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Abstract

Macroscopic traffic models are necessary for simulation and study of traffic’s complex macro-scale
dynamics, and are often used by practitioners for road network planning, integrated corridor management,
and other applications. These models have two parts: a link model, which describes traffic flow behavior
on individual roads, and a node model, which describes behavior at road junctions. As the road networks
under study become larger and more complex — nowadays often including arterial networks — the node
model becomes more important. Despite their great importance to macroscopic models, however, only
recently have node models had similar levels of attention as link models in the literature. This paper
focuses on the first order node model and has two main contributions. First, we formalize the multi-
commodity flow distribution at a junction as an optimization problem with all the necessary constraints.
Most interesting here is the formalization of input flow priorities. Then, we discuss a very common
“conservation of turning fractions” or “first-in-first-out” (FIFO) constraint, and how it often produces
unrealistic spillback. This spillback occurs when, at a diverge, a queue develops for a movement that
only a few lanes service, but FIFO requires that all lanes experience spillback from this queue. As we show,
avoiding this unrealistic spillback while retaining FIFO in the node model requires complicated network
topologies. Our second contribution is a “partial FIFO” mechanism that avoids this unrealistic spillback,
and a (first-order) node model and solution algorithm that incorporates this mechanism. The partial
FIFO mechanism is parameterized through intervals that describe how individual movements influence
each other, can be intuitively described from physical lane geometry and turning movement rules, and
allows tuning to describe a link as having anything between full FIFO and no FIFO. Excepting the FIFO
constraint, the present node model also fits within the well-established “general class of first-order node
models” for multi-commodity flows. Several illustrative examples are presented.

Keywords: macroscopic first order traffic model, first order node model, multi-commodity traffic, dynamic
traffic assignment, dynamic network loading

1 Introduction

Traffic simulation models are vital tools for traffic engineers and practitioners. As in other disciplines
focusing on complex systems, such as climate or population dynamics, traffic models have helped to deepen
our understanding of traffic behavior. They are widely used in transportation planning projects in which
capital investments must be justified with simulation-based studies (Caltrans, 2015). Recently, with the
increased interest in Integrated Corridor Management (ICM) and Decision Support Systems (DSS), traffic
models have also found a new role in real-time operations management. In both the planning and ICM/DSS
contexts, the models have steadily grown larger - such as highway plans that append adjacent arterial
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networks or managed lanes (Hadi et al., 2013) - and more complex - such as integration of new “smart”
vehicle and communications technologies into real-time ICM.

Traffic models are typically divided into three categories based on their level of abstraction. At the most
granular level, microscopic models simulate the motion and behavior of individual vehicles. At the other
extreme, macroscopic models describe the evolution of traffic flows and buildup and breakdown of congestion
along the lineal direction of a road in aggregate terms. Mesoscopic traffic models occupy the intermediate
space. Of the three, the highly-abstracted macroscopic models unsurprisingly have the lowest computational
cost, which makes them well-suited for study of large and complex networks of roads.

A macroscopic model is said to consist of a link model and a node model. A link model describes the evolution
through time of the traffic flow along homogeneous sections of road. Several types of link models exist, such
as those that give link flows as functions of link densities (e.g., the widely-used cell transmission model of
Daganzo (1994) and its descendants), those that track the vehicles only at link boundaries (Yperman et al.,
2005), and others (see Nie and Zhang (2005) for a broad overview). For the purposes of this paper, we do
not specify a particular class of link model, but only require that the model describe, as a function of its
state at time t, both the amount of vehicles trying to exit the link (S(t), the link’s demand) and the amount
of vehicles that the link is able to accept from upstream (R(t), the link’s supply).

A traffic model may contain multiple classes of vehicles that share the road, and each class may have their
own demands. Separate vehicle classes are often called commodities. In addition to the link and node
models are the so-called turning or split ratios, which define the vehicles’ turning choice at the junction —
the ratios of vehicles of each commodity that take each of the available movements. These split ratios might
be measured, such as by manually counting flows of each movement at traffic intersections, estimated from
some model, or prescribed by the modeler to make vehicles follow a certain path. In the context of this
paper, we consider only the split ratios at particular junctions. Nodes join the links, and the node model
computes the set of flows through a node for each commodity as a function of its incoming links’ demands
and its outgoing links’ supplies.

Of course, while macroscopic models may be fast relative to more granular meso- and microscopic models,
their computational needs are affected with the growth of network size and complexity. High computational
cost can be exacerbated in modern ICM applications, as well. Many real-time traffic state estimation
techniques follow an ensemble method approach, where many simulations describing different possible events
are processed simultaneously (see e.g. Work et al. (2010), Wright and Horowitz (2016)). ICM decision-making
can follow a similar approach, with multiple simulations being performed at a plan-evaluation step to project
traffic outcomes under a range of possible future demands.

While the computational complexities stemming from links have been well-studied, node models can be
sources of computational costs as well. These costs emerge when one models a network with many multi-
input and/or multi-output junctions, or junctions where more than two links enter or exit. We adopt the
term “high-dimensional” to describe these sorts of networks, to avoid ambiguity with similar terms such as
“large,” which may also describe networks with many long roads and not many junctions. This paper draws
on the authors’ experience in creating models for high-dimensional networks that describe a freeway, adjacent
managed lanes (such as high-occupancy vehicle (HOV) lanes or tolled lanes), and/or the surrounding arterial
grid for ICM purposes. We will discuss in Section 2 how modern node models can exacerbate computational
complexity in high-dimensional networks by creating a trade-off between model accuracy and number of
links; thankfully, this trade-off can be overcome in a simple manner, as we will detail in Section 3. Section
4 gives two examples, one being a slight modification of a well-studied example from Tampère et al. (2011),
in which we demonstrate how our new node model considerations differ from previous node models in the
junction-geometry information they consider and the flows produced. Appendix A summarizes the notation
used in this paper.
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2 Common node models and their drawbacks

2.1 Node models

The traffic node problem is defined on a junction ofM input links, indexed by i, and N output links, indexed
by j, with C vehicle commodities, indexed by c. As mentioned above, in first-order traffic models, the node
model is said to consist of the mechanism by which, at time t, incoming links’ per-commodity demands
Sc
i (t), split ratios βc

i,j(t) (which define the portion of vehicles of commodity c in link i that wish to exit to
link j), and outgoing links’ supplies Rj(t) are resolved to produce throughflows f ci,j(t). Nodes are generally
infinitesimally small and have no storage, so all the flow that enters the node at time t must exit at time t.
To simplify the notation, in the remainder of this paper we consider the node model evaluation in each time
instant as an isolated problem (as we are assuming no storage), and omit the variable t for these quantities.

The node problem’s history begins with the original formulation of discretized first-order traffic flow mod-
els (Daganzo, 1995). There have been many developments in the node model theory since, but we will reflect
only on some more recent results.

We can divide the node model literature into pre- and post-Tampère et al. (2011) epochs. Tampère et al.
(2011) drew from the literature several earlier-proposed node model requirements to develop a set of necessary
conditions for first-order node models that they call the “general class of first-order node models.” To review,
these conditions are:

1. Applicability to general numbers of input linksM and output links N . In the case of multi-commodity
flow, this requirement also extends to general numbers of commodities c.

2. Maximization of the total flow through the node. Mathematically, this may be expressed as
max

∑
i,j,c f

c
i,j . According to Tampère et al. (2011), this means that “each flow should be actively

restricted by one of the constraints, otherwise it would increase until it hits some constraint.” When a
node model is formulated as a constrained optimization problem, its solution will automatically satisfy
this requirement. However, what this requirement really means is that constraints should be stated
correctly and not be overly simplified and, thus, overly restrictive for the sake of convenient problem
formulation. See the literature review in Tampère et al. (2011) for examples of node models that
inadvertently do not maximize node throughput by oversimplifying their requirements.

3. Non-negativity of all input-output flows. Mathematically, f ci,j ≥ 0 for all i, j, c.

4. Flow conservation: Total flow entering the node must be equal to total flow exiting the node. Mathe-
matically,

∑
i f

c
i,j =

∑
j f

c
i,j for all c.

5. Satisfaction of demand and supply constraints. Mathematically,
∑

j f
c
i,j ≤ Sc

i and
∑

i f
c
i,j ≤ Rj .

6. Satisfaction of the first-in-first-out (FIFO) constraint: if a single destination j for a given i is not able
to accept all demand from i to j, all flows from i are also constrained. This requirement is sometimes
called “conservation of turning fractions” (CTF). Mathematically, f ci,j/

∑
i f

c
i,j = βc

i,j .

We believe that in some situations, the FIFO constraint may be too restrictive. It should not be
completely eliminated, but rather, could be relaxed through a parametrization. We will revisit this
point in the following Section.

7. Satisfaction of the invariance principle. If the flow from some input link i is restricted by the available
output supply, this input link enters a congested regime. This creates a queue in this input link and
causes its demand Si to jump to the link’s capacity, which we denote Fi, in an infinitesimal time, and
therefore, a node model should yield solutions that are invariant to replacing Si with Fi when flow
from input link i is supply-constrained (Lebacque and Khoshyaran, 2005).
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This paper concerns multi-commodity traffic, which is unaddressed in the preceding list. To address multi-
commodity traffic, we add another requirement,

8. Supply restrictions on a flow from any given input link are imposed on commodity components of this
flow proportionally to their per-commodity demands.

Requirement 8 assumes that the commodities are mixed isotropically. This means that all vehicles attempting
to take movement i, j will be queued in roughly random order, and not, for example, having all vehicles of
commodity c = 1 queued in front of all vehicles of c = 2, in which case the c = 2 vehicles would be
disproportionally affected by spillback. We feel this is a reasonable assumption for situations where the
demand at the node is dependent mainly on the vehicles near the tail of the link (e.g., in a small cell at the
tail).

In addition to the above numbered requirements, two other elements are required to define a node model.
The first is a rule for the portioning of output link supplies Rj among the input links. Following Gentile
et al. (2007), in Tampère et al. (2011) it was proposed to allocate supply for incoming flows proportionally
to input link capacities Fi.

The second necessary element is a redistribution of “leftover supply.” Following the initial partitioning of
supplies Rj , if one or more of the supply-receiving input links does not fill its allocated supply, some rule
must redistribute the difference to other input links who may still fill it. This second element is meant to
model the selfish behavior of drivers to take any space available, and ties in closely with requirement 2 above.
Tampère et al. (2011) referred to these two elements collectively as a “supply constraint interaction rule”
(SCIR).

