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SPECIAL ISSUE:

DISRUPTIVE TECHNOLOGIES AND CHALLENGES

PAU1 c luripotent Stem Cell-Based Organoid Technologies
for Developing Next-Generation Vision Restoration

Therapies of Blindness

AU2 c Ratnesh K. Singh,1 Francois Binette,1 Magdalene Seiler,2–5

Simon M. Petersen-Jones,6 and Igor O. Nasonkin1

Abstract

Blindness, associated with death of retinal cells at the back of the eye, is caused by a number of conditions with
high prevalence such as glaucoma, age-related macular degeneration, and diabetic retinopathy. In addition, a
large number of orphan inherited (mostly monogenic) conditions, such as retinitis pigmentosa and Leber
Congenital Amaurosis, add to the overall number of patients with blinding retinal degenerative diseases.
Blindness caused by deterioration and loss of retina is so far incurable. Modern biomedical research leveraging
molecular and regenerative medicine approaches had a number of groundbreaking discoveries and proof-of-
principle treatments of blindness in animals. However, these methods are slow to be standardized and com-
mercialized as therapies to benefit people losing their eyesight due to retinal degenerative conditions. In this
review, we will outline major regenerative medicine approaches, which are emerging as promising for pre-
serving or/and restoring vision. We discuss the potential of each of these approaches to reach commercialization
step and be converted to treatments, which could at least ameliorate blindness caused by retinal cell death.
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Introduction

RAU4 c egenerative, cutting-edge surgical and molecular
medicine treatments, and personalized medicine ap-

proaches are viewed as new wave of therapies to treat un-
curable diseases and even aging.1–4 Among those therapies
are stem/cell and gene therapy approaches,2,5–8 monoclo-
nal antibodies (MABs),9 RNA, microRNA (miRNA), and
DNA-focused therapies for suppressing dominant nega-
tive alleles, and aberrant splicing,10,11 neuroprotective, and
immunomodulatory treatments for controlling inflamma-
tion and cell death,12–14 whole-eye transplantation,15 fetal
retina transplantation,16 optogenetics,17 genome editing
in vivo,18–20 and even induced tissue regeneration.21,22 These
methods are emerging as very promising and even revolu-
tionary ways of rebuilding and restoring degenerating human
retina in the near future. However, none is being used yet as
an established reliable therapy for restoring vision. Retinal

organoids provide yet another promising approach for re-
building retina in patients with advanced retinal degen-
eration and also serve as replenishable source of retinal
progenitors for replacement and neuroprotective strategies.23,24

In this study, we will outline and review this work, focused
on commercialization of retinal organoid technologies, and
compare with other approved and emerging vision restoration
technologies.

Restoring vision caused by cell death of retinal neurons,
including retinal pigment epithelium (RPE), photoreceptors
(PRs), and retinal ganglion cells (RGCs) is a highly unmet and
urgent clinical need, requiring new ideas and approaches.25

The goal is to design new drugs, biologics, and ocular delivery
devices to restore or preserve vision in millions of people
by leveraging new and promising regenerative medicine
therapy findings.26

Retinal degeneration has many causes, which are mostly
genetic but sometimes systemic [eg, diabetic retinopathy (DR)
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and potentially dryAU5 c AMD] (F1 c Fig. 1). Only few technologies/
treatments have been commercialized so far to address this
need.

