncertainty for travelers such that they do not know exactly 

when they will arrive at the destination. Thus, it is considered as a risk (or an added cost) to a 

traveler making a trip. To model the travelers’ attitudes towards risk, disutility functions are 

needed to represent different risk-taking behaviors. Following the study by Tatineni et al. (1997), 

we also use the exponential functional form to describe risk averse and risk prone behaviors. For 

the risk neutral behavior, we simply use the DN-SUE model, which minimizes the perceived 

expect travel time and ignores travel time variability. Suppose that the travelers’ disutility has the 

following forms: 

 

Risk Averse: U(T) = a1 [exp(a2 T) – 1],       (6.2) 

 

Risk Prone: U(T) = b1 [1 – exp(-b2 T)],       (6.3) 

                                                 
2 Other measure such as the difference between the 95th percentile travel time and median travel 
time (Lam and Small, 2001) can also be used here. 
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where T is the random travel time in minutes for a given route, a1, a2, b1, and b2 are positive 

parameters to be estimated. The parameters a2 (b2) are a measure of risk aversion (proneness). As 

a2 (b2) gets larger, the traveler becomes more averse (seeking) to risk. To estimate the parameters 

of the disutility function given in Equations (6.2) and (6.3), we need to make assumptions on 

how travelers value route travel time according to their risk-taking behavior. For illustration, the 

estimation of parameters for the risk averse case is explained. Suppose that all travelers have a 

disutility of 1 unit for a route that is 5 minutes, and they are indifferent between a route that has a 

travel time of 3.33 minutes for certain and a route that has an equal chance of having a travel 

time that is either close to zero minute or is equal to 5 minutes (i.e., an average of 2.5 minutes on 

this route). Travelers who took the longer travel time route (3.33 minutes) would pay a risk 

premium of 0.83 minute (i.e., 3.33 – 2.5) to avoid uncertainty. This is a typical behavior for risk 

averse travelers. Given these two assumptions, two equations, to solve for the values of the two 

parameters a1 and a2, are established as follows: 

 

U(5) = a1 [exp(a2 5) – 1] = 1.0       (6.4) 

 

U(3.33) = a1 [exp(a2 3.33) – 1] = 0.5       (6.5) 

 

Solving the above equations for a1 and a2 give the following disutility function for a risk averse 

traveler: 

 

Risk Averse: U(T) = 0.309 [exp(0.289 T) – 1]      (6.6) 

 

Using similar assumptions for the risk prone travelers, the disutility function for a risk prone 

traveler is: 

 

Risk Prone: U(T) = 1.309 [1 – exp(-0.289 T)]      (6.7) 

 

The details of the estimation of the parameters are described in Section 5.1.2 and can also be 

found in Tatineni (1996). An advantage of using the exponential functional form to represent 

risk-taking behavior is that the disutility associated with a route can be estimated by summing 



 142

the link disutilities on a given route (see Section 5.1.4 on the estimation of link disutilities using 

the moment generating function). This allows the classical Dijkstra-type shortest path algorithm 

to be used in finding the minimum expected disutility route in the SN-DUE model and the 

minimum expected perceived disutility route in the SN-SUE model (see Section 5.1.5 on the 

choice of stochastic loading). 

 

To simulate the uncertainty of the traffic demands, a normal distribution is used. Three levels of 

mean demand are specified for each OD pair by varying the base OD demand by ± 25% (see 

Table 6.3).  For each level of mean OD demand, three levels of standard deviation (σ) of the OD 

demand is specified to reflect the variation of the OD demand as follows: (1) ( )3/5.1 rsq=σ  for 

high variation, (2) ( )3/0.1 rsq=σ  for medium variation, and (3) ( )3/5.0 rsq=σ  for low variation.  

These three variations of traffic demands can be interpreted as the relative accuracy of each level 

of mean OD demand (Mette and Bent, 1996). Given that both the mean and standard deviation of 

OD demands are defined for a total of nine combinations (3 means x 3 standard deviations), 

random samples for each OD pair can be generated according to the standard normal distribution 

as follows: 

 

Q q Zrs rs= ± σ ,         (6.8) 

where: 

 Qrs  =  random demand between OD pair (r,s), 

 Z  =  random variable generated from N(0,1), 

σ = standard deviation of the OD demand. 
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Table 6.3: Three Levels of Mean Demands between Each OD Pair 

Origin 
 

Destination 
 

Low mean 
demand  

Medium mean demand  
(base case) 

High mean 
demand  

1 4 N(11.25, σ) N(15.00, σ) N(18.75, σ) 
1 5 N(14.10, σ) N(18.80, σ) N(23.50, σ) 

σ is the standard deviation of the OD demand which reflects the variation of the OD demand. 
 

