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Abstract

On the Inherently Nonlinear Dynamics of Unilateral Contact in Elastic Structures

by

Nathaniel Niklas Goldberg

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Oliver M. O’Reilly, Chair

Engineering and everyday experience alike provide countless examples of deformable objects
coming into contact with effectively rigid objects, from a belt stretched between pulleys in
an automobile engine to a ball bouncing on a blacktop. But despite the ubiquity of such
systems, we have little in the way of a fundamental understanding of the dynamics they can
be expected to display. The main obstacle to deeper understanding is mathematical: the
unilateral constraint of contact creates free boundaries, and free-boundary-value problems are
inherently nonlinear, even if the underlying differential equations are themselves linear. This
dissertation explores the dynamics of contact in several prototypical problems inspired by
engineering applications such as indentation testing, offshore oil exploration and production,
and microelectromechanical systems (MEMS) design.

The first major thrust of the present work is the linear vibration analysis of a beam contacting
a flat surface due to combined gravity and adhesion. In analyzing this problem we develop
a technique for appropriately linearizing the conditions at a free boundary. We then extend
the technique to study the nonlinear vibrations of the gravity-only problem using a second-
order perturbation analysis, which shows that contact generates a rich array of nonlinear
resonances. The results show good agreement with numerical solutions from a special finite
element method that precisely tracks the free boundary. We conclude by using the gap
function formalism common in computational contact mechanics to demonstrate that the
same pattern of resonances can be expected to arise in a more general class of problems.

Having studied a problem involving a one-dimensional continuum, we shift attention to
one with a two-dimensional continuum: an electrostatically actuated plate contacting a
charged, dielectric-coated substrate. We use a variational method to derive one model in
which the dielectric thickness is finite, and the other in which the thickness is small. The
latter corresponds to a common type of surface adhesion. We formulate the linear stability
equations for both models and characterize their equilibria in the case of a circular actuator
before adopting an approximation from dynamic fracture mechanics to study the dynamics
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of the thin-dielectric model, which display some unique mathematical properties, including
finite-time blow-up. Finally, we discuss application of the model to the problem of vibration-
assisted stiction repair.

This work incorporates many analytical and computational tools, from configurational me-
chanics, to perturbation theory, to arbitrary Lagrangian-Eulerian finite element methods,
and represents a first step toward the development of rules-of-thumb for the design of
vibration-critical mechanical systems with contact constraints.
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Chapter 1

Introduction

Contact is fundamental. It is the only way that purely mechanical bodies can interact with
one another. Figure 1.1 shows just a few examples: a flat tire on a road, a cork being pulled
from the neck of a bottle, and human blood cells bumping into each other. In all contact-
mechanical systems, from the mundane to the extraordinary, the inanimate to the living,
the microscopic to the macroscopic, the essential feature is that of impenetrability of the
bodies. In other words, the two (or more) bodies in contact cannot pass through each other.
Mathematically speaking, this requires the enforcement of a unilateral constraint on the
displacements of the bodies. In general, for three-dimensional bodies, contact occurs along
one or more surfaces, with the boundary of such a surface (a curve that is variously called the
contact interface, contact boundary, or contact line) being unknown a priori in the typical
problem where one must determine the displacement fields given the loads. Since there is a
boundary in the mathematical domain that must be determined as part of the solution of the
governing boundary-value problem, we are actually dealing with a free-boundary problem.1

Free-boundary problems are inherently nonlinear, and this fact has important conse-
quences for the mechanics of contact. For one, it means that contact can induce strongly
nonlinear behavior in even the simplest models of deformable bodies, such as linearly elastic,
Euler-Bernoulli beams. Another consequence is that much of our intuition about the me-
chanics of deformable bodies is not applicable when contact is present. Take, for example,
the following heuristic that can be found either explicitly or implicitly in numerous structural
mechanics textbooks:

Consider, then, a general structure loaded by an arbitrary set of equilibrated
loads, and suppose these to increase in proportion. The configuration of forces
being given, let their magnitude be denoted by ρ. For ρ sufficiently small, the

1It is important to distinguish between free- and moving-boundary problems. In both, all or part of the
boundary of the mathematical domain varies as a certain parameter is changed, often a temporal variable. In
moving-boundary problems, the boundary moves in a prescribed fashion, while in free-boundary problems,
the location of the boundary is unknown a priori and must be determined as a part of the solution of the
problem.
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Figure 1.1: Practical examples of contact between deformable bodies.

entire structure is elastic, and the increase in a typical deformation ∆ is propor-
tional to the increase in ρ. [1]

This notion, treated as fundamental by some, can be egregiously violated in systems with
contact, as we will demonstrate shortly.

If mechanicians’ intuition for the statics of contact is often insufficient, their intuition
for the dynamics of contact is even more often so. (One exception is that there exist several
rules-of-thumb for so-called contact-impact systems, but our interest is in systems with
continuous contact.) Having the ultimate goal of developing engineering intuition for the
sort of nonlinear dynamics that can arise in contact-mechanical systems, this dissertation
focuses on detailed mathematical analyses of some of the simplest possible problems. Some
of the questions we seek to answer include the following:

• How do we consistently linearize contact-mechanical systems?

• How do we consistently apply perturbation methods to study contact-mechanical sys-
tems?

• Does the frequency response of contact-mechanical systems exhibit hardening behavior
or softening behavior?

• What sort of nonlinear resonances can contact generate?

• How does adhesion affect the dynamics of contact?

• What constitutes a “good” numerical method for solving dynamic contact problems?

Whenever possible, sources of nonlinearity other than contact are neglected so that any
observed effects can be ascribed directly to contact, rather than some other source, such
as material nonlinearity. Furthermore, all problems in this dissertation concern structural
systems (i.e., beams and plates). While the bulk of the contact mechanics literature focuses
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P
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A B

2a

k

Figure 1.2: Cross-sectional schematic of a spherical indenter being pressed into an elastic
foundation by a dead load.

on solids (i.e., three-dimensional bodies), our consideration of structural systems enables the
use of mathematical tools that would be simply too cumbersome to apply to solids. We also
consider only systems in which one of the two contacting bodies can be treated as rigid—a
good approximation when the two differ greatly in stiffness.

The remainder of this chapter serves to familiarize the reader with several of the unique
features that are encountered in contact problems by way of example. While many of the
features we present are quite common, contact mechanics encompasses such a wide array of
problems that there are certainly many exotic mechanical behaviors enabled by contact that
we simply do not have the space to discuss here. Furthermore, there are also scenarios in
which none of the features shown in the forthcoming sections are present.2

1.1 Contact is a Nonlinearity
Figure 1.2 is a cross-sectional view of a rigid, frictionless, spherical indenter of radius R being
pressed into a foundation of stiffness per unit area k by a force P , resulting in a deflection
δ from the location of incipient contact. The surface of contact is then the arc AB revolved
about the axis of symmetry, while the contact interface (also known as the contact boundary)
is the curve generated by revolving the points A and B about the axis of symmetry. Our
task is to determine δ given P , R, and k. As is the case in contact problems in general, the
location of the contact interface, defined by the quantity a, must also be determined as part
of the solution.

2As an example, a sphere compressed between two parallel elastic foundations (the two-sided version of
the system illustrated in Fig. 1.2) will exhibit entirely linear dynamics in the normal direction. This is part
of reason we chose to focus on unilateral rather than bilateral contact in this dissertation.
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A balance of vertical forces shows that

F =

∫ a

0

k
(
δ −R +

√
R2 − x2

)
· 2πr dr ≈

∫ a

0

k

(
δ − r2

2R

)
· 2πr dr = πa2k

(
δ − a2

4R

)
, (1.1)

where we have employed the (often reasonable) approximation that a/R � 1. Notice that
this equation involves the additional unknown a. Closure is provided by the geometric
condition3

a =
√

R2 − (R− δ)2 ≈
√
2δR. (1.2)

which leads to
F ≈ πRkδ2. (1.3)

The important result here is that F ∝ δ2. The relation between force and displacement is
therefore, to borrow terminology sometimes used in dynamics, essentially nonlinear [2]. A
small but positive force F does not lead to a proportional displacement δ, and the engineering
heuristic mentioned earlier is clearly violated. Care should be taken not to overgeneralize this
result, however, because although the force-displacement relationship is not incrementally
linear about δ = 0, it is incrementally linear about any δ > 0. One application of a closely
related nonlinearity is in the study of wave propagation in pre-compressed chains of elastic
spheres, which can support solitary waves [3].

1.2 Contact is Often Asymmetric
It should be obvious that the indenter-foundation model in Fig. 1.2 is fundamentally asym-
metric. As the indenter is pushed into the foundation, it engages more and more of the
springs, and hence the force response hardens. On the other hand, as the indenter is re-
tracted from some δ > 0, it engages fewer and fewer springs. This asymmetry is a geometric
property that persists even in the most realistic models of contact that include friction, a de-
formable indenter, a properly modeled foundation, and so on. What’s more, the asymmetry
can have profound consequences for dynamics. To illustrate this, consider the system illus-
trated in Fig. 1.3, a crude model of an indenter attached to a testing machine with effective
stiffness K and effective mass m. The machine is commanded under displacement-control to
move downward by a distance ∆, which sets the equilibrium displacement δ0 of the indenter
relative to the undeformed state. Let us investigate the dynamics of the indenter about this
equilibrium state.

Scaling lengths by R and letting α = πkR2/K, it can be shown that the static deflection
induced by the initial compression of the testing machine is, adopting the approximation

3The need for geometric compatibility conditions to close the system of equations is typical of contact
problems. They can be regarded as equations for the location of the contact interface, which here means the
quantity a.
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Figure 1.3: Cross-sectional schematic of a spherical indenter being pressed into an elastic
foundation by a testing machine modeled by an effective spring.

from Section 1.1,

δ0 =

√
1 + 4α∆− 1

2α
. (1.4)

With time scaled by
√

m/K, the equation of motion for the (dimensionless) absolute dis-
placement δ of the indenter is

δ̈ + δ + αδ2 = ∆. (1.5)

Letting x = δ − δ0 be the deviation of the indenter’s position away from equilibrium, the
equation of motion can be rewritten

ẍ+
√
1 + 4α∆x+ αx2 = 0. (1.6)

When the machine is very stiff relative to the foundation, α � 1, and Eq. (1.6) is well-
approximated by

ẍ+ x+ αx2 = 0. (1.7)

Equation (1.7) is the prototypical asymmetrical system in nonlinear vibration theory,
sometimes called a quadratic Duffing equation, though this terminology is controversial.
Since α > 0, the nonlinearity is of hardening type, as is to be expected from the basic fact
that increasingly large displacements cause the indenter to engage increasingly many springs
in the foundation. As is the case for any nonlinear oscillator with an even nonlinearity,
solutions of Eq. (1.7) will exhibit a dynamic offset so that the mean position about which
oscillations take place is not x = 0. The quadratic nonlinearity also gives rise to a 2:1
superharmonic resonance, an occurrence we will encounter again in a more sophisticated
system in Chapter 3. Adding forcing to this system can cause chaos in certain parameter
regimes. Readers interested in the analysis of Eq. (1.7) should consult Nayfeh and Mook [4].

The system in Fig. 1.3 bears resemblance to an experimental apparatus constructed
by Shui et al. [5] to demonstrate the use of small-amplitude, high-frequency vibrations to
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increase the pull-off force of an indenter from an adhesive substrate. The authors observed
experimentally that a(t) − a0 exhibited both a dynamic offset and asymmetric oscillations
about that offset. These effects were ascribed to asymmetry in the behavior of the adhesive
during crack closure (ȧ > 0) and crack opening (ȧ < 0), but as our crude model shows, the
same behaviors can theoretically occur in an indenter-foundation system with no adhesion
at all.

1.3 Adhesive Contact Problems Can Have Multiple
Solutions

The addition of adhesion can cause contact problems to have multiple solutions. Let us
investigate the effect of adhesion on a variation of the system from Section 1.1. Here we
will model the adhesion with the work-of-adhesion approach. This is a good model when
adhesive bonds are broken over very small distances.

Let wad denote the work of adhesion, the energy required to break a unit area of adhesive
bonds. Then, under the usual approximation a/R � 1, the total potential energy is

U =

∫ a

0

1

2
k

(
δ − r2

2R

)2

· 2πr dr − Fδ − wadπa
2. (1.8)

The previous relation of geometric compatibility, Eq. (1.2), no longer holds since the foun-
dation is in tension in an annular region b < r < a. At r = b, material points of the indenter
coincide with the original location of the foundation, while at r = a, the adhesive fibers are
at their maximum extension

√
2wad/k. Geometry then dictates the following:

δ =
a2

2R
−
√

2wad

k
, (1.9)

which can then be used to express Eq. (1.8) as a function of a alone. Defining

ac =

(
8R2wad

k

)1/4

, δc =

√
2wad

k
, and Fc = 2πRwad, (1.10)

it can be shown that the condition dU/da = 0 gives

F

Fc

=

(
a

ac

)4

− 2

(
a

ac

)2

⇔ a

ac
=

√
1±

√
1 + F/Fc. (1.11)

Regarding Eq. (1.11) as a quadratic in (a/ac)
2, we see that while just one solution exists

when the indenter is under a compressive load (F/Fc > 0), there can be zero (F/Fc < −1),
one (F/Fc = −1), or two solutions (−1 < F/Fc < 0) when the indenter is under tension. In
the two-solution regime, the solution corresponding to the smaller value of a is unstable and
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g

P

EI, ρ0

s = 0

s = `
y(s)

δ

Figure 1.4: Heavy elastica being lifted from a rigid surface by a dead load.

therefore can only be realized experimentally under displacement-control. Fc is the pull-off
force.

The appearance of a regime of multiple solutions is typical of models incorporating JKR
adhesion. Chapter 4 explores such a problem in detail and also discusses a model of elec-
trostatic adhesion that gives rise to three static solutions in certain parameter regimes, two
stable and one unstable.

1.4 Contact Problems Can Be Approximately Linear
The lesson of Section 1.1 was that contact problems are inherently nonlinear, and that the
nonlinearity is often essential, meaning that the force-displacement relationship cannot be
linearized about the initial state. Here we showcase a system in which the relevant force-
displacement relationship is essentially nonlinear, but becomes asymptotically linear for very
large forces/displacements. The system is the heavy elastica: an unshearable, inextensible,
semi-infinite elastic rod that is lifted by its end from a frictionless, rigid surface against the
force of gravity. The presentation here is by no means novel [6].

Referring to the notation introduced in Fig. 1.4, elastica theory (cf. O’Reilly [7]) readily
leads to the boundary-value problem

EIθ′′ + (ρ0gs− P ) cos θ = 0 for 0 < s < `

y′ = sin θ for 0 < s < `

EIθ′ = 0 at s = 0

θ = 0, EIθ′ = 0, y = 0 at s = `

. (1.12)

Although the unknowns in the differential equations are only θ(s) and y(s), a solution of
Eq. (1.12) must also include `, which specifies the location of the contact interface (a free
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boundary). The condition EIθ′(`) = 0 can be regarded an equation for `, just as Eq. (1.2)
served as an equation for a in the indenter problem. After solving Eq. (1.12), one can recover
the tip displacement δ = y(0). Scaling lengths by (EI/ρ0g)

1/3 and forces by (EI)1/3(ρ0g)
2/3,

Eq. (1.12) can be written in the following dimensionless form:
θ′′ + (s− P ) cos θ = 0 for 0 < s < `

y′ = sin θ for 0 < s < `

θ′ = 0 at s = 0

θ = 0, θ′ = 0, y = 0 at s = `

. (1.13)

A detailed treatment of Eq. (1.13) using perturbation theory can be found in the literature
[6]. Here we instead focus on approximate solutions developed in an ad hoc fashion.

Consider first an approximation where θ is small, which is equivalent to using Euler-
Bernoulli beam theory rather than elastica theory. The solution of the linearized problem is
then as follows:

θ(s) ≈ P

2

(
s2 − `2

)
− 1

6

(
s3 − `3

)
, ` ≈ 2P,

y(s) ≈ P

2

(
1

3
s2 − `2s+

2

3
`3
)
− 1

6

(
1

4
s4 − `3s+

3

4
`4
)
.