Established technologies approved for investigational or
commercial clinical use. There are only few promising com-
mercialized therapies, which are helping people with retinal
degenerative diseases. Among them is application of anti-
vascular endothelial growth factor (VEGF) MABs, or MABs
(for wet form of macular degeneration) to suppress neo-
vascularization in the eye.27–29 Several companies produce
anti-VEGF MABs (drugs) [Avastin (bevacizumab), Lucentis
(ranibizumab), and Eylea (aflibercept)]. Monthly intraocular
injections of these drugs work well to suppress neovascular-
ization and loss of vision. In addition, in the last 5–7 years,
gene therapy technologies for monogenic retinal degenerative
conditions gained prominence mostly due to successful work
on RPE-65 patients (Leber’s Congenital Amaurosis).30–33 This
work was successfully tested in clinical trials30 and commer-
cialized as Luxturna, or voretigene neparvovec-rzyl, product
(Spark Therapeutics) based on the work of Drs. Jean Bennett,
Albert Maguire, and their team.34,35 However, compared to
anti-VEGF MAB injections (which are relatively cheap, be-
tween $100 and $2,000/injection) and can be used in all AMD
and DR patients (not individualized therapy), gene therapy
treatments require development of individualized costly ther-
apy for each small cohort of patients. Therefore, although
both approaches are promising, one of them (MABs) shows
straightforward commercialization potential, while the other is
very expensive ($425,000 per eye, or $850,000 per patient),
yet, very promising as well. Similar or higher cost may be
expected for other diseases, which are potentially good can-
didates for gene therapy treatments. While these therapies have
been already commercialized and reimbursement or at least
the approximate cost worked out, a number of stem cell-based
treatments are at the investigational stage. These therapies will
face the challenges of developing novel reimbursement strat-
egies for commercialization as products.36,37 These therapies
include human pluripotent stem cell (hPSC)-derived RPE
transplantation for dry form of AMD (NCT01345006, Oca-
ta/Astellas; NCT02286089; Biotime/LCTX),38–41 adult RPE-
derived RPE,42–44 RGX-314 gene therapy drug for wet AMD
(NCT03066258),45 epiretinal grafts of fetal retinal progenitors
for retinitis pigmentosa (RP) patients46 (NCT03073733; jCyte),

RPE patch technologies47 (eg, NCT02590692; Regenerative
Patch Technologies), and a number of other therapies.2,7 Cell
replacement, tissue/ocular niche repair, and immunomodula-
tory/neuroprotective mechanisms were proposed as mecha-
nisms behind the efficacy of these treatments.2,12,40 RPE cells
(the ‘‘drug’’) can be mass-produced, stored, and injected in
large cohorts of patients with dry AMD, which in turn makes
this therapy potentially easier to commercialize than gene
therapy for RPE-65. Likewise, manufacturing of retinal pro-
genitors for delivery into the epiretinal space has been worked
out.48 Compared to biomanufacturing retinal cells, scaling up
biomanufacturing of three-dimensional (3D) biologics such as
RPE sheets47,49 is more challenging. The sheet seems clinically
very promising, yet, hard to transplant into the subretinal space
without specialized skills and impossible to store and inject
like MAB-based drugs. The injectable biologics, delivered
intravitreally, clearly requires less skills, which contributes to
the cost of therapy as well as reproducibility. Commercializing
3D biologics is expected to be more expensive and presents
more challenges for developing reimbursement strategies. At
the same time, both therapies (injectable biologics for RP
and subretinally delivered 3D sheets for RP/AMD) have their
unique therapeutic niches.2 The only other vision restoration
approach, which is neither biologic nor small-molecule-based,
that has been commercialized is represented by several neu-
roprosthetic devices (eg, ARGUS-II and similar devices).50,51

The projected reimbursement cost for ARGUS-II therapy is
about $150,000 per patient, which is costly for insurance
companies but is within the reimbursement range and enables
straightforward commercialization. The low resolution of such
devices, the need for precise surgical placement (mandatory for
positive outcomes), and sophisticated design leave a lot of
room for improvements, but with advances of new biomaterials
and electronics placing of more pixels/inch (to enable much
better resolution of vision) seems feasible.52,53 In the market,
where hardly anything works for people suffering from dev-
astating blindness, this is already a big leap forward.

Emerging technologies

There are a large number of emerging technologies, which
are promising in animal studies, but have not found a path
to the clinic yet. The efficacy, safety, and the likely average

FIG. 1. Conditions associated with retinal degeneration and loss of vision. Color images are available online.
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selling price (ASP)36,54 are the main determining factors,
which impact the decision for commercializing these therapies.
The ASP is directly impacted by the cost of biomanufactur-
ing55,56 and the number of patients, among other things, who
can benefit from this therapy, to make these treatments sus-
tainable (cost-effective) and remove commercialization barri-
ers.36,57 For example, if a therapy shows signs of promise but
the ASP per patient is close to $1,000,000 and the number of
patients with this condition is very small, commercialization of
such technology and converting it to a ‘‘product’’ for treating
these patients may be challenging. This is because it may not
find a reimbursement strategy to cover the high cost of pro-
ducing this biological drug. The path to investigational new
drug (IND) approval by Food and Drug Administration (FDA)
is long and costly,58 and if the number of patients for an ap-
proved IND is small, the treatment may not be sustainable.