Mentioned as an optional addition by Tampère et al. (2011) are “node supply constraints.” What is meant
by these are supply quantities internal to the node, in addition to link supplies Rj . These node supplies are
meant to model shared resources that multiple movements may make use of: each movement i, j through the
node may or may not consume an amount of a node supply proportional to

∑
c f

c
i,j . A node supply being

fully consumed would constrain these flows in a manner analogous to the link supplies. The obvious example
of such a “shared resource” node supply is green time at a signalized intersection; see Tampère et al. (2011)
for further discussion of this example. In Corthout et al. (2012) it was noted that these node supplies may
lead to non-unique solutions. Very recently, Jabari (2016) revisited this non-uniqueness problem, introduced
a relaxation of the flow-maximization objective termed a holding-free flow objective (i.e., not all holding-
free flows are flow-maximizing) and proposed adding constraints concerning signal timing and the conflicts
between movements (e.g., a through movement conflicts with the opposing left turn movement and if traffic
drives on the right side of the road and the two cannot send vehicles at the same time) to achieve a unique
flow solution. We will not make use of node supplies in the remainder of this paper.

The Tampère et al. (2011) requirements invite the modeler to design supply portioning and/or redistribution
rules that, in some sense, model traffic behavior, add them to the numbered requirements, and create new
node models. Recall that Tampère et al. (2011) suggested portioning the supplies Rj proportionally to the
input links capacities Fi. Gibb (2011) suggested a supply portioning rule based on a so-called “capacity-
consumption equivalence,” which states, qualitatively, that movements into a supply-constrained output link
j′ are characterized by drivers from individual input links i taking their movements i, j′ one after the other
in turn. The supply portioning rule thus says that the input links i, where drivers spend more time waiting
for entry into congested links j, are assigned less supply from all links, including those not in congestion.

Smits et al. (2015) argue that the quantities of interest in the node model problem should not be the flows
f ci,j , but rather the quantities 1/(

∑
c f

c
i,j), which are equal to the amount of time (relative to the simulation

timestep) that a vehicle needs to make movement i, j through the node. They claim that this quantity is
measurable in the field, and good node models would produce flows that emulate observed movement times.
They review the node models proposed in Tampère et al. (2011) and Gibb (2011) in this re-parametrization
and present others with different supply portioning and redistribution rules.
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It is important to note that the node model in Gibb (2011) and the so-called “equal delay at outlink” model
of Smits et al. (2015) define their supply portioning and redistribution rules implicitly. A consequence is that
their solutions must be found through a fixed-point iterative procedure, whose iterations-until-convergence
are potentially unbounded (this point was originally raised by Smits et al. (2015)). On the other hand, the
capacity-proportional node model of Tampère et al. (2011) and “single server” model of Smits et al. (2015)
are examples of explicit supply portioning rules.

For our purposes, we will focus on node models with explicit supply portioning and redistribution rules (that
is, an explicit SCIR). Our SCIR, which will be introduced in Section 3, is similar to that of Tampère et al.
(2011) and others in that it assigns leftover supply to other input links that can make use of it, but differs
in what is considered “leftover” and how it is assigned.

While Tampère et al. (2011) used the capacity-proportional supply portioning rule, we will slightly generalize
this to admit arbitrary per-input link priorities pi in the spirit of Daganzo (1995), Ni and Leonard (2005),
and Flötteröd and Rohde (2011).

2.2 Implications of the FIFO flow rule

We noted in Section 2.1 that the FIFO, or “conservation of turning fractions” rule in the Tampère et al.
(2011) node requirements may be too restrictive. Consider the example junction depicted in Figure 1. It
depicts a five-lane freeway with left and right off-ramps. The natural network representation of this junction
would have one node with one input link, with demand S1, and three output links, with supplies R1, R2,
and R3, similar to Figure 2a.

Figure 1: A node with one input and three output links, where congestion in output links 1 and 3 only
partially affects flow into output link 2, while congestion in link 2 affects flows into output links 1 and 3 in
full, and output links 1 and 3 do not affect each other.

(a) (b) (c)

Figure 2: Three network representations of the junction in Figure 1.
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Here, the FIFO constraint translates into

f1,1
S1,1

=
f1,2
S1,2

=
f1,3
S1,3

,

where fi,j(Si,j) is the flow (demand) from link i to j. This equality means that if, for instance, off-ramp 1
is jammed preventing traffic from coming in, there will be no flow of traffic to mainline 2 and off-ramp 3
either. This is in contrast to the fact that if congestion on off-ramp 1 spilled back onto the mainline, only
one lane in Figure 1 would be blocked (with some knock-on effects in the adjacent lane if drivers were trying
to enter the leftmost lane). More generally, FIFO imposes that a jam in any of the output links will block
the flow to all output links. Transportation engineers find that for certain junctions the FIFO requirement
is too strict to be realistic for this reason.

Some authors (e.g., Bliemer (2007) or Shiomi et al. (2015)) have suggested modeling each lane as a separate
link to alleviate this problem, similar to the network in Figure 2b (in the Figure, the rectangular shape of
the node signifies nothing, it is only stretched to fit all the input and output links). The demand S1 and
supply R2 are split across the link lanes. This model resolves the unrealistic spillback problem: congestion
in off-ramps 1 or 3 will only spill back to the links that are sending demand to an off-ramp; namely, the links
representing the adjacent lanes. However, this approach has its own drawbacks. First and most obviously, it
greatly complicates the size and dimensionality of the model, making every node in a two-or-more lane road
a merge and diverge. Second, it invites the question of how to assign commodity traffic across link lanes,
and provide a model for weaving or lane-change behavior, questions that are abstracted away in the “more
macro” macroscopic model of Figure 2b.

Figure 2c shows an intermediate approach — the sending link S1 in Figure 1 is split upstream of the off-
ramps, at the leftmost node in Figure 2c. The top and bottom links exiting this leftmost node represent the
left and right lanes in Figure 1, and carry all exiting vehicles, as well as the vehicles that take the left or
right lanes but do not exit. The middle link then represents the middle three lanes. The non-exiting vehicles
rejoin the same link at the rightmost node. This model limits the problems raised by separating each lane
into a separate link, as in the network of Figure 2b. This approach, however, does not fully eliminate the
unrealistic spillback problem, as heavy spillback that congests the “left lane” or “right lane” link will still spill
back into link S1. Splitting the link apart earlier would give us more room to avoid the unrealistic spillback,
but if we go too far upstream we can end up back at the network of Figure 2b.

At this point it may appear that we have found ourselves modeling between Scylla and Charybdis: keeping
the network at manageable simplicity invites unrealistic spillback behavior, while preventing the overly
aggressive spillback causes the network to explode in size. In Section 3 we present a method to overcome this
dilemma, and will revisit this example in the context of our proposed solution in Section 3.2. Our method
is relatively simple: it relies only on the lane geometry in junctions, as in Figure 1. It is also general and
could be used with any sort of network configuration, for example, those of Figures 2b and 2c.

3 A node model for dimensionality management

Our notation for the node model problem has been introduced above. For a quick reference, we refer the
reader to Appendix A.

This Section is organized as follows. First, we describe the merge problem — the multi-input-single-output
(MISO) node in Section 3.1 to explain the concept of input link priorities. Then, we propose a way of relaxing
the FIFO condition and explain it in the case of a single-input-multi-output (SIMO) node in Section 3.2.
Finally, in Section 3.3 we proceed to the general multi-input-multi-output (MIMO) node putting all the
concepts together.
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3.1 Multiple-Input-Single-Output (MISO) Node: Explaining Input Priorities

We start by considering a node with M input links and 1 output link. The number of vehicles of type c that
input link i wants to send is Sc

i . The flow entering from input link i has priority pi ≥ 0. Here i = 1, . . . ,M
and c = 1, . . . , C. The output link can receive R1 vehicles.

Let us briefly discuss the meaning of priorities. One intuitive way to understand them is that qualitatively
speaking, pi, the priority of link i, can be thought of the ability of link i to “claim” the supplies of the
downstream links. If we consider the node problem as describing a scenario where, over some period of time,
drivers from each incoming link “compete” to claim downstream supply, then an intuitive understanding of
priorities is that pi is proportional to the rate at which drivers are able to leave link i and claim downstream
supply. We explore this idea further in a companion paper, Wright et al. (2016), where the node problems
considered in this paper are explicitly recast as dynamic systems governed by ordinary differential equations.
Note also that this “rate of leaving” characterization of priorities was mentioned by Tampère et al. (2011), in
their justification of using capacities in place of priorities (their assumption being that vehicles will leave link
i at a rate equal to its capacity). However, this characterization of priorities as flow rates is not meant to
restrict the selection of priorities to flow rates. What is important is the ratio of a pi to the other input links’
priorities. If, for example, a link 1 is to have twice the priority of a link 2, a priority set of {2000, 1000} (i.e.,
on the scale of flow rates in terms of veh/hour) will produce the same results as a priority set of {2/3, 1/3}.

Casting the computation of input-output flows f ci1 as a mathematical programming problem, we arrive at:

max

(
M∑
i=1

C∑
c=1

f ci,1

)
, (3.1)

subject to:

f ci,1 ≥ 0, i = 1, . . . ,M, c = 1, . . . , C — non-negativity constraint; (3.2)
f ci,1 ≤ Sc

i , i = 1, . . . ,M, c = 1, . . . , C — demand constraint; (3.3)
M∑
i=1

fi,1 ≤ R1 — supply constraint; (3.4)

f ci,1
fi,1

=
Sc
i

Si
, i = 1, . . . ,M, c = 1, . . . , C, — proportionality constraint for commodity flows; (3.5)

(a) pi′′fi′,1 = pi′fi′′,1 ∀i′, i′′, such that fi′,1 < Si′ , fi′′,1 < Si′′ ,
(b) If fi,1 < Si, then fi,1 ≥ pi∑M

i′=1
pi′
R1.

}
— priority constraint.(3.6)

where i′ and i′′ in (3.6) denote two generic input links. Constraint (3.5) defines how potential restrictions
imposed on full input-output flows are translated to individual commodities. In this paper we assume that
any restriction on the i-to-1 flow applies to commodity flows proportionally to their contribution to the
demand, in accordance with requirement 8 introduced in Section 2.1.

Let us discuss the priority constraint (3.6) in more detail. It should be interpreted as follows. Input links
i = 1, . . . ,M , fall into two categories: (1) those whose flow is restricted by the allocated supply of the output
link; and (2) those whose demand is satisfied by the supply allocated for them in the output link. Priorities
define how supply in the output link is allocated for input flows. Condition (3.6)(a) says that flows from
input links of category 1 are allocated proportionally to their priorities. Condition (3.6)(b) ensures that
input flows of category 1 get no less than the portion of supply allocated for them based on their priorities.
The inequality in condition (3.6)(b) becomes an equality when category 2 is empty.