 

Road capacity is not deterministic since it is influenced by a wide variety of physical and 

operational characteristics (e.g. roadway type, geometric configuration, mixture of vehicle types, 

weather conditions, etc.). These characteristics often degrade the capacity of a road network. To 

simulate the uncertainty of link capacities, let C C= −0 ε , where { }KK ,, aC=C  is a vector of 

random link capacities, { }KK ,, 00 aC=C  is a vector of ideal link capacities, andε  is a vector of 

random variables representing link capacity degradation. The random link capacity degradation 

vector (ε ) ranges from 0 (i.e., operating at ideal capacity) to C0  (i.e., complete failure with zero 

capacity). For simplicity, a uniform distribution is used to generate the random link capacity 

degradation. The mean link capacity degradation is 25% of the ideal link capacity with three 

levels of standard deviation. To ensure high accuracy, 10,000 samples are used to generate the 

numerical results of the simulation experiment for the case study. As shown in Figure 6.2, the 

simulated distributions of OD demand for the medium mean demand case are approximately 

normal with predefined mean and standard deviations. The slight skewness in the high level of 

standard deviation is due to truncation error of negative OD demands. Similarly, the simulated 

link capacities also replicate the theoretical values of the predefined uniform distribution, as 

indicated in Table 6.4. Therefore, the number of samples drawn is sufficient to study the travel 

time reliability measures. 

 

Three scenarios are constructed to test how different route choice models respond to uncertain 

environment caused by demand and supply variations and its effects on estimating travel time 

reliability. Scenario I examines the effects of route choice models on estimating travel time 

reliability caused by daily fluctuations of demand only; scenario II considers both demand and 

supply variations; and scenario III examines the effects of risk-sensitive travelers on the 

estimation of path travel time reliability.
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Figure 6.2: Estimated OD Demand Distributions Using 10,000 Samples 
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Table 6.4: Comparisons of Theoretical and Estimated Link Capacity 
 

Low Standard Deviation  Theoretical Estimated 
Link Number Mean Std. Dev. Mean Std. Dev. 

1 18.75 0.9021 18.7457 0.9050 
2 18.75 0.9021 18.7470 0.9005 
3 11.25 0.5413 11.2553 0.5464 
4 11.25 0.5413 11.2569 0.5421 
5 11.25 0.5413 11.2457 0.5414 
6 11.25 0.5413 11.2454 0.5452 
7 11.25 0.5413 11.2456 0.5412 
 Medium Standard Deviation 
1 18.75 1.8042 18.7413 1.8099 
2 18.75 1.8042 18.7440 1.8009 
3 11.25 1.0825 11.2607 1.0928 
4 11.25 1.0825 11.2638 1.0842 
5 11.25 1.0825 11.2415 1.0829 
6 11.25 1.0825 11.2408 1.0905 
7 11.25 1.0825 11.2411 1.0823 
 High Standard Deviation 
1 18.75 2.7063 18.7370 2.7148 
2 18.75 2.7063 18.7409 2.7013 
3 11.25 1.6238 11.2660 1.6393 
4 11.25 1.6238 11.2707 1.6263 
5 11.25 1.6238 11.2372 1.6243 
6 11.25 1.6238 11.2362 1.6357 
7 11.25 1.6238 11.2367 1.6235 
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6.4.2 Scenario I  

Scenario I considers only demand variations. Link capacities are assumed to be deterministic and 

operating at the ideal capacities. 

 

6.4.2.1 OD Travel Time Comparison for Different Route Choice Models 

Mean and standard deviation (shown in parenthesis) of OD travel times for 9 combinations of 

demand variations (3 means x 3 standard deviations) and for four route choice models are shown 

in Table 6.5. For the SN-DUE and SN-SUE models, risk averse behavior is used for comparison 

with the DN-DUE and DN-SUE models. Except the DN-DUE model where all used paths of a 

given OD pair have the minimum travel time equal to the OD travel time, the OD travel times for 

the other three models are computed as a weighted average of the travel times on the different 

paths, where the weights are the path flows. The general trend for all the models is that as the 

mean demand increases, OD travels times for both OD pairs (1,4) and (1,5) also increase. This is 

also true for the case of a constant demand and only the standard deviation of OD demand is 

increased. In terms of the route choice models, the DN-DUE model has the lowest expected OD 

travel times and the SN-DUE model has the highest expected OD travel times. This is because 

the DN-DUE model is based on the assumption that travelers choose routes that minimize travel 

times, while the SN-DUE model with risk averse behavior without perception error tries to avoid 

paths that contain the high variability link and takes longer paths that result in higher OD travel 

times. For the two SUE models that contain a perception error, their OD travel times are in-

between those given by the DN-DUE and SN-DUE models. This result can be explained as 

follows. Because of the perception error, travelers in the DN-SUE model cannot always perceive 

exactly the minimum travel time path and results in taking paths that are slightly longer with 

higher expected OD travel times. Similarly, travelers in the SN-SUE model with risk averse 

behavior and perception error cannot always identify paths that have the least travel time 

variability, and sometimes choose paths that contain some variability but lower travel times. This 

evidently results in lower OD travel times than those found by the SN-DUE model. 
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Table 6.5: OD Travel Time Comparisons for Different Route Choice Models under Demand 
Variations 

