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ABSTRACT OF THE DISSERTATION

Methods for the Analysis of Human Genetic Variation in the Search

for the Genetic Basis of Human Disease

by

Noah Zaitlen

Doctor of Philosophy in Bioinformatics

University of California San Diego, 2009

Professor Vineet Bafna, Chair

Recent technological advances in the field of molecular biology have ush-

ered in the genome wide association era of human genetics. Researchers can now

simultaneously examine hundreds of thousands of single nucleotide polymorphisms

(SNPs) in an individual at continually decreasing costs. In an effort to characterize

distributions of SNPs in human populations a set of four million SNPs was collected

in 269 individuals from four populations. This HapMap data set in combination

with high throughput genotyping technology has caused a fundamental shift in

the methodologies of scientists searching for the relationship between genotype

and phenotype. The genome wide association study (GWAS) has become main-

stream practice, leading to the discovery of a growing number of loci associated

with the genetics basis of complex phenotypes including many human diseases.

This work describes novel methods, resources, tools, and techniques de-

signed to improve our ability to interpret and utilize GWAS and HapMap data.

xv



The Weighted Haplotype (WHAP) association method leverages the linkage struc-

ture information from the HapMap to improve GWAS power by providing accurate

statistics for unobserved SNPs without the costs of additional genotyping. The

SAT based tagging algorithm SATTagger identifies which SNPs to genotype as

part of an association study, and provides the first optimal genome wide solution

to this classic bioinformatics problem. The HapMap suffers from the fundamental

limitation that at most 60 unrelated individuals are available per population. An

analytical framework for analyzing the implications of a finite sample HapMap

is presented. The results of the first round of GWAS studies showed that effect

sizes of causal variants were small and that larger sample sizes were required for

adequate power. Meta-analysis provides a mechanism for overcoming this problem

with the cost of additional genotyping. A new statistic for imputation based meta

analysis in a GWAS is given.

Additional research is presented on MHC Class II binding prediction, which

is a useful tool in understanding auto-immune and pathogenic diseases. A physics

based binding model is presented with an EM like solution to find the optimal

binding conformation.

xvi



Chapter 1

Introduction to Human Genetic

Variation Methods

Even a simple examination of living organisms reveals that children inherit

traits from their parents. Humans have exploited this property in agriculture and

animal husbandry for thousands of years. The ancient Greek philosophers theo-

rized on its mechanisms, but it was not until the mid 19th Century and the arrival

of Gregor Mendel that we began a scientific study of heritability. It took almost

another 100 years before Oswald Avery, Colin MacLeod, and Maclyn McCarty dis-

covered that DNA is the molecule responsible for transferring genetic information.

By that time, the visionaries Alfred Sturtevant and Sir Ronald Aylmer Fisher had

laid down the framework for modern genetics, which contains as one of its funda-

mental goals, uncovering the relationship between variation in an organism’s DNA

and its phenotypes. The words genotype and phenotype themselves divulge the

centrality of this problem, dichotomizing an individual into its genetic material

and all other constituent parts.

The last five years have seen a dramatic shift in the way this problem is

approached. This is largely due to the combination of four factors both techno-

logical and social. First, work on the human genome project identified millions of

new genetic variants believed to be the core elements driving genetic heritability.

Second, technological advances in high-throughput genotyping based on these new

variants, provided a means of quickly and cheaply performing experiments that

1
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had previously taken years and cost millions of dollars. Third, the availability of

the HapMap reference data set characterized the nature of genetic variation on a

genome wide scale. Finally, the massive increase of funds, both public and pri-

vate available to researchers working on human disease phenotypes paid for the

new large scale experiments that are becoming commonplace. Together, these el-

ements have brought about the genome wide association era of human genetics.

This dissertation is primarily concerned with a new set of methods, resources,

tools, and techniques designed to address the problems and improve the power of

genome wide association studies.

Before outlining the specific novel contributions of this work, some back-

ground is given to lend them context and show their relevance to the field. The

human genome consists of 23 chromosomes comprised of 2.3 billion base pairs of

DNA. If we examine the DNA of two individuals, the differences in their genome

will include individual nucleotides changes called single nucleotide polymorphisms

(SNPs), changes in the number of copies of a segment of DNA called copy number

variations (CNVs), and other structural changes such as inversions and transloca-

tions. It is believed that heritability is mostly due to changes such as these, with

some growing evidence for epigenetic effects. If a particular genetic variant has a

functional property that effects a phenotype, such as susceptibility to a disease, it

called causal with respect to that phenotype. While the causal genetic variants of

many phenotypes have been discovered, the search for variants related to human

disease are particularly important and unfortunately remain amongst the most

elusive to discover.

The fundamental property of genetic variation that allows the mapping of

loci was first discovered by William Bateson and Reginald Punnett at the begin-

ning of the 20th Century. Genetic Linkage is the relationship between variants in

proximal genomic regions. Figure 1.1 illustrates this property and why it exists.

Only cross-over events during meiosis can break apart alleles on the same chromo-

some. The closer together two alleles are, the lower the probability that there will

be a recombination event between them. After many generations, distant alleles

will independent of one another. Proximal alleles however will only exist in certain
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combinations. Thus knowing the genotype of a particular SNP may give some

information about the genotype of its neighbors. Association mapping studies are

experiments used to identify causal variants, which rely on this property.

Figure 1.1: Proximal regions on a chromosome can only be separated by a recom-
bination event. The orange segment marked m maybe a causal mutation for a
disease. (a) shows how recombination breaks the haplotype backgrounds in one
generation. The background around m is purple and extends very far. In (b)
haplotype backgrounds are given for a large number of individuals after 20 gener-
ations have passed from four original chromosomes. Again the region around m is
purple, but the regions lengths are much shorter. Association studies work on the
principal that if a genotyped SNP falls into the purple region, the effect of m may
be observed.

Association mapping has until recently served as a means to narrow the

region identified as part of a linkage mapping study. In this technique, individuals

are collected from two groups, the cases who have the disease of interest, and the
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controls that are members of the same populations but do not have the disease.

The individuals are genotyped and differences in the allele frequencies of the SNPs

between the cases and controls are searched for. If the causal variant is amongst the

genotyped SNPs then its distribution may show a significant difference between the

cases and controls. However, if it is not genotyped, there is still the possibility of

recovering a signal. Due to the linkage properties of the genome described above, a

proximal SNP may be linked to the causal variant and its distribution may therefore

also exhibit a significant difference between cases and controls. Notice that the

mutation m in Figure 1.1 b usually has a purple haplotype background. Without

this local linkage structure individuals would need to be completely sequenced in

order to identify causal variants via association studies. The nature of linkage is

therefore a central aspect of association mapping and for this reason it has been

extensively studied.

The HapMap project characterized the extent of linkage in four human

populations and showed how local linkage structure exists throughout our genomes.

Eric Lander and colleagues were strong proponents of developing and using this

information to extend association mapping to the whole genome. Many researchers

believed that haplotypes would exist in local “blocks” that could be completely

identified with a small number of SNPs. Genome wide association studies (GWAS)

could be conducted by using makers (i.e. SNPs) laid at intervals across the genome

based on the block structure garnered the HapMap. The “block” theory died when

the HapMap data was released, but the local linkage structure was strong enough

for the GWAS principal to work anyway. Figure 1.2 shows the correlations between

proximal SNPs in one region of the genome. In 2007, shortly after the HapMap

release, the first GWAS was completed by Robert Sladek and colleagues. Since

then hundreds of such studies have been funded with many producing novel loci

associated with human disease and related phenotypes. Although there has been

a lot of argument about the value of these experiments and their results, there is

no doubt that they are an extremely active research area.

The following briefly outlines my contributions to this field. Each Chapter

is based on a paper, already published or in submission, that addresses issues core
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Figure 1.2: The linkage structure of the gene GCH1 in the HapMap CEU popu-
lation. The SNPs are numbered from 1 to 38. For each pair a square is colored a
shade of red depending on the strength of the correlation between them. Red rep-
resents complete LD and white represents independent SNPs. Potential “blocks”
are outlined in black with very strong LD between all SNPs in the block. Although
the “block” theory of haplotypes is no longer widely accepted, the local linkage
structure in the genome is evident from the figure.

to GWAS and the current study of the genetic basis of human disease.

Chapter 2 describes a novel method to improve the power of GWAS studies

by utilizing the HapMap data set. Recent high-throughput genotyping technolo-

gies, such as the Affymetrix 500k array and the Illumina HumanHap 550 beadchip,

have driven down the costs of association studies and have enabled the measure-

ment of single-nucleotide polymorphism (SNP) allele frequency differences between

case and control populations on a genome wide scale. A key aspect in the efficiency

of association studies is the notion of “indirect association”, where only a subset

of SNPs are collected to serve as proxies for the uncollected SNPs, taking advan-

tage of the correlation structure between SNPs. Recently, a new class of methods

for indirect association, multi-marker methods, has been proposed. Although the

multi-marker methods are a considerable advancement, current methods do not

fully take advantage of the correlation structure between SNPs and their multi-

marker proxies. We propose a novel multi-marker indirect-association method,

WHAP, that is based on a weighted sum of the haplotype frequency differences.

In contrast to traditional indirect-association methods, we show analytically that
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there is a considerable gain in power achieved by our method compared with both

single-marker and multi-marker tests, as well as traditional haplotype-based tests.

Our results are supported by empirical evaluation across the HapMap reference

panel data sets, and a software implementation for the Affymetrix 500k and Illu-

mina HumanHap 550 chips is available for download.

Chapter 3 presents a new solution to the classical tag SNP selection prob-

lem. Whole genome association has recently demonstrated some remarkable suc-

cesses in identifying loci involved in disease. Designing these studies involves se-

lecting a subset of known single nucleotide polymorphisms (SNPs) or tag SNPs to

be genotyped. Even though how to chose the tag SNPs is a well studied research

problem, questions remain on how to choose the optimal set of tag SNPs. Since the

standard formulations of the problem are NP-hard, most algorithms for selecting

tag SNPs are either heuristics which do not guarantee selection of the optimal set

of tag SNPs or are exhaustive algorithms which are computationally impractical.

We present the first practical algorithm for optimal tag SNP selection. We re-

duce the tag SNP selection problem to a variant of the much studied satisfiability

problem, encoding a given instance into conjunctive normal form (CNF). We take

advantage of the local structure inherent to the problem, as well as progress in

knowledge compilation, and convert our CNF encoding into a tractable represen-

tation known as DNNF, from which solutions to our original problem can be easily

enumerated. We demonstrate our methods by constructing the optimal tag set for

the whole genome and show that we significantly outperform previous exhaustive

search-based methods. We also present optimal solutions for the harder problem

of selecting multi-marker tags, a problem for which no optimal algorithms have

been proposed. We also show how our methods can be adapted to discovering the

tag set that maximizes statistical power given a budget of SNPs to collect. This

problem is more challenging than the traditional tag SNP selection problem and

we show how it can be reduced to weighted Max-SAT.

Chapter 4 presents a framework for analyzing finite sample issues in statis-

tics computed over the HapMap data. The HapMap provides a valuable resource

to help uncover genetic variants of important complex phenotypes such as disease
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risk and outcome. Using the HapMap we can infer the patterns of LD within

dierent human populations. This is a critical step for determining which SNPs to

genotype as part of a study, estimating study power, designing a follow-up study

to identify the causal variants, imputing untyped SNPs, and estimating recombi-

nation rates along the genome. Despite its tremendous importance, the HapMap

suers from the fundamental limitation that at most 60 unrelated individuals are

available per population. We present an analytical framework for analyzing the

implications of a nite sample HapMap. We present and justify simple approxima-

tions for deriving analytical estimates of important statistics such as the square of

the correlation coecient r2 between two SNPs. Finally, we use this framework to

show that current HapMap based estimates of r2 and power have signicant errors,

and that tag sets highly overestimate their coverage. We show that a reasonable

increase in the number of individuals, such as that proposed by the 1000 genomes

project, greatly reduces the errors due to nite sample size for a large proportion of

SNPs.

Chapter 5 covers a new method we developed for performing meta-analysis

over imputed data. Genome wide association studies have identified many new

loci which may be involved in complex human diseases. The newly discovered

variants often have weak effects requiring studies with large numbers of individu-

als to achieve the statistical power necessary to identify them. Likely, there exist

even more associated variants which remain to be found if even larger association

studies can be assembled. Meta-analysis provides a straightforward means of in-

creasing study sample sizes without collecting new samples by combining existing

data sets. A difficulty in combining studies is that they are collected on differ-

ent platforms and collect different markers. Current studies combine results from

different genotyping platforms by imputing genotypes missing from either study

and then performing standard meta-analysis techniques. We show that this ap-

proach will result in a loss of power since errors in imputation are not accounted

for. We present a new method for performing meta-analysis over imputed SNPs,

show that it is optimal with respect to power, and discuss practical implementation

issues. Through simulation experiments, we show that our imputation aware meta-
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analysis approach outperforms or matches standard meta-analysis approaches.

Chapter 6 describes the phasing and curation of haplotypes at NCBI. In ad-

dition it provides new results about haplotype block theory and genotyping error.

In the attempt to understand human variation and the genetic basis of complex

disease, a tremendous number of single nucleotide polymorphisms (SNPs) have

been discovered and deposited into NCBI’s dbSNP public database. More than

2.7 million SNPs in the database have genotype information. This data provides

an invaluable resource for understanding the structure of human variation and

the design of genetic association studies. The genotypes deposited to dbSNP are

unphased, and thus, the haplotype information is unknown. We applied the phas-

ing method HAP to obtain the haplotype information, block partitions, and tag

SNPs for all publicly available genotype data and deposited this information into

the dbSNP database. We also deposited the orthologous chimpanzee reference

sequence for each predicted haplotype block computed using the UCSC BLASTZ

alignments of human and chimpanzee. Using dbSNP, researchers can now easily

perform analyses using multiple genotype data sets from the same genomic re-

gions. Dense and sparse genotype data sets from the same region were combined

to show that the number of common haplotypes is significantly underestimated in

whole genome data sets, while the predicted haplotypes over the common SNPs are

consistent between studies. To validate the accuracy of the predictions, we bench-

marked HAP’s running time and phasing accuracy against PHASE. Although HAP

is slightly less accurate than PHASE, HAP is over 1000 times faster than PHASE,

making it suitable for application to the entire set of genotypes in dbSNP.

In addition to methods to related to the design and analysis of GWAS, I

include research from the area of computational immunology. Although it is a

break from the above chapters it is still in a general sense related to the study of

human genetic variation and disease. In this case the diseases are auto-immune or

the result of viral or bacterial infections. The objective is not to identify the genes

in related to the disease, but to characterize how genetic variation affects a core

aspect of immune resoponse.

Chapter 7 presents work on modelling binding of protein’s from the ma-
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jor histocompatibility complex (MHC). The MHC plays important roles in the

workings of the human immune system. Specificity of MHC binding to peptide

fragments from cellular and pathogens’ proteins has been found to correlate with

disease outcome and pathogen or cancer evolution. In this work we propose a

novel approach to predicting binding configurations and energies for MHC class

II molecules, whose epitopes are generally predicted less well than the MHC I

epitopes due in part to larger variation in bound peptide length. We treat the

relative position of the peptide as a hidden variable, and model the ensemble of

different binding configurations, rather than use a separate alignment procedure

to narrow it down to one. Thus, our predictor infers a distribution over peptide

positions from the MHC II and peptide sequences, and computes the total binding

affinity. The training procedure iterates the predictions with re-estimation of the

parameters of the binding groove model. For a given relative peptide position,

any MHC class I prediction model can be used. Here we choose the physics based

model of Jojic et al. [66]. We show that the parameters of the binding model

can be learned efficiently from the training data and then used to estimate bind-

ing energies for previously untested peptides. Our technique performs on par with

previous approaches to MHC II epitope prediction. Furthermore, our model choice

allows generalization to new MHC class II alleles, which were not a part of the

training set.

Before beginning a full description of each method I point out that this

dissertation focuses on the details of the methods listed above as opposed to their

application. However, it is important to note that many of these methods have

been and are currently being used as part of GWAS and other studies. It is beyond

the scope of this document to describe in depth the application of the methods

as each study would require its own chapter and I am not the primary researcher

in any of those projects. However, I have put a lot of effort into establishing

collaborations and building software tools. In fact, the software engineering and

implementation of several of the methods consumed significantly more time and

energy than the original research and paper writing. This is an important but

less recognized component of methods development, as it prevents the work from
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remaining just interesting ideas, but puts them into practice.



Chapter 2

Weighted Haplotype Analysis

2.1 Introduction

Large scale case-control association studies are a potentially powerful tool

for discovering the genetic basis of human disease [39, 98, 22]. Recent high-

throughput genotyping technologies such as the Affymetrix 500k array and the

Illumina HumanHap550 beadchip have driven down the costs of association stud-

ies and allow us to measure allele frequency differences between case and control

populations on a genome wide scale [81, 50]. A key aspect in the efficiency of as-

sociation studies is the notion of “indirect association”. By leveraging the linkage

disequilibrium (LD) structure of the genome, frequency differences between case

and control populations do not need to be measured in all SNPs, but only in a

subset, or a set of “tag SNPs” which serve as proxies for the remaining uncollected

SNPs (we refer to the uncollected SNPs as hidden SNPs) [64]. A chromosome

carrying a particular allele of a tag SNP has a high probability of carrying a par-

ticular allele of a proximal hidden SNP. Thus an allele frequency difference in an

uncollected hidden SNP will manifest itself as an allele frequency difference in a tag

SNP. This correlation is often measured by the correlation coefficient r2 between

two SNPs. The r2 measure is widely used in the design and analysis of association

studies because the relation between the power of detecting an association at the

hidden SNP while only observing the tag SNP has been well understood for some

time (see, for example, [93, 103]).

11
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Tag SNPs are chosen by examining the linkage disequilibrium structure of

a reference panel (such as the HapMap[25]), which is a data set that contains a

complete set of genotypes for 270 individual on over 3.9 million SNPs across the

genome. Choosing a set of tag SNPs is a challenging problem since the linkage

disequilibrium structure is quite complex and varies through the genome. To date,

many tag SNP selection methods have been proposed (e.g., [38, 18]). These meth-

ods employ different statistical criteria, the most common being procurement of

a set of tag SNPs, for which every hidden SNP is ’covered’ by a tag SNP, such

that the correlation coefficient r2 between the two SNPs in the reference set is

higher than a certain threshold (see, e.g. [18]). These methods vary greatly in the

optimization methods used to obtain the tag SNPs.

Recently, a new class of methods, multi-marker methods, have been pro-

posed [38, 19, 118, 110]. These methods take advantage of the fact that some pairs

(or groups) of SNPs serve as better proxies for the hidden SNPs, than any single

SNP. As multi-marker proxies have more than two possible alleles, the frequencies

of a specific sequence of alleles in these SNPs (a haplotype) is compared between the

cases and the controls. Thus, a specific haplotype, instead of a single SNP, is used

as a proxy for a hidden SNP. It has been shown empirically that these methods

can reduce the number of required tags in order to achieve equivalent power[38].

In addition, it has been empirically shown that even if the set of tag SNPs is

fixed, such as in the case when a commercial high throughput genotype product is

used, one can choose a set of multi-markers for each hidden SNP, and considerably

increase the r2 (and therefore the power) between that proxy haplotype and the

hidden SNP [90].

While multi-marker methods are a considerable advance, current methods

do not fully take advantage of the correlation structure between SNPs and their

multi-marker proxies. For example, consider the scenario given in Figure 2.1. In

this example, we assume that the first two SNPs are collected as tag SNPs for the

association study which will be used as proxies for the three remaining SNPs. The

third SNP is in perfect disequilibrium with the first SNP (r2 = 1), and thus the

first SNP serves as a perfect proxy for the third SNP. While the fourth SNP is



13

Figure 2.1: A sample haplotype distribution for 5 SNPs where the first 2 SNPs are
collected as tag SNPs and the remaining 3 SNPs are uncollected.

not in perfect disequilibrium with either of the first two SNPs, the haplotype AA

at the first two SNPs can serve as a perfect proxy for the fourth SNP. The most

interesting case is the fifth SNP, for which no haplotype serves as perfect proxy.

The best haplotype proxy for this SNP is the haplotype AA, for which r2 = 0.619.

However, by restricting ourselves to the haplotype AA, we ignore the additional

information given by the other haplotypes. For example, the allele A in the fifth

SNP occurs occasionally with haplotype AG but never with haplotypes GA or GG.

To take advantage of this additional information, we propose a new method,

WHAP, and a new statistic, ρ-test, that is based on a Weighted sum of all the

Haplotype frequency differences. We show both empirically and analytically that

there is a considerable gain in power achieved by this statistic, as opposed to using
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a χ2-statistic on a single SNP, or a group of haplotypes. We show that the ρ-test

is χ2 distributed with one degree of freedom, regardless of the weight assignments.

We then develop an equivalent notion to r2 defined by the haplotype weights, r2
h,

with values ranging from 0 to 1. Analogously to Pritchard and Preworzski [93],

we show that if a multi-marker set has a correlation of r2
h with a causal SNP,

then using the ρ-test with n/r2
h individuals for this set is equivalent to directly

testing the causal SNP for association with n individuals. We show analytically

that the r2
h for a set of tag SNPs is always at least as large as the best r2 for

any single haplotype or single SNP. Empirically, we observe that in many cases

r2
h is in fact quite larger than r2, leading to a significant increase in power. For

instance, in the above example, the correlation coefficient between the weighted

average of the haplotypes and the fifth SNP is 0.85 while it is only 0.619 for the

best single haplotype. Finally, we show that the ρ-test is always more powerful

than the standard χ2-test over a set of haplotypes.

Previous approaches for tag SNPs such as single markers and multi-marker

approaches involving one haplotype, fall into our framework, since these can be seen

as specific assignments of weights to the haplotypes (i.e., letting the weight of the

haplotype be 1 and all the other haplotypes have weight 0). We present a method

to find the optimal set of weights which maximizes the power of the ρ-statistic and

we show both analytically and empirically that our method always performs at

equal or greater power to standard multi-marker methods. Furthermore, we show

that asymptotically one can only gain power by using a larger number of SNPs as

a proxy to the hidden SNP; in practice, as sample size is limited, “over-fitting”

effects may reduce power, and we therefore empirically show that for haplotypes

of moderate length there is an increase in power. To the best of our knowledge,

this is the first analytical rigorous proof that demonstrates that haplotype and

multi-marker indirect association is asymptotically more powerful than indirect

association based on single SNPs.

Our methods and power analysis relies on accurate haplotype frequency

estimates. Since the accuracy of haplotype frequency estimation depends on dif-

ferent factors, such as the number of SNPs used, their physical location, and the
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LD structure, we evaluated our analytical results via simulation. We first demon-

strate that r2
h is always greater than r2 for both SNPs and multi-marker tags over

the marker sets of the Affymetrix 500k and Illumina HumanHap550 chips. In par-

ticular, moving from multi-marker tags to our weighted haplotypes results in up

to a 21.1% increase in the number of captured common SNPs (MAF ≥ 0.05 and r2

or r2
h ≥ 0.8). Second, we simulate case control panels under various disease mod-

els,and show that this increase in utility corresponds as expected to an increase in

the power of our method over single SNPs and multi-marker tags.

We calculated the optimal weights for every HapMap Phase II SNP using

the Affymetrix 500k and Illumina HumanHap 550 SNP sets. These data, as well

as a software implementation for using our statistic over data from these chips is

available upon request.

2.2 Material and Methods

The ρ-test is a statistic that is applied to a set of Weighted HAPlotype

(WHAP) tag SNPs which are a proxy for the hidden SNP. It can be used in place of

the standard χ2 statistic applied to the tag SNPs. Informally, the ρ-test computes

a weighted sum of all the tag SNP haplotype frequency differences between the

case and control samples. A more formal description of the ρ-test is given below.

In traditional multi-marker methods, for a given hidden SNP, a set of SNPs

is chosen as tag SNPs and a specific haplotype of the tag SNPs is used as the

proxy. In contrast, in the ρ-test framework, once the tag SNPs are chosen, a

weight for each of the haplotypes is determined. The specific values of the weights

are estimated from the reference panel (e.g., the HapMap data set) and recorded

for each hidden SNP.

The ρ-test is χ2 distributed with one degree of freedom, and its power

depends on the correlation coefficient r2
h between the statistic and the hidden SNP

(see below). We show that r2
h is analogous to r2 in standard association methods

in the sense that it provides a direct linear relation to power.

We consider the setting in which an association study is performed on N
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cases and N controls. We assume that the causal SNP s is not genotyped, but

a set of SNPs § = {s1, . . . , sm} in LD with s are genotyped. For simplicity of

presentation, we assume that each of the SNPs is biallelic with allele values 0 and

1. In order to distinguish the allele notation of s from the other SNPs, we assume

that the alleles of s are C and c. Let h1, . . . , hk ∈ {0, 1}m be the set of haplotypes

over the set of SNPs §. We suggest a statistical test, which we call ρ-test, which

is based on a convex combination of the haplotype frequencies. This combination

depends on the joint distribution of the alleles c and C of s and the haplotypes in

the HapMap data.

Formally, let ~a = {a1 . . . , ak} be a set of haplotype weights. Let p̂1
h and p̂0

h

be the observed frequencies of haplotype h in the case and control populations,

and let p̂h =
p̂0h+p̂1h

2
. We define the ρ-statistic as

ρ(~a) =
N
(

∑k
h=1 ah(p̂

1
h − p̂0

h)
)2

2 (
∑

h a
2
hp̂h − (

∑

h ahp̂h)
2)
.

Under the null hypothesis, ρ(~a) is distributed as χ2 with one degree of freedom, that

is, the square of a standard normal distribution. Denoting by p0
h and p1

h the true

frequency of haplotype h in the case and control populations respectively, under

the alternate hypothesis, ρ(~a) is distributed as the square of a normal distribution

with mean

λh =

√
N
∑k

h=1 ah(p
1
h − p0

h)√
2
√
∑

h a
2
hph − (

∑

h ahph)
2
,

and where the variance is approximately 1, assuming that p1
h ≈ p0

h, and that

ph =
p0h+p1h

2
. Thus, the power of the ρ(~a)-statistic depends on the frequencies

p0
h, p

1
h, and on the weight vector ~a.

In order to evaluate the statistical power of the ρ(~a)-statistic, we are inter-

ested in comparing its power to the power of detecting association directly with the

causal SNP s by the χ2 test. Let p̂1
C and p̂0

C be the observed frequencies of allele C

at SNP s in the case and control populations assuming we directly genotype the

SNP. The χ2-statistic can be written as

X =
N(p̂1

C − p̂0
C)2

2pC(1− pC)
.
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Similarly to the ρ(~a)-statistic, under the null hypothesis, X is distributed as the

square of a standard normal distribution. Denoting the true SNP frequencies as

p0
C and p1

C , and pC =
p0C+p1C

2
, under the alternative hypothesis, X is distributed as

the square of a normal distribution with mean

λc =

√
N(p1

C − p0
C)√

2
√

pC(1− pC)
,

and with a variance approximately 1, assuming p0
C ≈ p1

C . The relation between λh

and λc determines the relation between the power of ρ(~a) and X.

The underlying assumption in any indirect association method is that the

correlation structure of the cases and the controls is similar as long as the two

groups are sampled from the same underlying population. For instance, the un-

derlying correlation structure is assumed to be similar to the closest HapMap

population, and therefore the set of tag SNPs and the expected power of these

SNPs to detect association can be estimated from the HapMap data set. More

formally, we assume that the conditional probability qhC (or qhc) of haplotype h

given C (or c) are the same in the case and control populations. If the cases and

controls are sampled from a population which is similar to one of the HapMap

populations, these conditional probabilities can be estimated from the HapMap

quite efficiently, as we show later.

Under these assumptions, we have

λh =

√
N
∑

h ah(p
1
h − p0

h)√
2
√
∑

h a
2
hph − (

∑

h ahph)
2

=

√
N(p1

C − p0
C)
∑

h ah(qhC − qhc)√
2
√
∑

h a
2
hph − (

∑

h ahph)
2

=

√
N(p1

C − p0
C)
∑

h ah(qhC − qhc)√
2
√
∑

h a
2
hph − (

∑

h ahph)
2

√

pC(1− pC)
√

pC(1− pC)

=

√
N(p1

C − p0
C)√

2
√

pC(1− pC)

∑

h ah(qhC − qhc)
√

pC(1− pC)
√
∑

h a
2
hph − (

∑

h ahph)
2

= λcr~a,

where r~a =

∑

h ah(qhC − qhc)
√

pC(1− pC)
√
∑

h a
2
hph − (

∑

h ahph)
2

. Thus, the power of detecting the

causal SNP with a sample size of N individuals (using the χ2 statistic) is the same

as the power of detecting the causal SNP using the ρ(~a)-statistic with N ′ = N/r2
~a
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individuals. When the indirect association is performed on one SNP (i.e., m = 1),

r~a is
√
r2 regardless of the weight vector ~a. Thus, r2

~a can be seen as a natural

generalization to the standard notion of r2 measure of linkage disequilibrium.

2.2.1 Finding the best weight vector.

Clearly, it is desirable to perform the ρ(~a)-test with a weight vector ~a that

maximizes r2
~a. We now show that r~a is maximized when ah is the conditional

probability of C given h (denoted by qCh). That is, we show the following theorem:

Theorem 1. The power of the ρ(~a) statistic is maximized when for each haplotype

h, ah = qCh.

Proof. As shown above, the power of the ρ(~a)-test is directly determined by the

value of r2
~a. We set

αC =
∑

h

ahqhC

αc =
∑

h

ahqhc.

