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An online model of the acquisition of phonotactics within Optimality Theory
Giorgio Magri (magrigrg@gmail.com)

Institut Jean Nicod, École Normale Supérieure, 29 rue d’Ulm
75005 Paris, France

Abstract

Within the mainstream phonological framework of Optimality
Theory (OT), grammars are parameterized by how they pri-
oritize or rank a given set of constraints. OT online learning
consists of slight re-rankings triggered by exposure to a sin-
gle piece of data at the time. This paper presents a new online
model for the acquisition of phonotactics in OT. Convergence
and correctness are analytically investigated and the proposed
model is shown to be superior to existing OT online models.
Keywords: Language Acquisition; Phonotactics; Optimality
Theory; Online algorithms.

Description of the model
English speakers know that blik would be a possible word
while bnik would not, despite the fact that both are unattested
in the English lexicon. The knowledge of this distinction be-
tween licit vs. illicit sound combinations is called phonotac-
tics. In carefully controlled experimental conditions, one-
year olds already react differently to licit vs. illicit sound
combinations. They thus display knowledge of phonotactics
at an early stage, when other linguistic abilities (most notably
morphology) are still lagging behind (Hayes, 2004). How is
that possible? This paper tackles the problem of the acquisi-
tion of phonotactics from a computational perspective.

The acquisition of phonotactics is gradual: the target adult
grammar is approached through a path of conservative inter-
mediate stages. This gradualness is illustrated in (1) with
some spontaneous productions of two children attempting to
say clock(s), from McLeod, Doorn, and Reed (2001).

(1) 2:3 2:5 2:6 2:8
t2k l2k dk fl2k
t2k l2k d2k Tl2k

fl2kT kl2kT Tl2k
kl2kT

2:8 2:10 2:11 3:1
k2k k@l2:k kl2k kl2k
k2k k2k kl2k kl2k
k2k k@l2k kl2ks

k@l2k k2k

We see reduction of the target cluster /kl/ with sonority-driven
preservation of the obstruent (/kl/→ [k]); we see reduction to
the fronted obstruent (/kl/→ [t]); etcetera. We need a compu-
tationally sound model of the acquisition of phonotactics that
is able to describe the observed gradualness.

Assume that each attempted phonological form (say, the
cluster /kl/) comes with a preassigned set of candidate pro-
ductions (say, the cluster [kl] itself, the two singleton conso-
nants [k] and [l]; and variants thereof such as [f] or [t]). The
relevant properties of a target phonological structure and a
corresponding candidate are extracted by a set of phonologi-
cal constraints, that measure how that pair deviates from the
ideal along various dimensions. There are two types of con-
straints. Markedness constraints measure how much a can-
didate violates wellformedness conditions. For instance, the

constraint ∗DORSAL assigns violations to dorsal consonants
(i.e. it is violated by the candidates [kl] and [k]). Faithful-
ness constraints measure how much a candidate differs from
the corresponding target. For instance, the constraint MAX
assigns a violation for every deleted target segment (i.e. it is
violated by the candidate [k] but not by [kl] for the target /kl/).
Two or more constraints can conflict. For example, MAX
prefers the candidate [kl] over [t] as the production of the tar-
get /kl/, while ∗DORSAL prefers [t] over [kl]. Grammars dif-
fer in how they prioritize or rank these constraints. And con-
flicts among constraints are resolved by a grammar in favor
of the constraint it top ranks, in the sense that a phonological
target is mapped to the (provably unique) winner candidate
that satisfies condition (2) for any other loser candidate.

(2) Among those constraints that assign to the pair of the
target and the winner a different number of violations
than to the pair of the target and the loser, the top
ranked one assigns less violations to the former.

These ideas are formalized in the mainstream phonological
framework of Optimality Theory (OT) developed by Prince
and Smolensky (2004), that I assume in this paper. This
framework ties up well with the recent bloom of interest for
models based on orders and rankings in Machine Learning
(see the 2009 NIPS Workshop on Learning with rankings).