(1.14)

Simply evaluating y(0), we find
δ ≈ 2

3
P 4, (1.15)

which clearly shows P ∝ δ1/4 when the problem is geometrically linearized. Once again
the presence of a free boundary induces a nonlinear force-displacement relationship in an
otherwise linear problem. It is interesting to note the one-quarter power on the displacement
in this example, which is quite distinct from the power of two found for the indenter in
Section 1.1.

Tackling the approximate solution for very large P is straightforward. Intuitively speak-
ing, when the load is very large, the deformed rod will consist of an extremely long “outer”
region where it essentially vertical and a very small boundary layer near s = ` where the it
bends rapidly in order to ensure that θ = 0, θ′ = 0, and y = 0 at s = `. Thus, for s outside
of the boundary layer, we have an approximate solution as follows:

θ(s) ≈ −π

2
, y(s) ≈ `− s, ` ≈ P. (1.16)

Again evaluating y(0), it follows that
δ ≈ P. (1.17)

Shockingly, despite being nonlinear at small displacements, the force-displacement relation-
ship is asymptotically linear at large displacements! Solving Eq. (1.13) MATLAB’s bvp4c
and plotting the resulting force-displacement curve in Fig. 1.5, we see that the approxi-
mate analytical results from Eqs. (1.15) and (1.17) correctly reflect the limiting behavior of
solutions.
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=
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Figure 1.5: Dimensionless force versus displacement for the heavy elastica.

t

`

∆t 2∆t 3∆t

∆s

2∆s

∆s

P

Figure 1.6: Problem with standard method for dynamic contact in finite element codes. The
red dots are the nodes of a finite element mesh and the red segments the elements.

1.5 Contact Poses Computational Difficulties
Free-boundary problems require special numerical methods compared to their fixed-boundary
counterparts, and contact problems are no exception. It should come as no surprise that the
development of finite element methods for solid and structural mechanics that incorporate
contact is a major area of ongoing research [8]. Standard algorithms implemented in most
commercial finite element software, while sufficient for many practical applications where the
bulk motion of the body is the most important feature to capture, have major shortcomings
in applications where small-scale vibrations induced by repeated contact-impacts are the
feature of interest and where long-run energy conservation is needed [9]. Since this is exactly
the sort of problem that this dissertation concerns, we will require special numerical methods.

The shortcoming of the basic approach to contact in finite elements that is most delete-
rious for the type of problems that interest us is that the location of the contact interface
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can only be resolved to within the typical element size. An illustration of what this means
in the context of the dynamic version of the problem discussed in the preceding section is
shown in Fig. 1.6. In this hypothetical scenario, the rod begins at t = 0 entirely in contact
with the substrate. The load P is then applied instantaneously. After the first time step, the
free length of the rod advances by one element, yielding `(∆t) = ∆s. The rod continues to
move upward during the next time step, but not enough to cause the next node to overcome
the force of gravity, and thus `(2∆t) = ∆s. After the third time step, the obstinate node
releases and we find `(3∆t) = 2∆s.

The entirely fictional result for `(t) is certainly not very accurate. After realizing this,
our first instinct may be to reduce the time step and try again, but a moment of thought
reveals that this would have absolutely no effect whatsoever on the resolution of `, which
can only take on the values n∆s, where n is a non-negative integer. We must refine the
spatial mesh in order to increase the resolution. While halving the mesh size certainly yields
a more computationally expensive calculation than halving the time step, the former may at
first seem not to yield a prohibitively expensive problem. However, since the motion of the
contact interface has an absolutely critical impact on the overall dynamics of the rod (see
Chapter 3), the fact that ` is limited to certain quantized values means that, in essence, the
rod “sees” a step-function input at each time step, a broadband excitation that can give rise
to spurious frequency content in the resulting solution. This means that we must resolve the
mesh as finely as possible (preferably to machine precision) if we wish to accurately capture
the small-scale vibrations of the rod rather. The resulting computations would certainly be
of prohibitive expense.

There exist several numerical techniques that can be used to overcome the problem
described above. Finite element practitioners will be familiar with mortar-based contact,
but those in the dynamics community tend to eschew it and similar approaches in favor
of methods that explicitly follow the contact interface—what some might refer to as front-
tracking methods. One such method that plays a prominent role in Chapters 2 to 4 involves
mapping the unknown, variable domain at any given time/load step to some known, fixed
domain. The idea is perhaps best illustrated by revisiting the problem from Section 1.4.
Introducing a new coordinate z = s/` maps the spatial domain from 0 < s < ` to 0 < z < 1.
The mapped version of the original boundary-value problem, Eq. (1.13), no longer has a free
boundary. Rather, ` is introduced into the equation of motion itself and can be treated simply
as an unknown parameter. Any number of standard techniques, such as finite elements, can
then be used to obtain a numerical solution. The downside of performing this variable
transformation is that it greatly complicates the expression for the acceleration operator.
Several other techniques for explicitly tracking the contact interface are discussed briefly in
Chapter 3.
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1.6 Outline
The remaining four chapters of this dissertation concern three case studies in contact dy-
namics. The spirit of each is to study the most basic representation of a structural-dynamic
contact problem, neglecting as many nonlinearities as possible in order to isolate the effects
of contact. The models we develop are not meant to be quantitatively accurate depictions of
any real-life system, but rather qualitatively correct ones that help uncover some of the basic
features one might expect to see in practice. Our approach is entirely analytical and compu-
tational, synthesizing techniques and terminology from several distantly related disciplines,
from configurational mechanics to nonlinear vibrations.

Chapter 2, which is based on previously published work [10], concerns the linear vibration
analysis of a rod problem inspired by two structural systems that experience contact at
drastically different scales: microelectromechanical cantilevers (micron-scale) and flexible
risers (kilometer-scale). The crux of the problem is how to perform a consistent linearization
of the boundary conditions at the contact interface, and to determine the conditions under
which the contact interface can be regarded as fixed during small superposed motions. We
show that, when JKR adhesion is present, the naive approach to linearizing the boundary
results is incorrect. Our procedure shows that this type of adhesion, at linear order, acts as
a rotational spring at the boundary whose stiffness is set by the strength of adhesion. We
also present extensive numerical results that show subtle connections between the existence
of static solutions, their stability, and the nature of superposed linear vibrations.

In Chapter 3, also based on previously published work [11], we explore the nonlinear vi-
brations of the system studied in Chapter 2 using two techniques that are shown to have good
agreement for typical parameter values: a finite element method and a perturbation method.
The finite element method could be called an arbitrary Lagrangian-Eulerian method, and is
used to track the moving contact interface accurately. After observing unusual features in
the frequency response of the system as determined by the finite element method, we use the
analytical perturbation method to show that these features are actually nonlinear resonances
induced by the motion of the contact interface. We then go on to demonstrate that the same
resonances can be expected to persist in a much broader class of problems in which a planar,
elastic rod contacts a frictionless, smooth obstacle in the plane. This analysis is formulated
using the gap function, a notion frequently employed in computational contact mechanics.

Having devoted considerable attention to one-dimensional structures deforming in the
plane, we shift focus in Chapter 4, which is based on yet another published work [12], to a
problem of a two-dimensional structure (a plate) deforming in space. The application is to
electrostatically actuated microelectromechanical systems (MEMS), in particular the issue
of “touchdown,” where electrostatic forces cause an actuator (or sensor, or other device) to
come into contact with the substrate on top of which it is built. After formulating the theory
for non-axisymmetric deformations, we present detailed results for an axisymmetric actuator
undergoing axisymmetric deformations. While some of the terminology may be unfamiliar to
a typical mechanician, this chapter is meant to be accessible to those with no prior knowledge
of MEMS, and serves as an exercise in theoretical mechanics that synthesizes a diverse array
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of topics.
Finally, in the brief Chapter 5, we summarize the contributions of this dissertation and

offer suggestions for further work in the exciting area of contact dynamics.
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Chapter 2

On Contact Point Motion in the
Vibration Analysis of Elastic Rods

2.1 Introduction
In studying the mechanics of elastic rods, one occasionally encounters problems in which
the effective length of the rod is unknown a priori. Such problems are sometimes referred to
as “variable-length” or “variable-arc-length” problems among rod mechanicians,1 a simple
example being the lifting of a heavy strip of paper from a table by an upward force applied
to one end. Here the effective length is the length of the portion that is not in contact with
the table. For a given upward force, this length (and hence the mathematical domain) is
not immediately known and must instead be found as part of the solution. The formation
of troublesome rucks in rugs and the nesting of rubber bands are other examples involving
variable-length rods [16, 17].

Problems of the aforementioned type belong to the class of free boundary-value problems
in mathematics. Because one cannot simply add functions defined on disparate domains,
free boundary problems are inherently nonlinear and can produce nonlinear effects even if
the underlying differential equations are linear. Furthermore, their solution requires the
specification of more boundary conditions than their standard counterparts do. This is
apparent in the case of the Euler-Bernoulli beam: a fixed-length beam needs four boundary
conditions while a variable-length beam needs five.

It is a largely straightforward numerical computation to solve for the static configuration
of a variable-length rod [18], and closed-form analytical solutions are typically available for
the small-amplitude regime [6]. There is less understanding, however, on how to appropri-
ately treat small-amplitude vibrations about a statically deformed configuration (both the

1The terms “variable-length” and “variable-arc-length” are sometimes used to refer to problems in which
the rod’s length varies as a prescribed function of time [13, 14], for example the ejection of paper from a
photocopier [15]. However, we use these terms exclusively to refer to problems in which the length is variable
and also initially unknown.
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“small-on-small” and “small-on-large” analyses), even though this task is well-understood
for rods of fixed length [19].

A more fundamental insight into the vibration of variable-length rods is certainly of in-
terest from a theoretical point-of-view, but it is also relevant to several vibration-critical
engineering applications. Submarine pipelines, flexible risers, and other marine structures
that touch the seafloor are essentially variable-length rods [20, 21], as are micro-scale can-
tilever beams when they adhere electrostatically to the substrate of microelectromechanical
systems (MEMS) [22]. Belt-driven transmissions at high speeds and/or with considerable
slack can also be effectively modeled as variable-length (and axially translating) rods [23].

The principal difficulty in analyzing the vibrations of variable-length rods is readily il-
lustrated in unilateral contact problems, such as the one illustrated in Fig. 2.1, in which the
contact point moves left and right over the course of the vibratory motion. Some authors
argue heuristically that the oscillations of this point are “small” in some sense relative to the
overall amplitude of vibrations and proceed to treat the point as being fixed [24, 25]. Others
apply variable transformations to map the free boundary to a fixed one [20, 22, 26], while
others yet apply perturbation methods to the boundary conditions [21, 27, 28].

The goal of this chapter is to clarify the third approach, use it to explain when the first
is applicable, and highlight why the second is an unnecessary complication if only linear
vibrations are considered. We do all this in the context of the foregoing contact problem,
but the technique we outline can be readily applied to a number of other situations involving
variable-length rods, such as a roller support or sleeve constraint [29, 30]. Over the course
of our analysis, which we present in considerable detail, we explain several counter-intuitive
results from the literature. We conclude by providing a thorough numerical exploration of
the parameter space for the problem depicted in Fig. 2.1.

2.2 Small-Amplitude Vibrations Superposed on
Small-Amplitude Equilibria

We now study small-amplitude free vibrations about small-amplitude static equilibria of the
system illustrated in Fig. 2.1, which was first introduced by Roy and Chatterjee [22] and is
closely related to a system considered earlier by Demeio and Lenci [20]. In this section we
treat the rod as an Euler-Bernoulli beam of linear density ρ0 and flexural rigidity EI. It is
clamped on its left end at a height a from a frictionless, adhesion-free horizontal substrate
and is subjected to a downward gravitational force per unit length of magnitude ρ0g. The
length ` = `(t) of the non-contacting segment of the beam is unknown a priori and must
be determined as part of the solution. Under static conditions, the non-contacting length is
denoted `0. The total length of the beam is L, which must be greater than `(t) for physically
meaningful solutions to exist.

As is usual with Euler-Bernoulli beams, it is permissible to exchange the arc-length
coordinate s with the abscissa x, making y = y(x, t) and ` = `(t) the sole dependent
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y

Figure 2.1: Schematic of the problem first considered by Roy and Chatterjee [22].

variables. The dynamics are governed by the familiar equation

ρ0
∂2y

∂t2
+ EI

∂4y

∂x4
+ ρ0g = 0, 0 < x < `(t), t > 0. (2.1)

We now nondimensionalize Eq. (2.1). Scaling all lengths by a, scaling time t by a2
√

ρ0/EI,
and defining w = ρ0ga

3/EI, we have

∂2y

∂t2
+

∂4y

∂x4
+ w = 0, 0 < x < `(t), t > 0. (2.2)

We will work in dimensionless terms for the remainder of the chapter. Equation (2.2) is to
be solved subject to the boundary conditions

y(0, t) = 1,
∂y

∂x
(0, t) = 0, (2.3)

and
y(`(t), t) = 0,

∂y

∂x
(`(t), t) = 0,

∂2y

∂x2
(`(t), t) = 0. (2.4)

Equation (2.4)3 is a consequence of the lack of adhesion between the beam and the substrate.2
Notice that five boundary conditions are required rather than the usual four because `(t) is
an additional unknown.

We briefly mention that the solution to the right of x = `(t) is trivial and need not be
given special consideration in the case of an Euler-Bernoulli beam, though this issue must
be revisited in the nonlinear regime. Finally, we note that our interest is entirely in steady,
oscillatory solutions so we do not specify initial conditions.

2If reversible adhesion were present, the right-hand side would be replaced by a constant M` > 0 related
to the adhesive energy between the beam and the substrate [31, 32].
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Solution via Variable Transformation
The essence of the method used by Roy and Chatterjee [22] to analyze oscillatory solutions
of Eqs. (2.2) to (2.4), first introduced by Demeio and Lenci [20] in a slightly different con-
text, is to perform a change-of-variable that maps x ∈ (0, `(t)) to a fixed interval, namely
z = x/`(t) ∈ (0, 1). Such a transformation changes the free boundary-value problem into a
standard boundary-value problem with the additional unknown `(t) pushed into the differ-
ential equation itself. It also induces the interesting concept of an “extended” mode shape
of a vibrating system that contains different material points at different instants in time.

However, the transformation comes at the cost of increased algebraic complexity, as is ev-
ident in the resulting expression for the acceleration operator. Writing y(x, t) = y(`(t)z, t) =:
ỹ(z, t), it can be shown that Eq. (2.2) becomes

∂2ỹ

∂t2
+

(
2 ˙̀2

`
− ῭

)
z

`

∂ỹ

∂z
− 2 ˙̀z

`

∂2ỹ

∂t∂z
+

(
˙̀z

`

)2
∂2ỹ

∂z2
+

1

`4
∂4ỹ

∂z4
+ w = 0, (2.5)

where 0 < z < 1 and t > 0. The increased complexity apparent in Eq. (2.5) does not make
analysis impossible, but it does obscure some critical facets of the problem. An extensive
calculation shows that the natural frequencies ω of small free vibrations about a static
solution of Eq. (2.5), subject to the appropriate boundary conditions in the z-domain derived
from Eqs. (2.3) and (2.4), are governed by

cos
(√

ω`0
)
cosh

(√
ω`0
)
− 1 = 0. (2.6)

After unraveling the nondimensionalization, it becomes evident that Eq. (2.6) is exactly
the same as the characteristic equation for the natural frequencies of a fixed-fixed beam
with length equal to the static non-contacting length `0. This unexpected correspondence,
first recognized by Roy and Chatterjee [22], seems nothing less than miraculous from the
perspective of the preceding procedure. In the sequel, we demonstrate that the same result
follows transparently from an alternative approach that also elucidates the conditions under
which similarly unexpected correspondences may exist.