With these notations, the numerator can be written as (αC − αc)
√

pC(1− pC).

Assuming that for the optimal solution αC 6= αc (otherwise the optimum is zero,

and then any vector ~a will satisfy this), it can be easily verified that without loss

of generality, we can arbitrarily choose the values of αC and αc, as long as they

are non-negative numbers. The latter follows from the fact that if ~a maximizes r2
~a,

then so does β~a and ~a+β for every constant β. We thus set these values to satisfy

αC =
∑

h qChqhC and αc =
∑

h qChqhc.

The second term of the denominator can be written as

∑

ahph =
∑

h

ah(qhCpC + qhcpc)

= pCαC + pcαc.

At the same time, by the Cauchy-Schwartz inequality,

∑

h

a2
hph ·

∑

h

q2
hC

ph
≥
(

∑

h

ahqhC

)2

= α2
C ,
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where equality holds if there is a constant β such that ah = β
qhC
ph

= β
qCh
pC

for every

haplotype h. By adding the definition of αC and αc, we can satisfy this equality

by setting β = pC . Put differently, the denominator is minimized when ah = qCh

for every h. Since the numerator is now constant, the vector ~ah = ~qCh maximizes

the value of r~a.

Note that for the optimal selection of ~a, i.e., when ah = qCh we observe that

r2
~a =

(
∑

h qCh(qhC − qhc))
2 pC(1− pC)

∑

h q
2
Chph − (

∑

h qChph)
2

=

(

∑

h

p2Ch

ph
− pC

∑

h pCh)
)2

pC(1− pC)
(

∑

h

p2Ch

ph
− (
∑

h pCh)
2
) =

(

∑

h

p2Ch

ph
− p2

C

)2

pC(1− pC)
(

∑

h

p2Ch

ph
− p2

C

)

=

∑

h

p2Ch

ph
− p2

C

pC(1− pC)
=

∑

h qCh(pCh − pCph)
pC(1− pC)

.

We denote by r2
h =

P

h qCh(pCh−pCph)

pC(1−pC)
the correlation coefficient between the

haplotype distribution of {h1, . . . , hk} and the causal SNP. It is easy to see that

0 ≤ r2
h ≤ 1, and that r2

h is always larger than the r2 coefficient between any

group of haplotypes and the causal SNP, and in particular, it is larger than the r2

coefficient between any single tag SNP and the causal SNP. Furthermore, when the

number of SNPs used for the ρ-test increases (i.e., m increases), the power of the

association increases. To see this, consider the original haplotypes {h1, . . . , hk},
and consider the haplotypes {h′1, h′′1, h′2, h′′2, . . . , h′k, h′′k} that are formed by adding

one more SNP. By definition, pChi
= pCh′i + pCh′′i , and phi

= ph′i + ph′′i . Therefore,

the r2
h increases by

∑

h((p
2
Ch′/p

′
h + p2

Ch′′/p
′′2
h )− p2

Ch/ph)

pC(1− pC)
≥ 0,

where the latter is true since (a+b)2

c+d
≤ a2

c
+ b2

d
for every four numbers a, b, c, d > 0.

Thus, increasing the number of SNPs can only amplify the power of detecting

association with a hidden SNP. In practice, this is not exactly true, as the errors

in the haplotype frequency estimates increases when the number of SNPs increases,

and so does the effect of over-fitting.
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2.2.2 The ρ-test compared to the χ2-test.

As r2
h is larger than the maximal r2 over all groups of haplotypes, we observe

that the ρ-test has more power than the χ2-test with one degree of freedom applied

to any single haplotype. A natural question is whether the ρ-test is more powerful

than the χ2-test with k − 1 degrees of freedom, applied to the set of haplotypes.

This statistic can be written as

Xk =
n

2

∑

h

(p0
h − p1

h)
2

ph
.

It is well known that for the null distribution Xk is distributed as χ2 with k − 1

degrees of freedom. Now, we can write

p0
h = p0

CqhC + (1− p0
C)qhc = p0

C

phC
pC

+ (1− p0
C)

phc
1− pC

= p0
C

phC − phpC
pC(1− pC)

+
phc

1− pC
.

Therefore, (p0
h − p1

h)
2 = (p0

C − p1
C)2 (phC − phpC)2

p2
C(1− pC)2

. Thus, we observe that:

Xk =
n

2

∑

h

(p0
h − p1

h)
2

ph

=
n

2

(p0
C − p1

C)2

pC(1− pC)
· 1

pC(1− pC)

∑

h

(pCh − pCph)2

ph
= Xr2

h.

The last equality holds, as r2
h =

P

h qCh(pCh−pCph)

pC(1−pC)
= 1

PC(1−pC)
·
(

∑

h

p2Ch

ph
− p2

C

)

,

and on the other hand,
∑

h
(pCh−pCph)2

ph
=
∑

h

p2Ch

ph
− p2

C . Under the alternative

hypothesis, Xk is χ2
k−1 distributed with mean λh, while the ρ-test is χ2

1 distributed

with mean λh. Therefore, one gains more power by using the ρ-test. We note

that this conclusion is valid under the assumptions made in this analysis, and in

particular under the assumption that in the studied region the disease is affected

by one causal SNP. However, there are scenarios in which the statistic Xk has

more power than the ρ-test; for instance, one such case would be when each of the

different haplotypes affects the disease independently.

2.2.3 Estimating the values ~qCh.

As Theorem 1 shows that the vector ~a that maximizes the power of the

ρ-test is ~qCh, we are interested in estimating the values qCh from the HapMap
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population closest to the cases and controls populations.

In order to do so, we first estimate the haplotype frequencies over the set of

SNPs s, s1, . . . , sm. The haplotype frequencies in a population can potentially be

estimated by different methods such as EM [43] or PHASE [106]. For our needs, we

use HaploFreq [55], which is based on a similar likelihood model to the one used by

the EM algorithm, but it is provably more efficient and empirically more accurate

than the EM algorithm. In particular, when performing whole genome association

studies, the efficiency of these algorithms is crucial, as every hidden SNP s requires

a new calculation of the haplotype frequencies in the HapMap population.

Given the haplotype distribution over the entire set of SNPs, it is easy to

calculate the values qCh by setting qCh =
pCh

pCh + pch
. Since the frequencies pCh and

pch are given by HaploFreq, we are able to calculate qCh.

2.3 Results

2.3.1 Benchmarks over HapMap ENCODE Regions.

In order to evaluate the relative utility of our ρ-test in comparison with

single SNP and multi-marker methods we performed several benchmarks using the

HapMap reference samples over the ENCODE regions. These data are made up

of polymorphisms from 270 individuals from four populations over ten genomic

regions spanning a total of 5Mb of sequence. These regions have been carefully

studied and are believed to have complete ascertainment for SNPs with frequency

greater than 5%. They are commonly used to estimate the performance of associa-

tion statistics since there are still many ungenotyped and unknown common SNPs

in the rest of the genome.

In a typical association study there is a set of marker SNPs (tag SNPs),

which are genotyped, and a set of SNPs that are not observed (hidden SNPs).

In order to replicate this scenario, we used the intersection of SNPs from current

genotyping platforms and SNPs from each of the ENCODE regions as our marker

sets. Following the example of others we measured the correlation between each

SNP in the ENCODE regions with the best marker for the SNP from single tag
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SNPs, multi-marker tags (HAPs), and our weighted haplotypes (WHAPs). We

used the correlation coefficient r2, and r2
h where appropriate, as measures of utility

of the various methods. Sets with a higher correlation have a greater potential

power as they are stronger proxies for the uncollected SNPs in the region.

The HAP and WHAP tags were selected by finding the strongest proxy via

enumeration over all possible sets of two, three and four tag SNPs within 100Kb of

each SNP in every ENCODE region. We limited the tag length to four in order to

prevent over-fitting (see below for a further examination of the issue of over-fitting).

We used two sets of tag SNPs for each ENCODE region: the SNPs contained in

the Affymetrix 500k set and the SNPs contained in the Illumina HumanHap 550

set.

We compared the correlation coefficient of the weighted haplotypes used for

the ρ-test (denoted by WHAPs) to the correlation coefficient with a single SNP

(denoted SNPs) , and a single haplotype (denoted HAPs). Since the effective sam-

ple size is linearly related to the correlation coefficient, we measured the fraction of

common SNPs (minimum allele frequency ≥ 5%) captured with correlation coeffi-

cient larger than a given threshold, for a range of thresholds. Figures 2.2 and 2.3

demonstrate this performance evaluation over the sets of tag SNPs, and the four

HapMap populations. The figure demonstrates that the ρ-test outperforms each

of the other methods in terms of correlation. Indeed, the ρ-test has significantly

higher correlation for every population on every platform at all thresholds. This is

especially pronounced in populations with complex LD structure (YRI). Although

the improvement shown by our simulations is only a modest one, we expect this

improvement to be more noticeable when haplotypes of more than four SNPs are

used. As discussed below, this is currently prohibited due to effects of over-fitting,

but larger reference data sets may allow such improvements in the future.

We explore the difference between HAPs and WHAPs by examining their

relative increase in performance over using single SNPs. We observe that both

WHAPs and HAPs are significantly stronger proxies than SNPs. In order to elu-

cidate their differences, Tables 2.1 and 2.2 present the fraction of common SNPs

captured with correlation coefficient ≥ 0.8 and the average correlation coefficient.
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Evidently, the weighted haplotypes are a much better proxy to the hidden SNPs

than the best haplotype (HAPs) or tag the best SNP. In fact, we observe that the

ρ-test increases the correlation relative to the best haplotype or SNP for 50.4% of

the SNPs. In Figure 2.4, we outline the distribution of weights for tags of these

50.4% of the SNPs. Unfortunately, even though in the majority of the cases the

weighted haplotypes serve as a better proxy than the best haplotype or SNP, the

average increase in r2 is modest, since the increase is greater than 0.1 for 18.1% of

the SNPs.

Table 2.1: Number of SNPs captured by each of the methods. Each row contains
the fraction of common SNPs (MAF ≥ 0.05) captured with r2 ≥ 0.8 for each
genotyping platform and population used in this study with tags up to length 4
SNPs. The Tag Set column specifies the genotyping platform as the Affymetrix
500K or Illumina HumanHap 550 set. For each hidden SNP, the four tag SNPs
where chosen among all possible quartets of SNPs in 100kb distance from the SNP.
The %Inc. column shows the % increase in the fraction of captured SNPs when
moving from the HAPs to WHAPs. For example, the first row shows that in the
CEPH population over the Affymetrix 500k chip, multi-marker tags capture 77%
of SNPs while weighted haplotypes capture 84% of the SNPs. This is an 8.52%
increase in the number of captured SNPs. We prove that WHAPs always perform
at least as well as HAPs in the Methods section.

Tag Set Pop SNP HAP WHAP %Inc.

Affymetrix 500k CEU 0.61 0.77 0.84 8.52
Affymetrix 500k CHB 0.62 0.76 0.83 8.95
Affymetrix 500k JPT 0.59 0.73 0.81 11.67
Affymetrix 500k YRI 0.37 0.61 0.74 21.06

Illumina HumanHap 550 CEU 0.88 0.97 0.98 1.60
Illumina HumanHap 550 CHB 0.80 0.91 0.94 3.49
Illumina HumanHap 550 JPT 0.78 0.90 0.95 4.48
Illumina HumanHap 550 YRI 0.52 0.83 0.92 10.63

2.3.2 Power Evaluation.

Although correlation is important in determining the power of a method,

other factors such as the frequency of a causal SNP, number of individuals, disease

model, prevalence, relative risk, and multiple hypothesis correction contribute to

the overall power. In order to measure the increase in power in practice, we used
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Table 2.2: Average r2 obtained by the different methods. Each row contains
average correlation coefficient for each genotyping platform and population used
in this study with tags up to length 4 SNPs. The Tag Set column specifies the
genotyping platform as the Affymetrix 500K or Illumina HumanHap 550 set. The
%Inc. column shows the % increase in the average correlation coefficient when
moving from the HAPs to WHAPs.

Tag Set Pop SNP HAP WHAP %Inc.

Affymetrix 500k CEU 0.77 0.87 0.91 4.37
Affymetrix 500k CHB 0.75 0.86 0.91 4.96
Affymetrix 500k JPT 0.74 0.85 0.90 5.88
Affymetrix 500 YRI 0.59 0.79 0.87 9.17

Illumina HumanHap 550 CEU 0.92 0.97 0.99 1.26
Illumina HumanHap 550 CHB 0.86 0.95 0.97 2.42
Illumina HumanHap 550 JPT 0.86 0.94 0.97 2.77
Illumina HumanHap 550 YRI 0.71 0.91 0.96 4.84

the complete phased data for the ENCODE regions from NCBI [122] to simulate

panels of 1000 cases and 1000 controls with a disease prevalence of 0.01, and rel-

ative risk of 1.5 For each SNP with MAF ≥ 0.05, we generated a panel in which

the SNP is assumed to be the causal SNP. The total number of such panels was

32017, corresponding to the number of SNPs with MAF ≥ 0.05. We evaluated

each statistic for these panels using the tag SNPs from the Affymetrix 500k and

Illumina HumanHap 550 SNP sets in each region. For the HAP and WHAP tests,

for every hidden SNP in the region, we found the tags with maximum correlation

to that SNP by enumerating over all possible subsets of SNPs within a window of

100kb. We estimated p-values using a permutation test with 10,000 permutations

in order to correct for multiple hypotheses. We consider a causal SNP as iden-

tified if its p-value adjusted for multiple hypothesis is less than 0.01. Table 2.3

presents the results of these power simulations. In order to illustrate the difference

between multi-marker and our weighted haplotypes method, the table presents the

average relative power taken over all ten ENCODE regions when compared to the

ideal baseline situation in which we genotype every SNP. Comparing the power

to genotyping every SNP helps remove bias caused by factors such as differing

minor allele frequencies which are independent of correlation coefficient. As ex-
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pected from the results of the correlation coefficient experiment, we observe that

our method outperforms the multi-marker method.

2.3.3 Robustness to over-fitting.

Our method is based on the assumption that the linkage disequilibrium

structure is consistent between the reference and case control panels. There are

several reasons why this may not be the case and have the potential of limiting

the power of of our method. First, it is not clear a priori whether the weights

estimated from one population apply to another. In order to simulate discrepan-

cies between the HapMap population and the case/control populations, we used

the Han Chinese (CHB) genotype data to choose the best tags and estimate the

weights of haplotypes while measuring the power (using the ρ-test) over simula-

tions generated using the Japanese (JPT) population. For every hidden SNP in the

region, we found the tags with maximum correlation to that SNP by enumerating

over all possible subsets of SNPs within a window of 40kb in the CHB population.

Using the Affymetrix 500k tags, the power of simulations using the JPT population

was 74%, 76%, and 78% for the best SNPs, haplotypes and weighted haplotypes

respectively obtained from the CHB population. Using the Illumina HumanHap

550 tags, the power of simulations using the JPT population was 83%, 88%, and

89% for the best SNPs, haplotypes, and weighted haplotypes respectively. Evi-

dently, our method is not affected considerably by the difference in the population

structure between the reference data set and the case-control populations.

Another complication may be the limited data size of the HapMap popu-

lations. Since the HapMap population is limited in size, there is the risk that the

weights do not represent the true population haplotype frequencies but might be

an artifact of over-fitting. In order to measure the effect of over-fitting on our re-

sults, we re-estimated the haplotype frequencies using only half of the individuals

in the HapMap panels, and then measured the power on the rest of the individuals

with weights derived from first half. As seen in Table 2.3, these two error source

do not seem to affect our method considerably. If there was significant over-fitting,

we expect power to drop significantly.
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Table 2.3: Power simulations. Each row shows the power of HAP and WHAP
tests relative to genotyping all SNPs averaging over all 10 ENCODE regions in
simulated case control studies of 1000 cases and 1000 controls assuming a relative
risk of 1.5. The Pop is the population used to generate the case and controls and
find tags. The HAP and WHAP columns show the relative power of each method
respectively. For any population marked with an “h”, haplotype weights were
estimated using only half of the individuals from the HapMap reference panel data
and power was measured using simulations over the other half.

Tag Set Pop SNP HAP WHAP

Affymetrix 500k CEU 0.92 0.94 0.96
Affymetrix 500k CHB 0.90 0.94 0.95
Affymetrix 500k JPT 0.90 0.93 0.95
Affymetrix 500k YRI 0.77 0.88 0.92

Illumina HumanHap550 CEU 0.98 0.98 0.99
Illumina HumanHap550 CHB 0.95 0.97 0.98
Illumina HumanHap550 JPT 0.96 0.97 0.99
Illumina HumanHap550 YRI 0.86 0.95 0.96

Affymetrix 500k CEUh 0.92 0.93 0.94
Affymetrix 500k CHBh 0.90 0.91 0.91
Affymetrix 500k JPTh 0.89 0.91 0.92
Affymetrix 500k YRIh 0.77 0.87 0.90

Illumina HumanHap550 CEUh 0.96 0.97 0.98
Illumina HumanHap550 JPTh 0.96 0.96 0.96
Illumina HumanHap550 CHBh 0.95 0.96 0.96
Illumina HumanHap550 YRIh 0.87 0.95 0.95

In addition, if there was significant over-fitting, we would expect spurious

correlation (high r2
h values) between weighted haplotypes and hidden SNPs due to

the limited size of the HapMap populations. We measure the amount of spurious

correlation by considering tag SNPs from all ENCODE regions as proxies for a

random set of hidden SNPs from an ENCODE region on another chromosome.

For each of the hidden SNPs, we found the best pair, triplet, and quartet of tag

SNPs from other ENCODE regions, and the corresponding haplotype weights. In

all cases no set of tag SNPs achieved a r2
h > 0.5 and the vast majority had very

low r2
h which is evidence that our results are not due to over-fitting.
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2.4 Discussion

r2
h and the ρ-test can be used as a natural criterion for tag SNP selection,

according to a similar argument for which r2 is currently used for tag SNP selection

methods. Here, in contrast to previous methods, we suggest not to use the the

LD between a specific haplotype and the causal SNP, but between a weighted

combination of the haplotype and the SNP.

Intuitively, our method increases power over traditional multi-marker meth-

ods because the weighted haplotypes are effectively an unbiased estimate for the

allele frequency of the hidden SNP. Traditional multi-marker methods are a biased

estimate of this allele frequency and we believe that this discrepancy is the root

cause of the difference in power. From this point of view, our approach is related to

methods that attempt to predict the allele frequency of hidden SNPs[19, 118, 18].

In particular, our method has some similarities with the method proposed in Stram

2004[109] where the expectation of the hidden SNP is obtained from the haplo-

type frequencies with a block. However, our approach differs from the methods

presented in Stram 2004[109, 117] because we do not rely on haplotype blocks

and instead use the multi-marker tags that maximize the power of the indirect

association (according to our analytic predictions), regardless of their location.

In this work we focused on the optimization of haplotype-based tests for

association studies, when the set of genotyped SNPs (tag SNPs) is fixed. In cases

where the tag SNPs are not fixed, it is also of interest to find a set of tag SNPs

that will maximize the power of the study, when the genotyping is followed by the

haplotype analysis suggested here. The design of such tag SNP selection algorithm

is beyond the scope of this work, although it is likely that a greedy method such

as the one used for Tagger [38] would be a reasonable strategy to find such a set

of SNPs.

The complete set of WHAP tags for the Affymetrix 500k and Illumina

HumanHap 550 SNP sets as well as software for performing association tests are

available upon request.
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2.5 Preliminaries

Proof. For every haplotype h ∈ {0, 1}k−1 on the SNPs s1, . . . , sk−1, we have that

w0,h =
w0,(h,0)p(h,0)+w0,(h,1)p(h,1)

p(h,0)+p(h,1)
, and ph = p(h,0) + p(h,1). Thus,

w2
0,hph =

(w0,(h,0)p(h,0) + w0,(h,1)p(h,1))
2

p(h,0) + p(h,1)

< w2
0,(h,0)p(h,0) + w2

1,(h,1)p(h,1),

and therefore,

Rs0,...,sk−1
=

∑

h∈{0,1}k−1 w2
0,hph − q2

0

q0q1
<

∑

h∈{0,1}k−1(w2
0,(h,0)p(h,0) + w2

0,(h,1)p(h,1))− q2
0

q0q1
= Rs0,...,sk

Note that in order to interpret the theorem correctly, one has to make

sure that λ2 can be approximated as a χ2 distribution. This holds as long as

the haplotype frequencies can be estimated with low error rate from the data.

Thus, the theorem states that when k gets larger, we gain power by increasing R,

but we actually may lose some power due to inaccuracies in haplotype frequency

estimations. The latter is a caveat in any haplotype-based test. Since the accuracy

of the haplotype frequency estimations has been shown empirically to be quite

accurate over short regions [80], we expect that in practice the power of these test

is maximized for haplotypes of short region (20kb-100kb).

2.5.1 Redefinition of R.

It is easy to see that the value of R can be written as

Rs0,...,sk
=

∑

(x(0,h) − q0ph)2

q0q1
,

where ph is the probability for the haplotype h (where h is taken over all SNPs

except for s0), x(0,h) is the frequency of (0, h), and q0, q1 are the allele frequencies

of s0. This definition resembles the definition of r2.
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2.6 The Continuous Case

In order to improve the power of a study we want to use the HapMap link-

age structure to develop statistical tests for SNPs not found on the genotyping

platform. The above version of the WHAP test was designed to do this in the

case control study setting using a χ2 like test. In this continuous setting genotype

dosages for every HapMap SNP are estimated for each individual and an addi-

tive linear model is used to generate a statistical test. In addition to providing a

means of studying continuous data, the estimated dosages can be used in a logistic

regression framework for case control data. This has the advantage of allowing

correction for covariates such as population substructure, age, sex, and other con-

founding variables. This method was developed as part of a study on metabolic

phenotypes in a Finnish Population [100].

Weighted Haplotype Association (WHAP) is a statistical method to test

association between a trait of interest and untyped HapMap SNPs by relying on

haplotypes of genotyped markers. We extended WHAP to deal with continuous

phenotypes and we introduced new quality control procedures that we briefly de-

scribe as follows:

Let M be an untyped SNP with major allele A and minor allele a. Let SM

be a set of genotyped SNPs s1, s2, . . . , sk which are shared between HapMap and

the SNPs in the study and that are informative about M (we will discuss later how

this set is selected). Let H=h be the set of haplotypes observed in HapMap for the

SNPs in SM . Each of these haplotypes can be extended to include M, leading to

two possible haplotypes:ha carrying the minor allele a and hA carrying the major

allele A. Let pha and phA be the respective frequencies of these haplotypes in

HapMap. For each haplotype h ∈ H over the set of genotyped SNPs SM we can

then calculate the conditional probability of a minor allele a at the untyped SNP

M:

P (a | h) =
pha

pha + phA
(2.1)

Assuming that the study population is similar to the HapMap population,
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we can evaluate the expected minor allele count for SNP M, in each genotyped

individual, using the conditional probabilities above. Specifically, let h1i and h2i

be the two haplotypes for individual i over the SNPs in SM . Then the expected

minor allele count at SNP M for individual i is

Ĉi = P (a | h1i) + P (a | h2i) (2.2)

To test for association between the expected minor allele count Ĉ and the

continuous phenotype Y we use a standard linear regression with the phenotypes

as the response variables:

Yi = Ĉiβ + εi (2.3)

We evaluate the significance of the association of SNP M to the phenotype

using the p-values from the F-test of this regression.

For each untyped SNP M the set SM is selected by searching, within a

window of 40kb around M, the collection S, of at most 3 SNPs, which maximizes

the following measure:

r2
M,S =

∑

h∈H P (a | h)(pha − paph)
pa(1− pa)

(2.4)

where H is the haplotype collection for the SNP in S, ph is the frequency

of haplotype h, and pa is the minor allele frequency for M. This measure takes on

values between 0 and 1 and was introduced by Nicolae [85] and Zaitlen et al. [121].

The value of r2
M,SM

(correlation of SNP M with its best tag set SM ) provides

a measure of how well the SNP can potentially be imputed. In the present study,

we have imputed only SNPs for which the value of r2
M,SM

was larger then 0.7.

Making sure that r2
M,SM

> 0.7, however, only guarantees that SNP M can

be reasonably well imputed using a population identical to HapMap. The specific

population under study, however, can have a haplotype distribution substantially

different from those observed in HapMap. To avoid spurious results under this

circumstance, we adopt the following criteria.
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1. If the haplotype h observed for one individual across the SNPs in S is

not observed in HapMap, we do not estimate the allele count for that individual.

2. If we observe more then 10% of individuals with haplotypes not in

HapMap, we do not estimate allele counts for the SNP M .

Chapter 2, was published in The American Journal of Human Genetics, Vol

80, pp 683-91, 2007. Noah A. Zaitlen, Hyun Min Kang, Eleazar Eskin, and Eran

Halperin, “Leveraging the HapMap correlation structure in association studies”.

The dissertation author was the primary investigator and author of this paper.
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Figure 2.2: Fraction of SNPs captured by each of the methods, when tested on the
marker set of the Affymetrix 500k array. This figure shows the fraction of SNPs
with minimum allele frequency (MAF) ≥ 5% that are captured by a marker SNP,
haplotype (HAP), or weighted haplotype (WHAP). The notion of a hidden SNP
being captured depends on the r2 between the proxy and the SNP. For each of the
figures, the x-axis represents the r2 threshold, and the y-axis represents the fraction
of common SNPs with r2 greater than the threshold. The three lines correspond to
single SNPs, HAPs, and WHAPs. The populations are the four ENCODE panels
consisting of European Ancestry (CEPH), Yoruba people of Ibadan, Nigeria (YRI)
, Han Chinese (CHB), and Japanese (JPT). Evidently, WHAPs significantly out-
perform both SNPs and HAPs over any platform and population, but do especially
well in populations with more complex LD structure such as YRI.
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Figure 2.3: Fraction of SNPs captured by each of the methods, when tested the
the marker set of Illumina HumanHap 550 BeadArray. This figure shows the
fraction of SNPs with minimum allele frequency (MAF) ≥ 5% that are captured
by a marker SNP, haplotype (HAP), or weighted haplotype (WHAP). The notion
of a hidden SNP being captured depends on the r2 between the proxy and the
SNP. For each of the figures, the x-axis represents the r2 threshold, and the y-axis
represents the fraction of common SNPs with r2 greater than the threshold. The
three lines correspond to single SNPs, HAPs, and WHAPs. The populations are
the four ENCODE panels consisting of European Ancestry (CEU), Yoruba people
of Ibadan, Nigeria (YRI) , Han Chinese (CHB), and Japanese (JPT).
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Figure 2.4: Histogram of the distribution of haplotype weights for SNPs in which
weighted haplotypes provide a better proxy than a single haplotype or a single SNP.
The weight distribution was generated from the CEPH population over ENCODE
region ENm010.



Chapter 3

Single Nucleotide Polymorphism

Tag Selection by Reduction to

SAT

3.1 Introduction

Whole genome association is a powerful method for discovering the genetic

basis of human diseases. Recently, it has been successfully employed to reveal novel

loci correlated with risks for diseases including coronary artery disease, bipolar

disorder, type 1 and type 2 diabetes, amongst many others[26]. In brief, a subset of

all single nucleotide polymorphism (SNP) markers is genotyped in case and control

populations. The distribution of each SNP’s genotypes is compared between the

populations via a statistical test in order to identify loci associated with the altered

risk for the disease.

Even with the tremendous technological advances that have driven down

the cost of collecting SNP genotypes, collecting all known SNPs is prohibitively

expensive. Genetic association studies take advantage of the fact that genotypes

at neighboring SNPs are often in linkage disequilibrium (LD) or are correlated

with each other. This correlation allows for “indirect association” where a causal

SNP is detected not by genotyping the SNP directly, but instead by genotyping

35
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a “tag” SNP or SNP that is correlated with the causal SNP. The availability of

reference data sets such as those provided by the HapMap project[25] allow for

us to measure the linkage disequilibrium patterns between SNPs. Naturally, using

this information to determine which SNPs to select as tags is a central problem in

designing association studies and has been extensively studied [52]. It is commonly

referred to as the tag SNP selection problem.

Research on the tag SNP selection problem can be roughly split into two

categories: the statistical criteria used for selecting tag SNPs and the algorithms

for choosing a tag set given this statistical criteria. Many statistical criteria have

been proposed for tag SNP selection [52]. The most popular criterion considers

the square correlation coefficient r2 between SNPs. Under this formulation of the

tag SNP selection problem or the Single SNP r2 tag SNP selection problem, the

goal is to choose a subset of the SNPs as tags such that each SNP not selected in

the tag set has an r2 value with a tag SNP above a minimal threshold. Relatively

few algorithmic approaches have been proposed for this problem with the greedy

approach being the most widely used approach[18]. This form of the problem

is NP-complete [4] and it was widely believed that an efficient optimal solution

capable of whole genome scale data would not exist [52]. Several existing methods

address this issue by various heuristics and/or alteration of the problem definition.

Halldorson et al. [53] restrict LD patterns to a window and FESTA [94] solves

the problem by partitioning the SNPs into precincts which do not have any linked

SNPs in them and then exhaustively enumerating the solutions within the precinct.

In this work we present a solution to the tag SNP selection problem which

can discover all optimal solutions efficiently and can scale to the whole genome.

Our method encodes the tag SNP selection problem as an instance of the satisfia-

bility (SAT) problem. Here, our SAT instances are clauses in conjunctive normal

form (CNF) where a variable assigned to true corresponds to the inclusion of a

SNP into the tag set.