At this early stage of research on the acquisition of phono-
tactics, it makes sense to keep the learning problem as simple
as possible. I thus assume that the set of constraints is univer-
sal, shared by both developing children and adults and thus
needs not be learned. For instance, the constraint ∗DORSAL
is motivated both by the process of fronting in child phonol-
ogy (/k/→ [t]) as well as by languages that lack velars entirely
(e.g. Tahitian). The constraint is available also to English
speakers, but low ranked. The typology of adult phonotactics
and the typology of child intermediate stages thus coincide,
consisting of the collection of all possible rankings.

The gradualness illustrated in (1) suggests a model
whereby the learner entertains a current hypothesis of the
target phonotactics that gets updated over time based on ex-
posure to phonotactically licit adult forms, describing a path
within the space of possible phonotactics. This intuition can
be formalized as follows. At every time t, the model main-
tains a current ranking, that represents its current hypothe-
sis. This current ranking is represented as a numerical vector
θ

t = (θt
1, . . . ,θ

t
n), where n is the number of constraints and θt

k
is the ranking value of constraint Ck at time t. Constraint Ch
is ranked above constraint Ck at time t iff θt

h > θt
k. The ini-

tial ranking vector top ranks the markedness constraints, and
thus corresponds to a smallest language. The current ranking
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vector is updated over time as follows. The model receives a
piece of data from the target adult phonotactics, say the word
clock. It thus infers that the target /kl/ should be faithfully
mapped to the winner candidate [kl]; see (Hayes, 2004) for
discussion. The model then picks (at random or according
to some refined procedure) a non faithful candidate, say [t].
If the current ranking prefers the loser unfaithful candidate
[t] over the faithful winner candidate [kl] according to (2),
then the model updates its current ranking vector according
to the general scheme (3). For instance, if the target is /kl/ and
the current grammar prefers the unfaithful production [t] over
[kl], then the algorithm might demote ∗DORSAL (that prefers
the loser) and promote MAX (that prefers the winner).

(3) a. Decrease the ranking value of loser-preferring con-
straints (LPCs), i.e. constraints that prefer the un-
faithful loser candidate over the faithful winner one;

b. increase the ranking value of winner-preferring con-
straints (WPCs), i.e.constraints that prefer the faith-
ful winner candidate over the unfaithful loser one.

What is relevant about loser and winner candidates for a given
target is which constraints are LPCs and which WPCs. The
relevant information can thus be summarized with a row of
W’s, L’s and E’s corresponding to WPCs, LPCs and even con-
straints (that assign the same number of violations to winner
and loser), called an Elementary Ranking Condition (ERC).

(4)

 target,
winner,

loser

 ⇒ [ ... Ch ... Ck ... C` ...

. . . W . . . L . . . E . . .
]

Algorithms that fit into this broad scheme are called OT on-
line models. They are very simple and widely assumed, thus
deserving a close investigation as the null hypothesis.

The core ingredient in the definition of OT online models
are the details of the re-ranking rule (3) used to update the cur-
rent ranking vector. Two main options have been considered
in the literature. One option is (5), due to Tesar and Smolen-
sky (1998). A LPC is undominated if it is ranked “too high”,
namely above all WPCs. This update rule (5) demotes (un-
dominated) LPCs but does not promote WPCs, whose rank-
ing values are not updated. The resulting OT online algorithm
is called (gradual) Constraint Demotion (CD).

(5) a. Demote each undominated LPC by 1;
b. but do nothing to the WPCs.

Boersma (1997) argues (withinin a framework slightly differ-
ent from the one considered here) that promotion is needed,
and thus considers the update rule (6). The resulting OT on-
line model is called Gradual Learning Algorithm (GLA).

(6) a. Demote each (undominated?) LPCs by 1;
b. and promote each WPC by 1.

