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If average costs in a nonrenewable resource industry are U-shaped, a 

competitive equilibrium may not be optimal and, indeed, may not exist. Although the 

differential equation that describes the change in the rate of extraction is the same for 

planner and firm, the boundary conditions obtained from the transversality conditions 

for the respective problems (for planner and firm) will not, in general, be the same. If 

costs are convex, or if there exists a backstop technology which can produce the 

resource services at sufficiently low cost, the boundary conditions are, however, the 

same. 
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ON THE EXISTENCE AND OPTIhlALlTY OF COMPETITIVE EQUILIBRIA 
IN NONRENEWABLE RESOURCE INDUSTRIES 

1. Introduction 

A widely accepted folk-theorem of resource economics maintains that, in the 

absence of externalities or other market failures, the "socially optimal" (Pareto 

efficient) extraction profile is reproduced by a decentralized economy. That is, 

competitive resource owners extract at the same rate as the social planner. The 

conditions under which this conclusion is correct are more limited than is commonly 

recognized. The Second Theorem of welfare economics states that, given convex 

production and indifference sets (and the absence of externalities or other market 

failures), any Pareto optimal allocation can be supported as a competitive equilibrium. 

The folk-theorem alluded to above appears to be a special case of the Second 

Theorem of welfare economics. 

If average costs of an industry are U-shaped, which occurs where there are 

fixed costs or where marginal costs first fall and then rise, there is a nonconvexity in 

that industry. Provided that the point of minimum average costs occurs at a 

sufficiently small level of production, it is still the case that the competitive industry 

produces the socially optimal quantity. This provides an example where local rather 

than global convexity is enough to insure that the social planner's allocation can be 

decenualized. This conclusion is reassuring, since the existence of U-shaped average 

costs is important both empirically and theoretically. However, this conclusion does 

not carry over to extractive industries. In certain cases, U-shaped average costs in 

these industries imply that the socially optimal extraction path cannot be repraduced 

as a competitive equilibrium. There is no reason to suppose that the existence of U- 

shaped average costs are less important in extractive industries than in other parts of 

the economy. Therefore, the recognition that in this circumstance a competitive 



equilibrium (often) either fails to exist or is not socially optimal may have important 

implications for the way we think about nonrenewable resource industries. 

The reason for the qualitative difference in the welfare properties between 

static industries and extractive industries, where both have U-shaped average costs, 

has a very simple explanation. We mentioned above the well-known fact that the 

competitive equilibrium in the static industry reproduces the socially optimal allocation 

provided that that level of production is greater than the level at which average costs 

are minimized. This is another way of saying that the indusny is not a "natural 

monopoly." The analogous requirement is unlikely to be met in a nonrenewable 

resource model. Except in a special case, discussed below, where a backstop 

technology can produce the resource services at a sufficiently low cost, the planner 

wants to produce at a rate where average costs exceed marginal costs, near the final 

part of the extraction trajectory. Competitive firms want to cease production where 

average costs equal marginal costs. Consequently, the social planner's preferred 

trajectory and the competitive trajectory do not, in general, coincide in the case where 

average costs are U-shaped. 

There is an additional problem which makes the existence of a competitive 

trajectory problematic. If all producers intend to stop producing at the point where 

average and marginal costs are equal, aggregate production drops from a positive level 

to 0. If the demand curve is negatively sloped, this causes price to jump at the time 

production drops to 0. This jump in price violates the price arbitrage equation which 

must hold in a competitive equilibrium. Therefore, if producers are identical, in the 

sense that they all use the same technology and have the same expectations, there 

cannot be a competitive equilibrium in which they a11 adopt the same plans. 

We should note that his result depends on the micro-foundations of the 

industry cost curve. For example, silppose capital in the resource industry is perfectly 

mobile in the sense that firms costiessly enter and exit the industry. Then, as shown 



by Schulze (1974), each firm produces at the point of minimum average cost as long as 

it is in the industry. As price rises, the decline in industry output is accomplished by 

the continuing exit of firms. This is a situation where firms are identical but adopt 

different plans in equilibrium. Here another difficulty arises, however. If firms cease 

to behave as price takers when there are just a few left, the competitive equilibrium 

discussed by Schulze breaks down. Our conjecture is that, with perfectly mobile 

capital, any equilibrium would not be ~ompetitive.~ 

Alternatively, one might assume, as we do, that capital in the resource 

industry is fixed, due to the presence of costs that must be incurred before extraction 

begins, when it ceases, and if and when it resumes. This seems more realistic. Note, 

by the way, that it does not require a constant output over time from each firm. 