There is a special case when some input link priorities are equal to 0. If there exists an input link ı̂ such that
pı̂ = 0, while fı̂,1 > 0, then, due to condition (3.6)(a), all input links with nonzero priorities are in category
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2. Thus, if category 1 contains only input links with zero priorities, one should evaluate condition (3.6)(a)
with arbitrary positive, but equal, priorities: pi′ = pi′′ > 0.

If the priorities pi are proportional to the demands Si, i = 1, . . . ,M ,1 then condition (3.6) can be written as
an equality constraint:

f1,1
S1

= · · · = fi,1
Si

= · · · = fM,1

SM
, (3.7)

and the optimization problem (3.1)-(3.6) turns into a linear program (LP).

Remark 3.1. When selecting priorities pi, they should be chosen such that they are not functions of the
demands Si. Otherwise, it can be shown that the resulting flows can violate the invariance principle (require-
ment 7 in Section 2.1) (Tampère et al., 2011). This is true for all priorities considered in this paper. For
more detail on this, see the discussion in Section 2.1.3 of Tampère et al. (2011) and the references therein.

Remark 3.2. Note that constraint (3.7) cannot be trivially extended to the MIMO node by replacing subindex
1, where it denotes the output, with subindex j. Doing that, as is evident from Bliemer (2007), indeed leads
to a convenient optimization problem formulation, but sacrifices the flow maximization objective of the node
model, as was pointed out in Tampère et al. (2011), reducing the feasibility set more than necessary.

For arbitrary priorities with M = 2, condition (3.6) becomes:

f1,1 ≤ max

{
p1

p1 + p2
R1, R1 − S2

}
; (3.8)

f2,1 ≤ max

{
p2

p1 + p2
R1, R1 − S1

}
. (3.9)

To give a hint how more complicated constraint (3.6) becomes as M increases, let us write it out for M = 3:

f1,1 ≤ max

 p1∑3
i=1 pi

R1,
p1

p1 + p2
(R1 − S3) ,

p1
p1 + p3

(R1 − S2) , R1 −
∑
i=2,3

Si

 ; (3.10)

f2,1 ≤ max

 p2∑3
i=1 pi

R1,
p2

p1 + p2
(R1 − S3) ,

p2
p2 + p3

(R1 − S1) , R1 −
∑
i=1,3

Si

 ; (3.11)

f3,1 ≤ max

 p3∑3
i=1 pi

R1,
p3

p1 + p3
(R1 − S2) ,

p3
p2 + p3

(R1 − S1) , R1 −
∑
i=1,2

Si

 . (3.12)

As we can see, right hand sides of inequalities (3.10)-(3.12) contain known quantities, and so for arbitrary
priorities, problem (3.1)-(3.6) is also an LP. For general M , however, building constraint (3.6) requires a
somewhat involved algorithm. Instead, we develop an algorithm for computing input-output flows f ci1 that
solves the maximization problem (3.1)-(3.6). For the special case of the MISO node, our solution algorithm
is similar to the solution algorithm of Tampère et al. (2011) (again, with a generalization of priorities to be
arbitrary quantities rather than capacities), so in the interest of brevity we defer its statement to Appendix
B.

The following theorem summarizes this section. The proof will follow in Section 3.3, where we prove a more
general statement that has this problem as a special case.

Theorem 3.1. The input-output flow computation algorithm of Appendix B constructs the unique solution
of the maximization problem (3.1)-(3.6).

1Here we assume that Si > 0, i = 1, . . . ,M .
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3.2 Single-Input-Multiple-Output (SIMO) Node: Relaxing the FIFO Condition

Recall our discussion of Figures 1 and 2, and the unrealistic spillback problems created by the FIFO condition.
A more realistic model would allow to specify how output flows at any given junction can affect each other.
In the context of our example, we could say that congestion in off-ramp 1 affects mainline flow in lane 1,
congestion in off-ramp 3 affects mainline flow in lanes 4 and 5 (see striped areas in Figure 1), while traffic
flow in lanes 2 and 3 of the mainline output link is not affected by the traffic state in output links 1 and 3.
Additionally, we can say that congestion in the mainline output 2 affects flows directed to both off-ramps in
full, while the traffic state in each of the off-ramps does not influence the flow directed to the other off-ramp.

For purposes that will become clear in a moment, we refer to this partial blocking in terms of intervals
of the lane group (e.g., the leftmost fifth of the lane group), rather than specific lanes (e.g., lane 1). For
example, referring again to Figure 1, off-ramp 1 becoming congested would affect the leftmost fifth of the
mainline flow, and off-ramp 3 becoming congested would affect the rightmost two-fifths of the mainline flow.
Further, if we parameterize the five lanes serving the mainline flow as a unit interval, [0, 1], then we could
say that off-ramp 1 becoming congested affects the interval [0, 15 ], and off-ramp 3 becoming congested affects
the interval [ 35 , 1].

To formally describe this, we introduce mutual restriction intervals ηj′,j = [y, z] ⊆ [0, 1]. These parameters
can be interpreted as follows:

• ηj′,j = [0, 1] — congestion in the output link j′ affects flow directed to the output link j in full. This
is equivalent to the FIFO condition. Obviously, ηj,j ≡ [0, 1].

• ηj′,j = [0, 0] (or any other interval of zero length) — traffic state in the output link j′ does not influence
the flow directed to the output link j. This is equivalent to no FIFO restriction.

• ηj′,j = [y, z] ⊂ [0, 1] — traffic state in the output link j′ affects a |ηj′,j | = z − y portion of the flow
directed to the output link j. Moreover, we specify this influence as an interval, not just a scalar, to
capture the summary effect of multiple output links that may restrict flow to the output link j — how,
will be explained shortly.

Recall again the node in Figure 1. Here, the mutual restriction intervals, in matrix form, may be written as

η =

 [0, 1]
[
0, 15
]

[0, 0]
[0, 1] [0, 1] [0, 1]
[0, 0]

[
3
5 , 1
]

[0, 1]

 ,

where ηj′,j is the j′, j element of the matrix. The diagonal (j = j′) elements of the matrix, ηj,j , are always
[0, 1] because they indicate that a movement becomes fully restricted when its destination link is blocked.
Note that the matrix is not symmetric in general, since a queue in link j will typically not affect the same
portion [y, z] of j′-serving lanes as a queue in link j′ will affect the j-serving lanes (for example, η2,1 = [0, 1]
in the above matrix because a queue in all five freeway lanes implies a queue in the leftmost freeway lane
that serves offramp 1).

We have established how we encode the spatial (i.e., portion of lanes) extent of restriction into the restriction
intervals. Now, we discuss how we use the restriction intervals to compute flows. Recalling our example,
suppose R1

S1,1
< R3

S1,3
< 1 ≤ R2

S1,2
. In other words, demand for output links 1 and 3 exceeds the available

supply with output link 1 being more restrictive, while the demand directed to the output link 2 can be
satisfied. Since output links 1 and 3 do not affect each other, we get

f1,1 = R1 and f1,3 = R3.

9



Flow f1,2 is partially restricted by both output links 1 and 3:

f1,2 = (1− |η1,2| − |η3,2 \ (η3,2 ∩ η1,2)|)S1,2 +
R1

S1,1
|η1,2|S1,2 +

R3

S1,3
|η3,2 \ (η3,2 ∩ η1,2)|S1,2,

where |η1,2| and |η3,2\(η3,2∩η1,2)| denote the lengths of intervals η1,2 and η3,2\(η3,2∩η1,2), respectively. In
the second interval, the intersection of η3,2 and η1,2 is removed because, as output link 1 is more restrictive
by assumption, the output 3 will restrict f1,2 only when output 1 is already restricting f1,2 (of course, in this
example, the intersection is the empty set, but as we will see momentarily, that is not always the case). In
this expression for f1,2, the first term represents the unrestricted portion of flow (lanes 2 and 3); the second
term represents the portion of flow restricted by the output 1 (lane 1); and the third term represents the
portion of flow restricted by the output 3 (lanes 4 and 5). The expression for f1,2 can be rewritten as

f1,2 = S1,2 −
(
1− R1

S1,1

)
|η1,2|S1,2 −

(
1− R3

S1,3

)
|η3,2 \ (η3,2 ∩ η1,2)|S1,2. (3.13)

We believe (3.13) is an intuitive representation of how the mutual restriction intervals affect flows. The
first term, S1,2, is the maximum possible flow (i.e., the demand). The second and third terms represent the
portion of demand that cannot be fulfilled due to the restriction intervals. For both of them, (1−Rj/S1,j)
represents the portion of flow that is affected by output link j becoming congested, and | · |, the length of the
mutual restriction interval, is the degree to which this flow portion is affected by relaxed, or partial, FIFO.

Further, the computation in (3.13) can be intuitively represented in the two-dimensional graphics of Figure
3. In both subfigures, the area of the striped region is the flow f1,2. The entire rectangle, consisting of
the region [0, S1,2] on the horizontal axis and 0, 1 on the vertical axis, has the area S1,2 and represents the
maximum possible flow. The shaded regions correspond to the flow reductions in (3.13).

Focusing first on Figure 3(a), the top shaded region represents the flow reduction caused by congestion in
output link 1. One can see that its extent on the vertical axis is η1,2 = [0, 15 ], and its extent on the horizontal
axis is (1 − R1/S1,1)S1,2 = (f1,1/S1,1)S1,2. The area of this shape, then, is (1 − R1/S1,1)|η1,2|S1,2, which
appears in (3.13). Computing (3.13), then, is equivalent to measuring the shaded area in Figure 3(a).

Figure 3: Computing f1,2 for the 1-input-3-output node example with R1

S1,1
< R3

S1,3
< 1 ≤ R2

S1,2
, η13 = η31 =

[0, 0], η32 =
[
3
5 , 1
]
and two cases for η1,2: (a) η1,2 =

[
0, 15
]
; (b) η1,2 =

[
4
5 , 1
]
.

Now, considering both Figures 3(a) and 3(b), we see why we subtracted the intersection in the third term
of (3.13). In Figure 3(b), we have η1,2 =

[
4
5 , 1
]
. Here, restrictions from outputs 1 and 3 imposed on flow

f1,2 would overlap in their affected lanes. The intuition is that if traffic in lane 5 of the mainline output is
already restricted by the output 1, then the output 3 cannot do anything more to restrict the flow in lane 5,
it can only restrict flow in lane 4 of the mainline output. Since the intersection in Figure 3(a)’s problem is
the empty set, (3.13) gives the area of its shaded area as well; (3.13) is the proper equation for both cases.