This paper argues that neither re-ranking rule (5) or (6) yields
a proper online model of the acquisition of phonotactics, and
defends a new update rule. To introduce the idea, let me dis-
tinguish two cases, depending on whether the current ERC

contains a unique W, as in (7a); or else multiple W’s, say two
as in (7b). The former case (7a) is simple: we know that the
unique WPC must in the end be ranked above the LPCs, ir-
respectively of the rest of the data. The case (7b) is instead
delicate: we don’t know which of the two WPCs needs in the
end to be ranked above the LPCs, as one of them might have
to be ranked low, depending on the rest of the data.

(7) a.
[ ... Ch ... Ck ... C` ...

. . . . . . . . . W . . . L . . .
]

b.
[
. . . W . . . W . . . L . . .

]
According to Boersma’s re-ranking rule (6), WPCs get pro-
moted by 1, both in the case of a simple ERC (7a) with a
unique W and in the case of a challenging ERC (7b) with
multiple W’s. This does not look like a good idea though, as it
does not capture the crucial difference between the two cases.
Here is a more principled alternative. In the simple case (7a),
the unique WPC can be confidently promoted by the same
amount LPCs are demoted, say 1. But in the challenging case
(7b), we should be cautious and split our confidence between
the two WPCs, promoting each one just by 1/2. As uncer-
tainty scales with the total number w of WPCs, each WPC
should be promoted just by 1/w in the general case, as in the
new cautious promotion/demotion re-ranking rule (8).

(8) a. Demote each undominated LPC by 1;
b. promote each WPC by 1/w.

Under the plausible conjecture that actual language learn-
ing strategies employed by humans have been selected
by evolution because of their computational efficiency
and soundness, computational considerations gain currency
within cognitive science. From a computational perspective,
there are two basic desiderata on sound OT online models
of the acquisition of phonotactics. One is convergence: the
model needs to eventually entertain a hypothesis consistent
with the target adult phonotactics, so that only a finite num-
ber of updates are performed. A convergent online model is
correct provided the corresponding final grammar entertained
at convergence is not only consistent with the target adult lan-
guage but also restrictive enough to capture the target phono-
tactics. This paper argues that the new re-ranking rule (8) is
computationally superior to the existing rules (5) and (6). I
show that the corresponding OT online model is convergent,
contrary to the case of (6). Furthermore, I consider a very
simple OT model for segmental phonotactics, and I sketch an
argument that the OT online model with the new re-ranking
rule (8) is always correct, contrary to the case of (5) and (6).

Convergence
Tesar and Smolensky (1998) proved convergence for their
demotion-only re-ranking rule (5). But convergence for Boer-
sma’s promotion/demotion re-ranking rule (6) has remained
an open issue, until Pater (2008) provided a counterexample.
It is thus currently an open problem whether convergent con-
straint promotion is possible at all. Theorem 1 settles the is-
sue with a positive answer. A sketch of the proof follows.
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Theorem 1 The OT online model with the new promo-
tion/demotion reranking rule (8) converges (provided the data
fed to the model are consistent with some OT grammar). �

Tesar and Smolensky show that the current ranking values
in the case of their demotion-only re-ranking rule (5) are al-
ways larger than a constant (that depends on the number n of
constraints). In fact, as constraints are only demoted when
needed (i.e. when undominated), they cannot be demoted
too much. A careful look at their proof reveals that lower
boundness of the current ranking values extends to any pro-
motion/demotion update rule that only demotes undominated
LPCs. In particular, the following fact thus holds true.

Fact 1 The current ranking values entertained by the OT on-
line model with the new promotion/demotion re-ranking rule
(8) cannot get smaller than a constant (provided the data fed
to the model are consistent with some OT grammar). �

Having established that the current ranking values cannot get
too small, we now ask whether they can get too large. This is
precisely what happens when Boersma’s update rule (6) is run
on Pater’s counterexample: the ranking values increase indef-
initely. It turns out that that cannot happen with the new up-
date rule (8). The reason is as follows. As we never promote
more than we demote, the sum of the promotion amounts and
the demotion amounts is always negative or null. Thus, the
sum of the current ranking values at any time is always equal
to or smaller than the sum of the initial ranking values. As
the single ranking values cannot become too small (by Fact
1) and as their sum cannot get too large, then the single rank-
ing values cannot become too large either.