Solution via Regular Perturbation Expansion
Rather than transform the domain to one of a fixed length, we now elect to work directly
with the original statement of the problem in the x-domain, Eqs. (2.2) to (2.4). To begin,
we expand y(x, t) and `(t) in regular perturbation series:

y(x, t) = y0(x) + εy1(x, t) +O(ε2), `(t) = `0 + ε`1(t) +O(ε2). (2.7)

We will truncate these series to O(ε) in order to obtain the leading-order dynamics about
the static equilibrium. Inserting Eq. (2.7)1 into Eq. (2.2) and grouping powers of ε, we find

d4y0
dx4

+ w = 0,
∂2y1
∂t2

+
∂4y1
∂x4

= 0. (2.8)
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Equation (2.3) then implies the following boundary conditions at x = 0:

y0(0) = 1, y1(0, t) = 0,
dy0
dx

(0) = 0,
∂y1
∂x

(0, t) = 0. (2.9)

It is slightly more complicated to determine the consequences of the perturbation expansion
for Eq. (2.4), the boundary conditions at the free boundary x = `(t). Starting with Eq. (2.4)3
and neglecting terms quadratic or higher in ε,

0 =
∂2y

∂x2
(`(t), t)

=
∂2y

∂x2
(`0 + ε`1(t), t)

=
d2y0
dx2

(`0 + ε`1(t)) + ε
∂2y1
∂x2

(`0 + ε`1(t), t)

=
d2y0
dx2

(`0) + ε

[
d3y0
dx3

(`0)`1(t) +
∂2y1
∂x2

(`0, t)

]
,

(2.10)

which immediately yields
d2y0
dx2

(`0) = 0,
d3y0
dx3

(`0)`1(t) +
∂2y1
∂x2

(`0, t) = 0. (2.11)

Carefully applying the same procedure to Eq. (2.4)2, we obtain
dy0
dx

(`0) = 0,
d2y0
dx2

(`0)︸ ︷︷ ︸
=0 by Eq. (2.11)1

`1(t) +
∂y1
∂x

(`0, t) = 0. (2.12)

Finally, we obtain from Eq. (2.4)1,

y0(`0) = 0,
dy0
dx

(`0)︸ ︷︷ ︸
=0 by Eq. (2.12)1

`1(t) + y1(`0, t) = 0. (2.13)

To summarize, we have the following straightforward-to-solve free boundary-value prob-
lem for the static equilibrium:

d4y0
dx4

+ w = 0, (2.14)

y0(0) = 1, (2.15)
dy0
dx

(0) = 0, (2.16)

y0(`0) = 0, (2.17)
dy0
dx

(`0) = 0, (2.18)

d2y0
dx2

(`0) = 0, (2.19)
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which has the solution

y0(x) =

(
1− x

`0

)3(
1 +

3x

`0

)
, `0 =

(
72

w

)1/4

. (2.20)

Additionally, y1(x, t) is governed by

∂2y1
∂t2

+
∂4y1
∂x4

= 0, (2.21)

y1(0, t) = 0, (2.22)
∂y1
∂x

(0, t) = 0, (2.23)

y1(`0, t) = 0, (2.24)
∂y1
∂x

(`0, t) = 0. (2.25)

Finally, `1(t) is determined from the sole remaining piece of information derived from the
original boundary conditions, Eq. (2.11)2.

Equations (2.21) to (2.25) are precisely the equations governing the dynamics of a fixed-
fixed beam of length `0! This transparently shows the same result obtained in Section 2.2 by
way of a clever but substantially more involved computation. In fact, our result is somewhat
more general: it is not just the natural frequencies that are the same as those for a fixed-fixed
beam of appropriate length, but rather the entire first-order dynamics. The present method
also illustrates the interesting fact that the dynamical effect of the motion of the contact point
is negligible to first order and hence the concept of an “extended” mode shape as introduced
in Section 2.2 is superfluous. Lastly, it is interesting to observe that the neither the static
solution, Eq. (2.20), nor the dynamics defined by Eqs. (2.21) to (2.25) depend on the specific
weight w except through `0.

Solution to a Modified Problem
Roy and Chatterjee also consider an alternate problem without gravity but with an adhesive
substrate [22]. They find that the equation for the natural frequencies in this case does not
correspond to any well-known formula. Our method makes it easy to see why this is the
case. We will consider the combined effect of gravity and adhesion, but the results readily
degenerate to the adhesion-only case.

When adhesion is present, Eq. (2.4)3 is replaced by

∂2y

∂x2
(`(t), t) = M`, (2.26)

where M` > 0 is a specified constant related to the adhesion energy between the rod and the
substrate [31, 32]. Equation (2.11)1 is then replaced by

d2y0
dx2

(`0) = M`, (2.27)
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whence Eq. (2.12)2 becomes
M``1(t) +

∂y1
∂x

(`0, t) = 0, (2.28)

or, upon combination with Eq. (2.11)2,

∂2y1
∂x2

(`0, t)︸ ︷︷ ︸
bending moment

= K
∂y1
∂x

(`0, t)︸ ︷︷ ︸
rotation angle

, K =
1

M`

d3y0
dx3

(`0). (2.29)

Notice that Eq. (2.29) is equivalent to a rotational spring at the boundary x = `0 with
(dimensionless) stiffness K, which in general depends on the constant M` that characterizes
adhesion as well as the static configuration {y0(x), `0}. Omitting some minor details, said
configuration can be shown to be governed by Eqs. (2.14) to (2.18) and Eq. (2.27). The
solution is

y0(x) = (`0 − x)2
[
1

2
M` +

1

6

(
1

3
w`0 −

2

`0
M`

)
(`0 − x)− 1

24
w(`0 − x)2

]
, (2.30)

where the non-contacting length `0 is such that is satisfies

w`40 + 12M``
2
0 − 72 = 0. (2.31)

Equation (2.31) is quadratic in `20 and hence physically meaningful solutions exist only if the
discriminant is non-negative, which implies the simple constraint M2

` +2w ≥ 0. The system
can therefore only access a certain region of the (w,M`)-plane.

Where solutions do exist, it is instructive to classify them into two types. We call a
solution gravity-dominant if the vertical force between the beam and the substrate at x = `0
is compressive. If said force is tensile, we call the solution adhesion-dominant. The boundary
between these two regions in the (w,M`)-plane is characterized by zero vertical force at
x = `0. It can be shown using Eq. (2.30) and Eq. (2.31) that points on the boundary satisfy
2w = 3M2

` . Figure 2.2 is a graphical classification of the static equilibria in the parameter
space.

The first-order dynamics3 in the case of combined gravity and adhesion are governed
by Eqs. (2.21) to (2.24) and Eq. (2.29), except with the rotational spring stiffness K given
according to

K =
1

M`

d3y0
dx3

(`0) =
2

`0
− w`0

3M`

. (2.32)

Such a set of equations of course describe a beam fixed at x = 0 and restrained by a rotational
spring at x = `0. This specific combination of boundary conditions does not constitute a
standard case and hence it is natural that Roy and Chatterjee [22] did not recognize the
correspondence from the characteristic equation for the natural frequencies of free vibration.

3Notice that when w = 0 the dynamics depend on M` only through `0, just as the dynamics depend on
w only through `0 when M` = 0.
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Figure 2.2: Classification of solutions to the static problem in terms of the parameters w
and M`, according to the linear (Euler-Bernoulli) analysis.

It is a mostly elementary exercise to solve for the natural frequencies and we report the
procedure in A.1; when w = 0 the results agree with Roy and Chatterjee’s.4

2.3 Small-Amplitude Vibrations Superposed on
Large-Amplitude Equilibria

Understanding now the general procedure by which one can analyze small-amplitude vibra-
tions of variable-length Euler-Bernoulli beams about small-amplitude static configurations,
it is not a particularly challenging task to pass through to the small-on-large regime for an
inextensible, unshearable, planar elastica of variable length. In this section and the next we
again specialize our results to the problem considered in the linear context in Section 2.2,
including the effects of both gravity and adhesion, but the procedure by which one would
solve a more general class of problems should be evident.

4Roy and Chatterjee [22] use a different nondimensionalization than we do. Their angular natural
frequencies are numerically equivalent to our ω`20.
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General Solution Procedure
Following notation similar to that used elsewhere [7, 19, 24], the dimensionless governing
equations can be expressed in slightly modified form as

∂F

∂s
=

∂2x

∂t2
, (2.33)

∂G

∂s
=

∂2y

∂t2
+ w, (2.34)

∂m

∂s
= F sin θ −G cos θ, (2.35)

∂θ

∂s
= m, (2.36)

∂x

∂s
= cos θ, (2.37)

∂y

∂s
= sin θ, (2.38)

all of which hold for 0 < s < `(t) and t > 0. All lengths have been scaled by a, the forces
F and G by EI/a2, the bending moment m by EI/a, and time t by a2

√
ρ0/EI. As in

Section 2.3, w = ρ0ga
3/EI.

Equations (2.33) and (2.34) are the horizontal and vertical components of the balance
of linear momentum, respectively, while Eq. (2.35) is the balance of angular momentum,
neglecting rotary inertia. Equation (2.36) is the moment-curvature constitutive law. Finally,
Eqs. (2.37) and (2.38) are collectively the definition of the angle θ. Equations (2.33) to (2.38)
require seven total boundary conditions rather than the usual six, as `(t) is an additional
unknown.

Our derivation follows a recipe only incrementally more complex than that employed in
Section 2.2. It is as follows:

• Assume that each of the seven dependent variables—F , G, m, θ, x, y, and `—can be
written as a static term plus a small dynamic term, e.g., m(s, t) = m0(s) + εm1(s, t),
ε � 1.

• Plug the aforementioned Ansätze into Eqs. (2.33) to (2.38) and expand terms in Taylor
series as needed to isolate the coefficients of ε0 and ε1. The former yield the differential
equations governing the static terms (e.g., m0(s)), while the latter yield those governing
the dynamic terms (e.g., m1(s, t)), which will depend parametrically on the static
solution.

• Plug the Ansätze into the boundary conditions and again expand in Taylor series as
needed to isolate a hierarchy of boundary conditions, paying special attention to the
conditions at s = `(t). Seven boundary conditions for the static variables will result
as well as seven for the dynamic variables. However, the latter can be combined in
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such a way so as to produce just six conditions (the total number needed to specify
the solution for the dynamic problem on the fixed interval 0 < s < `0), as well as an
equation for `1(t) in terms of the static and dynamic solutions.

• Assume that each dynamic term (except for `1(t)) is the product of a function of s
and a sinusoid, e.g., m1(s, t) = m̂1(s) cos(ωt). The collection of the “hatted” functions
constitutes the mode shape of the rod and ω is the natural frequency that must be
determined as part of the solution.

• Obtain boundary conditions for the mode shapes from the boundary conditions for the
dynamic variables.

This procedure is in fact quite general and can be applied to a range of problems.

Perturbation Expansion of Governing Equations
We now explicitly apply the small-on-large analysis procedure introduced in Section 2.3 to
the familiar example illustrated in Fig. 2.1, and for which Eqs. (2.33) to (2.38) govern the
solution. After linearization we find the following equations for the static configuration:

dF0

ds
= 0, (2.39)

dG0

ds
= w, (2.40)

dm0

ds
= F0 sin θ0 −G0 cos θ0, (2.41)

dθ0
ds

= m0, (2.42)

dx0

ds
= cos θ0, (2.43)

dy0
ds

= sin θ0. (2.44)
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The procedure also results in the following equations for the first-order dynamics:

∂F1

∂s
=

∂2x1

∂t2
, (2.45)

∂G1

∂s
=

∂2y1
∂t2

, (2.46)

∂m1

∂s
= (F0θ1 −G1) cos θ0 + (G0θ1 + F1) sin θ0, (2.47)

∂θ1
∂s

= m1, (2.48)

∂x1

∂s
= −θ1 sin θ0, (2.49)

∂y1
∂s

= θ1 cos θ0. (2.50)

Equations (2.39) to (2.44) and Eqs. (2.45) to (2.50) are of course the same well-known sets
of equations that govern small-on-large vibrations of fixed-length rods [19, 24].

Perturbation Expansion of Boundary Conditions
The appropriate boundary conditions at s = 0 are

θ(0, t) = 0, x(0, t) = 0, y(0, t) = 1, (2.51)

which are readily linearized to yield

θ0(0) = 0, x0(0) = 0, y0(0) = 1, (2.52)

and
θ1(0, t) = 0, x1(0, t) = 0, y1(0, t) = 0. (2.53)

Three relatively obvious boundary conditions at the contact point s = `(t) are

m(`(t), t) = M`, θ(`(t), t) = 0, y(`(t), t) = 0. (2.54)

Equations (2.51) and (2.54) altogether make up six boundary conditions, but seven are
required to fully specify a solution. It is not immediately apparent what the seventh condition
should be, but a hint is provided by the fact that there was no such confusion in Section 2.2.
The essential effect that the foregoing approach neglects, but that is present in the small-
on-large case, is horizontal momentum. Thus, it is likely that the missing condition should
somehow involve F (`(t), t), the axial force in the rod at the contact point.

Indeed, the segment `(t) < s < L carries horizontal momentum as it slides left and right
along the frictionless substrate, and this must be reflected in the force F (`(t), t). A balance
of linear momentum quickly yields

−F (`(t), t) = [L− `(t)]
∂2x

∂t2
(`(t), t)− ˙̀(t)

∂x

∂t
(`(t), t), (2.55)
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which we emphasize is the elusive boundary condition in its dimensionless form. Notice that
an additional parameter that was not present in the linear analysis has been introduced,
namely the total length of the rod L.5 There are two important limiting cases for this
parameter: L− `(t) → 0+ and L− `(t) → ∞. In the former, the rod contacts the substrate
only over a very small region such that there is effectively zero axial force to first order acting
at s = `(t). In the latter, the inertia of the contacting segment is so large that it cannot
accelerate along the substrate.

Writing the appropriate variables as regular perturbation series in ε, inserting them
into Eqs. (2.54) and (2.55), expanding in Taylor series, and grouping like powers of ε, it is
straightforward to show

F0(`0) = 0, m0(`0) = M`, θ0(`0) = 0, y0(`0) = 0, (2.56)

and

dF0

ds
(`0)︸ ︷︷ ︸

=0 by Eq. (2.39)

`1(t) + F1(`0, t) + (L− `0)
∂2x1

∂t2
(`0, t) = 0, (2.57)

dm0

ds
(`0)`1(t) +m1(`0, t) = 0, (2.58)

dθ0
ds

(`0)︸ ︷︷ ︸
=M` by Eqs. (2.42) and (2.56)2

`1(t) + θ1(`0, t) = 0, (2.59)

dy0
ds

(`0)︸ ︷︷ ︸
=0 by Eqs. (2.44) and (2.56)3

`1(t) + y1(`0, t) = 0. (2.60)

Combining Eqs. (2.58) and (2.59) in order to eliminate `1(t) results in a rotational spring
boundary condition:

m1(`0, t) = Kθ1(`0, t), K =
1

M`

dm0

ds
(`0). (2.61)

The spring constant K can be simplified somewhat by evaluating Eq. (2.41) at s = `0 and
taking into account Eq. (2.56)1,3. Thus

K = −G0(`0)

M`

, (2.62)

such that the stiffness of the spring is set by the ratio of the static shear force to the static
bending moment at s = `0.

5We reiterate that physically meaningful solutions only exist when `(t) < L.
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To summarize, the boundary conditions for the dynamic variables at s = `0 are

F1(`0, t) + (L− `0)
∂2x1

∂t2
(`0, t) = 0, m1(`0, t) = Kθ1(`0, t), y1(`0, t) = 0, (2.63)

with K as in Eq. (2.62). We now have six boundary conditions on the dynamic variables,
the correct number required to specify a solution on 0 < s < `0. However, we have not used
all of the information contained in Eqs. (2.57) to (2.60). In particular, we can use Eq. (2.58)
to show

`1(t) =
m1(`0, t)

G0(`0)
, (2.64)

meaning that once the static and dynamic solutions are known, `1(t) can be computed with
ease. It should be emphasized that `1(t) does not appear anywhere else in the equations
that result from our solution procedure. Furthermore, in contrast to the small-on-small case
discussed in Section 2.2, the boundary conditions at the contact point for the small-on-large
analysis (i.e., Eq. (2.63)) do not in general represent a spatially fixed rotational spring but
rather a rotational spring plus an attached mass that is free to slide horizontally.