We now generalize from two restriction intervals to an arbitrary number. Define:

Qj′,j = ηj′,j ×
[
f1,j′

S1,j′
S1,j , S1,j

]
, (3.14)
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where ‘×’ denotes a Cartesian product. The Cartesian product of the two intervals gives us a rectangle Qj′,j .
For example, in Figure 3, Q1,2 and Q3,2 represent the grayed-out rectangles.

Denote A(·) as the area of a two-dimensional shape. For example, the expression for flow f1,2 in our example,
(3.13), can be replaced with a single, more general formula:

f1,2 = S1,2 −A (Q1,2 ∪Q3,2) .

Now, we are ready to formulate the optimization problem for the general SIMO node with N output links
and C commodities:

max

 N∑
j=1

C∑
c=1

f c1,j

 , (3.15)

subject to:

f c1,j ≥ 0, j = 1, . . . , N, c = 1, . . . , C — non-negativity constraint; (3.16)
f c1,j ≤ Sc

1,j , j = 1, . . . , N, c = 1, . . . , C — demand constraint; (3.17)
f1,j ≤ Rj , j = 1, . . . , N — supply constraint; (3.18)
f ci,j
f1,j

=
Sc
1,j

S1,j
, j = 1, . . . , N, c = 1, . . . , C — proportionality constraint for

commodity flows; (3.19)

f1,j ≤ S1,j −A

⋃
j′ 6=j

Qj′,j

 , j = 1, . . . , N — relaxed FIFO constraint. (3.20)

For SIMO nodes with full FIFO, constraint (3.20) together with the supply constraint (3.18) translates into

f1,j ≤ S1,j −
(
1− f1,j∗

S1,j∗

)
S1,j =

f1,j∗

S1,j∗
S1,j , (3.21)

where

j∗ = argmin
j

Rj∗

S1,j∗
, (3.22)

and, since we are solving the flow maximization problem, (3.21) can be replaced with the equality constraint:

f1,j =
f1,j∗

S1,j∗
S1,j . (3.23)

For SIMO nodes with no FIFO, A
(⋃

j′ 6=j Qj′,j

)
= 0, which simplifies (3.20) to the demand constraint, and

thus, constraint (3.20) can be omitted in that case.

Next, we present the algorithm for solving the flow maximization problem (3.15)-(3.20).

1. Initialize:

S̃c
1,j(0) := Sc

1,j ;

S̃1,j(0) := S1,j ;

η̃j(0) = [0, 0];

V (0) := {1, . . . , N};
k := 0;

j = 1, . . . , N, c = 1, . . . , C.

11



As before, k denotes the iteration index; S̃c
1,j(k) (S̃1,j(k)) is the oriented demand per commodity (total

accross commodities) at iteration k; η̃j(k) is the portion of output flow to j affected by the restricted
supply of other output links at iteration k, and is the union of intervals that have become active as of
iteration k; and V (k) is the set of output links still to be processed at iteration k.

2. If V (k) = ∅, stop.

3. For all output links j ∈ V (k), find flow reduction factors:

αj(k) =
Rj

S̃1,j(k)
, (3.24)

and find the most restrictive output link out of the remaining ones:

j∗(k) = arg min
j∈V (k)

αj(k). (3.25)

• If αj∗(k)(k) ≥ 1, then assign:

f c1,j = S̃c
1,j(k), ∀j ∈ V (k), c = 1, . . . , C; (3.26)

V (k + 1) = ∅.

• Else, assign:

S̃c
1,j∗(k + 1) = αj∗(k)S̃

c
1,j∗(k), c = 1, . . . , C; (3.27)

S̃c
1,j(k + 1) =

S̃1,j(k + 1)

S1,j
Sc
1,j , j ∈ V (k) \ {j∗}, c = 1, . . . , C, (3.28)

where

S̃1,j(k + 1) = S̃1,j(k)− S1,j (|ηj∗,j | − |η̃j(k) ∩ ηj∗,j |)

(
1−

∑C
c=1 S̃

c
1,j∗(k + 1)

S1,j∗

)
, (3.29)

η̃j(k + 1) = η̃j(k) ∪ ηj∗,j , j ∈ V (k);

f c1,j = S̃c
1,j(k + 1), j : η̃j(k + 1) = [0, 1], c = 1, . . . , C; (3.30)

V (k + 1) = V (k) \ {j : η̃j(k + 1) = [0, 1]},

where |η̃j(k) ∩ ηj∗,j | denotes the measure of the interval intersection.2

4. Set k := k + 1 and return to step 2.

This algorithm takes no more than N iterations to complete.

The algorithm can be understood as follows. V (k) is the set of output links who have not had their incoming
flows determined as of iteration k. In (3.24) and (3.25), the output link whose remaining supply is most
demanded (that is, whose ratio of remaining supply to total incoming demand is lowest) is identified and
labeled j∗(k). If this most-demanded link is actually able to handle all of its demand, then we reach (3.26)
and all node flows are in freeflow. Otherwise, we reach (3.27)-(3.30). Equation (3.27) assigns the flow to the
most-restricted output link j∗(k) (this flow will be Rj∗ , which can be seen by examining (3.24)). Equations
(3.28) and (3.29) perform the application of the mutual restriction interval for the just-filled link j∗ to all
other output links j in a two-step process. The quantity S̃c

1,j(k+1) is a “running demand” for commodity c
to link j after relaxed FIFO has been applied to the original demand Sc

1,j .

This “running demand” that takes the activation of mutual restriction intervals is calculated in (3.29). Note
that this calculation is exactly the calculation of a shaded area in the diagrams of Figure 3. In particular,
|ηj∗,j | − |η̃j(k) ∩ ηj∗,j | defines the height of the union of a just-activated mutual restriction interval ηj∗,j
with the current active mutual restriction interval(s) η̃j(k), and 1−

(∑C
c=1 S̃

c
1,j∗(k + 1)

)
/ (S1,j∗) defines the

2This set may be disjoint.
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width of the new rectangle. Equation (3.28) simply scales each commodity’s demand by the same “blockage”
represented by the rectangle. Similar to S̃c

1,j(k+1), η̃j(k+1) is a “running mutual restriction interval” that
represents the union of mutual restriction intervals acting on flow to j up to this point. When link j has
a running mutual restriction interval of [0, 1], it has been fully blocked, and so its flow is assigned by its
running demand in (3.30). This construction of the heights and widths of the rectangles will also be used in
the multi-input-multi-output case in the next Section.

Finally, we state the result of this Section as a theorem. As with Theorem 3.1, the proof is deferred to
Section 3.3.

Theorem 3.2. The SIMO input-output flow computation algorithm constructs the unique solution of the
maximization problem (3.15)-(3.20).

3.3 Multiple-Input-Multiple-Output (MIMO) Node

To formally state the flow maximization problem for the MIMO node, we need to extend the MISO opti-
mization problem (3.1)-(3.6) and the SIMO optimization problem (3.15)-(3.20). While the generalization of
the objective (3.1), (3.15) and constraints (3.2)-(3.5), (3.16)-(3.19) is straightforward, extending the priority
constraint (3.6) and the relaxed FIFO constraint (3.20) to the MIMO case requires a little more work.

First, we introduce the concept of oriented priorities:

pi,j = pi

∑C
c=1 S

c
i,j∑C

c=1 S
c
i

, i = 1, . . . ,M, j = 1, . . . , N. (3.31)

Recall our discussion about the physical meaning of priorities in Section 3.1. Qualitatively, priorities mean
that drivers from each link i “compete” to claim supply at rate pi. The oriented priority pi,j can be thought
of as the rate at which drivers from a link i claim supply from the particular link j. This means that the
ability of vehicles from i to claim j’s supply is proportional to the portion of i vehicles that are actually
trying to claim j’s supply.

Before we present the algorithm, we need to define two items.

Definition 3.1. If, for a given input link i, whose demand cannot be satisfied (
∑N

j=1 fi,j < Si), there exists
at least one output link j∗, such that: (1) Si,j∗ > 0; and (2) pi′,j∗fi,j∗ ≥ pi,j∗fi′,j∗ for any i′ 6= i, we say
that such output j∗ is restricting for input i.

We need this definition to formulate the priority constraint, and it is only valid for M > 1. If the output j∗
is restricting for input links i′ and i′′, then, according to this definition, pi′′,j∗fi′,j∗ = pi′,j∗fi′′,j∗ .

Definition 3.2. For a given input link i, define the set of restricting output links (as defined by Definition
3.1) for that i as

Wi ,
{
j∗ : Rj∗ > Si,j∗ > 0, ∃ i′ 6= i s.t. pi′,j∗fi,j∗ ≥ pi,j∗fi′,j∗

}
.

Now, we can formulate the flow maximization problem for the general MIMO node:

max

 M∑
i=1

N∑
j=1

C∑
c=1

f ci,j

 , (3.32)
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subject to:

f ci,j ≥ 0, i = 1, . . . ,M, j = 1, . . . , N, c = 1, . . . , C — non-negativity constraint; (3.33)
f ci,j ≤ Sc

i,j , i = 1, . . . ,M, j = 1, . . . , N, c = 1, . . . , C — demand constraint; (3.34)
M∑
i=1

fi,j ≤ Rj , j = 1, . . . , N — supply constraint; (3.35)

f ci,j
fi,j

=
Sc
i,j

Si,j
, i = 1, . . . ,M, j = 1, . . . , N, c = 1, . . . , C — proportionality constraint

for commodity flows; (3.36)
(a) For each input link i such that∑N

j=1 fi,j < Si, Wi 6= ∅;
(b) For each input link i such that Wi 6= ∅,

fi,j ≥ pi,j∑M
i′=1

pi′,j
Rj , ∀j ∈Wi,

 — priority constraint; (3.37)

fi,j ≤ Si,j −A

 ⋃
j′∈Wi\{j}

Qi
j′,j

 , i = 1, . . . ,M, j = 1, . . . , N — relaxed FIFO

constraint. (3.38)

Constraint (3.37) generalizes the MISO priority constraint (3.6), with Wi being the set of restricting outputs
for input link i as defined by Definition 3.2. For each output link j, j = 1, . . . , N , flows

∑C
c=1 f

c
i,j fall into two

categories: (1) restricted by this output link; and (2) not restricted by this output link. Condition (3.37)(a)
states that if the flow from an input i is supply-constrained, there do exist output links j, such that flows
fi,j are of category 1; and for a given output j, input-output flows of category 1 are allocated proportionally
to their priorities. For every output link j, j = 1, . . . , N , condition (3.37)(b) says that these category 1 flows
may take “leftover” supply after the category 2 flows into j have been resolved. For a SIMO (M = 1) node,
there is no competition between input flows, and constraint (3.37) is satisfied automatically.