Fact 2 The current ranking values entertained by the OT on-
line model with the new promotion/demotion re-ranking rule
(8) cannot get larger than a constant (provided the data fed to
the model are consistent with some OT grammar). �

The sequence of ranking vectors entertained by the OT online
model with a demotion-only update rule such as (5) cannot
have the shape (9), whereby the same ranking vector θ is en-
tertained twice but with some other ranking vector θ

′ 6= θ en-
tertained in between. In fact, (9) would require some ranking
value to first decrease and then increase back to its original
value, which is impossible if only demotion is performed.

(9) . . .−→ θ−→ . . .−→ θ
′ −→ . . .−→ θ−→ . . .

Thus, demotion-only OT online models never loop back to
a ranking vector that had been previously deemed unsuitable
and thus updated. Fact 3 ensures that this property extends to
promotion-demotion update rules. The proof (postponed to
the Appendix) rests on the following fact: the hypothesis that
the data be OT-consistent entails that the vectors of promotion
and demotion amounts are conically independent.

Fact 3 The OT online model with the new promo-
tion/demotion re-ranking rule (8) cannot loop back to a rank-
ing vector previously dismissed (provided the data fed to the
model are consistent with some OT grammar). �

The convergence theorem 1 now follows straightforwardly.
Fact 1 guarantees that the current ranking values cannot get
too small, namely cannot live in the shaded region in Fig.1a.
And Fact 2 guarantees that the current ranking values cannot
get too large either, namely cannot live in the shaded region in
Fig.1b. Taken together, Facts 1 and 2 thus guarantee that the
current ranking values must live in a bounded region, namely
in the non-shaded region of Fig.1c. Furthermore, the algo-
rithm can only entertain ranking vectors in a lattice, namely
the dots in Fig.1d. Thus, the search space of the algorithm is
finite, as there is only a finite number of points in a bounded
lattice. As the algorithm cannot loop by Fact 3, finiteness of
the search space entails convergence, namely ensures that the
algorithm can only perform a finite number of updates.

Correctness
A crucial component of the acquisition of the target adult lan-
guage is the acquisition of its segmental phonotactics, i.e. of
the inventory of licit segments and of their licit concatena-
tions. Some elementary examples of OT typologies for seg-
mental phonotactics are provided in (10) and (11).

(10) a.
{

t d th dh }
b.

 F1 = IDENT[VOICE] F2 = IDENT[ASP]
M1 = *[+VOICE] M2 = *[+ASP]

M1,2 = *[+VOICE, +ASP]


(11) a.

{
ps bs pz bz

}
b.

F1 = IDNT[FRIC-VOI] F2 = IDNT[STP-VOI]
M1 = *[+FRIC-VOI] M2 = *[+STP-VOI]

M1,2 = AGREE[STP-VOI, FRIC-VOI]


The set of forms (10a) consists of obstruents described by
the features VOICE and ASPIRATION. The set of forms (11a)
consists of two adjacent obstruents, described by the fea-
tures STOP-VOICING and FRICATIVE-VOICING. The con-
straint sets (10b) and (11b) contain identity faithfulness con-
straints F1,F2 for the two features; markedness constraints
M1,M2 that punish the marked value of the two features; and
a markedness constraint M1,2 that punishes certain marked
combinations of values of the two features.