Injectable and storable therapies aimed at suppressing
dominant negative alleles and aberrant splicing,59–62 also
neuroprotective compounds and immunomodulatory treat-
ments,12–14,63–66 aimed at abating inflammation seem to be
more feasible for commercialization. Therapies similar to
Spinraza (Nusinersen, from Biogen) for suppressing spinal
muscular atrophy in young children (incidence *1:6,000 to
1:10,000 children) and delivered via the intrathecal injection
are needed in the ocular space62 because of its simplicity,
reproducibility, and storable/replenishable nature of biologic
drug. The drug is an antisense oligonucleotide and modu-
lates the alternative splicing of the SMN2 gene, functionally
converting SMN2 (paralogous gene) into SMN1 gene (mu-
tant in SMA patients), enabling translation of functional
SMN1 protein in spinal motor neurons. The same logic of
drug development and delivery (injection into the vitreous
space) may be applied to developing therapies for patients
with autosomal dominant retinitis pigmentosa (adRP). In-
jection into the vitreous leads to little-to-no systemic ex-
posure because of the blood-ocular barrier, and is easy to do
because anti-VEGF injections became a routine procedure.
adRP is a heterogeneous group of RD diseases, with more
than 25 genes known to cause adRP.67 While the prevalence
of RP is *1:4,000, 25%–30% of RP cases are caused by
adRP,67 which is a lot of patients. Allele-specific suppres-
sion of dominant-negative (gain-of-function) rhodopsin
mutation with allele-specific oligonucleotides (ASOs) tar-
geting mutant rhodopsin messenger RNA (mRNA) with
P23H mutation is feasible, slows PR degeneration, and
preserves PR function.61 Furthermore, position-dependent
chemical modifications to the ASO enable selectivity be-
tween the mutant and the wild-type alleles, making this a
reliable and viable therapy.68 Even with a small size of
cohort of patients, the storable injectable nature of the bio-
logic drug, combined with ease, cost, and reproducibility of
biomanufacturing (oligonucleotide, off-the-shelf drug) make
the development of this therapy to the market feasible from
the investment point of view and also due to straightforward
reimbursement strategies.

Cell-based injectable therapies (RPE transplantation,38

epiretinal grafts46) may have easier path to commercializa-
tion as ‘‘off the shelf’’ storable treatments aimed at large
cohorts of patients (AMD and RP, respectively). Yet, even
injectable biologics face with commercialization chal-
lenges.69 In vivo genome editing70–72 seems promising and
may be injectable, yet, the projected cost of such therapy is
hard to estimate. In addition, such therapy needs to be ad-

ministered very early and before the onset of RD and the
onset of gliosis. Modulating miRNAs in vivo may be pro-
ductive for ameliorating RD (discussed in Baker and Flan-
nery73) and companies are doing preclinical R&D work
demonstrating the feasibility of using miRNAs or miRNA
inhibitors as injectable therapies. There are 2 interesting
retinal therapies, which (although seem to be at very early
discovery stage) have a potential to revolutionize the way
how we treat blindness. These are whole-eye transplanta-
tion15 and induced tissue regeneration.21 Whole-eye trans-
plantation promises to introduce a totally new human eye
without mutations carrying blinding retinal mutations. This
approach is suitable for monogenic recessive RP and Leber
Congenital Amaurosis diseases, and for slowly progressing
AMD, but not systemic diseases such as DR, unless in
combination with other drugs addressing DR. Connectivity
of newly introduced eye with the brain areas responsible for
processing of the visual information needs to be reestab-
lished. However, promising preclinical work on RGC axonal
elongation makes this task potentially feasible.74–78 The
second approach is focused on inducing retinal tissue re-
generation, which includes PRs, other retinal neurons, RPE,
and RGCs.22,79,80 This approach promises to regenerate the
lost retinal cells in vivo and without transplantation. The
approach is based on intraocular injection of small mole-
cules causing partial dedifferentiation of remaining retinal
cells in situ. This is expected to induce the controlled exit
of cells (without inducing tumorigenesis) from postmitotic
state back into mitotic state to replenish the cells lost due
to RD or trauma. The induced tissue regeneration may be a
promising approach for a number of slowly progressing
retinal degenerative diseases (eg, RP, AMD), yet, the safety
question must be thoroughly addressed to prevent inducing
tumorigenesis with genes known to control chromatin plas-
ticity.81,82 Those RD diseases, which require short-distance
connectivity for retinal repair (eg, RPE and PR regenera-
tion) seem to be more amenable to treatments at the mo-
ment because of the challenges of restoring long-distance
connectivity. Neither of these approaches has been com-
mercialized yet.