Determination of Modes of Free Vibration
At this stage the static problem is fully defined by Eqs. (2.39) to (2.44) subject to Eq. (2.52)
and Eq. (2.56). The dynamic problem is fully defined by Eqs. (2.45) to (2.50) subject to
Eq. (2.53) and Eq. (2.63), and we seek solutions in which each of the six dynamic variables
F1, G1, m1, θ1, x1, and y1 is separable into a mode shape and a sinusoid of angular frequency
ω, e.g., m1(s, t) = m̂1(s) cos(ωt). Notice that, unlike previous work on similar problems (see
[20, 22]), we make absolutely no assumption about the nature of `1(t), most certainly not
the severe restriction that it too be sinusoidal with frequency ω.

It is easy to show from Eqs. (2.45) to (2.50) that the ordinary differential equations
governing the mode shape are

dF̂1

ds
= −ω2x̂1, (2.65)

dĜ1

ds
= −ω2ŷ1, (2.66)

dm̂1

ds
= (F0θ̂1 − Ĝ1) cos θ0 + (G0θ̂1 + F̂1) sin θ0, (2.67)

dθ̂1
ds

= m̂1, (2.68)

dx̂1

ds
= −θ̂1 sin θ0, (2.69)

dŷ1
ds

= θ̂1 cos θ0. (2.70)
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The corresponding boundary conditions are likewise straightforward to obtain. Equation (2.53)
promptly leads to

θ̂1(0) = 0, x̂1(0) = 0, ŷ1(0) = 0, (2.71)

while Eq. (2.63) yields

F̂1(`0) = ω2(L− `0)x̂1(`0), m̂1(`0) = Kθ̂1(`0), ŷ1(`0) = 0. (2.72)

Equation (2.72)1, which reflects a sort of spring with frequency-dependent stiffness, makes
apparent two interesting limiting behaviors. For low-frequency oscillations (ω → 0+), the
point s = `0 is connected to a rotational spring that is entirely free to move horizontally.
By contrast, for high-frequency oscillations (ω → ∞), the point s = `0 is connected to a
spatially fixed rotational spring.

Once the static solution, mode shape, and natural frequency have been computed, one
can calculate from Eq. (2.64) that

`1(t) =
m̂1(`0)

G0(`0)
cos(ωt), (2.73)

which shows that m1(s, t) being time-harmonic with angular frequency ω induces the same
in `1(t). We emphasize that this was not assumed a priori.

Summary of Equations
To summarize, one must first solve Eqs. (2.39) to (2.44), subject to Eq. (2.52) and Eq. (2.56),
for the static solution: the functions F0(s), G0(s), m0(s), θ0(s), x0(s), and y0(s) on the
interval 0 < s < `0, as well as the constant `0. Then, using said solution, one solves
Eqs. (2.65) to (2.70), subject to Eqs. (2.71) and (2.72), for the mode shape defined by the
functions F̂1(s), Ĝ1(s), m̂1(s), θ̂1(s), x̂1(s), and ŷ1(s) on the (now) fixed interval 0 < s < `0,
as well as for the natural frequency ω. Thereafter `1(t) can be recovered according to
Eq. (2.73) if so desired.

Just as in standard linear vibration analysis, the mode shape is only unique up to a
scalar multiple; there are seven unknowns but just six boundary conditions. By Eq. (2.73),
the amplitude of the contact point oscillations is also indeterminate. For given values of
the specific weight w, adhesive moment M`, and total length L, we use MATLAB’s bvp4c
solver to obtain numerical solutions of the standard boundary-eigenvalue problems for the
static configuration, the mode shape, and the natural frequency. Because the amplitude of
the mode shape is inherently indeterminate, it is necessary to specify an additional “fake”
boundary condition that is independent of the others so as to ensure the numerical problem
is not underdetermined.
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2.4 Results
We now present the results of an extensive exploration of the parameter space of w, M`, and
L. For the determination of the static configuration, we need not specify the total length L
so long as we assume it is large enough that L > `0, which we shall do. However, for the
determination of the mode shapes and natural frequencies it is in fact necessary to specify
a particular value of L. In order to limit the scope of our presentation to the convenient,
two-dimensional parameter space (w,M`), we would like to take the limit L → ∞, in which
case we naively expect Eq. (2.72)1 would degenerate to a boundary condition akin to a
spatially fixed rotational spring. However, we will demonstrate shortly that said limit is in
fact singular in the sense that, if we first take L → ∞ and then take w → 0+ and M` → 0+,
we obtain natural frequencies that differ by a finite amount from the results of the small-
on-small analysis, in which w → 0+ and M` → 0+ are assumed at the outset. A related
singular limit has been identified in analyzing the vibration of a fixed-length rod about its
static configuration [19], so it is not too surprising that one appears here as well.

Static Equilibrium
We first study the simple correspondence between the static non-contacting length `0 and
the parameters w and M`. (Recall that L does not affect the static equilibrium so long as we
take it large enough that L > `0.) Figure 2.3 depicts the parametric dependence of `0 in the
gravity-only and adhesion-only cases. We see that the linear analysis of Section 2.2 provides
a satisfactory approximation when w � 1 or M` � 1, but at the same time `0 → ∞ as
w → 0+ and M` → 0+, a first sign that we might be facing a problem with a singular limit.

As in the beam-theoretic analysis of Section 2.2, there are only certain regions of the
(w,M`)-plane that the rod can occupy. Perhaps surprisingly, solutions to the nonlinear prob-
lem appear only to exist, based purely on our numerical results, subject to the same condition
obtained previously, i.e., M2

` + 2w ≥ 0. The boundary between the gravity-dominant and
adhesion-dominant regions, however, is different, as is easily seen in Fig. 2.4, which depicts
the various regions in the plane and introduces a color scheme used in subsequent plots. It
also shows how the static non-contacting length `0 varies according to w and M`. Notice that
the boundary of the “no solution” region can be thought of as the contour corresponding to
`0 → ∞.

Mode Shapes and Natural Frequencies
As a first step in understanding the vibration behavior, we focus on the case where w > 0
and M` = 0, remembering that the parameter L must be reintroduced. We are interested in
examining the natural frequencies in the limit w → 0+ for various L, and determining how
they relate to those obtained via the linear analysis presented in Section 2.2 and expounded
upon in A.1.
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Figure 2.3: Dependence of the static non-contacting length `0 on the weight per unit length
w and adhesive moment M` when (a) M` = 0 and (b) w = 0. The dashed lines correspond
to the results from the Euler-Bernoulli analysis, Eq. (2.31), when M` = 0 and w = 0,
respectively.

2.12

1.71 1.51

1.39

1.31

`0 = 1.26

gravity-dominant

adhesion-dominant

no solutions

−20 −15 −10 −5 0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

w

M
`

Figure 2.4: Classification of static solutions to the fully nonlinear problem according to the
parameters w and M` and a sample of contours of constant non-contacting length `0. The
dotted line is the boundary determined from the linear analysis of Section 2.2.
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Figure 2.5: Dependence of the first two natural frequencies on the weight per unit length w
and adhesive moment M` when (a) M` = 0 and (b) w = 0. The dashed lines correspond to
the results for the Euler-Bernoulli beam, i.e. the first two roots of Eq. (2.6) and Eq. (A.10),
respectively. Blue curves indicate the first natural frequencies and red ones the second.

Recall that L = `0 corresponds to a rod whose tip is just barely touching the substrate
and, by Eq. (2.72)1, F̂1(`0) = 0. For L very large, on the other hand, we expect (naively)
that x̂1(`0) = 0. With reference to Fig. 2.5a, observe that as L is increased, a boundary layer
develops in the vicinity of w = 0 and, in the limit L → ∞, the first natural frequency appears
to tend toward zero for all w. However, if we take the boundary condition x̂1(`0) = 0, then
the first natural frequency for any given w is obviously not zero, but rather some finite value,
hence the singular nature of the problem. Said finite value then serves as the lower bound
for the second natural frequency for all L, again shown in Fig. 2.5a.

In a certain sense, the limit L → ∞ causes the first mode to “disappear.” Indeed,
there is a marked qualitative difference in the mode shape when one takes as a boundary



CHAPTER 2. ON CONTACT POINT MOTION 30

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

F̂1(`0) = 0

y

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x̂1(`0) = 0

x

y

Figure 2.6: Comparison of typical shapes of the first mode of vibration with the distinct
boundary conditions F̂1(`0) = 0 and x̂1(`0) = 0. We have taken w = 1 and M` = 0. The
dashed curves represent the static equilibrium and the point s = `0 is marked with ×.

condition Eq. (2.72)1 with `0 ≤ L < ∞ as compared to when one replaces it by x̂1(`0) = 0.
As illustrated in Fig. 2.6, the mode shape has one inflection point and does not cross the
static configuration in the former case, while it has two inflection points and does cross the
static configuration in the latter. Additionally, the material point s = `0 slides along the
substrate in the former case while it remains stationary in the latter. A useful heuristic
for understanding the singular limit is to envision the vibrating rod as a single-degree-
of-freedom mass-spring system in which the contacting segment is the mass m ∝ L and
the non-contacting segment is the spring with stiffness k. For a fixed k (i.e. fixed static
configuration), the natural frequency

√
k/m tends to zero as m → ∞.

A similar behavior arises when w = 0 and M` > 0. Referring to Fig. 2.5b, as L is
increased, the first natural frequency tends to zero for all M`, and the first mode “disap-
pears” in the same fashion as before. The adhesion-only case contrasts with its gravity-only
counterpart in that the limit L − `0 → 0+ is also singular. To be clear, this means that if
one replaces Eq. (2.72)1 with F̂1(`0) = 0, the resulting natural frequencies differ by a finite
amount and do not converge as M` → 0+, a fact that the curves labeled L = `0 in Fig. 2.5b
clearly demonstrate.

Having highlighted the difficulties than can arise with limiting values of the parameter
L, we now present some results in which both gravity and adhesion are considered, taking
the boundary condition x̂1(`0) = 0 for specificity. Figures 2.7a and 2.7b show a few contours
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Figure 2.7: First two natural frequencies as a function of w and M`. Contours of constant
ω are indicated. See Fig. 2.4 for an interpretation of the colors.

of constant first and second natural frequency, respectively, in the (w,M`)-plane. In both in-
stances the contours demonstrate a remarkable qualitative similarity. Focusing on Fig. 2.7a,
the boundary between where solutions exist and where they do not appears to correspond
to ω → 0+. Normally such a behavior would be suggestive of a divergence instability, but
in our case a more direct interpretation is possible. Figure 2.4 suggests that `0 → ∞ as one
approaches the existence boundary such that the rod under consideration is one of semi-
infinite length. The natural frequency tending to zero then reflects the well-known fact that
a semi-infinite rod can sustain traveling waves.

Stability
All of the computed natural frequencies being real, the preceding linear vibration analysis
shows the existence of (linearly) stable modes of vibration everywhere in the phase diagram
that a static configuration exists. In other words, the system suffers neither a flutter- nor
divergence-type instability. It is nevertheless instructive to apply what is known from the
stability theory of elastic rods to the same problem.

An energy-based stability criterion for a statically deformed rod where one end is free
to move on a rigid surface was recently formulated [31, 32]. The criterion, summarized
in A.2, provides a necessary condition for the nonlinear stability of the system to small
perturbations. Application of the criterion shows that configurations where M` ≥ 0 and
w > 0 satisfy the necessary condition. However, configurations where M` ≥ 0 and w < 0
do not satisfy the criterion, thereby indicating an instability. However, this conclusion is at
odds with the vibration-based analysis and we have been unable to resolve this discrepancy.
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2.5 Conclusion
In this chapter we have proposed a systematic method of analyzing small-amplitude vibra-
tions about static equilibria of rods whose length is variable, inspired by several impressive
contributions in the existing literature. The essence is to express each quantity as a per-
turbation series and to expand the boundary conditions in Taylor series about the material
points that correspond to the boundaries of the static configuration. We have placed special
emphasis on unilateral contact, and in particular on the industrially relevant problem of a
heavy rod that is clamped at a certain height at one end and in adhesive contact with a
flat, rigid surface at the other. In applying the perturbation method to this problem in both
its “small-on-small” and “small-on-large” flavors, we have obtained several counterintuititve
results.

It was shown in Section 2.2 that the seemingly mysterious correspondence between the
natural frequencies of the aforementioned small-on-small system with zero adhesion and those
of a fixed-fixed beam, as first observed by Roy and Chatterjee [22], is not so perplexing after
all. Indeed, our method makes it clear that it is not just the natural frequencies that match
those of a fixed-fixed beam, but rather the entire leading-order dynamics. When adhesion
is included, as discussed in Section 2.2, the leading-order dynamics correspond to those of a
beam that is clamped at one end and attached to a spatially fixed rotational spring at the
other. (In fact, we showed the more general and apparently novel result that an adhesion
boundary condition is equivalent to a spatially fixed rotational spring when the motion of the
contact point is small.) Solutions only exist when the dimensionless specific weight w and
adhesive moment M` satisfy a certain necessary condition that leads to a clear classification
of solutions in the (w,M`)-plane.

Sections 2.3 and 2.4 concerned the application of the perturbation method to the corre-
sponding small-on-large problem. A number of new phenomena arise, owing to the inclusion
of horizontal momentum. It was shown that the total length of the rod L, not just the
length `0 of the non-contacting segment, is a critical parameter in determining the natural
frequencies. In fact, the limits L → ∞ and L − `0 → 0+ can both be singular. Numer-
ical evidence suggests that solutions to the small-on-large problem only exist in the same
region of the (w,M`)-plane as do solutions to the small-on-small problem, an unexpected
result. Furthermore, the contour bounding the region where solutions do not exist appears
to correspond to a curve of zero natural frequency.

Our results suggest numerous avenues for further research. An exploration of the non-
linear vibration effects that arise when terms are retained to O(ε2) or higher is of interest
[21, 33], as is a generalization of our approach to three dimensions. A particularly intriguing
aspect of the problem studied in this chapter is the nature of the boundary of the region
of the (w,M`)-plane where no solutions exist, and we hope to see future work on why it is
the same for the small-on-small and small-on-large problems, as well as how it relates to
vibration, stability, and existence of static equilibria.
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Chapter 3

Pervasive Nonlinear Vibrations Due
to Rod-Obstacle Contact

3.1 Introduction
Unilateral contact is a ubiquitous but notoriously difficult feature to model in continuous
mechanical systems. Although the state of the art in finite element methods is capable of
handling complex contact interactions numerically [8], analytical results are few. Indeed,
the general boundary-value problem for contacting continua involves free boundaries that
preclude the application of many of the typical mathematical tools. Even the comparatively
simple Signorini problem—in which an isotropic, linearly elastic sphere under the action of
gravity contacts a rigid plane—is a significant challenge to formulate and solve [34]. Addi-
tional concerns arise when dynamics are considered, such as the tendency of even the most
basic discrete systems to display chaos or quasiperiodicity upon repeated impact [35, 36].

Theories of deformable bodies with just one dimension of spatial extent such as beams
and strings serve as a useful platform for investigating the continuum mechanics of contact.
Because the deformation in these theories is parameterized by just one Lagrangian coordinate
ξ (and time t), the location of any interface between a region where contact occurs and
another where it does not is described by a single, time-dependent scalar ξ = γ(t). This is
in stark contrast to theories of two- or three-dimensional bodies, in which the interface is
generally a time-varying curve or surface.

Due in part to the relative simplicity of tracking the contact interface, a handful of
interesting and general theoretical results have actually been obtained for dynamic contact
between various kinds of one-dimensional continua and rigid surfaces. For example, it has
been shown that an inextensible string can form a kink at a contact interface if the material
speed of the interface exceeds the speed of transverse waves in the string [37, 38]. Quasi-
static contact has also been found to be intimately related to configurational mechanics [7],
but few authors have studied the analogy in a dynamic context, notably Armanini et al.
[30].
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Very few truly dynamic (i.e., transient) problems in the contact mechanics of one-
dimensional continua have been solved analytically, among them the remarkable works by
Audoly et al. [39] and Burridge et al. [37]. Researchers have, however, made substantial
analytical progress in understanding the role of contact in the vibration of one-dimensional
continua. Much of this work has been performed in the context of three engineering appli-
cations: cantilevers in microelectromechanical systems (MEMS) [22, 40], marine structures
[20, 21, 27, 33, 41], and belt-and-pulley systems [23, 42].

