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Abstract

One approach to conceptual change suggests that ontological
barriers may impose beliefs that contribute to learners’
misconceptions and misunderstanding of many science
concepts. Overcoming this hurdle requires ontological
training, which we argue may be possible using concepts and
behaviors related to the discipline of complexity. We
investigated the difficulties related to learning complex
systems concepts, specifically systems exhibiting emergent
causal processes. Results showed that all students acquired
the following three concepts: Multiple Levels of
Organization, Local Interactions, and Probabilistic Behavior.
However, all but one student remained unable to develop and
use a sophisticated understanding of the concepts of
Nonlinearity and Randomness. This suggests that these latter
concepts may be the most deeply rooted and robust of the
ontologically based misconceptions. Further research is
required to investigate if this tendency toward “causal
determinacy” may be modified using other types of
interventions.

Introduction

Beliefs are thought to have substantial affects on how we
interact with and interpret the world. Recent studies in fields
such as theories of self (Dweck, 1999) and epistemological
beliefs (Hofer & Pintrich, 2002) suggest that these ways of
thinking also may affect learners’ ability to perform certain
tasks or construct certain types of knowledge. It is therefore
reasonable to propose that ontological beliefs may play a
significant role in learners’ misunderstanding of concepts
whose mechanisms are unfamiliar or completely unknown.

Chi, Slotta and deLeeuw (1994) put forward the argument
that robust misconceptions associated with the learning of
certain key science concepts1 may be the result of assigning
these concepts to incorrect ontological categories. It is
possible also that lacking knowledge of a specific
ontological category limits learners’ ability to construct

                                                  
1 Conceptual change difficulties reported in learning some
important science concepts such as electricity in physics (Chi,
Feltovich, & Glaser, 1981; White, 1993), gas laws and equilibrium
in chemistry (Wilson, 1998), and in the biological sciences such
concepts as diffusion, osmosis (Odom, 1995; Settlage, 1994), and
evolution (Anderson & Bishop 1986; Brumby, 1984; Jacobson &
Archodidou, 2000).

explanatory frameworks for a certain class of science
concept.

The ontological category at the heart of this inquiry is
that of emergent causal processes. It describes the
behavior of phenomenon that rely on the interactions of
multiple agents, all operating under the same
constraints, without centralized control, influenced by
flows of information with feedback loops and selection
mechanisms, which generate multiple levels of
organization within a system. The nonlinear and
probabilistic nature of these complex systems is
responsible for the seemingly magical transformations
that occur between levels of the system. Put simply,
emergence is characterized as the higher-level system’s
behavior, which arises, but cannot be predicted, from
the behavior of individual lower-level entities in the
system.

Conceptual Challenges of Emergence

Although we know a lot about emergent causal
processes, we continue to be challenged by why these
concepts pose obstacles to learners. Duit, Roth,
Komorek and Wilbers (1998), and Penner (2000),
among others, have studied what students learn about
complex systems when provided with different types of
models.  From their work we know that it is possible to
learn some aspects of emergent behaviors, but these
studies have not articulated the dimensions nor have
they looked at the potential for transfer of this
explanatory framework to achieve conceptual change.

Although students may be exposed to the behaviors
and functioning of complex systems in general course
work (e.g., diffusion of gases), it appears that many do
not understand the concepts deeply; and they do not
transfer these explanations to other instances of
emergence (Jacobson, 2000). In fact, Jacobson’s work
shows that novice learners do not correctly attribute
emergent causation to explain the behavior of complex
systems whereas experts in fields such as biology and
economics do so readily. Therefore we know that it is
possible to use this as a generic framework as a generic
to explain novel emergent phenomena. Additionally,
Jacobson’s results provide evidence to support the
claim that expertise in certain fields may be built on a
deep understanding of this emergent ontological
category.
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Lastly, there are powerful computer models to facilitate
the acquisition of complex systems, however, the literature
tells us that certain beliefs appear to limit how readily
learners “see” and correctly explain the model’s behaviors
(e.g., Resnick & Wilensky, 1997). For instance, Resnick
(1994) identifies the tendency to attribute centralized
control to self-organizing behaviors of multi-agent
computer models in StarLogo™. But we do not know the
impact of simulations and modeling of different types of
complex systems on understanding of emergent behaviors.
Nor do we know if all aspects of emergence as
demonstrated by these models of complex systems are
equally challenging to novice learners.