 
OD (1,4) 

DN-DUE DN-SUE 
 

Mean/Std. 
Dev. LSD MSD HSD LSD MSD HSD 
LM 9.2 

(0.0) 
9.2 

(0.1) 
9.3 

(0.2) 
9.2 

(0.0) 
9.2 

(0.1) 
9.3 

(0.2) 
MM 9.3 

(0.1) 
9.4 

(0.2) 
9.5 

(0.5) 
9.4 

(0.1) 
9.4 

(0.3) 
9.6 

(0.5) 
HM 9.6 

(0.2) 
9.8 

(0.6) 
10.1 
(1.2) 

9.7 
(0.3) 

9.9 
(0.6) 

10.2 
(1.2) 

SN-DUE SN-SUE Mean/Std. 
Dev. LSD MSD HSD LSD MSD HSD 
LM 9.5 

(0.0) 
9.5 

(0.1) 
9.5 

(0.2) 
9.2 

(0.0) 
9.2 

(0.1) 
9.3 

(0.3) 
MM 9.5 

(0.1) 
9.6 

(0.4) 
9.8 

(0.7) 
9.4 

(0.2) 
9.6 

(0.5) 
9.7 

(0.7) 
HM 10.2 

(0.6) 
10.2 
(0.8) 

10.4 
(1.2) 

10.1 
(0.5) 

10.1 
(0.7) 

10.3 
(1.2) 

OD (1,5) 
DN-DUE DN-SUE 

 
Mean/Std. 

Dev. LSD MSD HSD LSD MSD HSD 
LM 9.2 

(0.0) 
9.3 

(0.1) 
9.3 

(0.2) 
9.2 

(0.1) 
9.2 

(0.2) 
9.3 

(0.8) 
MM 9.4 

(0.1) 
9.5 

(0.4) 
9.7 

(0.8) 
9.5 

(0.2) 
9.6 

(0.4) 
9.8 

(1.0) 
HM 9.8 

(0.3) 
10.0 
(0.9) 

10.5 
(1.9) 

9.9 
(0.4) 

10.1 
(0.9) 

10.6 
(2.0) 

SN-DUE SN-SUE Mean/Std. 
Dev. LSD MSD HSD LSD MSD HSD 
LM 9.4 

(0.0) 
9.4 

(0.1) 
9.5 

(0.3) 
9.2 

(0.1) 
9.3 

(0.2) 
9.4 

(0.4) 
MM 9.5 

(0.2) 
9.8 

(0.6) 
10.0 
(1.0) 

9.5 
(0.3) 

9.7 
(0.6) 

9.9 
(0.9) 

HM 10.3 
(0.7) 

10.5 
(1.0) 

10.9 
(1.9) 

10.3 
(0.6) 

10.3 
(1.0) 

10.7 
(1.9) 

LM=Low Mean, MM=Medium Mean, HM=High Mean, LSD=Low Standard Deviation, 
MSD=Medium Standard Deviation, HSD=High Standard Deviation 
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6.4.2.2 Effects of Route Choice Models on the Estimation of OD Travel Time Reliability 

In Figure 6.3, we show the OD travel time reliability curves for both OD pairs (1,4) and (1,5) for 

four route choice models using the medium demand with medium standard deviation (i.e., the 

MM, MSD cell in Table 6.5). On the X-axis, we plot the travel time threshold value, which can 

be used as an indicator for level of service (a smaller value indicates a higher level of service). 

The Y-axis is the OD travel time reliability, which is defined as the probability that the weighted 

travel time for a given OD pair is within an acceptable level of service. This measure, as 

mentioned above, is an aggregate measure of all relevant used paths serving an OD pair. In both 

OD pairs, the OD travel time reliability under the DN-DUE model is always higher compared to 

the other three models. Since travelers in the DN-DUE model assume to have perfect 

information and use travel time as the sole criterion for route choice, it is reasonable to have such 

results. However, for the DN-SUE model, travelers are assumed to make route choices with 

imperfect information, hence the OD travel time may be slightly sub-optimal resulting in lower 

OD travel time reliability. For the SN-DUE and SN-SUE models which assume risk averse 

behavior, route choices are based on minimizing disutilities and perceived disutilities, 

respectively, which are based on expected link travel time and travel time variability leading to 

higher OD travel times or lower OD travel time reliabilities. Thus, it would seem reasonable that 

the OD travel time reliability is lower when route choices are assumed to be based on imperfect 

information and even more so when they are based on minimizing disutilities that are a function 

of factors other than link travel times. 
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Figure 6.3: Effects of Route Choice Models on the Estimation of OD Travel Time Reliability 

under Demand Variations 
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6.4.2.3 Effects of Route Choice Models on the Estimation of Path Travel Time Reliability 

For brevity, we show only the results of path 1 (link sequence 1->4) and path 2 (link sequence 2-