The fundamental hurdle to studying the vibration of one-dimensional continua experi-
encing contact is the motion of the contact interface. As alluded to by several authors [10,
20, 22, 24, 27, 33, 42], the interface can often be regarded as fixed for the study of linear vi-
brations superimposed on a static configuration, but the inclusion of effects such as adhesion
can lead to unexpected boundary conditions at said point [10]. Approaches that entirely
neglect the motion of the contact interface in the presence of adhesion, such as that of Fang
et al. [40], lead to asymptotically inconsistent boundary conditions.

This chapter chiefly concerns nonlinear aspects of a prototypical free vibration problem
of an elastic beam in unilateral contact with a flat, rigid, and frictionless surface. The
linearized version of the problem was first considered by Roy and Chatterjee [22] and has
since been expounded upon in our recently published work [10]. In performing a nonlinear
finite element simulation to validate their linear analytical analysis, Roy and Chatterjee
uncovered evidence of a quadratic nonlinearity in the frequency response. This discovery
appears to have been made independently of the earlier analytical discovery by Turnbull et
al. [42] that a quadratic nonlinearity exists in a related system. Indeed, several authors
have uncovered similar nonlinear-dynamic behavior in problems of contact between one-
dimensional continua and surfaces, notably Chatigeorgiou [21] and Demeio et al. [20, 27,
33].

Our goal in studying the aforementioned problem is to gain insight into and develop
a comprehensive explanation for, in the simplest possible context, the nonlinear role of
contact in the vibration of continuous mechanical systems. We formulate the problem in
Section 3.2 and present in Section 3.3 the results of a numerical “experiment” conducted
using a non-standard finite element method that is detailed in Appendix B. In Sections 3.5
and 4.3 we apply perturbation methods to reveal the source of the quadratic nonlinearity (see
Eq. (3.14b)) and demonstrate excellent agreement with our earlier numerical experiment. In
the penultimate section of the chapter, Section 3.6, the more general case of a possibly
nonlinear rod contacting a curved surface is considered. We demonstrate that the quadratic
nonlinearity (see Eq. (3.51)) persists in this situation and is therefore a purely kinematical
result that is independent of the type of one-dimensional continuum considered so long as it
does not admit kinks.
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Figure 3.1: Schematic of a beam of length L that is in partial contact with a flat, rigid
surface. The free vibration of the beam was first considered by Roy and Chatterjee [22]. If
fluid drag and geometric nonlinearity were incorporated, we would have a model of a flexible
riser touching the seafloor. Similarly, if electrostatic adhesion were included, we would have
a model for stiction between a MEMS cantilever and a substrate.

3.2 Formulation of a Prototypical Problem
Consider the system shown in Fig. 3.1, in which gravity causes the simplest type of one-
dimensional continuum with bending stiffness, an inextensible Euler-Bernoulli beam, to come
into unilateral contact with the simplest obstacle, a rigid plane, without friction or adhesion.1
The transverse displacement y = y(ξ, t) of the beam is governed by

Ly + ρ0g = 0, (3.1)

where we employ a compact notation for the linear differential operator

L = ρ0∂
2/∂t2 + EI∂4/∂ξ4. (3.2)

Here, ρ0 is the linear density, EI the flexural rigidity, and g the acceleration due to gravity.
We will frequently use ()′ to denote a partial derivative with respect to ξ and (̇) to denote
one with respect to t. As we have restricted ourselves to the geometrically linear case, the
displacement is purely transverse and thus any material point in the segment γ(t) < ξ < L
is instantaneously at rest.

Equation (3.1) is to be solved for 0 < ξ < γ(t) and t > 0 subject to the boundary
conditions

y(0, t) = a, y′(0, t) = 0,

y(γ(t), t) = y′(γ(t), t) = y′′(γ(t), t) = 0.
(3.3)

1Inherent in using an Euler-Bernoulli beam model of contact is the appearance of a concentrated force
exerted by the obstacle on the beam. Some may regard such a force as being unphysical, but such a
conundrum can be avoided by using more sophisticated theories of beams [43] or by allowing the obstacle
itself to deform [44].
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Five boundary conditions are required rather than the usual four because γ is an additional
unknown. The associated static equilibrium is described by

y0(ξ) = a

(
1− ξ

γ0

)3(
1 +

3ξ

γ0

)
,

γ0 = a

(
72EI

ρ0ga3

)1/4

.

(3.4)

As our interest is in the nonlinear dynamics in the neighborhood of the above equilibrium,
we initiate the beam’s motion by requiring it to start from rest in a nearby configuration.
For specificity we select

y(ξ, 0) = y0(ξ) +
3125εa

108

(
1− ξ

γ0

)3(
ξ

γ0

)2

, (3.5a)

ẏ(ξ, 0) = 0, γ(0) = γ0, γ̇(0) = 0, (3.5b)

where the factor of 3125/108 is included in order to make εa the maximum amplitude of the
corresponding term, ε being a small dimensionless parameter. For the sake of brevity we will
subsequently write the second term on the right-hand side of Eq. (3.5a) as εah(ξ).

As a brief aside, Eq. (3.5a) has been chosen specifically so that it is compatible with
Eq. (3.3), thereby avoiding spurious oscillations due to Gibbs-like phenomena in the coming
numerical simulations. Furthermore, homogeneity of the boundary conditions at ξ = γ(t)
ensures that the total mechanical energy

E =

∫ γ(t)

0

[
1

2
ρ0ẏ

2 +
1

2
EI(y′′)

2
+ ρ0gy

]
dξ (3.6)

is conserved. Verifying this fact requires use of the Leibniz integral rule due to the time-
varying boundary ξ = γ(t). If the beam were replaced by a string, the corresponding total
mechanical energy would not generally be conserved [38].

3.3 Numerical Evidence of a Quadratic Nonlinearity
Equations (3.1) to (3.5) constitute a well-defined initial-boundary-value problem for the
primary variable y = y(ξ, t) and the parameter γ = γ(t) on a domain that is unknown a
priori: (0, γ(t)) × (0,∞) 3 (ξ, t). Classical numerical techniques are not applicable due to
the presence of the free boundary ξ = γ(t). We therefore use a non-standard, quasi-Eulerian
finite element method based on the idea of applying the stretching transformation z = ξ/γ(t)
to the spatial domain. Our method is closely related to the one developed by Humer et al.
[45, 46] and is detailed in Appendix B.

Figure 3.2 shows a short portion of a numerical “experiment” conducted in accordance
with the parameter values specified in Table 3.1. We report only γ(t)− γ0, which serves as
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Quantity Symbol Value
Linear density ρ0 0.78 kg/m

Gravitational acceleration g 9.8m/s2

Flexural rigidity EI 166.6Nm2

Height of support a 6.379× 10−4 m
Initialization parameter ε 0.002

Final time T 10 s
Number of elements 20
Time step (constant) 1× 10−5 s

Table 3.1: Parameter values used for the numerical experiment. The parameters ρ0, g, EI,
and a match those used by Roy and Chatterjee [22] and lead to γ0 ≈ 1m.

a convenient scalar quantification of the overall response of the beam. The discrete Fourier
transform of the same quantity is shown in Fig. 3.3, which has several interesting features.
For one, the peaks of greatest prominence occur almost exactly at the natural frequencies of
a fixed-fixed beam of length γ0, density ρ0, and flexural rigidity EI, a correspondence that
has been reported previously [10, 22]. These frequencies, which we will henceforth refer to
as the linear natural frequencies, are

fn =
β2
n

2π

√
EI

ρ0
, n = 1, 2, 3, . . . (3.7)

where βn are the roots of (cf. [47])

cos(βnγ0) cosh(βnγ0) = 1. (3.8)

We order βn in an increasing fashion.
Also intriguing in Fig. 3.3 is the presence of significant secondary peaks, the most promi-

nent of which happens to occur very close to twice the second linear natural frequency:
273Hz. Other secondary peaks also occur at seemingly miraculous locations, for example
the one at 91Hz, which is remarkably close to the difference between the second and first lin-
ear natural frequencies. In fact, almost all the secondary peaks occur at sums or differences
of the linear natural frequencies, as indicated in Fig. 3.3 by the dashed and dash-dotted lines,
respectively. We should note that the peak at 273Hz was previously discovered by Roy and
Chatterjee, who used a commercial finite element software with the ability to handle generic
contact [22]. No other secondary peaks are visible in their frequency response, however,
which could be due to the fact that the standard finite element implementation of contact
is poorly suited to handling impact phenomena [9].

The pattern described above is no miracle; it is instead indicative of the presence of a
rich set of superharmonic and combination resonances (sometimes called combination tones).
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Figure 3.2: An excerpt of γ(t) − γ0 versus t from the numerical experiment conducted
according to the parameter values in Table 3.1.
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Figure 3.3: Discrete Fourier transform of γ(t) − γ0 (in black) as obtained from the non-
standard finite element simulation conducted according to the parameters in Table 3.1. The
dotted lines (red) indicate the linear natural frequencies fn, while the dashed lines (blue)
correspond to the sums of said frequencies, and the dash-dotted lines (green) to their absolute
differences. Only the sums and differences produced from the first eight of fn are shown.
The peaks at 104Hz and 287Hz both occur at twice a linear natural frequency (52Hz and
143Hz, respectively).
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The superharmonic resonances we have discovered are of the 2 : 1 variety, meaning that they
appear at twice the linear natural frequencies fn. Likewise, we might call the combination
resonances 1 : 1 in the sense that they are of the form fn ± fm rather than, for example,
3fn ± fm, which might well be called 3 : 1 combination resonances.

The well-established theory of weakly nonlinear vibrations suggests that the 2 : 1 super-
harmonic and 1 : 1 combination resonances could arise from a nonlinearity somewhere in the
problem that is quadratic in one of the dependent variables [4, 48]. However, the classical
results on nonlinear vibrations are confined to cases where the nonlinearity occurs in the
differential equation. In our case the differential equation, Eq. (3.1), is entirely linear (albeit
inhomogeneous) and the sole source of the nonlinearity is the fact that the contact interface
ξ = γ(t) is free to move back and forth. It is hard to imagine how such a feature would
lead to a quadratic nonlinearity. We seek to resolve this conundrum in the remainder of the
chapter.

3.4 Derivation of Perturbation Equations
The only hope for studying the present problem analytically is by way of perturbation meth-
ods. Taking inspiration from work on related problems [33, 42], we begin our analytical study
by assuming the existence of sufficiently term-by-term differentiable perturbation expansions
of the form

y(ξ, t) = y0(ξ) +
∞∑
k=1

εkyk(ξ, t), (3.9a)

γ(t) = γ0 +
∞∑
k=1

εkγk(t), (3.9b)

with the goal of obtaining a sequence of boundary-value problems for y1 and γ1, y2 and
γ2, and so on. We reiterate that ε is a small parameter that specifies the amplitude of the
initial displacement away from the static equilibrium, as per Eq. (3.5a). Inserting Eq. (4.31)
into Eq. (3.1) implies Lyk = 0 for all k ∈ Z+. The boundary conditions for yk at ξ = 0
are straightforward to infer from Eq. (3.3). However, it is less clear what to do with the
boundary conditions at ξ = γ(t).

The natural approach is to expand the boundary conditions about the initial location
ξ = γ0, but this must be done without neglecting powers of ε in an ad hoc manner, lest the
boundary conditions at varying orders be inconsistent [42]. Recall the boundary condition
y(γ(t), t) = 0, for example. We obtain from Eq. (3.9) the following:

y0

(
γ0 +

∞∑
k=1

εkγk(t)

)
+

∞∑
k=1

εkyk

(
γ0 +

∞∑
j=1

εjγj(t), t

)
= 0, (3.10)

which can then be expanded in Taylor series about ε = 0. Upon equating each of the
coefficients of the Taylor series to zero, one obtains a set of relations among γk, yk at ξ = γ0,
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and the ξ-derivatives of yk at ξ = γ0. The same procedure can be applied to y′(γ(t), t) = 0
and y′′(γ(t), t) = 0. After doing so and then making all possible simplifications, we obtain a
sequence of linear initial-boundary-value problems for yk on the (fixed rather than variable)
domain (0, γ0)× (0,∞) 3 (ξ, t), as well as a sequence of algebraic expressions for γk.

The first-order problem we find as a result of the aforementioned method is to solve
Ly1 = 0 subject to the boundary conditions

y1(0, t) = y′1(0, t) = y1(γ0, t) = y′1(γ0, t) = 0, (3.11)

and the initial conditions
y1(ξ, 0) = ah(ξ), ẏ1(ξ, 0) = 0. (3.12)

Thus y1 can be regarded as the displacement of a fixed-fixed beam of length γ0. This analogy
has been developed extensively elsewhere [10]. Once y1 is known, we can compute

γ1(t) = −y′′1(γ0, t)

y′′′0 (γ0)
. (3.13)

The second-order problem is to solve Ly2 = 0 subject to the boundary conditions

y2(0, t) = y′2(0, t) = y2(γ0, t) = 0, (3.14a)

y′2(γ0, t) =
1

2
y′′′0 (γ0)[γ1(t)]

2, (3.14b)

and the initial conditions
y2(ξ, 0) = ẏ2(ξ, 0) = 0. (3.15)

Here, y2 can be regarded as the displacement of a beam of length γ0, fixed at both ends,
whose support at ξ = γ0 has a prescribed angle of rotation. After obtaining y2, we can
compute

γ2(t) =− [y′′′0 (γ0)]
−1

{
1

2
y′′′0 (γ0)[γ1(t)]

2

+ y′′′1 (γ0, t)γ1(t) + y′′2(γ0, t)

}
.

(3.16)

One can in principle continue to identify the higher-order boundary-value problems to be
solved, but we limit our discussion to second order as we are interested in the dominant
nonlinear dynamics only.

The quadratic nonlinearity we have been seeking occurs in Eq. (3.14b), whereby the first-
order system feeds into the second-order system through a boundary forcing proportional
to γ2

1 . For illustrative purposes we can define the displacement from the static equilibrium
u = εy1 + ε2y2 + . . . and use Eq. (3.13) to expand Eq. (3.14b). Neglecting terms of order
higher than ε, u can be shown to solve Lu = 0 subject to

u(0, t) = u′(0, t) = u(γ0, t) = 0, (3.17a)

u′(γ0, t) = ε
[u′′(γ0, t)]

2

2y′′′0 (γ0)
, (3.17b)
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Figure 3.4: Comparison between a portion of εγ1(t) + ε2γ2(t) (solid black line) and of the
numerical solution to the fully nonlinear problem (dashed red line). Both solutions corre-
spond to the parameter values in Table 3.1.

and appropriate initial conditions. Hence we have a standard boundary-value problem for
u on a fixed spatial domain (0, γ0) 3 ξ with a weak, quadratic nonlinearity in the boundary
conditions, namely Eq. (3.17b). With u′ being the angular displacement and u′′ proportional
to the bending moment, Eq. (3.17b) is mechanically equivalent to a nonlinear spring attached
to the boundary ξ = γ0.

3.5 Solution of the Perturbation Equations

Quantitative Study via Numerical Method
The static solution being known from Eq. (3.4), the first- and second-order dynamic prob-
lems formulated in Section 4.3 constitute canonical initial-boundary-value problems that
can be solved sequentially by any number of semi-analytical or numerical methods. In this
section use a standard finite element method with isoparametric elements, cubic Hermite
shape functions, and implicit Newmark time integration to obtain the perturbation solution
through second order according to the parameters in Table 3.1. Though this approach has
the benefit of faithfully representing wave propagation and other high-frequency effects, it
is not useful for developing a qualitative understanding of how the solution should behave.
For this reason we investigate the analytical solution in the following section.

