
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Towards Computational and Sample Efficiency in Stochastic Optimization

Permalink
https://escholarship.org/uc/item/59w1k62c

Author
Xiao, Tesi

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59w1k62c
https://escholarship.org
http://www.cdlib.org/

Towards Computational and Sample Efficiency in Stochastic Optimization

By

TESI XIAO
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Statistics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Krishnakumar Balasubramanian, Chair

Miles Lopes

Xiaodong Li

Committee in Charge

2023

i

© Tesi Xiao, 2023. All rights reserved.

To my beloved family

ii

Contents

Abstract v

Acknowledgments vi

Chapter 1. Overview of The Dissetation 1

1.1. Preliminaries 1

1.2. Organization 7

Chapter 2. Proximal Averaged Stochastic Approximation 9

2.1. Introduction 9

2.2. Methodology 11

2.3. Convergence Analysis 12

2.4. Discussion and Conclusion 25

Chapter 3. Decentralized Proximal Averaged Stochastic Approximation 27

3.1. Introduction 27

3.2. Methodology 31

3.3. Convergence Analysis 34

3.4. Experiments 39

3.5. Discussion and Conclusion 42

Chapter 4. Conditional Gradient-Based Nested Averaged Stochastic Approximation 43

4.1. Introduction 43

4.2. Methodology 50

4.3. Convergence Analysis 50

4.4. Numerical Experiments for T = 1 57

4.5. Discussion and Conclusion 58

Chapter 5. Stochastic Conditional Gradient Methods under Interpolation-like Conditions 60

iii

5.1. Introduction 60

5.2. Preliminaries and Assumptions 64

5.3. Improved Complexities for Stochastic Conditional Gradient Methods 68

5.4. Experiments 72

5.5. Discussion and Conclusion 73

Appendix A. Appendix of Chapter 3 74

A.1. Experimental Details 74

A.2. Proof of Theorem 3.1 74

A.3. Discussion on Different Types of Consensus Errors 90

Appendix B. Appendix of Chapter 4 92

B.1. Technical Lemmas 92

B.2. Proof of Theorem 4.1 93

B.3. Proofs for Section 4.3.1 103

B.4. Proof of Theorem 4.3 110

Appendix C. Appendix of Chapter 5 114

C.1. Proof for Theorem 5.1 114

C.2. Proof of Theorem 5.2 117

C.3. Zeroth-order SGD under Growth Conditions 121

Bibliography 124

iv

Towards Computational and Sample Efficiency in Stochastic Optimization

Abstract

Stochastic optimization is a crucial tool in machine learning, statistics, and operations research,

and developing efficient algorithms for stochastic optimization is of great importance. This dissertation

focuses on stochastic composite optimization, where the objective function is composed of a smooth

expected value function and a deterministic non-smooth component. We propose a class of algorithms

called proximal averaged stochastic approximation (Prox-ASA), which estimates the gradient using

a moving average approach. We prove the theoretical convergence of Prox-ASA to a first-order

stationary point in different settings, including expectation, high probability, and almost surely

asymptotically. In addition, we show that Prox-ASA can be applied to address decentralized

problems and stochastic compositional optimization problems. For the non-convex constrained

setting with expensive projection, we propose a novel class of conditional gradient based algorithms

for solving stochastic multi-level compositional optimization problems that obtain the same sample

complexity of the single-level setting under standard assumptions. Lastly, we demonstrate that by

leveraging interpolation-like conditions satisfied by overparameterized models, we can improve the

oracle complexities of stochastic conditional gradient methods.

v

Acknowledgments

I am immensely grateful to my advisor, Prof. Krishnakumar Balasubramanian, without whom

this dissertation would not have been possible. Krishna has been an outstanding Ph.D. advisor,

providing me with invaluable guidance and support throughout my journey. His availability to discuss

my research, constructive feedback, and constant push to help me achieve my full potential have been

exemplary. I have been inspired to delve deeper into my research and develop a strong foundation in

my field by his expertise, knowledge, and passion for the subject. Krishna’s support has extended

beyond just research as he has provided me with opportunities to attend conferences, workshops,

and other academic events that have allowed me to expand my knowledge and network with other

researchers in my field. Moreover, Krishna has always been patient, kind, and understanding during

difficult times in our general life outside of research. Overall, I consider myself extremely fortunate

to have had the opportunity to work with Krishna over the past five years.

I would like to extend my thanks to the esteemed members of my dissertation committee, Prof.

Miles Lopes, Prof. Xiaodong Li, Prof. Bala Rajaratnam, and Prof. Thomas Strohmer, for their

invaluable contributions to my research. Their time, effort, and expertise in evaluating my work

have been immensely beneficial in helping me refine and improve my dissertation. The feedback,

constructive criticism, and thought-provoking questions they posed during the defense have been

instrumental in shaping my research and enhancing its quality. I am grateful for their critical insights

and guidance throughout the dissertation process. Thank you for helping me achieve this significant

milestone in my academic journey.

I would also like to express my gratitude to the outstanding faculty members and friendly staff

in the Department of Statistics at UC Davis. In particular, I would like to thank Prof. Hans Mueller,

who is my initial advisor in the first year and the instructor of Generalized Linear Models, for his

invaluable guidance and expertise. I want to thank Prof. Miles Lopes again for his inspiring lectures

in High-dimensional Statistics. Furthermore, I would like to extend my sincere gratitude to several

faculty members and staff, including Prof. Debashis Paul, Prof. Wolfgang Polonik, Prof. Hao Chen,

Prof. Jiming Jiang, Prof. Thomas Lee, Prof. Prabir Burman, Prof. Jie Peng, Prof. Ethan Anderes,

Prof. Alexander Aue, Prof. Shizhe Chen, Pete Scully, Sarah Driver, Andi Carr, and many others.

Their unwavering support have been crucial to my academic growth and success.

vi

Furthermore, I would like to thank many great research collaborators. I would like to acknowl-

edge the significant contributions of Prof. Saeed Ghadimi to my research projects in the field of

optimization. His expertise and guidance have been invaluable in shaping the direction of my research

and in achieving successful outcomes. In addition, I would like to thank Dr. Xuanqing Liu and

Prof. Cho-Jui Hsieh for offering me stimulating research opportunities during my undergraduate

studies, which encouraged me to pursue a doctoral degree. I would also like to express my gratitude

to Dr. Xia Xiao, Ming Chen, and Youlong Chen for the valuable research internship at ByteDance.

Their mentorship and guidance have been instrumental in helping me gain practical experience in

recommendation systems and neural architecture search. Besides, I want to thank my great mentors

during my internship at Amazon, Dr. Branislav Kveton, Dr. Sumeet Katariya, Dr. Tanmay Gang-

wani, and Dr. Anshuka Rangi. Their expertise and knowledge have expanded my understanding of

reinforcement learning and have helped me to develop new skills in the field of information retrieval.

Meeting amazing peers at Davis has been a source of immense gratitude for me. Jiaxiang Li, in

particular, has been a part of my life since the very first day of my undergraduate studies, and we

have been roommates at Davis for three years. Jiaxiang is not only an exceptional research peer but

also one of my best friends who has always been kind and supportive. Additionally, I would like to

express my appreciation to all my friends here, such as Ye He, Xuxing Chen, Shouwei Hui, Abhshek

Roy, and many others. It has been fortunate for me to have these friends through the Ph.D. journey.

Finally, I wish to convey my profound gratitude to my parents for their constant support and

understanding throughout my journey. Moreover, I want to express my heartfelt appreciation to my

wife, Zhuo Ren, for her unwavering support, encouragement, and love. Zhuo has always been there

to celebrate my accomplishments, comfort me during challenging times, and inspire me to pursue

my aspirations. I am forever thankful for her presence in my life.

vii

CHAPTER 1

Overview of The Dissetation

Stochastic optimization is a branch of mathematical optimization that deals with optimizing a

function that involves random variables, which is widely used in machine learning, statistics, and

operations research. In this dissertation, we consider the following stochastic optimization problem:

(1.1) min
x∈Rd

{Φ(x) = F (x) + Ψ(x)} , F (x) = Eξ∼D[G(x, ξ)]

where F : Rd → R is a continuously differentiable function and Ψ : Rd → R ∪ {+∞} is a simple but

possibly non-smooth function. Moreover, the function F (x) is an expected-valued function in the

form of F (x) = Eξ∼D[G(x, ξ)], where the expectation is taken over the random vector ξ ∈ Ξ with

an underlying distribution denoted by D. We aim to propose iterative algorithms that utilize the

information of G(x, ξ) to solve (1.1), assuming access to a sampling oracle of the random vector

ξ. In designing such algorithms, it is crucial to consider both the computational cost and the

sample complexity. To this end, this dissertation presents various theoretical contributions to the

computational and sample efficiency in the field of stochastic optimization.

1.1. Preliminaries

In this section, we introduce several preliminaries to establish the foundation for this dissertation.

1.1.1. Notations. All vectors considered in this dissertation are in Euclidean space. ∥·∥ denotes

the ℓ2-norm for vectors and Frobenius norm for matrices. ∥·∥2 denotes the spectral norm for matrices.

1 represents the all-one vector, and I is the identity matrix as a standard practice. For an extended

valued function Ψ : Rd → R ∪ {+∞}, its effective domain is written as dom(Ψ) = {x | Ψ(x) < +∞}.
A function Ψ is said to be proper if dom(Ψ) is non-empty. For any proper closed convex function Ψ,

x ∈ Rd, the proximal operator is defined as

(1.2) proxΨ(x) = argmin
y∈Rd

{
1

2
∥y − x∥2 +Ψ(y)

}
.

1

For x, z ∈ Rd and γ > 0, the proximal gradient mapping of z at x is defined as

(1.3) G(x, z, γ) = 1

γ

(
x− proxγΨ(x− γz)

)
.

For any convex and compact set X ⊂ Rd, we define the indicator function as follows

(1.4) 1{x∈X} =

0 if x ∈ X ,

+∞ if x /∈ X .

Its corresponding proximal operator is the orthogonal projection onto the set X , which is denoted as

(1.5) projX (x) = argmin
y∈Rd

∥y − x∥2.

All random objects are properly defined in a probability space (Ω,F ,P) and write x ∈ H if x is

H-measurable given a sub-σ-algebra H ⊆ F and a random vector x. We use σ(·) to denote the

σ-algebra generated by all the argument random vectors.

1.1.2. Function Class. We present the formal definition of various function classes that will

be discussed in the dissertation.

Definition 1.1. Let f : Rd → R be a continuous differentiable function. Then, we say

(i) f(x) is convex if and only if

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ , ∀x, y ∈ Rd.

(ii) f(x) is µ-strongly convex (µ > 0) if and only if

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ

2
∥x− y∥2, ∀x, y ∈ Rd.

(iii) f(x) is Lf -Lipschitz continuous (Lf > 0) if and only if

|f(x)− f(y)| ≤ L∥x− y∥, ∀x, y ∈ Rd.

(iv) f(x) is L∇f -smooth if and only if ∇f(x) is L∇f -Lipschitz continuous, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∇f∥x− y∥, ∀x, y ∈ Rd.
2

Equivalently, f(x) is L∇f -smooth if and only if

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ L∇f
2
∥x− y∥2, ∀x, y ∈ Rd.

1.1.3. Algorithm. Next, we present two fundamental classes of algorithms that this dissertation

builds upon and that have been extensively studied in the literature.

Gradient Descent-Type Methods. One of the most widely used optimization algorithms

to solve (1.1) when Ψ(x) = 0 is Stochastic Gradient Descent (SGD), which is based on the idea of

iteratively moving in the direction of an estimator of the negative gradient of the objective function

to approach the minimum. Specifically, at each iteration k ∈ N, (mini-batch) SGD finds the next

iterate xk+1 based on the current iterate xk and gradient estimator zk:

zk =
1

|Bk|
∑
ξ∈Bk

∇G(x, ξ),(1.6)

xk+1 = xk − γkz
k,(1.7)

where γk > 0 is the step size and Bk = {ξk1 , . . . , ξk|Bk|} is a batch of samples used to evaluate zk. For

any general proximable Ψ(x), a natural extension of SGD is called stochastic proximal gradient

descent (Prox-SGD), in which the update rule (1.7) at the k-th iteration is replaced by

(1.8) xk+1 = proxγkΨ(x
k − γkz

k).

For the constrained case where Ψ(x) = 1{x∈X} for a compact and convex set X ⊂ Rd, the update

rule in (1.8) yields

(1.9) xk+1 = projX (x
k − γkz

k),

which corresponds to the projected SGD for solving the constrained problem.

Conditional Gradient-Type Methods. The Conditional Gradient method, also known as

Frank-Wolfe (FW) method, was proposed first by [FW56] to solve the constrained optimization

problem. It has obtained renewed interest in the machine learning and optimization communities

due to their projection-free nature [Jag13]. Its stochastic variants were also proposed and analyzed

subsequently [HL16]. Unlike the update rule in (1.9) that uses a projection step to satisfy the

3

constraints, the conditional gradient method finds the next iterate in the constraint set by

dk = argmin
d∈X

〈
dk − xk, zk

〉
,(1.10)

xk+1 = xk + γk(d
k − xk).(1.11)

The step size γk ∈ (0, 1) guarantees that xk+1 ∈ X if xk ∈ X . The conditional gradient-type

algorithms are more favorable than projection-based algorithms when computing dk in (1.10) is

much more efficient than solving the projection step; see Table 1 in [Jag13].

1.1.4. Complexity. To analyze the complexity of iterative algorithms designed for solving

stochastic optimization problems, as described in (1.1), it is important to take into account not only

the iteration complexity (the number of iterations required to obtain a solution) and per-iteration

complexity (the computational complexity for each iteration), but also the sample complexity (the

number of samples needed to obtain a solution). In particular, we consider the following types of

oracles in this dissertation.

• Proximal Oracle (PO): Given x ∈ Rd and a proper convex and closed function Ψ : Rd → R∪{+∞},
we say a procedure is a Proximal Oracle if it computes the proximal mapping of x:

(1.12) min
y∈Rd

{
1

2
∥y − x∥2 +Ψ(y)

}
,

When Ψ = 1{x∈X}, then PO computes the orthogonal projection of x onto X .

• Linear Minimization Oracle (LMO): Given z ∈ Rd and a convex and compact set X ⊂ Rd, we say

a procedure is a Linear Minimization Oracle if it computes the solution of the following problem:

(1.13) min
d∈X

⟨d, z⟩ .

The Proximal Oracle is computationally efficient for some special cases. For example, when

Ψ(x) = ∥x∥1, the corresponding proximal mapping has the following analytical form:

(1.14) [prox∥x∥1(x)]i =

xi − 1, if x > 1,

xi + 1, if x < 1,

0, otherwise.

4

This operator is also known as the soft thresholding operator [BL08]. When Ψ = 1{x∈X} for a

convex and compact set X ⊂ Rd, then PO computes the orthogonal projection of x onto X . In some

specific scenarios, such as when X represents a trace norm ball of matrices, the projection operator

may not be as computationally efficient as the Linear Minimization Oracle. While the projection

onto the trace norm ball requires the full singular value decomposition, LMO only calculates the top

eigenvalue (or singular value) using the standard Lanczos’ algorithm [Jag13]. We also introduce

the Stochastic First-Order Oracle and Stochastic Zeroth-Order Oracle, which algorithms in the

dissertation build upon.

• Stochastic First-Order Oracle (SFO): Given a function G(x, ξ), x ∈ Rd, and ξ ∈ Ξ, we say a

procedure is a Stochastic First-Order Oracle if it computes the gradient of G w.r.t. x, i.e.,

∇G(x, ξ).

• Stochastic Zeroth-Order Oracle (SZO): Given a function G(x, ξ), x ∈ Rd, and ξ ∈ Ξ, we say a

procedure is a Stochastic First-Order Oracle if it computes the function value:

G(x, ξ).

In training artificial neural networks, the forward-backward pass provides an excellent example of

calling SZO and SFO methods for the loss function; see Figure 1.1. Designing algorithms with

fewer SFO and SZO becomes crucial as the time and space complexities for feedforward passes and

backward propagation increase significantly with deeper and wider neural networks.

1.1.5. Concentration Inequality. To ensure completeness, we offer a brief overview of sub-

Gaussian and sub-exponential random variables, which serve as the fundamentals for deriving

high-probability outcomes.

Definition 1.2. (Sub-gaussian and Sub-exponential)

(a) A random variable X is K-sub-gaussian if there exists K > 0 such that E[exp(X2/K2)] ≤ 2.

The sub-gaussian norm of X, denoted ∥X∥ψ2, is defined to be the smallest K. That is to say,

∥X∥ψ2 = inf
{
t > 0 : E[exp(X2/t2)] ≤ 2

}
.

5

input: weight & bias:

output

label

loss

Forward

Backward

Figure 1.1. The feedforward pass and backward propagation in a fully Connected
feed-forward network. With a slight abuse of notation, we denote the optimization
variable as θ and the data sample as ξ = (x, y).

(b) A random variable X is K-sub-exponential if there exists K > 0 such that E[exp(|X|/K)] ≤ 2.

The sub-exponential norm of X, denoted ∥X∥ψ1 , is defined to be the smallest K. That is to say,

∥X∥ψ1 = inf {t > 0 : E[exp(|X|/t)] ≤ 2} .

The above characterization is based on the so-called orlicz norm of a random variable. There are

equivalent definitions of sub-gaussian and sub-exponential random variables. We refer readers to

Proposition 2.5.2 and Proposition 2.7.1 in [Ver18]. In particular, we will also use another definition

of sub-gaussian random variables based on the moment-generating function given below.

Lemma 1.1. (Sub-gaussian M.G.F. [Ver18]) If a random variable X is K-sub-gaussian with

E[X] = 0, then E[exp(λX)] ≤ exp(cλ2K2) ∀λ ∈ R, where cx is a absolute constant.

The following two lemmas are essential in our proof.

Lemma 1.2. (Sub-exponential is sub-gaussian squared [Ver18]) A random variable X is sub-

gaussian if and only if X2 is sub-exponential. Moreover, ∥X2∥ψ1 = ∥X∥2ψ2
.

Lemma 1.3. (Generalized Freedman-type Inequality [HLPR19]) Let (Ω,F , (Fi), P) be a filtered

probability space, (Xi) and (Ki) be adapted to (Fi), and n ∈ N. Suppose for all i ∈ [n], Ki−1 ≥ 0,

6

E[Xi|Fi−1] = 0, and E [exp(λXi)|Fi−1] ≤ exp(λ2K2
i). Then for any t, b ≥ 0, a > 0,

(1.15) Pr

 ⋃
k∈[n]

{
k∑
i=1

Xi ≥ t and 2
k∑
i=1

K2
i−1 ≤ a

k∑
i=1

Xi + b

} ≤ exp

(
− t

4a+ 8b/t

)
.

1.2. Organization

We start with Chapter 2 by investigating a class of algorithms referred to as proximal averaged

stochastic approximation (Prox-ASA), which uses a moving average approach to estimate the

gradient in another sequence. We prove the theoretical convergence of Prox-ASA to a first-order

stationary point in expectation, with high probability, and almost surely asymptotically under

different conditions. Furthermore, it is worth noting that this algorithmic framework has the

potential to address stochastic compositional optimization problems and decentralized problems.

However, the specifics of these applications will be discussed in Chapter 3 and Chapter 4, respectively.

In Chapter 3, we extend Prox-ASA to solve decentralized optimization algorithms, where n

agents work together to optimize the objective function. We propose a class of single-time scale

algorithms that achieves the optimal sample complexity using constant batch sizes. Unlike prior

work, our algorithms have comparable complexity without requiring large batch sizes, more complex

per-iteration operations (such as double loops), or stronger assumptions. Our theoretical findings are

supported by extensive numerical experiments, which demonstrate the superiority of our algorithms

over previous approaches.

In Chapter 4, we extend Prox-ASA for solving non-convex constrained stochastic multi-level

compositional optimization problems, where the objective function is a nested composition of T

functions with only noisy evaluations of the functions and their gradients being available. Leveraging

the technique of conditional gradient sliding, we propose the first class of projection-free algorithms

that obtain the same sample complexity of the single-level setting under standard assumptions.

Notably, the dependence of these complexity bounds on ϵ and T are separate in the sense that

changing one does not impact the dependence of the bounds on the other. Moreover, our algorithm

is parameter-free and does not require any (increasing) order of mini-batches to converge, unlike the

common practice in the analysis of stochastic conditional gradient-type algorithms.

The last chapter of this dissertation is separate from the preceding topics. In Chapter 5, we

study the convergence of stochastic conditional gradient methods for overparametrized models. We

7

show that one could leverage the interpolation-like conditions satisfied by such models to obtain

improved oracle complexities. Specifically, when the objective function is convex, we show that

the conditional gradient method requires O(ϵ−2) calls to the stochastic gradient oracle to find an

ϵ-optimal solution. Furthermore, by including a gradient sliding step, we show that the number

of calls reduces to O(ϵ−1.5). We also establish similar improved results in the zeroth-order setting,

where only noisy function evaluations are available. Notably, the above results are achieved without

any variance reduction techniques, thereby demonstrating the improved performance of vanilla

versions of conditional gradient methods for over-parametrized machine learning problems.

8

CHAPTER 2

Proximal Averaged Stochastic Approximation

2.1. Introduction

In this chapter, we investigate a class of proximal algorithms for solving the general non-convex

regularized stochastic optimization problem:

(2.1) min
x∈Rd

{Φ(x) = F (x) + Ψ(x)} ,

where F : Rd → R is a continously differentiable function and Ψ : Rd → R ∪ {+∞} is a convex but

possibly non-smooth function. In addition, the function F (x) is an expected-valued function in the

form of F (x) = Eξ∼D[G(x, ξ)], where the expectation is taken over the random vector ξ with an

underlying distribution denoted by D.

Since the analytical expression for ∇F (x) is often unknown, conventional gradient-based al-

gorithms for solving deterministic problems are not applicable. To tackle stochastic optimization

problems where Ψ(x) = 0, stochastic gradient descent (SGD) [RM51] serves as the foundation.

SGD employs the stochastic gradient by invoking SFO over a single random sample ξk+1:

(2.2) xk+1 = xk − γkz
k, zk = ∇G(xk, ξk+1).

The presence of a regularizer Ψ(x) generalizes the smooth optimization problem where Ψ(x) = 0,

leading to numerous practical applications. For instance, the framework can be utilized for training

sparse models by incorporating a non-smooth L1 regularizer on the weights. This is done to compress

models for deployment on memory-constrained devices, as outlined in [LWK17,WWW+16]. To

solve Problem (2.1), non-smoothness in Ψ(x) can make the problem unsuitable for SGD, thereby

necessitating the use of subgradient approaches. However, such methods can adversely impact

convergence performance [BM08]. Fortunately, when Ψ has a special structure, the problem can be

solved more efficiently. To be specific, if the proximal oracle for Ψ is computationally efficient, the

9

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
SGD

0.2

0.4

0.6
0.6

0.6

0.6

0.8

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ASA

0.2

0.4

0.6
0.6

0.6

0.6

0.8

Figure 2.1. Level set plot of a quadratic function with the iterates of SGD (left)
with constant stepsize and ASA (right). The central point is the solution x∗. Gaussian
noises are added to obtain the stochastic gradients.

stochastic proximal gradient algorithm (Prox-SGD) can be utilized to solve the problem:

(2.3) xk+1 = proxγkΨ(x
k − γkz

k).

The literature contains extensive research on the convergence of proximal gradient algorithms

for deterministic (non)-convex problems, as demonstrated by studies such as [SRB11,CLK+12,

HZSL13, KNS16, SYVS21]. Furthermore, several recent contributions have focused on the

stochastic setting. In particular, [AFM17,RVV20] provide proof of the convergence of Prox-SGG

in the convex setting, while [XJY19,GS21] establish (non)-asymptotic analyses of Prox-SGD for

minimizing general non-convex functions. Additionally, numerous studies have analyzed stochastic

proximal gradient-type methods in the finite-sum problem [SSZ12,SSZ14,Nit14]; however, we do

not delve into these studies since they are distinct from those in the stochastic setting.

The primary challenge associated with (Prox)-SGD is the presence of random noise. Merely

having an unbiased estimator of the gradient ∇F (x) does not suffice to ensure convergence of the

iterates. Figure 2.1 (left) illustrates this point by plotting the iterates of SGD with a constant step

size used to minimize a quadratic function. As seen, the iterates of SGD do not converge to the

solution and instead form a cluster of points around the solution. SGD fails to converge in this

example because the stochastic gradients zk do not converge to zero. This is in contrast to GD,

where the algorithm terminates naturally as ∇F (xk)→ 0 when xk → x∗.

10

There are two classic techniques for addressing the variance in stochastic gradients: diminishing

stepsizes [RM51] and mini-batching. However, tuning the sequence of decreasing stepsizes is

challenging since the method may terminate early before reaching the solution or continue for

excessive time. Moreover, the per-iteration cost increases with the batch size. A large batch size

may prolong the duration of each iterate without updating optimization parameters frequently

enough. Moreover, several modern variance-reduced methods are proposed for finite-sum problems

to ensure that E[∥zk −∇F (xk)∥2]→ 0 as k → +∞, including [SLRB17,DBLJ14,SSZ13,JZ13].

In the stochastic setting, a commonly-used technique is aggregating past stochastic gradients

[Rus08,Xia09,GRW20]. Specifically, [GRW20] propose the Averaged Stochastic Approximation

(ASA) and prove its convergence to the first-order stationary point for non-convex objective functions.

As shown in Figure 2.1, ASA exhibits stable convergence in contrast to SGD. In the subsequent

sections, we extend ASA to solve general regularized non-convex stochastic optimization problems

described in (2.1) and establish theoretical convergence to a first-order stationary point in expectation,

with high probability, and almost surely.

2.2. Methodology

In this section, we present Algorithm 1 - Proximal Averaged Stochastic Appro-ximation (Prox-

ASA), which leverages a common averaging technique in stochastic optimation [Rus08,MHK18a,

GRW20] to reduce the variance of gradient estimation. In particular, the algorithm generates two

sequences of variables, namely, the approximate solutions {xk} and approximate gradients {zk}. We

let F0 = ∅ and Fk be the σ-algebra generated by {x1, z1, . . . , xk, zk} for k ≥ 1. The update rule for

approximate gradients is given by

(2.4) zk+1 = (1− τk)z
k + τkv

k+1, τk ∈ (0, 1],

where E[vk+1|Fk] = E[∇G(xk, ξk+1)] = ∇F (xk). It is easy to observe that zk is a biased estimator

of the gradient that aggregates k stochastic gradients computed over the previous samples when

z0 = 0, i.e.,

(2.5) zk =
k∑
i=1

αiv
i, where αi = τi−1

k−1∏
j=i

(1− τj),
k∑
i=1

αi = 1.

11

Algorithm 1 Proximal Averaged Stochastic Approximation (Prox-ASA)

Input: z0 = 0, γ, {τk}≥0, N
for k = 0, 1, . . . , N − 1 do
yk = proxγΨ

(
xk − γzk

)
xk+1 = (1− τk)x

k + τky
k

Obtain ξk+1 and compute the stochastic gradient vk+1 = ∇G(xk, ξk+1)
zk+1 = (1− τk)z

k + τkv
k+1

end for

Given the approximate gradient zk for each k, the approximate solution xk is updated as follows:

yk = proxγΨ

(
xk − γzk

)
,(2.6)

xk+1 = (1− τk)x
k + τky

k.(2.7)

The update rule above comprises two components: (i) a proximal gradient descent step in Eq. (2.6)

that employs a biased gradient estimator and a constant stepsize, and (ii) a moving average step in

Eq. (2.7) that is sometimes referred to as a relaxation step or a damped update. It is worth noting

that Prox-ASA is a single time-scale algorithm that employs the same τk for updating both xk and

zk. It is also possible to extend it to utilize two sets of weights {aτk} and {bτk} with a constant

scaling factor a, b > 0; see [GRW20]. For simplicity, we employ the same weights throughout the

sequel to establish the convergence results.

2.3. Convergence Analysis

2.3.1. Convergence Criteria. We first discuss the convergence criteria in the following analysis.

Nonconvex optimization problems are NP-hard because finding a global minimum involves exploring

a large search space with many local minima, local maxima, and saddle points. This makes it

computationally infeasible to find an optimal solution in a reasonable amount of time, especially

for problems with high-dimensional input spaces. This chapter’s primary focus is to analyze an

algorithm’s effectiveness in discovering a first-order stationary point of (2.1).

Definition 2.1 (First-Order Stationary Point). A point x∗ is stationary point of F (x) +Ψ(x) if

x∗ − proxΨ(x∗ −∇F (x∗)) = 0,

i.e., 0 ∈ ∇F (x∗) + ∂Ψ(x∗).

12

Empirical evidence suggests that an (approximate) first-order stationary point can be highly

effective in practice. For instance, deep neural networks often have a loss surface with numerous

local minima. These minima are believed to have varying degrees of flatness that may play a role in

generalization. To establish the non-asymptotic convergence results, we introduce the ϵ-first-order

stationary point in which ϵ > 0 measures the non-stationarity.

Definition 2.2 (ϵ-First-Order Stationary Point). A point x̄ is ϵ-stationary point of F (x) +Ψ(x)

if ∥x̄− proxΨ(x̄−∇F (x̄))∥2 ≤ ϵ

It is worth noting that the stepsize does not play a role in the above definitions. This is due to

the following fact that characterizes the relations between proximal gradient mappings defined under

different stepsizes.

Lemma 2.1. Let Ψ : Rd → R ∪ {+∞} be a proper convex and closed function. For any x, z ∈ Rd

and γ > 0,

(2.8) min(1, γ) ≤
∥∥x− proxγΨ(x− γz)

∥∥
∥x− proxΨ(x− z)∥ ≤ max(1, γ),

Proof. Denote the subdifferential of Ψ(x) as ∂Ψ(x) and y+(β) := proxβΨ(x−γz) for simplicity.

By the optimality condition, we have 0 is a subgradient of H(y) = ⟨z, y − x⟩+ 1
2β∥y− x∥2 +Ψ(y) at

y+(β), i.e.,

0 ∈ z + β−1(y+(β)− x) + ∂Ψ(y+(β)).

Hence, there exists a subgradient of Ψ(y) at y+(β), denoted by ∇̃Ψ(y+(β)), such that

∇̃Ψ(y+(β)) = −z − β−1(y+(β)− x).

By the convexity of Ψ, we have for any y ∈ Rd,

Ψ(y)−Ψ(y+(β)) ≥
〈
∇̃Ψ(y+(β)), y − y+(β)

〉
=
〈
−z − β−1(y+(β)− x), y − y+(β)

〉
,

Then, setting y = y+(γ), β = 1 and y = y+(1), β = γ in the above inequality respectively, we obtain

Ψ(y+(γ))−Ψ(y+(1)) ≥ ⟨−z − (y+(1)− x), y+(γ)− y+(1)⟩ ,

Ψ(y+(1))−Ψ(y+(γ)) ≥
〈
−z − γ−1(y+(γ)− x), y+(1)− y+(γ)

〉
.

13

Adding the above equalities together, we obtain

〈
(y+(1)− x)− γ−1(y+(γ)− x), (y+(1)− x)− (y+(γ)− x)

〉
≤ 0.

This implies that

(1 + γ−1)⟨y+(γ)− x, y+(1)− x⟩ ≥ ∥y+(1)− x∥2 + γ−1 ∥y+(γ)− x∥2 ,

Using the Cauchy-Schwartz inequality and rearranging the terms, we get(∥y+(γ)− x∥
∥y+(1)− x∥

)2

− (1 + γ)
∥y+(γ)− x∥
∥y+(γ)− x∥ + γ ≤ 0,

which is equivalent to (∥y+(γ)− x∥
∥y+(1)− x∥ − γ

)(∥y+(γ)− x∥
∥y+(1)− x∥ − 1

)
≤ 0.

That is to say, ∥y+(γ)−x∥
∥y+(1)−x∥ is between 1 and γ. □

2.3.2. Assumption. Next, we list and discuss the assumptions made in this work.

Assumption 2.1. The functions F (x) and Ψ(x) satisfy:

(1) Φ(x) = F (x) + Ψ(x) ≥ Φ∗ > −∞ for all x ∈ Rd.

(2) F (x) is L∇F -smooth.

(3) Ψ(x) is proper, convex, and closed.

For stochastic oracles, we assume that the stochastic gradient ∇G(·, ξk+1) is unbiased conditioned

on the filtration Fk.

Assumption 2.2 (Unbiasness). For any k ≥ 0, x ∈ Fk, and 1 ≤ i ≤ n,

E
[
∇G(x, ξk+1)

∣∣∣Fk

]
= ∇F (x).

In addition, we consider three standard assumptions on the variance.

Assumption 2.3 (Bounded variance). For any k ≥ 0, x ∈ Fk,

E
[∥∥∥∇G(x, ξk+1)−∇F (x)

∥∥∥2∣∣∣∣Fk

]
≤ σ2.

14

Assumption 2.4 (Bounded second-moment). For any k ≥ 0, x ∈ Fk,

E
[∥∥∥∇G(x, ξk+1)

∥∥∥2∣∣∣∣Fk

]
≤ σ2.

Assumption 2.5 (Sub-gaussian noise). For any k ≥ 0, x ∈ Fk,
∥∥∇G(x, ξk+1)−∇F (x)

∥∥ ∣∣Fk is

K-sub-Gaussian.

The unbiasedness and bounded variance assumptions (Assumption 2.2 and 2.3) are standard

in the literature and also typically satisfied in several practical stochastic optimization problems

[Lan20]. The assumption of the bounded second moment (Assumption 2.4), which implies the

Lipschitz continuity of F (x), is considerably stronger than Assumption 2.3. It is also straightforward

to see that Assumption 2.3 together with the Lipschitz continuity of F (x) imply Assumption

2.4. The Assumption 2.5 is commonly used in the literature to derive high-probability bounds;

see [HK14,HLPR19,LO20,ZCC+18]. It is worth highlighting that we assume the noise vector to

be norm-sub-Gaussian rather than sub-Gaussian vectors to eliminate the dependence on dimensions

in our bounds [JNG+19]. It is also feasible to relax these assumptions for stochastic optimization in

scenarios with heavy tails [HM21]; however, our present theory is based on the standard assumptions

listed above.

2.3.3. Merit Function. Our proof relies on the merit function below:

Wλ(x
k, zk) = Φ(xk)− Φ∗︸ ︷︷ ︸

function value gap

+Ψ(xk)− η(xk, zk)︸ ︷︷ ︸
primal convergence

+λ
∥∥∥∇F (xk)− zk

∥∥∥2︸ ︷︷ ︸
dual convergence

,
(2.9)

where

(2.10) η(x, z) = min
y∈Rd

{
⟨z, y − x⟩+ 1

2γ
∥y − x∥2 +Ψ(y)

}
Given that yk = proxγΨ

(
xk − γzk

)
is the minimizer of a 1/γ-strongly convex function, we have

〈
zk, yk − xk

〉
+

1

2γ
∥yk − xk∥2 +Ψ(yk) ≤ Ψ(xk)− 1

2γ
∥yk − xk∥2,

which implies Ψ(xk) − η(xk, zk) ≥ 1
2γ

∥∥xk − yk
∥∥2 = 1

2γ

∥∥xk − proxγΨ
(
xk − γzk

)∥∥2. Consequently,

the current merit function comprises three terms that constrain the gap in function value, the

convergence of iterates in the primal space xk, and the convergence of dual variables zk to ∇F (xk),

15

respectively. The following lemma characterizes the smoothness of η(·, ·), which plays an important

role in the subsequent analysis.

Lemma 2.2. Let Ψ : Rd → R ∪ {+∞} be a closed proper convex function. Let η(x, z) be the

function defined in (2.10). Then, ∇η is Cγ-Lipschitz continuous where

(2.11) Cγ = 2

√(
1 +

1

γ

)2

+
(
1 +

γ

2

)2
.

Proof. Recall that the Moreau envelope of a convex and closed function Ψ multiplied by a

scalar γ is defined by

envγΨ(x) = min
y∈Rd

{
1

2γ
∥y − x∥2 +Ψ(y)

}
,

and its gradient is given by∇envγΨ(x) = 1
γ (x−proxγΨ(x)) where proxγΨ(x) = argmin

y∈Rd

{
1
2γ ∥y − x∥2 +Ψ(y)

}
.

Note that η(x, z) = envγΨ (x− γz)− γ
2 ∥z∥

2. Therefore, the partial gradients of η are given by

∇xη(x, z) = −z − γ−1
(
proxγΨ (x− γz)− x

)
, ∇zη(x, z) = proxγΨ (x− γz)− x.

Hence, for any (x, z) and (x′, z′),

∥∥∇η(x, z)−∇η(x′, z′)∥∥ ≤ ∥∥∇xη(x, z)−∇xη(x′, z′)∥∥+ ∥∥∇zη(x, z)−∇zη(x′, z′)∥∥
≤ 2(1 + 1/γ)

∥∥x− x′
∥∥+ (2 + γ)

∥∥z − z′
∥∥ ≤ Cγ

∥∥(x, z)− (x′, z′)
∥∥ .

□

2.3.4. Non-asymptotic Convergence. We state the non-asymptotic convergence results

in this subsection. The first results show that the randomly selected iterate from the sequences

generated by Prox-ASA is an ϵ-first-order stationary point in expectation.

Theorem 2.1 (Non-asymptotic convergence in expectation). Suppose Assumption 2.1, 2.2,

2.3 hold. Let γ > 0, τk = 1√
N

, R be a random integer uniformly from {1, . . . , N}. Then, for any

sufficiently large N ≥ N0(γ, L∇F), the sequences generated by Algorithm 1 satisfy

(Primal) E
[∥∥yR − xR

∥∥2] ≲ 1√
N

(Dual) E
[∥∥zR −∇F (xR)

∥∥2] ≲ 1√
N

,

16

which together imply that

E
[∥∥xR − proxΨ(x

R −∇F (xR))
∥∥2] ≲ 1√

N

i.e., xR and yR is an ϵ-first-order stationary point in expectation if N ≳ ϵ−2. Furthermore, if

Assumption 2.4 holds and Ψ(x) is Lipschtiz continuous on its effective domain, then N0(γ, L∇F) = 1.

We also establish the high probability convergence results in the next theorem.

Theorem 2.2 (Non-asymptotic convergence with high probabiltiy). Suppose Assumption 2.1,

2.2, 2.5 hold. Let γ > 0, τk = 1√
N

, R be a random integer uniformly from {1, . . . , N}. Then, for any

sufficiently large N ≥ N0(γ, L∇F ,K), with probability 1− δ, the sequences generated by Algorithm 1

satisfy

(Primal)
1

N

N∑
k=1

∥∥∥yk − xk
∥∥∥2 ≲ K2 log(1/δ)√

N
(Dual)

1

N

N∑
k=1

∥∥∥zk −∇F (xk)
∥∥∥2 ≲ K2 log(1/δ)√

N
,

which together imply that

1

N

N∑
k=1

∥∥∥xk − proxΨ(x
k −∇F (xk))

∥∥∥2 ≲ K2 log(1/δ)√
N

.

2.3.5. Proof of Non-asymptotic Convergence. In this subsection, we present the proof

of Theorem 2.1 and 2.2. First, the following lemma plays an essential role in our analysis that

characterizes the decrease of the merit function.