Our interest in this paper is to take a modest step toward
addressing some of these gaps in understanding how
knowledge of emergent causal processes, as demonstrated
in multi-agent simulations, may affect learning of certain
science concepts. More specifically, we seek to identify and
describe which emergent behaviors can be learned through
simple simulations and modeling of emergent systems and
which are more problematic for learners.

In the following sections we will describe the mixed
method longitudinal case study of nine science students who
participated in five, one-on-one, one-hour long inquiry-
based sessions using simulations designed with StarLogo™.
We will also describe the coding taxonomy (Complex
System’s Taxonomy – CST) which we developed to analyze
the transcribed audio data collected.

Material and Methods
Sample
We recruited science students, between the ages of 17 and
18, in their freshmen year at a pre-university English
college in Quebec (equivalent to grade 12). From this cohort
we selected nine case studies using a purposeful sampling
strategy (Creswell 2002). A major criterion for selection
was the students’ level of motivation and persistence2.

The students’ ages and academic experiences guaranteed
that their formal knowledge of complex systems and
emergent processes was limited or non-existent. However,
we administered a pre-test to establish a baseline of their
entry-level knowledge of these concepts (these data are not
discussed in this paper).

Instruction
The treatment consisted of five, 60 minute one-on-one
inquiry-based sessions. Each session was comprised of two
major components: (a) StarLogo computer simulations, and
(b) cognitive scaffold in the form of coach/interviewer. The
simulations were selected based on the ratings of four

                                                  
2 Learning Approach Questionnaire (LAQ) created by Donn
(1989) was used to assess motivation. We selected participants
with high internal motivation to ensure persistence with the task
over course of this longitudinal study.

subject matter experts. The criteria were that the
simulations should demonstrate emergent causal
processes, and may in fact exhibit other behaviors of
complex dynamic systems. The resulting treatment
consisting of three simulations, and one tutorial, (Slime
- session 1; FreeGas – session 2; StarLogo
programming tutorial – session 3; no simulation –
session 4; Wolf-Sheep – session 5) selected from a bank
of over 12 other existing StarLogo simulations that also
were judged appropriate for grade 12 science students.
The simulations finally selected also have a prior
history of providing learners with opportunities to learn
about concepts of complexity (e.g., Resnick &
Wilensky, 1997). This should not suggest that each
simulation presented the same level of affordance for
learning complexity concepts, however, they all held
the potential to demonstrate some level of the more
anticipated behaviors (i.e., non-isomorphic multiple
levels of organization, decentralized control,
randomness, nonlinearity, probabilistic behavior, and
dynamic homeostatic behaviors). A question of interest
that emerged from the observations was the differential
effects of the different types of complexity represented
in the simulations (i.e., the tightly coupled organization
modeled in Slime simulation, versus the dissipative
systems of FreeGas, and the somewhat in-between
system modeled in Wolf-Sheep). Lastly, we also did not
know the impact of presentation sequence but decided
to keep this constant across learners to reduce the
variability among cases although it prevented us from
learning more about this question.

Procedure
Over the period of five one-hour sessions, spanning a 7-
week period each of the nine learners met individually
with the coach in a research lab and worked with the
simulation assigned for the session (see above). As they
explored the assigned simulation, learners were asked
to describe their observations related to the behaviors of
the agents (i.e., slime mould, gas molecule, turtle, wolf-
sheep) and construct and articulate possible
explanations for these behaviors. The literature suggests
that these causal explanations would reveal the
underlying component beliefs/mental models
(deterministic “clockwork” component beliefs used by
novice learners versus nondeterministic “emergent”
component beliefs used by experts) used to interpret
these phenomena (e.g., Chi, et al, 1994; Jacobson,
2000). These statements could then be coded and
triangulated with data collected relating to shifts in
component ontological beliefs that forms part of a
larger study (Charles, 2003).

Based on the literature (e.g., Resnick, 1994) we
anticipated that learners would be able to identify and
describe behaviors common to complex dynamic
systems during their sessions. Therefore the ability to
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comply a list of the structural similarities between the
simulations was viewed as the high level objective of this
experience. At the conclusion of each session learners were
asked to attempt to produce a list of behaviors exhibited by
the simulation. If necessary they were reminded of the list
complied from their previous sessions. Lastly, they were
provided with a list of concepts, which may be related to
either complex or simple systems and asked to construct a
concept map. These data are not described in this paper.