Figure 3.4 shows the close correspondence between γ(t) − γ0 from the earlier numerical
experiment and εγ1(t) + ε2γ2(t) as obtained by the method described above. The agreement
between the two deteriorates to some extent at later times, but not nearly to a degree that
would suggest non-uniform validity of the perturbation expansions, Eqs. (3.9b) and (4.31).
The discrete Fourier transform of our numerical approximation to εγ1(t)+ε2γ2(t) is shown in
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Figure 3.5: Discrete Fourier transform of the numerical approximation of εγ1(t) + ε2γ2(t)
as obtained by a finite element solution of the perturbative equations. Notice the close
correspondence with Fig. 3.3, which is generated from a nonlinear finite element solution of
the original problem.

Fig. 3.5, which faithfully reproduces the key features of Fig. 3.3, namely the location of the
primary and secondary resonances. The minor disparities in the amplitudes between the two
response spectra are to be expected as the vertical scale is logarithmic and small differences
due to numerical inaccuracy, the absence of higher-order contributions to the perturbative
solution, or other factors can appear amplified. Figure 3.5 also shows that a handful of the
small peaks in Fig. 3.3, for example the ones at 339Hz and 430Hz, are not accounted for in
the first- or second-order dynamics. It is likely that these peaks are third-order effects.

Qualitative Study via Analytical Method
More instructive than the precise quantitative solution of the perturbation equations is a
qualitative look at how the contact nonlinearity gives rise to superharmonic and combination
resonances. To investigate this issue we solve the perturbation equations analytically by way
of a modal superposition method. We verify in the process that our regular perturbation
expansions do not contain any secular terms through second order and are therefore uniformly
valid.

The unique solution of the first-order problem is

y1(ξ, t) =
∞∑
n=1

AnXn(ξ) cos(ωnt) (3.18)

where
An = a

∫ γ0

0

h(ξ)Xn(ξ) dξ. (3.19)
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Furthermore,

Xn(ξ) =
1

√
γ0

{
cos(βnξ)− cosh(βnξ)− [sin(βnξ)

− sinh(βnξ)]
cos(βnγ0)− cosh(βnγ0)

sin(βnγ0)− sinh(βnγ0)

} (3.20)

are the mode shapes of a fixed-fixed beam of length γ0, and ωn = β2
n

√
EI/ρ0 are its angular

natural frequencies. The modes are orthonormal in the sense that
∫ γ0
0

Xm(ξ)Xn(ξ) dξ = δmn.
Taking Eqs. (3.4) and (3.13) into account,

γ1(t) =
γ3
0

24a

∞∑
n=1

AnX
′′
n(γ0) cos(ωnt). (3.21)

Equation (3.21) may appear at first to fail to satisfy the initial condition γ1(0) = 0 but
actually does so upon summing the infinite series. This is because Eq. (3.12)1 implies

∞∑
n=1

AnX
′′
n(ξ) = ah′′(ξ), (3.22)

and our particular choice of initial condition, Eq. (3.5a) means that h′′(γ0) = 0, hence
γ1(0) = 0.

To solve the second-order system we introduce a new variable

v(ξ, t) = y2(ξ, t)−
12a

γ2
0

(
ξ

γ0

)2(
1− ξ

γ0

)
[γ1(t)]

2, (3.23)

which can be shown to satisfy

Lv = ρ0f, (3.24a)
v(0, t) = v′(0, t) = v(γ0, t) = v′(γ0, t) = 0, (3.24b)
v(ξ, 0) = v̇(ξ, 0) = 0, (3.24c)

where

f(ξ, t) = −24a

γ2
0

(
ξ

γ0

)2(
1− ξ

γ0

)(
γ̇2
1 + γ1γ̈1

)
. (3.25)

The variable v can be regarded as the transverse displacement of a fixed-fixed beam of length
γ0, initially straight and at rest, that is subjected to a time-dependent body force (per unit
mass) f = f(ξ, t). Following the well-established method of modal superposition [47], we
assume a solution of the form

v(ξ, t) =
∞∑
n=1

Xn(ξ)Tn(t), (3.26)
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where Tn(t) are to be determined. Inserting Eq. (3.26) into Eq. (3.24a), multiplying by an
arbitrary Xm, integrating in ξ from 0 to γ0, and performing some simplifications, we find a
series of ordinary differential equations for the modal amplitudes Tm, m ∈ Z+:

T̈m + ω2
mTm =

∫ γ0

0

f(ξ, t)Xm(ξ) dξ, (3.27)

where Tm(0) = Ṫm(0) = 0 by Eq. (3.24c). The solution to Eq. (3.27) can be written as

Tm(t) =
1

ωm

∫ t

0

∫ γ0

0

f(ξ, t)Xm(ξ) sin(ωm(t− τ)) dξ dτ (3.28)

and y2 can be reconstructed from Eqs. (3.23) and (3.26). Finally, γ2 can be found from
Eq. (3.16).

It is crucial to investigate the nature of f . If it were to contain frequency content at any
of the (angular) natural frequencies ωm, secular terms that grow linearly in t would arise in
y2 by way of Tm and thus our regular perturbation expansions, Eqs. (3.9b) and (4.31), would
furnish satisfactory approximations only for t = O(ε). (Unbounded growth in the solution is
inconsistent with physical intuition and conservation of the energy in Eq. (3.6).) It is well-
known that when secular terms are present, one must typically resort to more sophisticated
tools such as averaging methods, the Linstedt-Poincaré method, or the method of multiple
scales [4, 48]. The essence of each of these methods is that one can “cancel” secular terms by
choosing appropriate corrections to the linear natural frequencies. If no secular terms arise
at a given order, the frequency correction at that order is zero.

Fortunately for us, f happens not to have frequency content at any ωm, meaning that
the regular perturbation expansions are uniformly valid and no correction to the natural
frequencies occurs through second order in ε. The latter fact comports with the results
of an investigation of a closely related problem [42]. As a proof of sorts, notice that the
time-dependence of f is entirely determined by the quantity γ̇2

1 + γ1γ̈1, as per Eq. (3.25). In
view of Eq. (3.21), γ̇2

1 + γ1γ̈1 contains terms of just two kinds. First are the terms propor-
tional to cos2(ωnt) or sin2(ωnt) that, by the half-angle formulas, provide constant forcing as
well as harmonic forcing at frequency 2ωn. Then there are terms that are proportional to
sin(ωmt) sin(ωnt) and cos(ωmt) cos(ωnt), where m 6= n. The product-to-sum identity

sin(ωmt) sin(ωnt)

=
1

2
[cos((ωm − ωn)t)− cos((ωm + ωn)t)]

(3.29)

and similar for cos(ωmt) cos(ωnt) show that terms of the second type force the second-order
system at all possible sums and absolute differences of the linear natural frequencies. By
virtue of the fact that the linear natural frequencies are derived from a transcendental char-
acteristic equation, no simple algebraic relationships exist among them. Therefore none of
2ωn, ωm + ωn, or |ωm − ωn| is exactly equal to a particular ωp, and no secular terms arise in
any Tm.
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Figure 3.6: Kinematics of contact and interpretation of the gap function.

The above analysis of the frequency content of f is key to understanding how the
quadratic nonlinearity gives rise to the secondary resonances shown in Figs. 3.3 and 3.5.
Terms like cos2(ωnt), which force the second-order system at 2ωn, lead to the superhar-
monic resonances, while terms like cos(ωmt) cos(ωnt), which force the second-order system
at ωm + ωn and |ωm − ωn|, lead to the combination resonances. If higher-order terms were
included we would expect additional nonlinear resonances to appear, and such resonances
are indeed seen in Fig. 3.3, but is is unlikely that they would be observable in any practical
system due to the presence of damping.

3.6 Kinematics of Contact
Our previous analysis pertains to the simplest beam model and a flat surface. It is natural
to question if the quadratic nonlinearity persists or is altered if a more general rod theory
is employed and if the contacting surface is curved. We do not invoke the balance laws,
the constitutive law, or any other aspect of the governing equations for the rod theory in
this entire section. In fact, we require virtually nothing of the rod other than that it be (1)
inextensible and (2) free of kinks in the neighborhood of the contact interface. The entirely
kinematic analysis that follows demonstrates that the quadratic nonlinearity of Sections 3.2
to 3.5 does indeed persist in these far more general circumstances.

Conditions on the Gap Function
Consider Fig. 3.6, wherein a portion of rod is in contact with a rigid surface. The current
placement of the material curve constituting the lateral surface of the rod is described by
the vector-valued function r(ξ, t) where ξ is the arc-length coordinate. A portion of the
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curve is unconstrained along a segment of finite length a < ξ < γ(t) and another portion is
unilaterally constrained to conform to the boundary of a rigid object along another segment
of finite length γ(t) < ξ < b. The unit tangent vector to the material curve at the point
ξ at time t is denoted by et(ξ, t). A normal vector to the curve is defined by the product
en(ξ, t) = E3 × et(ξ, t) where E3 is the unit vector normal to the plane of contact. The
curvature of the material curve is computed from the identity κ(ξ, t) = r′′(ξ, t) · en(ξ, t).

The boundary of the rigid object with which contact occurs is described by the parame-
terization R(η), with η being an arc-length parameter chosen (without loss of generality) so
that it is increasing in the same direction as ξ. We shall assume the surface to be such that
R(·) is at least twice continuously differentiable. Analogously to the rod, T(η) = R′(η) is
the unit tangent of the surface, N(η) = E3×T(η) the unit normal, and K(η) = R′′(η) ·N(η)
the curvature.

Following Wriggers [8], we can concisely encode the necessary conditions for contact with
the gap function

u(ξ, t) = min
η

‖r(ξ, t)−R(η)‖, (3.30)

which is the minimum distance between the location of the material point ξ at time t and
the rigid surface described by R(η). The value of η at which said minimum occurs is

η̄(ξ, t) = argmin
η

‖r(ξ, t)−R(η)‖. (3.31)

As a necessary condition for the minimization,

∂

∂η
‖r(ξ, t)−R(η)‖ = 0 when η = η̄(ξ, t), (3.32)

meaning that
r(ξ, t)−R(η̄(ξ, t))

‖r(ξ, t)−R(η̄(ξ, t))‖
·T(η̄(ξ, t)) = 0. (3.33)

The leftmost term in the product of Eq. (3.33) lies in the plane with normal E3 and, by
virtue of being orthogonal to the unit tangent and having unit magnitude, must be equal
to ±N(η̄(ξ, t)). Our stipulation that ξ and η increase in the same direction means that the
aforementioned term is equal to N(η̄(ξ, t)). Accordingly,

r(ξ, t) = R(η̄(ξ, t)) + u(ξ, t)N(η̄(ξ, t)), (3.34)

which gives rise to an additional representation of the gap function:

u(ξ, t) = [r(ξ, t)−R(η̄(ξ, t))] ·N(η̄(ξ, t)). (3.35)

Equation (3.34) shows that, with the exception of certain degenerate cases, the placement
of a material point at a given time can be specified completely by the pair (η, u). It is this
coordinate system that will prove most convenient for our purposes.
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We now proceed to derive three conditions that the gap function must necessarily satisfy
at ξ = γ(t)−. These will serve as boundary conditions for the free-boundary-value problem
that determines the shape of the rod in the segment a < ξ < γ(t). The first and most
obvious condition is that

u(γ(t)−, t) = 0. (3.36)

The second condition relates to the first spatial derivative of the gap function. By direct
calculation from Eq. (3.35), taking Eq. (3.34) into account, we see that

u′(ξ, t) = et(ξ, t) ·N(η̄(ξ, t)). (3.37)

As kinks incur an infinite energetic penalty in elastic rods, we exclude them by demand-
ing that et(·, t) be everywhere continuous.2 This assumption implies that en(·, t) is also
continuous.3 As such,

u′(γ(t)−, t) = 0, (3.38)

which is the second condition.
The final condition, perhaps predictably, involves the second spatial derivative of the gap

function. Accordingly, by differentiating Eq. (3.37), we see that

u′′(ξ, t) =κ(ξ, t)en(ξ, t) ·N(η̄(ξ, t))

− et(ξ, t) ·K(η̄(ξ, t))η̄′(ξ, t)T(η̄(ξ, t)).
(3.39)

The no-kink assumption also tells us that, upon differentiation of Eq. (3.34) with respect to
ξ and evaluation at ξ = γ(t), η̄′(γ(t), t) = 1. Hence Eq. (3.39) yields

u′′(γ(t)−, t) = κ(γ(t)−, t)−K(η̄(γ(t)−, t)). (3.40)

Here arises our purpose for being careful with the continuity of various quantities at ξ = γ(t):
it is possible in certain applications for κ(·, t) to be discontinuous, for example when the rod-
surface interaction is characterized by a JKR-type adhesion energy.4 In that case the jump
in the curvature across the contact point is a certain prescribed quantity:

∆κγ = κ(γ(t)+, t)− κ(γ(t)−, t). (3.41)

Because the rod perfectly conforms to the surface and the surface has a continuous curvature,
κ(γ(t)+, t) = K(η̄(γ(t)−, t)), and therefore Eqs. (3.40) and (3.41) give rise to the third and
final condition,

u′′(γ(t)−, t) = −∆κγ. (3.42)
2Such an exclusion is not warranted in the case of one-dimensional continua that have no bending energy.

For the simplest such object, the inextensible string, a kink can in fact occur at ξ = γ(t) if the material
speed of the discontinuity |γ̇(t)| exceeds the speed of propagation of transverse waves [37, 38].

3Recall that the continuity of T(·) and N(·) was assumed from the outset.
4For examples of the analysis of rods in dry (or JKR-type) adhesion to surfaces, see O’Reilly [7] and

Majidi et al. [31] and references therein.
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Equations (3.36), (3.38) and (3.42) are the three conditions that must hold at ξ = γ(t).
They could alternatively be stated in terms of the position vector r and its derivatives r′

and r′′, but the gap function u provides the most succinct expressions. Unfortunately, it is
very rare in solving actual problems that η and u provide a convenient parameterization of
the motion of the rod, so in practice Eqs. (3.36), (3.38) and (3.42) must be translated into
equivalent expressions in whichever particular coordinate system is used for a given problem.
The remainder of Section 3.6 involves applying asymptotic methods to Eqs. (3.36), (3.38)
and (3.42). The reader should keep in mind that the same exact approach can be applied to
the contact conditions as expressed in any chosen coordinate system. However, considerable
simplifications take place when u is used.

Perturbation Analysis of the Contact Point
As with our earlier work in this chapter, our interest is in small excursions of the rod from a
static configuration described by r0(ξ) for a < ξ < γ0. The section γ0 < ξ < b that conforms
perfectly to the rigid surface has a known shape and is therefore not of any particular interest
as far as kinematics is concerned. We assume the existence of perturbation expansions of
the form

u(ξ, t) = u0(ξ) +
∞∑
k=1

εkuk(ξ, t), (3.43a)

γ(t) = γ0 +
∞∑
k=1

εkγk(t), (3.43b)

where ε � 1 is a small bookkeeping parameter. In order to consistently expand Eqs. (3.36),
(3.38) and (3.42) in Taylor series about the static configuration, consider g(γ(t), t), where g
stands for u, u′, or u′′. Defining

h(t; ε) = g0

(
γ0 +

∞∑
k=1

εkγk(t)

)

+
∞∑
k=1

εkgk

(
γ0 +

∞∑
j=1

εjγj(t), t

)
.

(3.44)

and expanding in Taylor series about ε = 0 leads to, after some delicate computations,

h(t; ε) = g0(γ0) + ε[g′0(γ0)γ1 + g1(γ0, t)]

+ ε2
[
1

2
g′′0(γ0)γ

2
1 + g′0(γ0)γ2

+ g′1(γ0, t)γ1 + g2(γ0, t)

]
+O(ε3).

(3.45)
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Applying Eq. (3.45) to Eqs. (3.36), (3.38) and (3.42), isolating the coefficients of εk for k ≥ 0,
and making all possible simplifications gives

u0(γ0) = 0, u′
0(γ0) = 0, u′′

0(γ0) = −∆κγ, (3.46)

to order zero,
u1(γ0, t) = 0, u′

1(γ0, t) = − ∆κγ

u′′′
0 (γ0)

u′′
1(γ0, t), (3.47)

to order one, and
u2(γ0, t) = 0, u′

2(γ0, t) =
1

2
u′′′
0 (γ0)[γ1(t)]

2, (3.48)

to order two. Additionally, we see the counterpart to Eq. (3.13),

γ1(t) = −u′′
1(γ0, t)

u′′′
0 (γ0)

, (3.49)

and the counterpart to Eq. (3.16),

γ2(t) = −[u′′′
0 (γ0)]

−1

{
1

2
u′′′
0 (γ0)[γ1(t)]

2

+ u′′′
1 (γ0, t)γ1(t) + u′′

2(γ0, t)

}
.