I now sketch a formal OT framework for segmental phono-
tactics that generalizes examples such as (10)-(11). The con-
struction starts with N partial binary phonological features
ϕ1, . . . ,ϕi, . . . ,ϕN , such as VOICE or ASPIRATION in (10).
Each feature ϕi takes a phonological form and returns the
value 0 or 1, or else # in case it is undefined. Segmental
phonology is feature-based: a segment can be identified with
the corresponding N-tuple 〈x1, . . . ,xi, . . . ,xN〉 of feature val-
ues xi ∈ {0,1,#}. The set of segments is thus defined as some
set of such N-tuples, as in (12). As it is usual in phonotac-
tics, I assume no distinction between underlying and surface
forms. Nonetheless, I will use the symbol x (or y) when a
form is construed as an underlying (or surface) form.

(12) set of under-
lying forms = set of sur-

face forms ⊆ {0, 1, #}N
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Figure 1: Sketch of the proof of the convergence theorem 1 in the case with n = 2 constraints

a. b. c. d.
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

The set of candidates corresponding to an underlying form x
is the set of all forms defined for the same features that x is de-
fined for. Finally, the constraint set can contain three types of
constraints, listed in (13). The faithfulness constraint Fi cor-
responding to feature ϕi is violated by an underlying form and
a candidate that differ w.r.t. feature ϕi. The (simple) marked-
ness constraint Mi corresponding to feature ϕi is violated by a
form that has the marked value for feature ϕi. I assume w.l.g.
that the marked value is always 1. Finally, the binary marked-
ness constraint (BMC) Mµ

i, j corresponding to features ϕi and
ϕ j and a markedness pattern µ is violated by a form whose
pair of values for features ϕi,ϕ j belongs to the designated set
µ⊆ {0,1}×{0,1} of marked combinations of feature values.

(13) Fi(x,y) = 1 ⇐⇒ xi 6= yi

Mi(y) = 1 ⇐⇒ yi = 1 = the marked value
Mµ

i, j(y) = 1 ⇐⇒ 〈yi,y j〉 ∈ µ = set of marked feature
value combinations

There are sixteen possible markedness patterns µ and thus
as many BMCs. Here are some examples: the markedness
pattern (14a) corresponds to the “doubly marked” constraint
M1,2 in (10b); the markedness pattern (14b) corresponds to
the “agreement” constraint M1,2 in (11b); the complementary
pattern (14c) corresponds to an “OCP” constraint; and so on.

(14) a. µ = {〈1,1〉} doubly marked constraint
b. µ = {〈0,1〉,〈1,0〉} agreement constraint
c. µ = {〈0,0〉,〈1,1〉} OCP constraint

BMCs are important because they model feature interaction.
As the learning complexity intuitively depends on feature in-
teraction, we are led to the following question: which restric-
tive assumptions on feature interaction guarantee correctness
of OT online models? I assume that the amount of feature
interaction is limited. The case with no feature interaction is
trivial. The simplest non-trivial case is thus that each feature
interacts with at most another feature, so that (15) holds.1

(15) The constraint set does not contain any two BMCs
that both target the same feature.

I also assume that the mode of feature interaction is phonolog-
ically plausible, in the sense that the constraint set contains
no BMCs with a phonologically implausible markedness pat-
tern, namely a markedness pattern that has cardinality 3, as in
(16a);2 or that only punishes forms unmarked w.r.t. the two
features targeted by the BMC, as in (16b).

1In fact, if there were two BMCs Mi, j and Mi,k targeting the same
feature ϕi, then ϕi would interact with two features ϕ j and ϕk.

2The markedness pattern of cardinality 4 yields a trivial BMC.

(16) a. µ={〈1,1〉,〈0,1〉,〈1,0〉}, µ={〈0,0〉,〈0,1〉,〈1,0〉}
µ = {〈0,0〉,〈1,0〉,〈1,1〉}, µ = {〈0,0〉,〈0,1〉,〈1,1〉}

b. µ = {〈0,0〉}.

The following result starts the investigation of correctness of
OT online models of the acquisition of phonotactics. The
proof is only sketched here; see (Magri, 2011) for details and
for extensions beyond the overly restrictive assumption (15).