A satisfying assignment of variables to truth values in the SAT instance

yields a valid solution to the tagging problem (and vice versa). As we shall clarify, a

“minimal” satisfying assignment yields an optimal solution to the tagging problem.
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We compare the results of our method on the single SNP r2 tag SNP se-

lection problem to FESTA [94] and Halldorson’s method [53] over the Encode

[25] data set. We also demonstrate that our methods scales to the whole genome

HapMap data. Consistent with previous studies, optimal solutions for the tag SNP

selection method are only slightly more efficient than greedy solutions[94]. One

advantage of our framework is that we can enumerate the entire set of optimal so-

lutions in polynomial time allowing for flexible designs. Another advantage is that

it extends to more challenging variants of the tag SNP selection problem. We pro-

vide the first optimal solution for selecting multi-marker tags. Multi-marker tags

have been shown to significantly increase the power of association studies[90, 121].

We also demonstrate an approach for choosing the best-N tags to optimize power.

This is a more challenging problem because when the budget of tag SNPs is fixed,

increasing the number of SNPs in one region, requires removing a SNP in another

region which creates long range dependencies in the optimization problem. We

show how this problem can be reduced to Max-SAT from which we can obtain

optimal solutions.

3.2 Methods

We present methods for optimally solving several variations of the tagging

problem of selecting a subset of tag SNPs to be genotyped as part of an association

study from a larger set of known SNPs.

First we show how to optimally solve the local single SNP r2 tagging prob-

lem in which we search for a minimal set of tag SNPs which cover the remaining

SNPs in a region of the genome with an r2 above some minimum threshold. Sec-

ond, we present a method for combining our optimal solutions in local regions

to an optimal solution for the entire genome. Third, we extend our solution to

multi-marker tags or tags which combine two or more SNPs. The use of multi-

marker tags can significantly reduce the number of tags which need to be collected

in order to cover a region, but the optimization procedure is much more difficult.

Finally, we show how to optimally solve the best-N tagging problem variant where
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the number of tag SNPs is fixed (in this case N) and a function such as power, is

maximized over the set of SNPs. This formulation of the problem can significantly

increase the statistical power of a tag set, but raises additional computational chal-

lenges. Since the number of SNPs is fixed, adding an additional SNP in one region

of the genome requires removing a SNP in another region of the genome which

introduces long range dependencies in the problem.

3.2.1 Local Single SNP r2 Tagging

Let S = {si}ni=1 be a set of SNPs. We say SNP si “covers” SNP sj if their

correlation coefficient r2, exceeds some threshold r2
min. If T ′ ⊆ S and ∀sj ∈ S∃si ∈

T such that r2
ij ≥ r2

min we call T ′ a valid cover of S. Our goal is to select the

smallest set T ′ ⊆ S that is a valid cover of S.

Consider the example in Figure 1, where we have 6 SNPs s1, . . . , s6, and the

pairwise r2 values described in the table in Figure 1(a). Suppose that we have the

threshold r2
min = 0.8. We can represent the SNPs as the graph shown in Figure 1(b)

where an edge denotes an r2 above the minimum threshold. The standard greedy

algorithm [18, 38] picks tag SNPs by repeatedly selecting the SNP with the largest

number of uncovered neighbors. We can easily see that there are two optimal

solutions, T = {s4, s2} and T = {s4, s1}. Note that one greedy solution will select

SNP s3 in the first step resulting in a non-optimal solution T = {s3, s1, s6}. Our

solution to the tag SNP selection problem will characterize all optimal solutions

in a compact DAG, which happens to be a tree in the example of Figure 1(c).

We shall reduce the problem of identifying a valid selection of SNPs to

the problem of identifying a satisfying assignment to a propositional sentence in

conjunctive normal form (CNF). In particular, we want a sentence in CNF where

satisfying assignments correspond to a valid selection of SNPs. We create a literal

for every SNP and a clause for every SNP consisting of literals that can cover that

SNP.

Given a threshold r2
min, consider a sentence in CNF: Φ = φ1 ∧ · · · ∧φn with
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(a)

r2
ij s1 s2 s3 s4 s5 s6

s1 1.0 0.9 0.5 0.4 0.2 0.4
s2 0.9 1.0 0.9 0.5 0.3 0.2
s3 0.5 0.9 1.0 0.9 0.8 0.1
s4 0.4 0.5 0.9 1.0 0.9 0.8
s5 0.2 0.3 0.8 0.9 1.0 0.5
s6 0.4 0.2 0.1 0.8 0.5 1.0

(b)

(c)

Figure 3.1: ]

(a) Single SNP r2 table (b) Graph of cover problem (c) NNF equivalent to CNF
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as many clauses φi as there are SNPs si, where each clause is of the form:

φi =
∨

r2ij≥r2min

sj

Each SNP sj ∈ S is a positive literal in the CNF sentence Φ, and appears in clause

φi if and only if SNP sj can cover SNP si. A valid selection T ′ of SNPs then

corresponds precisely to a satisfying assignment of Φ.

In order to find a minimally valid selection T of SNPs, we seek a mini-

mum cardinality model of our propositional sentence, where a minimum cardinality

model is a satisfying assignment with a minimal number of positive literals.

Consider the example in Figure 1 with six SNPs s1, . . . , s6. Given the

threshold r2
min = 0.8 we have the following CNF formula:

(s1 ∨ s2) ∧ (s1 ∨ s2 ∨ s3) ∧ (s2 ∨ s3 ∨ s4 ∨ s5)

∧(s3 ∨ s4 ∨ s5 ∨ s6) ∧ (s3 ∨ s4 ∨ s5) ∧ (s4 ∨ s6)

We have two minimum cardinality models, (¬s1, s2,¬s3, s4,¬s5,¬s6) and

(s1,¬s2,¬s3, s4,¬s5,¬s6), corresponding to our two minimally valid selection of

SNPs.

Not surprisingly, identifying a minimum cardinality model for a given sen-

tence in CNF is also an NP–hard problem. Our approach is based on converting

our sentence Φ in CNF into a logically equivalent sentence ∆ in decomposable

negation normal form (DNNF) [29, 30, 32, 33]. DNNF is a logical representation

that allows queries, that are in general intractable, to be computed in time poly-

nomial in the size of the DNNF sentence. For example, if a conversion from CNF

to DNNF does indeed result in a sentence of manageable size, we can efficiently

test whether the original sentence is satisfiable, enumerate its models, and identify

another sentence in DNNF that characterizes all its minimum cardinality models.

By enumerating the models of the resulting sentence, we can enumerate all of the

minimally valid selections of SNPs. In general, there are no guarantees that a CNF

can be converted to a DNNF of reasonable size, but we demonstrate that for the

tag SNP selection problem, due to the inherent local structure of the problem, our

approach is tractable.
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This conversion is performed here by the c2d compiler, which compiles

CNF instances into DNNF [16].c2d further enforces the determinism property,

and more specifically, compiles CNF instances into d-DNNF. The c2d compiler

has already been successfully employed in a number of other applications, serving

as a backbone reasoning system in support of higher level tasks. For example,

c2d was used as the backbone for planning systems [12, 61, 51], for diagnostic

systems [41, 8, 104, 62, 7], for probabilistic reasoning [115, 21, 101, 20], and for

query rewrites in databases [119]. In each one of these applications, high level

reasoning problems were encoded into CNF, which was compiled into DNNF by

c2d. The resulting compilation was then used to solve the original problem by

posing polytime queries to it.

Decomposable negation normal form

A negation normal form (NNF) is a rooted directed acyclic graph in which

each leaf node is labeled either by a literal (say i for a positive literal, and −i
for a negative literal), or simply by true or false. Each internal node is labeled

with a conjunction (∧ or AND) or a disjunction (∨ or OR); Figure 3.1(c) depicts

an example. A negation normal form is decomposable (DNNF) if it satisfies the

Decomposability property: for each conjunction in the NNF, the conjuncts do not

share variables. The NNF in Figure 3.1(c) is also in DNNF.

If we are able to efficiently compile a CNF instance into DNNF, many

queries are straightforward to compute [29]. For example, we can test if a DNNF

sentence is satisfiable by simply traversing the graph bottom-up, while visiting

children before parents. If a leaf node is labeled by a literal (i or −i), or true, then

it is satisfiable; otherwise, it is unsatisfiable (labeled with false). An OR node is

satisfiable iff any of its children are satisfiable, while an AND node is satisfiable iff

all of its children are satisfiable. We can compute the minimum cardinality of a

sentence and enumerate its models in a similar way [29, 34].

Before we proceed to describe how to compile a sentence in CNF into DNNF,

consider the conditioning of a sentence ∆ on an instantiation α, denoted ∆ | α.

This operation yields a sentence that can be obtained by replacing every literal in
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∆ with true (respectively, false) if it is consistent (inconsistent) with instantiation

α. For example, conditioning the DNNF (¬a ∧ ¬b) ∨ (b ∧ c) on instantiation b ∧ d
gives (¬a ∧ false) ∨ (true ∧ c). Note that DNNF is closed under conditioning, i.e.,

conditioning a DNNF ∆ on an instantiation α results in another DNNF. Moreover,

the resulting sentence ∆ | α does not mention variables assigned by α.

Consider now the following theorem, proved in [29], which motivates the

compilation procedure underlying c2d.

Theorem 2 (Case Analysis). Let ∆1 and ∆2 be two sentences in DNNF, and let

∆ be the sentence
∨

α(∆1 | α)∧(∆2 | α)∧α, where α are instantiations of variables

mentioned in both ∆1 and ∆2. Then ∆ is in DNNF, and is equivalent to ∆1 ∧∆2.

This theorem suggests a recursive algorithm DNNF1(Φ) that converts a

sentence Φ in CNF into a sentence ∆ in DNNF:

1. If Φ contains a single clause φ, return DNNF1(Φ)← φ. Note that a clause is

vacuously decomposable.

2. Otherwise, return

DNNF1(Φ)←
∨

α

DNNF1(Φ1 | α) ∧ DNNF1(Φ2 | α) ∧ α,

where Φ1 and Φ2 is a partitioning of clauses in Φ, and α is an instantiation

of the variables mentioned in both Φ1 and Φ2.

We can see that this procedure gives us the decomposability property, but at the

expense of increasing the size of the original sentence. This increase is incurred

primarily due to the case analysis performed, and the extent of this increase is

sensitive to the way we decide to partition the clauses of the input sentence Φ. In

particular, we would want to minimize the number of common variables between

Φ1 and Φ2, as the complexity of case analysis is exponential in this number.

Partitioning can be guided by decomposition trees, or simply d-trees [29].

A d-tree T for a CNF Φ is a binary tree whose leaves correspond to the clauses

in Φ. An example d-tree for the CNF given used for the example in Figure 3.1

is shown in Figure 3.2. Intuitively, the above compilation procedure traverses the
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Figure 3.2: A d-tree for the CNF used for the example in Figure 3.1. Internal
nodes are labeled with their contexts and cutsets.

d-tree, starting from the root, where case analysis is performed based on how the

d-tree partitions the clauses of the CNF Φ. In particular, each interior node t

is associated with the set of clauses that appear below it, and the partition is

determined by the clauses of t’s left and right children.

As we can see in Figure 3.2, each internal node is labeled with two variable

sets: the cutset and the context. At a given node t, the cutset tells our compilation

algorithm which variables to perform case analysis on. The context tells us those

variables that appear in both of t’s children, but have already been instantiated

for case analysis by an ancestor. An instantiation α of the context variables can

then be used as a key for a cache that stores the results of compiling the subset of

clauses Φ | α. When a node is revisited with the same context, then the algorithm

can simply return the DNNF sentence ∆ | α already computed. For example, at

the root of the tree, the cutset contains {s3, s4, s5} since those variables appear

in both children. If we follow the left branch twice, the context is now {s2, s3},
which was instantiated by the root and its left children. Note that this node will

be visited multiple times for different instantiations of {s4, s5}, but only different

instantiations of the context yield different subproblems. Thus, when this node is

revisited with the same context instantiation, we simply fetch the result from the

cache. It is this subformula re-use that allows compilation to moderate the expo-

nential growth of the formula caused by case analysis.In particular, the complexity

of compilation can be bounded in terms of the size of the context and the cutset

[29]. The c2d compiler, while based on this approach, employs more advanced

techniques to further improve on the efficiency of compilation [31].
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Scaling to Whole Genome Tagging

The c2d compiler is capable of computing minimal tag sets, for several

thousands of SNPs. Unfortunately, memory becomes an issue when we try to

compile even larger regions of the genome. To encode the entire genome as a CNF,

however, we must use 3.8 million literals and 3.8 million clauses. Clearly, we need

new techniques to scale to this problem size. One idea is to compile sufficiently

small regions of the genome into DNNF, which are then “stitched” together to

construct a DNNF for the entire genome. We will then need to specify two things:

how to specify the individual regions, and how to stitch the resulting minimum

cardinality models together.

a1 a2 a4 a5 a6 a9a3 a7 a8 a10 a11 a12

A1 A2 A3

B1={a1,a3,a4,a9} B2={a1,a6,a7,a9}

Figure 3.3: Partitioning the SNPs. We draw an edge between SNP (ai) and (aj)
if (ai) and (aj) can cover a common SNP.

Consider Figure 3.3 where we have 17 SNPs in a region, and where we have

drawn an edge between two SNPs if their r2 exceeds a minimum r2 threshold. We

have further partitioned the region into 5 Siberians, A1, . . . , A5, which represent

also a partitioning of the CNF Φ into corresponding sets of clauses Φ1, . . . ,Φ5.

Moreover, we have boundary sets B1, . . . , B4 that record the SNPs that interact

across two halves of Φ. For example, B2 contains all variables mentioned by both

Φ1,Φ2 and Φ3,Φ4,Φ5.

We could compile into DNNF each Φi in isolation, but the interaction among

them prevents us from simply conjoining the result: it will neither be in DNNF, nor
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Φ1

Φ3Φ2

Figure 3.4: A d-tree with DNNF sentences for leaves.

will it represent the minimal models. We shall instead run a compilation algorithm,

similar to the one given previously, except that it will operate on a d-tree whose

leaves are assigned DNNF sentences (rather than just clauses); see Figure 3.4. If

∆i are the respective DNNF sentences compiled by c2d, we can perform a similar

compilation process, external to c2d. At an interior node with a child containing

∆i, the boundaries guide us in case analysis: Bi−1 is the context and Bi is the

cutset. Going further, we can prime the compiler caches by precomputing the

sentences (∆i | Bi−1∪Bi). Intuitively, we are using these sentences as pieces of the

desired DNNF, that are stitched together in a process guided by the compilation

algorithm. Note that to perform this stitching, we need not keep all pieces in

memory, as compilation (and c2d) normally would; this allows us to reconstruct

the full DNNF. It is also possible to keep the sentence implicit, where queries are

implemented to handle individual pieces independently.

When we want to compile into DNNF an instance where we have many

partitions (as we would have for the entire genome), the d-tree extends linearly;

see again Figure 3.4. By [29], we know further that the size of the resulting

compilation is bounded. Suppose we have partitioned the instance into n regions.

Let wi = |Bi−1 ∪ Bi| denote the size of the boundaries surrounding region Ai,

and let w = maxi wi. A region Ai needs to construct 2wi pieces, so if every piece
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(∆i | Bi−1 ∪Bi) has size O(S), then we can bound the size of the resulting DNNF

instance by size O(n2wS).

Clearly, when we decide how to partition the instance, we need to identify

boundaries with as few variables as possible. Upon searching for such boundaries in

the genome for the single SNP r2 tagging problem, we discovered that surprisingly

there were enough boundaries where no interactions occur, and where c2d was

sufficient to compile the resulting regions. In this case, each region is indeed

independent, and we can simply conjoin each region without the need for the

above “stitching.” The maximum number of linked SNPs was 1012 in the CEU

population which took under 1 minute to compile with c2d. However for more

complicated variants of the tagging problem such as those described below, there

are more interactions and independent regions are unlikely to exist.

3.2.2 Multi-Marker SNP Tagging

Recent work has shown that using statistical tests based on haplotypes over

multiple SNPs improves the power of whole genome association studies[90, 121].

In the context of tagging, this permits combinations of tag SNPs (multi-marker

tags) to cover a SNP, allowing for a smaller set of tags to cover the SNPs.

In this situation, an even smaller set T ′ may be a valid cover of SNPs.

Again, we reduce the problem of identifying a valid set of SNPs to satis-

fiability. Given a threshold r2
min, we now have two classes of clauses Φ and Ψ.

Clauses Φ as above enforces constraints that require each SNP in S is covered:

Φ = φ1 ∧ · · · ∧ φn, where there are as many clauses φi as there are SNPs si, but

where each clause is now of the form:

φi =
(

∨

r2j→i≥r2min

sj

)

∨
(

∨

r2j,k→i≥r2min

pjk

)

.

In this case, either a positive literal sj representing SNP sj or a positive literal pjk

representing a SNP pair (sj, sk) can also satisfy clause φi and cover SNP si.

Clauses Ψ enforce the constraints that if a pair literal pjk is true, then both
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sj and sk are true (i.e. in the tag set):

Ψ =
∧

r2j,k→i≥r2min

(pjk ≡ sj ∧ sk)

where pjk ≡ sj ∧ sk are equivalence constraints that ensure that if pjk is selected,

the corresponding pair (sj , sk) is also selected (and vice versa). In clausal form,

this equivalence constraint is given by three clauses: ¬pjk ∨ sj,¬pjk ∨ sk and pjk ∨
¬sj ∨ ¬sk.

Consider the example from the previous section with six SNPs s1, . . . , s6.

Suppose that the pair (s1, s3) can cover s6, and that r2
1,3→6 = 0.9. Given the

threshold r2
min = 0.8, we gain a third optimal solution s1, s3, to go with the two

solutions s4, s2 and s4, s1 from before. Encoding the problem, we have the following

formula:

(s1 ∨ s2) ∧ (s1 ∨ s2 ∨ s3) ∧ (s2 ∨ s3 ∨ s4 ∨ s5)

∧(s3 ∨ s4 ∨ s5 ∨ s6) ∧ (s3 ∨ s4 ∨ s5) ∧
(s4 ∨ s6 ∨ p13) ∧ (p13 ≡ s1 ∧ s3)

We again want a minimum cardinality assignment, but minimizing only the number

of positive si literals. We can introduce constraints pjk ≡ ¬qjk to cancel out the

contribution of the pjk’s to the cardinality with the qjk’s; we can then convert

to DNNF as before. We can also existentially quantify out the pjk literals; this

operation is also supported by c2d [16].

3.2.3 Best-N Tag SNP Selection using a Penalty Term

While r2 is a reasonable measure of correlation between a tag set and the

full set of SNPs, a tag that achieves the min r2 is not necessarily the set that

maximizes the overall statistical power. Another variant of the tag SNP selection

problem is where we have a fixed budget of tag SNPs and we want to obtain the

best tag set for a given objective function defined over the tag set such as statistical

power. The solution we present below for this problem can be applied to a large

class of objective functions including statistical power. In this problem, each pair
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of SNPs is assigned a weight, and the goal is to maximize the sum of the maximum

weight to any tag SNP for each SNP in the region. These weights can be set so that

the problem is maximizing statistical power. However, due to space limitations, we

instead describe our method in the context of maximizing the average r2 between

each SNP and the the best tag in our tag set given a fixed budget of tag SNPs.

For a given tag set T, we say that the r2 for a given SNP in S is the

maximum r2 of any SNPs in T and we compute the average. This problem does

not have the local structure property of single SNP r2 tag SNP selection problem.

We must now keep track of which tag SNP is used to cover each SNP in

the region. Let si and sj be literals for two SNPs, and let cji be the literal for the

event that SNP sj covers SNP si. Note that cij is a different event from cji. Each

cji is associated with a weight wji (e.g. the r2 between si and sj), and we want to

maximize the average weight of the cji’s that are selected (equivalently, the sum
∑

i,j wijcij) given that we are selecting a maximum of N si’s and each SNP can

be covered by only one other SNP. For a consistent instantiation α of the literals

si, cij where there are x positive literals si, we can write this objective function

as Wφ(x)(α), the weight of assignment α with respect to formula φ. Wφ(x)(α) =
∑

i,j wijcij where the number of tags (positive literals si) is x. Our goal is to find

the consistent instantiation α such that Wφ(x)(α) is maximized.

We can reduce this problem to an instance of weighted Max-SAT. The max-

imum satisfiability problem (Max-SAT) is one of the optimization counterparts of

the Boolean satisfiability problem (SAT). In the weighted version of this problem,

every clause in the CNF formula is associated with a positive weight. The weight

of any complete assignment is defined as the sum of the weights of the clauses that

it satisfies. The weighted Max-SAT problem asks for a complete assignment that

has a maximal weight.

The Max-SAT community is a fast growing research community with two

international solver evaluations in the last two years [2, 3]. The Max-SAT problem

has also been used as a model for solving many problems, in diverse areas such

databases, FPGA routing, and automatic scheduling. As a result, many Max-SAT

solvers have been developed in recent years (e.g., [113, 111, 75, 92, 1, 57, 73]).
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Virtually all state-of-the-art complete Max-SAT solvers are based on depth-first

branch-and-bound search in the space of all possible complete assignments. At

every search node, which corresponds to a partial assignment, the solver compares

the best seen weight against a bound computed for every completion of the current

partial assignment. The solver prunes the current branch as soon as the bound

becomes worse than the best seen weight. The method used for computing bounds

varies among solvers. In this work, we used Clone [92], which computes its bounds

using a relaxed version of the input problem, after having compiled it into a d-

DNNF formula (by c2d only once at the beginning). At each search node, Clone

computes a bound by operating on the compiled d-DNNF in time linear in its size.

Our weighted Max-SAT model Ψ(p) has a number of mandatory constraints

(clauses with infinite weight) which enforce the consistency of our solutions. First,

each SNP may be only covered by either itself or only one other SNP. For each

pair of SNPs sj and sk that can cover si, we add the constraint cji ⇒ ¬cki, or

equivalently ¬cji∨¬cki. Second, if an SNP sj covers si cji is TRUE, we must select

SNP sj, i.e., cji ⇒ sj, or equivalently ¬cji ∨ sj . We also include weighted clauses

consisting of individual literals. Each cji appears as a clause given a weight wji.

Each si appears as a clause with a weight p corresponding to a fixed penalty per

SNP. Each valid instantiation of the literals α will have weight Wψ(p)(α) the weight

of assignment α with respect to formula ψ, and Wψ(p)(α) =
∑

i,j wijcij − p
∑

i si.

Theorem 3. For any maximal solution α for Ψ(p) that contains x positive literals

si, α is also a maximal solution for Φ(x).

By contradiction, assume that there is an instantiation α′ with x positive

literals si such that Wφ(p)(α
′) > Wφ(p)(α). Since Wψ(p)(α) = Wφ(p)(α) − px and

Wψ(p)(α
′) = Wφ(p)(α

′)− px, then Wψ(p)(α
′) > Wψ(p)(α) which contradicts that α is

the maximal solution.

We can use this result to find the maximum of the first term (the objective

function) given a fixed number of tags. The penalty term lets us adjust the trade off

between the objective function and the number of tags selected. For each value of

the penalty term, the solution will be an optimal solution given that number SNPs

in the solution. We can repeatedly solve the optimization problem with different
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penalty terms until we obtain a solution with the correct number of SNPs. Figure

5 illustrates the basis of the optimization procedure. In Figure 5(a), the curved

line is the objective function and the straight lines are the penalty terms. Each

maximum point of the difference between the objective function and penalty terms

(Figure 5(b)) correspond to a optimal solution for a different number of SNPs. By

varying the penalty weight, we can obtain solutions for any number of SNPs.

3.2.4 Best-N Tag SNP Selection using an Adder Circuit

Instead of using weights to enforce that fixed budget of N SNPs must be

selected, we can model this explicitly in the CNF using an adder circuit. This is a

set of clauses that adds all the SNP literals set to TRUE (i.e. SNPs in the tag set)

together. This circuit will produce an n-bit number output, where n is the log of

the number of SNPs. We then need to set this n-bit output to the desired number

of SNPs, thereby enforcing the size of the tag set.

Consider a set of three SNPs s1, s2, s3. We wish to express their sum in two

new literals b0, b1 where b0 represents the 0-bit and b1 represents the 1-bit. To do

this, we use a full adder circuit which can be represented in propositional logic as:

b0 = (s1 ⊕ s2)⊕ s3

b1 = (s1 ∨ s2) ∧ (s3 ∨ (s1 ⊕ s2))

Two fix the number of SNPs, we can force b0, b1 to be true or false. For example,

if we add the clauses (−b0)∧ (b1), then exactly two of s1, s2, s3 must be true if the

entire CNF is satisfied.

In the full problem we construct a hierarchy of adders that will sum all the

SNP variables (s1, s2, . . . , sn) together and put the result if (b0, b1, . . . , bl) where

l = log(n). Fixing k is then achieved by setting the individual bi to true or false

(see [45] for a description of adder circuits). The number of adders required will

be less than 5N and the number of additional clauses/variables will therefore be

in O(N) [45].

The adder circuit is fixed and independent of the target number of SNPs.

Generating maxsat problems with different numbers of allowed SNPs, only requires
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(a)

(b)

Figure 3.5: (a) The maximum average r2 for different numbers of tags. The straight
lines correspond to different penalty weights for the optimization procedure. (b)
Each curve is the difference between the the maximum avg r2 and the penalties for
each different penalties. Max-SAT finds the tag set which achieves the maximum of
the curves in (b). Each of these maximums correspond to a point on the maximum
average r2 curve in figure (a). By varying the penalty weight (corresponding to
different slopes for the lines in (a)), we can recover optimal solutions for different
number of tag SNPs.
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modification of O(log(N)) clauses, a small portion of the problem. The CNF is the

exactly as described in section 2.3 above with the exception that the adder circuit

now replaces the negatively weighted SNPs. The optimal solution of maximum

weight will then be the set of k SNPs (k specified by the adder circuit) that

maximize the average r2.

3.3 Results

We downloaded the complete HapMap build 22 data including all ENCODE

regions. These data are genotypes on 270 individuals in 4 populations and over 3.8

million SNPs. They represent the most complete survey of genotype data currently

available and are used as our test data sets. The 10 ENCODE regions span 5 MB

and are believed to have complete ascertainment for SNPs with frequency greater

than 5%. They are commonly used to estimate the performance of association

study design methods and tag SNP selection methods since there are still many

unknown common SNPs in the rest of the genome.

3.3.1 ENCODE Single SNP r2 Comparison

We compared the performance of our method to the two other optimal

methods as well as the non-optimal greedy algorithm over each of the ENCODE

regions in each of the populations. Haldorsson et al.[52] restricts the maximum

length of correlations and uses a dynamic programming procedure which guar-

antees to find an optimal solution. Given a window size W , Haldorsson et al.[52]

examines all 2W possible choices of tag SNPs in the window and then uses dynamic

programming to extend this to a longer region. FESTA [94] extends the standard

greedy algorithm in a natural way. Given an r2 threshold, FESTA partitions the

SNPs into precincts where SNPs are correlated only within the precinct. For a

small precinct FESTA enumerates all possible tag sets in search of the minimal

tag set. For a larger precinct, FESTA applies a hybrid exhaustive enumeration and

greedy algorithm by first selecting some SNPs using exhaustive enumeration and

then applying greedy algorithm. The user defines a threshold L so that the hybrid
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Region ns Greedy Halldorson(W=15) FESTA(L=107) Optimal
ENm010 567 159 243(12m) 157(0m) 157
ENm013 755 93 309(23m) 90(0m) 90
ENm014 914 164 393(33m) 157(0m) 157
ENr112 927 180 340(34m) 173(34m) 173
ENr113 1072 179 395(46m) 176(274m) 176
ENr123 937 174 463(35m) 172(0m) 172
ENr131 1041 228 414(44m) 221(0m) 221
ENr213 659 122 248(17m) 122(0m) 122
ENr232 533 142 181(11m) 140(36m) 140
ENr321 599 132 202(14m) 131(0m) 131

Figure 3.6: Comparison of several tagging algorithms over the Encode regions in
the CEU population. ns is the number of SNPs in the region. The table shows the
tag set size for each of the methods various methods (smaller is better). Running
times are given in parentheses in minutes. All running times for Optimal are less
than one minute (0m).

method is applied when
(

n

k

)

> L where n is the number of SNPs in a precinct and

k is the number of tags that need to be selected from the precinct We use L = 107

in our experiments.

The results are presented in table 3.6. Surprisingly, the Halldorsonet al.[52]

method, at the maximum limit of what is computationally feasible (W = 15)

performs worse than the simple greedy algorithm and is much slower than than

both FESTA and our approach. FESTA and our approach both recover optimal

solutions for the ENCODE regions, however, FESTA ends up spending a very

large amount of computational time in very large precincts, taking several hours

to complete some of the data sets while our approach requires less than a minute.

3.3.2 Whole Genome Single SNP r2

We ran our approach and the greedy approach over the entire genome wide

HapMap data for the CEU population in order to find the minimal tag set to cover

all SNPs with MAF ≥ 0.05 and r2 ≥ 0.8. Greedy resulted in 472729 tag SNPs

while our approach needed only 468967 over the entire 1692323 SNP data set.

This modest decrease shows that in the single SNP r2 tag SNP selection approach,
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greedy search performs almost as well as optimal search. Our program required

less than one day on a single CPU to run over the whole genome. Since the DNNF

needs to be compiled only once, we quickly can list all possible optimal solutions,

allowing for flexible design or optimization on a secondary criteria. For example,

we can efficiently obtain the set of optimal solutions that contain some SNPs and

do not contain other SNPs.