(3.50)

We have assumed in deriving Eqs. (3.46) to (3.50) that ∆κγ = O(1), which need not nec-
essarily be the case, for example when the jump in curvature is due to very weak adhesion.
As in Sections 3.5 and 4.3, we consider the dynamics only through second order in ε.

Referring to Eq. (3.17b), observe that when ∆κγ = 0, Eq. (3.47)2 resembles the “clamped”
boundary condition for an Euler-Bernoulli beam if u1 is the transverse displacement (and thus
u′
1 the angular displacement). When ∆κγ 6= 0, the same equation resembles the boundary

condition for a spatially fixed rotational spring since the moment in an Euler-Bernoulli beam
is proportional to u′′

1. By inserting Eq. (3.49) into Eq. (3.48)2, we arrive at

u′
2(γ0, t) =

1

2u′′′
0 (γ0)

[u′′
1(γ0, t)]

2
, (3.51)

which is identical to the quadratic nonlinearity obtained in our study of the prototypical
problem (cf. Eq. (3.14b)).

3.7 Conclusion
We have studied a simple example of dynamic contact in a continuous mechanical system.
In a numerical “experiment” performed using a bespoke finite element method, we observed
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the presence of a number of nonlinear resonances of both the superharmonic and combi-
nation varieties. We used a perturbation method to show that these resonances are due
to a dominantly quadratic nonlinearity in the boundary conditions of the governing initial-
boundary-value problem. Furthermore, we found excellent agreement between the fully
nonlinear numerical results and those obtained from the second-order perturbation analysis.

Though our initial analysis was presented in a highly restricted context, we demonstrated
that the quadratic nature of the contact nonlinearity is actually a kinematic phenomenon
that can hold in a very broad class of problems. We anticipate similar effects to arise in
contact-induced nonlinear vibrations of two- and three-dimensional continua, but significant
research remains to be conducted in this area. Future work could also consider the higher-
order perturbation equations, investigate the effect of adhesion, or study the interaction
between contact and geometric or material nonlinearities in the beam or rod itself.
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Chapter 4

Electrostatically Actuated MEMS in
the Post-Touchdown Regime

4.1 Introduction
Many microelectromechanical systems (MEMS) incorporate beam- or plate-like structures
that deflect in the lateral direction due to applied electrostatic forces between the structure
and a stationary electrode, such as the device illustrated in Fig. 4.1. The canonical model
of such systems, sometimes known as the MEMS equation, exhibits a so-called “pull-in”
instability after the applied voltage exceeds a critical value. Being critically important for
the design of practical devices, pull-in has been the subject of countless studies, and the
reader is encouraged to consult Zhang et al. [49] for an authoritative review, Batra et al.
[50] for a mechanics-focused summary of the literature, or Laurençot and Walker [51] for a
mathematically oriented discussion.

If the voltage continues to be increased beyond pull-in, the beam or plate can come into
contact with the electrode, an event known as “touchdown.” When the actuating structure
and the electrode are bare conductors, touchdown leads to a short-circuit, and is therefore
often regarded as a failure mode. In other cases, such as when the electrode is coated
with an insulating dielectric layer, touchdown can be instead exploited to augment the
functionality of the device (see, e.g., work by Kafumbe et al. [52] or Li et al. [53]). Under
certain circumstances, touchdown can lead to stiction, in which surface forces between the
actuator and the dielectric layer prevent the actuator from returning to its undeformed
position. Several different physical phenomena can contribute to stiction, including van
der Waals forces [54], quantum-mechanical Casimir forces [50], and capillary adhesion [55,
56], the latter being more important in the context of manufacturing rather than device
operation.

While there exists a vast literature on predicting the onset of pull-in, a comparatively
small body of work focuses on the mechanics after touchdown, especially with regard to dy-
namics. The earliest work relevant for our purposes is that of Kafumbe et al. [52], who used
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Figure 4.1: Schematic of a plate-based electrostatic actuator prior to touchdown (left) and
after touchdown (right).

a vibration method to assess the linear stability of a beam-based electrostatic actuator, as
did Gorthi et al. [57] some time later. Zhang and Zhao [58] studied the transient dynamics of
an analogous system with periodic forcing and emphasized the importance of the motion of
the contact nonlinearity. Savkar et al. [59] demonstrated theoretically the use of vibrations
to initiate stiction repair and Savkar and Murphy [60] extended this work to demonstrate
complete stiction repair. In the process these researchers brought useful concepts from dy-
namic fracture mechanics into the MEMS literature. More recent studies involving transient
dynamics include those by Vyasarayani et al. [61] and Li et al. [53].

All of the papers mentioned in the paragraph above pertain to beam-based actuators.
Very little appears to have been written about the post-touchdown dynamics of plate-based
actuators. The most notable work is that of Lindsay et al. [62, 63] and Lindsay [64] who
presented and analyzed in depth a partial differential equation inspired by the MEMS equa-
tion. While their impressive work spans a wide range of mathematical issues, it is ultimately
not of particular relevance for our purposes as the differential equation they consider does
not contain an inertial term. Mathematical results on similar so-called “obstacle problems”
are numerous [65, 66], but are unfortunately not directly relevant to understanding the
mechanics of any practical device.

Aside from the obvious engineering applications, the problem of touchdown in electro-
static MEMS actuators is also of interest from the perspective of fundamental mechanics,
owing to the presence of a contact interface, i.e., a boundary in the domain between material
points that are in contact with the dielectric and points that are not. The contact interface
is actually a free boundary in the mathematical sense, meaning that it is unknown a priori
and must be determined as part of the solution of the problem. Because free boundaries
are a nonlinearity in their own right, they can induce nonlinear dynamics in systems that
are governed by linear differential equations. For beams, where the spatial domain is a line
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Figure 4.2: Schematic cutaway of the post-touchdown configuration of the actuator with
various quantities indicated.

segment, contact interfaces are simply points. For plates, on the other hand, the spatial
domain is a planar region and contact interfaces are curves. In either case, as discussed by
Goldberg and O’Reilly [11], the presence of contact poses unique analytical and computa-
tional challenges, especially in the dynamic setting, where the use of standard numerical
techniques can lead to non-physical spectral content in the solution.

The purpose of the present work is to demonstrate procedures for formulating and ana-
lyzing models of post-touchdown dynamics in electrostatic plate actuators. In order to focus
on the essential mechanics associated with the motion of the contact interface, we consider an
idealized model that neglects several effects important in real devices, among them the elec-
trical fringing field, mid-plane stretching of the plate, and squeeze-film damping. Amending
our work to include these effects (and others) is an incremental task, and the lessons learned
throughout this chapter are not altered significantly by their omission.

The organization of the chapter is as follows. Section 4.2 outlines the basic problem to be
solved. In Section 4.3 we use a variational principle to derive the governing differential equa-
tions and formulate the linear stability problem. We briefly characterize the pre-touchdown
equilibrium solutions in Section 4.4 and then proceed to characterizing the post-touchdown
equilibrium solutions in Section 4.5. Finally, in Section 4.6, a reduced-order model of the dy-
namics is introduced and then briefly applied to the problem of stiction repair, making use of
basic techniques from nonlinear dynamics. Concluding remarks are contained in Section 4.7.

4.2 Problem Description
Referring to Figs. 4.1 and 4.2, consider an initially flat plate of thickness h, volumetric
density ρ, and flexural rigidity D clamped at a height H above a rigid dielectric layer of
thickness d and permittivity εd, beneath which is an electrode that interacts with the plate
via Coulomb forces. The simply connected planar domain that describes the plate in its
reference configuration is denoted Ω. (Later on we will take Ω to be a disk, but little
additional effort is required for us to consider a more general domain here.) For h small,
the transverse deflection w—chosen to be positive toward the dielectric—is governed to a
reasonable approximation by Kirchhoff-Love plate theory, which assumes the kinetic and
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Figure 4.3: Top view of the actuator indicating the contact interface Γ.

strain energies
T =

∫
Ω

1

2
ρhẇ2 dS and W =

∫
Ω

1

2
D
(
∇2w

)2
dS , (4.1)

respectively. In Eq. (4.1), ∇ is the two-dimensional gradient on Ω, ∇2 the Laplacian, and
dS the infinitesimal area element. Letting V be the voltage applied across the plate and
electrode, ε0 the permittivity of free space (the permittivity of air being neglected), and
εr = εd/ε0 the relative permittivity of the dielectric, we adopt the approximate electric
potential

U =

∫
Ω

ε0V
2

2(H + d/εr − w)
dS , (4.2)

which several authors have used previously [52, 58, 67]. A derivation of Eq. (4.2) with d = 0
from Maxwell’s equations can be found in the work of Pelesko and Bernstein [68]. Finally,
the clamped boundary conditions read

w = 0 and ∇w = 0 on ∂Ω. (4.3)

There are many different ways the plate could feasibly come into contact with the di-
electric layer. The contact could occur at a single point, along a curve, or over an area.
There could be several separate regions of contact. The contact regions could have smooth
boundaries, or highly geometrically irregular ones. Due to the abundance of possibilities,
we must limit ourselves to a very particular case. The most practically relevant situation,
illustrated in Fig. 4.3, is when contact occurs over a single, finitely sized region Ω− ⊂ Ω, in
which w = H identically. The complementary region is denoted by Ω+ and the boundary
between the two, which is assumed to be smooth, by Γ. On physical grounds we require w
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and ∇w to be continuous across Γ, leading to the following interfacial conditions:
w = H and ∇w = 0 on Γ. (4.4)

Although we have not explicitly indicated so with our notation, Ω+ and Ω− (and therefore
Γ) vary with time. The contact interface Γ is not merely a moving boundary, but rather a
free boundary that is unknown a priori. A complete solution of the governing equations will
therefore consist of both a time-dependent displacement field w and curve Γ.

Because our system contains only conservative forces, we find it convenient to use a
variational principle to derive the governing equations. The Lagrangian L = T −W +U can
be partitioned according to

L =

∫
Ω−

L− dS +

∫
Ω+

L+ dS (4.5)

where
L− =

ε0V
2

2d
(4.6)

is the density associated with the (−) “phase” of the plate, and

L+ =
1

2
ρhẇ2 − 1

2
D
(
∇2w

)2
+

ε0V
2

2(H + d/εr − w)
(4.7)

is the density for the (+) phase. For now, the energy density of the (−) phase is simply the
same as that of the (+) phase, but evaluated at w = H and ẇ = 0. However, because we
will shortly introduce an approximation that makes the two densities differ, it is expedient
to distinguish between them from the outset. Given an initial state {w(x, 0),Γ(0)} and
final state {w(x, T ),Γ(T )}, the plate-electrode system is assumed to take some path in the
solution space such that the action

A =

∫ T

0

L dt (4.8)

is rendered stationary among all sufficiently smooth displacement fields w : Ω+ → R satis-
fying Eqs. (4.3) and (4.4), and all smooth contact interfaces Γ ⊂ Ω.

4.3 Derivation of Governing Equations
In this section we deduce necessary conditions that follow from δA = 0. These will consist
of an Euler-Lagrange equation holding in Ω+ and a Weierstrass-Erdmann corner condition
holding on Γ. Because the dielectric layer can be very thin in a practical device, we develop
the governing equations for two separate cases: one in which the dimensionless thickness
ε = d/(Hεr) is finite, and another in which ε → 0. It will be shown that the latter case has
the same variational structure as a plate with JKR-type adhesion in Ω− and no electrical
potential in Ω+, a correspondence that has been found in the context of a related problem
involving beams by Gorthi et al. [57], but not rigorously justified. Before proceeding to obtain
necessary conditions, however, we must first develop a handful of intermediate results.
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Intermediate Results
Denoting the variation of the free interface Γ by δx, Eq. (4.4) yields the compatibility
conditions

δw +∇w · δx = 0 and ∇δw +∇(∇w)δx = 0 on Γ+. (4.9)

Both conditions in Eq. (4.9) should be interpreted as holding in a limiting sense as Γ is
approached from the side of Ω+. Owing to the constancy of w = H and ∇w = 0 on Γ, the
only non-zero component of ∇(∇w) on Γ+ is n · ∇(∇w)n, and thus Eq. (4.9) yields

δw = 0 and ∇δw · n+∇2w δx = 0 on Γ+, (4.10)

where δx = δx · n. The same argument can be used to deduce that

ẇ = 0 on Γ. (4.11)

Reynolds’ transport theorem can be used to show

d

dt

(∫
Ω−

f dS +

∫
Ω+

g dS

)
=

∫
Ω−

ḟ dS +

∫
Ω+

ġ dS +

∫
Γ

(g − f)v ds , (4.12)

where v is the normal velocity of Γ as it evolves in the reference configuration (not the
velocity of a material point) and ds is the infinitesimal line element on Γ. Equation (4.12)
yields, in light of Eq. (4.11),

d

dt

∫
Ω+

ρhẇ dS =

∫
Ω+

ρhẅ dS . (4.13)

If we regard the time derivatives in Eq. (4.12) as variations instead, it follows immediately
that

δL =

∫
Ω−

δL− dS +

∫
Ω+

δL+ dS +

∫
Γ

(L+ − L−)δx ds . (4.14)

Observe that the normal velocity v is replaced by the normal variation δx in this interpre-
tation of the transport theorem.

Governing Equations for a Thick Dielectric Layer
When the dielectric layer is not thin (i.e., ε = d/(Hεr) > 0), the variational problem is
exactly as stated in Section 4.2. Inserting the Lagrangian densities, Eqs. (4.6) and (4.7),
into Eq. (4.14) and integrating by parts both spatially and temporally, we obtain

δL =−
∫
Ω+

[
ρhẅ +D∇4w − ε0V

2

2H2(1 + ε− w/H)2

]
δw dS

+

∫
Γ+

D(∇2w)2δx ds+
d

dt

∫
Ω+

ρhẇ δw dS ,

(4.15)
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where Eqs. (4.3), (4.10) and (4.13) have been invoked. The variation δA is obtained by
integrating Eq. (4.15) from t = 0 to t = T . Then, setting δA = 0 and making judicious
choices of δw and δx, we deduce the Euler-Lagrange equation

ρhẅ +D∇4w =
ε0V

2

2H2(1 + ε− w/H)2
in Ω+ (4.16)

and the Weierstrass-Erdmann corner condition

D(∇2w)2 = 0 or ∇2w = 0 on Γ+. (4.17)

The time-integral of the last term in Eq. (4.15) vanishes because δw = 0 at t = 0 and t = T ,
and therefore yields no additional necessary conditions.

Governing Equations for a Vanishingly Thin Dielectric Layer
As discussed previously, we would like to obtain the governing equations in the limit ε =
d/(Hεr) → 0. A naive approach might be to simply set ε = 0 in Eq. (4.16), but this is
problematic, for then the right-hand side is singular when w = H, which holds on Γ. We must
instead return to the original variational statement of the problem and make adjustments
to the electrical potential energy U before again deducing the boundary-value problem from
the stationarity of the action.

The electrical potential energy can be written

U =

∫
Ω−

εdV
2

2d
dS +

∫
Ω+

ε0V
2

2H(1 + ε− w/H)
dS , (4.18)

or, introducing A as the (constant) area of Ω,

U =
εdV

2

2d

[
A−

∫
Ω+

(
1 +

ε

1− w/H

)−1

dS

]
. (4.19)

The integrand in Eq. (4.19) has a convergent geometric series(
1 +

ε

1− w/H

)−1

= 1− ε

1− w/H
+

(
ε

1− w/H

)2

− . . . (4.20)

so long as w/H < 1− ε. However, w/H = 1 must be satisfied on Γ, so we can only use the
geometric series outside of a thin boundary layer Bε that is adjacent to Γ. We partition the
integral in Eq. (4.19) accordingly:∫

Ω+

(
1 +

ε

1− w/H

)−1

dS =

∫
Bε

(
1 +

ε

1− w/H

)−1

dS

+

∫
Ω+\Bε

[
1− ε

1− w/H
+

(
ε

1− w/H

)2

− . . .