Theorem 2 Consider an OT typology (12)-(13) correspond-
ing to N features. Assume that feature interaction is limited
according to (15) and phonologically plausible according to
(16).3 Then the OT online model with the new re-ranking rule
(8) is correct on any language and for any sequence of data
fed to the algorithm. On the contrary, for both re-ranking
rules (5) and (6), there exist languages for which the model is
incorrect for any sequence of data fed to the algorithm. �

Draw a circle for every feature and an edge between any two
features that interact through a BMC. Suppose that the result-
ing graph looks like (17): the features can be split into two
disjoint sets Φ′ and Φ′′ with no interactions between them.

(17) ◦ block Φ′ ◦
block Φ′′◦ ◦

◦ ◦ ◦

We intuitively expect that the “difficult” problem of correct-
ness of the OT online model on the “large” original typology
with N features can be reduced to the two “simpler” problems
of correctness on the two “smaller” typologies corresponding
to the two sets of features Φ′,Φ′′. This intuition can indeed
be formalized and shown to hold true.

By assumption (15) that feature interaction is limited, each
feature interacts with at most another feature and the feature
interaction graph (17) thus consists of connected components
of cardinality at most 2. I thus need to prove Theorem 2 only
in the case with N = 2 features. To this end, let’s sort the
languages into three types, based on what needs to be ranked
above the faithfulness constraints. To start, let languages of
type I be those languages that do not require any constraint
to be ranked above the faithfulness constraints. It is easy to
check that any OT online model is correct on such languages.

Next, let languages of type II be those languages that re-
quire markedness constraints to be ranked above faithfulness
constraints, but do not require the two faithfulness constraints
to be ranked relative to each other. To illustrate, suppose that
the BMC corresponds to the OCP markedness pattern (14c).

3A further technical assumption on the set of candidates is
needed, omitted here for space; see (Magri, 2011) for details.
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The corresponding typology contains language (18a), which
is is of type II, as it corresponds to the ranking (18b). The
complete set of ERCs is (18c).4

(18) a. L=
{
〈0,1〉
〈1,0〉

}
b. c.



F1 F2 M1 M2 M1,2

W L W
W W W

W W L W
W W W

W L W
W W W L



M1,2

F1 F2

M1 M2

A learning path using Boersma’s update rule (6) is (19).5 The
final ranking vector incorrectly ranks F1 above M1,2, so that
the model has failed to learn the target ranking (18b). It can
be shown that the model fails for any possible learning path.

(19)


F1 0
F2 0
M1 5
M2 5

M1,2 5

 3→


1
1
4
6
5

 6→


2
2
5
5
5

 3→


3
3
4
6
5

 6→


4
4
5
5
5

 3→


5
5
4
6
5

 6→


6
6
5
5
5


Crucially, it is impossible for F1 to get incorrectly ranked
above M1,2 in the case of the new re-ranking rule (8). Suppose
by contradiction that it did. Suppose M1,2, M1 and M2 start
out at 5 and F1 and F2 at 0, as in (19). As M1,2 is never a LPC,
its ranking value cannot decrease. In order for F1 to make it
above M1,2, its ranking value must thus increase to at least 5.
The last update that brings F1 that high requires one of M1 or
M2 (call it Mi) to be a LPC and to be ranked even higher. Re-
call that the sum of the ranking values cannot increase over
time. As the sum of the ranking values of M1,2, F1 and Mi
is (almost) equal to the sum of the initial ranking values, the
sum of the ranking values of the two remaining constraints F2
and M j must be (almost) smaller than zero. And this is eas-
ily shown to be impossible. A formalization of this heuristic
reasoning shows that the OT online model with the new re-
ranking rule (8) is always correct on languages of type II.