>6), which are two major alternate paths for OD pair (1,4) using the medium mean demand and 

medium standard deviation of demand (i.e., cell (MM,MSD) in Table 6.5) as an example. Figure 

6.4 shows the effect of different route choice behaviors on estimating path travel time 

reliabilities. Similar to the OD travel time reliability curves, the X-axis is the travel time 

threshold value, and the Y-axis is the path travel time reliability which is defined as the 

probability that the travel time of a given path is within an acceptable threshold value. For the 

DN-DUE and DN-SUE models, travelers are assumed to make their route choices solely based 

on average travel times. No consideration is given to travel time variability. The travel time 

reliability on path 1 and path 2 are approximately equal. For the SN-DUE and SN-SUE models 

that consider both average travel time and travel time variability, less travelers are allocated to 

path 1 (1->4) because it contains link 1 which assumes to have a high variability in travel time, 

while more travelers are allocated to path 2 (2->6) that has less variability in travel time. Because 

more travelers use path 2, travel time of path 2 is higher than that of path 1. This evidently 

decreases the travel time reliability of path 2 for the risk averse travelers in the two SN models. 

The differences in travel time reliability between the route choice models implemented without 

and with perception error are minor between the DN-DUE and DN-SUE models, but are more 

visible between the SN-DUE and SN-SUE models. This result seems to suggest that perception 

error may have an effect on the risk taking behavior. Similar results (not shown here) are also 

observed for path 4 (1->5) and path 5 (2->6), which are the two major paths for OD pair (1,5). 
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Figure 6.4: Effects of Route Choice Models on the Estimation of Path Travel Time Reliability 

under Demand Variations 
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6.4.3 Scenario II  

Scenario II considers both demand supply variations. Link capacities are assumed to degrade at a 

mean of 25% of the ideal capacities with three levels of standard deviation. Using the medium 

demand case with three levels of standard deviation (MM-LSD, MM-MSD, and MM-HSD) and 

mixing them with the capacity variations (LSD, MSD, and HSD), there are 9 combinations (3 

demand variations x 3 supply variations). 

 

6.4.3.1 OD Travel Time Comparison for Different Route Choice Models 

Similar to scenario I, the mean and standard deviation (shown in parenthesis) of OD travel times 

are shown in Table 6.6. Again, we use the risk averse behavior for the two route choice models 

that consider network uncertainty. The results are similar to those presented in scenario I. In 

general, the average OD travel times and standard deviation of OD travel times for both OD 

pairs and for all route choice models increase as the variations caused by demand and supply 

increase. In terms of the route choice models, the DN-DUE model has the lowest expected OD 

travel times, followed by the DN-SUE and SN-SUE models, and the SN-DUE model has the 

highest expected OD travel times. The same reasons explained in Scenario I also apply here. 
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Table 6.6: OD Travel Time Comparisons for Different Route Choice Models under Both 
Demand and Supply Variations 

 
OD (1,4) 

DN-DUE DN-SUE 
 

Demand/Supply 
LSD MSD HSD LSD MSD HSD 

MM-LSD 9.8 
(0.3) 

9.8 
(0.4) 

9.8 
(0.4) 

9.9 
(0.3) 

9.9 
(0.4) 

10.0 
(0.5) 

MM-MSD 10.0 
(0.8) 

10.0 
(0.8) 

10.0 
(0.9) 

10.1 
(0.8) 

10.1 
(0.9) 

10.2 
(1.0) 

MM-HSD 10.4 
(1.6) 

10.4 
(1.7) 

10.5 
(1.9) 

10.5 
(1.6) 

10.5 
(1.7) 

10.6 
(1.9) 

SN-DUE SN-SUE Demand/Supply 
LSD MSD HSD LSD MSD HSD 

MM-LSD 10.3 
(0.6) 

10.3 
(0.6) 

10.4 
(0.7) 

10.3 
(0.5) 

10.3 
(0.5) 

10.3 
(0.5) 

MM-MSD 10.4 
(0.9) 

10.4 
(0.9) 

10.5 
(1.0) 

10.3 
(0.8) 

10.3 
(0.9) 

10.4 
(1.0) 

MM-HSD 10.7 
(1.5) 

10.8 
(1.6) 

10.8 
(1.8) 

10.6 
(1.5) 

10.7 
(1.7) 

10.7 
(1.9) 

OD (1,5) 
DN-DUE DN-SUE 

 
Demand/Supply 

LSD MSD HSD LSD MSD HSD 
MM-LSD 10.0 

(0.5) 
10.0 
(0.5) 

10.1 
(0.6) 

10.1 
(0.4) 

10.2 
(0.5) 

10.2 
(0.5) 

MM-MSD 10.3 
(1.2) 

10.3 
(1.3) 

10.4 
(1.4) 

10.4 
(1.2) 

10.5 
(1.3) 

10.5 
(1.4) 

MM-HSD 10.9 
(2.5) 

11.0 
(2.7) 

11.1 
(3.0) 

11.0 
(2.6) 

11.1 
(2.7) 

11.3 
(3.0) 