3.3.3 Multi-Marker Tag SNP Selection ENCODE Results

Although for the single SNP r2 tag SNP selection problem, the greedy

algorithm achieves a solution close to the optimal solution, this is not the case for

multi-marker tag SNP selection. We compare our method to the popular Tagger

[38] method over the Encode region ENm010 in the CEU population. This regions

contains 567 SNPs with minor allele frequency (MAF) greater than 0.05. Tagger

first computes a single SNP tag set using greedy search resulting in 159 tag SNPs

and then uses a “roll back” procedure in which a SNP si is removed from the tag

set if another pair of SNPs in the tag set cover si with r2 = 1.0. That is, redundant

SNPs are removed from the tag set. Tagger’s multi-marker approach does reduce

the number of SNPs required to cover an ENCODE region to 141 SNPs compared

to 157 optimal single SNP tags, but the reduction is far from optimal. Our method

requires only 72 SNPs to cover the ENCODE region a 54% and 40% reduction over

single SNP tags and the Tagger’s multi-marker tags.

3.3.4 Power

As a proof of concept, we ran the our approach over the first 100 SNPs

Encode region ENm010 while maximizing average r2 with a 4 SNP limit and

compared this to the naive greedy approach of choosing the best 4 SNPs in terms

of single SNP r2 in the region. Using the naive approach, the average r2 is 0.90.

Using our method, the average r2 is 0.98.
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3.4 Discussion

We have presented efficient optimal methods for solving a variety of tag

SNP selection problems. Although the general form of these problems is NP-

complete, we showed that natural constraints of the genome’s LD structure bound

the problem complexity in practice. Tag SNP selection problem instances are first

reduced into a SAT instance in CNF. The CNF representation represents SNPs as

boolean literals and solutions as settings of these variables that satisfy the clauses.

The CNFs are compiled into DNNFs which allow quick enumeration of all optimal

solutions. This compilation is the crucial step in which the genome’s LD structure

naturally partitions SNP literals into distinct regions of the DNNF.

Improvements over the classic single SNP r2 tagging problem are modest

compared to greedy search. The FESTA [94] algorithm also achieves these results

over the ENCODE regions, but is not guaranteed to be optimal in the general

case. We outperform FESTA in terms of running time, and also our ability to

characterize all optimal solutions as opposed to just those containing perfectly

linked SNPs. This permits flexible tag set choice that can be further optimized

over secondary criteria. This method is also extensible to other measures of SNP

coverage besides r2.

Using a “stitching” method we showed how to combine local solutions into

a globally optimal genome wide tag set solution. Although the method is expo-

nential in the number of SNPs that are shared between local solutions, we find

that choosing regions to minimize this overlap allows efficient whole genome tag

set optimization.

Recent work has shown the multi-marker methods are more power than

single SNP techniques in the context of association studies. While a variety of

multi-marker statistical tests exist, the current optimal tagging methods such as

FESTA are not able to tag for multiple markers efficiently. Our SAT based method

is able to find optimal multi-marker tags for pairs of SNPs over the dense ENCODE

regions. The gain for optimal tagging over greedy search in this context is signifi-

cantly better than for the single SNP with improvement over the popular Tagger

[38] method reaching 40%. Since the cost of custom genotype arrays remains high,



56

this tool is valuable for follow up association studies. That is, once genome wide

results have been found, further genotyping must be done to localize the region

containing the causal variant. Intelligent choice of tag sets for follow up studies

can greatly improve their power and until now, multi-marker tagging for follow up

has been non-optimal.

Finally, we showed how to extend these techniques to maximize average r2

given a fixed SNP budget. Power, or any other convex function can be used in

place of r2.

Our method and whole genome optimal data sets are available for use via

web server at http://whap.cs.ucla.edu.

Chapter 3, was published In Proceedings of the 8th Workshop on Algo-

rithms in Bioinformatics, (WABI-2008), Karlsruhe, Germany, September 15-17,

2008. Arthur Choi, Noah Zaitlen, Buhm Han, Knot Pipatsrisawat, Adnan Dar-

wiche, E. Eskin, “Efficient Genome Wide Tagging by Reduction to SAT”. The

dissertation author and Arthur Choi were the primary investigators and authors

of this paper.



Chapter 4

Finite Sample Effects of the

HapMap

4.1 Introduction

The development of the HapMap[25] has ushered in the genome wide asso-

ciation era of human genetics and a tremendous number of studies have reported

associations to novel genes for a variety of complex diseases[26, 78, 77]. These

genome wide association studies have been made possible by two recent devel-

opments. The first is the development of high throughput genotyping technology

enabling the simultaneous genotyping of hundreds of thousands of single nucleotide

polymorphisms (SNPs) from an individual at a reasonable cost. The second is the

development of the HapMap which provides genotype information for the majority

of common SNPs in panels from four populations. Although it is still prohibitively

expensive to genotype all common polymorphisms in an association study, link-

age disequilibrium (LD) or correlation between SNPs allows association studies to

genotype a subset of the SNPs referred to as “tag” SNPs[108]. Association to a

phenotype at an ungenotyped SNP can be detected if a nearby correlated SNP

is one of the tag SNPs[93]. The HapMap allows us to infer the patterns of LD

between SNPs.

The most relevant measure of LD between two SNPs to the statistical power

57
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of an association study is r2, the square of the correlation coefficient between the

two SNPs. As shown in Pritchard and Przeworski[93], to achieve the equivalent

power of detecting an association at a SNP with N individuals requires N/r2

individuals at a neighboring marker. Using this insight, the standard approach to

choosing tag SNPs is to select a subset of the SNPs which have an r2 > 0.8 with

the remaining SNPs[38]. A SNP that is correlated with a tag SNPs with an r2

greater than 0.8 is referred to as being “captured”. The development of the current

generation of commercial genotyping products have been strongly motivated by

this notion and tag SNPs are chosen to capture as many of the common HapMap

SNPs as possible.

In addition to aiding in the design of genome wide association studies, the

HapMap genotypes allow us to estimate study power for a given disease model.

Recent imputation methods [121, 79] have demonstrated how to further improve

study power with the HapMap data by estimating allele frequencies of untyped

variants. The HapMap genotypes have also been used to estimate recombination

rates across the genome, search for regions under natural selection, and locate

structural variations such as deletions and inversions.

Despite its tremendous importance as a resource, the HapMap suffers from

the fundamental limitation that it is based on only 60 unrelated individuals or 120

chromosomes per population. Current methods which use the HapMap effectively

assume that the HapMap has infinitely many individuals and that the observed

correlation patterns are the true correlation patterns. In reality, the HapMap is not

a large enough sample to accurately measure the LD patterns between SNPs. This

limitation has significant implications for association studies. First, many of the

SNPs which are believed to be captured by tag sets developed using the HapMap

are in fact not well captured, but only appear to be captured in the HapMap due

to sampling bias. For these SNPs, even very large association studies will not

detect associations. Second, the estimates of r2 are very inaccurate which leads

to inaccurate estimates of the power of association studies. Several groups have

previously pointed out this limitation[112] and have performed empirical studies

exploring this and the related issue of the transferability of tag SNPs to different
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populations[83, 36, 99]. Finally, the linkage structure is used by imputation meth-

ods to estimate frequencies of untyped SNPs in association studies. Their accuracy

is necessarily tied to that of the HapMap.

In this work, we present an analytical framework for analyzing the im-

plications of a finite sample HapMap. We observe that most of the error in the

estimates of correlation patterns stems from the difficulty in estimating conditional

probabilities from small samples. We present and justify simple approximations

for obtaining confidence intervals for r2 estimates from the HapMap and verify

our confidence intervals through simulations using both the HapMap and Wel-

come Trust Case Control Consortium data[26] (WTCCC). We show how the cur-

rent HapMap may perform very poorly for estimating the power of an association

study at certain SNPs. Consider a case control study in which 5,000 cases and

5,000 controls are genotyped on 500,000 independent SNPs, and the causal variant

has a relative risk 1.5 and minor allele frequency of 0.05. If the causal variant

is genotyped directly the study has a power of 93.1% to detect an association at

that variant. If the causal variant is not genotyped, but has an r2 of 0.8 with a

nearby tag SNP, then the study has a power of 55% to detect an association due

to the causal variant. Using our framework, we show that approximately 8.2% of

the SNPs with a minor allele frequency of 0.05 and an observed r2 of 0.8 in the

HapMap have a true r2 below 0.5. The power to detect an association is only 2.7%

for these SNPs, yet using the HapMap we believe the power is 55%. In order to

better ground our results in an actual association study context, we extend this

analysis using the WTCCC [26] data and show that many of the SNPs in these

studies may be affected by finite sample errors in the HapMap. In addition, we

show that procedure of selecting tag SNPs is upwardly biased and results in an

overestimation of power.

While larger reference sets such as the 1000 genomes project are being pro-

posed to catalogue rare human variation, it is not appreciated how these reference

sets will profoundly affect our ability to detect common variation involved in hu-

man disease. In addition to providing a highly valuable fine grained picture of

low frequency SNPs and a more extensive list of SNPs human populations, these
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additions to the HapMap reference panels will help resolve many of the issues il-

lustrated in the above examples. To estimate how large of a sample we need to

collect in order to avoid these problems we examine confidence intervals around

“captured” SNPs with an r2 of 0.8. As the sample size or MAF of a SNP increases,

the confidence interval for r2 will tighten. If a SNP’s 95% confidence interval is

greater than 0.1 or equivalently that the probability that r2 < 0.7 is less than

2.5% we are confident that the estimated r2 is close to the true r2. The current

HapMap cannot provide a bound this tight even for SNPs with MAF 0.5. Increas-

ing the HapMap to 238 individuals would achieve this confidence interval for SNPs

with MAF as low as 0.2, and increasing it to 502 individuals would provide for

SNPs with MAF as low as 0.1. In order to have a tight confidence interval for low

frequency SNPs with MAF of 0.05, 1042 individuals are needed.

4.2 Material and Methods

4.2.1 Case Control Studies.

In a typical association study, individuals are collected from two popula-

tions, a case population consisting of individuals with a disease and a control

population consisting of individuals without the disease. The populations differ

along the phenotype of interest but individuals are carefully selected so that they

are otherwise members of the same population. Each individual in the study is

genotyped on a set of tag SNPs such as those on the Affymetrix and Illumina high

throughput genotyping platforms. SNPs with alleles that cause an alteration in

risk for the phenotype potentially occur in different frequencies in the cases and

controls. These causal SNPs may not be included in the set of tag SNPs. It is the

primary objective of a case control study to identify these causal polymorphisms.

Suppose that there is a tag SNP A and a causal SNP B in a case control

study with N/2 cases and N/2 controls. We denote the frequency of the minor

allele of SNP A in the cases, controls, and entire population as p+
A, p−

A, and pA

respectively. We denote pa = (1−pA) as the frequency for the major allele of SNP

A and use pB, pb for the equivalent frequencies over SNP B . p̂B and p̂A denote the
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observed frequencies of SNP B and SNP A in the collected samples respectively.

Consider a case control study in which we genotype the causal SNP B

directly. We compute the following statistic SB

SB =
p̂+

B − p̂−
B

√

2/N
√

p̂B(1− p̂B)
∼ N

(

(p+
B − p−

B)
√
N

√

2pB(1− pB)
, 1

)

= N
(

λB
√
N, 1

)

(4.1)

SB measures the difference in the frequency of SNP B in the cases (p̂+
B)

and the controls (p̂−
B) in the collected sample normalized such that the variance

is 1. We refer to λB
√
N as the non-centrality parameter (NCP) for SNP B . In

the null hypothesis p+
B = p−

B and λB
√
N is 0. In the alternative hypothesis p+

B

6= p−
B and λB

√
N is the mean of the distribution of SB. The NCP λ

√
N is a

function of study size, disease model, SNP minor allele frequency (MAF), and is

the fundamental measure of study power. Power is calculated from the NCP and

significance threshold (α) as

P(α, λ
√
N) = Φ

(

Φ−1(α/2) + λ
√
N
)

+ 1− Φ
(

Φ−1(1− α/2) + λ
√
N
)

(4.2)

where Φ(x) is the normal cumulative distribution function and Φ−1(x) is the normal

quantile function. Fixing α (e.g. 0.05), the power is solely a function of the NCP.

4.2.2 Indirect Association.

In general we do not expect the causal variant SNP B to be amongst the

set of genotyped tag SNPs, but instead rely on the correlation or LD between

proximal tag SNPs and the causal variant to discover the association. Consider

a case control study in which the causal variant SNP B is not genotyped but is

near a tag SNP A. If SNP A is in strong enough LD with SNP B , and the study

is sufficiently powered, it may be possible to detect a significant difference in the

frequencies of SNP A between the cases and controls due to its correlation with

the causal variant SNP B .

In this section we derive the NCP and power for SNP A given that SNP B

is causal. This relies on the conditional probability of observing the minor allele
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at SNP A given that the minor allele at SNP B is observed. This is denoted pA|B

= pAB/pB, where pAB is the frequency of the haplotype made from minor alleles

of both SNPs A and B . The conditional probability of observing the minor allele

of SNP A given an observation of the major allele of SNP B is similarly denoted

pA|b. It is a standard assumption of association studies that, if SNP B is causal

then the conditional probability pA|B is equal in the cases and controls. Formally,

pA|B = p+
A|B = p−

A|B and pA|b = p+
A|b = p−

A|b. Note that p+
B|A 6= p−

B|A if p+
B 6= p−

B

under this assumption.

The frequencies of SNP A can be written in terms of the conditional proba-

bilities and the frequency of SNP B . The frequency in the cases is p+
A = p+

A|Bp+
B +

p+
A|b(1 − p+

B) and the frequency in the controls is p−
A = p−

A|Bp−
B + p−

A|b(1 − p−
B).

Combining these two equations, the difference in frequency of the genotyped SNP

A between the cases and controls is expressed in terms of the conditional probabil-

ities and the frequency of the causal SNP B as p+
A−p−

A = pA|B(p+
B−p−

B)+pA|b(1−
p+

B − 1 + p−
B) = (pA|B − pA|b)(p

+
B − p−

B).

We can now derive the NCP for SNP A which will in turn give the power for

SNP A in terms of the NCP of SNP B and the conditional probabilities following

the derivation of Pritchard and Przeworski, 2001[93].

SA =
p̂+

A − p̂−
A

√

2/N
√

p̂A(1− p̂A)
∼ N (λA

√
N, 1)

λA
√
N =

p+
A − p−

A
√

2/N
√

pA(1− pA)
= (pA|B − pA|b)

(p+
B − p−

B)
√

2/N
√

pA(1− pA)

= (pA|B − pA|b)
(p+

B − p−
B)

√

2/N
√

pA(1− pA)

√

pB(1− pB)
√

pB(1− pB)

= (pA|B − pA|b)

√

pB(1− pB)
√

pA(1− pA)
λB
√
N

(4.3)

The correlation coefficient rAB = (pA|B − pA|b)
√

pB(1−pB)
pA(1−pA)

between SNP A

and SNP B relates λA and λB and is algebraically equivalent to the standard form

of rAB = PAB−pApB√
pA(1−pA)pB(1−pB)

.

Equation (4.3) above shows that the NCP at SNP A is a function of rAB

and the NCP at SNP B , λA
√
N = rABλB

√
N . Finally, we can express the power
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at SNP A if SNP B is causal as:

P(α, λA
√
N) = P(α, rABλB

√
N) (4.4)

As expected, the higher the correlation between the SNPs, the greater the

power of using the tag SNP as a proxy for the causal variant.

4.2.3 Estimating Correlation Variance from the HapMap.

The HapMap data do not provide the exact frequencies or conditional prob-

abilities of the SNPs in a population, but is commonly used to estimate these

quantities as well as the correlation coefficient between SNPs, the NCP, and study

power under a given disease model. The finite sample size of each of the HapMap

populations introduces a source of error into each of these estimates. In the pre-

vious section we derived the NCP for the causal SNP given a tag SNP. Here we

extend this derivation to calculate the mean and variance of the NCP and the

correlation coefficient assuming a finite reference sample. The variance of the

correlation coefficient found in this section uses a simplifying assumption and is

therefore denoted σS. A more complex estimate is derived in the next section.

We derive an approximation for the correlation coefficient between SNPs A

and B .

r̂HAB ∼ N (rAB, σ
2
S) (4.5)

σS ≡ var(r̂HAB) =

(

pH
A|B(1− pH

A|B)

NH
B

+
pH

A|b(1− pH
A|b)

NH
b

)

pH
B(1− pH

B)

pH
A(1− pH

A)
(4.6)

where superscript H denotes values over the HapMap data NH and denotes

the number of chromosomes in the HapMap. pH
B denotes the true frequency of the

minor allele SNP B in the HapMap population. The observed frequency of the

minor allele of SNP B in the HapMap samples is denoted by p̂H
B. The true and

observed conditional probabilities are pH
A|B and p̂H

A|B respectively, and NH
B = p̂H

BN
H

is the number of chromosomes with the minor allele.
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To derive an approximation for the variance of rHAB in equation 4.5 we

begin with the derivation of the distribution for the estimate of the NCP at SNP

A. Assuming normal approximations:

p̂H
A|B ∼ N (pH

A|B,
pH

A|B(1− pH
A|B)

NH
B

)

p̂H
A|b ∼ N (pH

A|b,
pH

A|b(1− pH
A|b)

NH
b

)

p̂H
B ∼ N (pH

B,
pH

B(1− pH
B)

NH
)

p̂H
b ∼ N (pH

b ,
pH

b (1− pH
b )

NH
)

(4.7)

The estimates of the conditional probability are based on far fewer obser-

vations than the estimates of the frequency, thus the variance of the estimates of

the conditional probabilities are much larger than the variance of the estimates of

the allele frequencies.

In order to use the HapMap data for power estimation we make several as-

sumptions about the relation between our case, control, and HapMap populations.

The fundamental assumption of the HapMap is that the SNP frequencies condi-

tional on a causal SNP in case and control samples are equal to the conditional

frequencies in the HapMap. That is, pA|b = p+
A|b = p−

A|b = pH
A|b =

PH
Ab

pH
b

.

Under these assumptions, we can estimate the NCPs using the estimates

of the conditional probabilities and allele frequencies directly from the HapMap.

Using these terms we define the NCP λ̂HA in terms of the empirical conditional

probabilities and frequencies in the HapMap, and the true NCP λB:

λ̂HA
√
N ≡ (p̂H

A|B − p̂H
A|b)

√

p̂H
B(1− p̂H

B)

p̂H
A(1− p̂H

A)
λB
√
N (4.8)

In our estimate, the term λB
√
N is considered a constant because we are in-

terested in the relative strength of the association at the tag SNP compared to the

strength at the causal SNP. Under this assumption, the only observed values ap-

pearing in the equation for the NCP are HapMap SNP frequencies and conditional

probabilities.
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We make the simplifying assumption that the empirical frequency p̂H
A is

close to the true frequency pH
A relative to the much larger variance in the estimates

of conditional probability. This allows us to derive a simple estimate for the error

due to the finite sample.

λ̂HA
√
N ∼ N (λA

√
N, σ2H

λA
) (4.9)

σ2H
λA

=

(

pH
A|B(1− pH

A|B)

p̂H
BN

H
+

pH
A|b(1− pH

A|b)

(1− p̂H
B)NH

)

p̂H
B(1− p̂H

B)

p̂H
A(1− p̂H

A)
λ2
BN (4.10)

Although there is additional variance due to the assumption that empirical

frequency p̂H
A is close to the true frequency pH

A, the results section shows experi-

mentally that simulation of NCPs from linked SNPs are surprisingly close to the

derived distribution. We will derive a more sophisticated estimate by dropping

this assumption below.

The correlation coefficient is commonly used to measure the strength of

SNP A to serve as a proxy for SNP B . We showed above that the decrease

in power due to using SNP A as a proxy for SNP B is directly proportional to

the correlation coefficient. The NCP and the correlation coefficient can be used

together to measure study power. Using the fact that λA
√
N = rABλB

√
N and

equation (4.9) above we derive mean and variance of r̂HAB

var(r̂HAB) ≈ (var(p̂H
A|B + p̂H

A|b))
pH

B(1− pH
B)

pH
A(1− pH

A)
(4.11)

r̂HAB is an unbiased estimate of rHAB, and our experiments validate the as-

sumptions of this approximation with experimental simulation.

4.2.4 Estimating Variance with the Delta Method.

The above “simple” estimate for the variance of the correlation coefficient

σS assumes that the minor allele frequency is accurately estimated from the data.

However, when the frequency of one of the SNPs is very low, this assumption no



66

longer holds. In order to accurately estimate the distribution of r̂HAB we employ

the delta method [88] and derive variance σ∆. We let x = p̂AB, y = p̂H
B, and z = p̂H

A

and rewrite the formula for the correlation coefficient in terms of x,y,z.

f = r̂HAB =

(

x

y
− z − x

1− y

)

(

√

y − y2

√
z − z2

)

(4.12)

We compute the variance covariance matrix Σ for x,y,z with σxx = pAB(1−
pAB),σyy = pB(1−pB),σzz = pA(1−pA),σxy = pAB(1−pB),σxz = pAB(1−pA),σyz =

pAB − pApB.

Σ =









σxx σxy σxz

σyx σyy σyz

σzx σzy σzz









(4.13)

We compute the gradient of f:

∆T =
(

∂f

∂x

∂f

∂y

∂f

∂z

)

(4.14)

Finally, the variance is estimated as:

σ∆ ≡ var(r̂HAB) = var(f) = ∆T
µΣ∆µ (4.15)

where ∆µ is the gradient evaluated at the means of x,y,z. The results section

demonstrates that the “delta method” estimate is accurate over low frequency

SNPs with experimental simulation.

4.2.5 Overestimation of r2 in Tagging.

We showed above that the finite sample size of the HapMap results in error

for the estimation of rAB between SNP A and SNP B but this estimate is unbiased.

However, when selecting tags to genotype, since the goal is to choose the smallest

subset of SNP which cover as many of the remaining SNPs as possible, the HapMap



67

estimates of the correlation are significantly biased. This bias is compounded by

the overestimation described by Bhangale et. al. [10] that is observed when SNPs

are examined in addition to those contained in the HapMap.

Consider the 3 SNPS, A, B , C , where we are choosing one of A or B to serve

as a proxy for SNP C . We will select the SNP which has a stronger correlation

with SNP C . For this example, suppose that the correlations coefficients rAC and

rBC are positive since exchanging major and minor alleles will flip the sign. Using

the HapMap will result in estimates of these correlations with variances σAC , σBC

and means rHAC and rHBC with expected values close to the true correlation. The

estimated coverage of SNP C is the max of the empirical measurements of the

correlation coefficients in the HapMap max(r̂HAC ,r̂HBC) =
r̂H
AC+r̂H

BC

2
+

|r̂H
AC−r̂H

BC |
2

.

We show that this maximum is

max(r̂HAC , r̂
H
BC) = max(rHAC , r

H
BC) + bias(rHAC , r

H
BC) (4.16)

and we prove that the term bias(rHAC , r
H
BC) is always positive.

To calculate the expectation of this maximum we note that r̂HAC and r̂HBC

are normally distributed random variables. The term
r̂H
AC+r̂H

BC

2
will have expected

value
rH
AC+rH

BC

2
. The expected value of the other term is more complicated due to

the absolute value. We let σ2 =
σ2

AC+σ2
BC

4
and µ =

rH
AC−rH

BC

2
. The expected value of

|r̂H
AC−r̂H

BC |
2

is:

1√
σ2
√

2π

∫ ∞

−∞
|x|e

−(x−µ)2

2σ2 dx (4.17)

=
1√

σ2
√

2π

∫ ∞

−∞
|x|e

−(x−µ)2

2σ2 dx

+
1√

σ2
√

2π

∫ ∞

−∞
µe

−(x−µ)2

2σ2 dx+
1√

σ2
√

2π

∫ ∞

−∞
−µe

−(x−µ)2

2σ2 dx

(4.18)

Let u= (x−µ)2

2σ2 and rewrite the integrals as:

1√
σ2
√

2π

∫ ∞

0

(x− µ)e
−(x−µ)2

2σ2 dx+
1√

σ2
√

2π

∫ 0

−∞
−(x− µ)e

−(x−µ)2

2σ2 dx

+
1√

σ2
√

2π

∫ ∞

0

µe
−(x−µ)2

2σ2 dx+
1√

σ2
√

2π

∫ 0

−∞
−µe

−(x−µ)2

2σ2 dx

(4.19)
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=
1√

σ2
√

2π

∫ ∞

µ2

2σ2

σ2e−udu+
1√

σ2
√

2π

∫
µ2

2σ2

∞
−σ2e−udu

+µ(1− Φ(−µ
σ

))− µΦ(−µ
σ

)

(4.20)

The expectation of the entire max is:

rHAC + rHBC
2

+
2σ2

√
σ2
√

2π
e−

µ2

2σ2 + µ(1− 2Φ(−µ
σ

)) (4.21)

The function µ(1− 2Φ(−µ

σ
)) = −µ(1− 2Φ(−−µ

σ
)) because it is symmetric

about 0 with respect to µ, and we substitute |µ| for µ and recall that µ =
rH
AC−rH

BC

2
:

rHAC + rHBC
2

+
2σ√
2π
e−

µ2

2σ2 + |µ|(1− 2Φ(−|µ|
σ

)) (4.22)

max(rHAC , r
H
BC) + 2σ(Φ′(

µ

σ
)− |µ|

σ
Φ(−|µ|

σ
)) (4.23)

The expected maximum is

max(r̂HAC , r̂
H
BC) = max(rHAC , r

H
BC) + 2σ(Φ′(

µ

σ
)− |µ|

σ
Φ(−|µ|

σ
)) (4.24)

and the bias in the expectation is therefore:

2σ(Φ′(
µ

σ
)− |µ|

σ
Φ(−|µ|

σ
)) (4.25)

We show that the bias is positive by proving the following lemma:

For x ≥ 0, xΦ(−x) ≤ Φ′(x) = Φ′(−x):

xΦ(−x) = x

∫ −x

−∞

1√
2π
e

−t2

2 dt (4.26)

≤
∫ −x

−∞
−t 1√

2π
e

−t2

2 dt (4.27)

=
1√
2π
e

−x2

2 = Φ′(x) (4.28)

xΦ(−x) ≤ Φ′(x) = Φ′(−x) (4.29)
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Letting x = µ

σ

µ

σ
Φ(−µ

σ
) ≤ Φ′(

µ

σ
) = Φ′(−µ

σ
) (4.30)

2σ(Φ′(
µ

σ
)− |µ|

σ
Φ(−|µ|

σ
)) ≥ 0 (4.31)

Thus the bias is positive and the expected estimate of the maximum will

always be greater than the actual maximum.

4.3 Results

4.3.1 Increasing Sample Size.

Increasing the size of the HapMap samples will reduce the variance of statis-

tics calculated over the data. Currently a SNP is considered covered by a tag SNP

if the r2 between the SNP and the tag is greater than 0.8. However, this fails to

take into account the minor allele frequency of the SNPs in question, and hence the

uncertainty of the HapMap’s estimate of the correlation. We derive two analyti-

cal distributions for the correlation coefficient and non-centrality parameter in the

context of an association study using a finite data set such as the HapMap. The

first approximation for correlation coefficient is named σS and is a simple approx-

imation which assumes estimates of conditional probability have higher variance

than estimates of MAF. The second approximation is named σ∆ and uses the Delta

method to avoid this assumption. Our derivations show that SNPs with low mi-

nor allele frequencies have a high variance in the estimated correlation coefficient

compared to SNPs with higher minor allele frequencies. For example A SNP with

MAF 0.05 has a 10.2% chance of having a true r2 less than 0.8 if its estimated r2

is 0.9, while a SNP with MAF 0.15 has only a 1.1% chance.

We use our analytical estimates to produce confidence intervals for the cor-

relation coefficient in order to address this issue and ensure that SNPs we estimate

to be captured by a tag set are not missed due to errors from finite sample size. We

examine the 95% confidence interval of 0.1 to measure the coverage of tag SNPs.
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For SNPs with an empirical r2 of 0.8 this is the probability that r2 < 0.7 is less

than 2.5%. For correlation coefficients that fall in this confidence interval, we are

confident that the estimated r2 is close to the true r2. In a sample the size of the

HapMap, a tag SNP with MAF of 0.15 requires an estimated r2 of 0.95 to lie in this

confidence interval, while a tag SNP with MAF 0.3 requires only an estimated r2 of

0.91. SNPs with lower minor allele frequencies require higher values of estimated

r2 before they can be considered good proxies.
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Figure 4.1: The 95% confidence intervals for SNPs with r2 = 0.8 and N=200
chromosomes over a range of minor allele frequencies. Confidence intervals are
reported for the exact distribution (exact), simulated empirical estimated (sim),
Fishers estimate for correlation coefficients (fisher), our delta methods based es-
timate (approx1), and our simple estimate (approx2). Our approximations are
accurate especially at higher minor allele frequencies.
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For SNPs in the current HapMap, the sample size is so low that even for

SNPs of very high minor allele frequency, we cannot be sure if their true r2 falls

within a 95% confidence interval of 0.1. We computed the number of chromosomes

needed for accurate calculation of r2 values near 0.8 over a range of minor allele

frequencies using our simple approximation for the variance of the correlation coef-

ficient. Figure 4.1 shows this approximation is accurate for estimation of the lower

bound of a confidence interval. For minor allele frequencies between 0.05 and 0.5

we calculated the number of chromosomes needed to get a variance of 0.0008689

for SNPs with an r2 of 0.8. This is the variance required such that the empirical

r2 has an 95% confidence interval of 0.1. As seen in Figure 4.2, we would need

to extend that HapMap to 1003 chromosomes if we wanted accurate estimates of

r2 for SNPs with minor allele frequency of 0.1. The 1000 genomes project will

provide almost twice as many haplotypes as this greatly reducing the error due to

finite sample size for a large proportion of SNPs.
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cient to fall within a 95% confidence interval of 0.1. As the minor allele frequency
decreases the number of chromosomes required for accurate estimation increases.
Note that the current HapMap is not able to accurately estimate correlation coef-
ficients for any minor allele frequency at its current size.
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4.3.2 Effects of Finite Sample Size on r2 and Power.