Finally, let languages of type III be the remaining lan-
guages, i.e. those that require the faithfulness constraints
to be ranked relative to each other. To illustrate, suppose
that the BMC corresponds to the Agree markedness pattern
(14b). The corresponding typology contains the language
(20a). This language is of type III, as it corresponds to rank-
ing (20b). The corresponding set of ERCs is (20c).6

(20) a. L=
{
〈1,1〉
〈0,0〉

}
b. F2 M1,2

M2 M1

F1

c.


F1 F2 M1 M2 M1,2

W L W
W L

W W L L



4The first three ERCs in (18c) correspond to the underlying form
x = 〈0,1〉, the faithful winner-form y = 〈0,1〉 and the three unfaith-
ful candidate losers 〈1,1〉, 〈0,0〉 and 〈1,0〉. The bottom three rows
are obtained analogously from the underlying/winner form 〈1,0〉.

5Numbers above arrows specifie the row triggering the update.
6These are the ERCs corresponding to the winner/underlying

form 〈1,1〉, constructed as in footnote 4. The ERCs corresponding
to 〈0,0〉 are omitted for space, as they do not contain any L.

Tesar and Smolensky’s demotion-only re-ranking rule (5)
is never correct on this language: as the faithfulness con-
straints F1 and F2 are never LPCs, they are never re-ranked
by demotion-only; there is thus no way that a demotion-only
re-ranking rule can rank one of them on top of the other. Con-
straint promotion is needed in order to move around F1 and F2
too. But will an OT online model that performs promotion too
be able to converge to the correct relative ranking of F2 above
F1? It can be shown that the first ERC in (20c) can trigger
at most one update, as it has a W corresponding to the BMC
M1,2 whose column does not have any L’s. Thus, updates are
triggered just by the 2nd and 3rd ERCs. As the former only
promotes F2 while the latter promotes both F1 and F2, F2 will
raise faster and thus be ranked above F1 throughout learning,
thus allowing a model that performs constraint promotion to
converge to the correct final ranking (20b). In the case with
N = 2 features, it can be shown that any language of type III
that requires a faithfulness constraint to be ranked above the
other has more ERCs that push the former over the latter, thus
allowing promotion/demotion re-ranking rules to converge to
the correct ranking for any learning path.

Appendix: proof of Fact 3
For the sake of clarity, assume that the ERCs fed to the model
contain a unique LPC and that the initial ranking vector is the
null vector; the reasoning below trivially extends to the gen-
eral case. The contribution of an input ERC a to the current
ranking vector according to the update rule (8) can be sum-
marized by pairing it up with the corresponding update vector
a in (21): the entry corresponding to the LPC is −1; entries
corresponding to WPCs are 1/w, where w is the total number
of WPCs in the ERC a; all other entries are 0. The total num-
ber of possible input ERCs is always finite; call it m. Let ai
be the update vector corresponding to the ith ERC.

(21) a= [a1, . . . ,an]→ a=

a1
...

an

 with ak=


1
w if ak = W
−1 if ak = L
0 otherwise

As updates consist of adding update vectors, the current rank-
ing vector θ

t entertained by the model at some time t can
be described as a combination (22) of the update vectors
a1, . . . ,am, each multiplied by the number of updates αt

i trig-
gered by the corresponding ith input ERC up to time t.

(22) θ
t = αt

1a1 + . . .+αt
i ai + . . .+αt

mam

As the coefficients αt
i are by definition non-negative, (22)

says that the current ranking vector is a conic combination
of the update vectors. We thus need to study the conic geom-
etry of the update vectors, namely the properties of their conic
combinations. Here is an important conic property: the up-
date vectors a1, . . . ,am are called conically independent pro-
vided that there are no coefficients α1, . . . ,αm that satisfy the
conditions in (23): it is impossible to synthesize the null vec-
tor as a conic combination of the update vectors, unless the
non-negative coefficients are all null.
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(23) a. α1a1 + . . .αmam = 0;
b. αi ≥ 0 for all i = 1, . . . ,m;
c. αi 6= 0 for some i = 1, . . . ,m.