SN-DUE SN-SUE Demand/Supply 
LSD MSD HSD LSD MSD HSD 

MM-LSD 10.7 
(0.8) 

10.7 
(0.8) 

10.7 
(0.9) 

10.5 
(0.6) 

10.5 
(0.6) 

10.5 
(0.6) 

MM-MSD 10.8 
(1.2) 

10.8 
(1.3) 

10.9 
(1.4) 

10.6 
(1.2) 

10.7 
(1.2) 

10.7 
(1.4) 

MM-HSD 11.3 
(2.5) 

11.3 
(2.6) 

11.4 
(2.9) 

11.1 
(2.5) 

11.2 
(2.6) 

11.3 
(2.9) 

MM-LSD=Medium Mean-Low Standard Deviation, MM-MSD=Medium Mean-Medium 
Standard Deviation, MM-HSD=Medium Mean-High Standard Deviation 

 

 



 154

6.4.3.2 Effects of Route Choice Models on the Estimation of OD Travel Time Reliability 

Similar to scenario I, we show the OD travel time reliability curves in Figure 6.5 using the 

medium mean and medium standard deviation of demand and medium standard deviation of 

capacity case (i.e., cell (MM-MSD,MSD)) in Table 6.5. Again, the OD travel time reliability 

under the DN-DUE model is the highest, followed the DN-SUE model, and the two SN models 

have the lowest OD travel time reliability. This is to be expected since the two DN models 

directly minimize travel times, albeit that the DN-SUE model is allocating flows based on 

imperfect information, and the two SN models that assume risk averse behavior are minimizing 

disutilities which are not solely based on travel times. In general, the OD travel time reliabilities 

for both OD pairs are significantly lower than those in scenario I. Using OD (1,4) as an example, 

the OD travel time reliability at a travel time threshold value of 10.4 for the DN-DUE model is 

1.0 under scenario I, but it drops to 0.79 under scenario II when supply variation is also 

considered. Hence, it seems that the uncertainty due to supply variation can significantly 

contribute to the decrease of travel time reliability. 
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Figure 6.5: Effects of Route Choice Models on the Estimation of OD Travel Time Reliability 

under Both Demand and Supply Variations 
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6.4.3.3 Effects of Route Choice Models on the Estimation of Path Travel Time Reliability 

Again for brevity, we show only the results of path 4 (1->5) and path 5 (2->7), which are two 

major alternate paths for OD pair (1,5) using cell (MM-MSD,MSD) in Table 6.6. Figure 6.6 

plots the path travel time reliability curves for all four route choice models on path 4 and path 5. 

Despite the paths shown in Figure 6.6 are for a different OD pair, the results are generally agreed 

with those presented in Figure 6.4 of scenario I. That is, the two SN models that assume risk 

averse behavior allocate less flow to path 4 to avoid the high travel time variability link 1, which 

is part of path 4. Since path 5 is the only alternative path for OD pair (1,5) that does not contain 

link 1, the two SN models allocate more flow to path 5, which results in higher path travel time 

and lower path travel time reliability. When both demand and supply variations are considered, 

the path travel time reliability curves are in general lower than those in scenario I that considers 

only demand variations. Using the DN-DUE model with a travel time threshold value of 10.5 

minutes as an example, the travel time reliability of path 5 is 0.963 for scenario I (not shown 

here), but drops to 0.702 for scenario II. 
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Figure 6.6: Effects of Route Choice Models on the Estimation of Path Travel Time Reliability 
under Both Demand and Supply Variations 



 158

6.4.4 Comparison Between Scenario I and Scenario II  

Comparing the results of scenario II with those in scenario I, it is found that the both the mean 

and standard deviation of OD travel times are higher. The higher OD travel times are due to the 

25% capacity reduction on all links in the network, while the larger standard deviation of OD 

travel times is due the additional variation coming from the supply side. Thus, it seems necessary 

to account for both demand and supply variations when assessing the performance of a road 

network. 

 

6.4.4.1 Link Flow Allocation Comparisons 

In Table 6.7, we compare the link flow allocations between the two scenarios, using the results 

from the medium demand and medium standard deviation of demand case (i.e., cell (MM,MSD)) 

in Table 6.5 and from the medium mean and medium standard deviation of demand and medium 

standard deviation of capacity (i.e., cell (MM-MSD,MSD)) in Table 6.6. For brevity, we focus 

the comparison on link 1 and link 2 which are the only two links emanating from origin 1 (see 

Figure 6.1). Link 1 has a lower free-flow travel time but higher variability associated with the 

travel time, while link 2 has a higher free-flow travel time but lower variability. Hence, one 

would expect that the DN-DUE model would allocate more flow to link 1, the SN-DUE model 

assuming risk averse behavior would allocate less flow, and the DN-SUE and SN-SUE models 

that contain perception errors in their route choice models would allocate flow in-between these 

two limits. This expectation appears to hold true for scenario I. Because of the 25% capacity 

degradation in scenario II, the flow allocation between link 1 and link 2 in the DN-DUE model is 

slightly more evenly distributed compared to those in scenario I. This flow allocation is optimal 

in terms of travel time minimization, as reflected in Table 6.5 where the expected OD travel 

times are lowest among the four route choice models. Because of the perception error in the DN-