Data collection, coding, and analysis
We collected direct observational data (audio and video
tapes of the instructional activities), written documents
(students’ responses at the pretest and posttest), and
interview data. A coding scheme entitled Complex Systems
Taxonomy (CST) was developed to determine students’
conceptual understanding of the various aspects of complex
systems. Adapted from Jacobson (2000), it reflects concepts
presented by Holland (1995), Bar-Yam (1997), and others.
This "fine grain" overly represented coding scheme was
used purposefully to ensure that all articulated observations
of systems’ behaviors could be coded (see Appendix for
complete CST). Post analysis results allowed for narrowing
of the taxonomy for future use.

Results
One of the major themes constructed from the categories to
emerge from the interviews was that the different
simulations facilitated the acquisition of different aspects of
complex systems. The results in Table 1 represent the total
responses aggregated across students. It displays the
percentage of responses within each complex systems
component.

Table 1:  Distribution of responses (percentages) within
Complex Systems Taxonomy (CST) for each simulation.

SimulationsCST
Concept Slime FreeGas Wolf-Sheep

ML 49.1 35.2 32.5
LI 22.4 25.1 35.3
OS 2. 8 14.0 8.6
PR 11.4 19.3 13.4
RB 5.1 3.0 2.3
TA 4.20 0.26 0.19
FL 1.10 0.43 2.90
DE 0.68 1.20 0.70
SR 0.74 0.00 0.13
DC 1.30 0.68 1.40
DI 0.32 0.00 0.38
NL 0.00 0.15 0.38
PA 1.40 0.26 1.00

ML is Multiple Levels of Organization, LI is Local Interactions,
OS is Open Systems, PR  is Probabilistic Behavior, RB  is
Random Behavior, TA is Tags, FL is Flows, DE is Dynamic

Equilibrium, SR  is Simple Rules, D C is Decentralized
Control, DI is Diversity, NL is Nonlinear, PA is Pattern
Recognition

To answer the question what difficulties might
students experience with learning the concepts involved
with emergent causal processes we analyzed the data
both at the level of students and at the level of emergent
causal process concepts. Thereby producing the two
levels of analysis reported below.

Student level analysis
Figure 1 illustrates the combined scores on the CST for
each student across all sessions. On this basis students
could be classified into four groups:
• Sophisticated Emergent Causal Processes (ECP)
Identifier (CST score > 75). This describes Greg who is
considered an outlier at the high end.
• High Moderate Emergent Causal Processes (ECP)
Identifier  (CST score between 60 and 70). This
describes Mitch, Sidney and Sam.
• Moderate Emergent Causal Processes (ECP)
Identifier  (CST score between 40 and 50). This
describes Walter and Norman.
• Novice Emergent Causal Processes (ECP) Identifier
(CST score between 30 and 40). This describes Emilie,
Penny, and Monique (an outlier at the low end).

Figure 1:  Student’s understanding of Complex
Systems concepts over three simulations.

Concepts level analysis
The results of Table 2 show the number of statements
(relative to each student’s total number of statements)
that were coded (using the CST) into each Complex
Systems concept. Thus, it allows us to make a
provisional decision on whether each student observed
and therefore discussed the Complex Systems concepts.
If one arbitrarily, takes a value of 1 as the cutoff point,
we can provisionally conclude that all students
including the three Novice ECP Identifiers (Monique,
Emilie, and Penny) observed and discussed the
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concepts of  “multiple levels of organization”, “local
interactions”, and “probabilistic causes”. All the other
students also observed and discussed the concept of
“random behavior”. The major difference between the
Moderate ECP Identifiers (Norman and Walter) and the
High ECP Identifiers (Sam, Sidney, and Mitch) was in the
general strength of their responses. On the other hand, the
Sophisticated ECP Identifier (Greg) not only had a greater
response to the latter concepts, he also observed and
discussed more concepts, namely “flows” and “dynamic
equilibrium”

Table 2: Relative number of statements made by each
student coded into Complex Systems concepts over three
simulations.
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ML 6.7 21.0 15.7 16.1 20.9 22.3 30.8 26.0 25.8