Optogenetic techniques (channelrhodopsin and similar
approaches17,73,83–85) seem very promising for vision res-
toration. They are based on introducing the light-sensing
molecules into RD retina with completely degenerated PRs
and can be injectable (intraocular or subretinal delivery).
Optogenetics carries a promise of restoring light sensitivity
in patients with advanced RD by enabling the surviving
retinal cells other than PRs to respond to light. Among all
other therapies of blindness, optogenetics stands apart as one
of the truly vision restoration therapies, promising to restore
light sensitivity in retina with no surviving PRs. The quality
of vision, which may be regained after this therapy, is yet
unknown and remains to be tested. PR-less retina (with
only 2nd order neurons or/and RGCs responding to light)
may provide signals, which may or may not be interpreted
as vision to brain. However, recent progress in development
of this approach is encouraging.86

Retinal organoids technologies and the ability to derive
human retinal tissue (resembling human fetal retinal tissue) in
a dish from hPSCs brought a lot of promise to regenerative
medicine experimental therapies focused on restoring vision.87

Retinal organoids undergo self-formation when hPSCs are
induced to differentiate (with various techniques and methods)

RETINAL ORGANOID TECHNOLOGIES FOR RESTORING VISION 3
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toward neural and retinal lineage (F2 c Fig. 2).24,88–91 Large-scale
biomanufacturing of retinal organoids can be developed at a
relatively inexpensive cost.24,92,93 Young retinal organoids
(weeks 8–12 after induction) carry all types of retinal cells and
layers, typical for developing human fetal retina. Just like in

human fetal retinal tissue, retinal organoids carry a developing
layer of PRs (which quickly separates in a separate, outer
neuroblast-like layer), also 2nd order neurons/progenitors of
retinal interneurons, and RGCs (which, together, separate into
inner neuroblast-like layer).24 The only exception seems to be
RPE, which is always present in developing human fetal ret-
ina, but may be either completely absent91 or present as pat-
ches24 (depending on the method) and still does not cover the
whole neural retina ( b F3Fig. 3d¢, d†’’). Compared to human fetal
retina, hPSC-derived retinal organoids carry no ethical bag-
gage associated with clinical application of human fetal retina
or retinal cells, and provide replenishable source of human
retinal cells and retinal tissue for retinal therapies aimed at
rebuilding degenerated retina and slowing down vision loss.

In the market niche (blindness caused by retinal cell
death) (Fig. 1), which urgently needs new safe, effective,
and commercializable technologies, hPSC-derived retinal
organoids may facilitate the development of treatments to
address both early and late stages of RD and vision loss
( b F4Fig. 4). Lineage Cell Therapeutics, Inc. [supported by
National Eye Institute (NEI) funding] and other teams92

have recently demonstrated the ability of human retinal
tissue derived from hPSC-retinal organoids to cause vision
improvements in blind immunocompromised rats, devel-
oped by Dr. Seiler.94 ( b F5Fig. 5). This technology is a logical
continuation of a 30 years work pioneered by Drs. Aramant,
Dr. Seiler16,95–99 and independently by other groups (eg,
Mark Humayun),100 focused on introducing retinal tissue,
rather than dissociated retinal cells, into the subretinal space
of an eye with advanced RD and complete PR cell death.
Similar to neuroprosthetic and optogenetic approaches,

FIG. 2. Differentiation and self-determination of retinal
organoids from hPSCs in a dish. hPSC, human pluripotent
stem cell.