Figure 4.3 shows the error in estimation of the correlation coefficient due

to the finite size of the HapMap. For a range of MAFs 120 correlated pairs of

genotypes are generated 10,000 times and their empirical r2 is used to compute

the average value of r2 in the simulation. The simulations are run with a true

value of r2 = 0.8. SNPs with low minor allele frequency are much less accurate

in determining r2 compared to high frequency SNPs. In the context of choosing

tag SNPs or follow up SNPs for a case control association study, large numbers of

strong tags will have poorly estimated correlation, and many SNPs estimated to

have r2 greater than 0.8 will have much weaker true LD.
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Figure 4.3: Histogram of empirical estimates of the correlation coefficient from a
finite sample of 120 pairs of correlated data. The true value of the correlation
coefficient is 0.8. The data are simulated such that both SNPs have minor allele
frequency 0.05, 0.1, 0.2, or 0.4. The distributions for SNPs with higher minor allele
frequency, green and yellow, are more tightly clustered and symmetric around 0.8.
The distribution for SNPs with low minor allele frequency, blue and red, are very
wide due to the high variance of the correlation coefficient for such SNPs.
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The effect of finite sample size on power estimation is measured by compar-

ing power estimates at genotyped SNPs and untyped SNPs based on simulation

over a finite data set. This technique for estimating power is common practice as

in the methods of [90, 121]. Case control panels of 1000 cases and 1000 controls

are generated from 120 chromosomes with a causal SNP minor allele frequency of

0.1 and relative risk chosen such that the power is exactly 50%. The process is re-

peated 1000 times and the power computed. This entire power estimation process

is then repeated 1000 times and the power of each simulation is recorded as shown

in Figure 4.4. This estimate of power at a typed SNP is compared to estimating

power at an untyped SNP by repeating the experiment above with a correlated

SNP with r2 = 0.8 and minor allele frequency of 0.1. Power is measured at the

correlated marker and case control status is generated by the original marker. Fig-

ure 4.4 shows the power is more accurately estimated at the typed than untyped

SNP. The loss in accuracy is due in large part to the finite sample size of the data

in the simulation. We calculated the expected number of individuals required to

achieve a range of powers between 44% and 56% in the untyped case and included

this histogram in Figure 4.4 for reference. Almost 20% of the untyped SNPs have

power overestimated by 6%, which is equivalent to having another 160 individuals

in the study.
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Figure 4.4: Histograms of power for 1000 simulations of case control studies where
the causal SNP is typed (green) or untyped (blue). Simulated case control studies
were generated by sampling from 120 chromosomes to achieve 1000 cases and
1000 controls. The estimated minor allele frequency of the SNPs were 0.1 and
the estimated r2 between the typed and untyped SNPs was 0.8. Each of the
1000 power estimates is calculated from 1000 simulated case control studies. The
relative risk is chosen such that the simulations at typed and untyped SNPs both
have an expected 50% power. The error in power estimation is much higher for the
untyped case and leads to severe over and under estimation problems. A histogram
of the number of individuals to needed achieve power between 44% and 56% in the
untyped simulation is included for reference (yellow).
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We further examine the issue of power estimation by using the WTCCC

data [26] and our analytical estimate of power. First we created a set of tag SNPs

by selecting all WTCCC SNPs that passed quality control and are found in the

HapMap. Then, for each SNP in the HapMap, we found the best tag SNP in our

tag set in terms of r2. This best tag approach is commonly used to estimate study

power. Given a disease model and study size, the power at a HapMap SNP is

estimated using its best tag. Given a study size of 2400 cases and 2400 controls,

similar to the WTCCC study size, a relative risk of 1.5, and Bonferroni correction

factor based on 400,000 SNPs, we measured the probability that the true power

of detecting an association at each SNPs was at least 10% less than the estimated

power under our simple analytical estimate of the distribution of correlation. We

found that over 10% of SNPs have a power at least 10% lower than that estimated

under best tag. For example, if the study estimated power for detecting a SNP

was 90%, there is a 10% chance that the power is actually ≤ 81% of detecting that

SNP.

4.3.3 Effects of Sample Size on Coverage.

Suppose that two SNPs had true correlation coefficients 0.75, but due to

the finite size of the HapMap had a variance of 0.01. Then the expected value of

the estimated coverage of the third SNP is 0.8. As the number of SNPs in the max

increases this problem gets worse, and so current estimates of coverage are highly

inflated. There exist many different algorithms for selecting tag SNPs which will

each potentially result in different levels of estimated coverage. We examine the two

SNP case because it is a subproblem used in many tagging algorithms that try and

optimize on an r2 criterion. In practice the maximization is over many more SNPs

and the inflation is therefore even worse. We compared our analytical estimates

of this inflation to empirical estimates of the maximum correlation coefficient of 3

SNPs over a range of minor allele frequencies and values of r2. The minor allele

frequency ranges from 0.1 to 0.5 in increments of 0.1 and the r2 ranges from 0.5 to

0.9 in increments of of 0.1. The number of individuals is fixed at 60. The average

error did not exceed 0.006 and is therefore accurate.
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We use the WTCCC data[26] to examine the inflation of r2 in real genotype

data. First, we selected 60 individuals from the control population of the WTCCC

data set at random. For each SNP in the data set, we found the best r2 to that SNP

amongst the the 300 most proximal SNPs (i.e. the best tag). We then repeated this

procedure with 1000 individuals from the WTCCC control population to measure

the overestimation in r2 in this population. The results are shown in Figure 4.5.

Although the WTCCC SNPs are much less dense than the HapMap there was still

significant inflation in the r2 values when only 60 individuals are used to estimate

r2. This is due to the higher variance of the correlation when the sample size is

smaller. Amongst SNPs with minor allele frequency between 0.2 and 0.3 over 15%

of SNPs have an estimated r2 0.3 greater in the smaller sample size.
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Figure 4.5: Overestimation of r2 due to finite sample size. We measured r2 for the
best tag of each SNP in the WTCCC data using 60 then 1000 control individuals.
We then measured the difference between these to values. The images show the a
histogram over the percentage of SNPs with a given difference in r2. In all ranges
of minor allele frequency the values of r2 over 60 individuals were significantly
higher than with 1000 individuals. The difference is greatest amongst the SNPs
with minor allele frequency 0.2 - 0.3. This is most likely due to the greater number
of SNPs with minor allele frequency in the range, and hence appearing in the
maximization term.
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4.3.4 Validation of Analytical Results.

We examine the error in empirical estimates of minor allele frequency and

conditional probability due to the finite sample size of the HapMap. Sets of corre-

lated binary random variables were simulated to represent SNP genotypes. In the

case of the CEU and YRI HapMap populations, there are 60 unrelated individuals

or equivalently 120 chromosomes drawn independently from the population. For

a range of MAFs we sample 120 binomial random variables and compute the em-

pirical minor allele frequency p̂A and the % error |p̂A−pA|
pA

. This process is repeated

1000 times to get the average estimated minor allele frequency and the average %

error. Figure 4.6 shows the results of this simulation.
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Figure 4.6: The average % error in empirical estimates of minor allele frequency
when the sample size is the size of the HapMap. Minor allele frequency error is
measured for a given value of MAF by sampling 120 binomial random variables
with that MAF and and calculating the % error. This process is repeated 1000
times to get the average error.
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We apply a similar procedure to measure the average error in conditional

probability estimates due to the finite sample size of the HapMap. We sample 120

pairs of SNPs with a given conditional probability, compute empirical estimates of

the frequency and conditional probability from the simulated data, and measure

the error. To compute the average error, this process is repeated 1000 times.

Figure 4.7 shows the average error of the conditional probability when the first

sampled SNP has a minor allele frequency of 0.05, 0.15, 0.25.
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when the sample size is equivalent to the size of the HapMap. The x-axis shows the
true conditional probability, and the y-axis shows the average % error in samples
drawn from that distribution 1000 times. Values are given for simulations where the
minor allele frequency is 0.05, 0.15, and 0.25. The errors for conditional probability
are significantly higher than those for minor allele frequency as shown in Figure
4.6 and contribute greater to the error in estimates of more complicated statistics
such as the correlation coefficient and the NCP.
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Although these distributions are well known, they are included to demon-

strate the substantially larger error of the conditional probability compared to the

minor allele frequency. This is due to the lower number of expected observations

of the haplotype made from two minor alleles. Consider the case of two SNPs

with minor allele frequency 0.1 and conditional probability 0.5. In the HapMap

we expect 12 chromosomes with the minor allele for each SNP, but only 6 where

both SNPs have the minor allele. Small changes in the sample will therefore have

a much larger effect on conditional probability than on minor allele frequency. Our

analytical derivations of the distribution of r and NCP given in the Materials and

Methods section rely on this relative accuracy of MAF compared to conditional

probability. We show empirically that for most values of MAF, our assumption is

valid and our estimates are accurate.

We examine the effect of this assumption on our analytical estimates of

the mean and variance of the correlation coefficient by sampling correlated bino-

mial random variables and comparing their distribution to the analytical ones we

derived. For a range of correlation coefficients and MAFs, 120 pairs of variables

were sampled. This was repeated 1000 times to get a mean and variance for the

correlation coefficient. Table 4.1 shows the results. Our analytical predictions of

the mean and variance are very close to the results of empirical simulation demon-

strating that our approximations are valid. The simple analytical estimate that

assumes a correct minor allele frequency estimate is not as accurate for low mi-

nor allele frequencies. However, the analytical method based on the delta method

accurately estimates mean and variance even for low minor allele frequencies.

We used the genotypes from the Welcome Trust Case Control Consortium

[26] in order to examine possible deviations in real genotype data as opposed to

the sampled binomial random variables. We computed the correlation coefficient

for randomly selected pairs of SNPs using 3008 available individuals. Then, we

subsampled random collections of 120 genotypes 10000 times and computed the

mean and variance of these subsets correlation coefficients. Similarly to the case

for simulations using binomial random variables, the analytical methods derived

in the Materials and Methods section is highly accurate, with an average error
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Table 4.1: Pairs of correlated genotypes were sampled from a distribution with a
given correlation coefficient and minor allele frequency as noted in the r2 and MAF
columns respectively. 120 pairs are generated and their empirical correlation coef-
ficients σ̂ are measured. This process is repeated 1000 times to get the mean and
standard deviations of the distribution of the correlation coefficient. We compute
the same values using the analytical methods described in the Materials and Meth-
ods section to estimate the error in the analytical methods. σ∆ and |σ̂−σ∆| are the
estimates of standard deviation and the error in the estimate for the delta-method
based estimate respectively. σS and |σ̂ − σS| are the equivalent measurements for
the simple analytical estimate. The error is higher for SNPs with low minor allele
frequency due to the assumption of a correct minor allele frequency.

r2 MAF σ̂ σ∆ σS |σ̂ − σ∆| |σ̂ − σS|
0.1 0.1 0.138 0.135 0.143 0.003 0.004
0.1 0.3 0.094 0.093 0.094 0.001 0.001
0.1 0.5 0.087 0.087 0.087 0.001 0.001
0.2 0.1 0.136 0.134 0.146 0.002 0.010
0.2 0.3 0.088 0.089 0.091 0.001 0.003
0.2 0.5 0.080 0.082 0.082 0.001 0.001
0.4 0.1 0.126 0.120 0.137 0.006 0.011
0.4 0.5 0.072 0.071 0.071 0.001 0.001
0.8 0.1 0.071 0.069 0.085 0.002 0.014
0.8 0.3 0.046 0.045 0.048 0.002 0.001
0.8 0.5 0.042 0.041 0.041 0.001 0.001
0.9 0.1 0.050 0.048 0.061 0.001 0.011
0.9 0.3 0.033 0.032 0.034 0.002 0.000
0.9 0.5 0.029 0.029 0.029 0.001 0.001
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Table 4.2: The standard deviation of the correlation coefficient computed over
SNPs rs2381104 and rs4819534 in the control population of the welcome trust case
control consortium study [26] computed over a range of sample sizes (N). The
empirical standard deviation is denoted σ̂. σ∆ and |σ̂ − σ∆| are the estimates
of standard deviation and the error in the estimate for the delta-method based
estimate respectively. σS and |σ̂ − σS| are the equivalent measurements for the
simple analytical estimate. The HapMap sample size of 120 has a much higher high
variance for this SNP than the larger sample sizes. The errors are similar to those
for simulated binomial random variables, and demonstrate that the assumption of
correct minor allele frequency does not affect the accuracy of the analytical values
for SNPs when the minor allele frequency is not low.

N σ̂ σ∆ σS |σ̂ − σ∆| |σ̂ − σS|
60 0.142 0.134 0.153 0.009 0.011
120 0.097 0.095 0.108 0.003 0.011
180 0.079 0.077 0.088 0.002 0.010
240 0.068 0.067 0.077 0.001 0.009
300 0.060 0.060 0.069 0.001 0.008
360 0.055 0.055 0.063 0.000 0.008
420 0.052 0.051 0.058 0.001 0.006
480 0.047 0.047 0.054 0.000 0.007
540 0.045 0.045 0.051 0.000 0.006
600 0.042 0.042 0.048 0.000 0.006

of less than 0.001 in estimating the variance. We chose two SNPs rs2381104 and

rs4819534 and repeated the experiment with a variety of sample sizes. The results

are shown in Table 4.2.

The analytical estimates derived in the Materials and Methods section as-

sume that the distribution of the correlation coefficient is normal. However geno-

type data are discrete and the correlation coefficient is discrete. The distribution

is therefore not normal and moves further from a normal distribution as r2 ap-

proaches 1 or the minor allele frequency approaches 0. We measure the utility

of our analytical estimates by measuring confidence intervals for the distribution

of the correlation coefficient. We estimated the confidence interval for a range of

minor allele frequencies when the true r2 = 0.8 and N=200 chromosomes. First

we generated all possible contingency tables for pairs of SNPs and measured their

probability with Fisher’s exact test. This gave us the exact distribution of cor-
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relation and exact confidence intervals. Second, we simulated pairs of correlated

binomial random variables and recorded their correlation. The 95% confidence in-

tervals were estimated from 10,000 rounds of simulation. Third, we used Fisher’s

estimate for confidence intervals of the correlation coefficient. The Fisher estimate

was not designed for this setting, and does not depend on the minor allele fre-

quency. It is included for reference. Finally, we used our analytical estimates to

generate the 95% confidence intervals. Figure 4.1 shows the results. Surprisingly,

the simpler estimate is a more accurate estimate of the lower bound for lower mi-

nor allele frequencies. The two estimates converge as the minor allele frequency

increases. This is due to the deviation from the normality assumption when minor

allele frequency is low. The simpler estimate overestimates the variance (Table 4.1)

for low minor allele frequencies in such a way that it more accurately estimates

the true confidence intervals.

4.4 Discussion

In summary, we derived analytical distributions for the correlation coeffi-

cient and non-centrality parameter in the context of an association study design

using a finite data set such as the HapMap. We showed via extensive simulation

over real and generated data that our distributions very closely followed the true

distributions of these statistics in the same context. This permits quick and ac-

curate examination of the effect of sample size on these commonly used measures,

and gives the first exploration on the central data set in genome wide association

studies (i.e. the HapMap).

Throughout the work we used a 95% confidence interval of 0.1 and an r2

threshold of 0.8. Although somewhat arbitrary, they served as a means to ground

the results in a familiar setting. The analytical estimates we derived in this study

allow quick and accurate examination of alternative thresholds.

We used our analytical distributions to examine the error of current esti-

mates of LD and power based on the current HapMap. We found that the HapMap

at its current size does not provide enough data for accurate estimation of these
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Table 4.3: The overestimation of r2 in SNP tagging when taking the maximum of
two tag SNPs to cover a third. We generated correlated triples of binomial data
such that two tag SNPs had the same minor allele frequency and were associated
with a third SNP at the same level of r2. 1000 samples of 120 triples were used
to estimate the empirical maximum of two SNPs (m̂ax), and compared to our
analytical formula for the maximum of two SNPs (max). The error (err) is the
absolute difference between the empirical and analytical estimates. The inflation
of coverage is very significant and suggests that estimates of power based on the
best tag for each SNP in the HapMap are overly generous.

MAF r2 m̂ax max err
0.1 0.5 0.595 0.588 0.006
0.1 0.7 0.780 0.781 0.001
0.1 0.9 0.951 0.954 0.003
0.2 0.5 0.566 0.564 0.002
0.2 0.7 0.761 0.760 0.002
0.2 0.9 0.940 0.938 0.001
0.3 0.5 0.561 0.557 0.005
0.3 0.7 0.751 0.751 0.001
0.3 0.9 0.933 0.935 0.002
0.4 0.5 0.549 0.552 0.003
0.4 0.7 0.751 0.747 0.004
0.4 0.9 0.930 0.931 0.001
0.5 0.5 0.547 0.550 0.003
0.5 0.7 0.749 0.746 0.003
0.5 0.9 0.931 0.931 0.000
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central statistics. The variance is especially high for SNPs with low minor allele

frequency. This error has impact in the field of human disease genetics, especially

for researchers conducting genome wide association studies.

In the design phase of an association study, the appropriate number of indi-

viduals to achieve desired power cannot be accurately estimated with the current

sample for certain SNPs. Although the effect is small for well covered SNPs recent

evidence has shown that genome coverage is much worse than currently estimated

[10]. This is further hindered by the overestimate of LD in the Affymetrix and

Illumina genotyping platforms. We showed that selecting SNPs with maximal r2

to find a tag set is heavily upwardly biased. That is, the expected empirical r2

under such a procedure is significantly higher than the true r2. The current high

throughput genotyping platforms utilized hundreds of thousands of such maxi-

mizations in selecting their tag SNPs, and therefore, the true average correlation

coefficient of these platforms is likely much lower than found by measurement over

the HapMap data. This also produces overestimates in power, since the NCPs are

linked to r2 as described in the Materials and Methods section.

During the analysis phase of an association study, one may select SNPs for

follow up based on LD to the tag SNPs found to be significant. The strength of

this LD is commonly measured from the HapMap data. As show in Figure 4.3,

these estimates have very high variance, and it would not be surprising to have

strongly linked SNPs with reported r2 of less than 0.5, or weakly linked SNPs

with reported r2 greater than 0.8. Thus, one may incorrectly choose to genotype

SNPs without strong LD, and miss SNPs that do have strong LD. Our analytical

estimates provide a simple way of estimating errors due to finite sample size so

that future association studies may avoid these type of errors.

The HapMap has also been used to estimate global significance levels for

genome wide association studies. The finite size of the HapMap as evidenced by

the high variance of r2 will lead to observed long range LD even though it does not

exist. This reduces the effective number of hypotheses being tested, and therefore

alters the global significance level for association. Long range LD has also been

examined in the HapMap data [120]. Our findings suggest that at least some of



91

the long range LD is expected due to the size of the HapMap.

Increasing the size of the HapMap will improve its utility to researchers

working on discovering the genetics basis of human disease. A larger HapMap,

such as that proposed by the 1000 genomes project, will address all of the issues

described above and provide a foundation for the new and growing high throughput

sequencing technology. While genome wide association studies are well powered

for common diseases with causes due to common variants, sequencing can examine

rare variants. We demonstrated clearly that statistics for SNPs with low minor

allele frequency have the greatest variance. If the community decides to make

a similar investment for sequence based studies as they did for genotype based

studies, a significantly larger number of individuals must be collected.

Chapter 4, was published in Human Heredity, Vol 68, pp73-86, 2009. Noah

A. Zaitlen, Hyun Min Kang, and Eleazar Eskin, “Linkage effects and analysis of

finite sample errors in the HapMap”.



Chapter 5

Meta-Analysis of Genome Wide

Association Studies

Introduction

The genome wide association study (GWAS) has proven to be a successful

method for identifying loci contributing to the genetic basis of complex human

diseases. While the list of SNPs and genes correlated with phenotypes continues

to grow, many of the discovered variants exhibit only a weak to moderate effect

and account for just a small fraction of the total phenotypic variance. Over 75%

of loci from completed case control GWAS reporting significant results had SNPs

with relative risks (RR) less than 1.4 with 39% less than 1.2. In order to achieve

90% power to capture a SNP with RR=1.2, minor allele frequency (MAF) of 0.2,

and genome-wide cutoff of 10−6 under a multiplicative model, 15248 individuals

must be collected in a balanced study. Over 82% of discovered loci from completed

case control GWAS are from studies with significantly fewer individuals and are

underpowered to reliably discover these associations [59].

Given this observation, GWAS must be designed with larger numbers of

individuals to have sufficient power to identify weaker variants. This requires a

large scale effort to collect potentially tens of thousands of individuals, who are then

genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs).

92
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Although the cost of genotyping is dropping, it remains difficult to find, screen, and

approve individuals suited for a study. Despite these difficulties, multiple groups

are performing association studies on the same disease, each collecting is own case

and control cohorts. A natural approach to addressing the lack of power problems

of each of these individual studies is to combine the cohorts using meta-analysis.

Meta-analysis is a well studied problem and is currently widely used in the

genetics community in the planning and analysis of GWAS. For a review of meta-

analysis techniques and pitfalls see Kavvoura et al[69]. Traditional approaches

to meta-analysis combine the statistics at each marker from both studies. This

approach requires individuals to be genotyped on the same set of SNPs. Since

studies often employ different genotyping platforms and different SNPs pass quality

control filters in each study, many markers are not shared between studies and are

unable to be combined using traditional meta-analysis methods.

Recently, several methods have been proposed which use a reference set

such as the HapMap[25] to “impute” ungenotyped SNPs in a study[74, 79, 49].

Provided that the study population is similar to one of the HapMap populations,

these imputation methods are highly accurate for many of the HapMap SNPs.

A straightforward approach to combining studies with different marker sets is to

impute the ungenotyped SNPs in each study so that all HapMap SNPs are ei-

ther genotyped or imputed in both studies. A traditional meta-analysis method

may then be applied to the genotyped and imputed SNPs. Indeed, a recent meta-

analysis of several GWAS for type 2 diabetes adopts this approach[123]. Unfortu-

nately, not all SNPs are imputed with perfect accuracy. In fact, this accuracy may

vary greatly from SNP to SNP. Traditional meta-analysis methods do not take this

into account, leading to a reduction in the power of the combined study.

In this work we develop a new method which corrects for potential inac-

curacies of imputation by “weighting” each association study depending on the

accuracy of the imputation at each marker. We analytically derive an optimal set

of weights for combining results from each study and show that it can result in

significant increase in power compared to the standard approach. Unfortunately,

the optimal weights cannot be computed directly from the data since we do not
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know the true accuracy of the imputation. However, several methods were recently

proposed for estimating these weights. We empirically examine each of these meth-

ods to determine which should be used in conducting a meta-analysis of imputed

data. Recently, de Bakker et al [37] have analyzed issues relating to conducting

meta-analysis in the context of GWAS. In particular they suggested incorporating

estimates of imputation accuracy into the meta-analysis statistic by scaling the

number of individuals by the SNP information measure. In this work, we demon-

strate that such scaling by the (unknown) correlation between true and imputed

genotypes maximizes the statistical power of the study. Our method for estimating

the weights are equivalent to estimating this correlation.

We conduct several experiments to show that our new method for handling

imputed genotypes from distinct SNP sets improves the power of meta-analysis.

We simulate case control studies using the HapMap and Welcome Trust Case

Control Consortium (WTCCC) data sets with distinct SNP sets. For each pair of

studies we show that our meta-analysis method improves the power of the overall

study compared to the traditional method of combining Z-scores based on study

size.

Material and Methods

Case Control Studies. In a case control study individuals are collected from

two groups, the cases and the controls. The individuals in each group differ along

a phenotype of interest, such as disease state, but are otherwise members of the

same population. The individuals are genotyped on a set of single nucleotide

polymorphisms (SNPs), and the allele frequency of each SNP si is measured in the

cases p̂+
i and in the controls p̂−i . Assuming a study with N/2 cases and N/2 controls

where the true SNP frequencies in the population, cases, and controls are pi, p
+
i ,

and p−i respectively, the Z-score statistic Zi in equation (5.2) is computed for each

SNP. It is normally distributed with mean equal to the non-centrality parameter

(NCP) λi
√
N and variance 1. Those SNPs with statistic |Zi| > φ−1(α/2) where

φ−1(x) is the quantile function of the standard normal distribution and α is the
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significance threshold, are considered significant and maybe linked to a causal

variant for the phenotype.

Zi =
p̂+

i − p̂−
i

√

2/N
√

p̂i(1− p̂i)
∼ N

(

λi
√
N, 1

)

(5.1)

λi
√
N =

(p+
i − p−

i )
√
N

√

2pi(1− pi)
(5.2)

Traditional Meta-Analysis. A standard approach in meta-analysis is combin-

ing the Z-scores of several association studies. This approach has recently been

applied in the meta-analysis of several type 2 diabetes GWAS studies [123]. The

data required from each study are the statistics Zj
i for each SNP i in each study j,

and the number of individuals N j in each study j, and assume an equal number of

cases and controls (although this is easily changed), and that the case and control

frequencies at SNP i are the same across all studies, that is, pj+i = p+
i and pj−i = p−i

for all j, which implies that λji = λi. This is equivalent to assuming that the rela-

tive risk of the causal SNP is the same for all studies. These assumptions maybe

unrealistic in the case that the studies are performed over different populations

and that the causal variant is different or acts differently in different populations.

For each SNP si in the studies we compute the meta-analysis statistic Mi

which is a weighted sum of Z-scores defined in equation 5.3.

Mi =
∑

j

wjZj
i

√

∑

j(w
j)2
∼ N





∑

j

wjλj
i

√
N j

√

∑

j(w
j)2
, 1



 (5.3)

Mi is defined for any weights wji which are positive and with at least one wji greater

than zero. The statistical power of the statistic Mi to detect associations depends

on the weights and is maximized when the weights wji =
√
N j . Intuitively we are

assigning larger weights to studies with more individuals and therefore with more

power to detect an association. The optimality of these weights is shown with a

direct application of the Cauchy Schwartz inequality
√

∑

j(w
j)2

√

∑

j(λ
j
i

√
N j)2 ≥

∑

(wjλj
i

√
N j). Since λj

i = λi for all j there is equality when wj =
√
N j .
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Imputation. Unfortunately, the set of SNPs genotyped in a GWAS, or “tag”

SNPs, are not identical between studies, so the Zj
i required for meta-analysis are

not immediately available. Furthermore, the set of tag SNPs is much smaller

than the total number of SNPs in the population and it is likely that the causal

variants are not contained in the tag SNP set. Recently, several methods have been

developed to leverage existing data sets with millions of genotyped SNPs, such as

the HapMap, to improve the power of association studies. If the study population

is closely matched to a HapMap population it is possible to measure statistics over

SNPs not included in the set of tag SNPs. In addition to improving the power

of association studies, imputation methods can be used to aid meta-analysis of

association studies that used different sets of tag SNPs by computing statistics at

SNPs missing from either study but contained in the HapMap. Meta-analysis is

performed by imputing the missing SNPs in each study and computing a statistic

Zj
i for each SNP i in the HapMap and each study j. Provided that all of the tag

SNPs in each study are contained in the HapMap, this procedure will provide the

required statistics to perform meta-analysis at all SNPs in both studies as well as

all HapMap SNPs not contained in either study.

Due to linkage disequilibrium (LD) between proximal SNPs in the genome,

a difference in frequency between cases and controls at a causal SNP may cause

a similar difference at a nearby tag or imputed SNP. The NCP at a tag SNP is a

function of relative risk, disease model, MAF, study size, and correlation coefficient

to the causal variant. Let λi
√
N be the NCP of tag SNP si in a case control study.

Imputing si instead of genotyping directly will alter its NCP. We define r2
i,j as the

square of the correlation coefficient between the imputed genotypes and the true

genotypes of SNP si in study j. Intuitively, if r2
i,j is close to 1 then the SNP is

imputed well and the NCP will be close to λi
√
N , and if r2

i,j is close 0 then little

information is known about the true genotypes of si and the NCP will be close to

0. The NCP of an imputed SNP is equal to ri,jλi
√
N , a function of the NCP of

the SNP it is imputing as well as the correlation coefficient between the imputed

and true genotypes.
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5.0.1 Imputation Aware Meta-Analysis.

The statistic Zj
i computed for an imputed SNP does not necessarily share

non-centrality parameters across studies. The assumption that λj
i = λi from the

simple meta-analysis described above is still valid. However, the correlation be-

tween the imputed and true genotypes my vary from study to study affecting the

NCP. Consider the situation presented in Table 5.1. Two different tag sets are

used to impute a HapMap SNP sH . The linkage patterns between sH and the two

different tag sets result in poorer imputation for Tag Set 1 then Tag Set 2. Sup-

pose that two studies of N/2 individuals, study 1 and study 2, use these tag sets

and that rH,1 = 0.7 and rH,2 = 0.95. Since both studies have N/2 individuals the

NCPs will be 0.7λi
√
N in study 1 and 0.95λi

√
N in study 2. Given this result, the

derivation for Mi in the simple case above no longer holds. Treating the statistics

Zj
i as the equivalent of directly genotyped SNPs may weaken the meta-analysis

power. Our objective is to develop a new meta-analysis statistic which accounts

for the imputation error.