Lemma 2.3. Suppose Assumption 2.1 holds. Let Wλ(·, ·) be the merit function defined in (2.9)

for λ > 0. The sequences {xk, zk}k≥0 generated by Algorithm 1 satisfy

Wλ(x
k+1, zk+1)−Wλ(x

k, zk) ≤ τk

{
−γ−1 +

(L∇F + Cγ)τk
2

+ λL2
∇F

}∥∥∥xk − yk
∥∥∥2

+ τk

{
−λ+

Cγτk
2

}∥∥∥∇F (xk)− zk
∥∥∥2 + (Cγ + 2λ)τ2k

2

∥∥∥∆k+1
∥∥∥2 + τkr

k+1.(2.12)

where Cγ is defined in (2.11), ∆k+1 = vk+1 −∇F (xk), and

(2.13) rk+1 =

〈
∆k+1, xk−yk+[2λ(1− τk) + Cγτk]

(
∇F (xk)− zk

)
+2λ

(
∇F (xk+1)−∇F (xk)

)〉
17

Proof. By the smoothness of F (Assumption 2.1) and η (Lemma 2.2), we have

F (xk+1)− F (xk) ≤
〈
∇F (xk), xk+1 − xk

〉
+

L∇F
2

∥∥∥xk+1 − xk
∥∥∥2

= −τk
〈
∇F (xk), xk − yk

〉
+

L∇F τ
2
k

2

∥∥∥xk − yk
∥∥∥2 ,(2.14)

and

η(xk, zk)− η(xk+1, zk+1) ≤
〈
−zk − γ−1(yk − xk), xk − xk+1

〉
+
〈
yk − xk, zk − zk+1

〉
+

Cγ
2

(∥∥∥xk+1 − xk
∥∥∥2 + ∥∥∥zk+1 − zk

∥∥∥2)
= 2τk

〈
zk, yk − xk

〉
+ γ−1τk∥xk − yk∥2 + τk

〈
vk+1, xk − yk

〉
+

Cγ
2

(
τ2k

∥∥∥xk − yk
∥∥∥2 + ∥∥∥zk+1 − zk

∥∥∥2) .(2.15)

Since yk is the minimizer of a 1/γ-strongly convex function, i.e.,

〈
zk, yk − xk

〉
+

1

2γ

∥∥∥yk − xk
∥∥∥2 +Ψ(yk) ≤ Ψ(xk)− 1

2γ

∥∥∥yk − xk
∥∥∥2 ,

which together with (2.15) gives

η(xk, zk)− η(xk+1, zk+1) ≤− γ−1τk

∥∥∥xk − yk
∥∥∥2 + τk

〈
vk+1, xk − yk

〉
+ 2τk

(
Ψ(xk)−Ψ(yk)

)
+

Cγ
2

(
τ2k

∥∥∥xk − yk
∥∥∥2 + ∥∥∥zk+1 − zk

∥∥∥2) .(2.16)

By the convexity of Ψ, we have

(2.17) Ψ(xk+1)−Ψ(xk) ≤ (1− τk)Ψ(xk) + τkΨ(yk)−Ψ(xk) = τk

(
Ψ(yk)−Ψ(xk)

)
.

Combining (2.14), (2.16), and (2.17), we have

(2.18)

[
Φ(xk+1) + Ψ(xk+1)− η(xk+1, zk+1)

]
−
[
Φ(xk) + Ψ(xk)− η(xk, zk)

]
≤ −γ−1τk

∥∥∥xk − yk
∥∥∥2

+ τk

〈
vk+1 −∇F (xk), xk − yk

〉
+

(L∇F + Cγ)τ
2
k

2

∥∥∥xk − yk
∥∥∥2 + Cγ

2

∥∥∥zk+1 − zk
∥∥∥2 .

Noting that zk+1 − zk = τk(∇F (xk)− zk) + τk∆
k+1 where ∆k+1 = vk+1 −∇F (xk), we can get∥∥∥zk+1 − zk

∥∥∥2 = τ2k

{∥∥∥∇F (xk)− zk
∥∥∥2 + ∥∥∥∆k+1

∥∥∥2 + 2
〈
∆k+1,∇F (xk)− zk

〉}
.(2.19)

18

In addition, by the update rule of zk, we have∥∥∥∇F (xk+1)− zk+1
∥∥∥2 = ∥∥∥(1− τk)

[
∇F (xk)− zk

]
+∇F (xk+1)−∇F (xk) + τk∆

k+1
∥∥∥2

=
∥∥∥(1− τk)

[
∇F (xk)− zk

]
+∇F (xk+1)−∇F (xk)

∥∥∥2 + τ2k

∥∥∥∆k+1
∥∥∥2 + ϑk+1

≤ (1− τk)
∥∥∥∇F (xk)− zk

∥∥∥2 + 1

τk

∥∥∥∇F (xk+1)−∇F (xk)
∥∥∥2 + τ2k

∥∥∥∆k+1
∥∥∥2 + ϑk+1

≤ (1− τk)
∥∥∥∇F (xk)− zk

∥∥∥2 + τkL
2
∇F

∥∥∥xk − yk
∥∥∥2 + τ2k

∥∥∥∆k+1
∥∥∥2 + ϑk+1(2.20)

where ϑk+1 := 2τk
〈
∆k+1, (1− τk)

[
∇F (xk)− zk

]
+∇F (xk+1)−∇F (xk)

〉
.

Combining (2.18), (2.19), (2.20), and the definition of W (xk, zk) in (2.9), we have

Wλ(x
k+1, zk+1)−Wλ(x

k, zk) ≤ τk

{
−γ−1 +

(L∇F + Cγ)τk
2

+ λL2
∇F

}∥∥∥xk − yk
∥∥∥2

+ τk

{
−λ+

Cγτk
2

}∥∥∥∇F (xk)− zk
∥∥∥2 + (Cγ + 2λ)τ2k

2

∥∥∥∆k+1
∥∥∥2 + τkr

k+1.

where rk+1 is defined in (2.13). □

Next, we shall demonstrate the proof of Theorem 2.1.

Proof of Theorem 2.1. For simplicity, set γ = c
L∇F

and λ = c
2L∇F

. Then, we have

(2.21) Cγ = 2

√(
1 +

1

γ

)2

+
(
1 +

γ

2

)2
≤ γ +

2

γ
+ 4 =

2L∇F
c

+
c

L∇F
+ 4

For k ≥ 1, choosing τk such that τk ≤ min{14 ,
L∇F
4cCγ

,
cL−1

∇F
4Cγ
}, we can re-organize the terms in (2.12) as

Wλ(x
k+1, zk+1)−Wλ(x

k, zk) ≤ −τk
{
L∇F
4c

∥∥∥xk − yk
∥∥∥2 + c

4L∇F

∥∥∥∇F (xk)− zk
∥∥∥2}

+τ2k

{
Cγ + 2λ

2

∥∥∥∆k+1
∥∥∥2}+ τkr

k+1.(2.22)

When k = 0, setting τ0 = 1, we have

Wλ(x
1, z1)−Wλ(x

0, z0) ≤
{
−γ−1 +

(L∇F + Cγ)

2
+ λL2

∇F

}∥∥x0 − y0
∥∥2

+

{
−λ+

Cγ
2

}∥∥∇F (x0)− z0
∥∥2 + (Cγ + 2λ)

2

∥∥∆1
∥∥2 + r1.(2.23)

19

Telescoping (2.22) from k = 1 to k = N , together with (2.23), (2.9), and z0 = 0, we have

N∑
k=1

τk

{
L∇F
4c

∥∥∥xk − yk
∥∥∥2 + c

4L∇F

∥∥∥∇F (xk)− zk
∥∥∥2} ≤ Φ(x0)− Φ∗ +Ψ(x0)−Ψ(y0)

+

{
c2 + c− 3

2c
L∇F +

Cγ
2

}∥∥x0 − y0
∥∥2 + Cγ

2

∥∥∇F (x0)
∥∥2

+

N∑
k=0

τ2k

{
Cγ + (c/L∇F)

2

∥∥∥∆k+1
∥∥∥2}+

N∑
k=0

τkr
k+1.(2.24)

Setting τk = 1√
N

for all k ≥ 1, taking the expectation of the above inequality, and noting that under

Assumption 2.3

E
[
∆k+1

∣∣∣Fk

]
= 0, E

[∥∥∥∆k+1
∥∥∥2∣∣∣∣Fk

]
≤ σ2,

we have for N ≥ N0 = max
{
16,

16c2C2
γ

L2
∇F

,
16C2

γL
2
∇F

c2

}

E
[∥∥yR − xR

∥∥2] = 1

N

N∑
k=1

E
[∥∥∥yk − xk

∥∥∥2] ≤ 4c (CγL∇F + c)σ2

L∇F
√
N

+
2c
{
2
[
Φ(x0)− Φ∗ +Ψ(x0)−Ψ(y0)

]
+ [(c+ 1)L∇F + Cγ]

∥∥x0 − y0
∥∥2 + Cγ

∥∥∇F (x0)
∥∥2}

L∇F
√
N

(2.25)

E
[∥∥∇F (xR)− zR

∥∥2] = 1

N

N∑
k=1

E
[∥∥∇F (xR)− zR

∥∥2] ≤ 4L∇F (CγL∇F + c)σ2

c
√
N

+
2L∇F

{
2
[
Φ(x0)− Φ∗ +Ψ(x0)−Ψ(y0)

]
+ [(c+ 1)L∇F + Cγ]

∥∥x0 − y0
∥∥2 + Cγ

∥∥∇F (x0)
∥∥2}

c
√
N

.

(2.26)

By the triangle inequality and the non-expansiveness of the proximal operator, we obtain∥∥∥xk − proxγΨ

(
xk − γ∇F (xk)

)∥∥∥ ≤ ∥∥∥xk − yk
∥∥∥+ γ

∥∥∥∇F (xk)− zk
∥∥∥ .(2.27)

Therefore, we can obtain

E
[∥∥xR − proxγΨ

(
xR − γ∇F (xR)

)∥∥2] ≤ 2E
[∥∥xR − yR

∥∥2 + γ2
∥∥∇F (xR)− zR

∥∥2]
≤

4c
{
2
[
Φ(x0)− Φ∗ +Ψ(x0)−Ψ(y0)

]
+ [(c+ 1)L∇F + Cγ]

∥∥x0 − y0
∥∥2 + Cγ

∥∥∇F (x0)
∥∥2}

L∇F
√
N

20

+
8c (CγL∇F + c)σ2

L∇F
√
N

,(2.28)

which completes the proof without assuming the bounded second moment of stochastic gradients.

We then prove the last part of Theorem 2.1. Firstly, if Ψ(x) is LΨ-Lipschitz continuous, then by the

optimality of yk we can have

1

γ

∥∥∥yk − xk
∥∥∥2 ≤ Ψ(xk)−Ψ(yk) +

〈
zk, xk − yk

〉
≤ LΨ

∥∥∥xk − yk
∥∥∥+ ∥∥∥zk∥∥∥∥∥∥xk − yk

∥∥∥ ,
which implies that

(2.29)
∥∥∥yk − xk

∥∥∥ ≤ γ
(
LΨ +

∥∥∥zk∥∥∥) .
Noting that

(2.30) zk =
k∑
i=1

αi,kv
i, where αi,k = τi−1

k−1∏
j=i

(1− τj),
k∑
i=1

αi,k = 1,

we can further bound E
[∥∥zk∥∥2] using Assumption 2.4, i.e.,

(2.31) E
[∥∥∥zk∥∥∥2] = k∑

i=1

αiE
[∥∥vi∥∥2] ≤ σ2.

Therefore, E
[∥∥xk − yk

∥∥2] ≤ 2γ2
(
L2
Ψ + σ2

)
. Furthermore,

E
[∥∥∥zk+1 − zk

∥∥∥2] = τ2kE
[∥∥∥vk+1 − zk

∥∥∥2] ≤ 2τ2k

E
[∥∥∥vk+1

∥∥∥2]+ E

∥∥∥∥∥
k−1∑
i=0

αi,kv
i+1

∥∥∥∥∥
2

≤ 2τ2k

{
E
[∥∥∥vk+1

∥∥∥2]+ k−1∑
i=0

αi,kE
[∥∥vi+1

∥∥2]} = 4τ2kσ
2.

(2.32)

With these results, we can then use (2.18) and (2.20) to obtain another basic inequality:

Wλ(x
k+1, zk+1)−Wλ(x

k, zk) ≤ τk

{
(−γ−1 + λL2

∇F)
∥∥∥xk − yk

∥∥∥2 − λ
∥∥∥∇F (xk)− zk

∥∥∥2}
+ τ2k

{
λτ2k

∥∥∥∆k+1
∥∥∥2 + (L∇F + Cγ)

2

∥∥∥xk − yk
∥∥∥2}+

Cγ
2

∥∥∥zk+1 − zk
∥∥∥2 + τkṙ

k+1.(2.33)

21

where ṙk+1 =
〈
∆k+1, xk − yk + 2λ

(
(1− τk)

[
∇F (xk)− zk

]
+∇F (xk+1)−∇F (xk)

)〉
. In this sce-

nario, the proof can be completed using analogous arguments when taking the expectation of (2.33)

without any restrictions on τk, i.e., the convergence results hold for any N ≥ 1. □

In the high probability results, we aim to handle the tail probability for two terms involving the

mean-zero noise with the sub-gaussian norm, ∥∆k+1∥2 and ⟨∆k+1,Λk⟩, where (∆k) and (Λk) are

adapted to (Fk). Our proof leverages Lemma 1.2 and Lemma 1.3 to control the probability of these

two terms being too large.

Proof of Theorem 2.2. We start with presenting the lemma below, which leverages con-

centration inequalities to show a high-probability upper bound for terms involved in the previous

analysis.

Lemma 2.4. Suppose Assumption 2.2 and 2.5 hold. For any δ1, δ2, a > 0, we have

(a) with probability at least 1− δ1,
∑N

k=0 τ
2
k

∥∥∆k+1
∥∥2 ≲ K2 log(2/δ1)

∑N
k=0 τ

2
k ;

(b) with probability at least 1− δ2,

N∑
k=0

τk

〈
∆k+1, xk − yk + [2λ(1− τk) + Cγτk]

(
∇F (xk)− zk

)
+ 2λ

(
∇F (xk+1)−∇F (xk)

)〉

≲ 4a log(1/δ2) +
6cK2

a

N∑
k=0

τ2k

{
(1 + 4λ2L2

∇F)
∥∥∥xk − yk

∥∥∥2 + (4λ2 + C2
γ)
∥∥∥∇F (xk)− zk

∥∥∥2} .

We first show (a). Using the law of total expectation, we have

E
[
exp

(∥τk∆k+1∥2
τ2kK

2

)]
≤ 2,

which implies that ∥τk∆k+1∥2 is τ2kK
2-sub-exponential. Thus, we have with probability at least

1− δ1,

(2.34)
N∑
k=0

τ2k

∥∥∥∆k+1
∥∥∥2 ≲ K2 log(2/δ1)

N∑
k=0

τ2k .

22

To prove (b), we apply Lemma 1.1 and Lemma 1.3 with

Xi = τk

〈
∆k+1, xk − yk + [2λ(1− τk) + Cγτk]

(
∇F (xk)− zk

)
+ 2λ

(
∇F (xk+1)−∇F (xk)

)〉
,

Ki = Kτk

∥∥∥xk − yk + [2λ(1− τk) + Cγτk]
(
∇F (xk)− zk

)
+ 2λ

(
∇F (xk+1)−∇F (xk)

)∥∥∥ ,
b = 0, t = 4a log(1/δ2).

We obtain that for all a > 0 with probability at least 1− δ2,
∑N

i=0Xi ≤ 4a log(1/δ2) and

N∑
i=0

Xi ≲
2K2

a

N∑
k=0

τ2k

∥∥∥xk − yk + [2λ(1− τk) + Cγτk]
(
∇F (xk)− zk

)
+ 2λ

(
∇F (xk+1)−∇F (xk)

)∥∥∥2
≲

6K2

a

N∑
k=0

τ2k

{∥∥∥xk − yk
∥∥∥2 + (4λ2 + C2

γ)
∥∥∥∇F (xk)− zk

∥∥∥2 + 4λ2L2
∇F

∥∥∥xk − yk
∥∥∥2} ,

where the second inequality comes from the Lipschitzness of ∇F .

With the above lemma, we can now complete the proof of Theorem 2.2 by setting δ1 = δ2 = δ/2

and following the similar arguments as in the proof of Theorem 2.1.

□

2.3.6. Almost Surely Asymptotic Convergence. In this subsection, we also establish the

asymptotic convergence of Prox-ASA. We select any time-varying positive {τk} that satisfy

(2.35)
∞∑
k=0

τk =∞ and
∞∑
k=0

τ2k <∞.

These two requirements are standard in the examination of stochastic approximation [RM51,BT00].

The first condition is necessary to move away from the initial point as much as desired, while the

second condition is necessary to maintain control over the variance of the noise. In the following

theorem, we derive the almost surely asymptotic convergence under above conditions.

Theorem 2.3 (Almost Surely Asymptotic Convergence). Suppose Assumption 2.1, 2.2, 2.3 hold.

If γ > 0 and
∑∞

k=0 τk =∞ and
∑∞

k=0 τ
2
k <∞, then with probability 1, the sequences generated by

Algorithm 1 satisfy

lim
k→∞
∥yk − xk∥ = 0,

lim
k→∞
∥zk −∇F (xk)∥ = 0,

23

lim
k→∞
∥xk − proxΨ(x

k −∇F (xk))∥ = 0.

The proof of the above outcomes can be traced back to [RM51]. Nonetheless, we will simplify

the lengthy proof for better understanding as follows.

Proof of Theorem 2.3. Noting that by (2.24), with the conditon that
∑∞

k=1 τ
2
k ≤ ∞, we

have

(2.36)
∞∑
k=0

τkE
[∥∥∥xk − yk

∥∥∥2] ≲ ∞∑
k=0

τ2k <∞,

∞∑
k=0

τkE
[∥∥∥∇F (xk)− zk

∥∥∥2] ≲ ∞∑
k=0

τ2k <∞,

which implies that
∑∞

k=0 τk
∥∥xk − yk

∥∥2 < ∞ and
∑∞

k=0 τk
∥∥∇F (xk)− zk

∥∥2 < ∞ with probability

1. From these inequality and the condition that
∑∞

k=0 τk = ∞, we can derive the fact that with

probability 1

(2.37) lim inf
k→∞

∥∥∥xk − yk
∥∥∥2 = 0, lim inf

k→∞

∥∥∥∇F (xk)− zk
∥∥∥2 = 0

It remains to show lim supk→∞
∥∥xk − yk

∥∥2 = lim supk→∞
∥∥∇F (xk)− zk

∥∥2 = 0. As it turns out,

the lemma below from [Ora20] is essentially all that we require. This lemma can be proved by

contradiction assuming lim supk→∞ bk = λ ∈ (0,+∞). For simplicity, we will omit its proof.

Lemma 2.5 ([Ora20]). Let {bk}k≥1, {τk}k≥1 be two non-negative sequences and {uk}k≥1 a

sequence of vectors in Rd. Let p ≥ 1 and assume
∑∞

k=1 τkb
p
k < ∞ and

∑∞
k=1 τk = ∞. If there

exists M ≥ 0 such that |bk+t − bk| ≤ M
(∑k+t−1

i=k τibi +
∥∥∥∑k+t−1

i=k τiu
i
∥∥∥), where {uk} is such that∥∥∑∞

k=1 τiu
k
∥∥ <∞, then bk converges to 0.

With this lemma, we can now check the asymptotic convergence of
{∥∥xk − yk

∥∥ ,∥∥∇F (xk − zk)
∥∥}.

Observe that by the triangle inequality and non-expansiveness of the proximal operator,∣∣∣∥∥∥xk+t − yk+t
∥∥∥− ∥∥∥xk − yk

∥∥∥∣∣∣
≤
∥∥∥(xk+t − yk+t)− (xk − yk)

∥∥∥ ≤ ∥∥∥xk+t − xk
∥∥∥+ ∥∥∥yk+t − yk

∥∥∥
≤ 2

∥∥∥xk+t − xk
∥∥∥+ γ

∥∥∥zk+t − zk
∥∥∥ ≤ 2

k+t−1∑
i=k

∥∥xi+1 − xi
∥∥+ γ

∥∥∥∥∥
k+t−1∑
i=k

(zi+1 − zi)

∥∥∥∥∥
24

≤ max{2, γ}
{
k+t−1∑
i=k

τi
∥∥xi − yi

∥∥+ ∥∥∥∥∥
k+t−1∑
i=k

(zi+1 − zi)

∥∥∥∥∥
}

≤ max{2, γ}
{
k+t−1∑
i=k

τi
(∥∥xi − yi

∥∥+ ∥∥∇F (xi)− zi
∥∥)+ ∥∥∥∥∥

k+t−1∑
i=k

τk

(
vk+1 −∇F (xk)

)∥∥∥∥∥
}

(2.38)

Moreover, by the smoothness of F (x)∣∣∣∥∥∥∇F (xk+t)− zk+t
∥∥∥− ∥∥∥∇F (xk)− zk

∥∥∥∣∣∣
≤
∥∥∥(∇F (xk+t)− zk+t)− (∇F (xk)− zk)

∥∥∥ ≤ L∇F

∥∥∥xk+t − xk
∥∥∥+ ∥∥∥zk+t − zk

∥∥∥
≤ max{1, L∇F }

{
k+t−1∑
i=k

τi
(∥∥xi − yi

∥∥+ ∥∥∇F (xi)− zi
∥∥)+ ∥∥∥∥∥

k+t−1∑
i=k

τk

(
vk+1 −∇F (xk)

)∥∥∥∥∥
}

(2.39)

Thus, combing (2.38) and (2.39) and apply the triangle inequality again, we have

|bk+t − bk| ≤M

(
k+t−1∑
i=k

τibi +

∥∥∥∥∥
k+t−1∑
i=k

ui

∥∥∥∥∥
)
,

where

bk =
∥∥∥xk − yk

∥∥∥+ ∥∥∥∇F (xk)− zk
∥∥∥ , uk = vk+1 −∇F (xk), M = max{2, L∇F , γ}.

Note that {∑N
k=0 τku

k}N=0,1,... is a martingale whose variance is bounded by σ2
∑∞

k=0 τ
2
k < ∞.

Hence, {∑N
k=0 τku

k}N=0,1,... is a martingale in L2, so it converges in L2 with probability 1. Overall,

with probability 1 the assumptions of Lemma 2.5 are verified with p = 2. Therefore, with probability

1, we have

lim
k→∞

∥∥∥xk − yk
∥∥∥ = 0, lim

k→∞

∥∥∥∇F (xk)− zk
∥∥∥ = 0,

which together implies that

lim
k→∞

∥∥∥xk − proxΨ(x
k −∇F (xk))

∥∥∥ = 0.

□

2.4. Discussion and Conclusion

In this chapter, we introduce and examine a novel class of proximal gradient methods, Prox-ASA,

to solve non-convex stochastic optimization problems. Despite the absence of theoretical improvement

25

in the convergence rate when compared to (Prox-)SGD, Prox-ASA exhibits a decreasing variance

of the gradient estimator zk, ensuring that E
[∥∥zk −∇F (xk)

∥∥2] → 0 as k → +∞. Consequently,

a reliable terminating criterion of
∥∥proxΨ(x

k − zk)− xk
∥∥ can be employed. Additionally, this

algorithm class matches the lower bound of the sample complexity established for smooth problems

(Ψ = 0) [ACD+19]. Finally, this algorithm class can be further extended to tackle numerous

challenging problems in which (Prox-)SGD may not yield satisfactory results, which we will illustrate

in the next two chapters.

26

CHAPTER 3

Decentralized Proximal Averaged Stochastic Approximation

3.1. Introduction

Decentralized optimization is a flexible paradigm for solving complex optimization problems in a

distributed manner, and has numerous applications in fields such as machine learning, robotics, and

control systems. It has attracted increased attention due to the following benefits: (i) Robustness:

Decentralized optimization is more robust than centralized optimization because each agent can

operate independently, making the system more resilient to failures compared to a centralized system

where a coordinator failure or overload can halt the entire system. (ii) Privacy : Decentralized

optimization can provide greater privacy because each agent only has access to a limited subset

of observations, which may help to protect sensitive information. (iii) Scalability : Decentralized

optimization is highly scalable as it can handle a large datasets in a distributed manner, thereby

solving complex optimization problems that are difficult or even impossible to solve in a centralized

setting.

Specifically, we consider the following decentralized composite optimization problems in which n

agents collaborate to solve

(3.1) min
x∈Rd

Φ(x) := F (x) + Ψ(x), F (x) :=
1

n

n∑
i=1

Fi(x),

where each function Fi(x) is a smooth function only known to the agent i; Ψ(x) is non-smooth,

convex, and shared across all agents; Φ(x) is bounded below by Φ∗ > −∞. We consider the stochastic

setting where the exact function values and derivatives of Fi’s are not available. In particular, we

assume that Fi(x) = Eξi∼Di
[Gi(x, ξi)], where ξi is a random vector and Di is the distribution used

to generate samples for agent i. The agents form a connected and undirected network and can

communicate with their neighbors to cooperatively solve (3.1). The communication network can be

represented with G = (V,W) where V = {v1, v2, . . . , vn} denotes all devices and W = [wij] ∈ Rn×n

is the weighted adjacency matrix indicating how two agents are connected.

27

A majority of the existing decentralized stochastic algorithms for solving (3.1), require large

batch sizes to achieve convergence. The few algorithms that operate with constant batch sizes

mainly rely on complicated variance reduction techniques and require stronger assumptions to

establish convergence results. To the best of our knowledge, the question of whether it’s possible to

develop decentralized stochastic optimization algorithms to solve (3.1) without the above mentioned

limitations, remains unresolved.

To address this, we propose the two decentralized stochastic proximal algorithms, Prox-DASA

and Prox-DASA-GT, for solving (3.1) and make the following contributions:

• We show that Prox-DASA is capable of achieving convergence in both homogenous and

bounded heterogeneous settings while Prox-DASA-GT works for general decentralized het-

erogeneous problems.

• We show that both algorithms find an ϵ-stationary point in O(n−1ϵ−2) iterations using

only O(1) stochastic gradient samples per agent and m communication rounds at each

iteration, where m can be any positive integer. A topology-independent transient time

can be achieved by setting m = ⌈ 1√
1−ρ⌉, where ρ is the second-largest eigenvalue of the

communication matrix.

• Through extensive experiments we demonstrate the superiority of our algorithms over prior

works.

A summary of our results and comparison to prior work is provided in Table 3.1.

3.1.1. Related Works on Decentralized Composite Optimization. Motivated by wide

applications in constrained optimization [LN13, MFGP17] and non-smooth problems with a

composite structure as (3.1), arising in signal processing [LT10,MBG10,PEK14] and machine

learning [FSS15,HHZ17], several works have studied the decentralized composite optimization

problem in (3.1), a natural generalization of smooth optimization. For example, [SLWY15,LSY19,

AYS19,YZLZ20,XTSS21,LLT+21,SSD22,WL22] studied (3.1) in the convex setting. Further-

more, [FSS15,DLS16,HHZ17,ZY18,SS19] studied (3.1) in the deterministic setting.

Although there has been a lot of research investigating decentralized composite optimization,

the stochastic non-convex setting, which is more broadly applicable, still lacks a full understanding.

[WZC+21] proposes SPPDM, which uses a proximal primal-dual approach to achieve O(ϵ−2) sample

28

Table 3.1. Comparison of decentralized proximal gradient based algorithms to
find an ϵ-stationary solution to stochastic composite optimization in the nonconvex
setting. The sample complexity is defined as the number of required samples per
agent to obtain an ϵ-stationary point (see Definition 3.1). We omit a comparison with
SPPDM [WZC+21] as their definition of stationarity differs from ours; see Appendix
A.3 for further discussions.

Algorithm Batch Size Sample
Complexity

Communication
Complexity

Linear
Speedup? Remark

ProxGT-SA
[XDKK21] O(ϵ−1) O(n−1ϵ−2) O(log(n)ϵ−1) ✓

ProxGT-SR-O
[XDKK21] O(ϵ−1) O(n−1ϵ−1.5) O(log(n)ϵ−1) ✓

(i) double-loop;
(ii) mean-squared smoothness

DEEPSTORM
[MBMXC22]

O(ϵ−0.5) then O(1)∗ O(n−1ϵ−1.5) O(n−1ϵ−1.5) ✓ (i) two time-scale;
(ii) mean-squared smoothness;
(iii) double gradient evaluations

per iterationO(1) O(ϵ−1.5| log ϵ|−1.5) O(ϵ−1.5| log ϵ|−1.5) ✗

Prox-DASA (Alg. 2) O (1) O(n−1ϵ−2) O(n−1ϵ−2) ✓ bounded heterogeneity

Prox-DASA-GT (Alg. 3) O (1) O(n−1ϵ−2) O(n−1ϵ−2) ✓

∗ It requires O(ϵ−0.5) batch size in the first iteration and then O(1) for the rest (see m0 in Algorithm 1
in [MBMXC22]).

complexity. ProxGT-SA and ProxGT-SR-O [XDKK21] incorporate stochastic gradient tracking

and multi-consensus update in proximal gradient methods and obtain O(n−1ϵ−2) and O(n−1ϵ−1.5)

sample complexity respectively, where the latter further uses a SARAH type variance reduction

method [PNPTD20,WJZ+19]. A recent work [MBMXC22] proposes DEEPSTORM, which leverages

a STORM type of variance reduction technique [CO19] and gradient tracking to obtain O(n−1ϵ−1.5)

and Õ(ϵ−1.5) sample complexity under different stepsize choices. Nevertheless, existing works either

require stronger assumptions [MBMXC22] or increasing batch sizes [WZC+21,XDKK21].

3.1.2. Notations. ∥ · ∥ denotes the ℓ2-norm for vectors and Frobenius norm for matrices. ∥ · ∥2
denotes the spectral norm for matrices. 1 represents the all-one vector, and I is the identity matrix

as a standard practice. We identify vectors at agent i in the subscript and use the superscript for

the algorithm step. For example, the optimization variable of agent i at step k is denoted as xki , and

zki is the corresponding dual variable. We use uppercase bold letters to represent the matrix that

collects all the variables from nodes (corresponding lowercase) as columns. We add an overbar to a

letter to denote the average over all nodes. For example, we denote the optimization variables over

29

all nodes at step k as Xk =
[
xk1, . . . , x

k
n

]
. The corresponding average over all nodes can be thereby

defined as

x̄k =
1

n

n∑
i=1

xki =
1

n
Xk1, X̄k = [x̄k, . . . , x̄k] = x̄k1⊤ =

1

n
Xk11

⊤.

For an extended valued function Ψ : Rd → R ∪ {+∞}, its effective domain is written as dom(Ψ) =

{x | Ψ(x) < +∞}. A function Ψ is said to be proper if dom(Ψ) is nonempty. For any proper closed

convex function Ψ, x ∈ Rd, and scalar γ > 0, the proximal operator is defined as

proxγΨ(x) = argmin
y∈Rd

{
1

2γ
∥y − x∥2 +Ψ(y)

}
.

For x, z ∈ Rd and γ > 0, the proximal gradient mapping of z at x is defined as

G(x, z, γ) = 1

γ

(
x− proxγΨ(x− γz)

)
.

All random objects are properly defined in a probability space (Ω,F ,P) and write x ∈ H if x is

H-measurable given a sub-σ-algebra H ⊆ F and a random vector x. We use σ(·) to denote the

σ-algebra generated by all the agument random vectors.

3.1.3. Assumptions. Next, we list and discuss the assumptions made in this work.

Assumption 3.1. The weighted adjacency matrix W = (wij) ∈ Rn×n is symmetric and doubly

stochastic, i.e.,

W = W⊤, W1n = 1n, wij ≥ 0,∀i, j,

and its eigenvalues satisfy 1 = λ1 > λ2 ≥ · · · ≥ λn and ρ := max{|λ2|, |λn|} < 1.

Assumption 3.2. All functions {Fi}1≤i≤n have Lipschitz continuous gradients with Lipschitz

constants L∇Fi , respectively. Therefore, ∇F is L∇F -Lipchitz continous with L∇F = max1≤i≤n{L∇Fi}.

Assumption 3.3. The function Ψ : Rd → R ∪ {+∞} is a closed proper convex function.

For stochastic oracles, we assume that each node i at every iteration k is able to obtain a local

random data vector ξki . The induced natural filtration is given by F0 = {∅,Ω} and

Fk := σ
(
ξti | i = 1, . . . , n, t = 1, . . . , k

)
, ∀k ≥ 1.

30

We require that the stochastic gradient ∇Gi(·, ξk+1
i) is unbiased conditioned on the filteration Fk.

Assumption 3.4 (Unbiasness). For any k ≥ 0, x ∈ Fk, and 1 ≤ i ≤ n,

E
[
∇Gi(x, ξ

k+1
i)

∣∣∣Fk

]
= ∇Fi(x).

Assumption 3.5 (Independence). For any k ≥ 0, 1 ≤ i, j ≤ n, i ̸= j, ξk+1
i is independent of Fk,

and ξk+1
i is independent of ξk+1

j .

In addition, we consider two standard assumptions on the variance and heterogeneity of stochastic

gradients.

Assumption 3.6 (Bounded variance). For any k ≥ 0, x ∈ Fk, and 1 ≤ i ≤ n,

E
[∥∥∥∇Gi(x, ξ

k+1
i)−∇Fi(x)

∥∥∥2∣∣∣∣Fk

]
≤ σ2

i .

Let σ2 = 1
n

∑n
i=1 σ

2
i .

Assumption 3.7 (Gradient heterogeneity). There exists a constant ν ≥ 0 such that for all

1 ≤ i ≤ n, x ∈ Rd, ∥∇Fi(x)−∇F (x)∥ ≤ ν.

Remark. The above assumption of gradient heterogeneity is standard [LZZ+17] and less strict

than the bounded second moment assumption on stochastic gradients which implies lipschtizness of

functions {Fi}. However, this assumption is only required for the convergence analysis of Prox-DASA

and can be bypassed by employing a gradient tracking step.

3.2. Methodology

Several algorithms have been developed to solve Problem (3.1) in the stochastic setting; see Table

3.1. However, the most recent two types of algorithms that achieve (near)-optimal sample complexities

have certain drawbacks: (i) increasing batch sizes: ProxGT-SA, Prox-SR-O, and DEEPSTORM with

constant step sizes (Theorem 1 in [MBMXC22]) require batches of stochastic gradients with

batch sizes inverse proportional to tolerance ϵ; (ii) algorithmic complexities: ProxGT-SR-O and

DEEPSTORM are either double-looped or two-time-scale, and require stochastic gradients evaluated

at different parameter values over the same sample, i.e., ∇Gi(x, ξ) and ∇Gi(x
′, ξ). These variance

reduction techniques are unfavorable when gradient evaluations are computationally expensive such

31

as forward-backward steps for deep neural networks. (iii) theoretical weakness: the convergence

analyses of ProxGT-SR-O and DEEPSTORM are established under the stronger assumption of mean-

squared lipschtizness of stochastic gradients. In addition, Theorem 2 in [MBMXC22] fails to

provide linear-speedup results for one-sample variant of DEEPSTORM with diminishing stepsizes.

3.2.1. Decentralized Proximal Averaged Stochastic Approximation. To address the

above limitations, we propose Decentralized Proximal Averaged Stochastic Appro-ximation

(Prox-DASA) which leverages a common averaging technique in stochastic optimation [Rus08,

MHK18a,GRW20] to reduce the error of gradient estimation. In particular, the sequences of dual

variables Zk = [zk1 , . . . , z
k
n] that aim to approximate gradients are defined in the following recursion:

Zk+1 =
{
(1− αk)Z

k + αkV
k+1
}
Wm

Vk+1 = [vk+1
1 , . . . , vk+1

n],

where each vk+1
i is the local stochastic gradient evaluated at the local variable xki . For complete

graphs where each pair of graph vertices is connected by an edge and there is no consensus error for

optimization variables, i.e., W = 1
n11

⊤ and xki = xkj , ∀i, j, the averaged dual variable over nodes z̄k

follows the same averaging rule as in centralized algorithms:

z̄k+1 = (1− αk)z̄
k + αkv̄

k+1

E[v̄k+1|Fk] = ∇F (x̄k).

To further control the consensus errors, we employ a multiple consensus step for both primal and

dual iterates {xki , zki } which multiply the matrix of variables from all nodes by the weight matrix m

times. A pseudo code of Prox-DASA is given in Algorithm 2.

3.2.2. Gradient Tracking. The constant ν defined in Assumption 3.7 measures the het-

erogeneity between local gradients and global gradients, and hence the variance of datasets of

different agents. To remove ν in the complexity bound, [TLY+18] proposed the D2 algorithm,

which modifies the x update in D-PSGD [LZZ+17]. However, it requires one additional assump-

tion on the eigenvalues of the mixing matrix W. Here we adopt the gradient tracking technique,

which was first introduced to deterministic distributed optimization to improve the convergence

rate [XZSX15,DLS16,NOS17,QL17], and was later proved to be useful in removing the data

32

Algorithm 2 Prox-DASA

Input: x0i = z0i = 0, γ, {αk}≥0,m
for k = 0, 1, . . . ,K − 1 do

Local Update
for i = 1, 2, . . . , n (in parallel) do
yki = proxγΨ

(
xki − γzki

)
x̃k+1
i = (1− αk)x

k
i + αky

k
i

Compute stochastic gradient
vk+1
i = ∇Gi(x

k
i , ξ

k+1
i)

z̃k+1
i = (1− αk)z

k
i + αkv

k+1
i

end for
Communication
[xk+1

1 , . . . , xk+1
n] = [x̃k+1

1 , . . . , x̃k+1
n]Wm

[zk+1
1 , . . . , zk+1

n] = [z̃k+1
1 , . . . , z̃k+1

n]Wm

end for

variance (i.e., ν) dependency in the stochastic case [ZY19,LZSH19,PN21,KLS21]. In the conver-

gence analysis of Prox-DASA, an essential step is to control the heterogeneity of stochastic gradients,

i.e., E[
∥∥Vk+1 − V̄k+1

∥∥2], which requires bounded heterogeneity of local gradients (Assumption 3.7).

To pypass this assumption, we employ a gradient tracking step by replacing Vk+1 with pseudo

stochastic gradients Uk+1 = [uk+1
1 , . . . , uk+1

n], which is updated as follows:

Uk+1 =
(
Uk +Vk+1 −Vk

)
Wm.

Provided that U0 = V0 and W1 = 1, one can show that ūk = v̄k at each step k. In addition, with the

consensus procedure over Uk, the heterogeneity of pseudo stochastic gradients E[
∥∥Uk+1 − Ūk+1

∥∥2]
can be bounded above. The proposed algorithm, which we name as Prox-DASA with Gradient

Tracking (Prox-DASA-GT), is presented in Algorithm 3.

3.2.3. Consensus Algorithm. In practice, we can leverage accelerated consensus algorithms,

e.g., [LM11,Ols17], to speed up the multiple consensus step Wm to achieve improved communication

complexities when m > 1. Specifically, we can replace Wm by a Chebyshev-type polynomial of W,

which can improve the ρ-dependency of the communication complexity from a factor of 1
1−ρ to 1√

1−ρ .

Then, we have the following lemma.

33

Algorithm 3 Prox-DASA-GT

Input: x0i = u0i = z0i = 0, γ, {αk}≥0,m
for k = 0, 1, . . . ,K do

Local Update
for i = 1, 2, . . . , n (in parallel) do
yki = proxγΨ

(
xki − γzki

)
x̃k+1
i = (1− αk)x

k
i + αky

k
i

Compute stochastic gradient
vk+1
i = ∇Gi(x

k
i , ξ

k+1
i)

ũk+1
i = uki + vk+1

i − vki
z̃k+1
i = (1− αk)z

k
i + αkũ

k+1
i

end for
Communication
[xk+1

1 , . . . , xk+1
n] = [x̃k+1

1 , . . . , x̃k+1
n]Wm

[uk+1
1 , . . . , uk+1

n] = [ũk+1
1 , . . . , ũk+1

n]Wm

[zk+1
1 , . . . , zk+1

n] = [z̃k+1
1 , . . . , z̃k+1

n]Wm

end for

Algorithm 4 Chebyshev Mixing Protocol
Input: Matrix X, mixing matrix W, rounds m Set A0 = X,A1 = XW, ρ =
max{|λ2(W)|, |λn(W)|} < 1, µ0 = 1, µ1 =

1
ρ

for t = 1, . . . ,m− 1 do
µt+1 =

2
ρµt − µt−1

At+1 =
2µt
ρµt+1

AtW − µt−1

µt+1
At−1

end for
Output: Am

Lemma 3.1. Suppose W satisfies Assumption 3.1. Let A0,Am be the input and output matrix

of Algorithm 4 respectively. Then, we have

∥∥Am − Ām

∥∥ ≤ 2
(
1−

√
1− ρ

)m ∥∥A0 − Ā0

∥∥ .
Hence, we obtain a linear convergence rate of

(
1−√1− ρ

)
instead of ρ. By virtue of that, we

can set m = ⌈ 1√
1−ρ⌉ to obtain a topology-independent iteration complexity.