SUE model, the flow allocation over the network is slightly sub-optimal in terms of higher 

expected OD travel times (also see Table 6.8 for the sub-optimal flow allocation to path 3 and 

path 6) despite that a larger amount of flow is allocated to link 1. For the SN-DUE and SN-SUE 

models, flow allocations over the network are similar for both scenarios. 
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Table 6.7: Link Flow Comparisons Between Scenario I and Scenario II 

 Scenario I Scenario II 
Link 

# 
DN-
DUE 

DN-
SUE 

SN-
DUE 

SN-
SUE 

DN-
DUE 

DN-
SUE 

SN-
DUE 

SN-
SUE 

1 20.89 
(2.37) 

20.59 
(4.29) 

12.12 
(4.68) 

14.64 
(2.94) 

18.80 
(3.51) 

19.70 
(4.04) 

13.70 
(5.08) 

14.85 
(4.84) 

2 12.96 
(5.78) 

13.26 
(3.74) 

21.72 
(3.97) 

19.20 
(5.58) 

15.04 
(4.95) 

14.14 
(4.14) 

20.14 
(3.92) 

19.00 
(4.30) 

3 4.17 
(1.38) 

7.51 
(1.01) 

0.03 
(0.02) 

3.17 
(0.79) 

2.38 
(1.49) 

5.98 
(0.85) 

0.18 
(0.62) 

2.21 
(1.08) 

4 7.41 
(2.26) 

5.60 
(2.08) 

5.02 
(3.01) 

4.75 
(2.08) 

7.25 
(2.48) 

5.82 
(2.38) 

5.82 
(2.83) 

5.26 
(2.71) 

5 9.30 
(2.83) 

7.47 
(2.91) 

7.07 
(3.51) 

6.73 
(2.85) 

9.18 
(3.07) 

7.90 
(3.19) 

7.71 
(3.49) 

7.38 
(3.48) 

6 7.60 
(2.75) 

9.41 
(2.93) 

10.00 
(2.35) 

10.27 
(3.07) 

7.77 
(2.63) 

9.19 
(2.70) 

9.19 
(2.60) 

9.76 
(2.54) 

7 9.53 
(3.51) 

11.36 
(3.36) 

11.72 
(3.15) 

12.10 
(3.51) 

9.65 
(3.30) 

10.93 
(3.14) 

11.12 
(3.18) 

11.45 
(3.01) 

 

6.4.4.2 Path Flow Allocation Comparisons 

For completeness, we also compare the path flow patterns of both scenarios in Table 6.8. Similar 

to the link flow allocation comparison, we use the results from the medium mean and medium 

standard deviation of demand in scenario I (i.e., cell (MM,MSD)) in Table 6.5 and from the 

medium mean and medium standard deviation of demand and medium standard deviation of 

capacity in scenario II (i.e., cell (MM-MSD,MSD)) in Table 6.6 as an example for the path flow 

allocation comparison. There are 6 paths in total serving the 2 OD pairs. Paths 1 (1->4), 2 (2->6), 

and 3 (1->3->6) are for OD pair (1,4), and paths 4 (1->5), 5 (2->6), and 6 (1->3->7) are for OD 

pair (1,5). Based on the assumptions of the route choice model, it is apparent that each route 

choice model allocates a different amount of flow to each path. For example, the DN-DUE 

model seems to allocate more flow to path 1 and path 4, which contain link 1 (lower free-flow 

travel time but higher travel time variability), while the two SN models that assume risk averse 

behavior allocate more flow to path 2 and path 5 to avoid link 1. It is also interesting to observe 

that the SN-DUE model, which assumes to have perfect knowledge of the variable nature of 

network travel times, allocate significantly less flow to path 3 and path 6 compared to those 

allocated by the other three route choice models. This is because both path 3 and path 6 contain 

link 1 (the high variability link) and have higher average travel times. The differences in flow 
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allocation to the paths in the network between the route choice models implemented without and 

with perception error are also evident from the results presented in Table 6.8. Thus, it would 

appear that the different assumptions in modeling route choice behavior could have an effect on 

the path flow patterns as well as the link flow patterns. 