LI 3.0 8.5 8.8 11.3 13.0 17.5 17.1 20.6 25.7

OS 0.0 2.2 3.6 2.7 4.1 4.1 2.4 5.4 12.1

PR 2.6 2.3 3.6 5.8 6.7 7.3 10.8 11.6 13.0

RB 0.0 0.5 0.9 3.1 1.0 2.5 3.7 2.7 2.4

TA 0.4 0.4 1.1 1.6 1.1 0.8 0.4 1.5 1.3

FL 0.2 0.0 0.0 0.4 0.0 0.1 0.4 0.2 1.2

DE 0.5 0.1 0.2 0.1 0.6 0.3 0.4 0.6 1.0

SR 0.1 0.0 0.2 0.1 0.0 0.4 0.4 0.0 0.4

DC 0.1 0.6 1.9 0.2 0.3 1.3 0.5 0.3 0.3

DI 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.4

NL 0.0 0.0 0.1 0.1 0.2 0.0 0.1 0.2 0.5

PA 0.0 0.0 0.4 0.0 0.8 1.8 0.1 0.1 0.9

ML is Multiple Levels of Organization, LI is Local Interactions,
OS is Open Systems, PR is Probabilistic Behavior, RB is Random
Behavior, TA is Tags, FL is Flows, DE is Dynamic Equilibrium,
SR is Simple Rules, DC is Decentralized Control, DI is Diversity,
NL is Nonlinear, PA is Pattern Recognition

The interpretation that concepts, which had low counts on
the CST scheme (e.g., random behavior, nonlinear effect,
decentralized control, dynamic equilibrium), suggests that
students did not observe them is not the only conclusion to
be drawn from these data. It may indicate that learners
readily recognized the behavior described by the concept
and chose to focus instead on other concepts that were more

challenging or interesting. It may also indicate that the
simulation did not offer sufficient affordances for
learning that concept.

Discussion
Chi and colleagues (e.g., Chi et al., 1994; Chi 2000)
have long proposed that ontological training will
remove ontological barriers, which they speculate
create the misunderstandings observed when learning
certain scientific concepts. Our study shows that not all
of these identified barriers are equally daunting. In fact,
our study confirmed that using the selected
intervention, it was possible to hurdle two of the
barriers (Multiple Levels and Local Interactions)
identified as problematic by Chi (2000). Our results
also suggest that two (Nonlinearity and Random
Behaviors) of a possible six complex systems concepts
are either not affected by this intervention with its
relative affordances for learning complex systems
concepts (i.e., non-isomorphic multiple levels of
organization, decentralized control, probabilistic
behavior, and dynamic homeostatic); or, that these
concepts represent a deeper level of entrenched beliefs
and require some other type of intervention or condition
before substantial change will be observed. The more
important of these two is randomness because it is an
addition to the list of barriers identified by Chi (2000).

Adding to the list of Ontological Barriers - “Causal
Determinacy”
One of the ontological barriers not identified by Chi
(2000) is the attribution of causal determinacy (i.e.,
difficulty in acquiring the concept of random actions).
This current study shows that, possibly because of weak
affordances of the simulations, students experienced
difficulty with the notion of randomness. Klopfer and
Um (2000) in a study of fifth and seventh grade
students using StarLogo in a scaffolded learning
environment called “Adventures in Modeling” also
demonstrated that students experienced difficulties with
learning the concept of random events; although in the
latter portion of their 14 sessions intervention, students
were able to grasp this concept.

The evidence from the study reported here and from
the larger study (Charles, 2003) is that all the learners at
some level were challenged by randomness. In fact, it
was the main stumbling block for Greg who otherwise
acquired an understanding of all the emergent causal
processes without exceptional cognitive struggle. For
example, Greg when provided with an ontological
prompt during session 1, answered with an explicit
statement describing the Slime mould model as being
deterministic. His view was that the computer program
limited the options and therefore the outcome was
determined a priori, therefore predictable.
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Greg: Yeah, I think it’s more of a deterministic system. Because
like even looking at the way that this is set up there was a
minimum number of turtles that you could have and I think it starts
off as a system that has a plan and that all the other variables just
act on whether like it’s your plan ... so you have a deterministic
system.

What this suggests perhaps is that even though learners
accept the randomness of some happenings, as indicated in
their answers to the question about ants foraging, at a deeper
level they struggle to accept the lack of some means of
predicting future outcomes (even by infinitesimally small or
remote means). This deep level understanding is further
confounded by the limitations of the programmed
environment of the simulations, which indeed may confirm
beliefs that there is some level of predictability because
random number generations machines are behind these
calculations. This is the level of discussion that Greg, Mitch
and Sidney all at some point conducted with the coach.

How then did any of the learners show signs of acquiring
a deeper level understanding of this concept? The evidence
suggests that Greg was the only case to describe random
actions at the deeper level of understanding as an element of
true causal indeterminacy and “noise”. He appeared to
accomplish this as a consequence of both cognitive
scaffolding and his domain knowledge. During the final
interview session, one year after the intervention, Greg was
asked to explain his concept map. In this discussion, he
elaborated on the role played by random actions in the
behavior of systems. This required him to reflect and in
doing so he referenced his course work from biology and
how the “noise” of random events creates the “possibilities”
of the future states.