3.3. Convergence Analysis

3.3.1. Notion of Stationarity. For centralized optimization problems with non-convex ob-

jective function F (x), a standard measure of non-stationarity of a point x̄ is the squared norm of

34

proximal gradient mapping of ∇F (x̄) at x̄, i.e.,

∥G(x̄,∇F (x̄), γ)∥2 =
∥∥∥∥1γ (x− proxγΨ(x̄− γ∇F (x̄))

)∥∥∥∥2 .
For the smooth case where Ψ(x) ≡ 0, the above measure is reduced to ∥∇F (x̄)∥2.

However, in the decentralized setting with a connected network G, we solve the following

equivalent reformulated consensus optimization problem:

min
x1,...,xn∈Rd

1

n

n∑
i=1

{Fi(xi) + Ψ(xi)}

s.t. xi = xj , ∀(i, j).
(3.2)

To measure the non-stationarity in Problem (3.2), one should not only consider the stationarity

violation at each node but also the consensus errors over the network. Therefore, [XDKK21]

and [MBMXC22] define an ϵ-stationary point X = [x1, . . . , xn] of Problem 3.2 as

(3.3) E

[
1

n

n∑
i=1

{
∥G(xi,∇F (xi), γ)∥2 + L2

∇F ∥xi − x̄∥2
}]
≤ ϵ.

In this work, we use a general measure as follows.

Definition 3.1. Let X = [x1, . . . , xn] be random vectors generated by a decentralized algorithm

to solve Problem 3.2 and x̄ = 1
n

∑n
i=1 xi. We say that X is an ϵ-stationary point of Problem 3.2 if

E
[
∥G(x̄,∇F (x̄), γ)∥2

]
≤ ϵ, (stationarity violation)

E
[
L2
∇F
n

∥∥X− X̄
∥∥2] ≤ ϵ. (consensus error)

The next inequality characterizes the difference between the gradient mapping at x̄ and xi, which

relates our definition to (3.3). Noting that by non-expansiveness of the proximal operator, we have

∥G(xi,∇F (xi), γ)− G(x̄,∇F (x̄), γ)∥ ≤ 2 + γL∇F
γ

∥xi − x̄∥ ,

which implies that

1

n

n∑
i=1

∥G(xi,∇F (xi), γ)∥2 ≲ ∥G(x̄,∇F (x̄), γ)∥2 + 1

γ2n

∥∥X− X̄
∥∥2 .

3.3.2. Main Results. We present the complexity results of our algorithms below.

35

Theorem 3.1. Suppose Assumption 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 hold and the total number of

iterations K ≥ K0, where K0 is a constant that only depends on constants (n,L∇F , ϱ(m), γ), where

ϱ(m) = (1+ρ2m)ρ2m

(1−ρ2m)2
. Let C0 be some initialization-dependent constant and R be a random integer

uniformly distributed over {1, 2, . . . ,K}. Suppose we set αk ≍
√

n
K , γ ≍ 1

L∇F
.

(Prox-DASA) Suppose Assumption 3.7 also holds. Then, for Algorithm 2 we have

E
[∥∥G(x̄R,∇F (x̄R), γ)

∥∥2] ≲ γ−1C0 + σ2

√
nK

+
n(σ2 + γ−2ν2)ϱ(m)

K
,

E
[
L2
∇F
n

∥∥XR − X̄R

∥∥2] ≲ n(σ2 + γ−2ν2)ϱ(m)

K
.

(Prox-DASA-GT) For Algorithm 3, we have

E
[∥∥G(x̄R,∇F (x̄R), γ)

∥∥2] ≲ γ−1C0 + σ2

√
nK

+
nσ2ϱ(m)

K
,

E
[
L2
∇F
n

∥∥XR − X̄R

∥∥2] ≲ nσ2ϱ(m)

K
.

In Theorem 3.1 for simplicity we assume γ ≍ 1
L∇F

, which can be relaxed to γ > 0. We have the

following corollary characterizing the complexity of Algorithm 2 and 3 for finding ϵ-stationary points.

The proof is immediate.

Corollary 3.1. Under the same conditions of Theorem 3.1, provided that K ≳ n3ϱ(m), for

any ϵ > 0 the sample complexity per agent for finding ϵ-stationary points in Algorithm 2 and 3 are

O(max{n−1ϵ−2,KT }) where the transient time KT ≍ max{K0, n
3ϱ(m)}.

Remark (Sample Complexity). For a sufficiently small ϵ > 0, Corrollary 3.1 implies that the

sample complexity of Algorithm 2 and 3 matches the optimal lower bound O(n−1ϵ−2) in decentralized

smooth stochastic non-convex optimization [LDS21].

Remark (Transient Time and Communication Complexity). Our algorithms are able to achieve

convergence with a single communication round per iteration, i.e., m = 1, leading to a topology-

independent O(n−1ϵ−2) communication complexity. In this case, however, the transient time KT

still depends on ρ, as is also the case for smooth optimization problems [XKK21]. If we consider

multiple consensus steps per iteration with the communication complexity being O(mn−1ϵ−2), setting

m ≍ ⌈ 1
1−ρ⌉ (or m ≍ ⌈ 1√

1−ρ⌉ for accelerated consensus algorithms) results in a topology-independent

transient time given that ϱ(m) ≍ 1.

36

3.3.3. Proof Sketch. Here, we present a sketch of our convergence analyses and defer details

to Appendix. Our proof relies on the merit function below:

W (x̄k, z̄k) = Φ(x̄k)− Φ∗︸ ︷︷ ︸
function value gap

+Ψ(x̄k)− η(x̄k, z̄k)︸ ︷︷ ︸
primal convergence

+λ
∥∥∥∇F (x̄k)− z̄k

∥∥∥2︸ ︷︷ ︸
dual convergence

,

where η(x, z) = min
y∈Rd

{
⟨z, y − x⟩+ 1

2γ ∥y − x∥2 +Ψ(y)
}
. Let yk+ := proxγΨ

(
x̄k − γz̄k

)
. Then, the

proximal gradient mapping of z̄k at x̄k is G(x̄k, z̄k, γ) = 1
γ (x̄

k − yk+). Since yk+ is the minimizer of a

1/γ-strongly convex function, we have

〈
z̄k, yk+ − x̄k

〉
+

1

2γ
∥yk+ − x̄k∥2 +Ψ(yk+) ≤ Ψ(x̄k)− 1

2γ
∥yk+ − x̄k∥2,

which implies Ψ(x̄k)− η(x̄k, z̄k) ≥ γ
2

∥∥G(x̄k, z̄k, γ)∥∥2.
Following standard practices in optimization, we set γ = 1

L∇F
below for simplicity. However, our

algorithms do not require any restriction on the choice of γ.

Step 1: Leveraging the merit function with λ ≍ γ, we can first obtain an essential lemma

(Lemma 11 in Appendix) in our analyses, which says that for sequences {xki , zki }1≤i≤n,k≥0 generated

by Prox-DASA(-GT) (Algorithm 2 or 3) with αk ≲ min{1, (1 + γ)−2, γ2(1 + γ)−2}, we have

W (x̄k+1, z̄k+1)−W (x̄k, z̄k) ≤ −αk
{
Θk +Υk + αkΛ

k + rk+1
}
,

where E[rk+1 | Fk] = 0, Λk ≍ γ
∥∥∆̄k+1

∥∥2,
Θk ≍ 1

γ
∥x̄k − ȳk∥2 + γ

∥∥∥∇F (x̄k)− z̄k
∥∥∥2 ,

Υk ≍ γ

n

∥∥Zk − Z̄k
∥∥2 + 1

nγ

∥∥Xk − X̄k

∥∥2 ,
and ∆̄k+1 = v̄k+1 − 1

n

∑n
i=1∇Fi(xki) = ūk+1 − 1

n

∑n
i=1∇Fi(xki) (for Prox-DASA-GT). Thus, by

telescoping and taking expectation with respect to F0, we have

K∑
k=0

αkE
[∥∥∥x̄k − ȳk

∥∥∥2 + γ2
∥∥∥∇F (x̄k)− z̄k

∥∥∥2]

≲ γW (x̄0, z̄0) + γ2σ2
K∑
k=0

α2
k

n
+

K∑
k=0

αk

{
E
[∥∥Xk − X̄k

∥∥2 + γ2
∥∥Zk − Z̄k

∥∥2]}
n

.

(3.4)

37

Step 2: We then analyze the consensus errors. Without loss of generality, we consider X0 =

X̄0 = 0, i.e., all nodes have the same initialization at 0. For m ∈ N+, define

ϱ(m) =
(1 + ρ2m)ρ2m

(1− ρ2m)2
.

Then, we have the following fact:

• ϱ(m) is monotonically decreasing with the maximum value being ϱ(1) = (1+ρ2)ρ2

(1−ρ2)2 := ϱ1;

• ϱ(m) ≤ 1 if and only if ρ2m ≤ 1
3 .

With the definition of ϱ(m) and assuming 0 < αk+1 ≤ αk ≤ 1, we can show the consensus errors

have the following upper bounds.

Prox-DASA: Let αk ≲ ϱ(m)−
1
2 , we have

K∑
k=0

αk
n
E
[∥∥Xk − X̄k

∥∥2] ≤ K∑
k=0

γ2αk
n

E
[∥∥Zk − Z̄k

∥∥2] ≲ (γ2σ2 + ν2)ϱ(m)
K∑
k=0

α3
k .(3.5)

Prox-DASA-GT: Let αk ≲ min{ϱ(m)−1, ϱ(m)−
1
2 }, we have

K∑
k=0

αk
n
E
[
∥Xk − X̄k∥2

]
≤

K∑
k=0

γ2αk
n

E
[
∥Zk − Z̄k∥2

]

≲ ϱ(m)2
K∑
k=0

α3
k

{
γ2σ2 + α2

kE
[
∥x̄k − ȳk∥2

]}
.

(3.6)

We can also see that to obtain a topology-independent iteration complexity, the number of commu-

nication rounds can be set as m = ⌈ log 3
2(1−ρ)⌉, which implies ϱ(m) ≤ 1.

In addition, we have the following fact that relates the consensus error of Y to the consensus

errors of X and Z:

∥∥∥yk+ − ȳk
∥∥∥2+1

n

∥∥Yk − Ȳk

∥∥2 = 1

n

n∑
i=1

∥∥∥yki − yk+

∥∥∥2 ≤ 2

n

{
∥Xk − X̄k∥2 + γ2∥Zk − Z̄k∥2

}
.(3.7)

Step 3: Let R be a random integer with

Pr(R = k) =
αk∑K
k=1 αk

, k = 1, 2, . . . ,K,

38

and dividing both sides of (3.5) by
∑K

k=1 αk, we can obtain that for Prox-DASA, the consensus error

of XR satisfies

E
[
1

n

∥∥XR − X̄R

∥∥2] ≲ (γ2σ2 + ν2)ϱ(m)

∑K
k=0 α

3
k∑K

k=1 αk
.

Moreover, noting that

∥G(x̄,∇F (x̄), γ)∥2 ≲ 1

γ2

{∥∥∥x̄k − ȳk
∥∥∥2 + ∥∥∥yk+ − ȳk

∥∥∥2}+
∥∥∥∇F (x̄k)− z̄k

∥∥∥2 ,
and combining (3.4) with (3.5), we can get

E
[∥∥G(x̄R,∇F (x̄R), γ)

∥∥2] ≲ W (x̄0, z̄0)

γ
∑K

k=1 αk︸ ︷︷ ︸
initialization-related term

+ σ2

∑K
k=0 α

2
k

n
∑K

k=1 αk︸ ︷︷ ︸
variance-related term

+ (σ2 + γ−2ν2)ϱ(m)

∑K
k=0 α

3
k∑K

k=1 αk︸ ︷︷ ︸
consensus error

.

Thus, setting αk ≍
√

n
K , we obtain the convergence results of Prox-DASA:

E
[∥∥G(x̄R,∇F (x̄R), γ)

∥∥2] ≲ γ−1W (x̄0, z̄0) + σ2

√
nK

+
n(σ2 + γ−2ν2)ϱ(m)

K
,

E
[

1

γ2n

∥∥XR − X̄R

∥∥2] ≲ n(σ2 + γ−2ν2)ϱ(m)

K
.

For Prox-DASA-GT, we can complete the proof with similar arguments by combining (3.6) with (3.4)

and noting that ϱ(m)2α4
k ≲ 1.

3.4. Experiments

3.4.1. Synthetic Data. To demonstrate the effectiveness of our algorithms, we first evaluate

our algorithms using synthetic data for solving sparse single index models [AB13] in the decentralized

setting. We consider the homogeneous setting where the data sample at each node ξ = (X,Y) is

generated from the same single index model Y = g(X⊤θ∗) + ε, where X, θ ∈ Rd and E[ε|X] = 0. In

this case, we solve the following L1-regularized least square problems:

min
θ∈Rd

1

n

n∑
i=1

E
(X,Y)∼D

[
(Y − g(X⊤θ))2

]
+ λ ∥θ∥1

In particular, we set θ∗ ∈ R100 to be a sparse vector and g(·) = (·)2 which corresponds to the sparse

phase retrieval problem [JEH16]. We simulate streaming data samples with batch size = 1 for

training and 10,000 data samples per node for evaluations, where X and ϵ are sampled independently

39

0 1000 2000 3000 4000
Number of Iterations

100

101

102

103

104

105

Te
st

 L
os

s

n=5
n=10
n=20

0 1000 2000 3000 4000
Number of Iterations

100

101

102

103

104

Pr
ox

im
al

 G
ra

di
en

t M
ap

pi
ng

n=5
n=10
n=20

Figure 3.1. Linear-speedup performance of Prox-DASA for decentralized online
sparse phase retrievel problems. (Prox-DASA-GT has relatively the same plots)

from two gaussian distributions. We employ a ring topology for the network where self-weighting

and neighbor weights are set to be 1/3. We set the penalty parameter λ = 0.01, the total number

of iterations K = 10, 000, αk =
√

n/K, γ = 0.01, and the number of communication rounds per

iteration m = ⌈ 1
1−ρ⌉. We plot the test loss and the norm of proximal gradient mapping in the log

scale against the number of iterations in Figure 3.1, which shows that our decentralized algorithms

have an additional linear speed-up with respect to n. In other words, the algorithms become faster

as more agents are added to the network.

3.4.2. Real-World Data. Following [MBMXC22], we consider solving the classification

problem

(3.8) min
θ∈Rd

1

n

n∑
i=1

1

|Di|
∑

(x,y)∈Di

ℓi(f(θ, x), y) + λ∥θ∥1,

on a9a and MNIST datasets1. Here, ℓi denotes the cross entropy loss and f represents a neural

network parameterized by θ with x being its input. Di is the training set only available to agent i.

The L1 regularization term is used to impose a sparsity structure on the neural network. We use the

code in [MBMXC22] for SPPDM, ProxGT-SR-O/E, DEEPSTORM, and then implement Prox-DASA and

Prox-DASA-GT under their framework, which mainly utilizes PyTorch [PGM+19] and mpi4py [DF21].

We use a 2-layer perception model on a9a and the LeNet architecture [L+15] for the MNIST dataset.

We have 8 agents which connect in the form of a ring for a9a and a random graph for MNIST. To

1Available at https://www.openml.org.

40

0 200 400 600 800
Time

40

50

60

70

80

Te
st

 a
cc

ur
ac

y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(a)

0 200 400 600 800
Time

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 lo
ss

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(b)

0 200 400 600 800
Time

10 4

10 3

10 2

10 1

100

101

102

St
at

io
na

rit
y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(c)

0 2 4 6 8 10
Epoch

40

50

60

70

80

Te
st

 a
cc

ur
ac

y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(d)

0 2 4 6 8 10
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 lo
ss

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(e)

0 2 4 6 8 10
Epoch

10 4

10 3

10 2

10 1

100

101

102

St
at

io
na

rit
y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(f)

0 200 400 600 800 1000 1200 1400 1600
Time

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(g)

0 200 400 600 800 1000 1200 1400 1600
Time

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(h)

0 200 400 600 800 1000 1200 1400 1600
Time

10 3

10 2

10 1

100

101

102

St
at

io
na

rit
y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(i)

0 2 4 6 8 10 12
Epoch

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(j)

0 2 4 6 8 10 12
Epoch

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(k)

0 2 4 6 8 10 12
Epoch

10 3

10 2

10 1

100

101

102

St
at

io
na

rit
y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(l)

Figure 3.2. Comparisons between SPPDM [WZC+21], ProxGT-SR-E [XDKK21],
DEEPSTORM [MBMXC22], Prox-DASA 2, and Prox-DASA-GT 3. The first two rows
correspond to a9a and the last two rows correspond to MNIST. The results are
averaged over 10 trials, and the shaded regions represent confidence intervals. The
vertical axes in the third column are log-scale. It should be noted that ProxGT-SR-E
maintains another hyperparameter q (see, e.g., Algorithm 4 and Theorem 3 in
[XDKK21]) and computes gradients using a full batch every q iterations. For
simplicity, we do not include that amount of epochs when we plot this figure. In
other words, the real number of epochs required to obtain a point on ProxGT-SR is
larger than plotted in the figures in the second and fourth rows. We include the plots
that take q into account in Figure A.2. 41

demonstrate the performance of our algorithms in the constant batch size setting, the batch size is

chosen to be 4 for a9a and 32 for MNIST for all algorithms. The number of communication rounds

per iteration m is set to be 1 for all algorithms. We evaluate the model performance periodically

during training, and then plot the results in Figure 3.2, from which we observe that both Prox-DASA

and Prox-DASA-GT have considerably good performance with small variance in terms of test accuracy,

training loss, and stationarity. In particular, it should be noted that although DEEPSTORM achieves

better stationarity in Figure 3.2(l) and 3.2(i), training a neural network by using DEEPSTORM takes

longer time than Prox-DASA and Prox-DASA-GT since it uses the momentum-based variance reduction

technique, which requires two forward-backward passes (see, e.g., Eq. (10) and Algorithm 1

in [MBMXC22]) to compute the gradients in one iteration per agent while ours only require one,

which saves a large amount of time (see Table A.1 in Appendix). We include further details of our

experiments in Appendix A.1.

3.5. Discussion and Conclusion

In this work, we propose and analyze a class of single time-scale decentralized proximal algorithms

(Prox-DASA-(GT)) for non-convex stochastic composite optimization in the form of (3.1). We show

that our algorithms achieve linear speed-up with respect to the number of agents using an O(1)
batch size per iteration under mild assumptions. Furthermore, we demonstrate the efficiency and

effectiveness of our algorithms through extensive experiments, in which our algorithms achieve

relatively better results with less training time using a small batch size comparing to existing

methods.

42

CHAPTER 4

Conditional Gradient-Based Nested Averaged Stochastic

Approximation

4.1. Introduction

We study projection-free algorithms for solving the following stochastic multi-level composition

optimization problem

(4.1) min
x∈X

F (x) := f1 ◦ · · · ◦ fT (x),

where fi : Rdi → Rdi−1 , i = 1, · · · , T (d0 = 1) are continuously differentiable functions, the composite

function F is bounded below by F ⋆ > −∞ and X ⊂ Rd is a closed convex set. We assume that

the exact function values and derivatives of fi’s are not available. In particular, we assume that

fi(y) = Eξi [Gi(y, ξi)] for some random variable ξi. Our goal is to solve the above optimization

problem, given access to noisy evaluations of ∇fi’s and fi’s.

There are two main challenges to address in developing efficient projection-free algorithms for

solving (4.1). First, note that denoting the transpose of the Jacobian of fi by ∇fi, the gradient of

the objective function F (x) in (4.1), is given by ∇F (x) = ∇fT (yT)∇fT−1(yT−1) · · · ∇f1(y1), where

yi = fi+1 ◦ · · · ◦ fT (x) for 1 ≤ i < T , and yT = x. Because of the nested nature of the gradient

∇F (x), obtaining an unbiased gradient estimator in the stochastic first-order setting, with controlled

moments, becomes non-trivial. Using naive stochastic gradient estimators lead to oracle complexities

that depend exponentially on T (in terms of the accuracy parameter). Next, even when T = 1

in the stochastic setting, projection-free algorithms like the conditional gradient method or its

sliding variants invariably require increasing order of mini-batches1 [LZ16,RSPS16,HL16,QLX18,

YSC19], which make their practical implementation infeasible. In the general T -level setting, using

naive stochastic gradient estimator would lead to mini-batch order that depends exponentially on T .

1We discuss in detail about some recent works that avoid requiring increasing mini-batches, albeit under stronger
assumptions, in Section 4.1.3.

43

In this work, we propose a projection-free conditional gradient-type algorithm that achieves

level-independent oracle complexities (i.e., the dependence of the complexities on the target accuracy

is independent of T) using only one sample of (ξi)1≤i≤T in each iteration, thereby addressing both

of the above challenges. Our algorithm uses moving-average based stochastic estimators of the

gradient and function values, also used recently by [GRW20] and [BGN22], along with an inexact

conditional gradient method used by [BG22] (which in turn is inspired by the sliding method

by [LZ16]). In order to establish our oracle complexity results, we use a novel merit function based

convergence analysis. To the best of our knowledge, such an analysis technique is used for the first

time in the context of analyzing stochastic conditional gradient-type algorithms.

4.1.1. Motivating Examples. Problems of the form in (4.1) are generalizations of the stan-

dard constrained stochastic optimization problem, which is obtained when T = 1, and arise

in several machine learning applications. Some examples include sparse additive modeling in

non-parametric statistics [WFL17, Section 4.1], Bayesian optimization [AF21], model-agnostic

meta-learning [CSY21,FMO21], distributionally robust optimization [QGX+21], training graph

neural networks [CFKM20], reinforcement learning [WLF16, Setion 1.1] and AUPRC maximiza-

tion [QLX+21,WYZY22,QHZ+22]. Below, we provide a concrete motivating example from the

field of risk-averse stochastic optimization [RS06].

The mean-deviation risk-averse optimization is given by the following optimization problem

max
x∈X

{
E[U(x, ξ)]− ρE

[
{E[U(x, ξ)]− U(x, ξ)}2

]1/2}
.

As noted by [YWF19], [Rus21] and [BGN22], the above problem is a stochastic 3-level composition

optimization problem with

f3 := E[U(x, ξ)] f2(z, x) := E[{z − U(x, ξ)}2] f1((y1, y2)) := y1 −
√

y2 + δ.

Here, δ > 0 is added to make the square root function smooth. In particular, we consider a semi-

parametric data generating process given by a sparse single-index model of the form b = g(⟨a, x∗⟩)+ζ,

where g : R → R is called the link function, x∗ ∈ Rd is assumed to be a sparse vector and ⟨·, ·⟩
represents the Euclidean inner-product between two vectors. Such single-index models are widely

used in statistics, machine learning and economics [RWC03]. A standard choices of the link

function g is the square function, in which case, the model is also called as the sparse phase retrieval

44

model [WGE17]. Here, a is the input data which is assumed to be independent of the noise ζ. In

this case, ξ := (a, b) and the if we consider the squared-loss, then U(x, ξ) := (b− (⟨a, x⟩)2)2 and is

non-convex in x. The goal is to estimate the sparse index vector x∗ in a risk-averse manner, as they

are well-known to provide stable solutions [YWF19]. To encourage sparsity, the set X is the ℓ1

ball [Jag13].

4.1.2. Preliminaries and Main Contributions. We now introduce the technical preliminaries

required to state and highlight the main contributions of this work. Throughout this work, ∥ · ∥
denotes the Euclidean norm for vectors and the Frobenius norm for matrices. We first describe the

set of assumptions on the objective functions and the constraint set.

Assumption 4.1 (Constraint set). The set X ⊂ Rd is convex and closed with max
x,y∈X

∥x−y∥ ≤ DX .

Assumption 4.2 (Smoothness). All functions f1, . . . , fT and their derivatives are Lipschitz

continuous with Lipschitz constants Lfi and L∇fi , respectively.

The above assumptions on the constraint set and the objective function are standard in the

literature on stochastic optimization, and in particular in the analysis of conditional gradient

algorithms and multi-level optimization; see, for example, [LZ16], [YWF19] and [BGN22]. We

emphasize here that the above smoothness assumptions are made only on the functions (fi)1≤i≤T

and not on the stochastic functions (Gi)1≤i≤T (which would be a stronger assumption). Moreover,

the Lipschitz continuity of fi’s are implied by the Assumption 4.1 and assuming the functions are

continuously differentiable. However, for sake of illustration, we state both assumptions separately.

In addition to these assumptions, we also make unbiasedness and bounded-variance assumptions on

the stochastic first-order oracle. Due to its technical nature, we state the precise details later in

Section 4.3 (see Assumption 4.3).

We next turn our attention to the convergence criterion that we use in this work to evaluate the

performance of the proposed algorithm. Gradient-based algorithms iteratively solve sub-problems in

the form of

(4.2) argmin
u∈X

{
⟨g, u⟩+ β

2
∥u− x∥2

}
,

45

for some β > 0, g ∈ Rd and x ∈ X . Denoting the optimal solution of the above problem by

PX (x, g, β) and noting its optimality condition, one can easily show that

−∇F (x̄) ∈ NX (x̄) + B
(
0, ∥g −∇F (x̄)∥DX + β∥x− PX (x, g, β)∥(DX + ∥∇F (x̄)∥/β)

)
,

where NX (x̄) is the normal cone to X at x̄ and B(0, r) denotes a ball centered at the origin with

radius r. Thus, reducing the radius of the ball in the above relation will result in finding an

approximate first-order stationary point of the problem for non-convex constrained minimization

problems. Motivated by this fact, we can define the gradient mapping at point x̄ ∈ X as

(4.3) GX (x̄,∇F (x̄), β) := β (x̄− PX (x̄,∇F (x̄), β)) = β

(
x̄− projX

(
x̄− 1

β
∇F (x̄)

))
,

where projX (y) denotes the Euclidean projection of the vector y onto the set X . The gradient

mapping is a classical measure has been widely used in the literature as a convergence criterion

when solving nonconvex constrained problems [N+18]. It plays an analogous role of the gradient for

constrained optimization problems; in fact when the set X ≡ Rd the gradient mapping just reduces

to ∇F (x̄). It should be emphasized that while the gradient mapping cannot be computed in the

stochastic setting, it still serves as a measure of convergence. Our main goal in this work is to find

an ϵ-stationary solution to (4.1), in the sense described below.

Definition 4.1. A point x̄ ∈ X generated by an algorithm for solving (4.1) is called an ϵ-

stationary point, if we have E[∥GX (x̄,∇F (x̄), β)∥2] ≤ ϵ, where the expectation is taken over all the

randomness involved in the problem.

In the literature on conditional gradient methods for the nonconvex setting, the so-called Frank-

Wolfe gap is also widely used to provide convergence analysis. The Frank-Wolfe Gap is defined

formally as

(4.4) gX (x̄,∇F (x̄)) := max
y∈X

⟨∇F (x̄), x̄− y⟩.

As pointed out by [BG22], the gradient mapping criterion and the Frank-Wolfe gap are related to

each other in the following sense.

46

Proposition 4.1. [BG22] Let gX (·) be the Frank-Wolfe gap defined in (4.4) and GX (·) be the gra-

dient mapping defined in (4.3). Then, we have ∥GX (x,∇F (x), β)∥2 ≤ gX (x,∇F (x)),∀x ∈ X . More-

over, under Assumption 4.1, 4.2, we have gX (x,∇F (x)) ≤
[
(1/β)

∏T
i=1 Lfi +DX

]
∥GX (x,∇F (x), β)∥.

For stochastic conditional gradient-type algorithms, the oracle complexity is measured in terms

of number of calls to the Stochastic First-order Oracle (SFO) and the Linear Minimization Oracle

(LMO) used to the solve the sub-problems (that are of the form of minimizing a linear function over

the convex feasible set) arising in the algorithm. In this work, we hence measure the number of calls

to SFO and LMO required by the proposed algorithm to obtain an ϵ-stationary solution in the sense

of Definition 4.1. We now highlight our main contributions:

• We propose a projection-free conditional gradient-type method (Algorithm 5) for solving (4.1).

In Theorem 4.1, we show that the SFO and LMO complexities of this algorithm, in order to

achieve an ϵ-stationary solution in the sense of Definition 4.1, are of order O(ϵ−2) and O(ϵ−3),

respectively.

• The above SFO and LMO complexities are in particular level-independent (i.e., the dependence

of the complexities on the target accuracy is independent of T). The proposed algorithm is

parameter-free and does not require any mini-batches, making it applicable for the online setting.

• When considering the case of T ≤ 2, we present a simplified method (Algorithm 7 and 8) to obtain

the same oracle complexities. Intriguingly, while this simplified method is still parameter-free for

T = 1, it is not when T = 2 (see Theorem 4.2 and Remark 4.3.1). Furthermore, for the case of

T = 1, we also establish high-probability bounds (see Theorem 4.3).

A summary of oracle complexities for stochastic conditional gradient-type algorithms is in Table 4.1.

4.1.3. Related Work. Conditional Gradient-Type Method. The conditional gradient

algorithm [FW56,LP66], has had a renewed interest in the machine learning and optimization

communities in the past decade; see [Mig94,Jag13,HJN15,LJJ15,BS17,GKS21] for a partial list

of recent works. Considering the stochastic convex setup, [HK12,HL16] provided expected oracle

complexity results for the stochastic conditional gradient algorithm. The complexities were further

improved by a sliding procedure in [LZ16], based on Nesterov’s acceleration method. [RSPS16,

YSC19,HL16] considered variance reduced stochastic conditional gradient algorithms, and provided

47

Algorithm Criterion # of levels Batch size SFO LMO
SPIFER-SFW [YSC19] FW-gap 1 O(ϵ−1) O(ϵ−3) O(ϵ−2)
1-SFW [ZSM+20] FW-gap 1 1 O(ϵ−3) O(ϵ−3)
SCFW [ABTR21] FW-gap 2 1 O(ϵ−3) O(ϵ−3)
SCGS [QLX18] GM 1 O(ϵ−1) O(ϵ−2) O(ϵ−2)
SGD+ICG [BG22] GM 1 O(ϵ−1) O(ϵ−2) O(ϵ−2)
LiNASA+ICG (Algorithm 5) GM T 1 OT (ϵ

−2) OT (ϵ
−3)

Table 4.1. Complexity results for stochastic conditional gradient type algorithms to
find an ϵ-stationary solution in the nonconvex setting. FW-Gap and GM stands for
Frank-Wolfe Gap (see (4.4)) and Gradient Mapping (see (4.3)) respectively. OT hides
constants in T . Existing one-sample based stochastic conditional gradient algorithms
are either (i) not applicable to the case of general T > 1, or (ii) require strong
assumptions [ZSM+20], or (iii) are not truly online [ABTR21]; see Section 4.1.3 for
detailed discussion. The results in [BG22] are actually presented for the zeroth-order
setting; however the above stated first-order complexities follow immediately.

expected oracle complexities in the non-convex setting. [QLX18] analyzed the sliding algorithm

in the non-convex setting and provided results for the gradient mapping criterion. All of the above

works require increasing orders of mini-batches to obtain their oracle complexity results.

[MHK20] and [ZSM+20] proposed a stochastic conditional gradient-type algorithm with

moving-average gradient estimator for the convex and non-convex setting that uses only one-sample

in each iteration. However, [MHK20] and [ZSM+20] require several restrictive assumptions, which

we explain next (focusing on [ZSM+20] which considers the nonconvex case). Specifically, [ZSM+20]

requires that the stochastic function G1(x, ξ1) has uniformly bounded function value, gradient-norm,

and Hessian spectral-norm, and the distribution of the random vector ξ1 has an absolutely continuous

density p such that the norm of the gradient of log p and spectral norm of the Hessian of log p

has finite fourth and second-moments respectively. In contrasts, we do not require such stringent

assumptions. Next, all of the above works focus only on the case of T = 1. [ABTR21] considered

stochastic conditional gradient algorithm for solving (4.1), with T = 2. However, [ABTR21]

also makes stringent assumptions: (i) the stochastic objective functions G1(x, ξ1) and G2(x, ξ1)

themselves have Lipschitz gradients almost surely and (ii) for a given instance of random vectors ξ1

and ξ2, one could query the oracle at the current and previous iterations, which makes the algorithm

not to be truly online. See Table 4.1 for a summary.

48

Stochastic Multi-level Composition Optimization. Compositional optimization problems

of the form in (4.1) have been considered as early as 1970s by [Erm76]. Recently, there has

been a renewed interest on this problem. [EN13] and [DPR17] considered a sample-average

approximation approach for solving (4.1) and established several asymptotic results. For the case

of T = 2, [WFL17], [WLF16] and [BGI+17] proposed and analyzed stochastic gradient descent-

type algorithms in the smooth setting. [DD19] and [DR18] considered the non-smooth setting

and established oracle complexity results. Furthermore, [HZCH20] proposed algorithms when

the randomness between the two levels are not necessarily independent. For the general case of

T ≥ 1, [YWF19] proposed stochastic gradient descent-type algorithms and established oracle

complexities established that depend exponentially on T and are hence sub-optimal. Indeed, large

deviation and Central Limit Theorem results established in [EN13,DPR17], respectively, show

that in the sample-average approximation setting, the argmin of the problem in (4.1) based on n

samples, converges at a level-independent rate (i.e., dependence of the convergence rate on the target

accuracy is independent of T) to the true minimizer, under suitable regularity conditions.

[GRW20] proposed a single time-scale Nested Averaged Stochastic Approximation (NASA)

algorithm and established optimal rates for the cases of T = 1, 2. For the general case of T ≥
1, [BGN22] proposed a linearized NASA algorithm and established level-independent and optimal

convergence rates. Concurrently, [Rus21] considered the case when the function fi are non-smooth

and established asymptotic convergence results. [ZX21] also established non-asymptotic level-

independent oracle complexities, however, under stronger assumptions than that in [BGN22].

Firstly, they assumed that for a fixed batch of samples, one could query the oracle on different points,

which is not suited for the general online stochastic optimization setup. Next, they assume a much

stronger mean-square Lipschitz smoothness assumption on the individual functions fi and their

gradients. Finally, they required mini-batches sizes that depend exponentially on T , which makes

their method impractical. Concurrent to [BGN22], level-independent rates were also obtained for

unconstrained problems by [CSY21], albeit, under the stronger assumption that the stochastic

functions Gi(x, ξi) are Lipschitz, almost surely. It is also worth mentioning that while some of the

above papers considered constrained problems, the algorithms proposed and analyzed in the above

works are not projection-free, which is the main focus of this work.

49

4.2. Methodology

In this section, we present our projection-free algorithm for solving problem (4.1). The method

generates three random sequences, namely, approximate solutions {xk}, average gradients {zk},
and average function values {uk}, defined on a certain probability space (Ω,F , P). We let Fk

to be the σ-algebra generated by {x0, . . . , xk, z0, . . . , zk, u01, . . . , uk1, . . . , u0T , . . . , ukT }. The overall

method is given in Algorithm 5. In (4.7), the stochastic Jacobians Jk+1
i ∈ Rdi×di−1 , and the product∏T

i=1 J
k+1
T+1−i is calculated as Jk+1

T Jk+1
T−1 · · · Jk+1

1 ∈ RdT×d1 ≡ RdT×1. In (4.8), we use the notation

⟨·, ·⟩ to represent both matrix-vector multiplication and vector-vector inner product. There are two

aspects of the algorithm that we highlight specifically: (i) In addition to estimating the gradient of

F , we also estimate a stochastic linear approximation of the inner functions fi by a moving-average

technique. In the multi-level setting we consider, it helps us to avoid the accumulation of bias,

when estimating the fi directly. Linearization techniques were used in the stochastic optimization

since the work of [Rus87]. A similar approach was used in [BGN22] in the context of projected-

based methods for solving (4.1). It is also worth mentioning that other linearization techniques

have been used in [DD19] and [DR18] for estimating the stochastic inner function values for

weakly convex two-level composition problems, and (ii) The ICG method given in Algorithm 6 is

essentially applying deterministic conditional gradient method with the exact line search for solving

the quadratic minimization subproblem in (4.2) with the estimated gradient zk in (4.7). It was also

used in [BG22] as a sub-routine and is motivated by the sliding approach of [LZ16].

4.3. Convergence Analysis

In this section, we present our main result on the oracle complexity of Algorithm 5. Before we

proceed, we present our assumptions on the stochastic first-order oracle.

Assumption 4.3 (Stochastic First-Order Oracle). Denote ukT+1 ≡ xk. For each k, uki+1 being

the input, the stochastic oracle outputs Gk+1
i ∈ Rdi and Jk+1

i such that given Fk and for any

i ∈ {1, . . . , T}

(a) E[Jk+1
i |Fk] = ∇fi(uki+1), E[Gk+1

i |Fk] = fi(u
k
i+1),

(b) E[∥Gk+1
i − fi(u

k
i+1)∥2|Fk] ≤ σ2

Gi
, E[∥Jk+1

i −∇fi(uki+1)∥2|Fk] ≤ σ2
Ji

,

50

Algorithm 5 Linearized NASA with Inexact Conditional Gradient Method (LiNASA+ICG)

Input: x0 ∈ X , z0 = 0 ∈ Rd, u0i ∈ Rdi , i = 1, . . . , T , βk > 0, tk > 0, τk ∈ (0, 1], δ ≥ 0.
for k = 0, 1, 2, . . . , N do

1. Update the solution:

ỹk = ICG(xk, zk, βk, tk, δ),(4.5)

xk+1 = xk + τk(ỹ
k − xk),(4.6)

and compute stochastic Jacobians Jk+1
i , and function values Gk+1

i at uki+1 for i = 1, . . . , T .
2. Update average gradients z and function value estimates ui for each level i = 1, . . . , T

zk+1 = (1− τk)z
k + τk

T∏
i=1

Jk+1
T+1−i,(4.7)

uk+1
i = (1− τk)u

k
i + τkG

k+1
i + ⟨Jk+1

i , uk+1
i+1 − uki+1⟩.(4.8)

end for
Output: (xR, zR, uR1 , · · · , uRT), where R is uniformly distributed over {1, 2, . . . , N}

Algorithm 6 Inexact Conditional Gradient Method (ICG)

Input: (x, z, β,M, δ)
Set w0 = x.
for t = 0, 1, 2, . . . ,M do

1. Find vt ∈ X with a quantity δ ≥ 0 such that

⟨z + β(wt − x), vt⟩ ≤ min
v∈X
⟨z + β(wt − x), v⟩+ βD2

X δ

t+ 2
.

2. Set wt+1 = (1− µt)w
t + µtv

t with µt = min

{
1, ⟨β(x−w

t)−z,vt−wt⟩
β∥vt−wt∥2

}
.

end for
Output: wM

(c) The outputs of the stochastic oracle at level i, Gk+1
i and Jk+1

i , are independent. The outputs of

the stochastic oracle are independent between levels, i.e., {Gk+1
i }i=1,...,T are independent and so

are {Jk+1
i }i=1,...,T .

Parts (a) and (b) in Assumption 4.3 are standard unbiasedness and bounded variance assumptions

on the stochastic gradient, common in the literature. Part (c) is essential to establish the convergence

results in the multi-level case. Similar assumptions have been made, for example, in [YWF19]

and [BGN22]. We also emphasize that unlike some prior works (see e.g., [ZSM+20]), Assumption 4.3

allows the case of endogenous uncertainty, and we do not require the distribution of the random

variables (ξi)1≤i≤T to be independent of the distribution of the decision variables (ui)1≤i≤T .

51

Remark. Under Assumption 4.2, and 4.3, we can immediately conclude that E[∥Jk+1
i ∥2|Fk] =

E[∥Jk+1
i − ∇fi(uki+1)∥2|Fk] + ∥∇fi(uki+1)∥2 ≤ σ2

Ji
+ L2

fi
:= σ̂2

Ji
. In the sequel, σ̂2

Ji
will be used to

simplify the presentation.