Constraint (3.38) generalizes the SIMO relaxed FIFO constraint (3.20). Here,

Qi
j′,j = η

i
j′,j ×

[
fi,j′

Si,j′
Si,j , Si,j

]
, (3.39)

which is a generalization of (3.14), and A(·) denotes the area of a two-dimensional object. For MIMO nodes
with full FIFO, constraint (3.38) together with the supply constraint (3.35) translates to:

fi,j ≤ min
j′∈Wi

{
fi,j′

Si,j′

}
Si,j , (3.40)

and, since we are solving the flow maximization problem, (3.40) can be replaced with the equality constraint:

fi,j = min
j∗∈Wi

fi,j∗

Si,j∗
Si,j . (3.41)

For MIMO nodes with no FIFO and for MISO (N = 1) nodes, A
(⋃

j′∈Wi\{j}Q
i
j′,j

)
= 0, and thus, con-

straint (3.38) degenerates into the demand constraint.

Remark 3.3. Note that in the case of multiple input links mutual restriction intervals are to be specified
per input link. This can be justified by the following example. In the node representing a junction with 2
input and 3 output links, shown in Figure 4, consider the influence of the output link 5 on the output link
4. If vehicles enter links 4 and 5 from link 1, then it is reasonable to assume that once link 5 is jammed
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and cannot accept any vehicles, there is no flow from 1 to 4 either, since vehicles queueing for a U-turn
into link 4 would use the same lanes as those vehicles queueing for a left turn into link 5. In other words,
η1
5,4 = [0, 1]. On the other hand, if vehicles arrive from link 2, blockage of the output link 5 may hinder,

but not necessarily prevent, traffic from flowing into the output link 4, and so η2
5,4 = [1 − ε, 1], with some

0 < ε < 1 that depends on the portion of 2’s of lanes that allow both a right-turn and through movement.
So, from now on we will write ηi

j′,j and Qi
j′,jwith index i identifying the input link. Example 1 in Section 4

discusses a situation like this in detail.

Figure 4: Intersection node.

Next, we present the algorithm that solves the flow maximization problem (3.32)-(3.38).

1. Initialize:

R̃j(0) := R;

Uj(0) :=

{
i ∈ {1, . . . ,M} :

C∑
c=1

Sc
i,j > 0

}
;

S̃c
i,j(0) := Sc

i,j ;

S̃i,j(0) :=

C∑
c=1

S̃c
i,j(0);

η̃i
j(0) := [0, 0];

k := 0;

i = 1, . . . ,M, j = 1, . . . , N, c = 1, . . . , C.

As before, k denotes iteration; R̃j(k) is the remaining supply of output link j at iteration k; Uj(k) is the
set of input links i that have nonzero demands towards j (that is, at least one nonzero Sc

i,j) and have
not had their flows assigned as of iteration k; S̃c

1,j(k) (S̃1,j(k)) is the oriented demand per commodity
(total) at iteration k; η̃i

j(k) is the portion of input-i-to-output-j flow affected by the restricted supply
of other output links at iteration k and is the union of intervals affecting that particular flow that have
become active as of iteration k.

2. Define the set of output links that still need processing:

V (k) = {j : Uj(k) 6= ∅} .

If V (k) = ∅, stop.

3. Check that at least one of the unprocessed input links has nonzero priority, otherwise, assign equal
positive priorities to all the unprocessed input links:

p̃i(k) =

{
pi, if there exists i′ ∈

⋃
j∈V (k) Uj(k) : pi′ > 0,

1

|⋃j∈V (k) Uj(k)| , otherwise, (3.42)
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where
∣∣∣⋃j∈V (k) Uj(k)

∣∣∣ denotes the number of elements in the union
⋃

j∈V (k) Uj(k); and for each output
link j ∈ V (k) and input link i ∈ Uj(k) compute oriented priority:

p̃i,j(k) = p̃i(k)

∑C
c=1 S

c
i,j∑C

c=1 S
c
i

. (3.43)

4. For each j ∈ V (k), compute factors:

aj(k) =
R̃j(k)∑

i∈Uj(k)
p̃i,j(k)

, (3.44)

and find the smallest of these factors:

aj∗(k) = min
j∈V (k)

aj(k). (3.45)

These factors aj(k) describe the ratio of the supply Rj(k) to the demand placed upon j by way of the
oriented priorities p̃i,j(k)3. The link j∗ has the most demanded supply of all output links.

5. Define the set of input links whose demand does not exceed the allocated supply:

Ũ(k) =

i ∈ Uj∗(k) :

 ∑
j∈V (k)

S̃i,j(k)

 ≤ p̃i(k)aj∗(k)
 .

• If Ũ(k) 6= ∅, then for all output links j ∈ V (k) assign:

f ci,j = S̃c
i,j(k), i ∈ Ũ(k), c = 1, . . . , C; (3.46)

R̃j(k + 1) = R̃j(k)−
∑

i∈Ũ(k)

fi,j ;

Uj(k + 1) = Uj(k) \ Ũ(k).

• Else, for all input links i ∈ Uj∗(k), output links j ∈ V (k) and commodities c = 1, . . . , C, assign:

S̃c
i,j∗(k + 1) = S̃c

i,j∗(k)
p̃i,j∗(k)aj∗(k)

S̃i,j∗(k)
, c = 1, . . . , C; (3.47)

S̃c
i,j(k + 1) = S̃c

i,j(k)
S̃i,j(k + 1)

S̃i,j(k)
, i ∈ Uj(k) ∩ Uj∗(k), j ∈ V (k) \ {j∗}, (3.48)

where

S̃i,j(k + 1) = S̃i,j(k)− Si,j

(
|ηi

j∗,j | − |η̃i
j(k) ∩ ηi

j∗,j |
)(

1−
∑C

c=1 S̃
c
i,j∗(k + 1)

Si,j∗

)
; (3.49)

S̃c
i,j(k + 1) = S̃c

i,j(k), i 6∈ Uj(k) ∩ Uj∗(k);

η̃i
j(k + 1) = η̃i

j(k) ∪ ηi
j∗,j ;

f ci,j = S̃c
i,j(k + 1),

i ∈ Uj(k) ∩ Uj∗(k), j ∈ V (k) : η̃i
j(k + 1) = [0, 1], c = 1, . . . , C; (3.50)

R̃j(k + 1) = R̃j(k)−
∑

i∈Uj∗ (k):η
i
j(k+1)=[0,1]

fi,j ;

Uj(k + 1) = Uj(k) \
{
i ∈ Uj∗(k) : η̃

i
j(k + 1) = [0, 1]

}
.

3 If, as before, we consider oriented priorities as describing the “rate” at which supply is claimed, then aj(k) < aj′ (k) means
that Rj(k), which is being filled at rate

∑
i∈Uj(k)

p̃i,j(k), is filled “before” Rj′ (k), which is being filled at rate
∑

i∈Uj′ (k)
p̃i,j′ (k)

(see Wright et al. (2016) for more on this).

16



6. Set k := k + 1, and return to step 2.

This algorithm takes no more than M +N iterations to complete.

This algorithm can be best understood as a generalization of the algorithm for solving the SIMO node
problem (Section 3.2). Similar to the SIMO problem, V (k) is the set of output links whose input flows
are not yet determined as of iteration k. At each iteration k, j∗ ∈ V (k) is the output whose supply is
most-demanded by its oriented priorities. In step 5, it is determined whether any of the links that still want
to send demand to j∗ (i.e., the i ∈ Uj∗(k)) will be able to send all their vehicles before this most-demanded
link j∗’s supply is exhausted. If so, then Ũ(k) is nonempty, the first case of step 5 is entered, and these
“lucky” links Ũ(k) are able to satisfy all their demand in (3.46).

If not, then all links i ∈ Uj∗(k) will still have leftover demand after j∗ is filled, and we enter the second
case of step 5. In (3.47), the demands into j∗ are scaled so that when their flows are assigned in (3.50),
each i ∈ Uj∗(k) will fill its priority-proportional share of R̃j∗(k) (see the relevant calculation in the proof of
Theorem 3.3 to check this). In (3.48) and (3.49), relaxed FIFO is enforced on all flows into different j 6= j∗ in
accordance with their mutual restriction intervals ηi

j∗,j (this is the same procedure as in (3.28) and (3.29) in
the SIMO case). Finally, (3.50) sets all flows that can be found at this point, due to them being constrained
by a FIFO constrant in the form of a running mutual restriction interval of [0, 1] (note that this includes the
flows into j∗, as ηi

j∗,j∗ = [0, 1] ∀i by definition).

The following lemma states that in the case of N = 1, the MIMO algorithm produces the same result as the
MISO algorithm described in Section 3.1.

Lemma 3.1. The MISO algorithm is a special case of the MIMO algorithm with N = 1.

Proof. The proof follows from the fact that for N = 1, formulae (3.44)-(3.45) result in aj∗(k) = a1(k) =
R̃1(k)∑

i∈U1(k) p̃i(k)
and j∗ = 1.

The following lemma states that in the case M = 1, the MIMO algorithm with relaxed FIFO condition
produces the same result as the SIMO algorithm with relaxed FIFO condition described in Section 3.2.

Lemma 3.2. The SIMO algorithm with the relaxed FIFO condition is a special case of the MIMO algorithm
with M = 1.

Proof. The proof follows from the fact that for M = 1, factors aj(k), defined in (3.44), reduce to:

aj(k) =
RjS̃1(k)

S̃1,j(k)
,

and

j∗ = arg min
j∈V (k)

RjS̃1(k)

S̃1,j(k)
= arg min

j∈V (k)

Rj

S̃1,j(k)
.

The main result of this Section can be stated as the following theorem.

Theorem 3.3. Given a set of input links i ∈ 1, . . . ,M , output links j ∈ 1, . . . , N , commodities c ∈ 1, . . . , C,
priorities {pi}, split ratios {βc

i,j}, and mutual restriction intervals {ηi
j′,j} (j′ 6= j), the algorithm of Sec-

tion 3.3 obtains the unique solution of the optimization problem (3.32)-(3.38).
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Proof. The priority constraint (3.37) makes this optimization problem non-convex, except in the special cases
mentioned in Section 3.1. In fact, we conjecture that in the MIMO case, both with and without relaxation
of the FIFO constraint, there is no way to verify a solution faster than re-solving the problem (3.32)-(3.38).
Thus, we will prove optimality by showing that as our algorithm proceeds through iterations, it constructs
the unique optimal solution.

We may decompose the problem into finding the M · N · C interrelated quantities {f ci,j}. The C flows for
each (i, j) are further constrained by our commodity flow proportionality constraint (3.36); solving for one
of {f1i,j , . . . , fCi,j} also finds them all. Our task then becomes finding optimal values for each of M ·N subsets
{f1i,j , . . . , fCi,j}. Our algorithm finds at least one of these M · N subsets per iteration k. The assignments
are done by either equation (3.46) or equation (3.50). Over iterations, subsets are assigned to build up the
unique optimal solution. We can show that each subset assigned is optimal; that is, at least one of the
constraints is tight.