Table 5.1: Two tag sets with different markers s1, s2, s3 and s2, s4, s6 will have
different accuracies in imputing the HapMap SNP sH . Four example individuals
are shown for each tag set with genotype dosages 0, 1, and 2 representing homozy-
gous minor, heterozygous and homozygous major alleles. In this case Tag Set 2 is
more accurate than Tag Set 1 with imputed genotypes ŝH much closer to the true
genotypes sH .

Tag Set 1 Tag Set 2
s1 s3 s5 sH ŝH s2 s4 s6 sH ŝH
0 1 1 1 0.8 1 0 0 1 0.95
2 1 2 2 1.6 1 2 2 2 1.95
2 2 0 2 1.5 2 0 1 2 1.99
0 0 2 0 0.5 1 2 2 0 0.04

Adopting the same framework as the traditional method we wish to find a

set of weights wji such that a weighted combination of the Zj
i from each study will

maximize Mi. The wji we propose is λj
i

√
N j = rjiλi

√
N j . Since the λi is fixed across

studies this is equivalent to wji = rji
√
N j . In this case we consider not only study

size, but also the quality of the imputed genotypes. Provided that the imputed
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genotypes are accurate estimates of the probability of the true genotype given the

observed tag SNP genotypes, poorly imputed SNPs will have low non-centrality

parameters because their ri,j will be close to zero. A large study with poorly

imputed genotypes for a SNP will not alter the meta-analysis statistic significantly

if there exists a smaller study that genotypes the SNP directly. The proof of

optimality once again follows from a direct application of the Cauchy Schwartz

inequality.

To understand the effect of this new statistic consider a SNP si in a two

study meta-analysis where each study has N/2 cases and N/2 controls. Suppose

study 1 genotypes the SNP directly and that in study 2 the SNP is imputed, that

is, ri,1 = 1 and ri,2 = r. Then in order to maximize power we must maximize the

NCP of the meta-analysis statistic Mi. We set w1
i = 1 and w2

i = r and get NCP

of Mi =
√

1 + r2λi
√
N . If instead we choose to follow the standard method for

meta-analysis and set wji = 1 for all j, then we get NCP of Mi = 1+r√
2
λi
√
N . In this

case if r ≤
√

2 − 1.0 then the meta-analysis will have even less power than than

either study alone. If both studies impute the SNP then the potential for loss of

power compared to our method is even greater.

5.0.2 Estimating Imputation Correlation.

We showed that the correlation between the true and imputed genotypes

ri,j are the weights which maximize the power of the meta-analysis. These weights

can not be computed directly since the true genotypes are unknown. There exist

several methods for estimating ri,j which we describe here.

First we describe two methods using the HapMap haplotypes. They both

assume the linkage patterns in the HapMap resemble those in the study population.

The conditional probability of observing a genotype at the imputed SNP given the

tag SNPs can be computed in the HapMap data. This in turn can be used to

estimate the correlation coefficient. The derivation is presented as part of the

WHAP method described in Zaitlen et. al[121]. We call denote this estimate of

correlation EW (ri,j). Equivalent empirical measurements can be made (at higher

computational expense) for other imputation methods such as MACH, IMPUTE,
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and BIMBAM [74, 79, 49]. This second estimate of ri,j for an imputation method

is computed by restricting the HapMap to the set of SNPs used in the study. Then,

leaving out each HapMap individual in turn, the remaining individuals are used to

impute the genotypes. The empirical estimate for ri,j is the correlation coefficient

between the imputed and true HapMap genotypes. It is denoted EC(ri,j) and is

called the cross validation estimate since we are using leave one out procedure to

compute it.

In addition to these HapMap based approaches several estimates of impu-

tation quality relying solely on the imputed genotypes have been proposed. One

such estimate of ri,j proposed by MACH [74] is called r2 − hat, which we write

EH(ri,j). It is the ratio of the empirical variance of the imputed genotypes to

the expected variance given the imputation estimate of the minor allele frequency.

Provided that the imputed genotypes are the expected dosages given the observed

genotypes then this will be the expected correlation coefficient.

Differences between the study population and the HapMap, the genotyping

density, and the finite size of the HapMap can effect both the empirical and ana-

lytical estimates of correlation. We examine the relation between the true ri,j and

the estimates EC(ri,j), EH(ri,j) of imputation quality over several data sets. We

show that the correlation is estimated closely enough in most cases to warrant the

use of our new meta-analysis statistic over the traditional method when combining

imputed genotypes.

5.1 Results

5.1.1 Power Simulations.

The difference in power between traditional meta-analysis and our impu-

tation aware meta-analysis method is explored by simulating pairs of case control

studies. For every pair we record the power of each study as well as the power of

each type of meta-analysis. Figure 5.1 shows the results of three such simulations.

In each of these simulations both studies contain 2000 individuals with equal num-

bers of cases and controls. The disease model is multiplicative with an odds ratio
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of 1.203 and a causal SNP minor allele frequency of 0.05, giving an expected power

of 50%. The genotypes in each study are generated as conditional binomial ran-

dom variables with some correlation coefficient r to the causal variant. An r of 1.0

means that the causal variant and the generated genotypes are identical. For each

study we compute the Z-score and if the corresponding p-value is less than 0.05 we

consider it successful. We also compute the weighted combination of the Z-scores

from both studies according to the traditional method and our imputation aware

method. This process is repeated 1000 times and the power of the four methods

is computed as the fraction of times a successful test occurred. In each simulation

our imputation aware meta-analysis statistic matched or beat the power of the

traditional method. The difference between the methods is especially large when

the quality of imputation is poor. In some circumstances traditional meta-analysis

power can be even lower than the power of an individual study, but this is never

the case for the imputation aware statistic. Filtering poorly imputed SNPs has

been suggested as means for addressing this issue [123]. This may prevent power

loss beyond each of the individual studies if the threshold is high enough, but it

will not prevent a power loss compared to the imputation aware statistic.

5.1.2 Correlation Coefficient Estimates.

Unfortunately the optimal weighting of the Z-scores from individual studies

cannot be computed from the data. Instead, the correlation between the true and

imputed genotypes must be estimated. We can estimate this correlation using the

HapMap as described in the Methods section. Since this procedure is computa-

tional expensive for most imputation methods we also examine the estimate of r2

called r̂2 defined by MACH [74].

We examine the quality of these approaches over real genotype data in order

to asses the feasibility of using our imputation aware meta-analysis method without

access to the true value of rji . Using the controls from the WTCCC we randomly

removed one quarter, one half, and one third of the genotyped SNPs producing

three new data sets for chromosomes 1,2, and 22. For each data set we imputed the

removed SNPs and computed the true value of rji for each SNP. We then estimated
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Figure 5.1: Power of simulated studies. Z1 is the power of study 1, Z2 is the power
of study 2, M1 is the power of the traditional meta-analysis method, and M2 is
the power of the imputation aware meta-analysis method. In the Null example the
genotypes are completely unlinked to the causal variants in both study 1 and study
2. In the second example, study one genotypes the causal variant directly and study
2 imputes it with r = 0.4. In the third example study one and study two both
impute the SNP with r = 0.95 and r = 0.75 respectively. Notice that the imputation
aware meta-analysis method matches or beats the power of the traditional method
in each case, and that in the second example the power actually drops in the
traditional method due to poor imputation quality that is not accounted for in the
second study.
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this correlation coefficient using each of the methods described above. For all but

the most sparsely genotyped data set and SNPs with low MAF the value of r̂2

very closely approximates the true rji . In the densest data set both the r̂2 and the

cross validation method exceeded 0.7. The performance is noticeable poorer on

the sparsest data set, but most current studies and genotyping platforms exceed

this density considerably. The imputation method EMINIM used in this analysis

permits a quick estimate of this estimated correlation accuracy by automatically

performing a leave one out imputation estimate of all genotyped SNPs.

5.1.3 Power Simulation with Error.

We repeated the experiments show in Figure 5.1 with values of r sampled

from the error observed in the experiments above. Although there was a slight

drop in power, this method is still more power than traditional meta-analysis for

most error levels, and we conclude that the error in estimating r is not large enough

to warrant abandoning the imputation aware meta-analysis statistic.

5.1.4 Power Simulation with Real Data.

We used the WTCCC data set for T2D to generate two studies of equal

size with different marker sets. We randomly partitioned the cases and controls

into into two studies. For each of these new studies we removed every other, every

third, or every fourth SNP. In the first study we started at the first SNP, and in the

second study we started at the second SNP so that different SNPs were removed

from each group. We then imputed in each of the studies and combined the results

using the traditional and imputation aware meta-analysis methods. We compared

these results to those of the original WTCCC study.

In both cases all the significant SNPs remained significant. However, the

order of the top 100 SNPs changed between the original, traditional, and imputa-

tion aware methods. Our method was the most concordant with the original study.

The traditional method output the same significant results but the rank of SNPs

was further from the original study. We took this as evidence that our imputation
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aware meta-analysis was more robust to errors from imputation.

5.2 Discussion

Currently, meta-analysis of genome wide association studies are commonly

performed using a weighted sum of Z-scores approach. This well established

method linearly combines the results of each study weighting them by their size.

In this way, larger studies are up-weighted relative to smaller ones and their results

have greater influence in the final meta-analysis statistic. GWAS do not necessar-

ily contain the same set of genotyped SNPs and so additional work must be done

before meta-analysis can be conducted. Specifically, an imputation method is used

to estimate the genotypes of SNPs absent from either study. Typically, Z-scores

over these imputed SNPs are then combined between studies using the traditional

method.

Although this method is optimal under certain reasonable assumptions it

does not take into account errors from imputation of genotypes. Thus a large study

that poorly imputes a genotype will be given more weight than a smaller study that

imputes it perfectly. In this work we introduce a novel meta-analysis statistic to

deal with this issue of imputed genotypes in meta-analysis. Specifically, we adjust

the weighting scheme of the traditional method to take into account the accuracy of

the imputed genotypes. The new weights are function of both sample size and the

correlation coefficient between the imputed and true genotypes. We show that our

method is optimal under the same set of assumptions as the traditional approach.

In addition, we show that for many cases our new statistic not only improves the

meta-analysis power, but prevents a loss in power compared to each individual

study that can occur when SNPs are poorly imputed.

Unfortunately, the optimal weights in our statistic are not computable from

the results of GWAS and imputation. However, there exist several techniques for

estimating them either directly from the imputed data or with a secondary data set

such as the HapMap. We performed several experiments to examine the accuracy

of these approaches and found that although there are slight differences in accuracy
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depending on minor allele frequency and tag set density, for most current studies

either approach is accurate enough to estimate the weights effectively. That is, the

power of the meta-analysis will still be more power using our new method with

estimated correlation coefficients than using the previous method, which ignores

imputation issues altogether.

Finally, we simulated case control studies using real genotype data from

the Welcome Trust Case Control Consortium studies. In each study we imputed

genotypes using EMINIM and performed a meta-analysis using traditional and

our new imputation aware statistics. We showed that our method matches our

outperforms the traditional approach in all scenarios examined. Thus we suggest

the adoption of our statistic for future meta-analysis of GWAS studies that use

imputed genotypes.

Chapter 5, in part is currently being prepared for submission for publication

of the material. Noah Zaitlen, Eleazar Eskin. The dissertation author is the

primary investigator and author of this material.



Chapter 6

NCBI Phasing

6.1 Introduction

Many risk factors for human disease are accounted for by variation in DNA

sequence[18]. The most common type of human sequence variation consists of

differences in individual base pairs termed single nucleotide polymorphisms (SNPs)

[116, 17, 56]. It has been estimated that there are about 7.1 million common

biallelic SNPs with a minimum minor allele frequency of 5%. These SNPs appear

on average once every 450 base pairs [72]. In recent years, a tremendous number

of single nucleotide polymorphisms (SNPs) have been discovered and deposited

into NCBI’s dbSNP public database. Today, dbSNP contains information for over

10 million human SNPs with over 5 million of them validated. More recently,

a significant amount of genotype data has been deposited as well. More than

2.7 million human SNPs in the database have genotype information. This data

resource consists of over 286,757,371 genotypes over 3,285 individuals split into 417

data sets. This data resource provides an invaluable resource for understanding

the haplotype structure of human variation and discovering the genetic basis of

human disease. Analysis of these data sets will allow for the design of effective

whole genome association studies designed to identify the genetic contribution to

the manifestation of complex diseases.

The database contains two whole genome human variation maps, one de-

posited by the HapMap project[24] covering four populations, and the other de-

105
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posited by Perlegen Sciences[60]. The database also contains a significant amount

of sequenced gene data from the Environmental Genome Project and the Seat-

tleSNPs project in addition to many other smaller data sets. Each data set has

different properties such as the number of individuals genotyped, average SNP

density, genome coverage and types of genomic regions genotyped. These inher-

ent properties may bias inferences drawn from the analysis of any one of these

data sets. Analysis of multiple data sets with different properties genotyped over

the same region in the human genome provides opportunity for a more complete

analysis of human variation.

Alleles of SNPs which are physically located in close proximity to each other

on a chromosome are often correlated (i.e. in “linkage disequilibrium”) with each

other. Thus, within most short regions, there is limited genetic variability, and only

a small number of allele sequences (haplotypes) exist in a population. Empirical

studies investigating different regions of the genome show that haplotype structure

varies considerably. In a typical region or “block of limited diversity”, three or four

common haplotypes often account for at least 80% of the sequence variation in a

population [89, 28, 46]. Studies show that some blocks can extend over 100 kb

while others only extend less than 10 kb. The haplotype structure of a given

region depends on evolutionary and population genetic factors such as mutation

and recombination rates, selection, and population history.

Obtaining the haplotypes and partitioning the region into blocks of lim-

ited diversity are the first steps for many types of analysis of human variation.

However, since humans are diploid, phase (or haplotype) information is not im-

mediately available. Therefore, the construction of haplotypes from the diploid

genotype information (i.e., phasing the genotypes) requires statistical inference or

the financially prohibitive collection of extended pedigrees. Consider for example

two SNPs lying on the same chromosome, both with alleles A and G. If both SNPs

are observed as heterozygous, it is unclear whether one chromosome contains allele

A at both loci and the other chromosome contains allele G in both loci, or whether

one chromosome contains allele A at the first locus and allele G at the second

locus and the other chromosome contains alleles G and A, respectively (Fig. 6.1).
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Figure 6.1: A genotype for 5 SNPs (left) and two possible phasings of the genotype
into pairs of haplotypes (right) demonstrating the inherent ambiguity of haplotype
phasing. Each SNP has possible bases of “A” and “G”. “A” and “G” positions
in the genotype represent homozygous genotypes at a particular SNP and an “H”
position represents a heterozygous genotype at a particular SNP. From only the
observed data, it is impossible to determine which haplotype phasing is correct.

In order to overcome this problem many computer programs have been designed

to estimate and assign phase from diploid genotype data [106, 87, 54]. In order

to compute the full set of haplotypes for dbSNP, we used HAP [54], a phasing

program which determines haplotypes by exploiting the correlation between SNPs

in physical proximity due to linkage disequilibrium using a genealogy based model

(perfect phylogeny [63]). The perfect phylogeny model assumes that in short re-

gions there has been no recombination nor recurrent mutation throughout human

history (Fig. 6.2). HAP assumes that over a short genomic region the haplotype

structure is close to a perfect phylogeny.

Computing the haplotypes for the complete set of more than 286 million

genotypes over 417 data sets of dbSNP is a tremendous computational task. In

this work, we describe how we modified the phasing program HAP[54] to scale

up to this task and generate a set of haplotypes for all of the genotype data sets
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in dbSNP. The main advantage of HAP is its speed since the algorithms running

time scales linearly with the number of SNPs. HAP is able to process up to 40,000

SNPs at a time which allows for phasing and partitioning into blocks the entire

dbSNP genotype database in under 24 hours on a 30 node cluster. HAP has

also been extended to incorporate pedigree information into the phasing which is

available for many of the data sets. The predicted haplotypes are deposited in

dbSNP and will be made publicly available to the community. The accuracy of

HAP has previously been tested on various regions of the genome [42, 54] and it

has proven to phase correctly 97% of the heterozygous SNPs, which is comparable

in accuracy to other established methods. In addition, we measured the accuracy

of HAP on unrelated individuals by considering genotypes collected from mother,

father, child pedigrees in the HapMap data. We use HAP to phase the parents and

compared the predicted haplotypes to the haplotypes inferred by using the child

genotypes. The error rate of HAP is 1.5% which is comparable to the error rate

of PHASE[106].

Other phasing methods such as PHASE [106] could potentially have also

been used for the phasing task, only that the computation time for PHASE is

too long to make the phasing feasible over the whole database. We measured

the running time of PHASE over randomly selected regions of the HapMap data

obtained from dbSNP. From these experiments it is not clear how long it would

take for PHASE to predict the haplotypes for the database because of the high

variance in running time and the fact that it does not appear that PHASE scales

linearly with the number of SNPs. Nevertheless, it appears that applying PHASE

to the entire database is computationally infeasible.

One of the main contributions of this work is the organization of the data

sets in a way that corrects for errors in the strand and physical location annota-

tions of the SNPs submitted to dbSNP. Since all of the data sets are submitted to

dbSNP and mapped to the current human genome build, using dbSNP we can eas-

ily extract multiple genotype data sets for the same genomic region. For example,

researchers interested in the ABO gene, can easily obtain haplotype and genotype

data from multiple data sets including the HapMap, Perlegen, and SeattleSNPs.



109

Since many of the data sets were mapped to different human genome builds, rec-

onciling the original data sets and mapping them to a common genome build is a

very time consuming task. In addition, if there are changes to the physical location

of SNPs or strand errors in the genotypes which are corrected, the data sets in

dbSNP will reflect these changes.

We perform preliminary analysis on the haplotypes focusing on measuring

the consistency of the haplotypes in the same region from different data sets. Since

some of the data sets are computed from the same individuals, we can observe how

the SNP density significantly affects the inferred haplotype and block structure in a

region. By combining high density data from Seattle SNPs and the Perlegen whole

genome analysis, we show how the number of haplotypes in the blocks defined by

the Perlegen data sets are underestimated by a factor of 3.6. These differences

illustrate the advantage of examining multiple data sets when inferring human

variation structure.

We find the chimpanzee haplotypes corresponding to each human haplotype

block by mapping all the SNPs typed to the UCSC BLASTZ alignment of the

human and chimp genomes. These haplotypes will also be made available for

download at dbSNP.

6.2 Results

6.2.1 Data Description

The human portion of the dbSNP database contains 286,757,371 total geno-

types from 4,284 individuals over 2.7 million SNPs partitioned into 417 data sets.

835 of the individuals have genotypes from two or more data sets. The CEPH

families for example were used in several different genotyping studies.

Two whole genome data sets compose 94.2% of the genotypes. The HapMap

data set which contains 159,862,776 genotypes taken from four populations con-

sisting of a total of 270 individuals over 954,302 SNPs and the Perlegen data sets

which consists of 110,385,051 genotypes taken from three populations consisting of

a total of 71 individuals over 1,576,578 SNPs. In addition to these data sets there
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are an additional 16,509,544 genotypes from other data sets. dbSNP contains a

significant amount of genotypes derived from sequenced data which includes the

SeattleSNPs (PGA/UW) data which consists of 573,194 genotypes taken from two

populations consisting of a total of 48 individuals over 15,981 SNPs in a total of 177

sequenced genes and the Environmental Genome Project (EGP) sequenced genes

which contains 3,184,170 genotypes over 37,737 SNPs in a total of 304 sequenced

genes in 90 individuals. The 48 individuals in SeattleSNPs are the same individ-

uals in the Perlegen data. Some of these data sets contain a much larger number

of individuals such as the SNP Consortium (TSC) Celera CEPH data set which

contains 691 individuals and a data set from Perlegen containing 655 individuals

from Mexico City. Others data sets contain many populations (such as the TSC

data set which contains 17 populations). Table 6.1 summarizes the contents of the

top 10 data sets contained in dbSNP.

Table 6.1: Summary of genotype data contained in dbSNP. The NIHPDR data
contains a single mixed population. Pops is the number of populations, Inds is the
number of individuals, Density is the average SNP density, and Ref is the reference
to the publication about the data set.

Data set Genos SNPs Pops Inds Density Ref
HapMap 159,862,776 954,302 4 270 3,149 [24]
PERLEGEN WG 110,385,051 1,576,578 3 71 1,938 [60]
Affymetrix 6,189,466 125,778 6 116 24,029 [70]
TSC 4,932,382 19,048 17 1963 312,754 [48]
EGP 3,184,170 37,737 1 90 72,443 [76]
PGA/UW 573,194 1,5981 2 47 153,861 [27]
IIPGA 176,162 3,801 3 47 430,361 [91]
NIHPDR 159,549 1,982 1* 448 1,419,125 [23]
WICVAR 33,240 1,462 1 130 2,011,277
HG BONN CNS 24,522 320 1 143 5,284,550 [44]

In dbSNP, each genotype is mapped to the human genome consistent with

the latest available build. Since many of the original data sets were released at

different times, the data sets were mapped to different human genome builds. Since

the position of SNPs change slightly from build to build, the genome positions listed

for the SNPs in each build are not necessarily consistent between the different data

sets. The same SNP genotypes in two different data sets may appear to be at a
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different position due to mapping to different builds.

Each build of dbSNP maps each SNP to the correct position of the human

genome. Each genotype data set in dbSNP contains references to the dbSNP

identifier for each genotyped SNP. Any strand or mapping errors corrected for

SNPs are propagated to all genotype data sets which contain that SNP.

The HapMap, Perlegen, and PGA/UW groups each maintain interfaces

for viewing their data available on their project websites. However, combining

information from these three groups can be difficult because HapMap is using

dbSNP build 122, Perlegen is using build 123, PGA/UW does not list dbSNP

identifiers. The current dbSNP build is 124, and it maps all three groups on to

the most recent genome build.

Within dbSNP, the complete set of genotypes mapped to the correct posi-

tions in the genome are available for download, and the haplotypes resulting from

this study will be made available. The data is available in multiple formats in-

cluding XML which allows the data in dbSNP to be easily integrated into other

databases. Since multiple data sets can be mapped to the same locations, dbSNP

provides a resource for comparing and combining genotype data between different

studies with ease. As shown below, combining data from multiple sources and per-

forming a joint analysis of the data can significantly alter the picture of a region.

In addition, mapping data sets to the same location is useful for providing quality

control.

6.2.2 Phasing the genotypes

We applied HAP to phase all of the genotypes in dbSNP. We phased each

of the data sets separately. Where mother-father-child pedigree information is

available in dbSNP, we used that information in our phasing. The haplotypes were

partitioned into blocks of limited diversity so that 5 haplotypes covered at least

80% of the total number of haplotypes. A set of tag SNPs was chosen to minimize

the number of SNPs needed to distinguish between the common haplotypes of each

block [124]. The full phasing of dbSNP, partitioning all of the haplotypes in blocks

of limited diversity, and determining a set of tag SNPs took under 24 hours. Table



112

Table 6.2: Summary of block partitions and tag SNPs for the largest 6 data sets
in dbSNP.

Data set Pop Genotypes SNPs Inds Blocks Tag SNPs
HapMap CEU 84,727,965 954,302 90 73,986 179,351
HapMap CHB 18,443,054 411,568 45 41,381 94,583
HapMap JPT 18,030,239 411,627 44 20,671 31,466
HapMap YRI 38,661,518 431,505 90 67,111 157,287
PERLEGEN Afr 35,568,060 1,569,392 23 235,139 569,182
PERLEGEN Asi 37,417,872 1,572,384 24 86,636 211,972
PERLEGEN Eur 37,399,120 1,570,560 24 109,212 274,153
Affymetrix AfAm 885,135 125,776 20 24,526 40,050
Affymetrix Cau 1,534,726 125,778 20 27,561 47,957
Affymetrix Asian 884,091 125,772 20 20,671 31,466
Affymetrix CEPH 50 30 3 18,453 26,018
Affymetrix PD 2869641 125,776 24 35,048 67,154
Affymetrix APE 15,823 9,027 2 6,253 6,262
TSC ALL 4,932,382 19,048 1,963 31,886 46,789
EGP ALL 3,184,170 37,737 90 3,847 6,643
PGA/UW Afr 363,643 15,981 24 2,833 5,375
PGA/UW Eur 209,551 9,525 23 1,086 2,378

6.2 summarizes the block partitions and the number of tag SNPs for each data set.

6.2.3 Haplotype Coverage

The combined set of haplotypes in dbSNP provide a significant amount of

coverage of the genome. We measure coverage by two criteria: density and depth.

Density defines the minimum gap between genotyped SNPs. The depth of a data

set is defined as the number of individuals for whom haplotypes are available in

the region. The coverage is the percentage of the genome covered by haplotypes

with the minimum number of individuals and with a minimum gap between SNPs.

The coverage of the HapMap and Perlegen data as well as the combined

two data sets is shown in Table 6.3. As can be seen from the table, the HapMap

and Perlegen data sets provide excellent coverage for 10kb and more, but they

give poor coverage for 1kb density, and for 5kb density they cover about 50% of

the genome. On the other hand, when the two data sets are combined with the

remaining data sets of dbSNP, the coverage significantly increases the coverage
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Table 6.3: Coverage of Whole Genome Data Sets in dbSNP

Data Set Density
1kb 5kb 10kb 20kb 50kb

HapMap 3.56% 54.50% 85.13% 89.52% 90.46%
PERLEGEN 10.79% 48.69% 63.06% 78.07% 88.24%
Combined 15.12% 72.70% 87.51% 90.02% 90.84%

Table 6.4: Coverage of Combined Data Sets in dbSNP

Depth Density
1kb 5kb 10kb 20kb 50kb

1 15.62% 73.02% 87.60% 90.09% 90.89%
10 15.61% 73.01% 87.60% 90.08% 90.88%
50 15.48% 72.68% 87.22% 89.70% 90.48%
100 4.73% 28.84% 36.49% 37.49% 37.73%
200 3.23% 20.75% 26.67% 27.37% 27.51%
300 1.36% 8.51% 10.53% 10.72% 10.75%
350 0.62% 4.11% 5.14% 5.23% 5.26%

at 1kb density, and at 5kb. In addition, the remaining data in dbSNP provides

higher coverage of the genome at higher depths since the Perlegen data set has

71 individuals and the HapMap data has 270 individuals. The coverage of the

haplotypes in dbSNP is summarized in Table 6.4.

6.2.4 Haplotype Accuracy and Consistency Analysis

Since the haplotypes are obtained by statistical inference, a natural concern

is that the results of analysis of this data may be biased due to errors in the

inference. We benchmarked HAP over data collected in the HapMap project to

obtain an estimate of the error rate for phasing unrelated individuals. The error

rate for phasing related individuals has been shown to be very low in a recent

benchmarking study performed by the HapMap analysis group[80]. We use mother,

father, child pedigree information to measure the inference of haplotypes over the

parents treating them as unrelated and then compare these predictions to what can

be inferred from the pedigrees. The error rate of HAP for unrelated individuals is
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only 1.5% which is on the order of the amount of missing genotypes in the region.

In addition, the haplotypes inferred from the whole genome variation data sets are

consistent with the haplotypes inferred from the high density data sets obtained

from resequencing studies. The accuracy and consistency of the haplotypes appear

to minimize this concern.

HAP Error Estimation

In order to benchmark the accuracy of the predicted phase, we considered

5000 SNPs in chromosome 19 obtained from the HapMap CEPH data. The data

set contains 30 mother, father, child trios from families in Utah with European an-

cestry. We used the trios to resolve haplotypes for heterozygous SNPs, whenever

Mendelian genetics determines the phase. We then phased only the 60 parents,

excluding the children from each of the trios, thus resulting in a set of 60 un-

related individuals. Among 300,000 genotypes in the parents, 73,333(24.4%) are

heterozygous and 57,913(19.3%) can be resolved into haplotypes using the trio in-

formation. The predictions for the parents genotypes treating them as unrelated

are then compared to the haplotypes resolved using trios.

We evaluated the benchmark on both HAP and the widely used phasing

algorithm PHASE[106]. We also measured the discrepancies between the predic-

tions of PHASE and HAP. Since the running time of PHASE increases rapidly

as the number of SNPs to be phased increases, the 5000 SNPs were split into 50

regions of 100 SNPs each. We used PHASE 2.1.0 with its default option, and the

default parameters of HAP.

Our results show that PHASE and HAP give identical results in 97.6% of

the genotypes and 90.1% of heterozygous SNPs. We measured the accuracy of the

results using the switch error rate. The switch error rate measures the proportion

of heterozygous positions for which the phase is erroneously inferred relative to the

previous heterozygous position. In terms of switch error rate, PHASE and HAP

show 5.44% and 8.20% of switch error rates, respectively. When compared to the

total number of genotypes, these switch errors occurs only 1.05% and 1.58% of

genotypes respectively, and these are comparable to the rate of missing SNPs in
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these region, which is 1.17%.

As opposed to the accuracy of the phase prediction, the running time of

HAP and PHASE, differs considerably. In Table 6.5 we provide the summary

of the running times of HAP and PHASE on 10 different regions in chromosome

19 with different number of SNPs. As can be seen from the table, the running

time of HAP is several order of magnitude faster than PHASE in most cases.

Extrapolating from these results, by assuming that the PHASE algorithm is run

with 100 SNPs sequentially on a single CPU, it would take PHASE at least 75,000

hours to phase the whole dbSNP database

In the benchmark performed by the HapMap analysis group, HAP was able

to phase unrelated individuals over 1000 times faster than PHASE[80].