We start with the merit function used in this work and its connection to the gradient mapping

criterion. Our proof leverages the following merit function:

(4.9) Wα,γ(x, z, u) = F (x)− F ⋆ − η(x, z) + α∥∇F (x)− z∥2 +
T∑
i=1

γi∥fi(ui+1)− ui∥2,

where α, {γi}1≤i≤T are positive constants and

(4.10) η(x, z) = min
y∈X

{
H(y;x, z, β) := ⟨z, y − x⟩+ β

2
∥y − x∥2

}
.

Compared to [BGN22], we require the additional term ∥∇F (x)− z∥2, which turns out to be

essential in our proof due to the ICG routine. The following proposition relates the merit function

above to the gradient mapping.

Proposition 4.2. Let GX (·) be the gradient mapping defined in (4.3) and η(·, ·) be defined in

(4.10). For any pair of (x, z) and β > 0, we have ∥GX (x,∇F (x), β)∥2 ≤ −4βη(x, z)+2∥∇F (x)−z∥2.

Proof. By expanding the square, and using the properties of projection operation, we have

∥projX (x−
1

β
z)− x∥2 + ∥projX (x−

1

β
z)− (x− 1

β
z)∥2 ≤ ∥x̄− (x− 1

β
z)∥2 = ∥ 1

β
z∥2.

Thus, we have η(x, z) ≤ −β
2 ∥projX (x− 1

β z)− x∥2. The proof is completed immediately by noting

that ∥G(x,∇F (x), β)∥2 ≤ 2β2∥projX (x− 1
β z)− x∥2 + 2 ∥∇F (x)− z∥2 . □

We now present out main result on the oracle complexity of Algorithm5.

Theorem 4.1. Under Assumption 4.1, 4.2, 4.3, let {xk, zk, {uki }1≤i≤T }k≥0 be the sequence

generated by Algorithm 5 with N ≥ 1 and

βk ≡ β > 0, τ0 = 1, t0 = 0, τk =
1√
N

, tk = ⌈
√
k⌉, ∀k ≥ 1,(4.11)

52

where β is an arbitrary positive constant. Provided that the merit function Wα,γ(x, z, u) is defined as

(4.9) with

(4.12) α =
β

20L2
∇F

, γ1 =
β

2
, γj =

(
2α+

1

4αL2
∇F

)
(T − 1)C2

j +
β

2
, 2 ≤ j ≤ T,

we have,

(4.13) E
[
∥GX (xR,∇F (xR), β)∥2

]
≤

2(β +
20L2

∇F
β)

[
2Wα,γ(x

0, z0, u0) + B(β, σ2, L,DX , T, δ)
]

√
N

,

(4.14) E
[
∥fi(uRi+1)− uRi ∥2

]
≤ 2Wα,γ(x

0, z0, u0) + B(β, σ2, L,DX , T, δ)

β
√
N

, 1 ≤ i ≤ T.

where uT+1 = x,B(β, σ2, L,DX , T, δ) = 4σ̂2 + 32βD2
X (1 + δ)

(
3
5 +

5L2
∇F
β2

)
, and σ̂2 is a constant

depending on the parameters (β, σ2, L,DX , T) given in (B.26). The expectation is taken with respect

to all random sequences generated by the method and an independent random integer number R

uniformly distributed over {1, . . . , N}. That is to say, the number of calls to SFO and LMO to get

an ϵ-stationary point is upper bounded by OT (ϵ−2),OT (ϵ−3) respectively.

Remark. The constant B(β, σ2, L,DX , T, δ) is O(T) given the definition of σ̂2 and the value of

γj in (4.12), which further implies that the total number of calls to SFO and LMO of Algorithm 5 for

finding an ϵ-stationary point of (4.1), are bounded by O(T 2ϵ−2) = OT (ϵ−2) and O(T 3ϵ−3) = OT (ϵ−3)

respectively. Furthermore, it is worth noting that this complexity bound for Algorithm 5 is obtained

without any dependence of the parameter βk on Lipschitz constants due to the choice of arbitrary

positive constant β in (4.11), and τk, tk depend only on the number of iterations N and k respectively.

This makes Algorithm 5 parameter-free and easy to implement.

Remark. As discussed in Section 4.2, the ICG routine given in Algorithm 6 is a deterministic

method with the estimated gradient zk in (4.7). The number of iterations, tk, required to run Algorithm

6 is given by tk = ⌈
√
k⌉. That is, we require more precise solutions for the ICG routine, only for later

outer iterations. Furthermore, due to the deterministic nature of the ICG routine, further advances

in the analysis of deterministic conditional gradient methods under additional assumptions on the

constraint set X (see, for example, [GH15,GW21]) could be leveraged to improve the overall LMO

complexity.

53

4.3.1. The special cases of T = 1 and T = 2. We now discuss several intriguing points

regarding the choice of tuning parameter β, for the case of T = 2, and the more standard case of

T = 1. Specifically, the linearization technique used in Algorithm 5 turns out to be not necessary for

the case of T = 2 and T = 1 to obtain similar rates. However, without linearization, the choice of β

is dependent on the problem parameters for T = 2. Whereas it turns out to be independent of the

problem parameters (similar to Algorithm 5 and Theorem 4.1 which holds for all T ≥ 1) for T = 1.

As the outer function value estimates (i.e., uk+1
1 sequence) are not required for the convergence

analysis, we remove them in Algorithms 7 and 8.

Algorithm 7 NASA with Inexact Conditional Gradient Method (NASA+ICG) for T = 2

Replace Step 2 of Algorithm 5 with the following:

2’. Update the average gradient z and the function value estimate u2 respectively as:

zk+1 = (1− τk)z
k + τkJ

k+1
2 Jk+1

1 and uk+1
2 = (1− τk)u

k + τkG
k+1
2

Algorithm 8 ASA with Inexact Conditional Gradient Method (ASA+ICG) for T = 1

Replace Step 2 of Algorithm 5 with the following:

2”. Update the average gradient z as: zk+1 = (1− τk)z
k + τkJ

k+1
1 .

Theorem 4.2. Let Assumptions 4.1, 4.2, 4.3 be satisfied by the optimization problem (4.1).

Let C1, C2 and C3 be some constants depending on the parameters (β, σ2, L,DX , δ), as defined in

(B.38) and (B.46). Let τ0 = 1, t0 = 0, τk = 1√
N
, tk = ⌈

√
k⌉, ∀k ≥ 1, where N is the total number of

iterations.

(a) Let T = 2, and let {xk, zk, uk2}k≥0 be the sequence generated by Algorithm 7 with

(4.15) βk ≡ β ≥ 6ρL∇F + (2ρ+
2

3ρ
)L∇f1L

2
f2 , ρ > 0.

Then, we have ∀N ≥ 1,

E
[
∥GX (xR,∇F (xR), β)∥2

]
≤ C1√

N
, E

[
∥f2(xR)− uR2 ∥2

]
≤ C2√

N
.

54

(b) Let T = 1 and let {xk, zk}k≥0 be the sequence generated by Algorithm 8 with βk ≡ β > 0. Then,

we have ∀N ≥ 1,

E
[
∥GX (xR,∇F (xR), β)∥2

]
≤ C3√

N
.

All expectations are taken with respect to all random sequences generated by the respective algorithms

and an independent random integer number R uniformly distributed over {1, . . . , N}. In both cases,

the number of calls to SFO and LMO to get an ϵ-stationary point is upper bounded by O(ϵ−2),O(ϵ−3)

respectively.

Remark. While we can obtain the same complexities without using the linear approximation of

the inner function for T = 2, it seems necessary to have a parameter-free algorithm as the choice of

β in (4.15) depends on the knowledge of the problem parameters. Indeed, the linearization term in

(4.8) helps use to better exploit the Lipschitz smoothness of the gradients get an error bound in the

order of τ2k∥dk∥2 for estimating the inner function values. Without this term, we are only able to use

the Lipschitz continuity of the inner functions and so the error estimate will increase to the order of

τk∥dk∥. Hence, we need to choose a larger beta (as in (4.15)) to reduce ∥dk∥ and handle the error

term without compromising the complexities. However, this is not the case for T = 1 as it can be

seen as a two-level problem whose inner function is exactly known (the identity map). In this case,

the choice of β is independent of the problem parameters with or without the linearization term.

4.3.2. High-Probability Convergence for T = 1. In this subsection, we establish an oracle

complexity result with high-probability for the case of T = 1. We first provide a notion of (ϵ, δ)-

stationary point and a related tail assumption on the stochastic first-order oracle below.

Definition 4.2. A point x̄ ∈ X generated by an algorithm for solving (4.1) is called an (ϵ, δ)-

stationary point, if we have ∥GX (x̄,∇F (x̄), β)∥2 ≤ ϵ with probability 1− δ.

Assumption 4.4. Let ∆k+1 = ∇F (xk) − Jk+1
1 for k ≥ 0. For each k, given Fk we have

E[∆k+1|Fk] = 0 and ∥∆k+1∥
∣∣Fk is K-sub-Gaussian.

The above assumption is commonly used in the literature; see [HK14,HLPR19,LO20,ZCC+18].

We also refer to [Ver18] and Appendix B.4 for additional details. The high-probability bound for

solving non-convex constrained problems by Algorithm 8 is given below.

55

Theorem 4.3. Let Assumptions 4.1, 4.2, 4.4 be satisfied by the optimization problem (4.1) with

T = 1. Let τ0 = 1, t0 = 0, τk = 1√
N
, tk = ⌈

√
k⌉, ∀k ≥ 1, where N is the total number of iterations.

Let T = 1 and let {xk, zk}k≥0 be the sequence generated by Algorithm 8 with βk ≡ β > 0. Then, we

have ∀N ≥ 1, δ > 0, with probability at least 1− δ,

1

N

N∑
k=1

∥∥∥GX (xk,∇F (xk), β)
∥∥∥2 ≤ O(K2 log(1/δ)√

N

)
Therefore, the number of calls to SFO and LMO to get an (ϵ, δ)-stationary point is upper bounded by

O(ϵ−2 log2(1/δ)),O(ϵ−3 log3(1/δ)) respectively.

Remark. To the best of our knowledge, the above result is (i) the first high-probability bound for

one-sample stochastic conditional gradient-type algorithm for the case of T = 1, and (ii) the first

high-probability bound for constrained stochastic optimization algorithms in the non-convex setting;

see Appendix J of [MDB21].

4.3.3. Proof Sketch of Main Results. In this section, we only present the proof sketch. The

complete proofs are provided in the appendix. For convenience, let uT+1 = x, and we denote Hk as

the function value of the subproblem at step k, yk as the optimal solution of the subproblem i.e.,

(4.16) Hk(y) := H(y;xk, zk, βk), yk = argmin
y∈X

Hk(y).

Then, the proof of Theorem 4.1 proceeds via the following steps:

(1) We first leverage the merit function Wk := Wα,γ(x
k, zk, uk) defined in (4.9) with appropriate

choices of α, γ for any β > 0 to obtain

Wk+1 −Wk ≤−
τk
2

(
β

[
∥dk∥2 +

T∑
i=1

∥fi(uki+1)− uki ∥2
]
+

β

20L2
∇F
∥∇F (xk)− zk∥2

)

+Rk + τk

(
12

5
+

20L2
∇F

β2

)(
Hk(ỹ

k)−Hk(y
k)
)
, ∀k ≥ 0

where Rk is the residual term (see (B.15)) and E[Rk|Fk] ≤ σ̂2τ2k , as shown in Proposition B.1.

56

(2) Telescoping the above inequality, in Lemma B.6 we obtain the following:

N∑
k=1

τk

[
β

(
∥dk∥2 +

T∑
i=1

∥fi(uki+1)− uki ∥2
)

+
β

20L2
∇F
∥∇F (xk)− zk∥2

]

≤ 2W0 + 2

N∑
k=0

Rk +

(
24

5
+

40L2
∇F

β2

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)
, ∀N ≥ 1.

(3) To further control the error term Hk(ỹ
k)−Hk(y

k) introduced by the ICG method, we set tk, the

number of iterations in ICG method at step k, to ⌈
√
k⌉. By Lemma B.3, we therefore have

Hk(ỹ
k)−Hk(y

k) ≤ 2βD2
X (1 + δ)

tk + 2
≤ 2βD2

X (1 + δ)√
k

, ∀k ≥ 1.

Also, with the choice of τk = 1√
N

and z0 = 0, we can conclude that

N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)
≤ 2βD2

X (1 + δ)√
N

N∑
k=1

1√
k
≤ 4βD2

X (1 + δ).

(4) Then, taking expectation of both sides and by the definition of random integer R, we have

E

[
β

(
∥dR∥2 +

T∑
i=1

∥fi(uRi+1)− uRi ∥2
)

+
β

20L2
∇F
∥∇F (xR)− zR∥2

]
≤ 2W0 + B,

∀N ≥ 1, where B is a constant depending on the problem parameters (β, σ2, L,DX , T, δ).

(5) As a result, we can obtain (4.13) and (4.14) by noting that ∀k ≥ 1

∥G(xk,∇F (xk), β)∥2 ≤ 2β2∥dk∥2 + 2β2

∥∥∥∥projX (xk − 1

β
∇F (xk)

)
− projX

(
xk − 1

β
zk
)∥∥∥∥2

≤ 2β2∥dk∥2 + 2∥∇F (xk)− zk∥2.

where the second inequality follows the non-expansiveness of the projection operator.

The proofs of Theorems 4.2 and 4.3 follow the same argument with appropriate modifications. The

high-probability convergence proof of Theorem 4.3 mainly consists of controlling the tail probability

of the residual term Rk being large.

4.4. Numerical Experiments for T = 1

To demonstrate the effectiveness and efficiency of proposed algorithms compared to 1-SFW

[ZSM+20] for T = 1, we consider the following matrix-valued single-index model [YBL17] with

57

0 200 400 600 800 1000
number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

gr
ad

ie
nt

 m
ap

pi
ng

ASA+ICG
1-SFW

Figure 4.1. ASA+ICG vs. 1-SFW

low-rank constraints:

y = |⟨A,B⋆⟩F |2 + ϵ, rank(B⋆) ≤ s,

where A,B ∈ Rm×n, ϵ ∼ N (0, σ2), ⟨·, ·⟩F denotes the Frobenius inner product, and s is some positive

integer strictly less than m and n. To recover a low-rank matrix B, one can optimize the mean

squared loss with nuclear norm constraint, in which the Frank-Wolfe update is much cheaper than

the projection operator especially with large-scale matrices [Jag13]. Formally, our problem can be

written as

min F (B) = EA,ϵ
[
(y − |⟨A,B⟩F |2)2

]
s.t. ∥B∥⋆ ≤ s.

We evaluate the performance of ASA+ICG (Algorithm 8) and 1-SFW on a toy example where B⋆ =

vv⊤/∥vv⊤∥⋆ is a 4 by 4 rank-1 matrix. The matrix A is generated as A = I + E where Ei,j
i.i.d.∼

N (0, 0.3). The stepsize parameter β = 1 for ASA+ICG, and all the parameters in 1-SFW is set according

to Theorem 2 in [ZSM+20]. As the exact gradient of F is unavailable, we estimate the gradient

mapping by using averaged stochastic gradients. In Figure 4.1, we plot the value of gradient mapping

versus the number of iterations, which demonstrates the superior of our proposed method for T = 1

in the one-sample setting.

4.5. Discussion and Conclusion

In this work, we propose and analyze projection-free conditional gradient-type algorithms for

constrained stochastic multi-level composition optimization of the form in (4.1). We show that the

58

oracle complexity of the proposed algorithms is level-independent in terms of the target accuracy.

Furthermore, our algorithm does not require any increasing order of mini-batches under standard

unbiasedness and bounded second-moment assumptions on the stochastic first-order oracle, and is

parameter-free. Some open questions for future research: (i) Considering the one-sample setting,

either improving the LMO complexity from O(ϵ−3) to O(ϵ−2) for general closed convex constraint

sets or establishing lower bounds showing that O(ϵ−3) is necessary while keeping the SFO in the

order of O(ϵ−2), is extremely interesting; and (ii) Providing high-probability bounds for stochastic

multi-level composition problems (T > 1) and under sub-Gaussian or heavy-tail assumptions (as

in [MDB21,LZW22]) is interesting to explore.

59

CHAPTER 5

Stochastic Conditional Gradient Methods under Interpolation-like

Conditions

5.1. Introduction

Consider the following constrained stochastic optimization problem:

(5.1) min
x∈Ω

{f(x) := Eξ [F (x, ξ)]} ,

where f : Rd → R and Ω ⊂ Rd is a closed and convex set and ξ is a random vector characterizing the

stochasticity in the problem. In a machine learning setup, the function F could be interpreted as the

loss function associated with a sample ξ and the function f could represent the risk, which is defined

as the expected loss. Such constrained stochastic optimization problems arise frequently in statistical

machine learning applications. The conditional gradient algorithm, also called as the Frank-Wolfe

algorithm, is an efficient method for solving constrained optimization problems of the form in (5.1)

due to their projection-free nature [Jag13,HJN15,FGM17,LPZZ17,BZK18,RDLS18]. In each

step of the conditional gradient method, it is only required to minimize a linear objective over the set

Ω. This operation could be implemented efficiently for a variety of sets arising in statistical machine

learning, compared to the operation of projecting onto the set Ω, which is required for example by

the projected gradient method. Hence, the conditional gradient method has regained popularity in

the last decade in the optimization and machine learning community.

There has been extensive work in the past decade on analyzing the stochastic conditional gradient

algorithm for optimization problems of the form in (5.1); see for example [GH13,HL16,LZ16,

RSPS16,Gha19]. However, existing works do not take into account certain favorable structures

that are naturally available in modern over-parametrized machine learning problems. Specifically, it

has been noted that modern machine learning models predict well on unseen data, despite fitting the

training data perfectly [ZBH+16,HLVDMW17,LR18,MBB18,MRSY19,HMRT19]. Examples

include logistic regression or support vector machine with squared-hinge loss that are trained with

60

linearly separable data [VBS19,VML+19,MVL+20] and deep neural networks [VBS19,BBM18].

From an optimization point of view, for the problem in (5.1) with Ω ≡ Rd, the above interpolation

condition means that at the optimal point, the gradient is not only zero (or close to zero) with

respect to the risk function f but is also almost surely equal to zero for the random loss function

F . Such a scenario helps to reduce the stochasticity in the gradient estimation process which in

turn results in improved complexity results for several stochastic optimization procedures. Indeed in

the recent past, several works have provided improved rates for algorithms like stochastic gradient

descent [NWS14,MBB18,BBM18,GLQ+19,VBS19,VML+19] and sub-sampled Newton’s

method [MVL+20]. In particular, for several settings, the above works demonstrate that the

stochastic algorithm may perform as well as the corresponding deterministic counterpart. However,

such works only study unconstrained optimization problems and do not have any consequences for

constrained stochastic optimization problems of the form in (5.1).

Hence, in this work we consider the following question: Can we obtain improvements in the

oracle complexity of algorithms used for projection-free constrained stochastic optimization problems

arising in the context of over-parametrized machine learning models, that are capable of perfectly

interpolating the training data? We give a positive answer to the above question by demonstrating

that the stochastic conditional gradient method, a projection-free technique for solving constrained

stochastic optimization problems, also enjoy improved oracle complexities when they are used to solve

constrained stochastic optimization problems of the form in (5.1) under certain interpolation-like

conditions. We elaborate on the specific form of improvement observed below. For stochastic

conditional gradient algorithms, the oracle complexity is measured in terms of number of calls to

the Stochastic First-order Oracle (SFO) and the Linear Minimization Oracle (LMO) used to the

solve the subproblems (that are of the form of minimizing a linear function over the convex feasible

set) arising in the algorithm. In this work, we make the following contribution to the literature on

conditional gradient methods under interpolation-like assumptions (see Section 5.2 for the exact

definitions) on the stochastic gradient:

(1) For the case of convex f in (5.1), we show that the number of calls to the SFO for the vanilla

stochastic conditional gradient method and stochastic conditional gradient sliding methods are

given respectively by O(ϵ−2) and O(ϵ−1.5). For comparison, without such assumptions, the

61

corresponding complexities are O(ϵ−3) and O(ϵ−2) respectively. The number of calls to the

linear minimization oracle (LMO) is of the order O(ϵ−1), in both cases.

(2) We also demonstrate similar improvements in the context of zeroth-order conditional gradient

methods, where one only observes noisy evaluations of the function being optimized. Specifically,

the number of calls to the stochastic zeroth-order oracle for the vanilla stochastic conditional

gradient method and stochastic conditional gradient sliding methods are given respectively by

O(dϵ−2) and O(dϵ−1.5), with the same LMO complexity as the first-order setting.

We emphasize that, notably the above improvements are achieved without incorporating any

double-loop based existing variance reduction techniques, for example SVRF [RSPS16] or SPIDER-

FW [YSC19]. It is also worth noting that [DB19,Sch20] argue that variance reduction techniques

(at the least existing ones) are ineffective in the context of modern deep learning models which are

invariably over-parametrized. We also remark that, in contrast to stochastic gradient methods for

unconstrained optimization [VBS19,BBM18], the above improved results still do not match the

corresponding deterministic rates highlighting the subtlety with projection-free optimization.

5.1.1. Related Work. The conditional gradient method or the Frank-Wolfe method was

proposed first by [FW56]. It has obtained renewed interest in the machine learning and optimization

communities due to their projection-free nature. We refer the reader to [Jag13,HJN15,LJJ15,

BS17,GSK18], for a partial list of recent works predominantly in the deterministic setting. For the

stochastic setting that we consider, in each step of the conditional gradient method, the algorithm

requires access to a stochastic first-order oracle (SFO) and a linear minimization oracle (LMO). The

complexity of conditional gradient method is hence measured by the number of calls to both oracles.

Convex Setting. Considering the convex setup, [HL16] showed that to obtain an ϵ-optimal

point, the number of calls to SFO and LMO are given respectively by O(1/ϵ3) and O(1/ϵ1).
Furthermore, [LZ16] proposed Conditional Gradient Sliding (CGS), a modified Frank-Wolfe method

by Nesterov’s acceleration, that improves the number of calls to the SFO to O(1/ϵ3) while keeping the

number of calls to LMO the same. The above methods require an increasing batch size, in each step,

to obtain the above mentioned complexities. Recently, [MHK18b,HKMS19,ZSM+19] addressed

the issue of increasing batch size. But these works require potentially restrictive assumptions and

in particular [MHK18b] and [ZSM+19] also require an increased number of calls to the LMO.

We highlight that [YSC19] used the SPIDER technique, and showed that one could improve the

62

Extra Conditions
First-Order

SFO LMO

Vanilla-SFW – O(ϵ−3) O(ϵ−1)

SPIDER-SFW Mean-square gradient-smoothness O(ϵ−2) O(ϵ−1)

Vanilla-SFW Interpolation-like O(ϵ−2) O(ϵ−1)

Vanilla-SCGS – O(ϵ−2) O(ϵ−1)

SPIDER-SCGS Mean-square gradient-smoothness O(ϵ−2) O(ϵ−1)

Vanilla-SCGS Interpolation-like O(ϵ−1.5) O(ϵ−1)

Table 5.1. Comparison of the oracle complexities of conditional gradient methods
under various assumptions in the first-order setting. All methods require the gradient-
smoothness condition: ∥∇f(x) − ∇f(y)∥2 ≤ L∥x − y∥. Mean-square gradient-
smoothness refers to Eξ∥∇F (x, ξ) − ∇F (y, ξ)∥22 ≤ L∥x − y∥22 and is stronger than
gradient-smoothness condition. SFO refers to number of calls to the stochastic
first order oracle. LMO refers to the number of calls to the linear minimization
oracle. The results for vanilla-SFW are from [HL16] and [RSPS16]. The results for
vanilla-SCGS are from [LZ16]. The results for SPIDER-SFW and SPIDER-SCGS are
from [YSC19]. The results highlighted in blue are our results. Finally, in this work,
we also obtain complexities under the zeroth-order setting which are not highlighted
in this table, for simplicity.

SFO complexity from O(1/ϵ3) to O(1/ϵ2) while mainting the number of calls to the LMO at O(1/ϵ).
However, to obtain this improved complexities, the SPIDER technique requires double-loop based

variance reduction techniques, and hence they are harder to implement in practice compared to the

vanilla methods. Furthermore, the SPIDER technique requires the stronger mean-square Lipschitz

gradient assumption.

Comparison to 1-sample SFW from [ZSM+19]. While above discussed methods require

increasing batch-size with the number of iterations, we highlight that recently [ZSM+19] proposed

1-sample SFW which does not require increasing batch size. The results in [ZSM+19] for the 1-

sample SFW method has an SFO complexity of O(1/ϵ2) for the convex setting, the same complexity

we present in this work. However, the LMO complexity of 1-sample SFW is O(1/ϵ2), and they

require additional smoothness assumption on F . We emphasize that increasing batch size setting is

commonly used in the literature of conditional gradient methods and obtaining methods without

this requirement under milder assumptions are interesting future work. In this work, we leverage the

63

standard setting of SFW with increasing batch sizes, and focus on the improved oracle complexities

of vanilla SFW methods under certain favorable structures.

Interpolation. In the interpolation regime, [MBB18] showed that mini-batch stochastic

gradient descent (SGD) algorithm enjoys exponential rates of convergence for unconstrained strongly-

convex optimization problems; see also [SV09,NWS14] for related earlier work. For the non-convex

setting, [BBM18] analyze SGD for non-convex functions satisfying the Polyak-Lojasiewicz (PL)

inequality ([Pol63]) under the interpolation condition and show that SGD can achieve a linear

convergence rate. Later, [VBS19] introduced a more practical form of interpolation condition, and

prove that the constant step-size SGD can obtain the optimal convergence rate for strongly-convex

and smooth convex functions. They also show the first results in the non-convex setting that

the constant step-size SGD can obtain the deterministic rate O(1/t) in the interpolation regime.

Subsequently, [MVL+20] investigate the regularized subsampled Newton method (R-SSN) and

the stochastic BFGS algorithm under the interpolation-like conditions. Very recently, [RBGM20]

showed that for non-convex problems, one could escape saddle-points and converge to local-minimizers

faster under SGC condition. We emphasize that all the above works consider only unconstrained

stochastic optimization problems, while we consider the more challenging constrained stochastic

optimization problems.

5.2. Preliminaries and Assumptions

We now list and discuss the set of assumptions made in our work. We first list some regularity

assumptions on the function f and the set Ω.

Assumption 5.1. The function f has L-Lipschitz gradient ∇f , i.e., for any pair of points x, y ∈ Ω,

we have ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, and the feasible set Ω ⊂ Rd is bounded, i.e.,max
x,y∈Ω

∥x− y∥ ≤
D.

The above set of assumptions are standard in the analysis of stochastic conditional gradient methods

and has been used in prior works in the literature; see for example [GL13]. We make the above

assumptions for both the first-order setting. We also require the following smoothness assumption in

the zeroth-order setting.

64

Assumption 5.2. The function F has Lipschitz continuous gradient with constant L, almost surely

for any ξ, i.e., for any x, y ∈ Rd, i.e., almost surely we have ∥∇F (x, ξ)−∇F (y, ξ)∥ ≤ L ∥x− y∥.

Note that the above assumption is stronger than the first statement of Assumption 5.1 and

implies it. However, we only use Assumption 5.2 for the analysis of zeroth-order algorithms.

5.2.1. Growth Conditions in the Convex Constrained Setting. We now state the main

interpolation-like assumptions that we make in our work when f is convex and provide the main

intuition behind such an assumption.

Assumption 5.3 (Moment-based Weak Growth Condition). Let x∗ be the minimum point of f .

We say that f satisfies the Moment-based Weak Growth Condition (WGC) with constant ρ, if for any

point x ∈ Ω, we have

(5.2) Eξ ∥∇F (x, ξ)∥2 ≤ 2ρL [f(x)− f(x∗)] .

Assumption 5.4 (Variance-based Weak Growth Condition). Let x∗ be the minimum point of

f . We say that the function f satisfies the Variance-based Weak Growth Condition (WGC) with

constant ρ, if for any point x ∈ Ω, we have

(5.3) Eξ ∥∇F (x, ξ)−∇f(x)∥2 ≤ 2ρL [f(x)− f(x∗)] .

The above conditions are motivated by the so-called strong growth condition: E∥∇F (x, ξ)∥2 ≤
ρ∥∇f(x)∥2, used in [VBS19] for obtaining faster rates of convergence for stochastic gradient method

in the unconstrained setting. Notice that in the interpolation setting, when ∇f(x∗) = 0, we have

∇F (x∗, ξ) = 0, almost surely. Thus, the strong growth condition is defined exactly to take advantage

of this situation. Furthermore, in the smooth convex setting, [VBS19] showed that the strong-growth

condition is equivalent to the moment-based weak growth condition in Assumption 5.3. However,

the moment-based weak growth condition as proposed in [VBS19] is not directly suited for the

constrained stochastic setting that we consider in this work. It is easy to construct examples for

which there exists stationary point at the boundary of Ω with non-zero (stochastic) gradient, i.e.,

E∥∇F (x, ξ)∥2 could remain positive while the right hand side goes to 0 and hence the assumption is

not satisfied. In order to resolve this issue, for the constrained setting, we relax the moment-based

65

growth conditions to the variance-based versions. Note that we have

E∥∇F (x, ξ)−∇f(x)∥2 = E∥∇F (x, ξ)∥2 − ∥∇f(x)∥2 ≤ E∥∇F (x, ξ)∥2.

Thus variance-based growth conditions naturally become the substitute for the moment-based version

in constrained problems and could hold even the moment-based conditions do not hold. As they are

also motivated by the interpolation assumption, we refer to these conditions as interpolation-like

conditions. Formally, under the variance-based growth conditions for a convex f , if we attain an

optimal point x∗ ∈ Ω, the variance of the stochastic first-order oracle will be almost surely zero, i.e.,

∇F (x∗, ξ) = ∇f(x∗) almost surely. This property eventually leads to the improvements in the query

complexity that we demonstrate. We emphasize that it is natural to construct counter-examples

that violate Assumption 5.4. In those cases, the improved query complexities that we demonstrate

are simply not applicable. Finally, we also have the following natural relationships between the two

conditions.

Proposition 5.1. The Weak Growth Conditions defined above have the following relations:

(a) If f satisfies the Moment-based WGC (5.3) with ρ, then f satisfies the Variance-based WGC

(5.4) with ρ and there exists x∗ ∈ Ω such that ∇f(x∗) = 0.

(b) If f satisfies the Variance-based WGC (5.4) with ρ and there exists x∗ ∈ Ω such that ∇f(x∗) = 0,

then f satisfies the Moment-based WGC (5.3) with ρ+ 1.

5.2.2. Growth Conditions in the Zeroth-Order Constrained Setting. In the zeroth-order

setting, we only assume availability of the noisy function evaluations. This oracle setting is motivated

by several applications where only noisy function queries of problem (5.1) is available, such as

reinforcement learning [SHC+17,CRS+18a,CRS+18b], hyperparameter tuning [SLA12], and

black-box attacks to deep networks [CZS+17,SZK19]. Hence, we use the Gaussian Stein’s identity

based random gradient estimator, a standard gradient estimator in the zeroth-order optimization

literature [GL13,DJWW15,NS17,BG21]:

Ḡν(x) =
1

b

b∑
j=1

F (x+ νuj , ξj)− F (x, ξj)

ν
uj ,

66

where u1, . . . , ub are i.i.d. samples from N (0, Id). The above gradient estimator is a biased estimator

of the true gradient ∇f(x), and was also used in [BG21], to develop zeroth-order conditional gradient

descent algorithms.

While for the first-order setting, we use the relatively weaker variance-based conditions to obtain

the improved bounds, in the zeroth-order setting, it turns out the stronger moment-based conditions

are required. The reason is that the mean square error of the biased zeroth-order gradient estimator

is bounded above by E∥∇F (x, ξ)∥2. Hence, to obtain improved rates, it makes it necessary to

make assumptions on the moments of the stochastic gradient directly. We emphasize that this is

required only for the constrained problems, since the moment-based conditions are equivalent to

the variance-based conditions when there exists one zero-gradient point in the constraint set (see

Proposition 5.1). In particular, we show in Appendix C.3 that a zeroth-order version of Theorem 3

from [VBS19], for stochastic gradient descent, to bound the gradient size in the nonconvex setting

could be proved just under the variance-based growth conditions.

5.2.3. Motivating Examples. Before we present our main results in the next section, we

briefly discuss some motivating examples of constrained stochastic optimization problems that arise

in modern machine learning. In the convex setting, it is easy to see that kernel regression [LR18],

squared-Hinge loss based linear SVM classifier or logistic regression on linearly separable data could

be considered as operating in the over-parametrized regime and hence satisfy interpolation-like

conditions [VBS19,MVL+20].

However, without any constraints, such predictors might be biased against certain sensitive

features like race or gender. One way to build fair predictors is to explicitly encode fairness constraints

with respect to certain pre-defined sensitive features [DOBD+18,ABD+18]. Specifically, it was

shown in [ABD+18] that several standard and well-accepted notions of fairness in classification

setting, including equalized odds [HPS16], demographic parity [DIKL18], balance for the negative

class [KMR16], treatment equality [BHJ+18] could be formulated as empirical risk minimization

problems subjected linear inequality constraints. In this case, the problem is exactly of the form

in (5.1) with Ω being a polytope. Furthermore, [DOBD+18] also proposed a general approach

for fair empirical risk minimization. Similar to [ABD+18], the fundamental idea is to enforce

constraints such that the conditional risk of a predictor is not varying much with respect to the

67

sensitive features associated with the problem. Such formulations of fair empirical risk minimization

in the interpolation regime also fall under the class of problems in (5.1).

Squared hinge loss with linearly separable data. As a concrete example, we extend the

unconstrained examples presented in [VBS19] to the constrained setting we consider. Assuming a

finite support of features and the linearly separable data, it has been shown that the squared-hinge

loss satisfies SGC with ρ = c/τ2 where c is the cardinality of the support and τ is the margin

(Lemma 1 in [VBS19]). In the above regime, the optimal classifier that minimizes the loss and

achieves a stationary point with zero gradient is not always unique. In practice, to construct a fair

classifier, enforcing constraints is a natural approach. Note that if there exists an x∗ ∈ Ω, by the

convexity and the L-smoothness of f , we have

(5.4) ∥∇f(x)∥2 ≤ 2L(f(x)− f(x∗)).

That is to say, for linearly separable data with margin τ and a finite support of size c, if there exists

one x∗ ∈ Ω, the squared-hinge loss satisfies Assumption 5.3 with ρ = c/τ2.

5.3. Improved Complexities for Stochastic Conditional Gradient Methods

We now provide improved complexities for stochastic conditional gradient methods under the

interpolation-like assumption in Section 5.2. For convenience, we first introduce the following

mini-batch stochastic gradients with first-order and zeroth-order oracle access: at t-th iteration, we

uniformly pick i.i.d. samples {ξt,1, . . . , ξt,bt} and estimate the gradient by

∇̃t :=
1

bt

bt∑
i=1

∇F (xt−1, ξt,i), Ḡt
ν :=

1

bt

bt∑
j=1

F (xt−1 + νut,j , ξt,j)− F (xt−1, ξt,j)

ν
ut,j

where ut,1, . . . , ut.bt are i.i.d. samples from N (0, Id).

5.3.1. Stochastic Frank-Wolfe. In this section, we studied the oracle complexity of the vanilla

stochastic Frank-Wolfe algorithm under the weak interpolation-like conditions in Assumption 5.4

and 5.3.

Theorem 5.1. Consider solving problem (5.1), by Algorithm 9, under Assumption 5.1 with f

being convex.

68

Algorithm 9 Stochastic Frank-Wolfe
Input: x0 ∈ Ω, number of iterations T , γt ∈ [0, 1], minibatch size bt
for t = 1, 2, . . . , T do

Compute the gradient gt as follows:
Set gt = ∇̃t (for the first-order setting).
Set gt = Ḡt

ν (for the zeroth-order setting).
Compute dt = argmind∈Ω ⟨d, gt⟩
xt = xt−1 + γt(dt − xt−1)

end for
Output: xT

(a) Assuming access to stochastic first-order oracle, under Assumption 5.4, setting

γt =
4

t+ 3
, bt = ⌈(t+ 3)/2⌉,

we have the following convergence rate:

E[f(xt)− f(x∗)] ≤ 2(f(x0)− f(x∗)) + 8(ρ+ 1)LD2

t+ 3
.

Hence, the total number of calls to the stochastic first-order oracle and linear minimization oracle

required to be solved to find an ϵ-optimal point of problem (5.1) are, respectively, bounded by

O
(
ϵ−2
)
, O

(
ϵ−1
)
.

(b) Assuming access to stochastic zeroth-order oracle, under Assumptions 5.3 and 5.2, setting

γt =
4

t+ 3
, bt = (t+ 3)(d+ 4), ν =

D

(T + 3)(d+ 6)3/2

we have

E[f(xt)− f(x∗)] ≤ 2(f(x0)− f(x∗)) + 8(ρ+ ρ−1 + 1)LD2

t+ 3
.

Hence, the total number of calls to the stochastic zeroth-order oracle and linear minimization oracle

required to be solved to find an ϵ-optimal point of problem (5.1) are, respectively, bounded by

O
(
dϵ−2

)
, O

(
ϵ−1
)
.

The above oracle complexities in the first-order setting, match the results obtained by [YSC19,

ZSM+19]. However, the above works require double-loop based variance reduction techniques which

in turn require the stronger mean-square gradient-Lipschitz assumption. Furthermore, the use of

69

the variance reduction technique results in the increased wall-clock running time of the algorithm.

Our result here is applicable to the vanilla version of the stochastic conditional gradient method, as

long as the problem satisfies the interpolation-like conditions observed in modern machine learning

problems.

5.3.2. Stochastic Conditional Gradient Sliding. In this section, we analyze the complexity

of the stochastic gradient sliding (SCGS) algorithm under the weak growth condition. The SCGS

was first proposed and thoroughly analyzed in [LZ16]. It is a fundamental modification of the

conditional gradient algorithm that achieved improved oracle complexities without relying on any

variance reduction techniques. Below, we show that under the interpolation-like assumptions in

Section 5.2, the oracle complexity of the SCGS could be further improved compared in both the

first-order and zeroth-order methods.

Algorithm 10 Stochastic Conditional Gradient Sliding (SCGS)

Input: x0 ∈ Ω, T , βt ∈ R+, γt ∈ [0, 1], bt, y0 = x0

for t = 1, 2, . . . , T do

Set zt = (1− γt)xt−1 + γtyt−1

Compute the gradient gt as follows:

Set gt = ∇̃t (first-order).

Set gt = Ḡt
ν (zeroth-order).

Solve

yt = ICG(gt, yt−1, βt, ηt)

by Algorithm 11

Set xt = (1− γt)xt−1 + γtyt

end for

Output: xT

70

Algorithm 11 Inexact Conditional Gradient Method (ICG)
Input: g, u, β, η, u1 = u, k = 1

1. Let vk be an optimal solution for the subproblem

(5.5) max
v∈Ω
{hk(v) = ⟨g + β(uk − u), uk − v⟩}.

2. If hk(vk) ≤ η, terminate and output uk.

3. uk+1 = (1− αk)uk + αkvk with

αk = min

{
1,
⟨β(u− uk)− g, vt − ut⟩

β ∥vk − uk∥2
}
.

4. Set k ← k + 1 and go to step 1.

Theorem 5.2. Consider solving problem (5.1), by Algorithm 10, under Assumption 5.1 with f

being convex.

(a) Assuming access to stochastic first-order oracle, under Assumption 5.4, setting

βt =
4L

t+ 2
, γt =

3

t+ 2
, ηt =

LD2

t(t+ 1)
, bt =

⌈
3ρt(t+ 1)

⌉
we have

E[f(xt)− f(x∗)] ≤ 6LD2

(t+ 2)2
+

15LD2 + 3∥∇f(x∗)∥D
(t+ 1)(t+ 2)

.