Consider (3.49)-(3.50), our implementation of the relaxed FIFO constraint. In step 4 of our algorithm, we
identify a single output link as j∗. The minimization in this step picks out a single link as the most restrictive
of all output links. By the relaxed FIFO construction, all i ∈ Uj∗ will feel a partial FIFO effect instigated by
j∗ as the most restrictive link. For a generic j 6= j∗, equation (3.49) enforces the relaxed FIFO constraint by
decaying the oriented demand S̃i,j(k). In fact, this modified oriented demand acts as a proxy for the relaxed
FIFO constraint. Since a f ci,j that is restricted by partial FIFO will, by construction, never obtain f ci,j = Sc

i,j ,
the running quantity S̃c

i,j(k) represents an “effective” oriented demand after application of partial FIFO. A
flow that is not constrained by partial FIFO will nevertheless not exceed its demand, as S̃c

i,j(0) = Sc
i,j , and

S̃c
i,j(k) only decreases across k as relaxed FIFO constraints are considered (ensuring compliance with the

demand constraint (3.34)). On the other hand, if it turns out that a flow is found f ci,j = S̃c
i,j(k) ≤ Sc

i,j for
some k, then this flow value may have some constraint imposed by partial FIFO.

Flows assigned by equation (3.50) for j 6= j∗ are constrained by a relaxed FIFO constraint (3.38). To see
this, note that

A(Qi
j′,j) =

∣∣ηi
j′,j

∣∣(1− ∑C
c=1 f

c
i,j′

Si,j′

)
Si,j (3.51)

where, recall, Qi
j′,j is defined by (3.39). As applied in (3.49), j′ = j∗ always, and f ci,j∗ = S̃c

i,j∗ by (3.50).

For a union of two rectangles Qi
j′,j and Qi

j′′,j , we have

A
(
Qi

j′,j ∪Qi
j′′,j

)
= A

(
Qi

j′,j

)
+A

(
Qi

j′′,j

)
−A

(
Qi

j′,j ∩Qi
j′′,j

)
(3.52)

and

A
(
Qi

j′,j ∩Qi
j′′,j

)
=
(∣∣ηi

j′,j ∩ ηi
j′′,j

∣∣) min
j]∈{j′,j′′}

(
1−

∑C
c=1 f

c
i,j]

Si,j]

)
Si,j . (3.53)

Note that j] as defined in (3.53) is the less-restricted of the two output links j′ and j′′. This means that in
the context of our algorithm, since the most-restricted link j∗ is picked at each iteration, subsequent links j∗
at later iterations will always be less restricted than those in previous iterations. Equation (3.49) thus takes
the union (with the subtraction of the intersection) as done in (3.52)-(3.53), and incorporates the relaxed
FIFO constraint (3.38).
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Now consider equations (3.47) and (3.50), which apply in the special case where j = j∗. We have

C∑
c=1

∑
i∈Uj∗ (k)

f ci,j∗ =

C∑
c=1

∑
i∈Uj∗ (k)

S̃i,j∗(k)
p̃i,j∗(k)aj∗(k)∑C

c′=1 S̃
c′
i,j∗(k)

=
∑

i∈Uj∗ (k)

p̃i,j∗(k)aj∗(k)

=

 ∑
i∈Uj∗ (k)

p̃i,j∗(k)

 R̃j∗(k)∑
i∈Uj∗ (k)

p̃i,j∗(k)

= R̃j∗(k),

so all the flows into link j∗ take up all available supply. These flows are thus constrained by the supply
constraint, (3.35).

Corollary 3.1. Theorems 3.1 and 3.2 follow from Theorem 3.3 as special cases.

Remark 3.4. Note that setting the priorities equal to input link capacities, pi = Fi, and all restriction
intervals ηi

j′,j = [0, 1], we recover the original node model and algorithm of Tampère et al. (2011).

4 Examples

We present two examples to demonstrate the computation of node flows with our node model. The first
example is an extension of the example with four input links and four output links from Tampère et al.
(2011), where we have extended it to include the partial FIFO construction for some input links.

The second example represents an onramp to a freeway with a parallel managed lane facility as a node with
three input links (onramp, freeway and managed lane) and two output links (freeway and managed lane).
In this example, we vary the input links’ priorities to demonstrate how this affects the resulting node flows.

4.1 Example One: An example with partial FIFO

Consider the node schematically presented in Figure 5a. This node has four input links (links 1 through 4)
and four output links (links 5 through 8).

(a) (b) (c)

Figure 5: Items used in Example One: (a) four-input, four-output node used, (b) one-lane structure and
turn movements for input links 1 and 3 and (c) two-lane structure and turn movements for input links 2 and
4.
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Suppose that our relevant parameters are:

C = 1
S1 = 500 S2 = 2000 S3 = 800 S4 = 1700
p1 = F1 = 1000 p2 = F2 = 2000 p3 = F3 = 1000 p4 = F4 = 2000
R5 = 1000 R6 = 2000 R7 = 1000 R8 = 2000
β1,5 = 0 β1,6 = 0.1 β1,7 = 0.3 β1,8 = 0.6
β2,5 = 0.05 β2,6 = 0 β2,7 = 0.15 β2,8 = 0.8
β3,5 = 0.125 β3,6 = 0.125 β3,7 = 0 β3,8 = 0.75
β4,5 = 1/17 β4,6 = 8/17 β4,7 = 8/17 β4,8 = 0

where Fi denotes the capacity of link i and, we have omitted the commodity index c on the demands and
split ratios for readability, since there is only one commodity.

As stated above, these values are taken from the example of Tampère et al. (2011). Note that input links 2
and 4 have twice the capacity of input links 1 and 3. Let us say that links 2 and 4 are two-lane roads, and
links 1 and 3 are one-lane roads (see Figures 5b and 5c). Then, we can create a partial FIFO characterization
of the multilane links 2 and 4.

4.1.1 Defining restriction intervals

Let us define restriction intervals

η2
j′,j =


j = 5 j = 7 j = 8

j′ = 5 [0, 1] ∅ [1/2, 1]
j′ = 7 ∅ [0, 1] [0, 1/2]
j′ = 8 [0, 1] [0, 1] [0, 1]

η4
j′,j =


j = 5 j = 6 j = 7

j′ = 5 [0, 1] [0, 1/2] ∅
j′ = 6 [0, 1] [0, 1] [0, 1]
j′ = 7 ∅ [1/2, 1] [0, 1]

To read the above tables, recall that as written, j′ is the restricting link, and j is the restricted link. When
j′ runs out of supply, the restriction intervals in that row become active. Recall that the total restriction for
a single movement (i, j) is the union of all active intervals ηi

j′,j .

We will describe the meaning of each element in the table for η2
j′,j as part of this example. This set of

restriction intervals describe the behavior of partial FIFO blocking on input link 2 when an output link runs
out of supply and becomes congested. The intervals are meant to describe a two-lane road with left (onto
link 7), straight (onto link 8), and right (onto link 5) movements. The left turn movement is allowed on the
left lane, the right turn movement is allowed on the right lane, and the straight movement is allowed on both
lanes (see Fig 5c).

The interval η2
5,7 is the empty interval because, when the right turn movement is blocked (due to link 5

running out of supply), the right lane will begin to queue. However, no vehicles intending to turn left (i.e.,
to link 7) will be in this lane, since the left turn movement is not allowed in the right lane. Instead, the
left-turning vehicles will all be in the left lane, which will not be blocked from link 7’s spillback since no
right-turning vehicles will be in the left lane (as the right turn movement is not allowed from the left lane).
Therefore, when the right turn movement is blocked, no left-turning vehicles will be in the blocked lanes, and
the left turn movement (link 7) is unaffected by spillback in the right turn movement (link 5), or η2

5,7 = ∅.
This argument also applies to η2

7,5, with the left and right lanes and turn movements switched.

The interval η2
5,8 = [1/2, 1] encodes the effect of the blocking of the right lane described in the previous

paragraph on the through movement. The through movement is allowed in both lanes, so when the right

20



lane is queueing from spillback from the right turn, the right lane will also have vehicles that are trying
to go straight stuck in this queue. Therefore, the right half-interval, or [1/2, 1], of the through-movement-
allowing-lanes will be blocked by queueing to take the right turn when link 5 spills back onto link 2. This
same argument explains how η2

7,8 = [0, 1/2], as the left half-interval will be blocked when the left turn spills
back. Note that since the total restriction interval for a movement is the union of all active intervals, this
means that when both links 5 and 7 are congested and spill back onto link 2, the total restriction interval
for movement (2, 8) is η2

5,8 ∪ η2
7,8 = [0, 1], which means that the through movement becomes fully blocked

when vehicles in link 2 are queueing to take both the left and right turn movements, and queueing in both
the left and right lanes.

We have η2
8,5 = [0, 1] and η2

8,7 = [0, 1] to describe the effects of spillback from the through movement, link
8, on the turn movements. Since the through movement is allowed in both lanes, vehicles trying to enter a
blocked lane 8 will queue in both lanes, and all vehicles trying to take the turn movements will also be stuck
in these queues.

Finally, the diagonal entries, η2
5,5,η

2
7,7, and η2

8,8 are [0, 1] by definition. This is because when j′ has no supply
and is restricting, it is obviously also blocked by its own queue.

Input link 4 is assumed to have the same lane movement rules as link 2, so its restriction intervals are
mirrored. The one-lane input links, 1 and 3, are assumed to operate under full FIFO, as any queue would
block the only lane. That is, ηi

j′,j = [0, 1], for all j′, j and i = 1, 3.

4.1.2 Solution

We will now demonstrate the use of our node flow model solution algorithm to resolve the node flows from
these supplies and demands.

First, we compute the oriented demands, with Si,j = βi,jSi.

S1,5 = 0 S1,6 = 50 S1,7 = 150 S1,8 = 300
S2,5 = 100 S2,6 = 0 S2,7 = 300 S2,8 = 1600
S3,5 = 100 S3,6 = 100 S3,7 = 0 S3,8 = 600
S4,5 = 100 S4,6 = 800 S4,7 = 800 S4,8 = 0.