 

Table 6.8: Path Flow Comparisons Between Scenario I and Scenario II 

 Scenario I Scenario II 

Path # DN-
DUE 

DN-
SUE 

SN-
DUE 

SN-
SUE 

DN-
DUE 

DN-
SUE 

SN-
DUE 

SN-
SUE 

1 7.41 
(2.24) 

5.60 
(2.90) 

5.02 
(3.01) 

4.75 
(2.08) 

7.25 
(2.49) 

5.82 
(2.38) 

5.82 
(2.83) 

5.26 
(2.71) 

2 6.01 
(3.06) 

5.97 
(2.75) 

10.01 
(2.36) 

8.69 
(3.03) 

7.05 
(2.66) 

6.39 
(2.27) 

9.17 
(2.55) 

8.67 
(2.59) 

3 1.61 
(1.39) 

3.48 
(2.44) 

0.01 
(0.22) 

1.58 
(0.42) 

0.72 
(1.12) 

2.81 
(0.71) 

0.02 
(0.63) 

1.10 
(0.50) 

4 9.30 
(2.76) 

7.48 
(3.49) 

7.07 
(3.51) 

6.73 
(2.85) 

9.18 
(3.10) 

7.88 
(3.17) 

7.71 
(3.49) 

7.38 
(3.49) 

5 6.96 
(3.05) 

7.33 
(3.74) 

11.70 
(3.15) 

10.51 
(3.72) 

7.99 
(3.15) 

7.74 
(2.76) 

10.97 
(3.08) 

10.33 
(3.05) 

6 2.57 
(0.94) 

4.06 
(2.63) 

0.02 
(0.20) 

1.59 
(0.56) 

1.66 
(0.97) 

3.19 
(0.72) 

0.15 
(0.88) 

1.13 
(0.69) 
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6.4.5 Scenario III  

Scenario III examines the effect of parameter a2 in the risk averse disutility function on the 

estimation of path travel time reliability. As mentioned above, the value of a2 measures the 

degrees of risk aversion to network uncertainty. Larger values of a2 imply that travelers are more 

averse to risk and willing to pay a higher premium to avoid uncertainty. Using the same 

procedure above, we estimate different values for a2 by assuming that all travelers have a 

disutility of 1 for a route that is 1, 3, 5, 7, or 9 minutes. The shapes of these disutility functions 

are illustrated in Figure 6.7. 
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Figure 6.7: Risk Averse Disutility Function with Different a2 Values 

 

For brevity, we show only the results of path 1 (1->4) and path 2 (2->6), which are two alternate 

paths for OD pair (1,4) using the risk averse case of the SN-SUE model under the medium mean 

demand and medium standard deviation of demand (i.e., cell (MM,MSD) in Table 6.5) as an 

example. Based on the degrees of risk aversion to network uncertainty, Figure 6.8 shows that as 
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the value of a2 increases (or 9m to 1m), the SN-SUE model assigns lesser and lesser flow to path 

1, which contains the high travel time variability link (i.e., link 1 which has a variability of 100 

percent of the link’s free-flow travel time). It is apparent that these risk averse travelers are 

willing to pay a higher premium by taking a longer travel time route as shown in the travel time 

distribution on path 2 in Figure 6.9. Because more travelers use path 2 (i.e., path flow 

distribution on path 2 for the 1m is shifted to the right in Figure 6.8), travel times on path 2 is 

higher than that on path 1 as indicated in Figure 6.9. This evidently decreases the travel time 

reliability for path 2, particularly for the highest value of a2 (or 1m) in Figure 6.10. For a given 

value of travel time threshold (say 10.9 min.), the travel time reliability is 1.00 for path 1 and 

0.67 for path 2. 
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Figure 6.8:  Path Flow Distribution for Different a2 Values 
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Figure 6.9: Path Travel Time Distribution for Different a2 Values 
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Figure 6.10: Path Travel Time Reliability for Different a2 Values 

 



 166

 

6.5 Summary 

In this chapter, we have presented a review of transportation reliability measures and focused on 

travel time reliability. A Monte Carlo simulation procedure was used to simulate risk perceptions 

and preferences in making route choice decisions under an uncertain environment. Numerical 

results were also presented to examine what the aggregate impact of changes in variability 

caused by demand and supply variations might have on network assignment and how travelers 

with different risk-taking behaviors respond to these changes. 

 
In general, the results from the four route choice models presented in Table 2.1 of Chapter 2 may 

have a significant impact on the estimation of travel time reliability measures, and it is important 

to examine how the different assumptions made in the route choice models affect the calculation 

of the travel time reliability measures under an uncertain environment. Based on the results of 

the three scenarios constructed for the numerical experiment, the following conclusions can be 

drawn:  

 

• As the mean and standard deviation of OD demand increase, the expected and standard 

deviation of OD travel time also increase. 

• The weighted OD travel time is lowest for the DN-DUE model, followed by the DN-SUE 

and SN-SUE models, and highest for the SN-DUE model. 

• OD travel time reliability is lower when route choices are assumed to be based on 

imperfect information and even more so when they are based on minimizing disutilities 

that are a function of factors other than travel time. 

• Additional variation from capacity degradation can significantly increase not only the OD 

travel time but also the standard deviation of OD travel time. 

• Perception error may contribute to sub-optimal path and link flow allocations since the 

network assignment is based on imperfect information. 

• Travelers who possess risk averse behavior are likely to pay a premium to avoid 

uncertainty. 