Table 6.5: Comparison of running time in seconds between HAP and PHASE. The
running time is measured by running both methods from ten different positions in
chromosome 19, with different length of genotypes. Intel Xeon 3.20GHz CPU is
used in the measurement.

Mean Stdev. Max.

SNPs Hap Phase Hap Phase Hap Phase

10 0.06 19.12 0.03 8.88 0.10 37.74
20 0.56 109.71 0.30 68.78 1.08 237.78
30 1.10 327.55 0.55 257.59 2.24 887.82
40 1.53 833.99 0.61 831.93 2.58 2906.84
50 1.99 1643.49 0.75 1454.08 3.32 5013.80
60 2.45 3719.40 0.83 4352.68 3.74 14554.47
70 3.02 5931.03 0.91 5680.70 4.48 18593.30
80 3.43 8071.75 1.00 7495.58 5.12 26016.98
90 3.82 10585.10 1.10 9307.13 5.72 32363.89
100 4.42 13409.43 1.25 12113.96 6.53 40183.36
110 4.86 16082.93 1.21 12598.09 6.83 44603.33
120 5.25 20283.20 1.20 14935.60 7.14 54431.03
130 5.70 25249.62 1.35 18740.87 8.09 63775.21
140 6.16 30643.41 1.39 18292.52 8.53 69463.15
150 6.63 35768.83 1.46 20482.31 9.05 74459.95
160 7.05 42161.60 1.49 23714.27 9.73 91346.27
170 7.53 51597.25 1.59 30670.41 10.4 113281.51
180 8.09 63743.02 1.72 37621.29 11.08 138096.67
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Haplotype Consistency Analysis

We performed a joint analysis of haplotypes from three data sets over the

same genomic regions to measure the consistency of inferred haplotypes and block

partitions. We considered regions where resequenced genes are available from the

SeattleSNPs[27] and compared the haplotypes and blocks inferred from these data

sets with the haplotypes and blocks inferred from the HapMap and Perlegen data.

The European population was used for comparison because there is a corresponding

population in each data set and there are overlapping individuals in the data sets.

We observe that the number of blocks and tag SNPs in the high density

sequence data is much higher than in the corresponding HapMap or Perlegen data

sets. This shows that there is a considerable amount of information loss when

the data is sampled every 5kb such as in the HapMap data set. We examined 41

blocks in the Perlegen data set that overlapped with SNPs typed in the Seattle

data set. There are 91 common haplotypes over the Seattle individuals on these

SNPs. We then added in the additional Seattle SNPs typed on the blocks and

reexamined the haplotypes for each individual. From the 91 original common

haplotypes 369 haplotypes were found with 72 common ones. On average, 1.2

common haplotypes were created for every original common haplotype, and 30 of

the original haplotypes were split into only rare haplotypes. One may hypothesize

that this is due to the rare SNPs in the Seattle data. However, we performed

the same analysis using only Seattle SNPs with a minor allele frequency of 10%

or greater. The 91 original haplotypes were split into 330 haplotypes with 73

common ones. On average, each original common haplotype was split into 1.16

new common haplotypes, and 28 common haplotypes were split into only rare

haplotypes when the Seattle SNPs were added. This demonstrates the utility of

high density genotype data. The LD blocks and common haplotypes found by

examining only the Perlegen data are significantly different than those found over

the same individuals in the Seattle data. The common haplotypes are smaller

than predicted by sparse maps, and suggests that more SNPs are necessary to

type in whole genome association projects than suggested by the blocks found in

the HapMap and Perlegen data sets.
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We also measured the consistency of the haplotypes between data sets by

comparing the phased data of individuals that exist in more than one study. The

haplotypes inferred from the sequenced based genotypes of SeattleSNPs data sets

were compared to the haplotypes from the HapMap and Perlegen studies. The

HapMap and Perlegen studies contain genotypes for 1545 and 2426 common po-

sitions respectively. The predicted haplotypes over the HapMap data and the

SeattleSNPs (PGA) data differ by 679 switches and the Perlegen data and PGA

data differ by 11,071 switches. There differences correspond to switch differences

of 0.4% and 2.4% respectively. The whole genome studies and the PGA data are

not completely consistent in terms of genotypes. Between the HapMap and the

PGA data, there are 17,424 genotype differences (3.5%) that occur in 602 different

SNPs. Between the Perlegen and PGA data, there are 179,906 differences (3.8%)

that occur in 6,758 SNPs. These switch distance between the inferred haplotypes

are comparable to the amount of differences in the genotypes between the data

sets.

Chimpanzee Haplotypes

We used the blastz alignments of the human and chimp genomes from the

UCSC Genome Browser to determine the chimp haplotypes corresponding to the

human ones. For each human haplotype block found, we examined the chimp allele

corresponding to each SNP in the human haplotype block. These chimp haplotypes

will also be publicly available for download at NCBI. These chimp haplotypes can

serve as out groups or starting points in determining human haplotype phylogeny.

They may also serve a purpose in comparative genomics methods when searching

for functional haplotypes.

6.3 Discussion

Understanding the structure of common variation is an important step

which will give insights into designing effective strategies for whole genome as-

sociation analysis. Analysis of a single data set may bias any drawn inferences to
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properties of the data set. Performing joint analysis over multiple data sets may

provide more robust analyses.

Our analyses show that the use of a combination of the various data sets of

dbSNP increases the coverage of the genome considerably for high density mark-

ers. Furthermore, we show that when the density of the sampled SNPs increases,

the block partition and the set of tag SNPs changes considerably. This can be

interpreted as a quantitative measure for the amount of information provided by

the data set. Therefore, when the sampled SNP density increases, the amount

of information increases considerably. Furthermore, using the combination of all

data sets in dbSNP, we increase the density of the sampled SNPs, and therefore

increase the amount of information.

A challenge in analyzing multiple data sets is the time consuming pre pro-

cessing that is required to map the data sets to the same build of the human

genome. By using the haplotypes that we have submitted to dbSNP, researchers

can more easily perform these joint analyses. We hope that the haplotypes, block

partitions and tag SNPs will be useful for researchers in designing association

studies.

6.4 Methods

6.4.1 HAP Phasing of Genome Wide Data

We used the HAP algorithm in order to phase the dbSNP data sets. HAP

was run on a 30 CPU cluster consisting of 15 2GB RAN Nodes dual Intel Xeon

3.96 GHz processors.

The HAP algorithm assumes that the ancestral history of the haplotypes

can be described by a perfect phylogeny tree. A perfect phylogeny tree is a ge-

nealogy tree with no recombinations, and no recurrent mutations. HAP considers

all phases that result in a set of haplotypes that are almost consistent with a per-

fect phylogeny. HAP then efficiently enumerates over all such phases, and gives a

score to each phase according to the likelihood of the solution under the assump-

tion that the haplotypes were randomly picked from the population. HAP then
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chooses the phase with the highest score. In order to phase a long region, HAP ap-

plies the perfect phylogeny model in a sliding window to short overlapping regions.

These overlapping predictions are then combined using a dynamic programming

based tiling algorithm that chooses the optimal phase for the long region that is

most consistent with the overlapping predictions of phase in the short regions. We

considered all tiles of length 10 to 12 when constructing the haplotypes.

HAP is capable of phasing data sets up to 40,000 SNPs. The computational

bottleneck is the size of the data structure necessary to perform the tiling. Since

we only phased one chromosome at a time, the vast majority of the data in dbSNP

was smaller than this limit. For some of the chromosomes in the HapMap and

Perlegen data, we had to split the data set into 2-4 regions in order to perform

phasing. Whenever the data sets were partitions, we picked a gap at least 50

kilobases between SNPs. Similarly, when computing block partitions, we only

considered blocks which do not span a gap in SNPs greater than 50kb.

6.4.2 Partition into Blocks of Limited Diversity

We applied the dynamic programming based algorithm as described in

Zhang et al.[124] to partition the inferred haplotypes into blocks of limited di-

versity. Their algorithm is based on the minimization of the number if tag SNPs

so that the common haplotypes of each block could be distinguished by the tag

SNPs. We consider regions where the common haplotype (> 5% frequency) ac-

count for more than 80% of the population a candidate block. We only consider

SNPs with a minor allele frequency greater than 5%. We partitioned the haplotypes

into candidate blocks where the partition minimizes the total number of SNPs that

are necessary to distinguish between the common haplotypes in the blocks. HAP

implements the Zhang et al. approach in a very efficient manner that can allow

for partitioning of whole genome data sets. In order to compute the number of

representative SNPs in a block, we apply a branch and bound algorithm which sig-

nificantly reduces the computational time compared to the traditional exhaustive

approach.
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6.4.3 Extension of HAP to Trios

We extended the phasing algorithm HAP [54] in order to allow it to cope

with genotypes typed from mother, father and child trios. Within a short region,

the extension of HAP to trios must take into account the fact that the haplotypes

of the children are copies of the haplotypes of the parents. We assume there are

no recombinations or mutations between the parents and the children in the trios.

This allows us to first unambiguously resolve the phase of the trios in many of the

positions. For the remaining positions, we use HAP in order to enumerate over

all possible phases. This results in a set of haplotypes that are almost consistent

with a perfect phylogeny. In that enumeration, we exclude the solutions which

contradict Mendelian heredity within a trio. For each such solution we give the

likelihood score, which is the probability to observe the parents’ haplotypes in our

sample. We pick the solution with maximum likelihood as a candidate solution. In

order to further improve the solution, we use a local search algorithm. The local

search algorithm starts from the solution given by HAP, and it repeatedly changes

the phase of one of the trios to a different possible phase, and checks whether the

likelihood function has increased. If it has increased, we use the new solution as the

candidate solution and repeat this procedure. If no local change can be applied

in order to increase the likelihood, we stop and use the solution as a putative

solution for this region. The resulting algorithm is very efficient and running times

are comparable to the running time of HAP over unrelated individuals[80].

Chapter 6, was published in Genome Research, Vol 15, pp 1594-600, 2005.

Noah A. Zaitlen, Hyun Min Kang, Michael L. Feolo, Stephen T. Sherry, Eran

Halperin, and Eleazar Eskin, “Inference and analysis of haplotypes from combined

genotyping studies deposited in dbSNP”. The dissertation author was the primary

investigator and author of this paper.
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Figure 6.2: A perfect phylogeny model consists of a tree where each vertex cor-
responds to a haplotype, and each edge corresponds to a mutation in one of the
positions of the haplotype. An edge is labeled with the position of the mutation.
The tree fits the perfect phylogeny model if there are no recurrent mutations and
no obligate recombination events. A set of haplotypes fits the perfect phylogeny
model if it satisfies the four gamete test, that is, at most three allele combinations
are observed for any pair of marker positions.



Chapter 7

MHC Class II Epitope Binding

Prediction

7.1 Introduction

The open binding pocket of the MHC class II molecules allow for a much

greater variation in peptide length relative to the closed pocket of the MHC class

I molecules. This difference combined with the relative lack of sequence similarity

across binding peptides makes MHC binding prediction significantly more chal-

lenging for the class II molecules. Two widely held beliefs about the physics of

class II binding allow for some simplifying assumptions that have been used to

make the problem more tractable. The first is that a majority of the binding is

due to a consecutive group of nine amino acids along the peptide. The second is

that there is overlap between the peptides that bind to different alleles. Working

under the first or both of these assumptions, recent efforts for MHC class II bind-

ing have been focused on methods to identify the nine amino acid binding core of

the peptide. This is then combined with one of the various methods for predicting

MHC class I binding over the derived nonamers.

Several approaches to binding core identification have been explored. Many

of these search for an optimal alignment of nonamers across the binding peptides.

[97] and [58] use MEME [5] to identify and align the over represented nonamers.

122
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Gibbs sampling is used by [86], evolutionary algorithms by [14], and an ant colony

search strategy by [68]. The Linear Programming method of [84] effectively pro-

duces an alignment or choice of nonamers during training.

The alignment can be a pre-processing step as in [97] and [58] who use the

set of nonamers in the alignment as direct input into their MHC class I predictors.

The Gibbs sampling method of [86] uses the PSSM of the alignment as input

into the binding prediction method. The closest method to our work in the Linear

Programming model proposed by [84]. They use a sliding window over each peptide

and a set of LP constraint which attempts to identify the window for each peptide

which will maximize their ability to separate binders from nonbinders with a PSSM

model.

The set of MHC class I tools that have been applied to the nonamer align-

ments are motif based, machine learning based, and structure based. Motif based

methods such as RANKPEP [97], attempt to identify amino acids at particular

positions that are characteristic of binding for a given allele. A variety of machine

learning base methods such as neural networks, support vector machines, and hid-

den Markov Models have been applied. Structure based methods such as ours and

[35] attempt to model the physics of MHC binding using the growing number of

MHC class I and II molecules that have been solved by X-ray crystallography.

In this work, we develop a new method for predicting binding to arbitrary

MHC class II alleles. Our model is based on the structure of the class I and class

II molecules and treats the possible peptide alignments as an ensemble of possible

configurations. Rather than assuming simply that any peptide alignment is equally

possible, or turning to separate methodology to provide best alignment, we infer

the distribution over possible states for each peptide-MHC combination based on

the predicted state energy. This distribution is not treated as a distribution over

a variable with mutually exclusive and exhaustive states, but rather as population

frequencies in the thermodynamics sense, and the equivalent total binding energy

is estimated accordingly. This is the key difference between our approach and

previous approaches to MHC class II binding prediction, which enabled us to

outperform, to the best of our knowledge, all previously published techniques.
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7.2 MHC II - peptide binding model, inference

and learning

In this section, we present a physics-based model of MHC class II molecules

bound to peptides of variable length. The model uses the binding groove area

of available crystal structures of MHC II molecules as exemplars, and treats the

peptide alignment with the groove as a hidden variable. Using an energy model, we

can perform inference of both the optimal structure and the optimal peptide-groove

alignment. We also derive a learning algorithm that estimates the parameters of

the energy model to fit the available binding energy data.

7.2.1 Modeling variable peptide position in the MHC II

groove

As discussed in the introduction, the main source of prediction errors for

MHC II binding is the fact that, as opposed to MHC I molecules that tend to have a

fixed binding configuration, largely robust to changes in the peptide’s amino acids,

the MHC II molecules may exhibit a variety of binding configurations. Thus it is

important to model an ensemble of configurations with hidden variables describing

them, where model for each configuration (given the hidden variables), is simpler

to model directly (e.g., using the model in [66])

Since a longer peptide (15-30 amino acids, for example) has only a part of it

in the groove of the MHC class II molecule, we introduce a hidden random integer

variable ℓ that represent the unknown alignment of the peptide with the groove.

We use only a single “shift” variable to represent this main component of variation

in binding configuration because the peptides are unfolded and the parts that

interact with the groove have largely similar configurations. The largest difference

in the binding of different peptides to the same MHC II allele is in where the bound

part of the peptides start. We represent the starting index of this segment with

the variable ℓ ∈ [1, N−8], where N is the length of the peptide, and we assume the

segment that is inside the groove is at least 9 amino acids long (Fig. 7.1). There

are, of course, other hidden variables that describe the binding configuration, such
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as a selection of particular geometric configuration m of the amino acids in the

groove of the MHC molecule from the available crystal structures. In this section,

we will denote all such hidden variables with h, and in the next section, we will

define h = (ℓ,m) as the hidden variables in our shifted adaptive double threading

model.

For now, we simply assume the existence of a model E(s, e,h), where s

denotes a particular MHC allele, and e denotes a particular peptide (potential

epitope), such that if the setting for the hidden variables h are provided, the

model can produce a good estimate of the binding energy for the pair s, e. In many

past approaches to MHC binding, the settings of h (in particular the alignment

analogous to our variable ℓ), where provided by a separate routine, unrelated to

the energy model E.

We treat states indexed by h as different energy states (with energies

E(s, e,h)) that an MHC-peptide complex can assume, with the partition func-

tion

Z =
∑

h

e−E(s,e,h), (7.1)

and the free energy per particle of the system of such particles is F = − logZ,

where the kT factors are omitted, as the reported measured binding energies are

dimensionless log IC50 values. Thus, we can model the measured binding energy

log IC50 as

E(s, e) = − log
∑

h

e−E(s,e,h). (7.2)

In particular, for the case of a shift as the hidden variable h = ℓ, the energy

of a particular configuration E(s, e, ℓ), can be derived from a model Emod(s, e) that

does not deal with peptide shifts, and requires e to be a known k-mer sitting in

the MHC groove, if the assumption is that k amino acids are in the pocket. In this

case, E(s, e, ℓ) = Emod(s, eℓ:ℓ+k−1). Choices for models of binding given a known

alignment include most previous MHC I and MHC II binding models (e.g. pssm

[97], logistic regression,support vector machine[40], motif search), although they

may have to be retrained in this new context. In what follows, we describe how

this retraining may be done, on the example of the adaptive double -threading
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model [66], into which we add hidden variables according to the above recipe, and

then derive an EM-like learning algorithm that can fit the parameters of the model

in the presence of multiple possible conformations.

An important feature of our treatment of variable peptide alignment with

the groove is that the distribution over possible alignments is effectively determined

by the model’s energy predictions alone, rather than by the fit of these predictions

to the energy data. This means that the proper alignment can be inferred not

only in training, but also in testing on new peptides for which the true (measured)

binding energy is not provided to the predictor. Since the energy in (7.7) is domi-

nated by the minimum energy state E(s, e,h), the preferred alignments will have

lower energy, rather than better fit to the data.

Next, we review the adaptive double threading model [66], and then intro-

duce hidden variables into this model according to the above recipe.

7.2.2 Shift-invariant double threading

Our basic binding energy model is based on the geometry of MHC-peptide

complexes, and is motivated by the threading approach [67]. As in [66], its im-

plementation in [102] is here augmented by including learnable parameters. The

parameters are estimated from the experimental data.

In general, threading aims at evaluating the compatibility of a certain pro-

tein sequence with a certain protein structure: The sequence is threaded onto the

structure, and a list of contacting amino acid pairs is extracted, based on con-

tacting residue positions (defined as residues in close proximity, e.g. that have at

least one pair of atoms less than 4.5A apart). In order to allow estimation of the

binding energy of any peptide with an MHC molecule whose structure in complex

with some other peptide is known, we assume that the proximity pattern to the

peptide in the groove does not change dramatically with the peptide’s sequence.

Assuming that energy is additive, and that the pairwise potentials depend

only on the amino acids themselves - and not on their context in the molecule -

the energy becomes a sum of pairwise potentials taken from a symmetric 20×20

matrix of pairwise potentials between amino acids. These parameters are computed
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based on the amino acid binding physics, or from statistical analyses of amino acid

pair contact preferences in large sets of available protein structures. Several sets of

pairwise potentials have been described in the literature, each derived in a different

way (for review see [82]. Obviously, the choice of pairwise potential matrix can

dramatically alter performance of the energy predictor [102]. Previously, we have

shown that estimating these parameters from training data leads to the better

performance on the test set, than using a previously published, rationally derived

potential matrix. Part of the reason for this is the possible specialization to the

class of molecules under consideration, but the model still preserves its physics

basis, and the learned weights tend to reveal contact aminoacids [66].

In the adaptive double threading model of MHC I - peptide binding, the

binding energy is estimated as

E(m, s, e) ≈
∑

i

∑

j

wmi,jφsi,ej
h(dmi,j), (7.3)

where MHC-specific weights wmi,j and a trainable soft threshold function h pro-

vide added parameters whose role is to correct for the drastic approximations in

the original threading approach. (The predictions of the original threading ap-

proach correspond to using the above equation with all weights w set to one,

and the threshold function h set to a hard step with a threshold decided upon

in advance.) In the above equation, m denotes a particular binding configuration

(inferred through crystallography), s denotes the molecule’s amino acid sequence,

indexed by i, and e denotes the peptide (epitope), whose aminoacids are indexed

by j. The distances dmi,j are computed in the crystal structure. Only a small frac-

tion of indices i correspond to molecules amino acids in contact with the peptide.

[102] used dmi,j < 4.5A to determine such aminoacids, which form a binding groove

of the molecule. In the above equation, this would correspond to setting

h(d) =

{

1, d ≤ dthr

0, d > dthr
. (7.4)

In our MHC I predictors [66], we used a soft h function [66],

h(d) =
1

1 + e−a(d−dthr)
(7.5)
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whose threshold parameter (dthr) and the step softness a are estimated together

with the contact potentials and weights. (Still, only a small number of aminoacids

in the molecule are close enough to the peptide to lead to nonzero values of h, and

our “soft” groove is also small.) The adaptive soft step function and the addition

of the weights w are meant to absorb the errors of the model assumptions [66].

The basic idea behind threading approaches is that, even though the struc-

ture information d is inferred from a known binding configuration of a particular

peptide-MHC I combination, substituting a different peptide of the same length

(or even another MHC molecule, as in our previous work) in the above equations

would still lead to a reasonable estimate of the binding energy for the new MHC-

peptide combination. This is due to the fact that relative positions and the basic

chemistry of the amino acid-amino acid interactions are fixed. Even the light

changes over different geometries of peptide-groove configurations (indexed by m

have a small (though measurable) effect on the accuracy of the model. The success

of the previous work on MHC I binding energy prediction attests that this main

assumption holds well for MHC I molecule.

In [66], we have shown that the parameters of the above model can be

estimated so that the error of approximation is minimized on the training set, and

then the model’s predictive power can be tested on a separate test set. When

the training data sets are too small, sparsity priors on w and cross-validation are

used to avoid overtraining. However, we also showed that multiple different MHC

types can be trained together as they can share some or all parameters. Parameter

sharing leads to a negligible drop in performance, while the main benefit is not

merely avoidance of overtraining, but the ability to generalize the predictions to

new MHC alleles, for which little or no binding or epitope data is available.

Essentially the same basic modeling strategy can be used for modeling MHC

class II except for one very important difference. While the fixed chemistry of the

amino acid interactions and the fixed overall geometry of the MHC molecule are

still relatively mild assumptions, the fixed relative position of the peptide is a

gross over-approximation. The binders to MHC class II molecules are often much

longer than 8-11 aminoacids, while the binding groove is roughly the same size.



129

This means that only a part of the peptide is sitting snugly in the groove, while

the tails on either side have much smaller influence on the binding affinity (Fig.

7.1). Thus, the model needs to be extended to account for variable position of the

peptide, as discussed above.

To estimate the energy of the binding configuration for a particular shift ℓ,

we update our model in the following way:

E(m, s, e, ℓ) ≈
∑

i

N+ℓ
∑

j=1+ℓ

wmi,j−ℓφsi,ej−ℓ
h(dmi,j−ℓ), (7.6)

In practice, the proper shift is not known, unless the structure has been

solved, but the shifts that yield lower energy values should be considered more

likely. In order to fit the model to the binding essays, we need to express the

total affinity of the peptide by summing over all the binding configurations. The

experimentally measured binding energy is usually reported in terms of an IC50

value, which approximates the dissociation constant. The energy is assumed to

be proportional to the negative log of this value, and so energy estimators are

typically trained on the E = − log nIC50 values. When many copies of the same

longer peptide are mixed with many copies of the same MHC class II molecule,

binding configurations with all different shifts ℓ may form. Therefore, according to

7.2, we sum over the two unknown variables that affect meaningfully the binding

energy used in (7.6):

E(s, e) = − log
∑

m,ℓ

e−E(m,s,e,ℓ). (7.7)

Variable m, as in the case of the MHC class I molecule (7.3), represents the geom-

etry of the configuration of the MHC molecule and the peptide’s segment that is

in the groove. In case of MHC class I molecules, this is all the geometry variability

we need to consider. The variable m influences the energy estimate through the

distance matrix dmi,j. As the variability in the binding configurations of the groove

is low, the influence of variable m is existent, but mild. In case of MHC class II

molecule, this variability has a much smaller effect on the energy estimate than

the shift variable ℓ – upon 3D alignment of different MHC structures, the rela-

tive positions of molecules close to the binding grooves change very little. While
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the slight geometry changes in the groove have an effect on the prediction, the

shift variable ℓ influences the prediction much more dramatically as it alters the

predicted amino acid composition of the peptide’s segment sitting in the groove.

Short inspection (or simulation) of (7.7) reveals that the energy estimate

is indeed dominated by the state (m, ℓ) with the smallest energy. However, as we

will discuss later, it is typically dangerous to assume that the observed energies

are equal to the minimum among the estimated energies for different states (m, ℓ).

The reason for this is that the predictors are inherently noisy, and the more states

we consider, and the more predicted variability across the states we find, the more

likely it becomes that the wrong minimum energy state will be picked with a

dramatically wrong predicted energy value. Taking more states into account in

the estimate, on the other hand will lead to more robust estimates.

7.2.3 Parameter estimation and binding configuration in-

ference

In our training and testing procedures, we assume that the data is given in

a form of a list of triples, each consisting of an MHC class II sequence s, a peptide

s and the measured binding energy E(s, e). During training, we wish to determine

the model parameters w, phi, dthr, a which minimize the error of approximation in

(7.7). Any number of optimization or search algorithms can be used for this. Since

the error of approximation in (7.7) depends on the parameters in a highly nonlinear

way, in our implementation, we introduce new auxiliary variables for each training

case, in order to simplify the optimization criterion into a simple quadratic form.

The price to pay is the EM-style iteration the parameter optimizations step with

re-estimation of the case-specific auxiliary variables. To derive the algorithm, we

first introduce an auxiliary probability distribution over states q(m, ℓ), so that, of

course, 0 ≤ q(m, ℓ) ≤ 1, for all states, and
∑

m,ℓ q(m, ℓ) = 1. Next, we observe
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that, as log is a concave function,

E(s, e) = − log
∑

m

N−8
∑

ℓ=1

e−E(m,s,e,ℓ)

E(s, e) = − log
∑

m

N−8
∑

ℓ=1

q(m, ℓ)
e−E(m,s,e,ℓ)

q(m, ℓ)

≥ −
∑

m

∑

ℓ

q(m, ℓ) log
e−E(m,s,e,ℓ)

q(m, ℓ)

=
∑

m

∑

ℓ

q(m, ℓ)E(m, s, e, ℓ) +
∑

m

∑

ℓ

q(m, ℓ) log q(m, ℓ).

Since for a given state m, ℓ, the energy depends on each subset of model parameters

w and φ linearly, this bound on the energy is also bilinear in model parameters,

and the same iterative linear regression reported in our previous work can be used

to minimize the approximation error. The above bound is true for any auxiliary

probability distribution q, but it becomes tight (exact equality is accomplished)

when

q(m, ℓ) =
e−E(m,s,e,ℓ)

∑

m,ℓ e
−E(m,s,e,ℓ)

, (7.8)

i.e., the distribution q is the exact distribution over states according to the en-

ergy model. This distribution depends on the sequence content of both the MHC

molecule s and the peptide e, and so it has to be recomputed for each training or

test case. It is important to note that this distribution is not treated as a distri-

bution over a variable with mutually exclusive and exhaustive states, but rather

as population frequencies in the thermodynamics sense. In the former case, the

hidden shift variable could only be inferred from a given binding energy, and in

prediction, energies of different possible shifts would have to be averaged. In the

latter case, the distribution over shifts depends on the predicted energies for in-

dividual shifts, and not on the observed energies, and so it can be equally used

in training and testing. In Section 7.3.1 we experimentally test the accuracy of

the inference of the binding configuration using this approach. To learn the model

parameters, the configuration inference step has to be iterated with re-estimation

of model parameters. Such an iterative learning algorithm consists of the following

steps:
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• Initialize model parameters (e.g., setting all weight w to one, dthr and a

so that the step function h is smooth and has a larger threshold, e.g. 6 or

7, and the φ matrix to either uniform or the one previously estimated for

MHC I in our previous work or to amino acid contact potential published

by others Some care has to be taken regarding normalizing the parameters.

If the potentials are initialized to be too large, for example, than weights w

may absorb the problem, but some other order of updates may lead to local

minima.

• Initialize qt(m, ℓ) to uniform for each training sample (et, st, Et).

• Re-estimate the model parameters w, φ, dthr, a so that
∑

t(E(et, st)−Et)2 is

minimized, where

E(et, st) =
∑

m,ℓ

qt(m, ℓ)E(m, st, et, ℓ) +
∑

m,ℓ

qt(m, ℓ) log qt(m, ℓ). (7.9)

Since the model is linear in w and linear in φ, iterative linear regression to

solve for one set of parameters at a time is efficient. Step function parameters

dthr, a are updated every few steps by gradient descent.

• Using the new parameters, re-estimate the distribution

qt(m, ℓ) =
e−E(m,s,e,ℓ)

∑

m,ℓ e
−E(m,s,e,ℓ)

. (7.10)

• Iterate the last two steps until convergence.

This procedure has some similarity with transformation-invariant genera-

tive models developed primarily for vision applications in [65]. However, the im-

portant difference is that the possible shifts are not considered as equally likely a

priori. In fact, they depend on the peptide and MHC sequences. Consequently, the

distribution over states m, ℓ can be determined both for training and testing pep-

tides, and in prediction, the state energies are not averaged. Rather, the possible

binding configurations are considered as an ensemble with population frequencies

defined by q. It is also different form the LP approach discussed in the introduction,

which tries to infer a single best alignment for each peptide in training.
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7.2.4 Using temperature to account for modeling errors

during learning

The update of the position distribution in (7.10) and the estimate of the

energy in (7.9) are highly sensitive to the errors in prediction due to the non-

linearity of estimating the equivalent energy by summing over all configurations

(7.7). This can cause local minima problems for the EM-like procedure described

in the previous section, as the parameters, and therefore the predictions, are less

reliable in the early iterations of learning.