Hence, the total number of calls to the stochastic first-order oracle and linear minimization oracle

required to be solved to find an ϵ-optimal point of problem (5.1) are, respectively, bounded by

O
(
ϵ−1.5

)
, O

(
ϵ−1
)
.

(b) Assuming access to stochastic zeroth-order oracle, in addition, with Assumption 5.3, 5.2, setting

βt =
4L

t+ 2
, γt =

3

t+ 2
, ηt =

LD2

t(t+ 1)
, bt =

⌈
6ρ(d+ 4)t(t+ 1)

⌉
, ν =

D

(T + 2)2(d+ 6)3/2
,

we have

E[f(xt)− f(x∗)] ≤ 8LD2

(t+ 2)2
+

32LD2

(t+ 1)(t+ 2)
.

71

100 101 102

Number of Iterations

10−4

10−3

10−2

10−1

100
f

(w
)
−
f
∗

Inseparable

Separable

101 102 103

Number of SFO

10−4

10−3

10−2

10−1

100

f
(w

)
−
f
∗

Inseparable

Separable

−8 −6 −4 −2 0 2 4 6 8

−4

−2

0

2

4

6

8

10

Seperable

Inseperable

Figure 5.1. The convergence behaviors of SFW for linearly (in)-separable data. The
right panel visualizes the first 2 dimensions of the synthetic data used for numerical
analyses.

Hence, the total number of calls to the stochastic zeroth-order oracle and linear minimization oracle

required to be solved to find an ϵ-optimal point of problem (5.1) are, respectively, bounded by

O
(
dϵ−1.5

)
, O

(
ϵ−1
)
.

To the best of our knowledge, the above complexity of O(ϵ−1.5) is not achieved for any variance

reduced versions of stochastic Frank-Wolfe methods. This improvement is solely obtained by the

SCGS algorithm of [LZ16] under the interpolation-like assumptions which are natural in modern

machine learning problems, without any variance reduction methods. We also highlight that, in

the unconstrained setting, the stochastic gradient method performs as well as its deterministic

counterpart. However, the above result still falls short of the corresponding deterministic complexity

of conditional gradient sliding, which is of the order O(ϵ−0.5) [LZ16]. This highlights the intrinsic

difficulty associated with projection-free methods for constrained stochastic optimization problems.

5.4. Experiments

We generate synthetic binary classification datasets with two isotropic Gaussian blobs symmetric

with respect to the origin, with the sample size n = 100, 000 and the dimension d = 500. We

ensure that two blobs are linearly separable with a positive margin for one dataset while the

other has an overlap. We seek to find a hyperplane w⊤x that minimizes the squared-hinge loss

f(w) = 1
n

∑n
i=1 fi(w) = 1

n

∑n
i=1max(0, 1 − yi · w⊤xi)

2 satisfying the constraint ∥w∥1 ≤ 1. Note

that f(w) satisfies the weak growth condition for linearly separable data in view of sampling only a

72

mini-batch of gradient (with replacement) in each iteration, and the parameter ρ = Lmax/L; see

Proposition 2 in [VBS19], and Lmax is the largest Lipschitz constant for ∇fi(w). In Figure 5.1, we

plot the suboptimality f(w) − f∗ versus the number of iterations and the number of calls to the

SFO. The results are obtained by averaging over 100 runs with random initialization w0. We observe

that SFW converges essentially faster for linearly separable data than the inseparable case.

5.5. Discussion and Conclusion

We briefly discuss extensions of our results to the nonconvex setting. Our proposed assumption

is motivated by the notion of Frank-Wolfe gap [DR70, Hea82], which is defined as Gf (x) =

maxy∈Ω⟨∇f(x), x− y⟩. With this, a nonconvex function f satisfies Constrained Growth Condition

with constant ρ, if for any point x ∈ Ω, Eξ ∥∇F (x, ξ)−∇f(x)∥2 ≤ 2ρLGf (x). Note that if f

is convex, then Gf (x) ≥ f(x) − f(x∗). Hence, this generalizes Assumption 5.4 defined for the

convex setting. Under this assumption in the nonconvex setting, it could be shown that the vanilla

stochastic Frank-Wolfe algorithm can find an ϵ-stationary point of the problem within at most

O
(
1/ϵ3

)
and O

(
1/ϵ2

)
number of calls to the SFO linear subproblem solver, respectively. However,

although existence of functions satisfying the above asssumption could be shown, it is not clear if

practical nonconvex functions appearing in machine learning context satisfy it. It would be extremely

interesting to examine this as future work.

In a nutshell, considering convex constrained stochastic optimization problems, we show improved

complexity bounds for the vanilla stochastic conditional gradient method under certain interpolation-

like conditions that occur naturally in over-parametrized models that are common in machine

learning. Our results do not require any double-loop based variance reduction techniques and

is hence easily implementable. Furthermore, apart from the batch-size parameter for stochastic

conditional gradient sliding method (Algorithm 10), the tuning parameters of the algorithm are

independent of the parameter ρ characterizing the interpolation-like conditions.

73

APPENDIX A

Appendix of Chapter 3

A.1. Experimental Details

All experiments are conducted on a laptop with Intel Core i7-11370H Processor and Windows 11

operating system. The total iteration numbers for a9a and MNIST are 10000 and 3000 respectively.

The graph that represents the network topology is set to be ring (or cycle in graph theory) for a9a

and random graph (given by [MBMXC22]) for MNIST (See Figure A.1). To demonstrate the

performance of our algorithms in a constant batch size setting, the batch sizes are chosen to be

4 for a9a and 32 for MNIST in all algorithms. We adjust the learning rates provided in the code

of [MBMXC22] accordingly and select the ones that have the best performance. For Prox-DASA

and Prox-DASA-GT we choose a diminishing stepsize sequence, namely, αk = min
{
α
√

n
k , 1
}

for all

k ≥ 0. Note that the same complexity (up to logarithmic factors) bounds can be obtained by directly

plugging in the aforementioned expressions for αk in Section 4.3. Then we tune γ ∈ {1, 3, 10} and

α ∈ {0.3, 1.0, 3.0}. The penalty parameter λ is chosen to be 0.0001 for all experiments.

We summarize the outputs of all experiments in Table A.1, from which we can tell Prox-DASA

and Prox-DASA-GT achieve good performance in a relatively short amount of time. The stationarity

is defined as ∥G(x̄k,∇F (x̄k), 1)∥2 + ∥Xk − X̄k∥2, which is the same as that in [MBMXC22]. As

mentioned in the caption of Figure 2 in the main paper, there is an extra hyperparameter q in

ProxGT-SR-E, and we found that large q already works well for a9a experiment, but q has to be

small in the MNIST experiment otherwise the final accuracy will be much smaller than the one

presented in Table A.1. Hence in ProxGT-SR-E we choose q = 1000 for a9a and q = 32 for MNIST,

and the plots that take this amount of epochs into account are in Figure A.2.

A.2. Proof of Theorem 3.1

We present the complete proof in this section. In the sequel, ∥ · ∥ denotes the ℓ2-norm for

vectors and Frobenius norm for matrices. ∥ · ∥2 denotes the spectral norm for matrices. 1 represents

74

Table A.1. Comparisons between all algorithms

Algorithm Accuracy Training Loss Stationarity Communication
time per iteration (s)

Computation
time per iteration (s)

Total time
per iteration (s)

a9a
SPPDM 84.64% 0.3340 0.0174 0.0260 0.0305 0.0565

ProxGT-SR-E 76.38% 0.6528 0.0797 0.0521 0.0394 0.0915
DEEPSTORM v2 84.90% 0.3274 0.0029 0.0525 0.0398 0.0923
Prox-DASA 84.71% 0.3338 0.0017 0.0360 0.0298 0.0658

Prox-DASA-GT 84.69% 0.3342 0.0017 0.0390 0.0301 0.0691
MNIST

SPPDM 76.54% 0.7854 0.0436 0.1587 0.1246 0.2833
ProxGT-SR-E 92.26% 0.3042 0.0250 0.1771 0.3368 0.5139
DEEPSTORM v2 94.52% 0.1759 0.0016 0.1758 0.2030 0.3788
Prox-DASA 96.74% 0.1469 0.0081 0.1912 0.1299 0.3211

Prox-DASA-GT 96.84% 0.1460 0.0058 0.1935 0.1317 0.3252

Figure A.1. Network topology. The left represents the ring topology and the right
represents the random graph.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

40

50

60

70

80

Te
st

 a
cc

ur
ac

y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 lo
ss

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

10 4

10 3

10 2

10 1

100

101

102

St
at

io
na

rit
y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(c)

0 20 40 60 80 100
Epoch

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(d)

0 20 40 60 80 100
Epoch

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(e)

0 20 40 60 80 100
Epoch

10 3

10 2

10 1

100

101

102

St
at

io
na

rit
y

SPPDM
ProxGT-SR-E
DEEPSTORMv2
Prox-DASA
Prox-DASA-GT

(f)

Figure A.2. Comparisons between SPPDM [WZC+21], ProxGT-SR-E [XDKK21],
DEEPSTORM [MBMXC22], Prox-DASA 2, and Prox-DASA-GT 3. In each experiments
ProxGT-SR-E computes 1 more epoch than other algorithms every q iterations. q is
chosen to be 1000 for a9a and 32 for MNIST.

75

the all-one vector. We identify vectors at agent i in the subscript and use the superscript for the

algorithm step. For example, the optimization variable of agent i at step k is denoted as xki , and

zki is the corresponding dual variable. We use uppercase bold letters to represent the matrix that

collects all the variables from agents (corresponding lowercase) as columns. To be specific,

Xk =
[
xk1, . . . , x

k
n

]
, Zk =

[
zk1 , . . . , z

k
n

]
, Yk =

[
yk1 , . . . , y

k
n

]
, Vk+1 =

[
vk+1
1 , . . . , vk+1

n

]
.

We add an overbar to a letter to denote the average over all agents. For example,

x̄k =
1

n

n∑
i=1

xki =
1

n
Xk1, X̄k = [x̄k, . . . , x̄k] = x̄k1⊤ =

1

n
Xk11

⊤

Hence, the consensus errors for iterates {xki } and dual variables {zki } can be written as

1

n

n∑
i=1

∥∥∥xki − x̄k
∥∥∥2 = 1

n

∥∥Xk − X̄k

∥∥2 , 1

n

n∑
i=1

∥∥∥zki − z̄k
∥∥∥2 = 1

n

∥∥Zk − Z̄k
∥∥2 .

We denote L∇F = max
1≤i≤n

{L∇Fi} for ease of presentation. Our proof heavily relies on the merit

function below:

(A.1) W (x̄k, z̄k) = Φ(x̄k)− Φ∗︸ ︷︷ ︸
function value gap

+Ψ(x̄k)− η(x̄k, z̄k)︸ ︷︷ ︸
primal convergence

+λ
∥∥∥∇F (x̄k)− z̄k

∥∥∥2︸ ︷︷ ︸
dual convergence

,

where

(A.2) η(x, z) = min
y∈Rd

{
⟨z, y − x⟩+ 1

2γ
∥y − x∥2 +Ψ(y)

}
.

A.2.1. Technical Lemmas.

Lemma A.1. For any p, q, r ∈ N+ and matrix A ∈ Rp×q,B ∈ Rq×r, we have:

∥AB∥ ≤ min
(
∥A∥2 · ∥B∥, ∥A∥ · ∥B⊤∥2

)
.

Lemma A.2. Suppose W satisfies Assumption 3.1. For any m ∈ N+, we have∥∥∥∥Wm − 1n1
⊤
n

n

∥∥∥∥
2

≤ ρm

76

Lemma A.3. Suppose we are given three sequences {an}∞n=0, {bn}∞n=0, {τn}∞n=−1, and a constant

r satisfying

(A.3) ak+1 ≤ rak + bk, ak ≥ 0, bk ≥ 0, 0 = τ−1 ≤ τk+1 ≤ τk ≤ 1,

for all k ≥ 0. Then for any K > 0, we have

K∑
k=0

τkak ≤
1

1− r

(
τ0a0 +

K∑
k=0

τkbk

)

Proof. Note that we have

(1− r)
K∑
k=0

τkak ≤
K∑
k=0

τk(ak − ak+1 + bk) =
K∑
k=0

(τk − τk−1)ak − τKaK+1 +
K∑
k=0

τkbk ≤ τ0a0 +
K∑
k=0

τkbk,

where the inequalities use (A.3), and the equality uses summation by parts. □

Lemma A.4. Let Ψ : Rd → R ∪ {+∞} be a closed proper convex function.

(a) Let η(x, z) be the function defined in (A.2). Then, ∇η is Cγ-Lipschitz continuous where

(A.4) Cγ = 2

√
(1 +

1

γ
)2 + (1 +

γ

2
)2.

(b) For x, z ∈ Rd and γ ∈ R, let y+ = proxγΨ(x−γz) = argmin
y∈Rd

{
⟨z, y − x⟩+ 1

2γ ∥y − x∥2 +Ψ(y)
}
,

then for any y ∈ Rd, we have

Ψ(y+)−Ψ(y) ≤
〈
z + γ−1(y+ − x), y − y+

〉
Proof. We prove (a) at first. Recall that the Moreau envelope of a convex and closed function

Ψ multiplied by a scalar γ is defined by

envγΨ(x) = min
y∈Rd

{
1

2γ
∥y − x∥2 +Ψ(y)

}
,

and its gradient is given by∇envγΨ(x) = 1
γ (x−prox

γ
Ψ(x)) where proxγΨ(x) = argmin

y∈Rd

{
1
2γ ∥y − x∥2 +Ψ(y)

}
.

Note that η(x, z) = envγΨ (x− γz)− γ
2 ∥z∥

2. Therefore, the partial gradients of η are given by

(A.5) ∇xη(x, z) = −z − γ−1
(
proxγΨ (x− γz)− x

)
, ∇zη(x, z) = proxγΨ (x− γz)− x.

77

Hence, for any (x, z) and (x′, z′),

∥∥∇η(x, z)−∇η(x′, z′)∥∥ ≤ ∥∥∇xη(x, z)−∇xη(x′, z′)∥∥+ ∥∥∇zη(x, z)−∇zη(x′, z′)∥∥
≤ 2(1 + 1/γ)

∥∥x− x′
∥∥+ (2 + γ)

∥∥z − z′
∥∥ ≤ Cγ

∥∥(x, z)− (x′, z′)
∥∥ .

To prove (b), denote the subdifferential of Ψ(x) as ∂Ψ(x). By the optimality condition, we have 0 is

a subgradient of H(y) = ⟨z, y − x⟩+ 1
2γ ∥y − x∥2 +Ψ(y) at y+, i.e.,

0 ∈ z + γ−1(y+ − x) + ∂Ψ(y+).

Hence, there exists a subgradient of Ψ(y) at y+, denoted by ∇̃Ψ(y+), such that

∇̃Ψ(y+) = −z − γ−1(y+ − x).

Finally, by the convexity of Ψ, we have for any y ∈ Rd,

Ψ(y)−Ψ(y+) ≥
〈
∇̃Ψ(y+), y − y+

〉
=
〈
−z − γ−1(y+ − x), y − y+

〉
,

which completes the proof. □

A.2.2. Building Blocks of Main Proof. The following lemma connects the consensus error

of Y to the consensus errors of X and Z.

Lemma A.5. Let yk+ = prox(x̄k − γz̄k). Then for any k ≥ 0 and γ > 0, we have

∥∥∥yk+ − ȳk
∥∥∥2 + 1

n

∥∥Yk − Ȳk

∥∥2 = 1

n

n∑
i=1

∥∥∥yki − yk+

∥∥∥2 ≤ 2

n

{
∥Xk − X̄k∥2 + γ2∥Zk − Z̄k∥2

}
.

Proof. By the non-expansiveness of proximal operator, we have

∥yki − yk+∥ ≤ ∥xki − x̄k − γ
(
zki − z̄k

)
∥ ≤ ∥xki − x̄k∥+ γ∥zki − z̄k∥.

Hence we know the consensus error of y can be bounded

1

n
∥Yk − Ȳk∥2 = 1

n

n∑
i=1

∥yki − ȳk∥2 = 1

n

n∑
i=1

∥yki − yk+ +
1

n

n∑
j=1

(yk+ − ykj)∥2

=
1

n

n∑
i=1

∥yki − yk+∥2 − ∥
1

n

n∑
j=1

(
ykj − yk+

)
∥2 ≤ 1

n

n∑
i=1

∥yki − yk+∥2

78

≤ 2

n

{
∥Xk − X̄k∥2 + γ2∥Zk − Z̄k∥2

}
where the third equality uses the fact that

1

n

n∑
i=1

∥∥∥∥∥∥vi −
 1

n

n∑
j=1

vj

∥∥∥∥∥∥
2

=
1

n

n∑
i=1

∥vi∥2 −

∥∥∥∥∥∥ 1n
n∑
j=1

vj

∥∥∥∥∥∥
2

for any vectors vi (1 ≤ i ≤ n). □

The following technical lemma explicitly characterizes the consensus error.

Lemma A.6 (Conensus Error of Algorithm 2: Prox-DASA). Suppose Assumptions 3.1, 3.4, 3.5,

3.6, and 3.7 hold. Let ϱ(m) = (1+ρ2m)ρ2m

(1−ρ2m)2
, and ρ,m and αk satisfy

(A.6) ϱ(m)α2
k ≤ min

{
1

8
,

1

24L2
∇Fγ

2

}
, 0 = α−1 ≤ αk+1 ≤ αk ≤ 1

for any k ≥ 0. Then in Algorithm 2 for any p ≥ 0, we have

K∑
k=0

αpk
n
E
[
∥Xk − X̄k∥2

]
≤ 4γ2(σ2 + 3L2

∇F ν
2)ϱ(m)

K∑
k=0

αp+2
k ,

K∑
k=0

αpk
n
E
[
∥Zk − Z̄k∥2

]
≤ 4(σ2 + 3L2

∇F ν
2)ϱ(m)

K∑
k=0

αp+2
k , .

Proof. By Assumption 3.1, the iterates in Algorithm 2 satisfy

(A.7)
Xk+1 = (1− αk)XkW

m + αkYkW
m, x̄k+1 = (1− αk)x̄

k + αkȳ
k,

Zk+1 = (1− αk)ZkW
m + αkVk+1W

m, z̄k+1 = (1− αk)z̄
k + αkv̄

k+1.

Hence, for the consensus error of iterates {xki }, we have

∥∥Xk+1 − X̄k+1

∥∥2
=

∥∥∥∥((1− αk)
(
Xk − X̄k

)
+ αk

(
Yk − Ȳk

))(
Wm − 11⊤

n

)∥∥∥∥2
≤
{(

1 +
1− ρ2m

2ρ2m

)
(1− αk)

2
∥∥Xk − X̄k

∥∥2 + (1 + 2ρ2m

1− ρ2m

)
α2
k

∥∥Yk − Ȳk

∥∥2} ρ2m

≤(1 + ρ2m)

2

∥∥Xk − X̄k

∥∥2 + (1 + ρ2m)ρ2m

1− ρ2m
α2
k

∥∥Yk − Ȳk

∥∥2 ,(A.8)

79

where the first inequality uses Lemma A.1 and A.2. Combining (A.6), (A.8), and Lemma A.5, we

have

E
[
∥Xk+1 − X̄k+1∥2

]
≤ (1 + ρ2m)

2
E
[
∥Xk − X̄k∥2

]
+

(1− ρ2m)

4
E
[
∥Xk − X̄k∥2 + γ2∥Zk − Z̄k∥2

]
=

(3 + ρ2m)

4
E
[
∥Xk − X̄k∥2

]
+

(1− ρ2m)γ2

4
E
[
∥Zk − Z̄k∥2

]
Using Lemma A.3 in the above inequality with τk =

αp
k
n for any fixed p ≥ 0 we know

(A.9)
K∑
k=0

αpk
n
E
[
∥Xk − X̄k∥2

]
≤

K∑
k=0

γ2αpk
n

E
[
∥Zk − Z̄k∥2

]
.

Similarly to (A.8), we can obtain the following results on the consensus error of dual variables {zki }:

(A.10)
∥∥Zk+1 − Z̄k+1

∥∥2 ≤ (1 + ρ2m)

2

∥∥Zk − Z̄k
∥∥2 + (1 + ρ2m)ρ2m

1− ρ2m
α2
k

∥∥Vk+1 − V̄k+1

∥∥2 ,
Using (A.6) and Lemma A.3 in (A.10) with τk =

αp
k
n , we have

K∑
k=0

αpk
n
E
[
∥Zk − Z̄k∥2

]
≤ 2ϱ(m)

K∑
k=0

αp+2
k

n
E
[
∥Vk+1 − V̄k+1∥2

]
.(A.11)

To bound ∥Vk+1 − V̄k+1∥ we first notice that

vk+1
i − v̄k+1 =vk+1

i − E
[
vk+1
i |Fk

]
− 1

n

n∑
j=1

(vk+1
j − E

[
vk+1
j |Fk

]
)

+E
[
vk+1
i |Fk

]
−∇Fi(x̄k) +∇Fi(x̄k)−∇F (x̄k) +∇F (x̄k)− 1

n

n∑
j=1

E
[
vk+1
j |Fk

]
=

(
1− 1

n

)
(vk+1
i − E

[
vk+1
i |Fk

]
)− 1

n

∑
j ̸=i

(vk+1
j − E

[
vk+1
j |Fk

]
)

+

(
1− 1

n

)(
∇Fi(xki)−∇Fi(x̄k)

)
+∇Fi(x̄k)−∇F (x̄k) +

1

n

∑
j ̸=i

(
∇Fj(x̄k)−∇Fi(xkj)

)
which gives

E
[
∥vk+1
i − v̄k+1∥2

]
=

(
1− 1

n

)2

E
[
∥vk+1
i − E

[
vk+1
i |Fk

]
∥2
]
+

1

n2

n∑
j ̸=i

E
[
∥vk+1
j − E

[
vk+1
j |Fk

]
∥2
]

80

+

∥∥∥∥∥∥
(
1− 1

n

)(
∇Fi(xki)−∇Fi(x̄k)

)
+∇Fi(x̄k)−∇F (x̄k) +

1

n

∑
j ̸=i

(
∇Fj(x̄k)−∇Fi(xkj)

)∥∥∥∥∥∥
2

≤σ2 + 3L2
∇F

(1− 1

n

)2

∥xki − x̄k∥2 + ν2 +
1

n

∑
j ̸=i
∥xkj − x̄k∥2

 ,

where the first equality uses Assumption 3.5, and the second inequality uses Cauchy-Schwarz

inequality, Assumptions 3.2, 3.6, and 3.7. Hence we have

(A.12) E
[
∥Vk+1 − V̄k+1∥2

]
≤ 6L2

∇FE
[
∥Xk − X̄k∥2

]
+ nσ2 + 3nL2

∇F ν
2.

Combining (A.11) and (A.12), we have

(A.13)
K∑
k=0

αpk
n
E
[
∥Zk − Z̄k∥2

]
≤2ϱ(m)

K∑
k=0

{
6L2

∇Fα
p+2
k

n
E
[
∥Xk − X̄k∥2

]
+ (σ2 + 3L2

∇F ν
2)

K∑
k=0

αp+2
k

}

≤
K∑
k=0

{
12ϱ(m)α2

kL
2
∇Fγ

2
} αpk
nγ2

E
[
∥Xk − X̄k∥2

]
+ 2(σ2 + 3L2

∇F ν
2)ϱ(m)

K∑
k=0

αp+2
k

≤
K∑
k=0

αpk
2n

E
[
∥Zk − Z̄k∥2

]
+ 2(σ2 + 3L2

∇F ν
2)ϱ(m)

K∑
k=0

αp+2
k ,

where the second inequality uses (A.6). By (A.9) and (A.13) we can finally obtain that

K∑
k=0

αpk
n
E
[
∥Xk − X̄k∥2

]
≤ 4γ2(σ2 + 3L2

∇F ν
2)ϱ(m)

K∑
k=0

αp+2
k , ,(A.14)

K∑
k=0

αpk
n
E
[
∥Zk − Z̄k∥2

]
≤ 4(σ2 + 3L2

∇F ν
2)ϱ(m)

K∑
k=0

αp+2
k , .(A.15)

□

Lemma A.7 (Conensus Error of Algorithm 3: Prox-DASA-GT). Suppose Assumptions 3.1, 3.4,

3.6 and 3.5 hold. Let ϱ(m) = (1+ρ2m)ρ2m

(1−ρ2m)2
, and ρ,m and αk satisfy

(A.16) ϱ(m)α2
k ≤

1

8
, ϱ(m)αk ≤

1

9L∇Fγ
, 0 = α−1 ≤ αk+1 ≤ αk ≤ 1

81

for any k ≥ 0, and the initialization satisfies u0i = v0i = 0 for all i. Then in Algorithm 3 for any

p ≥ 0 we have

K∑
k=0

αpk
n
E
[
∥Xk − X̄k∥2

]
≤ 40γ2ϱ(m)2

K∑
k=0

αp+2
k

{
L2
∇Fα

2
kE
[
∥x̄k − ȳk∥2

]
+ 2σ2

}
,

K∑
k=0

αpk
n
E
[
∥Zk − Z̄k∥2

]
≤ 40ϱ(m)2

K∑
k=0

αp+2
k

{
L2
∇Fα

2
kE
[
∥x̄k − ȳk∥2

]
+ 2σ2

}
.

Proof. The updates in Algorithm 3 take the form:

(A.17)

Xk+1 = (1− αk)XkW
m + αkYkW

m, x̄k+1 = (1− αk)x̄
k + αkȳ

k,

Uk+1 = UkW
m + (Vk+1 −Vk)W

m, ūk+1 = ūk + v̄k+1 − v̄k,

Zk+1 = (1− αk)ZkW
m + αkUkW

m, z̄k+1 = (1− αk)z̄
k + αkū

k.

Setting u0i = v0i , we can prove by induction that ūk = v̄k. To analyze the consensus error of Uk, we

first notice:

Uk+1 − Ūk+1

=
(
Uk − Ūk +Vk+1 −Vk − V̄k+1 + V̄k

)(
Wm − 11⊤

n

)
=

(
Uk − Ūk + (Vk+1 −Vk)

(
I− 11⊤

n

))(
Wm − 11⊤

n

)
which gives

∥Uk+1 − Ūk+1∥2

≤
{(

1 +
1− ρ2m

2ρ2m

)∥∥Uk − Ūk

∥∥2 + (1 + 2ρ2m

1− ρ2m

)
∥Vk+1 −Vk∥2

}
ρ2m

=
(1 + ρ2m)

2

∥∥Uk − Ūk

∥∥2 + (1 + ρ2m)ρ2m

1− ρ2m
∥Vk+1 −Vk∥2 .

Using Lemma A.3, we know for any k ≥ 0 and p ≥ 0,

(A.18)
K∑
k=0

αpk∥Uk − Ūk∥2 ≤ 2ϱ(m)
K∑
k=0

αpk ∥Vk+1 −Vk∥2 .

82

Note that we also have

Vk+1 −Vk =Vk+1 − E [Vk+1|Fk]− (Vk − E [Vk|Fk−1])

+ E [Vk+1|Fk]−∇F(x̄k) +∇F(x̄k)−∇F(x̄k−1) +∇F(x̄k−1)− E [Vk|Fk−1]

where we overload the notation and define ∇F(x) = [∇F1(x), ...,∇Fn(x)]. Hence we know

(A.19)
E
[
∥Vk+1 −Vk∥2

]
≤5
{
E
[
∥Vk+1 − E [Vk+1|Fk] ∥2

]
+ E

[
∥Vk − E [Vk|Fk−1] ∥2

]
+ E

[
n∑
i=1

∥∇Fi(xki)−∇Fi(x̄k)∥2
]

+E

[
n∑
i=1

∥∇Fi(x̄k)−∇Fi(x̄k−1)∥2
]
+ E

[
n∑
i=1

∥∇Fi(xk−1
i)−∇Fi(x̄k−1)∥2

]}
≤5
(
2nσ2 + L2

∇FE
[
∥Xk − X̄k∥2 + ∥Xk−1 − X̄k−1∥2 + nα2

k−1∥x̄k−1 − ȳk−1∥2
])

where the first inequality uses Cauchy-Schwarz inequality, and the second inequality uses Lipschitz

continuity of ∇fi and (A.17). For simplicity we set x−1
i = y−1

i = 0 for all i so that it is easy to check

the above inequality holds for all k ≥ 0. Using (A.18) and (A.19) we know:

K∑
k=0

αpk
n
∥Uk − Ūk∥2

(A.20)

≤10ϱ(m)

n

K∑
k=0

αpk

(
2nσ2 + L2

∇FE
[
∥Xk − X̄k∥2 + ∥Xk−1 − X̄k−1∥2 + nα2

k−1∥x̄k−1 − ȳk−1∥2
])

.

≤20L2
∇Fϱ(m)

n

K∑
k=0

αpkE
[
∥Xk − X̄k∥2

]
+ 10L2

∇Fϱ(m)
K∑
k=0

αp+2
k E

[
∥x̄k − ȳk∥2

]
+ 20σ2ϱ(m)

K∑
k=0

αpk,

(A.21)

where the third inequality uses (A.16). For other consensus error terms we follow the same proof in

Lemma A.6 to get

∥∥Xk+1 − X̄k+1

∥∥2 ≤ (1 + ρ2m)

2

∥∥Xk − X̄k

∥∥2 + (1 + ρ2m)ρ2m

1− ρ2m
α2
k

∥∥Yk − Ȳk

∥∥2 ,(A.22) ∥∥Yk − Ȳk

∥∥2 ≤ 2(
∥∥Xk − X̄k

∥∥2 + γ2
∥∥Zk − Z̄k

∥∥2),(A.23) ∥∥Zk+1 − Z̄k+1

∥∥2 ≤ (1 + ρ2m)

2

∥∥Zk − Z̄k
∥∥2 + (1 + ρ2m)ρ2m

1− ρ2m
α2
k

∥∥Uk − Ūk

∥∥2 .(A.24)

83

Hence we know (A.9) still holds:

(A.25)
K∑
k=0

αpk
n
E
[
∥Xk − X̄k∥2

]
≤

K∑
k=0

γ2αpk
n

E
[
∥Zk − Z̄k∥2

]
.

Applying Lemma (A.3) in (A.24) with τk =
αp
k
n , we have

(A.26)
K∑
k=0

αpk
n
E
[
∥Zk − Z̄k∥2

]
≤ 2ϱ(m)

K∑
k=0

αp+2
k

n
E
[
∥Uk − Ūk∥2

]
.

The above two inequalities together with (A.21) and (A.16) imply

K∑
k=0

αpk
n
E
[
∥Xk − X̄k∥2

]
≤ 2ϱ(m)γ2

K∑
k=0

αp+2
k

n
E
[
∥Uk − Ūk∥2

]
≤

K∑
k=0

{
40L2

∇Fγ
2ϱ(m)2α2

k

} αpk
n
E
[
∥Xk − X̄k∥2

]
+ 20γ2ϱ(m)2

K∑
k=0

αp+2
k

{
L2
∇Fα

2
kE
[
∥x̄k − ȳk∥2

]
+ 2σ2

}

≤1

2

K∑
k=0

αpk
n
E
[
∥Xk − X̄k∥2

]
+ 20γ2ϱ(m)2

K∑
k=0

αp+2
k

{
L2
∇Fα

2
kE
[
∥x̄k − ȳk∥2

]
+ 2σ2

}
,

which gives

(A.27)
K∑
k=0

αpk
n
E
[
∥Xk − X̄k∥2

]
≤ 40γ2ϱ(m)2

K∑
k=0

αp+2
k

{
L2
∇Fα

2
kE
[
∥x̄k − ȳk∥2

]
+ 2σ2

}
.

Combining (A.16), (A.21), (A.26), and (A.27), we obtain that

K∑
k=0

αpk
n
E
[
∥Zk − Z̄k∥2

]
≤ 2ϱ(m)

K∑
k=0

αp+2
k

n
E
[
∥Uk − Ūk∥2

]
≤ 1

2γ2

K∑
k=0

αpk
n
E
[
∥Xk − X̄k∥2

]
+ 20ϱ(m)2

K∑
k=0

αp+2
k

{
L2
∇Fα

2
kE
[
∥x̄k − ȳk∥2

]
+ 2σ2

}
,

≤40ϱ(m)2
K∑
k=0

αp+2
k

{
L2
∇Fα

2
kE
[
∥x̄k − ȳk∥2

]
+ 2σ2

}
.

□

Lemma A.8 (Basic Inequalities of Dual Convergence).

δk =
∇F (x̄k)−∇F (x̄k+1)

αk
+

1

n

n∑
i=1

∇Fi(xki)−∇F (x̄k), ∆̄k+1 = v̄k+1 − 1

n

n∑
i=1

∇Fi(xki).(A.28)

84

Under Assumption 3.2, we have

∥z̄k+1−∇F (x̄k+1)∥2 ≤ (1− αk)
∥∥∥z̄k −∇F (x̄k)

∥∥∥2 + 2L2
∇Fαk

∥∥∥x̄k − ȳk
∥∥∥2 + α2

k

∥∥∥∆̄k+1
∥∥∥2

+
2L2

∇Fαk
n

∥∥Xk − X̄k

∥∥2 + 2
〈
αk∆̄

k+1, (1− αk)
(
z̄k −∇F (x̄k)

)
+ αkδ

k
〉
,

(A.29)

and ∥∥∥z̄k+1 − z̄k
∥∥∥2 ≤ α2

k

{
2
∥∥∥∇F (x̄k)− z̄k

∥∥∥2 + 2L2
∇F
n

∥∥Xk − X̄k

∥∥2 + ∥∥∥∆̄k+1
∥∥∥2

+ 2

〈
∆̄k+1,

1

n

n∑
i=1

∇Fi(xki)− z̄k

〉}
.

(A.30)

Proof. By definitions in (A.28), we have

z̄k+1 −∇F (x̄k+1) = (1− αk)
(
z̄k −∇F (x̄k)

)
+ αkδ

k + αk∆̄
k+1,

Hence, we can get∥∥∥z̄k+1 −∇F (x̄k+1)
∥∥∥2

=
∥∥∥(1− αk)

(
z̄k −∇F (x̄k)

)
+ αkδ

k
∥∥∥2 + α2

k

∥∥∥∆̄k+1
∥∥∥2 + 2

〈
αk∆̄

k+1, (1− αk)
(
z̄k −∇F (x̄k)

)
+ αkδ

k
〉

≤ (1− αk)
∥∥∥z̄k −∇F (x̄k)

∥∥∥2 + αk

∥∥∥δk∥∥∥2 + α2
k

∥∥∥∆̄k+1
∥∥∥2 + 2

〈
αk∆̄

k+1, (1− αk)
(
z̄k −∇F (x̄k)

)
+ αkδ

k
〉

where the inequality uses the convexity of ∥ · ∥2. In addition, we have

∥∥∥δk∥∥∥2 ≤ 2

∥∥∥∥∇F (x̄k)−∇F (x̄k+1)

αk

∥∥∥∥2 + 2

∥∥∥∥∥ 1n
n∑
i=1

(
∇Fi(xki)−∇Fi(x̄k)

)∥∥∥∥∥
2

≤ 2L2
∇F

∥∥∥x̄k − ȳk
∥∥∥2 + 2L2

∇F
n

∥∥Xk − X̄k

∥∥2 ,

which completes the proof of (A.29). The inequality (A.30) can be proved similarly by noting that∥∥∥z̄k+1 − z̄k
∥∥∥2 = α2

k

∥∥∥−z̄k + v̄k+1
∥∥∥2

= α2
k

∥∥∥∥∥(∇F (x̄k)− z̄k) +

(
1

n

n∑
i=1

(
∇Fi(xki)−∇Fi(x̄k)

))
+ αk∆̄

k+1

∥∥∥∥∥
2

85

= α2
k

{∥∥∥∥∥(∇F (x̄k)− z̄k) +

(
1

n

n∑
i=1

(
∇Fi(xki)−∇Fi(x̄k)

))∥∥∥∥∥
2

+
∥∥∥∆̄k+1

∥∥∥2 + 2

〈
∆̄k+1,

1

n

n∑
i=1

∇Fi(xki)− z̄k

〉}
.

□

Lemma A.9. Under Assumption 3.3,

(A.31) Ψ(ȳk)−Ψ(yk+) ≤
〈
z̄k + γ−1(ȳk − x̄k), yk+ − ȳk

〉
+

γ

2n

∥∥Zk − Z̄k
∥∥2 + γ−1

2n

∥∥Xk − X̄k

∥∥2 .
Proof. By the convexity of Ψ and part (b) of Lemma A.4, we have

Ψ(ȳk)−Ψ(yk+)
cvx
≤ 1

n

n∑
i=1

(
Ψ(yki)−Ψ(yk+)

) Lemma A.4 (b)
≤ 1

n

n∑
i=1

〈
zki + γ−1(yki − xki), y

k
+ − yki

〉
=
〈
z̄k + γ−1(ȳk − x̄k), yk+ − ȳk

〉
+

1

n

n∑
i=1

〈
zki − z̄k + γ−1(yki − ȳk + x̄k − xki), ȳ

k − yki

〉
≤
〈
z̄k + γ−1(ȳk − x̄k), yk+ − ȳk

〉
+

γ

2n

∥∥Zk − Z̄k
∥∥2 + 1

2nγ

∥∥Xk − X̄k

∥∥2 .
The equality above comes from the fact that for sequences {ai}1≤i≤n, {bi}1≤i≤n ∈ Rd, we have

n∑
i=1

〈
ai −

1

n

n∑
i=1

ai, bi −
1

n

n∑
i=1

bi

〉
=

n∑
i=1

⟨ai, bi⟩ −
(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
.

The last inequality above is obtained by Young’s inequalities:

〈
zki − z̄k, ȳk − yki

〉
≤ γ

2

∥∥∥zki − z̄k
∥∥∥2 + 1

2γ

∥∥∥yki − ȳk
∥∥∥2 ,

γ−1
〈
x̄k − xki , ȳ

k − yki

〉
≤ 1

2γ

∥∥∥xki − x̄k
∥∥∥2 + 1

2γ

∥∥∥yki − ȳk
∥∥∥2 .

□

Lemma A.10 (Basic Lemma of Merit Function Difference). Let W (x̄k, z̄k) be the merit function

defined in (A.1) with λ = γ−1

8L2
∇F

. Under Assumption 3.2, 3.3, for any k ≥ 0, setting αk ≤
min{ γ−1

8L∇F
, γ

−1

8Cγ
, γ−1

32CγL2
∇F
}, we have

W (x̄k+1, z̄k+1)−W (x̄k, z̄k) ≤ −αk
{
Θk +Υk + αkΛ

k + rk+1
}
,

86

where

Θk =

{
γ−1

4
∥x̄k − ȳk∥2 + λ

4

∥∥∥∇F (x̄k)− z̄k
∥∥∥2} , Λk =

{
Cγ + 2λ

2

∥∥∥∆̄k+1
∥∥∥2} ,

Υk =

{
2γ(1 + 4γ2L2

∇F)

n

∥∥Zk − Z̄k
∥∥2 + 2

(
γ−1 + 3γL2

∇F
)

n

∥∥Xk − X̄k

∥∥2} ,

rk+1 =

〈
∆̄k+1, x̄k − yk+ + Cγαk

(
1

n

n∑
i=1

∇Fi(xki)− z̄k

)
+ 2λ

(
(1− αk)

(
z̄k −∇F (x̄k)

)
+ αkδ

k
)〉

.