Greg: ...so that creates um, randomness, and that creates
possibilities, also.  That if there were no random events, then you
wouldn’t have those possibilities.  Um, but all these chance events,
they, when they get absorbed into the complex system, they have
very little effect.  It’s like throwing a pebble into a river.  Sure, you
might course the river in a one in billion chance or something, but
chances are it does nothing.  It’s not going to affect the flow of the
river in any way.  Uh, so, what that means is that complex systems,
they follow more rules of probability, and they, they... so nothing
is for sure I guess, there is always the element of chance involved.
But they’re [complex systems] by and large more predictable than
simple systems.

The attribution of causal determinacy is a key obstacle to
understanding emergent causal process for most learners.
This arises either because of the learners’ component
beliefs, as in the instantiation of the case study Norman, or
because of the confounding of concept and programming
limitations as demonstrated by Sidney, Mitch and overcome
by Greg. The contention may come as no surprise to those
investigating the cognitive processes involved in reasoning
about uncertainty (e.g., Shauhnessy, 1992). Metz (1998)

points to the spurious causal attributions that result
from misunderstanding of randomness and probability.
What is surprising is that this same barrier also may
account for a major difficulty in learning emergent
causal processes such as evolution. This contention is
supported by research from Zaïm-Idrissi, Désautels, and
Larochelle (1993). In their study working with 15
biology students (master’s level) they concluded that
the majority of the sample held deterministic forms of
reasoning about the topic of evolution. Furthermore,
they uncovered several inconsistencies in the belief
systems of the study’s participants, primarily, the
conflict between deterministic and probabilistic
reasoning.

Therefore, it is possible that this causal determinacy
attribution may be one of the most widely
interconnected beliefs that affect other related beliefs
such as probabilistic causes, and even decentralized
control. It may well fit Chinn and Brewer’s (1993)
description of the evidentiary supporting schema. They
state: “It appears, then, that well-developed schemas are
not necessarily entrenched. The key is whether the
schema is also embedded in evidentiary support and is
used to support a wide range of other theories and
observations that the person believes” (p. 17). Future
research is required to try and untangle the possible
confounding of the simulations’ weak affordances and
the students’ ontological belief about randomness.

Conclusions
Using the complex systems’ taxonomy, the results of
this inquiry show that all nine case study students had
little difficulty developing an understanding of three
emergent causal processes: Multiple Levels of
Organization, Local Interactions and Probabilistic
Behavior. However, the emergent component concepts
of Nonlinearity and Randomness were challenging for
all. In fact, only one student, Greg, was capable of
demonstrating a deep conceptual understanding of these
concepts. Furthermore, his understanding grew with
maturation over time, with experience from
complementary content areas, and cognitive scaffolding
from the coach/interviewer. Greg’s persistent attempts
to reason with these concepts and explain phenomena
using these notions (e.g., explaining evolution of a
species as dependent upon random events) may also
account for his ability to acquire this knowledge.

The results of our study also show that the
affordances for learning aspects of emergent causal
processes, and concepts of complexity, offered by
multi-agent simulations and modeling are highly related
to the type of complex system represented and also to
the students’ background understanding of science. In
particular more learners had difficulty learning with
representations (simulations) of dissipative system
complexity (FreeGas) compared to those using
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representations of tightly coupled organization models of
complexity (Slime).

In summary, this investigation provides evidence that it is
possible, using simple simulations and scaffolding, to
facilitate the learning of some aspects of an emergent causal
explanatory framework. However, other components of
emergence, which are linked to non-deterministic (i.e.,
randomness) and nonlinear conceptions are not easily
acquired and may represent the more deeply entrenched
ontological beliefs. Further research is needed to examine
these specific aspects of emergent causal frameworks and
the effectiveness of other types of instructional simulations
and tools.
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Appendix
COMPLEX SYSTEM CODING TAXONOMY
1. Local interactions.
2. Simple rules
3. Decentralized control
4. Random behavior
5. Tags
6. Flows
7. Internal models
8. Diversity/ variability
9. Modularity
10. Pattern formation
11. Open/closed systems
12. Multiple Levels
13. Probabilistic
14. Nonlinearity
15. Criticality
16. Dynamic equilibrium
17. Adaptation
18. Selection
19. Time scale.
20. Multiple causality
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