4C c

FIG. 3.AU19 c hPSC-retinal or-
ganoid similarity with de-
veloping human fetal retina.
(a) Schematic diagram of a
human eye. (b) Schematic
wiring diagram of the mam-
malian retina. (c) hPSC-
derived retinal organoid
(10-week-old). (d¢, d†) Im-
munohistochemistry analysis
of human retinal organoid
stained with melanin-specific
antibody (PMEL-17, green)/
counterstained with nuclei
stain (DAPI) (d¢), and with
PMEL-17+human nuclei-
specific antibody (HNu, red)
(d†), demonstrating accumu-
lation of RPE cells mostly on
one side of retinal organoid,
with occasional stretch of
PMEL-17[+] RPE cells on the
side. RPE, retinal pigment
epithelium. Color images are
available online.
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FIG. 4. Early- and late-stage retinal diseases, which may be amenable to treatments, designed from hPSC-retinal tissue.
Color images are available online.

FIG. 5. b AU20The recording from
the superior colliculus after
transplantation of hPSC-retinal
tissue into the subretinal space
of blind immunodeficient rats
(6 months after the surgery).
Color images are available
online.
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transplanting human retinal tissue is one of the few emerg-
ing technologies, which enable restoration of visual percep-
tion/rudimentary vision in an eye with profound/complete
blindness. This technology addresses the need of patients
with advanced RD conditions, whose retina is already be-
yond the stage of repair. The transplantation methods in a
large eye (cat)93 demonstrate feasibility of establishing
axonal and synaptic connectivity between the graft (hPSC-
retinal organoids) and the recipient retina, and may be a
good start for developing this technology toward eventual
clinical applications in patients with severe vision loss and
terminal RD stage. Although clearly further preclinical work
is needed, one may expect this technology to make a differ-
ence for people with terminal blindness, especially if larger
hPSC-retinal grafts are introduced into subretinal space in a
large eye. In relation to developing larger flat sheets of hPSC-
retina the work from Dr. Larry Rizzolo is especially note-
worthy, as it outlines the potential path forward to solving the
spherical geometry of retinal organoids, preventing efficient
coculture with RPE.101,102 The size of such bioprosthetic graft
is clearly less of an issue in experimental animal model with
much smaller eye size such as a rat.92

Another potentially promising application of retinal or-
ganoid technologies is the ability of developing neuropro-
tection strategies in the ocular space similar to that, which is
already being tested successfully in clinical trials by103,104

company. jCyte used human fetal retinal cells derived and
expanded from procured human fetal retinal tissue as a
starting material for demonstrating promising efficacy and
safety46 data in patients with RP, which enabled it to enter
into licensing and commercialization agreement with Santen
Pharmaceutical. Retinal tissue derived from hPSC does not
have the strict ethical and supply restrictions of aborted fetal
retinal tissue and therefore may be a good alternative to
procured human fetal retina for delivering neuroprotection
into the eye. To this point, we tested the safety of this ap-
proach in 3 large eyes of animal models [normal cats
without RD (5 weeks),93 CRX+/- cats (3 months in the ocular
space), and PDE6A-/- dog (2 months in the ocular space)].

SF1 c Supplementary Fig. S1, which is a RetCam image, shows
the presence of hPSC-retinal organoids in the vitreal space
of a PDE6A-/- dog. No retinal inflammation was observed,
which is critical and enables further development of this
approach toward potential clinical applications. Although
another useful application of hPSC-retinal organoids (dis-
ease modeling) was not discussed here because of our focus
on biologic therapies, young retinal organoids (*weeks 6–
16) present a useful model for interrogating early steps of
human retinal development.90,105–108 As retinal organoids
mature in culture, we and others reported loss of RGC and
INL neurons (inner retina lamination) by about 6 months in
culture,109–111 while PR layer is preserved. This enables
modeling certain but not all aspects of retinal biology and
RD diseases,112,113 which are not/less dependent on RPE.
Developing long-term planar cocultures of 3D retinal or-
ganoids and RPE will enable screening for drugs modulating
degeneration of PR-apical RPE niche, as many, if not most,
RD diseases originate in the outer segments-apical RPE.

Conclusions

In the large number of new and emerging technolo-
gies based on molecular and regenerative medicine, retinal

organoid-derived therapies could potentially address both
early (epiretinal graft neurotrophic effect) and late stage
(cell replacement) diseases. As with other promising ap-
proaches, further preclinical work and refinement of reti-
nal organoid technologies are needed to develop them
toward clinical trials and commercialization.
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