(A.32)

Proof. By the smoothness of F and η, we have

F (x̄k+1)− F (x̄k)

≤
〈
∇F (x̄k), x̄k+1 − x̄k

〉
+

L∇F
2
∥x̄k+1 − x̄k∥2 = −αk

〈
∇F (x̄k), x̄k − ȳk

〉
+

L∇Fα
2
k

2
∥x̄k − ȳk∥2

(A.33)

η(x̄k, z̄k)− η(x̄k+1, z̄k+1)

≤
〈
−z̄k − γ−1(yk+ − x̄k), x̄k − x̄k+1

〉
+
〈
yk+ − x̄k, z̄k − z̄k+1

〉
+

Cγ
2

(
∥x̄k+1 − x̄k∥2 + ∥z̄k+1 − z̄k∥2

)
=2αk

〈
z̄k, yk+ − x̄k

〉
+ γ−1αk∥x̄k − yk+∥2 + αk

〈
v̄k+1, x̄k − ȳk

〉

+ αk

〈
z̄k + γ−1(yk+ − x̄k) + v̄k+1, ȳk − yk+

〉
+

Cγ
2

(
α2
k∥x̄k − ȳk∥2 + ∥z̄k+1 − z̄k∥2

)
.

(A.34)

Since yk+ is the minimizer of a 1/γ-strongly convex function, i.e.,

〈
z̄k, yk+ − x̄k

〉
+

1

2γ
∥yk+ − x̄k∥2 +Ψ(yk+) ≤ Ψ(x̄k)− 1

2γ
∥yk+ − x̄k∥2,

which together with (A.34) gives

η(x̄k, z̄k)− η(x̄k+1, z̄k+1)

≤− γ−1αk∥x̄k − yk+∥2 + αk

〈
v̄k+1, x̄k − ȳk

〉
+ αk

〈
z̄k + γ−1(yk+ − x̄k) + v̄k+1, ȳk − yk+

〉
+ 2αk

(
Ψ(x̄k)−Ψ(yk+)

)
+

Cγ
2

(
∥x̄k+1 − x̄k∥2 + ∥z̄k+1 − z̄k∥2

)
.(A.35)

87

By the convexity of Ψ, we have

(A.36) Ψ(x̄k+1)−Ψ(x̄k) ≤ (1− αk)Ψ(x̄k) + αkΨ(ȳk)−Ψ(x̄k) = αk

(
Ψ(ȳk)−Ψ(x̄ki)

)
.

Combining (A.33), (A.35), and (A.36), we have

(A.37)[
Φ(x̄k+1) + Ψ(x̄k+1)− η(x̄k+1, z̄k+1)

]
−
[
Φ(x̄k) + Ψ(x̄k)− η(x̄k, z̄k)

]
≤− γ−1αk∥x̄k − yk+∥2 + αk

〈
v̄k+1 −∇F (x̄k), x̄k − ȳk

〉
+ 2αk(Ψ(ȳk)−Ψ(yk+))

+ αk

〈
z̄k + γ−1(yk+ − x̄k) + v̄k+1, ȳk − yk+

〉
+

(L∇F + Cγ)α
2
k

2
∥x̄k − ȳk∥2 + Cγ

2
∥z̄k+1 − z̄k∥2.

Removing non-smooth terms in (A.37) using (A.31) in Lemma A.9, and re-organizing (A.37) using

the decomposition that z̄k+1 − z̄k = αk(−z̄k + v̄k+1) = αk(∇F (x̄k)− z̄k) + αk(
1
n

∑n
i=1(∇Fi(xki)−

∇Fi(x̄k))) + αk∆̄
k+1, we can get

[
Φ(x̄k+1) + Ψ(x̄k+1)− η(x̄k+1, z̄k+1)

]
−
[
Φ(x̄k) + Ψ(x̄k)− η(x̄k, z̄k)

]
≤ γ−1αk

{
− ∥x̄k − yk+∥2 +

〈
(yk+ − ȳk) + (x̄k − ȳk), ȳk − yk+

〉}
︸ ︷︷ ︸

κ1

+ αk

〈
1

n

n∑
i=1

(
∇Fi(xki)−∇Fi(x̄k)

)
, x̄k − yk+

〉
︸ ︷︷ ︸

κ2

+αk

〈
∇F (x̄k)− z̄k, ȳk − yk+

〉
︸ ︷︷ ︸

κ3

+αk

〈
∆̄k+1, x̄k − yk+

〉

(L∇F + Cγ)α
2
k

2
∥x̄k − ȳk∥2 + Cγ

2
∥z̄k+1 − z̄k∥2︸ ︷︷ ︸

κ4

+
γαk
n

∥∥Zk − Z̄k
∥∥2 + γ−1αk

n

∥∥Xk − X̄k

∥∥2 .
To further simplify the above inequalities, we analyze the terms κ1,κ2,κ3,κ4 separately as follows:

κ1 =γ−1αk

{
−
∥∥∥x̄k − ȳk

∥∥∥2 − 〈x̄k − ȳk, ȳk − yk+

〉
− 2

∥∥∥ȳk − yk+

∥∥∥2} ≤ −7γ−1αk
8

∥∥∥x̄k − ȳk
∥∥∥2 ,

κ2 ≤ 2γαk

∥∥∥∥∥ 1n
n∑
i=1

(
∇Fi(xki)−∇Fi(x̄k)

)∥∥∥∥∥
2

+
γ−1αk

8

∥∥∥x̄k − yk+

∥∥∥2
≤ 2γαkL

2
∇F

n

∥∥Xk − X̄k

∥∥2 + γ−1αk
4

∥∥∥x̄k − ȳk
∥∥∥2 + γ−1αk

4

∥∥∥ȳk − yk+

∥∥∥2 ,
κ3 ≤

λαk
2

∥∥∥∇F (x̄k)− z̄k
∥∥∥2 + λ−1αk

2

∥∥∥ȳk − yk+

∥∥∥2 ,

88

κ4 ≤
Cγα

2
k

2

{
2
∥∥∥∇F (x̄k)− z̄k

∥∥∥2 + 2L2
∇F
n

∥∥Xk − X̄k

∥∥2 + ∥∥∥∆̄k+1
∥∥∥2 + 2

〈
∆̄k+1,

1

n

n∑
i=1

∇Fi(xki)− z̄k

〉}
.

Combining the above results with (A.29) in Lemma A.8 and the definition of W (x̄k, z̄k) in (A.1), we

have

W (x̄k+1, z̄k+1)−W (x̄k, z̄k) ≤ αk

{
−5

8
γ−1 +

(L∇F + Cγ)αk
2

+ 2λL2
∇F

}
∥x̄k − ȳk∥2

+ αk

{
−λ

2
+ Cγαk

}∥∥∥∇F (x̄k)− z̄k
∥∥∥2 + Cγα

2
k

2

∥∥∥∆̄k+1
∥∥∥2 + (γ−1 + 2λ−1)αk

4

∥∥∥yk+ − ȳk
∥∥∥2

+
γαk
n

∥∥Zk − Z̄k
∥∥2 + (γ−1 + 2γL2

∇F + 2λL2
∇F + CγL

2
∇Fαk

)
αk

n

∥∥Xk − X̄k

∥∥2

+ αk

〈
∆̄k+1, x̄k − yk+ + Cγαk

(
1

n

n∑
i=1

∇Fi(xki)− z̄k

)
+ 2λ

(
(1− αk)

(
z̄k −∇F (x̄k)

)
+ αkδ

k
)〉

︸ ︷︷ ︸
rk+1

.

(A.38)

In addition, from Lemma A.5, we already know∥∥∥yk+ − ȳk
∥∥∥2 ≤ 2

n

{
∥Xk − X̄k∥2 + γ2∥Zk − Z̄k∥2

}
.

Finally, choosing αk such that αk ≤ min{ γ−1

8L∇F
, γ

−1

8Cγ
, γ−1

32CγL2
∇F
} and λ = γ−1

8L2
∇F

, we can re-organize

the terms in (A.38) as follows and complete the proof.

W (x̄k+1, z̄k+1)−W (x̄k, z̄k)

≤− αk

{
γ−1

4
∥x̄k − ȳk∥2 + λ

4

∥∥∥∇F (x̄k)− z̄k
∥∥∥2}︸ ︷︷ ︸

Θk

+α2
k

{
Cγ + 2λ

2

∥∥∥∆̄k+1
∥∥∥2}︸ ︷︷ ︸

Λk

+αkr
k

+ αk

{
2γ(1 + 4γ2L2

∇F)

n

∥∥Zk − Z̄k
∥∥2 + 2

(
γ−1 + 3γL2

∇F
)

n

∥∥Xk − X̄k

∥∥2}
︸ ︷︷ ︸

Υk

.

(A.39)

□

89

A.3. Discussion on Different Types of Consensus Errors

In this section, we briefly discuss two different functions that measure the consensus violation of

vectors among agents. Suppose agent i has xi ∈ Rd, our consensus error can be viewed as

f(x1, ..., xn) =
1

n

n∑
i=1

∥xi − x̄∥2,

where x̄ := 1
n

∑n
i=1 xi, while SPPDM in [WZC+21] defines (see Eq. (4a), (4b), (5a), (5b), and (41)

in [WZC+21])

(A.40)

gW (x1, ..., xn) =
∑

i∼j,1≤i<j≤n
∥xi − xj∥2

=
1

2

∑
i=j or i∼j

(
∥xi − x̄∥2 + ∥xj − x̄∥2 − 2 ⟨xi − x̄, xj − x̄⟩

)
over a connected network whose weighted adjacency matrix (i.e., mixing matrix) is W , and the

stationarity therein is defined by using gW . i ∼ j means agents i and j are neighbors. Note that in

general the relationship between f and gW largely depends on W . We consider several special cases:

• W is a complete graph. By (A.40) we have

gW (x1, ..., xn) = n
n∑
i=1

∥xi − x̄∥2 −
〈

n∑
i=1

(xi − x̄) ,
n∑
j=1

(xj − x̄)

〉
= n2f(x1, ..., xn).

• W is a cycle. By (A.40) we have

gW (x1, ..., xn) ≤
∑

i∼j,1≤i<j≤n
2
(
∥xi − x̄∥2 + ∥xj − x̄∥2

)
= 4nf(x1, ..., xn).

• W is a simple path such that i and i+ 1 are adjacent for all 1 ≤ i ≤ n− 1, and xi = i ∈ R.

Note that in this case, we can directly obtain gW (x1, ..., xn) = n− 1. For f we have

f(x1, ..., xn) =
1

n

n∑
i=1

(
n+ 1

2
− i

)2

= Θ(n2),

which implies gW = Θ(fn).

We know from the above examples that the order (in terms of n) of gW /f can range from 1
n to n2.

Hence these two types of consensus error are not comparable if no additional assumptions are given,

90

and thus we only include SPPDM in the experiments and do not compare their complexity results to

ours.

91

APPENDIX B

Appendix of Chapter 4

The supplementary materials are organized as follows. Appendix 4.1.1 provides motivating

examples for stochastic multilevel optimization. Appendix B.1 introduces the essential technical

lemmas to complete the proof. We present the whole proofs of Theorem 4.1 and Theorem 4.2 in

Appendix B.2 and B.3. Finally, we present the high-probability convergence analysis particularly for

the case when T = 1 in Appendix B.4.

B.1. Technical Lemmas

Lemma B.1. (Smoothness of Composite Functions [BGN22]) Assume that Assumption 4.2

holds.

a) Define Fi(x) = fi ◦ fi+1 ◦ · · · ◦ fT (x). Under , the gradient of Fi is Lipschitz continuous with

the constant

L∇Fi =
T∑
j=i

L∇fj

j−1∏
l=i

Lfl

T∏
l=j+1

L2
fl

 .

b) Define

R1 = L∇f1Lf2 · · ·LfT , Rj = Lf1 · · ·Lfj−1
L∇fjLfj+1

· · ·LfT /Lfj , 2 ≤ j ≤ T − 1,

C2 = R1, Cj =

j−2∑
i=1

Ri

(
j−1∏
l=i+1

Lfl

)
, 3 ≤ j ≤ T

(B.1)

and let uT+1 = x. Then, for T ≥ 2, we have

(B.2)

∥∥∥∥∥∇F (x)−
T∏
i=1

∇fT+1−i(uT+2−i)

∥∥∥∥∥ ≤
T∑
j=2

Cj∥fj(uj+1)− uj∥.

Lemma B.2. (Smoothness of η(·, ·) [GRW20]) For fixed β > 0 and, η(x, z) defined in (4.10), the

gradient of η(x, z) w.r.t. (x, z) is Lipschitz continuous with the constant L∇η = 2

√
(1 + β)2 +

(
1 + 1

2β

)2
.

92

Lemma B.3. (Convergnece of ICG [Jag13]) Let ỹk be the vector output by Algorithm 6 at step k,

and yk be the optimal solution of the subproblem 4.16, then under Assumption 4.1

β

2
∥ỹk − yk∥2 ≤ Hk(ỹ

k)−Hk(y
k) ≤ 2βD2

X (1 + δ)

tk + 2

where δ defined in Algorithm 6 is the quality of the linear minimization procedure.

Proof of Lemma B.3. The result is obtained by applying Theorem 1 in [Jag13] to Hk and

noting that the curvature constant CHk
= βD2

X , ∀k ≥ 0. □

B.2. Proof of Theorem 4.1

To establish the rate of convergence for Algorithm 5 in Theorem 4.1, we first present Lemma B.4

and Lemma B.5 regarding the basic recursion on the errors in estimating the inner function values

and the order of E[∥uk+1
i − uki ∥2|Fk]. The proofs follow [BGN22] with minor modifications. We

present the complete proofs below for the reader’s convenience.

Lemma B.4. Let {xk}k≥0 and {uki }k≥0 be generated by Algorithm 5 and uT+1 = x. Define,

1 ≤ i ≤ T ,

∆k+1
Gi

:= fi(u
k
i+1)−Gk+1

i , ∆k+1
Ji

:= ∇fi(uki+1)− Jk+1
i ,

eki := fi(u
k+1
i+1)− fi(u

k
i+1)− ⟨∇fi(uki+1), u

k+1
i+1 − uki+1⟩.

(B.3)

Under Assumption 4.2, we have, for 1 ≤ i ≤ T ,

∥fi(uk+1
i+1)− uk+1

i ∥2 ≤ (1− τk)∥fi(uki+1)− uki ∥2 + τ2k∥∆k+1
Gi
∥2 + ṙk+1

i

+
[
4L2

fi
+ L∇fi∥fi(uki+1)− uki ∥+ ∥∆k+1

Ji
∥2
]
∥uk+1

i+1 − uki+1∥2,
(B.4)

and

∥uk+1
i − uki ∥2 ≤ τ2k

[
2∥fi(uki+1)− uki ∥2 + ∥∆k+1

Gi
∥2
]
+ 2∥Jk+1

i ∥2∥uk+1
i+1 − uki+1∥2 + r̈k+1

i(B.5)

where

ṙk+1
i := 2τk⟨∆k+1

Gi
, eki + (1− τk)(fi(u

k
i+1)− uki) + ∆k+1

Ji

⊤
(uk+1
i+1 − uki+1)⟩

+ 2⟨∆k+1
Ji

⊤
(uk+1
i+1 − uki+1), e

k
i + (1− τk)(fi(u

k
i+1)− uki)⟩,

r̈k+1
i := τk⟨−∆k+1

Gi
, τk(fi(u

k
i+1)− uki) + Jk+1

i

⊤
(uk+1
i+1 − uki+1)⟩.

(B.6)

93

Proof. We first prove part (B.4). By the definitions in (B.3), (B.6), for any 1 ≤ i ≤ T , we have

∥fi(uk+1
i+1)− uk+1

i ∥2

=∥eki + fi(u
k
i+1) +∇fi(uki+1)

⊤(uk+1
i+1 − uki+1)− (1− τk)u

k
i − τkG

k+1
i − Jk+1

i

⊤
(uk+1
i+1 − uki+1)∥2

=∥eki +∆k+1
Ji

⊤
(uk+1
i+1 − uki+1) + (1− τk)(fi(u

k
i+1)− uki) + τk∆

k+1
Gi
∥2

=∥∆k+1
Ji

⊤
(uk+1
i+1 − uki+1)∥2 + ∥eki + (1− τk)(fi(u

k
i+1)− uki)∥2 + τ2k∥∆k+1

Gi
∥2 + ṙk+1

i

≤∥eki + (1− τk)(fi(u
k
i+1)− uki)∥2 + τ2k∥∆k+1

Gi
∥2 + ∥∆k+1

Ji
∥2∥uk+1

i+1 − uki+1∥2 + ṙk+1
i

≤(1− τk)∥fi(uki+1)− uki ∥2 + ∥eki ∥2 + 2(1− τk)∥eki ∥∥fi(uki+1)− uki ∥+ τ2k∥∆k+1
Gi
∥2

+ ∥∆k+1
Ji
∥2∥uk+1

i+1 − uki+1∥2 + ṙk+1
i .

Furthermore, with Assumption 4.2, we have

(B.7) ∥eki ∥ ≤
L∇fi
2
∥uk+1

i+1 − uki+1∥2, ∥eki ∥2 ≤ 4L2
fi
∥uk+1

i+1 − uki+1∥2,

which leads to (B.4). To show (B.5), with the update rule given by (4.8) and the definitions in (B.3),

we have, for 1 ≤ i ≤ T ,

∥uk+1
i − uki ∥2

=∥τk(Gk+1
i − uki) + ⟨Jk+1

i , uk+1
i+1 − uki+1⟩∥2

=τ2k∥Gk+1
i − uki ∥2 + ∥Jk+1

i

⊤
(uk+1
i+1 − uki+1)∥2 + 2τk⟨Gk+1

i − uki , J
k+1
i

⊤
(uk+1
i+1 − uki+1)⟩

=τ2k∥Gk+1
i − uki ∥2 + ∥Jk+1

i

⊤
(uk+1
i+1 − uki+1)∥2 + 2τk⟨fi(uki+1)− uki , J

k+1
i

⊤
(uk+1
i+1 − uki+1)⟩

+ 2τk⟨−∆k+1
Gi

, Jk+1
i

⊤
(uk+1
i+1 − uki+1)⟩

≤τ2k∥Gk+1
i − uki ∥2 + 2∥Jk+1

i ∥2∥uk+1
i+1 − uki+1∥2 + τ2k∥fi(uki+1)− uki ∥2

+ 2τk⟨−∆k+1
Gi

, Jk+1
i

⊤
(uk+1
i+1 − uki+1)⟩

=2τ2k∥fi(uki+1)− uki ∥2 + τ2k∥∆k+1
Gi
∥2 + 2∥Jk+1

i ∥2∥uk+1
i+1 − uki+1∥2

+ 2τk⟨−∆k+1
Gi

, τk(fi(u
k
i+1)− uki) + Jk+1

i

⊤
(uk+1
i+1 − uki+1)⟩.

where the inequality comes from the fact that ∥Jk+1
i

⊤
(uk+1
i+1 −uki+1)∥2 ≤ ∥Jk+1

i ∥2∥uk+1
i+1 −uki+1∥2 and

2τk⟨fi(uki+1)− uki , J
k+1
i

⊤
(uk+1
i+1 − uki+1)⟩ ≤ ∥Jk+1

i

⊤
(uk+1
i+1 − uki+1)∥2 + τ2k∥fi(uki+1)− uki ∥2. □

94

Lemma B.5. Let uT+1 = x. Under Assumption 4.2, 4.3, and with the choice of τ0 = 1, we have,

for 1 ≤ i ≤ T and k ≥ 0,

E[∥fi(uk+1
i+1)− uk+1

i ∥2|Fk] ≤ σ2
Gi

+ (4L2
fi
+ σ2

Ji)ci+1,(B.8)

E[∥uk+1
i − uki ∥2|Fk] ≤ ciτ

2
k ,(B.9)

where

(B.10) ci := 3σ2
Gi

+ 2(4L2
fi
+ σ2

Ji + σ̂2
Ji)ci+1, cT+1 = D2

X .

Proof. By the update rule given in (4.8) and the definitions in (B.3), for 1 ≤ i ≤ T and k ≥ 0,

we have

fi(u
k+1
i+1)− uk+1

i = (1− τk)(fi(u
k
i+1)− uki) +Dk,i,

where Dk,i := eki + τk∆
k+1
Gi

+∆k+1
Ji

⊤
(uk+1
i+1 −uki+1). With the convexity of ∥ · ∥2, we can further obtain

(B.11) ∥fi(uk+1
i+1)− uk+1

i ∥2 ≤ (1− τk)∥fi(uki+1)− uki ∥2 +
1

τk
∥Dk,i∥2, ∀k ≥ 0.

Moreover, under Assumption 4.3, we have, for 1 ≤ i ≤ T and k ≥ 0,

E[∥Dk,i∥2|Fk] = E[∥eki ∥2|Fk] + τ2kE[∥∆k+1
Gi
∥2|Fk] + E[∥∆k+1

Ji

⊤
(uk+1
i+1 − uki+1)∥2|Fk]

≤ τ2kE[∥∆k+1
Gi
∥2|Fk] +

(
4L2

fi
+ E[∥∆k+1

Ji
∥2|Fk]

)
E[∥uk+1

i+1 − uki+1∥2|Fk]

≤ τ2kσ
2
Gi

+
(
4L2

fi
+ σ2

Ji

)
E[∥uk+1

i+1 − uki+1∥2|Fk].

(B.12)

where the second inequality follows from (B.7). Setting i = T in the inequality above and noting

that ukT+1 = xk, we have

E[∥Dk,T ∥2|Fk] ≤ τ2k
[
σ2
GT

+ (4L2
fT

+ σ2
JT

)D2
X
]
, ∀k ≥ 0.

Thus, with the choice of τ0 = 1, we obtain

E[∥fT (xk)− ukT ∥2|Fk] ≤ σ2
GT

+ (4L2
fT

+ σ2
JT

)D2
X , ∀k ≥ 1.

Taking expectation of both sides of (B.5) conditioning on Fk, and under Assumption 4.3, we obtain

E[∥uk+1
i − uki ∥2|Fk] ≤ τ2kE

[
2∥fi(xk)− uki ∥2 + ∥∆k+1

Gi
∥2 + 2

τ2k
∥Jk+1

i ∥2∥uk+1
i+1 − uki+1∥2

∣∣∣∣Fk

]
.(B.13)

95

Setting i = T in the inequality above, we have

E[∥uk+1
T − ukT ∥2|Fk] ≤ τ2k

[
3σ2

GT
+ 2(4L2

fT
+ σ2

JT
+ σ̂2

JT
)D2

X
]
, ∀k ≥ 1.

This completes the proof of (B.8) and (B.9) when i = T . We now use backward induction to

complete the proof. By the above result, the base case of i = T holds. Assume that (B.9) hold when

i = j for some 1 < j ≤ T , i.e., E[∥uk+1
j − ukj ∥2|Fk] ≤ cjτ

2
k , ∀k ≥ 0. Then, setting i = j − 1 in (B.12),

we obtain

E[∥Dk,j−1∥2|Fk] ≤ τ2k

[
σ2
Gj−1

+ (4L2
fj−1

+ σ2
Jj−1

)cj

]
, ∀k ≥ 0.

Furthermore, with (B.11) and the choice of τ0 = 1, we have

E[∥fj−1(u
k+1
j)− uk+1

j−1∥2|Fk] ≤ σ2
Gj−1

+ (4L2
fj−1

+ σ2
Jj−1

)cj , ∀k ≥ 0.

which together with (B.13), imply that

E[∥uk+1
j−1 − ukj−1∥2|Fk] ≤ cj−1τ

2
k , ∀k ≥ 0.

□

We now leverage the merit function defined in (4.9) and provide a basic inequality for establishing

convergence analysis of Algorithm 5 in Lemma B.6. In Proposition B.1, we show the boundedness of

the term Rk appearing on the right hand side of (B.14) in expectation. These two results form the

crucial steps in establishing the convergence analysis of Algorithm 5.

Lemma B.6. Let {xk, zk, uk}k≥0 be the sequence generated by Algorithm 5, the merit func-

tion Wα,γ(·, ·, ·) be defined in (4.9) with positive constants {α, {γi}1≤i≤T }, and uT+1 = x. Under

Assumption 4.2, for any β > 0, let

βk ≡ β, α =
β

20L2
∇F

, γ1 =
β

2
, γj =

(
2α+

1

4αL2
∇F

)
(T − 1)C2

j +
β

2
, 2 ≤ j ≤ T,

96

where Cj’s are defined in (B.1). Then, ∀N ≥ 0

N∑
k=0

τk

(
β

[
∥dk∥2 +

T∑
i=1

∥fi(uki+1)− uki ∥2
]
+

β

20L2
∇F
∥∇F (xk)− zk∥2

)

≤ 2W0 + 2
N∑
k=0

Rk +

(
24

5
+

40L2
∇F

β2

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)
,

(B.14)

where dk := yk − xk, Hk(·), yk are defined in (4.16), and

Rk :=

T∑
i=1

γi

[
4L2

fi
+ L∇fi∥fi(uki+1)− uki ∥+ ∥∆k+1

Ji
∥2
]
∥uk+1

i+1 − uki+1∥2

+ τ2k

[
L∇F + L∇η

2
D2

X +

T∑
i=1

γi∥∆k+1
Gi
∥2 + α∥∆k+1∥2

]

+ τk

[
⟨dk,∆k+1⟩+

T∑
i=1

γiṙ
k+1
i + 2α

...
r k+1

]
+

L∇η
2
∥zk+1 − zk∥2,

∆k+1 :=
T∏
i=1

∇fT+1−i(u
k
T+2−i)−

T∏
i=1

Jk+1
T−i+1,

...
r k+1 :=⟨∆k+1, (1− τk)[∇F (xk)− zk] + τk[∇F (xk)−

T∏
i=1

∇fT+1−i(u
k
T+2−i)]

+∇F (xk+1)−∇F (xk)⟩,

(B.15)

∆k+1
Gi

, ∆k+1
Ji

are defined in (B.3), and ṙk+1
i is defined in (B.6).

Proof. We first bound F (xk+1)− F (xk). By the Lipschitzness of ∇F (Lemma B.1), we have

F (xk+1)− F (xk) ≤ ⟨∇F (xk), xk+1 − xk⟩+ L∇F τ
2
k

2
∥d̃k∥2

= τk⟨∇F (xk), dk⟩+ τk⟨∇F (xk)− zk, ỹk − yk⟩ − τk⟨βdk, ỹk − yk⟩

+ τk⟨zk + βdk, ỹk − yk⟩+ L∇F τ
2
k

2
∥d̃k∥2

≤ τk⟨∇F (xk), dk⟩+ τk∥∇F (xk)− zk∥∥ỹk − yk∥+ τk⟨zk + βdk, ỹk − yk⟩

+ τkβ∥dk∥∥ỹk − yk∥+ L∇F τ
2
k

2
∥d̃k∥2.

(B.16)

97

We then provide a bound for η(xk, zk)− η(xk+1, zk+1). By the lipschitzness of ∇η (Lemma B.2)

with the partial gradients of ∇η given by

∇xη(xk, zk) = −zk − βdk, ∇zη(xk, zk) = dk,

we have

η(xk, zk)− η(xk+1, zk+1)

≤
〈
zk + βdk, xk+1 − xk

〉
−
〈
dk, zk+1 − zk

〉
+

L∇η
2

[
∥xk+1 − xk∥2 + ∥zk+1 − zk∥2

]

= τk
〈
2zk + βdk, dk

〉
+ τk

〈
zk + βdk, d̃k − dk

〉
− τk

〈
dk,

T∏
i=1

Jk+1
T−i+1

〉
+

L∇η
2

[
τ2k∥d̃k∥2 + ∥zk+1 − zk∥2

]
,

(B.17)

where the second equality comes from (4.6) and (4.7). Due to the optimality condition of in the

definition of yk, we have
〈
zk + βdk, x − yk

〉
≥ 0 for all x ∈ X , which together with the choice of

x = xk implies that

(B.18) ⟨zk, dk⟩+ β∥dk∥2 ≤ 0.

Thus, combining (B.17) with (B.18), we obtain

η(xk, zk)− η(xk+1, zk+1) ≤ −βτk∥dk∥2 + τk
〈
zk + βdk, ỹk − yk

〉
− τk

〈
dk,

T∏
i=1

Jk+1
T−i+1

〉
+
L∇η
2

[
τ2k∥d̃k∥2 + ∥zk+1 − zk∥2

]
.

(B.19)

In addition, by Lemma B.2, we have

(B.20) ⟨dk,∇F (xk)−
T∏
i=1

∇fT+1−i(u
k
T+2−i)⟩ ≤

T∑
j=2

Cj∥dk∥∥fj(ukj+1)− ukj ∥.

98

Then combing (B.16), (B.19), (B.20), we have

[F (xk+1)− η(xk+1, zk+1)]− [F (xk)− η(xk, zk)]

≤ τk

{
− β∥dk∥2 +

T∑
j=2

Cj∥dk∥∥fj(ukj+1)− ukj ∥+ ⟨dk,∆k+1⟩+ 2⟨zk + βdk, ỹk − yk⟩

+
[
β∥dk∥+ ∥∇F (xk)− zk∥

]
∥ỹk − yk∥

}
+

L∇F + L∇η
2

τ2k∥d̃k∥2 +
L∇η
2
∥zk+1 − zk∥2.

(B.21)

Furthermore, defining

κk := ∇F (xk)−
T∏
i=1

∇fT+1−i(u
k
T+2−i), κ̄k :=

∇F (xk+1)−∇F (xk)

τk
,

and by the update rule given by (4.7), we have

∥∇F (xk+1)− zk+1∥2

= ∥(1− τk)[∇F (xk)− zk] + τk[κk + κ̄k +∆k+1]∥2

= ∥(1− τk)[∇F (xk)− zk] + τk[κk + κ̄k]∥2 + τ2k∥∆k+1∥2 + 2τk
...
r k+1

≤ (1− τk)∥∇F (xk)− zk∥2 + 2τk

[
∥κk∥2 + ∥κ̄k∥2

]
+ τ2k∥∆k+1∥2 + 2τk

...
r k+1

≤ (1− τk)∥∇F (xk)− zk∥2 + τ2k∥∆k+1∥2

+ 2τk

(T − 1)
T∑
j=2

C2
j ∥fj(uj+1)− uj∥2 + 2L2

∇F (∥dk∥2 + ∥ỹk − yk∥2) + ...
r k+1

 .

(B.22)

where ...
r k+1 := ⟨∆k+1, (1− τk)[∇F (xk)− zk] + τk[κk + κ̄k]⟩ and the last inequality comes from two

fact that ∥κ̄k∥2 ≤ 2L2
∇F (∥dk∥2 + ∥ỹk − yk∥2) and

∥κk∥2 =
∥∥∥∥∥∇F (xk)−

T∏
i=1

∇fT+1−i(u
k
T+2−i)

∥∥∥∥∥
2

≤ (T − 1)
T∑
j=2

C2
j ∥fj(uj+1)− uj∥2.

The above upper bound for the term ∥κk∥2 is obtained by leveraging Lemma B.2 and the fact that

(
∑n

i=1 ai) ≤ n
∑n

i=1 a
2
i for non-negative sequence (ai)1≤i≤n.

Moreover, by Lemma B.4, we have, for 1 ≤ i ≤ T ,

∥fi(uk+1
i+1)− uk+1

i ∥2 − ∥fi(uki+1)− uki ∥2 ≤ −τk∥fi(uki+1)− uki ∥2 + τ2k∥∆k+1
Gi
∥2 + ṙk+1

i

+
[
4L2

fi
+ L∇fi∥fi(uki+1)− uki ∥+ ∥∆k+1

Ji
∥2
]
∥uk+1

i+1 − uki+1∥2,
(B.23)

99

Finally, multiplying both sides of (B.23) by γi for i = 1, . . . , T and both sides of (B.22) by α,

adding them to (B.21), rearranging the terms, and noting that ⟨zk + βdk, ỹk − yk⟩ = Hk(ỹ
k) −

Hk(y
k)− (β/2)∥ỹk − yk∥2 due to the quadratic structure of Hk and ∥d̃k∥2 ≤ D2

X , we obtain

(B.24) Wk+1 −Wk ≤ τkAk +Rk

where Rk is defined in (B.15) and

Ak :=
(
−β + 4αL2

∇F
)
∥dk∥2 +

T∑
j=2

(
−γj + 2α(T − 1)C2

j

)
∥fj(ukj+1)− ukj ∥2

− γ1∥f1(uk2)− uk1∥2 − α∥∇F (xk)− zk∥2 +
T∑
j=2

Cj∥dk∥∥fj(uj+1)− uj∥

+
(
β∥dk∥+ ∥∇F (xk)− zk∥

)
∥ỹk − yk∥+

(
4αL2

∇F − β
)
∥ỹk − yk∥2

+ 2
(
Hk(ỹ

k)−Hk(y
k)
)
.

We can further provide a simplified upper bound for Ak. By Young’s inequality, we have

β∥dk∥∥ỹk − yk∥ ≤ β

4
∥dk∥2 + β∥ỹk − yk∥2,

∥∇F (xk)− zk∥∥ỹk − yk∥ ≤ α

2
∥∇F (xk)− zk∥2 + 1

2α
∥ỹk − yk∥2

Cj∥dk∥∥fj(uj+1)− uj∥ ≤
αL2

∇F
T − 1

∥dk∥2 +
(T − 1)C2

j

4αL2
∇F

∥fj(uj+1)− uj∥2.

Thus,

Ak ≤
(
−3β

4
+ 5αL2

∇F

)
∥dk∥2 − γ1∥f1(uk2)− uk1∥2 −

α

2
∥∇F (xk)− zk∥2

+
T∑
j=2

(
−γj +

(
2α+

1

4αL2
∇F

)
(T − 1)C2

j

)
∥fj(ukj+1)− ukj ∥2

+

(
4αL2

∇F +
1

2α

)
∥ỹk − yk∥2 + 2

(
Hk(ỹ

k)−Hk(y
k)
)

For any β > 0, let

α =
β

20L2
∇F

, γ1 =
β

2
, γj =

(
2α+

1

4αL2
∇F

)
(T − 1)C2

j +
β

2
, 2 ≤ j ≤ T

100

Then, we have

Ak ≤ −
β

2

(
∥dk∥2 +

T∑
i=1

∥fi(uki+1)− uki ∥2
)
− β

40L2
∇F
∥∇F (xk)− zk∥2

+

(
12

5
+

20L2
∇F

β2

)(
Hk(ỹ

k)−Hk(y
k)
)
.

(B.25)

As a result of (B.24) and (B.25), we can further obtain

τk

(
β

[
∥dk∥2 +

T∑
i=1

∥fi(uki+1)− uki ∥2
]
+

β

20L2
∇F
∥∇F (xk)− zk∥2

)

≤ 2Wk − 2Wk+1 + 2Rk + τk

(
24

5
+

40L2
∇F

β2

)(
Hk(ỹ

k)−Hk(y
k)
)
,

which immediately implies (B.14) by telescoping. □

Proposition B.1. Let Rk be defined in (B.15) and τ0 = 1. Then, under Assumption 4.3, we

have

E[Rk|Fk] ≤ σ̂2τ2k , ∀k ≥ 1,

where

σ̂2 :=

T∑
i=1

γi

([
4L2

∇fi + L∇fi

√
σ2
Gi

+ (4L2
fi
+ σ2

Ji
)ci+1 + σ2

Ji

]
ci+1 + σ2

Gi

)

+ (α+ 2Lη)

T∏
i=1

σ̂2
Ji +

L∇F + Lη
2

D2
X .

(B.26)

Proof. Note that under Assumption 4.3, we have, for 1 ≤ i ≤ T ,

E[∆k+1|Fk] = 0, E[ṙk+1
i |Fk] = 0, E[...r k+1|Fk] = 0,

E[∥∆k+1
Gi
∥2|Fk] ≤ σ2

Gi
, E[∥∆k+1

Ji
∥2|Fk] ≤ σ2

Ji ,

and

E[∥∆k+1∥2|Fk] ≤ E

∥∥∥∥∥
T∏
i=1

Jk+1
T−i+1

∥∥∥∥∥
2
∣∣∣∣∣∣Fk

 ≤ T∏
i=1

E
[∥∥∥Jk+1

T−i+1

∥∥∥2∣∣∣∣Fk

]
≤

T∏
i=1

σ̂2
Ji .

101

In addition, by Lemma B.4 and Hölder’s inequality. we have E[∥uk+1
i − uki ∥2|Fk] ≤ ciτ

2
k and

E[∥fi(uk+1
i+1)− uk+1

i ∥∥uk+1
i − uki ∥2|Fk]

≤ E[∥fi(uk+1
i+1)− uk+1

i ∥|Fk]E[∥uk+1
i − uki ∥2|Fk]

≤
(
E[∥fi(uk+1

i+1)− uk+1
i ∥|Fk]

) 1
2 E[∥uk+1

i − uki ∥2|Fk]

≤ ci

√
σ2
Gi

+ (4L2
fi
+ σ2

Ji
)ci+1 τ2k .

Lastly, from eq.(28) of Proposition 2.1 in [BGN22], we have for any k ≥ 1,

E[∥zk+1 − zk∥2|Fk] ≤ 4τ2k

T∏
i=1

σ̂2
Ji .

The proof is completed by combing all above observations with the expression of Rk in (B.15). □

Proof of Theorem 4.1. We now present the proof of Theorem 4.1. Note that by Lemma B.6

and given values of α, γ in (4.12), we obtain

N∑
k=1

τk

[
β

(
∥dk∥2 +

T∑
i=1

∥fi(uki+1)− uki ∥2
)

+
β

20L2
∇F
∥∇F (xk)− zk∥2

]

≤ 2Wα,γ(x
0, z0, u0) + 2

N∑
k=0

Rk +

(
24

5
+

40L2
∇F

β2

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)
,

Taking expectation of both sides and noting that E[Rk|Fk] ≤ σ̂2τ2k by Proposition B.1, we have

N∑
k=1

τkE

[
ρ

(
∥dk∥2 +

T∑
i=1

∥fi(uki+1)− uki ∥2
)

+ α∥∇F (xk)− zk∥2
∣∣∣∣∣Fk−1

]

≤ 2Wα,γ(x
0, z0, u0) + 2σ̂2

N∑
k=0

τ2k +

(
24

5
+

40L2
∇F

β2

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)
.

(B.27)

Then, setting τk, tk to be values in (4.11) and noting that by Lemma B.3, we have

Hk(ỹ
k)−Hk(y

k) ≤ 2βD2
X (1 + δ)

tk + 2
≤ 2βD2

X (1 + δ)√
k

, ∀k ≥ 1.

Also, with the choice of z0 = 0, we have y0 = ỹ0 = x0. Thus, we can conclude that

N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)
≤ 2βD2

X (1 + δ)√
N

N∑
k=1

1√
k
≤ 4βD2

X (1 + δ).

102

which together with (B.27) immediately imply that ∀N ≥ 1,

1√
N

N∑
k=1

E

β
∥dk∥2 + T∑

j=1

∥fj(ukj+1)− ukj ∥2
+

β

20L2
∇F
∥∇F (xk)− zk∥2

∣∣∣∣∣∣Fk−1

≤ 2Wα,γ(x

0, z0, u0) + B(β, σ2, L,DX , T, δ).

where

B(β, σ2, L,DX , T, δ) = 4σ̂2 + 32βD2
X (1 + δ)

(
3

5
+

5L2
∇F
β2

)
,

and σ̂2 is given in (B.26). As a result, we can obtain (4.13) and (4.14) by the definition of random

integer R and

∥G(xk,∇F (xk), β)∥2 ≤ 2β2∥dk∥2 + 2β2

∥∥∥∥projX (xk − 1

β
∇F (xk)

)
− projX

(
xk − 1

β
zk
)∥∥∥∥2

≤ 2β2∥dk∥2 + 2∥∇F (xk)− zk∥2.

□

B.3. Proofs for Section 4.3.1

B.3.1. Proof of Theorem 4.2 for T = 2. To show the rate of convergence for Algorithm 7,

we simplify the merit function in the analysis of the multi-level problems and leverage the following

function:

(B.28) Wα,γ(x
k, zk, uk) = F (xk)− F ⋆ − η(xk, zk) + α∥∇F (xk)− zk∥2 + γ∥f2(xk)− uk2∥2,

where α, γ are positive constants, η(·, ·) is defined in (4.10). We now present the analogue of

Lemma B.6 for Algorithm 7. The proof follows similar steps as that proof of Lemma B.6 with slight

modifications, and hence we will skip some arguments already presented before.