We now outline step-by-step how our algorithm proceeds. The numbers in each iteration k correspond to
the numbered steps in the algorithm in Section 3.3.

k = 0 :

1. U5(0) = {2, 3, 4}; U6(0) = {1, 3, 4}; U7(0) = {1, 2, 4}; U8(0) = {1, 2, 3}

2. V (0) = {5, 6, 7, 8}

3. No adjustments to the p̃i are made. The oriented priorities are:
p̃1,5 = 0 p̃1,6 = 100 p̃1,7 = 300 p̃1,8 = 600
p̃2,5 = 100 p̃2,6 = 0 p̃2,7 = 300 p̃2,8 = 1600
p̃3,5 = 125 p̃3,6 = 125 p̃3,7 = 0 p̃3,8 = 750
p̃4,5 = 118 p̃4,6 = 941 p̃4,7 = 941 p̃4,8 = 0

4. a5(0) = 2.92; a6(0) = 1.72; a7(0) = 0.649; a8(0) = 0.678
aj∗(0) = a7(0) = 0.649

5. Ũ(0) = {1}, as S1 = 500 ≤ p̃1(0)a7(0) = 1000× 0.649
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• f1,6 = S1,6 = 50; f1,7 = S1,7 = 150; f1,8 = S1,8 = 300;

• R̃6(1) = 2000− 50 = 1950; R̃7(1) = 1000− 150 = 850; R̃8(1) = 2000− 300 = 1700

• U5(1) = {2, 3, 4}; U6(1) = {3, 4}; U7(1) = {2, 4}; U8(1) = {2, 3}

In this iteration, we calculated that output link 7 was the most-demanded output link, and that of its
demanding links, only input link 1 would be able to send its full demand before link 7 would run out of
supply and become congested. Input link 1 is able to send its full demand.

k = 1 :

2. V (1) = {5, 6, 7, 8}

3. No changes are made to priorities or oriented priorities.

4. a5(1) = 2.92; a6(1) = 1.83; a7(1) = 0.685; a8(0) = 0.723
aj∗(1) = a7(1) = 0.685

5. Ũ(1) = ∅, as
∑

j∈V (k) S̃2j(2) = 2000 � p̃2(1)a7(1) = 1370,

and
∑

j∈V (k) S̃4j = 1700 � p̃4(1)a7(1) = 1370,

• f2,7 = p̃2,7(1)a7(1) = 205.5 = S̃2,7(2)

f4,7 = p̃4,7(1)a7(1) = 644.5 = S̃4,7(2)

• η̃2
5(2) = η̃

2
5(1) ∪ η2

7,5 = ∅ ∪ ∅ = ∅
η̃2
8(2) = η̃

2
8(1) ∪ η2

7,8 = ∅ ∪ [0, 1/2] = [0, 1/2]
η̃4
5(2) = η̃

4
5(1) ∪ η4

7,5 = ∅ ∪ ∅ = ∅
η̃4
6(2) = η̃

4
6(1) ∪ η4

7,6 = ∅ ∪ [1/2, 1] = [1/2, 1]

• S̃2,8(2) = 1600− 1600(1/2)
(
1− 205.5

300

)
= 1348

S̃4,6(2) = 800− 800(1/2)
(
1− 644.5

800

)
= 772.25

• R̃7(2) = 850− 644.5− 205.5 = 0

• U5(2) = {2, 3, 4}; U6(2) = {3, 4}; U7(2) = ∅; U8(2) = {2, 3}

In this iteration, we found that, after accounting for input link 1’s flow in the previous iteration, output
link 7 remains the most-demanded output link. However, none of the input links will be able to send all
of their demand before link 7’s supply is exhausted. Therefore, the remaining supply of link 7 is assigned
priority-proportional to input links 2 and 4, and restriction intervals ηi

7j become active. The restriction
intervals for links 2 and 4 reflect the overlapping lanes of the restricted movement (i, j) with the restricted
movement (i, 7). Since (i, 7) is a turn movement for i = 2, 4, this means that the through movement has
its overlapping half-interval restricted, and the other turn movement is not restricted. The new values for
S̃2,8(2) and S̃4,6(2) describe the new maximum flow for these movements, the subtracted term representing
the vehicles that will be stuck in the queued lane when the congestion in the turn movement spills back.

Since input link 3 had no demand for the movement (3, 7), there are no vehicles that will queue for that
movement when output link 7 becomes congested, and so there are no restriction intervals that become
active for input link 3 at this time.

k = 2 :

2. V (2) = {5, 6, 8}

3. No changes are made to priorities or oriented priorities.
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4. a5(2) = 2.82; a6(2) = 1.83; a8(2) = 0.723
aj∗(2) = a8(2) = 0.723

5. Ũ(2) = ∅, as
∑

j∈V (k) S̃2j(2) = 205.5 + 1348 = 1553.5 � p̃2(2)a8(2) = 1446,
and

∑
j∈V (k) S̃3j(2) = 800 � p̃3(2)a8(2) = 723

• f2,8 = p̃2,8(2)a8(2) = 1157.4 = S̃2,8(3)

f3,8 = p̃3,8(2)a8(2) = 542.6 = S̃3,8(3)

• η̃2
5(3) = η̃

2
5(2) ∪ η2

8,5 = ∅ ∪ [0, 1] = [0, 1]
η̃3
5(3) = η̃

3
5(3) ∪ η3

8,5 = ∅ ∪ [0, 1] = [0, 1]
η̃3
6(3) = η̃

3
6(2) ∪ η3

8,6 = ∅ ∪ [0, 1] = [0, 1]

• S̃2,5(3) = 100− 100(1)
(
1− 1157.4

1600

)
= 72.3

S̃3,5(3) = 100− 100(1)
(
1− 542.6

800

)
= 67.8

S̃3,6(3) = 100− 100(1)
(
1− 542.6

800

)
= 67.8

• f2,5 = S̃2,5(3) = 72.3

f3,5 = S̃3,5(3) = 67.8

f3,6 = S̃3,6(3) = 67.8

• R̃8(3) = 1700− 1157.4− 542.6 = 0
R̃5(3) = 1000− 72.3− 67.8 = 859.9
R̃6(3) = 1950− 67.8 = 1882.2

• U5(3) = {4}; U6(3) = {4}; U8(3) = ∅

This iteration is similar to the previous iteration in that an output link, this time link 8, has its supply
exhausted. However, the two input links under consideration, links 2 and 3, have a full FIFO restriction on
their flows when link 8 runs out of supply. For link 2, this is because (2, 8) is the through movement whose
queue takes up both lanes as described in Section 4.1.1. For link 3, this is because it has only one lane, so
any queue blocks all traffic. The remaining flows for input links 2 and 3 are therefore determined by this
FIFO restriction.

k = 3 :

2. V (3) = {5, 6}

3. No changes are made to priorities or oriented priorities.

4. a5(3) = 7.29; a6(3) = 2.35
aj∗(3) = a6(3) = 2.35

5. Ũ(3) = {4}, as
∑

j∈V (k) S̃4j(3) = 100 + 772.25 = 872.25 ≤ p̃4(3)a6(3) = 4705.5,

• f4,5 = S̃4,5(3) = 100

f4,6 = S̃4,6(3) = 772.25

• R̃5(4) = 859.9− 100 = 759.9
R̃6(4) = 1882.2− 759.9 = 1122.3

• U5(4) = ∅; U6(4) = ∅

This iteration finds the remaining flows. Note that link 4’s through movement, (4,6), is already under effect
of partial FIFO, so it is not able to fill its entire demand S4,6.

k = 4 :
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2. V (4) = ∅, so the algorithm terminates. All flows have been found.

It is useful to compare the solution to this example problem to that of the example in Tampère et al. (2011)
(Tables 1 and 2). As noted above, all values for this example are the same as those in Tampère et al. (2011),
except in the present example we have added the partial FIFO relaxation to some movements. In Tampère
et al. (2011), with the full FIFO restriction, iteration 0 proceeded the same, but at iteration 1, when link 7’s
supply is exhausted, all of links 2 and 4’s flows were set due to the full FIFO restriction. Then, the full-FIFO
example finds that input link 3 is able to have all of its demand satisfied, as the high amount of spillback
from link 7 to links 2 and 4 left more supply available for link 3 in link 8 than in the present example.

j = 5 j = 6 j = 7 j = 8
i = 1 0 50 150 300
i = 2 72.3 0 205.5 1157.4
i = 3 67.8 67.8 0 542.6
i = 4 100 772.3 644.5 0

Table 1: Flows fi,j resulting from enforcing partial FIFO as specified in the present example

j = 5 j = 6 j = 7 j = 8
i = 1 0 50 150 300
i = 2 68.5 0 205.5 1096
i = 3 100 100 0 600
i = 4 80.6 644.5 644.5 0

Table 2: Flows fi,j resulting from enforcing full FIFO (from Tampère et al. (2011, Table 8))

In other words, if this example is meant to model a junction where two input links (2 and 4) have two
lanes and twice the supply as the other two, a full FIFO construction may have led to the “unrealistic
spillback” phenomenon we discussed in Section 2.2, with queueing for a turning movement causing spillback
into through movements and non-competing turning movements. Further, as this example demonstrates,
an overly aggressive spillback model can lead to knock-on effects in differences in other input links’ flows,
as shown by link 3 being able to send all its supply when the two-lane links suffer full FIFO from a turn
movement queue, but is not able to when the two-lane links have only a partial FIFO restriction.

4.2 Example Two: Variation of input links’ priorities

Consider the node schematically presented in Figure 6. This node has three input links (links 1 through 3)
and two output links (4 and 5). This node might represent an onramp (link 3) joining a freeway (links 1 and 4)
with a parallel managed lane facility (links 2 and 5). In this situation, we will have two vehicle commodities,
with c = 1 representing vehicles that cannot enter the managed lane facility, and c = 2 representing vehicles
that may, but are not required to, enter the managed lane facility.

Figure 6: Three-input, two-output node used in Example Two.

Let us define our parameters as follows:
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C = 2
S1
1 = 1700 S1

2 = 0 S1
3 = 400

S2
1 = 200 S2

2 = 500 S2
3 = 200

F1 = 4000 F2 = 2000 F3 = 1000
R4 = 2000 R5 = 1000
β1
1,4 = 1 β1

1,5 = 0 β2
1,4 = 0.2 β2

1,5 = 0.8
β1
2,4 = 1 β1

2,5 = 0 β2
2,4 = 0.1 β2

2,5 = 0.9
β1
3,4 = 1 β2

3,5 = 0 β2
3,4 = 0.5 β2

3,5 = 0.5

ηi
j′,j = [0, 1] for all i, j, j′ (Full FIFO).

.

To demonstrate the effect of varying input link priorities on node flows, we will use three different priority-
assignment schemes with the above values. This also demonstrates the usefulness of our node model in
studying the effect of priorities on node flows: For the sake of brevity, we will not show intermediate
calculations here as was done in the previous example, but simply show and discuss the final node flows.