• As the degree of risk aversion to network uncertainty increases, travel time also increases 

and results in lower travel time reliability. 
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The numerical results, albeit based on a small network, reveal the significance of the route 

choice model on the estimation of travel time reliability measures. The different assumptions 

used in modeling route choice behavior could result in different estimates of travel time 

reliability. However, we note that the conclusions presented above are only relevant to the 

particular network and parameters used in this study.  

 

The SN-SUE model used to estimate travel time reliability is for a single-class, risk-taking route 

choice model based on a pre-specified disutility function to model a specific risk preference (e.g. 

risk averse) for all travelers in the population. In reality, different travelers with the same 

characteristics facing the same choice situation may respond differently according to various 

degrees of risk aversion to travel time uncertainty. This is important in studying route choice 

behavior at the individual level, and how these individual responses to network uncertainty 

collectively affect the transportation systems performance. One way to extend the SN-SUE 

model to a multi-class route choice model is to segment the population into groups (e.g., 10% 

risk prone, 30 % risk neutral, and 60 % risk averse). This can be accomplished by using the 

diagonalization algorithm (Sheffi, 1985). However, it is difficult to observe how travelers make 

tradeoff decisions between expected travel time and travel time variability in actual choice 

situations. Another possible way to account for different responses to travel time variability 

across individuals is to use the random-coefficient (or mixed) logit model described in Chapter 4 

to account for the degrees of risk of aversion by capturing the taste variation across individuals 

resulting in differences in their responses to route-specific attributes (e.g., expected travel time 

and travel time variability) or in differences in their intrinsic preferences for route alternatives. 

For the risk-taking route choice model, the random-coefficients logit model captures individuals’ 

risk perceptions and preferences with randomly distributed coefficients on the value of time and 

value of travel time variability, resulting in a continuous multi-class network equilibrium model 

to describe the risk-taking route choices of heterogeneous travelers. The goal is to enhance the 

predictive capability of the route choice model and to expand the behavioral framework of route 

choice modeling. 
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Chapter Seven 

7. CONCLUDING REMARKS 
 

Recently the importance of travel time variability has been perceived by many researchers and 

practitioners. However, there has been limited basic research directed toward understanding the 

effects of travel time variability. This research project has attempted to develop methods to 

address a number of questions relating to travel time variability. Specifically, this research 

project has developed: 

 

• A GIS database and computation procedures to analyze freeway travel time variability. 

• A mixed logit model to uncover the contribution of travel time reliability. 

• A set of route choice models that accounts for the variations of travel time in the form of 

risk, perception errors, and behavioral preferences. 

• A set of traffic assignment procedures for the above route choice models. 

• A travel time reliability evaluation procedure. 

 

The main purpose of the GIS database is to provide an analysis framework to analyze travel time 

variability for both section level and route level of the freeways in Orange County, California. 

The framework is expected to help researchers and practitioners understand different types of 

travel time variability: day-to-day variability, within-day variability, and spatial variability. The 

mixed logit model developed in this research project provides an indirect method to study the 

contribution of travel time reliability in traveler’s route choice behavior. Unlike the traditional 

approach that estimates the values of time and  reliability using reveal preference (RP) and/or 

stated preference (SP) data using the simulated maximum likelihood estimation method, this 

research developed a genetic algorithm procedure to identify these parameter values using the 

real-time traffic volume data obtained loop detectors. Such an approach eliminates both the cost 



 169

and biases inherent in RP and SP survey techniques. The route choice models described in 

Chapter Two are the core component of many surface transportation applications. Despite its 

importance, the state-of-the-practice route choice models do not account for travel time 

uncertainty in the models. The purpose of this chapter is to provide an up-to-date review of the 

route choice models, particularly emphasizing on the route choice models that accounts for the 

variations of travel time in the form of risk, perception errors, and behavioral preferences. Traffic 

assignment procedures were implemented for four route choice models. Numerical experiments 

were carried out to examine the effects of route choice models on network assignment results. 

The results showed that there are significant differences on the flow allocations between the risk 

neutral travelers in the DN-DUE and DN-SUE models and the risk averse travelers in the SN-

DUE and SN-SUE models. The reason is because of the criterion and risk-taking behavior used 

in the route choice decision process. By incorporating travel time variability into the route choice 

models, it enhances the predictive capability of the route choice models and could potentially 

lead to better means of reducing traffic congestion, wasteful travel, and loss of productivity, and 

at the same time, improving network capacity utilization and travel time reliability. The travel 

time reliability evaluation procedure provides an analysis framework to estimate travel time 

reliability that explicitly considers the effects of route choice models under demand and supply 

variations. The framework is expected to be useful in examining what the aggregate impact of 

changes in variability caused by demand and supply variations might have on network 

assignment and how travelers with different risk-taking behaviors respond to these changes. 

Although this research project has addressed many questions related to travel time variability, 

our understanding on travel time variability is still in its infancy and applications to real-world 

transportation management have not yet developed. Further studies are needed to better 

understand travel time variability and how to use such measures for transportation management. 
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