Rather, each moves along its U-shaped curve. We then adopt the standard 

convention of an industry cost curve as the aggregation of cost curves of identical 

firms. This is equivalent to modeling the competitive industry as if it consisted of a 

single, representative firm. 

Although nonrenewable resource models have been widely studied since 

Hotelling's (1931) classic paper, the importance of assuming that extraction costs are 

not U-shaped does not appear to have been explicitly recognized in the literature, with 

the exception of a recent unpublished manuscript by Rees (1989). Models of 

nonrenewable resources are usually studied using the Maximum Principle. The 

necessary condition for the maximization of the Hamiltonian, together with the 

equation of motion of the costate variable, suggest that the social planner's and the 

competitive equilibrium are identical under quite general circumstances. However, 

those two conditions only imply that the differential equation that describes the 

change in the rate of extraction is the same for both problems. In order for the 

soiutions to the respective differential equations to also be the same, that is, in order 

for the extraction paths to be the same, it is also necessary that the respective 



boundary conditions be the same. These boundary conditions are obtained from the 

transversality conditions to the respective maximization problems (that of the social 

planner and of the representative competitive fm). Our previous remarks follow from 

analysis of the transversality conditions. 

The next section provides some detail on our assumptions about the nature of 

the resource industry. Section 3 analyzes the social planner's optimization problem for 

a general case which includes constant, increasing, and U-shaped average costs and 

the possibility of a backstop technology which provides a replacement to the 

nonrenewable resource. Section 4 considers the maximization problem of the 

representative firm and shows the conditions under which the solution to that problem 

reproduces the socially optimal extraction path. A concluding section provides some 

further insight into the results. 

2. Structure of the Resource Industry: Cost and Demand 

We posit a general cost function of the form 

where g is some constant and q is quantity (flow) of output. A g > 0 implies the 

presence of fixed costs so that average costs are U-shaped. For g = 0, average costs 

are also U-shaped if h(q) is not convex near q = 0. Note that g = 0 and h(q) convex 

imply constant or increasing average costs. Our focus is on the cases where average 

costs are U-shaped as these lead to the somewhat surprising results described in the 

introduction. Finally, we define the quantity q* by 



that is, average and marginal costs are equal at q*. These relationships are shown in 

Figure 1. 

On the demand side, we assume a (planner's) utility function U(q), with 

U(q) 3 p, where p is price. This is consistent with the usual representation of utility, 

or welfare, as U(q) = p(q) dq-the area under an inverse demand curve. Consider 

a price j5, which may be interpreted as the price of a substitute or backstop for the 

resource. Then, the quantity ii is defined by 

where k is the area between the demand curve U'(q) and price p, from q = 0 to q = q. 

These relationships are shown in Figure 2. 

3. Optimal Depletion: The Planner's Problem 

The planner's problem is assumed to be one of allocating the resource over 

time in such a fashion as to maximize the present value of utility, net of costs. In 

symbols, this is 

T - 
mar e r t [ ~ O ( q )  - h(q)] dt - r e - "  g dt + e - ' ~  
14 1.T O 

where r is the discount rate and UO is defined by 

subject to 
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- S  = q  

where S is the resource stock. Noting that 

the constrained optimization problem can be rewritten as 

The (current-value) Hamiltonian for this problem is 

~ = ~ O ( q ) - h ( q ) - h q  

where h is the costate variable. Necessary conditions are 

( 3 )  uO'(q)-  h ' ( q ) - h = 0  

and 

(4) k = r h .  

The transversality condition, in terms of the --value Hamiltonian, is 

e - "V0(qT) -  h ( q T ) ] - e - ' T h T q T - e - r ~ ( g + k ) = ~ .  

Canceling the exponential factor in each term, we obtain 

(5 )  U ' ( ~ ~ ) -  h (qTj -hTqT-  ig + k ) = O .  

The second-order condition for maximization of the Warniftonian is 



(6) u ' " (~ )  - h"(q) < 0.. 

Now, let us define 

(7) f(q) = uO(q) - h(q) - [uO'(q) - h'(q)l q - (g + k), 

with 

for q > 0, by equation (6). Substituting equation (3) into equation (3, and using the 

definition in equation (7), we obtain 

Turning now to the relationship between the quantities q* and ij defined in 

equations (1) and (2). we can distinguish three possible cases: 

(ii) q*>q 

(iii) q* < q. 