Fact 4 guarantees conic independence of the update vectors.
And Fact 5 in turn says that conic independence entails that
the algorithm cannot loop. Fact 3 follows straightforwardly.

Fact 4 The update vectors (21) corresponding to ERCs con-
sistent with some OT grammar are conically independent. �

Proof. A set of ERCs OT-consistent with the ranking C1 �
. . .� Cn can be stacked as in (24): there is a top block of
ERCs that start with a W; followed by a second block of ERCs
that start with an E followed by a W; etcetera, until a final dth
block of ERCs that start with d−1 E’s followed by a W.

(24)



C1 C2 ... Cd−1 Cd ... Cn
W

1st block | . . . . . . . . . . . . . . . . . . . . .
W
E W

2nd block | | . . . . . . . . . . . . . . . . . .
E W

...
. . . . . . . . . . . . . . . . . .

E E −− E W
dth block | | | | . . . . . . . . .

E E −− E W


As the mapping (21) from ERCs into update vectors replaces
W’s with 1/w and E’s with 0, the update vectors correspond-
ing to the stack of ERCs (24) look like (25).

(25)


1
w
 , . . . ,


1
w


︸ ︷︷ ︸
1st block

,


0
1
w

 , . . . ,


0
1
w


︸ ︷︷ ︸

2nd block

, . . . ,


0
|
0
1
w

 , . . . ,


0
|
0
1
w


︸ ︷︷ ︸

dth block

Suppose that a conic combination of the vectors (25) yields
the null vector, namely that conditions (23a) and (23b) hold.
The first component of the update vectors corresponding to
the 1st block is positive while the first component of the re-
maining update vectors is null. In order for the first com-
ponents to sum to zero, the nonnegative coefficients αi that
multiply the vectors corresponding to the 1st block must be
all null. As their coefficients are null, the vectors correspond-
ing to the 1st block can be ignored. By reasoning analogously
for the second components, I conclude that also the coeffi-
cients αi that multiply the vectors corresponding to the 2nd
block are all null. By repeating this reasoning d times, I con-
clude that all the coefficients αi in the combination are null,
contradicting condition (23c). �

Fact 5 If the update vectors are conically independent, then
the OT online model can never loop back to a current ranking
vector that it had previously dismissed. �

Proof. Suppose by contradiction that the algorithm loops
back at time t ′ to a ranking vector that it had dismissed at
a previous time t, as stated in (26).

(26) a. The ranking vectors at two times t and t ′ coincide;
b. time t precedes time t ′;
c. a different ranking vector is entertained at some

time in between t and t ′.

Assumption (26a) that the ranking vectors θ
t and θ

t ′ enter-
tained at times t and t ′ coincide, can be expressed as the iden-
tity (27a), using the general characterization (22) of the cur-
rent ranking vector. Assumption (26b) that time t ′ follows
time t entails that the number of updates αt ′

i triggered by the
ith ERC up to time t ′ is larger than or equal to the number of
updates αt

i triggered up to time t, as stated in (27b). Finally,
assumption (26c) entails that some update has happened at
some time in between t and t ′, so that at least one of the coef-
ficients has increased from time t to time t ′, as stated in (27c).

(27) a. αt
1a1 + . . .+αt

mam = αt ′
1 a1 + . . .+αt ′

mam

b. αt ′
i ≥ αt

i for all i = 1, . . . ,m

c. αt ′
i 6= αt

i for some i = 1, . . . ,m

Introducing the coefficients αi
def.
= αt ′

i − αt
i , conditions (27)

can be rewritten as in (28), which contradict the hypothesis
that the update vectors a1, . . . ,am are conically independent.

(28) a. α1a1 + . . .+αmam = 0
b. αi ≥ 0 for all i = 1, . . . ,m
c. αi 6= 0 for some i = 1, . . . ,m
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