Capacity-proportional priorities: Tampère et al. (2011) recommended assigning downstream supply
among the node flows in proportion to the input links’ capacities. As we mentioned in Remark 3.4, setting
the priorities in our node model equal to capacities and using strict FIFO recovers the Tampère et al. (2011)
node model as a special case. So, setting pi = Fi for i = 1, 2, 3 and calculating node flows, we obtain the
flows shown in Table 3.

j = 4 j = 5
i = 1 c = 1 1552.1 0

c = 2 36.52 146.1
i = 2 c = 1 0 0

c = 2 50 450
i = 3 c = 1 289.1 0

c = 2 72.28 72.28
Rj −

∑
i

∑
c f

c
i,j 0 331.6

Table 3: Flows f ci,j from Example Two with capacity-proportional priorities

Here, the GP link (j = 4) had its supply filled, while the managed lane link (j = 5) had some leftover supply.
The input GP link (i = 1) and onramp link (i = 3) both had some unfulfilled special (c = 2) vehicles that
could have taken this leftover supply in the managed lane link, but they were restricted by strict FIFO from
link 1’s supply exhausting. Note that all of the demand of the input managed lane link (i = 2) was able to
be satisfied. This will be in contrast to the next set of priorities:

Demand-proportional priorities: As we mentioned in Remark 3.1 and elsewhere, in practice one should
not assign priorities in proportion to the input links’ demand, as this would produce flows that would violate
nodal invariance principles (Tampère et al., 2011). However, for the purpose of this example, we will use
priorities equal to the total demands purely for demonstration purposes, so that the resulting flows can be
contrasted with other priority examples.

Setting p1 = 1900, p2 = 500, p3 = 600, and calculating node flows, we obtain the flows shown in Table 4.

Note that, while similar to the previous example in that link j = 4 has its supply exhausted and link j = 5
has some extra c = 2 special vehicles that cannot reach it, this example is different from the previous example
in that the input managed lane link (i = 2) is not able to send all of its vehicles. Vehicles exiting this link
encounter a queue entering link j = 4 when that link fills, which blocks vehicles entering link j = 5 due to
this example’s strict FIFO construction. This blockage leads to more spillback and less flow through the
node, as evidenced by the higher amount of leftover supply in link j = 5.

Onramp-preference priorities: Some authors (e.g., Coogan and Arcak (2014), Gomes and Horowitz
(2006)) have suggested that the particular problem of a relatively small onramp merging with a larger
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j = 4 j = 5
i = 1 c = 1 1484.7 0

c = 2 34.93 139.7
i = 2 c = 1 0 0

c = 2 43.67 393.0
i = 3 c = 1 349.3 0

c = 2 87.33 87.33
Rj −

∑
i

∑
c f

c
i,j 0 379.9

Table 4: Flows f ci,j from Example Two with demand-proportional priorities

freeway should be modeled such that vehicles from the onramp are able to claim any available downstream
supply first, so that a queue would always appear on the mainline before the onramp. In addition, this
type of node model at onramp junctions is implicit in many ramp metering control schemes, from classic
schemes such as ALINEA (Papageorgiou et al., 1991) to recent neural-network-based reinforcement learning
approaches (e.g., Rezaee (2014); Belletti et al. (2017)). In particular, a ramp metering control problem often
defines the onramp flow as an exogenous input that is controllable by metering, rather than the onramp
demand (that is, the freeway is assumed to always accept all demand that the meter sends from the onramp).
In our node model, we can create this special case by proper initialization of the priorities. In particular,
setting p1 = p2 = 0 and p3 > 0, our node model will assign all necessary supply to the onramp on its first
iteration. Then, on subsequent iterations, in (3.42) input links i = 1, 2 will have nonzero priority and be
able to claim the leftover supply. Following this procedure, we obtain the flows shown in Table 5.

j = 4 j = 5
i = 1 c = 1 1416.7 0

c = 2 33.33 133.3
i = 2 c = 1 0 0

c = 2 50 450
i = 3 c = 1 400 0

c = 2 100 100
Rj −

∑
i

∑
c f

c
i,j 0 316.7

Table 5: Flows f ci,j from Example Two with onramp-preference priority scheme

Note that we have indeed satisfied all demand of the onramp link (i = 3) with this priority scheme. In this
particular example, we have p1 = p2 = 0.5 when we reset their priorities, as prescribed in (3.42). However, a
different version of (3.42) that resets the priorities to nonequal values (e.g., pi = Fi) is possible. In this case,
assigning higher priority to input link i = 1 may prevent i = 2 from sending its full demand. This further
demonstrates the variability of node flows to the priority-assignment scheme.

In summary, Example Two shows that input priorities determine not only define the upstream directions of
queue formations, but can also affect the node throughput.

5 Conclusion

This paper discussed and addressed several node-rooted modeling issues that the authors have encountered
in macroscopic simulation of large and/or high-dimensional road networks. First, the node model framework
of Tampère et al. (2011) was extended to the case of arbitrary input priorities, with discussion of what input
priorities might represent. Our node model also allows priorities to have zero values, and, in the style of the
literature, is formulated as a mathematical optimization problem.
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Second, we discussed a tradeoff between unrealistic spillback behavior and a need to model a road with
multiple links, and traced this tradeoff back to the first-in-first-out (FIFO) constraint that is present in
common macroscopic node models. To resolve this dilemma, we proposed a generalization of the FIFO
constraint that is easily applicable to node models of the common Tampère et al. (2011) framework. In
addition, our FIFO relaxation is intuitive due to the ability to illustrate its effects with simple geometrical
shapes.

We believe our node model, and our relaxed FIFO construction, is widely applicable across link models.
Like any node model in the Tampère et al. (2011) framework, it can be applied with any link model that
defines supplies, demands, and some form of priority. In addition, while this paper’s discussion of the
node flow problem strictly deals with discrete-time simulations (i.e., at some timestep t, some fixed supplies
Sc
i,j(t) and demands Rj(t) are given, and the node model computes some set of throughflows f ci,j at that

timestep), which, like the classic CTM are usually of fixed temporal step size, we have written a companion
paper (Wright et al., 2016) where the flows computed by this paper’s node model are shown to be equal to
those computed by a particular hybrid dynamic system. In the dynamic system setting, the flows f ci,j are
given in terms of a time differential, d

dtf
c
i,j(t). Thus, this paper’s node model (and all other node models of

the Tampère et al. (2011) framework, of which this paper’s node model is a generalization) and its relaxed
FIFO construction should be applicable in simulations with continuous-time link models (where the supplies
and demands are given by differential equations) or variable-step-size simulations such as in Raadsen et al.
(2016).

As a final note, we want to emphasize the usefulness of our generalization of the Tampère et al. (2011)-style
“general class of node models” framework to multi-commodity flows. Many other works in the node model
literature (e.g., Gibb (2011); Corthout et al. (2012); Smits et al. (2015); Jabari (2016)4), but as noted, we
considered multi-commodity flows, with several commodities in the same link and taking the same movement,
in this paper. It turns out that our expression of multi-commodity flows, while simple (Requirement 8 in
Section 2.1), can be quite powerful. In a forthcoming paper (Wright and Horowitz, 2017), we make use of
this construction, and give each commodity its own fundamental diagram, to extend this paper’s node model
to the second order of macroscopic traffic models.

All of our results have been presented in the form of constructive computational algorithms that are readily
implementable in macroscopic traffic simulation software.
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A Notation

Symbol Definition
k Iteration index
i Index of links entering a node
M Number of links entering a node
j Index of links exiting a node
N Number of links exiting a node
c Vehicle commodity index
C Number of vehicle commodities
Sc
i Demand for commodity c of link i
Si Total demand for input link i, Si =

∑C
c=1 S

c
i

Rj Supply of link j
pi Priority of input link i
f ci,j Flow of vehicle commodity c from link i to link j
ηi
j,j′ Mutual restriction interval of link j onto link j′ for link i
U(k) Set of input links whose flows have yet to be fully determined as of iteration

k
V (k) Set of output links whose flows have yet to be fully determined as of iteration

k

S̃c
i (k) Adjusted demand for commodity c of link i as of iteration
S̃i(k) Total adjusted demand for input link i as of iteration k
βc
i,j Split ratio of c vehicles from link i to link j
p̃i(k) Adjusted priority of link i at iteration k
R̃j(k) Adjusted supply of link j at iteration k
Uj(k) Set of input links contributing to link j whose flows are undetermined as

of iteration k
p̃i,j(k) Oriented priority from link i to j at iteration k
aj(k) Restriction term of link j at iteration k
aj∗(k) Smallest (most restrictive) restriction term at iteration k
αj(k) Reduction factor of link j at iteration k
Ũ(k) Set of input links whose demand can be fully met by downstream links at

iteration k

B MISO node solution algorithm

1. Initialize:

R̃1(0) := R1;

U(0) := {1, . . . ,M} ;
k := 0.

Here, k is the iteration index; R̃1(k) is the remaining supply of the output link at iteration k; and U(k)
is the set of still unprocessed input links at iteration k: input links whose input-output flows have not
been assigned yet.

2. Check that at least one of the unprocessed input links has nonzero priority, otherwise, assign equal
positive priorities to all the unprocessed input links:

p̃i(k) =

{
pi, if there exists i′ ∈ U(k) : pi′ > 0,

1
|U(k)| , otherwise,

where |U(k)| denotes the number of elements in set U(k).
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3. Define the set of input links that want to send fewer vehicles than their allocated supply and whose
flows are still undetermined:

Ũ(k) =

{
i ∈ U(k) :

C∑
c=1

Sc
i ≤ p̃i(k)

R̃1(k)∑
i′∈U(k) p̃i′(k)

}
.

• If Ũ(k) 6= ∅, assign:

f ci1 = Sc
i , i ∈ Ũ(k);

R̃1(k + 1) = R̃1(k)−
∑

i∈Ũ(k)

C∑
c=1

f ci,1;

U(k + 1) = U(k) \ Ũ(k).

• Else, assign:

f ci,1 = Sc
i

p̃i(k)∑
i′∈U(k) p̃i′(k)

R̃1(k)

Si
, i ∈ U(k);

U(k + 1) = ∅.

4. If U(k + 1) = ∅, then stop.

5. Set k := k + 1, and return to step 2.

This algorithm finishes after no more than M iterations, and in the special case of M = 2 it reduces to

f c1,1 = min

Sc
1, Sc

1

max
{

p̃1

p̃1+p̃2
R1, R1 − S2

}
S1

 ; (B.1)

f c2,1 = min

Sc
2, Sc

2

max
{

p̃2

p̃1+p̃2
R1, R1 − S1

}
S2

 , (B.2)

with p̃i computed per step 2.
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