To illustrate how the prediction errors may be propagated through (7.7), we

present the following simple experiment. Assuming the total number of different

shifts ℓ is 10, and that the true binding energy for fake MHC-peptide configura-

tions Eℓare drawn randomly form a uniform distribution on the interval [0, 10], we

computed total binding energies according to Etrue = − log
∑

ℓ e
−Eℓ for 100 such

configurations.In this synthetic experiment, we ignore variability in configurations

m, as they have a smaller effect on the variability of the energy prediction. Then,

we computed

Eestimate = −T log
∑

ℓ

e−
Ẽℓ
T , (7.11)

where Ẽℓ = Eℓ + vℓ, and vℓ, a random variable drawn from a zero mean Gaussian

distribution with some variance σ2, simulates a modeling error. A choice of the

auxiliary temperature parameter T > 1 leads to smoothing of the energy estimate

in the following sense: By reducing the differences between the energies of different

states, it becomes possible for more states to significantly influence the estimate.

This is potentially useful as the wrong state may have the lowest energy due to

the prediction errors, and the state with the lowest energy dominates the estimate

at T = 1. For larger parameter T , on the other hand, the lowest energy state

would contribute more to the estimate of the energy, but the other states would

contribute, as well.

We assume for the moment that the measurement procedure which would

in practice provide a direct measurement of Etrue is perfect, and that a potential

inability of a predictor to match it is only due to predictor’s errors in predicting the
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binding energy of the groove-peptide segment configurations for different shifts.

In Fig. 2 we show how well the tempered prediction Eestimate using the noisy

predictions Eℓ correlate with the true energies Etrue. In particular, for different

levels of error variance σ2, we show how the Spearman correlation factor between

Etrue and Eestimate varies with the temperature T . The graph shows that a rise in

modeling error σ2 can, to some extent, be absorbed by raising temperature factor

T .

Adding the temperature factor into (7.7) leads to the following change in

(7.9) and (7.10) in the algorithm of the previous section:

E(et, st) =
∑

m,ℓ

qt(m, ℓ)E(m, st, et, ℓ) + T
∑

m,ℓ

qt(m, ℓ) log qt(m, ℓ). (7.12)

qt(m, ℓ) =
e−

E(m,s,e,ℓ)
T

∑

m,ℓ e
−E(m,s,e,ℓ)

T

. (7.13)

In training, rather than annealing the temperature according to some fixed

training schedule, we search for the optimal temperature parameter after every few

updates of the model parameters. Upon convergence of all model and auxiliary

parameters, the temperature typically settles to a value close to 1, which might

indicate that the physical measurement errors are higher than the modeling errors.

7.3 Experiments

We downloaded the complete set of MHC class II structures that contain

an epitope of at least seven amino acids from the PDB [9]. The resulting set

consisted of 12 HLA-DR, 3 HLA-DQ, 3 H2-K, and 18 H2-D alleles. Although the

MHC class II allele HLA-DP are missing from this set, they share relatively high

sequence similarity with HLA-DR alleles. As discussed above, precise structure is

less important than sequence and shift variability, suggesting that it is possible to

predict for these alleles using the structures of their closest matching alleles in the

PDB. These structures are used as exemplars m of the groove structures in the

experiments. To evaluate the prediction accuracy, we used our method both as

an epitope predictor and a binding energy predictor and tested it on the available
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epitope and energy data. In addition to comparisons with existing techniques

for epitope prediction, we analyze the ability of our model to predict the binding

configuration (in terms of the simplified state m, ℓ), predict for new alleles for

which training data is not given, and assist in association studies in immunology.

MHCPEP Data set

The MHCPEP data set has recently been used to evaluate the performance

of the MHC class II binding predictors DistBoost and RANKPEP. Following the

procedure of [58] and [97], we downloaded the contents of the MHCPEP database

[13] in order to compare the relative performance of our method. The data are

peptide sequences paired with MHC alleles and binding affinities. As in [58] and

[97], we removed all peptides classified as low binders or with unknown residues at

some position. We removed peptides from all non human MHC alleles (although

our method can be applied to these as well), leaving 1265 peptides from 17 MHC

class II alleles. We verified via email correspondence that our data set matched

the corresponding subset of [58]. Unlike [58] and [97] our method does not require

an alignment step and was therefore omitted.

We compared our method to DistBoost and RANKPEP [97] by replicating

the exact same experimental setup. The MHCPEP data set described above was

used as the set of positive binders. Non-binders were taken from random protein

sequence from the SwissProt database [6], so that there were twice as many non-

binders as binders per allele. Training was performed using half of the binders for

each allele with twice as many non-binders. Testing was performed on the remain-

ing set. We used 5-fold cross validation over the training set to find an optimal

set of parameters, and then evaluated the method on the test set. This setup was

repeated 10 times to measure average performance and standard deviation.

We plotted ROC curves for our model and compared the AUC of our method

with the published results of RANKPEP and DistBoost . Our method outper-

formed both DistBoost and RANKPEP on 15 out of the 17 data sets (p-value <

.00014 binomial) see Table 1. The average AUC for our method was .87 compared

to .78 for DistBoost and .71 for RANKPEP. In addition, our average standard



136

deviation was lower than either method, 0.04 compared to 0.044 and 0.05, showing

our method is as robust or better. Like DistBoost our method is able to take

advantage of peptides of other alleles when training for a particular allele, giving

improvement in alleles with a small amount of training data. [58] also compared

DistBoost to the SVMHC web server [40] and the NetMHC web server [15], and

outperformed them on an MHCBN [11] data set.

MHCBench Data set

The MHCBench data set was constructed for the purpose of evaluating

MHC class II binding predictors. Recently, [84] and [86] have evaluated their

methods over this data set after training on similar training data. In order to

evaluate the relative performance of our method, we followed their training and

testing procedures. We downloaded the set of HLA-DRB1*0401 binding peptides

from the SYFPEITHI [96] database that were added before 1999. [86] does not

require negative training examples for his method, so we followed the example of

[84] and added the HLA-DRB1*0401 non-binders from the MHCBN database [11].

Although we do not align our peptides, and therefore do not have an initial puta-

tive position of the peptide in the MHC molecule, we followed their example and

removed peptides that have a hydrophobic residue in the first position according

to their model. Peptides that were more than 75% alanine were also removed.

This left a data set of 462 binding and 177 non-binding peptides and is the train-

ing data set. Our method also has the capability to incorporate information from

other alleles in training. We therefore created another training data set which

consists of that described above in addition to the set of non HLA-DRB1*0401

peptides contained at MHCBN. All peptides overlapping the test data (see below)

with alignment over 90% were removed, leaving a set of 2997 peptides.

The test data sets used by [84] and [86] consist of the 8 data sets described

in [95], the data set from [105], and the data set from [47]. In the [95] data

set, any peptide with a non-zero value is considered a binder and is a non-binder

otherwise. For the other data sets, any peptide with affinity of less than 1000nM

was considered a binder, and a non-binder otherwise. Since there is a significant
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overlap between the peptides in the training and test data sets, we removed any

peptide with > 90% sequence identity to a peptide in the training set. We verified

via email correspondence that our training and test data sets matched those of

[84] and [86].

We used 5 fold cross validation over the training set to estimate the optimal

set of parameters for our model. ROC curves were generated for each test set and

the AUC was computed for comparison with the published results of LP, Gibbs,

and Tepitope. In addition, we trained on another training data set which contained

peptides from other alleles to show how our method can incorporate other data

to improve performance. The results are shown in Table 2. Our method has a

higher average ROC than any other method, and it is further improved by adding

non DRB1*0401 alleles to the training set. We beat the other methods on 8 out

of 10 data sets (p-value < 0.017 binomial). In training our model we assume a

different cutoff for good versus bad binders than the 1000 nM cutoff used for the

Southwood and Geluk data sets in the test data. Using our cutoff of e6.2 improves

our performance on these data sets, but can not be compared with the above

methods since the training set would be different.

IEDB Data set

In order to allow others to easily compare their methods against ours, we

created a new training and test set from the IEDB data set (described below). We

selected 1175 peptides from 13 HLA-DRB alleles for the training set that each have

at least 100 training examples. Thus, no transfer to unlearned alleles is required

to compare with our method. The full makeup of the training and test set are

described at We used 5-fold cross validation over the training set to learn the

parameters for our model. Table 3 shows our performance over the test data set.

The size of all data sets used in this study are shown in Table 4.

7.3.1 Binding configuration inference

Our results compare favorably with previously published approaches, and

we have argued above that the novelty of our approach is in proper inference of the
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binding configuration, consisting of the groove geometry m and the peptide shift ℓ.

In this section we illustrate that a trained model indeed predicts well the binding

configuration. We downloaded the set of 12 protein structures for human MHC

class II allele from the PDB [9] with a bound peptide of length 9 or greater. For

each of these peptides we compared the groove structure choice and the shift choice

of our method with the ground truth. For each available structure, we threaded the

MHC allele corresponding the peptide onto all available structures and estimated

the binding of the peptide to each of the structures under our model. We then

ranked the energies of each of the structures from lowest (strongest binder) to

highest (worst binder) and found the rank of the ’true’ structure peptide pair in

the list. We took the average of this value over all twelve peptides. In order to

estimate the significance of this result, we randomly generated 10000 lists of ranks

from 1 to twelve, computed their average, and counted the number of times the

average beat the average rank of our experimental results. This gave us a p-value

of 0.021 and shows that the correct structure has relatively lower energy.

To verify that our technique chooses the correct shifts we measured the

binding energy of each nonamer of the peptide to its corresponding MHC allele

and compared the shift of minimum energy to the true nonamer in the binding

pocket of the structure (minimum energy state has the highest probability in (7.8).

Out of the 12 structures, we predicted the nonamer in the binding groove exactly

in 8 structures, while the rest of the predictions were off by a single amino acid

(p− value < 0.0001). In all cases, the chosen shift resulted in the energy estimate

above the cutoff threshold for a good binder. These experiments suggest that

correct identification of shift outweighs the importance of the slight variations in

structure of the various MHC alleles. This in turn lends support to the idea of

our double threading approach. Threaded alleles will have slight inaccuracies in

structural position, but the correct shift can still be recovered.

7.3.2 Generalizing to new alleles

One of the important features of our approach as opposed to most oth-

ers is that after training, any MHC sequence may be threaded onto a structure
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Table 7.1: Comparison of RANKPEP,DistBoost , and our Shift Invariant Double
Threading (SIDT) method over the MHCPEP data set. Best values shown in
bold font. Columns A and B for DistBoost refer to training without and with
negative constraints. Column RP B for RANKPEP refers to PSSMs constructed
using BLK2PSSM. Those using PROFILEWEIGHT performed worse on average
and were never the top across all studies.

Allele RP B std DB A std DB B std SIDT std
QA 0501 0.88 0.06 0.93 0.03 0.93 0.04 0.87 0.08
QA 0301 0.7 0.06 0.75 0.04 0.77 0.05 0.87 0.02
PA 0201 0.88 0.1 0.75 0.12 0.74 0.09 0.88 0.03
RB 0101 0.75 0.04 0.81 0.02 0.8 0.02 0.87 0.02
RB 0102 0.72 0.04 0.9 0.07 0.83 0.05 0.91 0.06
RB 0401 0.6 0.04 0.71 0.01 0.73 0.02 0.87 0.01
RB 0402 0.72 0.04 0.74 0.06 0.69 0.04 0.88 0.01
RB 0405 0.82 0.04 0.86 0.03 0.86 0.04 0.89 0.06
RB 0404 0.61 0.05 0.74 0.05 0.7 0.05 0.84 0.04
RB 0701 0.72 0.04 0.79 0.05 0.76 0.04 0.89 0.04
RB 0901 0.78 0.06 0.89 0.03 0.91 0.04 0.97 0.07
RB 1101 0.54 0.04 0.76 0.03 0.73 0.02 0.85 0.02
RB 1501 0.6 0.07 0.73 0.07 0.75 0.06 0.87 0.05
RB 0101 0.81 0.03 0.83 0.07 0.8 0.05 0.87 0.04
RB 0801 0.52 0.06 0.67 0.09 0.65 0.05 0.84 0.06
RB 1104 0.92 0.02 0.87 0.04 0.88 0.03 0.83 0.04
RB 0301 0.52 0.09 0.54 0.44 0.62 0.06 0.83 0.03

AVG 0.71 0.05 0.78 0.07 0.77 0.04 0.87 0.04

Table 7.2: Performance of our shift invariant double threading method (SIDT),
the Gibbs sampler, TEPTITOPE, and the Linear Programming method over 10
homology reduced data sets. *This is our method trained with additional data
for different alleles. It demonstrates the ability of our method take advantage of
information across alleles.

Method Set1 Set2 Set3a Set3b Set4a Set4b Set5a Set5b Geluk
SIDT 0.76 0.71 0.73 0.79 0.77 0.72 0.71 0.79 0.78

SIDT* 0.75 0.73 0.72 0.74 0.77 0.73 0.83 0.85 0.78

Gibbs 0.68 0.66 0.6 0.69 0.67 0.68 0.59 0.59 0.69
Tepi 0.6 0.65 0.6 0.7 0.59 0.66 0.66 0.68 0.66
LP2 0.67 0.7 0.67 0.76 0.65 0.7 0.73 0.76 0.66
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Table 7.3: Performance of our method over the IEDB test set.

Allele num AUC
DRB1*0101 100 0.89
DRB1*0301 100 0.73
DRB1*0401 100 0.82
DRB1*0404 100 0.87
DRB1*0405 100 0.80
DRB1*0701 100 0.80
DRB1*0802 73 0.81
DRB1*0901 39 0.93
DRB1*1101 100 0.87
DRB1*1302 100 0.76
DRB1*1501 100 0.66
DRB4*0101 63 0.80
DRB5*0101 100 0.81
Summary 1175 0.81

Table 7.4: Description of data sets used in this work. Train is the training set used
for the MHCBench test set. Train2 is the same training set with the addition of
peptides belonging to different alleles.

Data Set Total Binders Non Binders
Set 1 531 248 283
Set 2 416 161 255
Set 3a 355 151 204
Set 3b 325 128 197
Set 4a 403 120 283
Set 4b 375 120 255
Set 5a 110 65 45
Set 5b 84 47 37

Southwood 99 19 80
Geluk 1 21 15 6
Train 639 462 177
Train2 2997 1782 121
IEDB 6272 3136 3136

MHCPEP 3111 1037 2074
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and used for binding prediction Some techniques attempt something similar. For

example, TEPITOPE learns individual binding pockets, allowing it some level of

generalization. This allows us to predict peptide binding for alleles with little

or no experimental data. For MHC class I molecules there are hundreds of al-

leles. MHC class II molecules are polymers of two different molecules called the

alpha and beta chains. HLA-DQ has several hundred alpha and beta chains, with

thousands of possible combinations, each of which binds different peptides. Since

peptide binding experiments are currently costly and time consuming,the ability

to predict binding for unseen alleles is an extremely useful feature of our method.

In performing the comparison experiments above we discovered that there

are significant differences in the data available from different sources. Instead of

using one of these data sets for transfer experiments, we searched for a meticulously

curated data set of peptide binding data. The data set we found comes from the

IEDB [114] database. This resource maintains a hand curated list of the epitopes,

and carries continuous IC50 values instead of just marking peptides as binding

or non-binding. We felt that this represented one of the best online resources for

MHC binding data, and incorporates data from the comparison data sets above

as well as others. We downloaded the complete IEDB MHC and TCell binding

data from IEDB, removing peptides from before 1993, and any peptide marked

as a good binder with an IC50 of greater than 3000 and any peptide marked as

a non-binder with IC50 less than 500. In order to guarantee an equal number

of binding and non-binding peptides in each allele set, we added random human

peptides from SwissProt [6] until each allele was balanced. This data is described

at

Using the IEDB database described above, we created transfer data sets by

removing all epitopes of each allele in turn. For each of these data sets, we trained

the model using 5 fold cross validation to estimate the optimal parameters. We

then threaded the MHC sequence of the allele that was left out onto the structure

of the allele that had the closest sequence alignment. We then ran the model

using this sequence structure combination over all of the alleles from the data set.

Since there is significant overlap between peptides that bind to different alleles, we
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compared our transfer results to two different voting based methods for predicting

binding of unseen alleles. We ran our standard trained model for all observed

alleles in the training data over the set of peptides of the unobserved allele. We

called a peptide a binder if the majority of the alleles called it a binder. In another

voting setup, we called a peptide a good binder if a majority of the alleles in

the supertype of the left out allele called it an good binder. We plotted a ROC

curves for the performance of each method and calculated their average AUC. The

results are show in Fig. 3. As can be seen in the figures, our threading method

significantly (p-value ¡ .00001 binomial) outperforms either voting mechanism. We

are able to predict peptide binding for MHC class II alleles having learned over

both alpha and beta chains, a single alpha or beta chain, or without any previous

exposure to either chain of the allele.

7.3.3 Myelin binding

There are several auto-immune diseases in which the nerve insulating ma-

terial called myelin is degraded. This degradation disrupts signal passage through

the nervous system and can cause severe health problems. Myelin Basic Protein

(MBP) has been shown to bind to the MHC class II allele HLA-DRB1*1501, and is

a candidate autoantigen for multiple sclerosis (MS), an auto-immune disease of the

central nervous system. We demonstrate how our MHC class II binding predictor

can be used in autoimmune research by replicating several MS experimental results

in silico. The HLA-DR2 supertype has been repeatedly shown to positively asso-

ciate with MS [71]. We ran our method over the MBP using the HLA-DR2 allele

HLA-DRB1*1501 (Fig. 4) and found four potential binders. Of these, the strongest

signal was located at amino acid 91 of the MBP. The peptide consisting of residues

85-99 which contains our predicted binding site has been shown experimentally to

be an immunodominant epitope for HLA-DRB1*1501 [107]. Furthermore, there is

an approved drug to treat certain forms of MS that works by disrupting this bind-

ing, and there is active research to find new candidate peptides that will displace

MBP 85-99 by competitively binding to the HLA-DRB1*1501 allele. These drugs

have been shown to suppress relapse rates of certain forms of MS by 30% [107].
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The drug and two other competitive binding peptides take the form of coplymers

1 poly(Y,E,A,K)n, 2 poly(F,Y,A,K)n, and 3 poly(V,W,A,K)n. These are peptide

sequences of random combinations of each the amino acids inside the in the poly

groups. We measured the number of predicted binders to HLA-DRB1*1501 over

20 random peptides of each of these polymers and found that in 20 polymers of

length 50, there were 60, 80, and 155 predicted binders with a binding strength

greater than that predicted for MBP 85-99, for polymers 1, 2, and 3 respectively.

When 20 random SwissProt proteins of equivalent length were used, there were

only 10 predicted stronger binders. This shows our method predicts the potential

therapeutic uses of these coplymers. Recently, [107] examined the properties of

the copolymers and synthesized non-random peptides of length 15. Three of these

J2, J3, and J5 were experimentally found to suppress MBP 85-99 binding with the

relative strength of suppression J5 > J3 > J2. We ran our method over each of

these 15 amino acid long peptides and found that all three had predicted binding

energies lower than MBP 85-99 (they form stronger bonds). Furthermore, the or-

der of binding strength matched that of the relative levels of suppression. That is,

J5 was the strongest binder followed by J3 and then J2. Thus our model may be

used as a testbed for screening other potential auto-immune drugs that work on

the same principle.

7.4 Conclusions

We have developed a novel MHC class II binding model which can be trained

on examples of measured binding affinities for a number of allele-peptide combi-

nations, as well as lists of good and bad binders for various alleles. In the latter

case, the good binders are given low and bad binders high nominal energy. To the

best of our knowledge, our method outperforms significantly all previously pub-

lished class II epitope prediction techniques, due to its unique treatment of the

variable position of the peptide with respect to the binding groove. Our method

is physics-based, and treats the binding configurations with different possible pep-

tide positions as a statistical ensemble in a thermodynamic sense. However, as
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opposed to other structure-based techniques [35], our approach is both accurate in

binding energy prediction and computationally efficient. For instance, due to the

computational cost, [35] reports results for only six peptides. Our model, while

guided by the known MHC II structures, is simplified and enriched with trainable

parameters, which allows us to refine it using published binding data. Testing a

new peptide takes a fraction of a second. One of the most appealing properties

of our technique is that it naturally generalizes well to previously unseen MHC

II alleles (or unseen combinations of alpha and beta chains). We illustrated the

accuracy of our technique on a biological problem: identifying targets and drugs

for an autoimmune disorder. We are also investigating the uses of the model to

explain certain evolutionary trends in pathogens.

Chapter 7, was published in The Journal of Computational Biology, Vol 15,

pp 927-942, 2008. Noah Zaitlen, Manuel Reyes-Gomez, David Heckerman, Nebojsa

Jojic, “Shift Invariant Adaptive Double Threading: Learning MHC II Peptide

Binding”. The dissertation author was the primary investigator and author of this

paper.
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Figure 7.1: Examples of binding configurations of MHC class I molecules (first two
renderings) and MHC class II (last two renderings) bound two different peptides. The
class I molecules are rendered in gray, except for the alpha helices forming the groove,
which are shown in blue to accentuate the peptide (pink) sitting snugly inside it. The
class II molecules consist of two separate chains. Their alpha helices (rendered in blue
and green) form a similar groove to that of class I molecules. While a class I molecule
binds to different short peptides in a relatively constant configuration, a class II molecule
can bind to peptides of much more variable length, with only a short segment (dark pink)
of the bound peptide captured in its groove, and the peptide tails (light pink) sticking
out and having a smaller effect on the configuration strength. The start of the segment
that fits the groove is modeled by the random variable ℓ in Section 7.2.1, while the much
smaller variability in the relative configuration of the peptide segment in the groove is
modeled by the variable m denoting different available crystal structures. We used 90
available MHC II structures as exemplars for the groove-segment geometries. Note that
the configurations of different MHC-peptide configurations in the figure are shown from
slightly different viewing angles to help understand the 3D structure, but the segments
that sit in the grooves of all four molecules are highly constrained, and they vary modestly
in their configuration with respect to the MHC molecule. (This is what made it possible
to train an energy predictor for the whole family of MHC I molecules in [66].) On the
other hand, for MHC class II molecules, the usually unknown segment start ℓ can have
dramatic consequences on the energy predictions as it determines the amino acids that
sit in the groove.
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Figure 7.2: The effect of the temperature T used in energy estimate (7.11) on the pre-
diction accuracy, here measure in terms of the correlation between the estimate and the
“true” energy in the synthetic experiment described in the text. The curves correspond
to the variance of the modeling error σ2 of 0,1,2, and 3. Higher error variance leads to
lower Spearman correlation factors, and the best correlation is achieved at optimal tem-
peratures which increase with the error variance, as expected. The optimal estimated
temperature for integrating states of the model is thus a symptom of modeling errors. In
our experiments, this temperature converges to values close to one, indicating the possi-
bility that most of the prediction errors are due to causes of variability not represented
by the data, e.g., measurement noise, or higher level effects such as epitope competition.
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Figure 7.3: The capability of generalizing epitope prediction to alleles not found in the
training set allows our method to be applied to a much larger set of MHC molecules.
This figure shows the significantly greater predictive power of our method over two voting
based mechanisms for binding across alleles. Note that the supertype method has zero
values if there were no other members of the supertype in the training data.



148

0
 50
 100
 150
 200
 250
 300

16


14


12


10


8


6


4


2


0


2


Position in MBP


B
In

di
ng

 s
co

re



Figure 7.4: Binding score from our double threading model over the myelin basic protein
(MBP). Higher scores are better binders. The red dashed line denotes our threshold for
a positive binder. There are four clear peaks above the threshold, the largest of which
is at position 91. This falls directly inside of the immunodominant epitope MBP 85-99.



Chapter 8

Conclusion

We have developed several new methods for improving our ability to con-

duct genome wide association studies. We have also worked out the details of some

statistical issues relevant to GWAS and the use of the HapMap in general. In this

very fast paced field some of our methods have been replaced, improved upon by

ideas from other groups, or outworn their usefulness as technology has changed.

This is the nature of working in a field where technology is so intertwined with

methodology. It is exciting and there is always a demand for something new. I

give a brief summary of the methods described in this text, some open problems

in the field, and some discussion of where I think the field maybe going.

The weighted haplotype association method WHAP utilizes the linkage

structure information learned from the HapMap project to improve the power of

GWAS by computing statistics for untyped SNPs. It can also be used as part

of a meta-analysis project in which SNPs are genotyped on different platforms,

solving the issues of how to combine the genotype data for the same phenotypes.

It has been used as part of several genome wide association studies, most notably

an examination of several important disease related metabolic phenotypes from a

Finnish population. We extended the method to handle continuous data in order

to participate in this collaboration. At this point many of the newer methods

outperform WHAP in both the case control and continuous setting. However, it

was one of the first to solve this problem, and demonstrates some fundamental

proprieties of haplotype structure and SNP distributions in and between human
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populations.

The SATTagger software offers the first complete solution to the SNP tag-

ging problem. Although the classic version of this problem is no longer central to

the field of genetics, it has been worked on by dozens of groups, and is considered

by some to be a classic bioinformatics problem. The reduction to SAT takes ad-

vantage of the local linkage structure of the genome to reduce complexity and run

time. Since the development of imputation methods such as WHAP, the number

of markers required for tagging has been significantly reduced and may serve some

utility in the development of cheap genotyping platforms.

The imputation aware meta-analysis method is likely the most relevant at

the time of writing. There are many ongoing large meta-analysis projects of GWAS

data. These will almost certainly use imputation to solve the problem of non-

overlapping marker sets, and would benefit from the use of our method. Indeed,

one such study on Bipolar disorder is nearing completion and we have recently

received the data necessary to test our method. The technique is simple enough

that no software package is necessary to aid researchers in its implementation.

All of the above methods have in common the use of the HapMap data

set. Indeed, it is the quintessential data set of GWAS and is partly responsible

for our ability to conduct these studies. It has been used repeatedly to calculate

numerous statistics, most often r2, to help us understand the nature of SNPs in

human populations. We developed a new framework for understanding the finite

sample issues of these statistics. We showed that they can cause significant errors

in some cases, we bounded the size of these errors, and showed how many more

individuals would be needed to correct them. The ongoing 1000 genomes project

will help address this problem.

The phasing and analysis of the NCBI genotypes was published just at the

release of the first version of the HapMap. Unlike the HapMap groups phasing of

the data, we did not require one of the largest supercomputers in the world, and

managed to have results on par in terms of accuracy. The NCBI haplotype resource

was not extensively used, but the XML developed to manage the data solved some

interesting issues, which are increasingly relevant in this field. Namely, how to
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properly store and index the volumes of information that are being produced by

new technologies. Additionally, the paper has been used to study genotyping error

rates, and argue against haplotype blocks.

The last method given comes from the domain of computational immunol-

ogy. It does loosely fall into the domain of disease and human genetic variation as

a goal of the method is to characterize how viral proteins interact with different

immune systems. The MHC has been one of the most frequent and strong loci

in GWAS results. Using our method in combination with GWAS results of auto-

immune disorders may help uncover the proteins illiciting the unwanted immune

response. This was partially demonstrated in the MS case given at the end of

the chapter. In addition to auto-immune disease there potential applications in

infectious disease and cancer.

8.0.1 Open Problems

We have recently seen the completion of the first rounds of genome wide

association studies and they were met with some controversy. The single largest

problem in the field right now is understanding where all the missing signal is.

Years of twin and family studies have provided estimates of heritability for many

of the same diseases in GWAS. Many novel loci have been discovered but only a

small fraction of the total heritability has been explained by these results. The

odds ratios are commonly between 1.2 and 1.4. It maybe the case that we just need

larger studies to reveal hundreds of SNPs of small effect, but several alternatives

has also been suggested and methods need to be developed to test for them. Gene

environment interactions, errors from population substructure, admixture mapping

in populations with complex ancestral populations, inferring population histories,

and epigenetics have been and continue to be areas of active development.

Rare variants are SNPs with very low minor allele frequency and are nearly

impossible to discover under current GWAS unless they have extreme effect sizes.

Even if they are identified in all individuals in a study conducted with next gener-

ation sequencing, there is not yet a standard procedure or statistical test to apply.

In fact, there are multiple hypotheses within this single problem. It could be that
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genes are disrupted under a mutational load or one single SNP is acting but is rare.

Methods to understand the effects of rare variants are much needed and currently

underexplored.

Next generation sequencing has already provided a wealth of new problems.

At this point they are mostly technical in the sense that answers are needed before

the technology can be fully utilized. Mapping, phasing, and assembly have already

seen dozens of publications, and with the quality of the data changing so rapidly

likely many more will appear soon. Several of the groups working on imputation

have seen opportunity here and are working on reducing the number of individuals

required for sequencing, or the number of reads per individual by imputing across

the sample. It still remains an open problem as the running times and quality of

results is not yet adequate.

Using multiple sources of data instead of genotypes in isolation could pro-

vide new insights into each data set as well as the phenotypes. Genotyping as well

as measuring expression, protein (via mass spec), methylation patterns, and inter-

mediate phenotypes gives a much richer set of data then genotyping on its own.

In addition to helping identify the loci associated with disease, it maybe possible

to learn about aspects of the mechanism of disruption or protection. Many people

working previously strictly in statistical genetics are beginning to write and work

on problems in “systems biology”, although they may use alternative terminology.

Within the field of computational immunology next generation sequencing

offers some very interesting new problems. The viruses are so small that it is pos-

sible to cheaply sequence samples from many individuals at multiple time points.

It may be possible to observe in much shorter time periods viral evolution and con-

nect it with host/virus/environment interactions. This could aid not only in the

understanding of the pressures on viral populations, but also in the development

of new classes of vaccines and treatments.
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