We consider each i n  turn. For case (i), define 4 by 

q * = q ~ 4 .  

Then, 



Notice that the expression in the first square brackets on the right-hand side is equal 

to zero, from the definition in equation (2). Similarly, the expression in the second set 

of square brackets is equal to zero, from the definition in equation (1). We conclude 

f($) = 0 and, from equation (9), 

For case (ii), we have 

as shown in Figure 3. Also, 

f(3) = - [h(ii) - h'($ ii + gl 

as shown in Figure 4. We conclude, for case (ii), that 

The planner stops producing where average costs exceed marginal costs; price jumps 

at T from p ( q ~ )  to 3 ,  as in Figure 5 ,  suggesting that a competitive equilibrium will not 

reproduce the social optimum. We shall have more to say on this point in the next 

section, where properties of a competitive equilibrium are explicitly considered. 

For case (iii), we have 

from the definition of Uo when q < q. Furthermore, 
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In this case then 

As in case (i), production ceases when average costs equal marginal costs (at q*) 

and price remains at p.  Note that q* 2 ij [which includes cases (i) and (iii) but 

(ii)] implies the existence of a backstop, since otherwise ij = 0. Case (ii) is also 

consistent with a backstop but a backstop with a relatively high cost-high enough 

that it does not affect the solution in that case: 6 c q~ < q* and the breakdown of a 

competitive equilibriitm. 

4. Optimal Depletion: The  Firm's Problem 

The competitive firm's problem is assumed to be one of allocating the resource 

over time to maximize the present value of profits. In symbols, this is 

T - Te-rt g dt 
max j e IT[pt q t  - h ( q t ) l d t  -Io 
f4),T O 

subject to 

- S  =q. 

Simplifying, the maximand becomes 

The Hamiltonian is 



H = P ,  q ,  - h i q , )  - X q ,  

First-order conditions are 

(10) p ,  - h ' ( q t )  - h = O  

and 

The transversality condition is 

(12) ~ ~ q ~ - h ( q ~ ) - h ~ q ~ - g = 0 -  

Now, let us define 

(13)  Y ( ~ ) I P ,  4 ,  - h ( q , )  - ( P C  - h'(4,)) 9 ,  -g. 

Using equations (10) and (12), we obtain 

(14) y(qT)= 0. 

Rewriting equation (13) as 

h ' f c l , )  4 ,  - Ih(q,) + g l  

yields y(qC) = 0, and we conclude 

q = q * .  T 



Recall that this result, with production ceasing where average costs equal marginal 

costs, holds in the planner's problem if and only if q* 2 ?j. Conversely, if ?j< q*, the 

(identical) competitive firms do not reproduce the social optimum. 

5. Concluding Remarks 

We can get some further insight into these results by studying specializations 

of the model. For exampie, consider 

case A: g =O, k = y  

where y is a positive number. In A, ?i > O so that we may (though we need not) be in 

case (i), in which q* = 3 ,  or case (iii), in which q* < q .  Recall that in both cases a 

competitive equilibrium exists and is optimal (in the absence of market failures not 

considered here). A backstop to the resource can provide the same services at 

sufficiently low cost that the socially optimal price trajectory does not exhibit a jump 

that would violate the arbitrage condition for a competitive equilibrium. 

In B, on the other hand, 4 = O so that we must be in case (ii) in which Lj c q*. 

In this case we have shown that a competitive equilibrium does not reproduce the 

social optimum. No backstop can provide the resource services at a cost low enough 

to avoid the price jump at time T. Although the planner's problem with a fixed cost 

(g > 0) or a low-cost backstop (k > 0)  is analytically the "same," the existence and 

optimaiity of a competitive equilibrium depend critically on which of these relations 

holds. 

Note, finally, that, i f  g = 0 and h(q) is e~erywhere convex, then q* = 0 2 3 and 

a competitive equilibrium has the ' normal" welcdre propzrties. 



Footnote 

l~oncom~e t i t i ve  behavior near the final part of the trajectory, when there are 

only a few active firms, alters the equilibrium during the phase when there are many 

active firms. Therefore, even when many firms are in the industry, the extraction path 

may not lie close to the social planner's path. 
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