Lemma B.7. Let {xk, zk, uk2}k≥0 be the sequence generated by Algorithm 7 and the merit function

Wα,γ(·, ·, ·) be defined in (B.28) with

α =
ρ

L∇F
, γ = 3ρL∇f1 , ρ > 0.

103

Under Assumptions 4.2 with T = 2, setting βk ≡ β ≥ 6ρL∇F + (2ρ+ 2
3ρ)L∇f1L

2
f2

, we have ∀N ≥ 0

ρ
N∑
k=0

τk

(
L∇F ∥dk∥2 + L∇f1∥f2(xk)− uk2∥2 +

1

L∇F
∥∇F (xk)− zk∥2

)

≤ 2W0 + 2

N∑
k=0

Rk +

(
4 +

2(8ρ+ 1/ρ)L∇F + 24ρL∇f1L
2
f2

β

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)

where dk = yk − xk, Hk(·), yk are defined in (4.16), and

Rk :=τ2k

[
L∇F + L∇η

2
D2

X + γ∥∆k+1
G2
∥2 + α∥∆k+1∥2

]
+

Lη
2
∥zk+1 − zk∥2

+ τk⟨dk,∆k+1⟩+ γṙk+1 + αr̈k+1,

∆k+1 :=∇f2(xk)∇f1(uk2)− Jk+1
2 Jk+1

1 , ∆k+1
G2

:= f2(x
k)−Gk+1

2

ṙk+1 :=2τk⟨∆k+1
G2

, f2(x
k+1)− f2(x

k) + (1− τk)(f2(x
k)− uk2)⟩,

r̈k+1 :=2τk⟨∆k+1, (1− τk)[∇F (xk)− zk] + τk[∇F (xk)−∇f2(xk)∇f1(uk)]

+∇F (xk+1)−∇F (xk)⟩.

(B.29)

Proof of Lemma B.7. 1. By the Lipschitzness of ∇F (Lemma B.1), we have

F (xk+1)− F (xk) ≤ τk⟨∇F (xk), dk⟩+ τk∥∇F (xk)− zk∥∥ỹk − yk∥

+ τkβ∥dk∥∥ỹk − yk∥+ τk⟨zk + βdk, ỹk − yk⟩+ L∇F τ
2
k∥d̃k∥2
2

.

(B.30)

2. Also, by the Lipschitzness of ∇η (Lemma B.2) and the optimality condition of in the definition

of yk, we have

η(xk, zk)− η(xk+1, zk+1) ≤ −βτk∥dk∥2 + τk
〈
zk + βdk, ỹk − yk

〉
− τk

〈
dk,∇f2(xk)∇f1(uk2)

〉
+ τk

〈
dk,∆k+1

〉
+

L∇η
2

[
τ2k∥d̃k∥2 + ∥zk+1 − zk∥2

]
.

(B.31)

3. In addition, by the Lipschitzness of f2 and ∇f1, we have

⟨dk,∇F (xk)−∇f2(xk)∇f1(uk2)⟩ =
〈
dk,∇f2(xk)⊤

[
∇f1(f2(xk))−∇f1(uk2)

]〉
≤ L∇f1Lf2∥dk∥∥f2(xk)− uk2∥.

(B.32)

104

4. Moreover, by the update rule, we have

∥f2(xk+1)− uk+1
2 ∥2 = ∥f2(xk+1)− f2(x

k) + (1− τk)[f2(x
k)− uk2] + τk∆

k+1
G2
∥2

= ∥(1− τk)[f2(x
k)− uk2] + f2(x

k+1)− f2(x
k)∥2 + τ2k∥∆k+1

G2
∥2 + ṙk+1

≤ (1− τk)∥f2(xk)− uk2∥2 + 2τkL
2
f2(∥dk∥2 + ∥ỹk − yk∥2) + τ2k∥∆k+1

G2
∥2 + ṙk+1

(B.33)

where ṙk+1 := 2τk⟨∆k+1
G2

, f2(x
k+1)− f2(x

k) + (1− τk)(f2(x
k)− uk2)⟩ and the last inequality follows

Jensen’s inequality for the convex function ∥ · ∥2 as well as∥∥∥∥ 1

τk

[
f2(x

k+1)− f2(x
k)
]∥∥∥∥2 ≤ L2

f2∥d̃k∥2 ≤ 2L2
f2(∥dk∥2 + ∥ỹk − yk∥2).

5. Defining

ek :=
1

τk

[
∇F (xk+1)−∇F (xk)

]
+∇F (xk)−∇f2(xk)∇f1(uk),

and by the update rule, we have

∥∇F (xk+1)− zk+1∥2 = ∥(1− τk)[∇F (xk)− zk] + τk[e
k +∆k+1]∥2

= ∥(1− τk)[∇F (xk)− zk] + τke
k∥2 + τ2k∥∆k+1∥2 + r̈k+1

≤ (1− τk)∥∇F (xk)− zk∥2 + τk∥ek∥2 + τ2k∥∆k+1∥2 + r̈k+1

(B.34)

where r̈k+1 := 2τk⟨∆k, (1− τk)[∇F (xk)− zk] + τke
k⟩. We can further upper bound the term ∥ek∥2

by

∥ek∥2 ≤ 2L2
∇F ∥d̃k∥2 + 2L2

∇f1L
2
f2∥f2(xk)− uk∥2

≤ 4L2
∇F (∥dk∥2 + ∥ỹk − yk∥2) + 2L2

∇f1L
2
f2∥f2(xk)− uk∥2

(B.35)

6. By combing (B.30), (B.31), (B.32), (B.33), (B.34), (B.35), rearranging the terms, and noting

that ⟨zk + βdk, ỹk − yk⟩ = Hk(ỹ
k)−Hk(y

k)− (β/2)∥ỹk − yk∥2 and ∥d̃k∥ ≤ DX , we obtain

(B.36) Wk+1 −Wk ≤ τkAk +Rk

105

where Rk is defined in (B.29) and

Ak :=
(
−β + 4αL2

∇F + 2γL2
f2

)
∥dk∥2 +

(
−γ + 2αL2

∇f1L
2
f2

)
∥f2(xk)− uk2∥2

+ L∇f1Lf2∥dk∥∥f2(xk)− uk2∥ − α∥∇F (xk)− zk∥2

+
(
β∥dk∥+ ∥∇F (xk)− zk∥

)
∥ỹk − yk∥

+
(
4αL2

∇F + 2γL2
f2 − β

)
∥ỹk − yk∥2 + 2

(
Hk(ỹ

k)−Hk(y
k)
)
.

We then provide a simplified upper bound for Ak. By the Young’s inequality, we have

β∥dk∥∥ỹk − yk∥ ≤ β

4
∥dk∥2 + β∥ỹk − yk∥2,

∥∇F (xk)− zk∥∥ỹk − yk∥ ≤ α

2
∥∇F (xk)− zk∥2 + 1

2α
∥ỹk − yk∥2.

In addition, we reparametrize α = ρ
L∇F

. Noting that by Lemma B.1 with T = 2

L2
∇f1L

2
f2

L∇F
=

L2
∇f1L

2
f2

L∇f1L
2
f2

+ Lf1L∇f2
≤ L∇f1 ,

we therefore have

Ak ≤
(
−3β

4
+ 4ρL∇F + 2γL2

f2

)
∥dk∥2 + (−γ + 2ρL∇f1) ∥f2(xk)− uk2∥2

+ L∇f1Lf2∥dk∥∥f2(xk)− uk2∥ −
ρ

2L∇F
∥∇F (xk)− zk∥2

+

(
4ρL∇F + 2γL2

f2 +
L∇F
2ρ

)
∥ỹk − yk∥2 + 2

(
Hk(ỹ

k)−Hk(y
k)
)

Then, setting γ = 3ρL∇f1 and β ≥ 6ρL∇F + (2ρ+ 2
3ρ)L∇f1L

2
f2

, we can obtain(
−3β

4
+ 4ρL∇F + 2γL2

f2

)
∥dk∥2 + (−γ + 2ρL∇f1) ∥f2(xk)− uk2∥2

+ L∇f1Lf2∥dk∥∥f2(xk)− uk2∥ ≤ −
ρL∇F
2
∥dk∥2 − ρL∇f1

2
∥f2(xk)− uk2∥2

Also, we have (β/2)∥ỹk − yk∥2 ≤ Hk(ỹ
k)−Hk(y

k). Therefore, we can further bound Ak by

Ak ≤−
ρL∇F
2
∥dk∥2 − ρL∇f1

2
∥G(xk)− uk∥2 − ρ

2L∇F
∥∇F (xk)− zk∥2

+

(
2 +

(8ρ+ 1/ρ)L∇F + 12ρL∇f1L
2
f2

β

)(
Hk(ỹ

k)−Hk(y
k)
)
.

(B.37)

106

Telescoping (B.36) together with (B.37), we get

ρ
N∑
k=0

τk

(
L∇F ∥dk∥2 + L∇f1∥f2(xk)− uk2∥2 +

1

L∇F
∥∇F (xk)− zk∥2

)

≤ 2W0 + 2

N∑
k=0

Rk +

(
4 +

2(8ρ+ 1/ρ)L∇F + 24ρL∇f1L
2
f2

β

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)

□

Proof of Theorem 4.2, part (a). The proof follows the same arguments in the proof of

Theorem 4.1. Note that by Lemma B.7 and given values of α, γ in (4.12), we obtain

ρ

N∑
k=1

τk

[
L∇F ∥dk∥2 + L∇f1∥f2(xk)− uk2∥2 +

1

L∇F
∥∇F (xk)− zk∥2

]
≤ 2Wα,γ(x

0, z0, u0)

+ 2

N∑
k=0

Rk +

(
4 +

2(8ρ+ 1/ρ)L∇F + 24ρL∇f1L
2
f2

β

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)
.

Noting that

E[Rk|Fk] = τ2k

[
L∇F + L∇η

2
D2

X + γσ2
G2

+ (α+ 2Lη)σ̂
2
J1 σ̂

2
J2

]
:= τ2k σ̂

2,

and taking expectation of both sides, we can complete the proof with the same arguments in the

proof of Theorem 4.1. The constants C1 and C2 turn out to be

C1 = 4

(
β2

ρL∇F
+

L∇F
ρ

){
Wα,γ(x

0, z0, u0) + σ̂2

+ 4D2
X (1 + δ)

[
2β + (8ρ+

1

ρ
)L∇F + 12ρL∇f1L

2
f2)

]}
,

C2 =
2

ρL∇f1

{
Wα,γ(x

0, z0, u0) + σ̂2

+ 4D2
X (1 + δ)

[
2β + (8ρ+

1

ρ
)L∇F + 12ρL∇f1L

2
f2)

]}
.

(B.38)

□

B.3.2. Proof of Theorem 4.2 for T = 1. To show the rate of convergence for Algorithm 8,

we leverage the following merit function:

(B.39) Wα(x
k, zk, uk) = F (xk)− F ⋆ − η(xk, zk) + α∥∇F (xk)− zk∥2,

107

where α > 0, η(·, ·) is defined in (4.10).

Lemma B.8. Let {xk, zk}k≥0 be the sequence generated by Algorithm 8 with βk ≡ β > 0 and the

merit function Wα(·, ·) be defined in (B.39) with α = β
4L2

∇F
. Under Assumptions 4.2 with T = 1, we

have ∀N ≥ 0

β
N∑
k=0

τk

(
∥dk∥2 + 1

2L2
∇F
∥∇F (xk)− zk∥2

)

≤ 4Wα(x
0, u0) + 4

N∑
k=0

Rk +

(
12 +

16L2
∇F

β2

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)

where dk := yk − xk, Hk(·), yk are defined in (4.16), ∆k+1 := ∇F (xk)− Jk+1
1 , and

Rk :=τ2k

[
L∇F + L∇η

2
D2

X + α∥∆k+1∥2
]
+

Lη
2
∥zk+1 − zk∥2

+ τk⟨dk,∆k+1⟩+ αrk+1,

rk+1 :=2τk⟨∆k+1, (1− τk)[∇F (xk)− zk] +∇F (xk+1)−∇F (xk)⟩.

(B.40)

Proof. The proof is a essentially a simplified version of the proof of Lemma B.7. Hence, we

skip some arguments already presented earlier.

1. By the Lipschitzness of ∇F , we have

F (xk+1)− F (xk) ≤ τk⟨∇F (xk), dk⟩+ τk∥∇F (xk)− zk∥∥ỹk − yk∥

+ τkβ∥dk∥∥ỹk − yk∥+ τk⟨zk + βdk, ỹk − yk⟩+ L∇F τ
2
k∥d̃k∥2
2

.

(B.41)

2. Also, by the lipschitzness of ∇η (Lemma B.2) and the optimality condition of in the definition

of yk, we have

η(xk, zk)− η(xk+1, zk+1) ≤ −βτk∥dk∥2 + τk
〈
zk + βdk, ỹk − yk

〉
− τk

〈
dk,∇F (xk)

〉
+ τk

〈
dk,∆k+1

〉
+

L∇η
2

[
τ2k∥d̃k∥2 + ∥zk+1 − zk∥2

]
.

(B.42)

108

3. By the update rule, we have

∥∇F (xk+1)− zk+1∥2 = ∥(1− τk)[∇F (xk)− zk] +∇F (xk+1)−∇F (xk) + τk∆
k+1∥2

= ∥(1− τk)[∇F (xk)− zk] +∇F (xk+1)−∇F (xk)∥2 + τ2k∥∆k+1∥2 + rk+1

≤ (1− τk)∥∇F (xk)− zk∥2 + 1

τk
∥∇F (xk+1)−∇F (xk)∥2 + τ2k∥∆k+1∥2 + rk+1

≤ (1− τk)∥∇F (xk)− zk∥2 + τkL
2
∇F ∥d̃k∥2 + τ2k∥∆k+1∥2 + rk+1

≤ (1− τk)∥∇F (xk)− zk∥2 + 2τkL
2
∇F (∥dk∥2 + ∥ỹk − yk∥2) + τ2k∥∆k+1∥2 + rk+1

(B.43)

where rk+1 := 2τk⟨∆k, (1− τk)[∇F (xk)− zk] +∇F (xk+1)−∇F (xk)⟩.
4. By combing (B.41), (B.42) (B.43), rearranging the terms, and noting that ⟨zk+βdk, ỹk−yk⟩ =

Hk(ỹ
k)−Hk(y

k)− (β/2)∥ỹk − yk∥2 and ∥d̃k∥ ≤ DX , we obtain

(B.44) Wk+1 −Wk ≤ τkAk +Rk

where Rk is defined in (B.40) and

Ak :=
(
−β + 2αL2

∇F
)
∥dk∥2 − α∥∇F (xk)− zk∥2 +

(
β∥dk∥+ ∥∇F (xk)− zk∥

)
∥ỹk − yk∥

+
(
2αL2

∇F − β
)
∥ỹk − yk∥2 + 2

(
Hk(ỹ

k)−Hk(y
k)
)
.

We then provide a simplified upper bound for Ak. By the Young’s inequality, we have

β∥dk∥∥ỹk − yk∥ ≤ β

4
∥dk∥2 + β∥ỹk − yk∥2,

∥∇F (xk)− zk∥∥ỹk − yk∥ ≤ α

2
∥∇F (xk)− zk∥2 + 1

2α
∥ỹk − yk∥2.

In addition, setting α = β
4L2

∇F
and noting (β/2)∥ỹk − yk∥2 ≤ Hk(ỹ

k)−Hk(y
k), we have

Ak ≤−
β

4
∥dk∥2 − β

8L2
∇F
∥∇F (xk)− zk∥2 +

(
3 +

4L2
∇F
β2

)(
Hk(ỹ

k)−Hk(y
k)
)

(B.45)

109

Telescoping (B.44) together with (B.45), we get

β
N∑
k=0

τk

(
∥dk∥2 + 1

2L2
∇F
∥∇F (xk)− zk∥2

)

≤ 4Wα(x
0, u0) + 4

N∑
k=0

Rk +

(
12 +

16L2
∇F

β2

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)

□

Proof of Theorem 4.2, part (b). Given Lemma B.8, the proof follows the same arguments

as in the proof of Theorem 4.1. The constant C3 turns out to be

C3 = 8

(
β +

2L2
∇F
β

){
Wα(x

0, u0) +D2
X

[
(1 + δ)

(
12β +

16L2
∇F

β

)
+

L∇F + L∇η
2

]
+ασ2

J1 + 2Lησ̂
2
J1

}.(B.46)

□

B.4. Proof of Theorem 4.3

We start with presenting the lemma below which leverages inequalities in Appendix B.4 to show

a high-probability upper bound for terms involving in the previous analysis.

Lemma B.9. Under the conditions of Lemma B.8 and Assumption 4.4, for any δ1, δ2, δ3, a > 0,

we have

(a) with probability at least 1− δ1,
∑N

k=0 τ
2
k∥∆k+1∥2 ≤ K2 log(2/δ1)

∑N
k=0 τ

2
k ;

(b) with probability at least 1− δ2,

N∑
k=0

τ2k

k−1∑
i=0

αi,k∥∆i+1∥2 ≤ K2 log(2/δ2)
N∑
k=0

τ2k ,

where αi,k > 0 and
∑k−1

i=0 αi,k = 1;

(c) with probability at least 1− δ3,

N∑
k=0

⟨∆k+1, 2ατk(1− τk)[∇F (xk)− zk] + 2ατk(∇F (xk+1)−∇F (xk)) + τkd
k⟩

≤ 4a log(1/δ3) +
β2K2

aL4
∇F

N∑
k=0

τ2k (1− τk)
∥∥∥∇F (xk)− zk

∥∥∥2 + K2

a

N∑
k=0

τ2k (4 +
β2τk
L2
∇F

)
∥∥∥dk∥∥∥2 .

110

Proof of Lemma B.9. We first show (a). Using the law of total expectation, we have

E
[
exp

(
∥τk∆k+1∥2
τ2kK

2

)]
≤ 2, which implies that ∥τk∆k+1∥2 is τ2kK

2-sub-exponential. Thus, we have

with probability at least 1− δ1,

(B.47)
N∑
k=0

τ2k∥∆k+1∥2 ≤ K2 log(2/δ1)

N∑
k=0

τ2k .

We then show (b). Let Zk = τ2k

{∑k−1
i=0 αi,k

∥∥∆i+1
∥∥2}∀k ≥ 0. Note that for all k ≥ 0, ∥∆k+1∥2 is

K2-sub-exponential, which further implies that the sub-exponential norm of Zk (k > 0) satisfies

∥Zk∥ψ1 ≤ τ2kK
2. Therefore, we have for any δ2 > 0, with probability at least 1− δ2,

(B.48)
N∑
k=0

Zk ≤ K2 log(2/δ2)
N∑
k=0

τ2k .

To prove (c), we apply Lemma 1.1 and Lemma 1.3 with

Xi =
〈
∆k+1, 2ατk

{
(1− τk)[∇F (xk)− zk] +∇F (xk+1)−∇F (xk)

}
+ τkd

k
〉
,

Ki =
√
cK
∥∥∥2ατk {(1− τk)[∇F (xk)− zk] +∇F (xk+1)−∇F (xk)

}
+ τkd

k
∥∥∥ ,

b = 0, t = 4a log(1/δ3).

Noting that α = β
4L2

∇F
, we obtain that for all a > 0 with probability at least 1 − δ3,

∑N
i=0Xi ≤

4a log(1/δ3) and

N∑
i=0

Xi ≤
2cK2

a

N∑
k=0

∥∥∥2ατk {(1− τk)[∇F (xk)− zk] +∇F (xk+1)−∇F (xk)
}
+ τkd

k
∥∥∥2

≤ 4cK2

a

N∑
k=0

τ2k

{
4α2

∥∥∥(1− τk)[∇F (xk)− zk] +∇F (xk+1)−∇F (xk)
∥∥∥2 + ∥∥∥dk∥∥∥2}

≤ 4cK2

a

N∑
k=0

τ2k

{
4α2(1− τk)

∥∥∥∇F (xk)− zk
∥∥∥2 + (1 + 4α2L2

∇F τk)
∥∥∥dk∥∥∥2}

=
cβ2K2

aL4
∇F

N∑
k=0

τ2k (1− τk)
∥∥∥∇F (xk)− zk

∥∥∥2 + cK2

a

N∑
k=0

τ2k (4 +
β2τk
L2
∇F

)
∥∥∥dk∥∥∥2 ,

where the third inequality comes from the convexity of ∥ · ∥2 and the Lipschitzness of ∇F . □

Provided with the above lemma and Lemma B.8, we now present the complete proof of Theorem

4.3.

111

Proof of Theorem 4.3. Given the update rule of {zk} and the fact that τ0 = 1, we can

obtain

zk =
k−1∑
i=0

αi,kJ
i+1
1 , αi,k =

τi
Γi+1

Γk 1 ≤ i ≤ k,
k−1∑
i=0

αi,k = 1 k ≥ 1

where Γk = Γ1
∏k−1
i=1 (1− τi) and Γ1 = 1. Thus,

∥∥∥zk+1 − zk
∥∥∥2 = τ2k

∥∥∥Jk+1
1 − zk

∥∥∥2 ≤ 2τ2k

∥∥∥Jk+1
1

∥∥∥2 + ∥∥∥∥∥
k−1∑
i=0

αi,kJ
i+1
1

∥∥∥∥∥
2

≤ 2τ2k

{∥∥∥Jk+1
1

∥∥∥2 + k−1∑
i=0

αi,k
∥∥J i+1

1

∥∥2}

≤ 4τ2k

{∥∥∥∆k+1
∥∥∥2 + ∥∥∥∇F (xk)

∥∥∥2 + k−1∑
i=0

αi,k

[∥∥∆i+1
∥∥2 + ∥∇F (xi)∥2

]}

≤ 4τ2k

{∥∥∥∆k+1
∥∥∥2 + k−1∑

i=0

αi,k
∥∥∆i+1

∥∥2 + 2L2
F

}

where the second inequality comes from the convexity of ∥ · ∥2. Therefore, we have

N∑
k=0

∥zk+1 − zk∥2 ≤ 4

N∑
k=0

τ2k∥∆k+1∥2 + 4

N∑
k=0

τ2k

k−1∑
i=0

αi,k∥∆i+1∥2 + 8L2
F

N∑
k=0

τ2k

Applying Lemma B.9 with δ1 = δ2 = δ3 = δ/3 and a = 16cβK2

L2
∇F

together with Lemma B.8, we have

with probability at least 1− δ,

N∑
k=0

Rk =
N∑
k=0

⟨∆k+1, 2ατk(1− τk)[∇F (xk)− zk] + 2ατk(∇F (xk+1)−∇F (xk)) + τkd
k⟩

+ (α+ 2Lη)
N∑
k=0

τ2k∥∆k+1∥2 + 2Lη

N∑
k=0

τ2k

k−1∑
i=0

αi,k∥∆i+1∥2

+

[
L∇F + L∇η

2
D2

X + 4LηL
2
F

] N∑
k=0

τ2k

≤64βK2

L2
∇F

log(3/δ) +
β

16L2
∇F

N∑
k=0

τ2k (1− τk)
∥∥∥∇F (xk)− zk

∥∥∥2 + (
L2
∇F
4β

+
β

16
)

N∑
k=0

τ2k

∥∥∥dk∥∥∥2
+

[
(

β

4L2
∇F

+ 4Lη)K
2 log(6/δ) +

L∇F + L∇η
2

D2
X + 4LηL

2
F

] N∑
k=0

τ2k

112

Thus, noting that ∥dk∥2 ≤ D2
X ∀k ≥ 0, we have with probability at least 1− δ,

β
N∑
k=0

τk

(
∥dk∥2 + 1

4L2
∇F
∥∇F (xk)− zk∥2

)

≤ 4Wα(x
0, u0) +

(
12 +

16L2
∇F

β2

) N∑
k=0

τk

(
Hk(ỹ

k)−Hk(y
k)
)
+

256βK2

L2
∇F

log(3/δ)

+

[(
β

L2
∇F

+ 16Lη

)
K2 log(6/δ) +

(
L2
∇F
β

+
β

4
+ 2L∇F + 2L∇η

)
D2

X + 16LηL
2
F

] N∑
k=0

τ2k

Following the same arguments as in the proof of Theorem 4.1, we can complete the proof.

□

113

APPENDIX C

Appendix of Chapter 5

C.1. Proof for Theorem 5.1

In order to prove Theorem 5.1, we require the following result from [NS17] for the zeroth-order

case.

Lemma C.1. [NS17] Let the function f has lipschitz continuous gradient with constant L.

Consider the smoothed function fν(x) = Eu[f(x+ νu)] where u ∼ N (0, Id). Then for any x ∈ Rd,

Eu
[
f(x+ νu)− f(x)

ν
u

]
= ∇fν(x)(C.1)

∥∇fν(x)−∇f(x)∥ ≤
ν

2
L(d+ 3)

3
2(C.2)

1

ν2
Eu[{f(x+ νu)− f(x)}2 ∥u∥2] ≤ ν2

2
L2(d+ 6)3 + 2(d+ 4) ∥∇f(x)∥2 .(C.3)

We now present the lemma below to bound the mean squared error for the zeroth-order gradient

estimator.

Lemma C.2. Under Assumption 5.1, 5.2, 5.3, we have

E
∥∥Ḡt

ν −∇fν(xt−1)
∥∥2 ≤ 4ρL(d+ 4)(f(xt−1)− f(x∗))

bt
+

ν2L2(d+ 6)3

2bt
,(C.4)

E
∥∥Ḡt

ν −∇f(xt−1)
∥∥2 ≤ 4ρL(d+ 4)(f(xt−1)− f(x∗))

bt
+ ν2L2(d+ 6)3.(C.5)

Proof. First note that by (C.1), we have

Eu,ξ[Ḡt
ν] = Eu,ξ[Gt,j] = Eu

[
f(xt−1 + νu)− f(xt−1)

ν
u

]
= ∇fν(xt−1),

Then by using (C.3) for F instead of f , under Assumption 5.2, 5.3, we can obtain

Eu,ξ
∥∥Ḡt

ν −∇fν(xt−1)
∥∥2 = 1

bt
Eu,ξ ∥Gt,j −∇fν(xt−1)∥2

≤ 1

bt
Eu,ξ ∥Gt,j∥2

114

≤ 2(d+ 4)

bt
Eξ ∥∇F (xt−1, ξt,j)∥2 +

ν2L2(d+ 6)3

2bt

≤ 4ρL(d+ 4)(f(xt−1)− f(x∗))

bt
+

ν2L2(d+ 6)3

2bt

where the first inequality comes from the fact that the variance is less than the seocond moment.

To prove (C.5), we decompose the mean squared error into the bias and the variance by utilizing

the results (C.4) and (C.2), i.e.,

E
∥∥Ḡt

ν −∇f(xt−1)
∥∥2 = E

∥∥Ḡt
ν −∇fν(xt−1)

∥∥2 + ∥∇fν(xt−1)−∇f(xt−1)∥2

≤ 4ρL(d+ 4)(f(xt−1)− f(x∗))

bt
+

ν2L2(d+ 6)3

2bt
+

ν2L2(d+ 3)3

4

≤ 4ρL(d+ 4)(f(xt−1)− f(x∗))

bt
+ ν2L2(d+ 6)3.

□

We also need the following simple result in our proof.

Lemma C.3. Assume that sequences {ϕt}t≥0 ≥ 0, {Bt}t≥1, {θt}t≥1 ∈ [0, 1] are given such that

(C.6) ϕt ≤ (1− θt)ϕt−1 +Bt.

Then, we have

ϕT ≤ ΘT

[
ϕ0 +

T∑
t=1

Bt
Θt

]
,

where, for any t ≥ 2,

(C.7) Θt = Θ1

t∏
k=2

(1− θk), where Θ1 = 1− θ1 if θ1 < 1, Θ1 = 1 if θ1 = 1.

Proof. Dividing both sides of (C.6) by Θt, summing them up from t = 1 to t = T , noting

non-negativity of ϕt and (C.7), we obtain the result. □

Proof for Theorem 5.1. For convenience, let gt be the gradient estimator at t step. Thus,

gt = ∇̃t for the first order method while in the zeroth order setting gt = Ḡt
ν .

f(xt) ≤ f(xt−1) + ⟨∇f(xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2

= f(xt−1) + γt⟨∇f(xt−1), dt − xt−1⟩+
Lγ2t
2
∥dt − xt−1∥2

115

≤ f(xt−1) + γt⟨gt, dt − xt−1⟩+ γt⟨∇f(xt−1)− gt, dt − xt−1⟩+
LD2γ2t

2

≤ f(xt−1) + γt⟨gt, x∗ − xt−1⟩+ γt⟨∇f(xt−1)− gt, dt − xt−1⟩+
LD2γ2t

2

= f(xt−1) + γt⟨∇f(xt−1), x
∗ − xt−1⟩+ γt⟨∇f(xt−1)− gt, dt − x∗⟩+ LD2γ2t

2

≤ f(xt−1) + γt(f(x
∗)− f(xt−1)) + γt⟨∇f(xt−1)− gt, dt − x∗⟩+ LD2γ2t

2

≤ f(xt−1) + γt(f(x
∗)− f(xt−1)) +

γt
2β
∥∇f(xt−1)− gt∥2 +

D2γt(Lγt + β)

2
.

The last inequality comes from the Young’s inequality: for any β > 0,

⟨∇f(xt−1)− gt, dt − x∗⟩ ≤ 1

2β
∥∇f(xt−1)− gt∥2 +

β

2
∥dt − x∗∥2

≤ 1

2β
∥∇f(xt−1)− gt∥2 +

D2β

2
.

Denote ϕt = f(xt)− f(x∗). Substracting f(x∗) from both sides of the inequality and taking the

conditional expectation E[·|Ft−1], we have

(C.8) E[ϕt|Ft−1] ≤ (1− γt)ϕt−1 +
γt
2β

E[∥∇f(xt−1)− gt∥2 |Ft−1] +
D2γt(Lγt + β)

2
.

For the first-order gradient estimator gt = ∇̃t, we have the following bound for its variance under

Assumption 5.4:

E[
∥∥∥∇f(xt−1)− ∇̃t

∥∥∥2 |Ft−1] =
1

bt
E[∥∇f(xt−1)−∇F (xt−1, ξt,j)∥2 |Ft−1] ≤

2ρLϕt−1

bt
.

Then by (C.8), we can obtain

E[ϕt|Ft−1] ≤ (1− γt)ϕt−1 +
γtρL

βbt
ϕt−1 +

D2γt(Lγt + β)

2
.

Let γt =
4
t+3 , β = ρLγt =

4ρL
t+3 > 0, bt = ⌈(t+ 3)/2⌉, then

(C.9) E[ϕt|Ft−1] ≤
(
1− 2

t+ 3

)
ϕt−1 +

8(ρ+ 1)LD2

(t+ 3)2
.

116

Now, letting θt =
2
t+3 , it is easy to check that Θt =

6
(t+2)(t+3) due to (C.7). Hence, in the view

of Lemma C.3, we have

E[ϕt] ≤
6ϕ0

(t+ 2)(t+ 3)
+

8(ρ+ 1)LD2

t+ 3
≤ 2[ϕ0 + 4(ρ+ 1)LD2]

t+ 3
.

The above inequality implies that to attain an ϵ-optimal point, the total number of interations T

can be bounded by O(1/ϵ). Hence, the number of the gradient calls
∑T

t=1 bt can be bounded by
T 2+7T

4 = O(T 2), and the number of calls to the linear minimization oracle immediately follows from

this observation.

We now prove part (b). For the zeroth-order version, by (C.5) in Lemma C.2 and (C.8), we can

obtain

E[ϕt|Ft−1] ≤ (1− γt)ϕt−1 +
γt
2β

E[
∥∥∇f(xt−1)− Ḡt

ν

∥∥2 |Ft−1] +
D2γt(Lγt + β)

2

≤ (1− γt)ϕt−1 +
2γtρL(d+ 4)

βbt
ϕt−1 +

γtν
2L2(d+ 6)3

2β
+

D2γt(Lγt + β)

2

Let γt =
4
t+3 , β = γtρL, bt = (t + 3)(d + 4), ν = D(T + 3)−1(d + 6)−3/2 ≤ D(t + 3)−1(d + 6)−3/2,

then we have

E[ϕt|Ft−1] ≤
(
1− 2

t+ 3

)
ϕt−1 +

8(ρ+ ρ−1 + 1)

(t+ 3)2LD2

Similarly, in the view of Lemma C.3, we obtain

E[f(xt)− f(x∗)] ≤ 2[f(x0)− f(x∗)] + 8(ρ+ ρ−1 + 1)LD2

t+ 3
.

The above inequality implies that to attain an ϵ-optimal point, the total number of interations T

can be bounded by O(1/ϵ). Hence, the number of calls to the zeroth-order oracles 2
∑T

t=1 bt can be

bounded by (d+ 4)(T 2 + 7T) = O(dT 2), and the number of calls to the linear minimization oracle

immediately follows from this observation. □

C.2. Proof of Theorem 5.2

Proof of Theorem 5.2. For convenience, let gt be the gradient estimator at t step. Thus,

gt = ∇̃t for the first order method while in the zeroth order setting gt = Ḡt
ν . First note that by the

updates in Algorithm 10, the convexity and the smoothness of f , we have

117

f(xt) ≤f(zt) + ⟨∇f(zt), xt − zt⟩+
L

2
∥xt − zt∥2

=(1− γt)[f(zt) + ⟨∇f(zt), xt−1 − zt⟩] + γt[f(zt) + ⟨∇f(zt), yt − zt⟩] +
Lγ2t
2
∥yt − yt−1∥2

≤(1− γt)f(xt−1) + γt[f(zt) + ⟨∇f(zt), yt − zt⟩] +
Lγ2t
2
∥yt − yt−1∥2

=(1− γt)f(xt−1) + γt[f(zt) + ⟨∇f(zt), yt − zt⟩] +
βtγt
2
∥yt − yt−1∥2

− γt(βt − Lγt)

2
∥yt − yt−1∥2 .(C.10)

And by (5.5), we have

⟨gt + βt(yt − yt−1), yt − x⟩ ≤ ηt, ∀x ∈ Ω.

Let x = x∗ in the above inequality. Then we have

1

2
∥yt − yt−1∥2 =

1

2
∥yt−1 − x∗∥2 − ⟨yt−1 − yt, yt − x∗⟩ − 1

2
∥yt − x∗∥2

≤ 1

2
∥yt−1 − x∗∥2 + 1

βt
⟨gt, x∗ − yt⟩ −

1

2
∥yt − x∗∥2 + ηt

βt
.(C.11)

Denoting δt = gt −∇f(zt) and combining (C.10) and (C.11), we obtain

f(xt) ≤(1− γt)f(xt−1) + γtf(x
∗) + γt⟨δt, x∗ − yt⟩

+
βtγt
2

(∥yt−1 − x∗∥2 − ∥yt − x∗∥2) + ηtγt −
γt
2
(βt − Lγt) ∥yt − yt−1∥2

=(1− γt)f(xt−1) + γtf(x
∗) +

βtγt
2

(∥yt−1 − x∗∥2 − ∥yt − x∗∥2) + ηtγt

+ γt⟨δt, x∗ − yt−1⟩+ γt⟨δt, yt−1 − yt⟩ −
γt
2
(βt − Lγt) ∥yt − yt−1∥2

≤(1− γt)f(xt−1) + γtf(x
∗) +

βtγt
2

(∥yt−1 − x∗∥2 − ∥yt − x∗∥2) + ηtγt

+ γt⟨δt, x∗ − yt−1⟩+
γt ∥δt∥2

2(βt − Lγt)
,

where the last inequality comes from the fact that

γt⟨δt, yt−1 − yt⟩ ≤
γt

2(βt − Lγt)
∥δt∥2 +

γt(βt − Lγt)

2
∥yt − yt−1∥2 .

118

Substracting f(x∗) from both sides of the above inequality, denoting ϕt = f(xt)− f(x∗), θt = γt,

and in the view of Lemma C.3, we obtain

(C.12) ϕt ≤ Θt

[
ϕ0 +

t∑
k=1

Bk
Θk

]
,

where

Bt =
βtγt
2

(∥yt−1 − x∗∥2 − ∥yt − x∗∥2) + ηtγt + γt⟨δt, x∗ − yt−1⟩+
γt ∥δt∥2

2(βt − Lγt)
.

Choosing γt = θt =
3
t+2 , we can easily check that Θt =

6
t(t+1)(t+2) due to (C.7). Moreover, letting

βt =
4L
t+2 , ηt =

LD2

t(t+1) , we have
∑t

k=1
ηkγk
Θk
≤ tLD2

2 and

t∑
k=1

βkγk
Θk

(∥yt−1 − x∗∥2 − ∥yt − x∗∥2)

≤ β1γ1
Θi
∥y0 − x∗∥2 +

t∑
k=2

(
βkγk
Θk
− βk−1γk−1

Θk−1

)
∥yt−1 − x∗∥2

≤ β1γ1
Θi

D2 +

t∑
k=2

(
βkγk
Θk
− βk−1γk−1

Θk−1

)
D2 =

βtγtD
2

Θt
=

2LD2t(t+ 1)

t+ 2
,

where the last inequality comes from the fact βkγk
Θk

>
βk−1γk−1

Θk−1
.

We now prove part (a). Let gt = ∇̃t. Taking expectation for both sides of (C.12), and noting

that E[⟨δt, x∗ − yt−1⟩] = 0 and

E[∥δt∥2 |Ft−1] ≤
2ρL

bt
(f(zt)− f(x∗)) ▷ by Assumption 5.4

≤ 2ρL

bt

(
(1− γt)ϕt−1 + γt(f(yt−1)− f(x∗))

)
▷ zt = (1− γt)xt−1 + γtyt−1

≤ 2ρL

bt

(
(1− γt)ϕt−1 + γt(∥∇f(x∗)∥D +

LD2

2
)

)
▷ by the smoothness

:=
2ρL

bt

(
(1− γt)ϕt−1 + γt

KLD2

2

)
, ▷K =

∥∇f(x∗)∥
LD

+ 1

119

we can obtain

E[ϕt] ≤
6LD2

(t+ 2)2
+

3LD2

(t+ 1)(t+ 2)
+

3

t(t+ 1)(t+ 2)

t∑
k=1

ρk(k + 1)

(
(k − 1)E[ϕk−1] +

3KLD2

2

)
bk

We now prove

(C.13) E[ϕt] ≤
6LD2

(t+ 2)2
+

(12 + 3K)LD2

(t+ 1)(t+ 2)

by induction. Set bk =
⌈
3ρk(k+1)

⌉
. It is easy to check E[ϕ0] ≤ KLD2

2 by the smoothness of f which

satisfies (C.13). If (C.13) holds for all k ≤ t− 1, then with the above inequality we can obtain

E[ϕt] ≤
6LD2

(t+ 2)2
+

(3 + 3K
2)LD2

(t+ 1)(t+ 2)
+

1

t(t+ 1)(t+ 2)

t∑
k=1

(k − 1)E[ϕk−1]

≤ 6LD2

(t+ 2)2
+

(3 + 3K
2)LD2

(t+ 1)(t+ 2)
+

1

t(t+ 1)(t+ 2)

t∑
k=1

(
6LD2(k − 1)

(k + 1)2
+

(12 + 3K)LD2(k − 1)

k(k + 1)

)

≤ 6LD2

(t+ 2)2
+

(3 + 3K
2)LD2

(t+ 1)(t+ 2)
+

(18 + 3K)LD2

t(t+ 1)(t+ 2)

t∑
k=1

1

k + 1

≤ 6LD2

(t+ 2)2
+

(12 + 3K)LD2

(t+ 1)(t+ 2)
,

i.e., (C.13) holds for k = t. Therefore, to achieve an ϵ-optimal point, the number of outer iterations

T can be bounded by O(1/√ϵ). Hence, the number of calls to the first order oracles can be bounded

by
T∑
t=1

bt ≤ 3ρ

T∑
t=1

t(t+ 1) = ρT (T + 1)(T + 2) = O(T 3).

Due to the fact that the inner iterations indeed solves a convex constrained optimization problem by

the classical Frank-Wolfe method with the exact line search, one can show that the number of inner

iterations Nt performed at the t-th out iteration can be bounded by

Nt ≤
⌈
6βtD

2

ηt

⌉
= O(t).

Thus, the number of calls to the linear minimization oracle can be bounded by

T∑
t=1

Nt ≤ O(T 2).

120

We now prove part (b). Let gt = Ḡt
ν . Notice that Ḡt

ν is a biased estimator of ∇f(zt). We can

obtain the following results by (C.2):

E[⟨δt, x∗ − yt−1⟩] = E[⟨∇fν(zt)−∇f(zt), x∗ − yt−1⟩] + E[⟨Ḡt
ν −∇fν(zt), x∗ − yt−1⟩]

= E[⟨∇fν(zt)−∇f(zt), x∗ − yt−1⟩] ≤
νLD(d+ 3)3/2

2
.

Besides, we can obtain a similar bound for E[∥δt∥2] by Lemma C.2.

E[∥δt∥2 |Ft−1] ≤
4ρL(d+ 4)(f(zt)− f(x∗))

bt
+ ν2L2(d+ 6)3

≤ 4ρL(d+ 4)
(
(1− γt)ϕt−1 +

LD2γt
2

)
bt

+ ν2L2(d+ 6)3.

where the last inequality is slightly different from the one for the first-order setting due to ∥∇f(x∗)∥ =
0 for convex cases under the moment-based WGC.

By (C.12), we have the following simplified inequality:

E[ϕt] ≤
6LD2

(t+ 2)2
+

3LD2

(t+ 1)(t+ 2)
+

νLD(d+ 3)3/2

2
+

3ν2L(d+ 6)3

2

+
6

t(t+ 1)(t+ 2)

t∑
k=1

ρ(d+ 4)k(k + 1)

(
(k − 1)E[ϕk−1] +

3LD2

2

)
bk

.

Set bk = ⌈6ρk(k + 1)(d+ 4)⌉, ν = D
(T+2)2(d+6)3/2

≤ D
(t+2)2(d+6)3/2

. Then we have

E[ϕt] ≤
8LD2

(t+ 2)2
+

12LD2

(t+ 1)(t+ 2)
+

1

t(t+ 1)(t+ 2)

t∑
k=1

(k − 1)E[ϕk−1].

Similar to the proof for part (a), we can finish the proof by induction and obtain the bounds for

complexity. □

C.3. Zeroth-order SGD under Growth Conditions

In this section, we highlight that one can extend the results in [VBS19] only assuming access to

stochastic zeroth-order oracle with corresponding variance-based growth conditions. Notice that both

SGC and WGC are defined in the format of the relative shrinkage of E∥∇F (x, ξ)∥2. However, in the

unconstrained setting, the corresponding variance-based versions are equivalent to the moment-based

121

growth conditions (see Proposition 5.1 for WGC; for SGC, note that E∥∇F (x, ξ) − ∇f(x)∥2 =

E∥∇F (x, ξ)∥2 − ∥∇f(x)∥2 = (ρ− 1)∥∇f(x)∥2).
We present the following result for the zeroth-order setting which directly follows the proofs

in [VBS19]. We highlight that it is the zeroth-order version of Theorem 3 in [VBS19]. Similar

results for other setups considered in [VBS19] can also be obtained for the zeroth-order setting.

Algorithm 12 Non-convex Zeroth-order SGD (ZO-SGD)
Input: x0 ∈ Ω, number of iterations T , η
for t = 1, 2, . . . , T do

Randomly pick ξt and compute

xt = xt−1 − η
F (xt−1 + νut, ξt)− F (xt−1, ξt)

ν
ut := xt−1 − ηGt.

where ut is generated from (0, Id).
end for
Output: xR where R is uniformly distributed over 0, . . . , T − 1

Theorem C.1. Consider solving the non-convex unconstrained L-smooth problem by Algorithm 12

with some appropriate constant step size η, if f satistifies SGC with constant ρ, then

E∥∇f(xR)∥2 ≤ O
(
1

T

)
Proof. The zeroth-order SGD update is given by

xt = xt−1 − η
F (xt−1 + νut, ξt)− F (xt−1, ξt)

ν
ut := xt−1 − ηGt.

By the smoothness of f , we have

f(xt)− f(xt−1) ≤ ⟨∇f(xt−1, xt − xt−1) +
L

2
∥xt − xt−1∥2

= −η⟨∇f(xt−1), Gt⟩+
Lη2

2
∥Gt∥2

Consider the term ⟨∇f(xt−1), Gt⟩. Taking expectation with respect to ξt, ut, we have

E[⟨∇f(xt−1), Gt⟩] = ⟨∇f(xt−1),∇fν(xt−1)⟩

= ⟨∇f(xt−1),∇f(xt−1) +∇fν(xt−1)−∇f(xt−1)⟩

≥ ∥∇f(xt−1)∥2 −
νL(d+ 3)3/2

2
∥∇f(xt−1)∥

122

Consider the term ∥Gt∥2. Taking expectation with respect to ξt, ut, we have

E∥Gt∥2 ≤
ν2

2
L2(d+ 6)3 + 2(d+ 4)E∥∇F (xt−1, ξt)∥2

≤ ν2

2
L2(d+ 6)3 + 2ρ(d+ 4)∥∇f(xt−1)∥2

Then, by the above inequalities, we can obtain

E[f(xt)− f(xt−1)]

≤ −η∥∇f(xt−1)∥2 + η
νL(d+ 3)3/2

2
∥∇f(xt−1)∥+ η2Lρ(d+ 4)∥∇f(xt−1)∥2 + η2

ν2

4
L3(d+ 6)2

≤ −η∥∇f(xt−1)∥2 + η2L(d+ 3)∥∇f(xt−1)∥2 +
ν2L(d+ 3)2

16

+ η2Lρ(d+ 4)∥∇f(xt−1)∥2 + η2
ν2

4
L3(d+ 6)2

≤ −η∥∇f(xt−1)∥2 + η2L(ρ+ 1)(d+ 4)∥∇f(xt−1)∥2 + η2
ν2

4
L3(d+ 6)2 +

ν2L(d+ 3)2

16
.

If η = 1
2L(ρ+1)(d+4) , then we have

E[f(xt)− f(xt−1)] ≤ −
η

2
∥∇f(xt−1)∥2 + η2

ν2

4
L3(d+ 6)2 +

ν2L(d+ 3)2

16

⇒ ∥∇f(xt−1)∥2 ≤
2

η
E[f(xt−1)− f(xt)] + η

ν2

2
L3(d+ 6)2 +

ν2L(d+ 3)2

8η

Setting ν = O(1/
√
dT) and taking a telescoping sum of the above inequality, we can get the same

O(1/T) rate for the non-convex setting. □

In the above proof, we did not pay careful attention to the exact constants of the tuning

parameter, as our main point is to simply highlight it is possible to obtain a zeroth-order version

of the results in [VBS19] under variance-based growth conditions and the logic of the proof is the

same as [VBS19].

123

Bibliography

[AB13] P. Alquier and G. Biau, Sparse single-index model., Journal of Machine Learning Research 14 (2013),

no. 1.

[ABD+18] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach, A reductions approach to fair

classification, International Conference on Machine Learning, 2018, pp. 60–69.

[ABTR21] Z. Akhtar, A. S. Bedi, S. T. Thomdapu, and K. Rajawat, Projection-Free Algorithm for Stochastic

Bi-level Optimization, arXiv preprint arXiv:2110.11721 (2021).

[ACD+19] Y. Arjevani, Y. Carmon, J. Duchi, D. Foster, N. Srebro, and B. Woodworth, Lower bounds for

non-convex stochastic optimization, arXiv preprint arXiv:1912.02365 (2019).

[AF21] R. Astudillo and P. Frazier, Bayesian optimization of function networks, Advances in Neural Information

Processing Systems 34 (2021).

[AFM17] Y. Atchadé, G. Fort, and E. Moulines, On stochastic proximal gradient algorithms, Journal of Machine

Learning Research (2017).

[AYS19] S. Alghunaim, K. Yuan, and A. H. Sayed, A linearly convergent proximal gradient algorithm for

decentralized optimization, Advances in Neural Information Processing Systems 32 (2019).

[BBM18] R. Bassily, M. Belkin, and S. Ma, On exponential convergence of sgd in non-convex over-parametrized

learning, arXiv preprint arXiv:1811.02564 (2018).

[BG21] K. Balasubramanian and S. Ghadimi, Zeroth-order nonconvex stochastic optimization: Handling

constraints, high dimensionality, and saddle points, Foundations of Computational Mathematics (2021),

1–42.

[BG22] , Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality,

and saddle points, Foundations of Computational Mathematics 22 (2022), no. 1, 35–76.

[BGI+17] J. Blanchet, D. Goldfarb, G. Iyengar, F. Li, and C. Zhou, Unbiased simulation for optimizing stochastic

function compositions, arXiv preprint arXiv:1711.07564 (2017).

[BGN22] K. Balasubramanian, S. Ghadimi, and A. Nguyen, Stochastic multilevel composition optimization

algorithms with level-independent convergence rates, SIAM Journal on Optimization 32 (2022), no. 2,

519–544.

[BHJ+18] R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth, Fairness in criminal justice risk assessments:

The state of the art, Sociological Methods & Research (2018).

124

[BL08] K. Bredies and D. A. Lorenz, Linear convergence of iterative soft-thresholding, Journal of Fourier

Analysis and Applications 14 (2008), 813–837.

[BM08] S. Boyd and A. Mutapcic, Stochastic subgradient methods, Lecture Notes for EE364b, Stanford

University (2008), 97.

[BS17] A. Beck and S. Shtern, Linearly convergent away-step conditional gradient for non-strongly convex

functions, Mathematical Programming 164 (2017), no. 1-2, 1–27.

[BT00] D. P. Bertsekas and J. N. Tsitsiklis, Gradient convergence in gradient methods with errors, SIAM

Journal on Optimization 10 (2000), no. 3, 627–642.

[BZK18] L. Berrada, A. Zisserman, and M. P. Kumar, Deep frank-wolfe for neural network optimization, arXiv

preprint arXiv:1811.07591 (2018).

[CFKM20] W. Cong, R. Forsati, M. Kandemir, and M. Mahdavi, Minimal variance sampling with provable guar-

antees for fast training of graph neural networks, Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2020, pp. 1393–1403.

[CLK+12] X. Chen, Q. Lin, S. Kim, J. G. Carbonell, and E. P. Xing, Smoothing proximal gradient method for

general structured sparse regression, (2012).

[CO19] A. Cutkosky and F. Orabona, Momentum-based variance reduction in non-convex sgd, Advances in

neural information processing systems 32 (2019).

[CRS+18a] K. Choromanski, M. Rowland, V. Sindhwani, R. Turner, and A. Weller, Structured evolution with

compact architectures for scalable policy optimization, arXiv preprint arXiv:1804.02395 (2018).

[CRS+18b] , Structured evolution with compact architectures for scalable policy optimization, Proceedings

of the 35th International Conference on Machine Learning, PMLR, 2018.

[CSY21] T. Chen, Y. Sun, and W. Yin, Solving stochastic compositional optimization is nearly as easy as solving

stochastic optimization, IEEE Transactions on Signal Processing 69 (2021), 4937–4948.

[CZS+17] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, ZOO: Zeroth order optimization based

black-box attacks to deep neural networks without training substitute models, Proceedings of the 10th

ACM workshop on artificial intelligence and security, 2017, pp. 15–26.

[DB19] A. Defazio and L. Bottou, On the ineffectiveness of variance reduced optimization for deep learning,

Advances in Neural Information Processing Systems, 2019, pp. 1753–1763.

[DBLJ14] A. Defazio, F. Bach, and S. Lacoste-Julien, Saga: A fast incremental gradient method with support

for non-strongly convex composite objectives, Advances in neural information processing systems 27

(2014).

[DD19] D. Davis and D. Drusvyatskiy, Stochastic model-based minimization of weakly convex functions, SIAM

Journal on Optimization 29 (2019), no. 1, 207–239.

[DF21] L. Dalcin and Y.-L. L. Fang, mpi4py: Status update after 12 years of development, Computing in

Science & Engineering 23 (2021), no. 4, 47–54.

125

[DIKL18] C. Dwork, N. Immorlica, A. T. Kalai, and M. Leiserson, Decoupled classifiers for group-fair and efficient

machine learning, Conference on Fairness, Accountability and Transparency, 2018, pp. 119–133.

[DJWW15] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, Optimal rates for zero-order convex

optimization: The power of two function evaluations, IEEE Transactions on Information Theory 61

(2015), no. 5, 2788–2806.

[DLS16] P. Di Lorenzo and G. Scutari, Next: In-network nonconvex optimization, IEEE Transactions on Signal

and Information Processing over Networks 2 (2016), no. 2, 120–136.

[DOBD+18] M. Donini, L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil, Empirical risk minimization

under fairness constraints, Advances in Neural Information Processing Systems, 2018, pp. 2791–2801.

[DPR17] D. Dentcheva, S. Penev, and A. Ruszczyński, Statistical estimation of composite risk functionals and

risk optimization problems, Annals of the Institute of Statistical Mathematics 69 (2017), no. 4, 737–760.

[DR70] V. Demyanov and A. Rubinov, Approximate methods in optimization problems, American Elsevier

Publishing Co, 1970.

[DR18] J. Duchi and F. Ruan, Stochastic methods for composite and weakly convex optimization problems,

SIAM Journal on Optimization 28 (2018), no. 4, 3229–3259.

[EN13] Y. Ermoliev and V. Norkin, Sample average approximation method for compound stochastic optimization

problems, SIAM Journal on Optimization 23 (2013), no. 4, 2231–2263.

[Erm76] Y. Ermoliev, Methods of stochastic programming, Nauka, Moscow (1976).

[FGM17] R. M. Freund, P. Grigas, and R. Mazumder, An extended frank-wolfe method with in-face directions,

and its application to low-rank matrix completion, SIAM Journal on optimization 27 (2017), no. 1,

319–346.

[FMO21] A. Fallah, A. Mokhtari, and A. Ozdaglar, Generalization of model-agnostic meta-learning algorithms:

Recurring and unseen tasks, Advances in Neural Information Processing Systems 34 (2021).

[FSS15] F. Facchinei, G. Scutari, and S. Sagratella, Parallel selective algorithms for nonconvex big data

optimization, IEEE Transactions on Signal Processing 63 (2015), no. 7, 1874–1889.

[FW56] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval research logistics quarterly 3

(1956), no. 1-2, 95–110.

[GH13] D. Garber and E. Hazan, A linearly convergent conditional gradient algorithm with applications to

online and stochastic optimization, arXiv preprint arXiv:1301.4666 (2013).

[GH15] , Faster rates for the frank-wolfe method over strongly-convex sets, International Conference on

Machine Learning, PMLR, 2015, pp. 541–549.

[Gha19] S. Ghadimi, Conditional gradient type methods for composite nonlinear and stochastic optimization,

Mathematical Programming 173 (2019), no. 1-2, 431–464.

126

[GKS21] D. Garber, A. Kaplan, and S. Sabach, Improved complexities of conditional gradient-type methods

with applications to robust matrix recovery problems, Mathematical Programming 186 (2021), no. 1,

185–208.

[GL13] S. Ghadimi and G. Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic programming,

SIAM Journal on Optimization 23 (2013), no. 4, 2341–2368.

[GLQ+19] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik, Sgd: General analysis

and improved rates, arXiv preprint arXiv:1901.09401 (2019).

[GRW20] S. Ghadimi, A. Ruszczynski, and M. Wang, A single timescale stochastic approximation method for

nested stochastic optimization, SIAM Journal on Optimization 30 (2020), no. 1, 960–979.

[GS21] C. Geiersbach and T. Scarinci, Stochastic proximal gradient methods for nonconvex problems in hilbert

spaces, Computational optimization and applications 78 (2021), 705–740.

[GSK18] D. Garber, S. Sabach, and A. Kaplan, Fast generalized conditional gradient method with applications

to matrix recovery problems, arXiv preprint arXiv:1802.05581 (2018).

[GW21] D. Garber and N. Wolf, Frank-Wolfe with a nearest extreme point oracle, Conference on Learning

Theory, PMLR, 2021, pp. 2103–2132.

[Hea82] D. W. Hearn, The gap function of a convex program, Operations Research Letters 1 (1982), no. 2,

67–71.

[HHZ17] M. Hong, D. Hajinezhad, and M.-M. Zhao, Prox-pda: The proximal primal-dual algorithm for fast

distributed nonconvex optimization and learning over networks, International Conference on Machine

Learning, PMLR, 2017, pp. 1529–1538.

[HJN15] Z. Harchaoui, A. Juditsky, and A. Nemirovski, Conditional gradient algorithms for norm-regularized

smooth convex optimization, Mathematical Programming 152 (2015), no. 1-2, 75–112.

[HK12] E. Hazan and S. Kale, Projection-free online learning, 29th International Conference on Machine

Learning, ICML 2012, 2012, pp. 521–528.

[HK14] , Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex

optimization, The Journal of Machine Learning Research 15 (2014), no. 1, 2489–2512.

[HKMS19] H. Hassani, A. Karbasi, A. Mokhtari, and Z. Shen, Stochastic conditional gradient++, arXiv preprint

arXiv:1902.06992 (2019).

[HL16] E. Hazan and H. Luo, Variance-reduced and projection-free stochastic optimization, International

Conference on Machine Learning, 2016, pp. 1263–1271.

[HLPR19] N. J. Harvey, C. Liaw, Y. Plan, and S. Randhawa, Tight analyses for non-smooth stochastic gradient

descent, Conference on Learning Theory, PMLR, 2019, pp. 1579–1613.

[HLVDMW17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, Densely connected convolutional networks,

Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.

127

[HM21] L. Hodgkinson and M. Mahoney, Multiplicative noise and heavy tails in stochastic optimization,

International Conference on Machine Learning, PMLR, 2021, pp. 4262–4274.

[HMRT19] T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani, Surprises in high-dimensional ridgeless least

squares interpolation, arXiv preprint arXiv:1903.08560 (2019).

[HPS16] M. Hardt, E. Price, and N. Srebro, Equality of opportunity in supervised learning, Advances in neural

information processing systems, 2016, pp. 3315–3323.

[HZCH20] Y. Hu, S. Zhang, X. Chen, and N. He, Biased stochastic first-order methods for conditional stochastic

optimization and applications in meta learning, Advances in Neural Information Processing Systems

33 (2020).

[HZSL13] K. Hou, Z. Zhou, A. M.-C. So, and Z.-Q. Luo, On the linear convergence of the proximal gradient

method for trace norm regularization, Advances in Neural Information Processing Systems 26 (2013).

[Jag13] M. Jaggi, Revisiting frank-wolfe: Projection-free sparse convex optimization., ICML (1), 2013, pp. 427–

435.

[JEH16] K. Jaganathan, Y. C. Eldar, and B. Hassibi, Phase retrieval: An overview of recent developments,

Optical Compressive Imaging (2016), 279–312.

[JNG+19] C. Jin, P. Netrapalli, R. Ge, S. M. Kakade, and M. I. Jordan, A short note on concentration inequalities

for random vectors with subgaussian norm, arXiv preprint arXiv:1902.03736 (2019).

[JZ13] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction,

Advances in neural information processing systems 26 (2013).

[KLS21] A. Koloskova, T. Lin, and S. U. Stich, An improved analysis of gradient tracking for decentralized

machine learning, Advances in Neural Information Processing Systems 34 (2021).

[KMR16] J. Kleinberg, S. Mullainathan, and M. Raghavan, Inherent trade-offs in the fair determination of risk

scores, arXiv preprint arXiv:1609.05807 (2016).

[KNS16] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-gradient methods

under the polyak-łojasiewicz condition, Machine Learning and Knowledge Discovery in Databases:

European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings,

Part I 16, Springer, 2016, pp. 795–811.

[L+15] Y. LeCun et al., Lenet-5, convolutional neural networks, URL: http://yann. lecun. com/exdb/lenet 20

(2015), no. 5, 14.

[Lan20] G. Lan, First-order and stochastic optimization methods for machine learning, vol. 1, Springer, 2020.

[LDS21] Y. Lu and C. De Sa, Optimal complexity in decentralized training, International Conference on Machine

Learning, PMLR, 2021, pp. 7111–7123.

[LJJ15] S. Lacoste-Julien and M. Jaggi, On the global linear convergence of frank-wolfe optimization variants,

Advances in Neural Information Processing Systems, 2015, pp. 496–504.

128

[LLT+21] Y. Li, X. Liu, J. Tang, M. Yan, and K. Yuan, Decentralized composite optimization with compression,

arXiv preprint arXiv:2108.04448 (2021).

[LM11] J. Liu and A. S. Morse, Accelerated linear iterations for distributed averaging, Annual Reviews in

Control 35 (2011), no. 2, 160–165.

[LN13] S. Lee and A. Nedic, Distributed random projection algorithm for convex optimization, IEEE Journal

of Selected Topics in Signal Processing 7 (2013), no. 2, 221–229.

[LO20] X. Li and F. Orabona, A high probability analysis of adaptive sgd with momentum, arXiv preprint

arXiv:2007.14294 (2020).

[LP66] E. Levitin and B. Polyak, Constrained minimization methods, USSR Computational mathematics and

mathematical physics 6 (1966), no. 5, 1–50.

[LPZZ17] G. Lan, S. Pokutta, Y. Zhou, and D. Zink, Conditional accelerated lazy stochastic gradient descent,

International Conference on Machine Learning, 2017, pp. 1965–1974.

[LR18] T. Liang and A. Rakhlin, Just interpolate: Kernel" ridgeless" regression can generalize, arXiv preprint

arXiv:1808.00387 (2018).

[LSY19] Z. Li, W. Shi, and M. Yan, A decentralized proximal-gradient method with network independent

step-sizes and separated convergence rates, IEEE Transactions on Signal Processing 67 (2019), no. 17,

4494–4506.

[LT10] Q. Ling and Z. Tian, Decentralized sparse signal recovery for compressive sleeping wireless sensor

networks, IEEE Transactions on Signal Processing 58 (2010), no. 7, 3816–3827.

[LWK17] C. Louizos, M. Welling, and D. P. Kingma, Learning sparse neural networks through l_0 regularization,

arXiv preprint arXiv:1712.01312 (2017).

[LZ16] G. Lan and Y. Zhou, Conditional gradient sliding for convex optimization, SIAM Journal on Optimiza-

tion 26 (2016), no. 2, 1379–1409.

[LZSH19] S. Lu, X. Zhang, H. Sun, and M. Hong, Gnsd: A gradient-tracking based nonconvex stochastic algorithm

for decentralized optimization, 2019 IEEE Data Science Workshop (DSW), IEEE, 2019, pp. 315–321.

[LZW22] Z. Lou, W. Zhu, and W. B. Wu, Beyond sub-gaussian noises: Sharp concentration analysis for

stochastic gradient descent, Journal of Machine Learning Research 23 (2022), 1–22.

[LZZ+17] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, Can decentralized algorithms

outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent,

Advances in Neural Information Processing Systems 30 (2017).

[MBB18] S. Ma, R. Bassily, and M. Belkin, The power of interpolation: Understanding the effectiveness of

sgd in modern over-parametrized learning, International Conference on Machine Learning, 2018,

pp. 3325–3334.

[MBG10] G. Mateos, J. A. Bazerque, and G. B. Giannakis, Distributed sparse linear regression, IEEE Transactions

on Signal Processing 58 (2010), no. 10, 5262–5276.

129

[MBMXC22] G. Mancino-Ball, S. Miao, Y. Xu, and J. Chen, Proximal stochastic recursive momentum methods for

nonconvex composite decentralized optimization, arXiv preprint arXiv:2211.11954 (2022).

[MDB21] L. Madden, E. Dall’Anese, and S. Becker, High-probability convergence bounds for non-convex stochastic

gradient descent, arXiv preprint arXiv:2006.05610 (2021).

[MFGP17] K. Margellos, A. Falsone, S. Garatti, and M. Prandini, Distributed constrained optimization and

consensus in uncertain networks via proximal minimization, IEEE Transactions on Automatic Control

63 (2017), no. 5, 1372–1387.

[MHK18a] A. Mokhtari, H. Hassani, and A. Karbasi, Conditional gradient method for stochastic submodular

maximization: Closing the gap, International Conference on Artificial Intelligence and Statistics, PMLR,

2018, pp. 1886–1895.

[MHK18b] , Stochastic conditional gradient methods: From convex minimization to submodular maximiza-

tion, arXiv preprint arXiv:1804.09554 (2018).

[MHK20] , Stochastic conditional gradient methods: From convex minimization to submodular maximiza-

tion, Journal of machine learning research (2020).

[Mig94] A. Migdalas, A regularization of the frank—wolfe method and unification of certain nonlinear program-

ming methods, Mathematical Programming 65 (1994), no. 1, 331–345.

[MRSY19] A. Montanari, F. Ruan, Y. Sohn, and J. Yan, The generalization error of max-margin linear classifiers:

High-dimensional asymptotics in the overparametrized regime, arXiv preprint arXiv:1911.01544 (2019).

[MVL+20] S. Y. Meng, S. Vaswani, I. Laradji, M. Schmidt, and S. Lacoste-Julien, Fast and furious convergence:

Stochastic second order methods under interpolation, arXiv preprint arXiv:1910.04920 (2020).

[N+18] Y. Nesterov et al., Lectures on convex optimization, vol. 137, Springer, 2018.

[Nit14] A. Nitanda, Stochastic proximal gradient descent with acceleration techniques, Advances in Neural

Information Processing Systems 27 (2014).

[NOS17] A. Nedic, A. Olshevsky, and W. Shi, Achieving geometric convergence for distributed optimization over

time-varying graphs, SIAM Journal on Optimization 27 (2017), no. 4, 2597–2633.

[NS17] Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions, Foundations of

Computational Mathematics 17 (2017), no. 2, 527–566.

[NWS14] D. Needell, R. Ward, and N. Srebro, Stochastic gradient descent, weighted sampling, and the randomized

kaczmarz algorithm, Advances in neural information processing systems, 2014, pp. 1017–1025.

[Ols17] A. Olshevsky, Linear time average consensus and distributed optimization on fixed graphs, SIAM

Journal on Control and Optimization 55 (2017), no. 6, 3990–4014.

[Ora20] F. Orabona, Almost sure convergence of sgd on smooth non-convex functions, https://parameterfree.

com/2020/10/05/almost-sure-convergence-of-sgd-on-smooth-non-convex-functions/, 2020,

[Online; accessed 14-March-2023].

130

https://parameterfree.com/2020/10/05/almost-sure-convergence-of-sgd-on-smooth-non-convex-functions/
https://parameterfree.com/2020/10/05/almost-sure-convergence-of-sgd-on-smooth-non-convex-functions/

[PEK14] S. Patterson, Y. C. Eldar, and I. Keidar, Distributed compressed sensing for static and time-varying

networks, IEEE Transactions on Signal Processing 62 (2014), no. 19, 4931–4946.

[PGM+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An imperative style, high-performance deep

learning library, Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), Curran Associates, Inc., 2019, pp. 8024–

8035.

[PN21] S. Pu and A. Nedić, Distributed stochastic gradient tracking methods, Mathematical Programming 187

(2021), no. 1, 409–457.

[PNPTD20] N. H. Pham, L. M. Nguyen, D. T. Phan, and Q. Tran-Dinh, Proxsarah: An efficient algorithmic

framework for stochastic composite nonconvex optimization, The Journal of Machine Learning Research

21 (2020), no. 1, 4455–4502.

[Pol63] B. T. Polyak, Gradient methods for minimizing functionals, Zhurnal Vychislitel’noi Matematiki i

Matematicheskoi Fiziki 3 (1963), no. 4, 643–653.

[QGX+21] Q. Qi, Z. Guo, Y. Xu, R. Jin, and T. Yang, An online method for a class of distributionally robust

optimization with non-convex objectives, Advances in Neural Information Processing Systems 34 (2021).

[QHZ+22] Z.-H. Qiu, Q. Hu, Y. Zhong, L. Zhang, and T. Yang, Large-scale stochastic optimization of ndcg

surrogates for deep learning with provable convergence, arXiv preprint arXiv:2202.12183 (2022).

[QL17] G. Qu and N. Li, Harnessing smoothness to accelerate distributed optimization, IEEE Transactions on

Control of Network Systems 5 (2017), no. 3, 1245–1260.

[QLX18] C. Qu, Y. Li, and H. Xu, Non-convex conditional gradient sliding, International Conference on Machine

Learning, PMLR, 2018, pp. 4208–4217.

[QLX+21] Q. Qi, Y. Luo, Z. Xu, S. Ji, and T. Yang, Stochastic optimization of areas under precision-recall curves

with provable convergence, Advances in Neural Information Processing Systems 34 (2021).

[RBGM20] A. Roy, K. Balasubramanian, S. Ghadimi, and P. Mohapatra, Escaping saddle-points faster under

interpolation-like conditions, Proceedings of the Thirty-fourth Conference on Neural Information

Processing Systems (NeurIPS) (2020).

[RDLS18] S. N. Ravi, T. Dinh, V. S. R. Lokhande, and V. Singh, Constrained deep learning using conditional

gradient and applications in computer vision, arXiv preprint arXiv:1803.06453 (2018).

[RM51] H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathematical Statistics

22 (1951), no. 3, 400–407.

[RS06] A. Ruszczyński and A. Shapiro, Optimization of convex risk functions, Mathematics of operations

research 31 (2006), no. 3, 433–452.

131

[RSPS16] S. J. Reddi, S. Sra, B. Póczos, and A. Smola, Stochastic frank-wolfe methods for nonconvex optimization,

2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE,

2016, pp. 1244–1251.

[Rus87] A. Ruszczyński, A linearization method for nonsmooth stochastic programming problems, Mathematics

of Operations Research 12 (1987), no. 1, 32–49.

[Rus08] , A merit function approach to the subgradient method with averaging, Optimisation Methods

and Software 23 (2008), no. 1, 161–172.

[Rus21] A. Ruszczynski, A stochastic subgradient method for nonsmooth nonconvex multilevel composition

optimization, SIAM Journal on Control and Optimization 59 (2021), no. 3, 2301–2320.

[RVV20] L. Rosasco, S. Villa, and B. C. Vũ, Convergence of stochastic proximal gradient algorithm, Applied

Mathematics & Optimization 82 (2020), 891–917.

[RWC03] D. Ruppert, M. P. Wand, and R. J. Carroll, Semiparametric regression, no. 12, Cambridge university

press, 2003.

[Sch20] M. Schmidt, Faster algorithms for deep learning? (presentation in vector institute:

https://www.cs.ubc.ca/ schmidtm/documents/2020_vector_smallresidual.pdf), 2020.

[SHC+17] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable alternative

to reinforcement learning, arXiv preprint arXiv:1703.03864 (2017).

[SLA12] J. Snoek, H. Larochelle, and R. Adams, Practical bayesian optimization of machine learning algorithms,

Advances in neural information processing systems, 2012, pp. 2951–2959.

[SLRB17] M. Schmidt, N. Le Roux, and F. Bach, Minimizing finite sums with the stochastic average gradient,

Mathematical Programming 162 (2017), 83–112.

[SLWY15] W. Shi, Q. Ling, G. Wu, and W. Yin, A proximal gradient algorithm for decentralized composite

optimization, IEEE Transactions on Signal Processing 63 (2015), no. 22, 6013–6023.

[SRB11] M. Schmidt, N. Roux, and F. Bach, Convergence rates of inexact proximal-gradient methods for convex

optimization, Advances in neural information processing systems 24 (2011).

[SS19] G. Scutari and Y. Sun, Distributed nonconvex constrained optimization over time-varying digraphs,

Mathematical Programming 176 (2019), no. 1, 497–544.

[SSD22] Y. Sun, G. Scutari, and A. Daneshmand, Distributed optimization based on gradient tracking revisited:

Enhancing convergence rate via surrogation, SIAM Journal on Optimization 32 (2022), no. 2, 354–385.

[SSZ12] S. Shalev-Shwartz and T. Zhang, Proximal stochastic dual coordinate ascent, arXiv preprint

arXiv:1211.2717 (2012).

[SSZ13] , Stochastic dual coordinate ascent methods for regularized loss minimization., Journal of

Machine Learning Research 14 (2013), no. 1.

[SSZ14] , Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization,

International conference on machine learning, PMLR, 2014, pp. 64–72.

132

[SV09] T. Strohmer and R. Vershynin, A randomized kaczmarz algorithm with exponential convergence, Journal

of Fourier Analysis and Applications 15 (2009), no. 2, 262.

[SYVS21] D. Sahu, J. Yao, M. Verma, and K. Shukla, Convergence rate analysis of proximal gradient methods

with applications to composite minimization problems, Optimization 70 (2021), no. 1, 75–100.

[SZK19] A. K. Sahu, M. Zaheer, and S. Kar, Towards gradient free and projection free stochastic optimization,

The 22nd International Conference on Artificial Intelligence and Statistics, 2019, pp. 3468–3477.

[TLY+18] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, d2: Decentralized training over decentralized data,

International Conference on Machine Learning, PMLR, 2018, pp. 4848–4856.

[VBS19] S. Vaswani, F. Bach, and M. Schmidt, Fast and faster convergence of sgd for over-parameterized

models and an accelerated perceptron, The 22nd International Conference on Artificial Intelligence and

Statistics, 2019, pp. 1195–1204.

[Ver18] R. Vershynin, High-dimensional probability: An introduction with applications in data science, vol. 47,

Cambridge university press, 2018.

[VML+19] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-Julien, Painless stochastic

gradient: Interpolation, line-search, and convergence rates, Advances in Neural Information Processing

Systems, 2019, pp. 3727–3740.

[WFL17] M. Wang, E. Fang, and H. Liu, Stochastic compositional gradient descent: Algorithms for minimizing

compositions of expected-value functions, Mathematical Programming 161 (2017), no. 1-2, 419–449.

[WGE17] G. Wang, G. B. Giannakis, and Y. C. Eldar, Solving systems of random quadratic equations via

truncated amplitude flow, IEEE Transactions on Information Theory 64 (2017), no. 2, 773–794.

[WJZ+19] Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh, Spiderboost and momentum: Faster variance

reduction algorithms, Advances in Neural Information Processing Systems 32 (2019).

[WL22] X. Wu and J. Lu, A unifying approximate method of multipliers for distributed composite optimization,

IEEE Transactions on Automatic Control (2022).

[WLF16] M. Wang, J. Liu, and E. Fang, Accelerating stochastic composition optimization, Advances in Neural

Information Processing Systems, 2016.

[WWW+16] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, Learning structured sparsity in deep neural networks,

Advances in neural information processing systems 29 (2016).

[WYZY22] G. Wang, M. Yang, L. Zhang, and T. Yang, Momentum accelerates the convergence of stochastic

AUPRC maximization, International Conference on Artificial Intelligence and Statistics, PMLR, 2022,

pp. 3753–3771.

[WZC+21] Z. Wang, J. Zhang, T.-H. Chang, J. Li, and Z.-Q. Luo, Distributed stochastic consensus optimization

with momentum for nonconvex nonsmooth problems, IEEE Transactions on Signal Processing 69 (2021),

4486–4501.

133

[XDKK21] R. Xin, S. Das, U. A. Khan, and S. Kar, A stochastic proximal gradient framework for decentralized

non-convex composite optimization: Topology-independent sample complexity and communication

efficiency, arXiv preprint arXiv:2110.01594 (2021).

[Xia09] L. Xiao, Dual averaging method for regularized stochastic learning and online optimization, Advances

in Neural Information Processing Systems 22 (2009).

[XJY19] Y. Xu, R. Jin, and T. Yang, Non-asymptotic analysis of stochastic methods for non-smooth non-convex

regularized problems, Advances in Neural Information Processing Systems 32 (2019).

[XKK21] R. Xin, U. A. Khan, and S. Kar, An improved convergence analysis for decentralized online stochastic

non-convex optimization, IEEE Transactions on Signal Processing 69 (2021), 1842–1858.

[XTSS21] J. Xu, Y. Tian, Y. Sun, and G. Scutari, Distributed algorithms for composite optimization: Unified

framework and convergence analysis, IEEE Transactions on Signal Processing 69 (2021), 3555–3570.

[XZSX15] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, Augmented distributed gradient methods for multi-agent

optimization under uncoordinated constant stepsizes, 2015 54th IEEE Conference on Decision and

Control (CDC), IEEE, 2015, pp. 2055–2060.

[YBL17] Z. Yang, K. Balasubramanian, and H. Liu, High-dimensional non-gaussian single index models via

thresholded score function estimation, International conference on machine learning, PMLR, 2017,

pp. 3851–3860.

[YSC19] A. Yurtsever, S. Sra, and V. Cevher, Conditional gradient methods via stochastic path-integrated

differential estimator, Proceedings of the International Conference on Machine Learning-ICML 2019,

2019.

[YWF19] S. Yang, M. Wang, and E. Fang, Multilevel stochastic gradient methods for nested composition

optimization, SIAM Journal on Optimization 29 (2019), no. 1, 616–659.

[YZLZ20] H. Ye, Z. Zhou, L. Luo, and T. Zhang, Decentralized accelerated proximal gradient descent, Advances

in Neural Information Processing Systems 33 (2020), 18308–18317.

[ZBH+16] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep learning requires

rethinking generalization, arXiv preprint arXiv:1611.03530 (2016).

[ZCC+18] D. Zhou, J. Chen, Y. Cao, Y. Tang, Z. Yang, and Q. Gu, On the convergence of adaptive gradient

methods for nonconvex optimization, arXiv preprint arXiv:1808.05671 (2018).

[ZSM+19] M. Zhang, Z. Shen, A. Mokhtari, H. Hassani, and A. Karbasi, One sample stochastic frank-wolfe, arXiv

preprint arXiv:1910.04322 (2019).

[ZSM+20] , One-sample Stochastic Frank-Wolfe, International Conference on Artificial Intelligence and

Statistics, PMLR, 2020, pp. 4012–4023.

[ZX21] J. Zhang and L. Xiao, Multilevel composite stochastic optimization via nested variance reduction, SIAM

Journal on Optimization 31 (2021), no. 2, 1131–1157.

134

[ZY18] J. Zeng and W. Yin, On nonconvex decentralized gradient descent, IEEE Transactions on signal

processing 66 (2018), no. 11, 2834–2848.

[ZY19] J. Zhang and K. You, Decentralized stochastic gradient tracking for non-convex empirical risk mini-

mization, arXiv preprint arXiv:1909.02712 (2019).

135

	Abstract
	Acknowledgments
	Chapter 1. Overview of The Dissetation
	1.1. Preliminaries
	1.2. Organization

	Chapter 2. Proximal Averaged Stochastic Approximation
	2.1. Introduction
	2.2. Methodology
	2.3. Convergence Analysis
	2.4. Discussion and Conclusion

	Chapter 3. Decentralized Proximal Averaged Stochastic Approximation
	3.1. Introduction
	3.2. Methodology
	3.3. Convergence Analysis
	3.4. Experiments
	3.5. Discussion and Conclusion

	Chapter 4. Conditional Gradient-Based Nested Averaged Stochastic Approximation
	4.1. Introduction
	4.2. Methodology
	4.3. Convergence Analysis
	4.4. Numerical Experiments for T=1
	4.5. Discussion and Conclusion

	Chapter 5. Stochastic Conditional Gradient Methods under Interpolation-like Conditions
	5.1. Introduction
	5.2. Preliminaries and Assumptions
	5.3. Improved Complexities for Stochastic Conditional Gradient Methods
	5.4. Experiments
	5.5. Discussion and Conclusion

	Appendix A. Appendix of Chapter 3
	A.1. Experimental Details
	A.2. Proof of Theorem 3.1
	A.3. Discussion on Different Types of Consensus Errors

	Appendix B. Appendix of Chapter 4
	B.1. Technical Lemmas
	B.2. Proof of Theorem 4.1
	B.3. Proofs for Section 4.3.1
	B.4. Proof of Theorem 4.3

	Appendix C. Appendix of Chapter 5
	C.1. Proof for Theorem 5.1
	C.2. Proof of Theorem 5.2
	C.3. Zeroth-order SGD under Growth Conditions

	Bibliography