]
dS

(4.21)
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In Bε, we have w/H ≤ 1, with equality as ε → 0, meaning that the integral over Bε in
Eq. (4.21) vanishes, and therefore

U → εdV
2

2d
A−, (4.22)

where A− is the (time-dependent) area of Ω−.
On account of Eq. (4.22), the Lagrangian can be cast in the form

L =

∫
Ω−

εdV
2

2d
dS +

∫
Ω+

[
1

2
ρhẇ2 − 1

2
D(∇2w)2

]
dS , (4.23)

which is exactly equivalent to the Lagrangian for a plate with no electrostatic forces but
instead a (reversible) JKR-type adhesion acting on the contacting region, where the driving
force

G =
εdV

2

2d
(4.24)

can be regarded as the work of adhesion, or the fracture toughness, of an imaginary adhesive
produced by the electric field in the infinitesimal region above the dielectric. The variation
of L is

δL =−
∫
Ω+

(
ρhẅ +D∇4w

)
δw dS +

∫
Γ+

[
1

2
D(∇2w)2 − εdV

2

2d

]
δx ds

+
d

dt

∫
Ω+

ρhẇ δw dS .

(4.25)

By the same procedure employed in the previous section, Eq. (4.25) allows us to deduce from
δA = 0 the Euler-Lagrange equation

ρhẅ +D∇4w = 0 in Ω+ (4.26)

and the Weierstrass-Erdmann corner condition

1

2
D(∇2w)2 = G on Γ+. (4.27)

Equation (4.27) has the same form as the adhesion-moment boundary condition encountered
in studies of beams and plates in contact with rigid surfaces endowed with JKR adhesion.1
It should be emphasized that there is no initiation criterion associated with delamination for
this special adhesive, and Eq. (4.27) holds whether the contact interface is locally retreating
or advancing. Indeed, the entire system is conservative and the “adhesion” reversible.

1See, e.g., the work of O’Reilly [7], Mastrangelo and Hsu [56], Majidi and Adams [69], or Hure and
Audoly [70]. As discussed by Goldberg and O’Reilly [71], the condition could also be established using a
configurational force balance for the plate.
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Summary of the Governing Equations
To summarize, we have deduced in either case a free boundary-value problem of the following
form:

ρhẅ +D∇4w = F (w) in Ω+ (4.28a)
w = 0 on ∂Ω (4.28b)

∇w = 0 on ∂Ω (4.28c)
w = H on Γ (4.28d)

∇w = 0 on Γ (4.28e)
∇2w = −C on Γ+ (4.28f)

subject to appropriate initial conditions. For the case of a dielectric of finite thickness, i.e.,
ε > 0,

F (w) =
ε0V

2

2H2(1 + ε− w/H)2
and C = 0, (4.29)

while for the case of a dielectric of vanishingly small thickness, i.e., ε → 0,

F (w) = 0 and C =

√
2G
D

, (4.30)

where G = εdV
2/(2d) (cf. Eq. (4.24)). The parameters ρ, h, D, ε0, εd, V , H, and ε are

treated as given data.

Linear Vibration and Stability
We can assess the stability of static configurations of the plate (i.e., solutions of Eq. (4.28)
with no dependence on time t) by linearizing the dynamics about such a configuration and
seeking solutions that grow in time. This method of stability analysis, though lacking rigor-
ous mathematical justification for PDE systems, is widely used in engineering applications.
It is important to realize that because we are dealing with a free-boundary problem, we
must do more than simply linearize the differential equation, Eq. (4.28a). Since the con-
tact interface Γ can vary with time, we must also linearize the domain Ω+ over which the
boundary-value problem is defined.

To begin the process of linearizing the dynamics about {w0(x),Γ0}, we assume

w = w0 + εw1, (4.31)

where ε is a small bookkeeping parameter (not to be confused with ε = d/(Hεr), the dimen-
sionless dielectric thickness). Inserting Eq. (4.31) into Eq. (4.28a) and retaining only terms
linear in ε, we obtain

ρhẅ1 +D∇4w1 = F ′(w0)w1, (4.32)
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where F ′ = dF/dw. Equations (4.28b) and (4.28c), the two boundary conditions on ∂Ω,
yield

w1 = 0 and ∇w1 = 0 on ∂Ω0. (4.33)

Moving on to the linearization of the conditions at the contact interface, let X be an
arbitrary point on Γ at time t. Because Γ is close to Γ0, the interface in the static configu-
ration, we can always find a corresponding point X0 ∈ Γ0 by following the unit normal n0

to Γ0 that satisfies the following relation:

X = X0 + εX1n0, (4.34)

where X1 is the “displacement” of the contact boundary from its location in the static
configuration.

Each of the interface conditions, Eqs. (4.28d) to (4.28f), is an expression of the form

f(X, t) = 0 for X ∈ Γ. (4.35)

Writing f = f0 + εf1, using Eq. (4.34), and isolating the coefficients of ε0 and ε1, we obtain

f1(X0, t) + f0,n(X0)X1 = 0 for X0 ∈ Γ0, (4.36)

where the shorthand (),n = ∇() ·n0 has been employed. Applying Eq. (4.36) to Eqs. (4.28d)
to (4.28f) and making some simplifications produces the following boundary conditions on
Γ+
0 :

w1 = 0, w1,n = CX1, ∇2w1 +
(
∇2w0

)
,n
X1 = 0. (4.37)

Equation (4.37) can be rearranged to eliminate X1, yielding the following boundary-value
problem for w1:

ρhẅ1 +D∇4w1 = F ′(w0)w1 in Ω+
0 (4.38a)

w1 = 0 on ∂Ω0 (4.38b)
w1,n = 0 on ∂Ω0 (4.38c)
w1 = 0 on Γ0 (4.38d)(

∇2w0

)
,n
w1,n + C∇2w1 = 0 on Γ+

0 (4.38e)

After solving Eq. (4.38) subject to initial conditions on w1 and ẇ1, one can compute X1 =
−∇2w1/(∇2w0),n a posteriori for all points on Γ0.

Some comments are in order about Eq. (4.38). In the thin-dielectric model, C = 0
and therefore Eq. (4.38e) reduces to w1,n = 0 on Γ+

0 . Also, F = 0 identically, so the
right-hand side of Eq. (4.38a) becomes zero. The dynamics are then equivalent to those
of a plate occupying Ω+

0 that is clamped on its inner and outer boundaries. In the thick-
dielectric model, the dynamics are also equivalent to a plate occupying Ω+

0 with its outer
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boundary clamped, but with some important differences: the equivalent plate rests on a non-
uniform elastic foundation with stiffness −F ′(w0) and its inner boundary Γ0 is connected to
a distributed torsional spring with stiffness −D(∇2w0),n/C.2

We assess stability by seeking solutions to Eq. (4.38) of the form

w1(x, t) = φ(x)eΛt, (4.39)

where φ : Ω+
0 → C and Λ ∈ C are to be determined. The eigenfunctions {φn} are the

complex mode shapes and the imaginary part of the eigenvalues {Λn} are the corresponding
natural frequencies. The general response of the linearized system is a superposition of all
the modes, so if any one of the eigenvalues has ReΛn > 0, then the n-th component of the
superposition can be expected initially to grow in time if the system is perturbed slightly
away from equilibrium (i.e., if w1(x, 0) 6= 0 and/or ẇ1(x, 0) 6= 0). Thus if we can find at least
one solution with ReΛ > 0, we refer to the underlying equilibrium state as linearly unstable.
Inserting Eq. (4.39) into Eq. (4.38) leads to the following eigenvalue problem:

ρhΛ2φ+D∇4φ = F ′(w0)φ in Ω+
0 (4.40a)

φ = 0 on ∂Ω0 (4.40b)
φ,n = 0 on ∂Ω0 (4.40c)
φ = 0 on Γ0 (4.40d)(

∇2w0

)
,n
φ,n + C∇2φ = 0 on Γ+

0 (4.40e)

The eigenvalue problem defined by Eq. (4.40) is homogeneous in the mode shape φ (i.e., any
scalar multiple of φ is also a solution), so an additional normalization condition must be
used when obtaining numerical solutions in order to close the system of equations.

Axisymmetric Problem
From here to the end of the chapter we limit ourselves to studying axisymmetric solutions
for circular actuators. In this case, Ω is a disk of radius b and Γ a circle of radius a. Letting
r be a radial coordinate emanating from the center of Ω, solutions consist of w = w(r, t) and
a = a(t), and the governing two-point boundary-value problem reads:

ρhẅ +D∇4w = F (w) (4.41a)
w(b, t) = 0 (4.41b)
w′(b, t) = 0 (4.41c)

w(a(t), t) = H (4.41d)
w′(a(t), t) = 0 (4.41e)
w′′(a(t), t) = −C (4.41f)

2The (scalar) bending moment is M = −D∇2w [72, Section 1.4.1].
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where
∇4w = w′′′′ +

2

r
w′′′ − 1

r2
w′′ +

1

r3
w′, (4.42)

the shorthand ()′ = ∂()/∂r being employed throughout. Initial conditions should be specified
on w(r, 0), ẇ(r, 0), and a(0). The linear stability problem defined by Eq. (4.40) becomes as
follows: [

D∇4 + ρhΛ2 − F ′(w0)
]
φ = 0 (4.43a)

φ(b) = 0 (4.43b)
φ′(b) = 0 (4.43c)
φ(a0) = 0 (4.43d)

Cφ′′(a0) + w′′′
0 (a0)φ

′(a0) = 0 (4.43e)

In the following sections, we use the solver bvp4c in MATLAB to solve Eq. (4.41) for the
static equilibria and Eq. (4.43) to assess their stability.

4.4 Static Equilibria Before Touchdown
No matter whether we are considering a thick or thin dielectric layer, it is prudent to in-
vestigate the static equilibria of the plate prior to touchdown before moving on to study-
ing equilibria post-touchdown. Fortunately, the pre-touchdown problem is straightforward
to formulate: simply replace Eqs. (4.41d) to (4.41f) with the requirement that w(0, t) be
bounded and let F (w) be given by the expression in Eq. (4.29). With a suitable nondi-
mensionalization, it can be shown that static solutions depend only on the dimensionless
parameters

ε =
d

Hεr
and λ =

ε0V
2b4

DH3
. (4.44)

Thus, all solutions can be classified in the (λ, ε)-plane. In the sequel, we limit discussion to
cases where ε > 0 (since the dielectric thickness cannot be negative) and λ > 0 (since the
electrode must attract the plate rather than repel it if touchdown is to occur for sufficiently
large voltages).

A bifurcation diagram of the static equilibria for several fixed ε is shown in Fig. 4.4.
Special attention should be paid to the curve corresponding to ε = εc ≈ 1.16. For 0 ≤ ε < εc,
there can be zero, one, or two physically meaningful equilibria, depending on the value of λ.
For ε > εc, however, there can be only zero or one, and the pull-in instability is absent. Any
solutions violating the constraint w/H ≤ 1 are unphysical, so the vertical axis of the figure
ranges only from 0 to 1. The dash-dotted line in Fig. 4.4 connects the turning points of the
curves for varying ε. It intersects w0(0)/H = 1 at λ = λc ≈ 280.

By translating the results of Fig. 4.4 into the (λ, ε)-plane, we obtain a full characteriza-
tion of various solution regimes and the bifurcations that occur between them. Referring to
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Figure 4.4: Bifurcation diagram for the pre-touchdown equilibria when ε takes on several
different values. The pull-in instability does not occur for ε > εc ≈ 1.16.

Fig. 4.5, passing from the two-solution zone to the zero-solution zone, a saddle-node bifur-
cation occurs. The boundary of the one-solution zone, which corresponds to w0(0)/H = 1,
can be shown to approach λ = 128ε2 as ε → ∞.

4.5 Static Equilibria After Touchdown
The solution space of the post-touchdown equilibrium problem is markedly more difficult to
characterize than that of the pre-touchdown problem, and this is for two reasons. First, a
distinction must be made between the thick-dielectric (ε > 0) and thin-dielectric (ε → 0)
models that need not be made in the pre-touchdown problem. Second, as we demonstrate
in the sequel, the structure of the equilibria as λ and ε are varied can be quite complex. We
therefore do not attempt to provide a comprehensive characterization of the solutions in the
(λ, ε)-plane akin to Fig. 4.5, but instead focus on demonstrating the numerical convergence
of the thick-dielectric solutions to the thin-dielectric solution as ε is decreased.

As a point of clarification, it is not hard to show that solutions to the post-touchdown
equilibrium problem, like those of the pre-touchdown equilibrium problem, depend only on
the parameters λ and ε. However, since w(0)/H = 1 by definition in the post-touchdown
problem, we must use a different quantity to characterize solutions when constructing an
analogue of Fig. 4.4. A natural choice is the dimensionless (static) contact radius α0 = a0/b.
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Figure 4.5: Characterization of the pre-touchdown equilibria in terms of the control param-
eters λ and ε. There is exactly one solution at any point on the curves separating the three
regions. The critical triple-point marked by the asterisk corresponds to λ = λc ≈ 280 and
ε = εc ≈ 1.16.

Thick Dielectric
Figure 4.6 shows a bifurcation diagram constructed for various ε > 0, with λ being the
control parameter and α0 the response variable. We clearly see that there can be zero, one,
two, or three equilibria depending on the values of ε and λ. Furthermore, unstable equilibria
appear only to exist when ε . 0.01105. One shortcoming of this plot is that it does not
clearly display a limiting behavior as ε → 0, a matter that will be remedied shortly. It is
also unclear whether or not, for fixed ε, λ approaches some finite value as α0 → 0.

Thin Dielectric
In the thin-dielectric case (ε → 0), it is actually possible to solve for the equilibria semi-
analytically. Many of the results we recount here have been obtained in the literature for the
equivalent adhesion problem [56, 73], so some details are omitted. The displacement field is

w0(r; a0)

H
= c1

(r
b

)2
+ c2

(r
b

)2
ln
(r
b

)2
+ c3 ln

(r
b

)2
+ c4 (4.45)
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Figure 4.6: Bifurcation diagram of post-touchdown equilibria for various finite ε in the
thick-dielectric model. The dotted segments correspond to solutions that are unstable as de-
termined by the method outlined in Section 4.3. The dash-dotted curve marks the boundary
of the unstable regime, and its limiting behaviors are indicated. As discussed in Section 4.5,
αc ≈ 0.176 is the boundary between stable and unstable solutions in the thin-dielectric
model. The critical thickness below which unstable equilibria appear possible is ε ≈ 0.01105.

with coefficients

c1 =
1− α2

0 − α2
0 lnα

2
0

Q(α0)
= −c4 (4.46a)

c2 = −1− α2
0

Q(α0)
(4.46b)

c3 =
α2
0 lnα

2
0

Q(α0)
(4.46c)

where Q(α) = (α lnα2)
2 − (1− α2)

2. The quantity α0 = a0/b is unknown a priori and must
be determined from the solvability condition

γ = 8

[
1− α2

0 + lnα2
0

Q(α0)

]2
(4.47)

where γ = Gb4/(DH2) = λ/(2ε) is a dimensionless measure of the strength of the fictitious
adhesive in the thin-dielectric model.
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Figure 4.7: Bifurcation diagram for post-touchdown equilibrium solutions of the thin-
dielectric model (left) and the stable and unstable solutions at γ = 185 (right).

Equation (4.47) possesses no solutions when γ < γc ≈ 157.3, one solution when γ = γc
(in which case α0 = αc ≈ 0.176), and two when γ > γc. These facts are reflected in the
bifurcation diagram in Fig. 4.7. Energetic considerations readily show that, when γ > γc,
the equilibrium corresponding to the larger value of α0 is stable while that corresponding
to the smaller α0 is unstable [55]. Thus a saddle-node bifurcation takes place at γ = γc.
Another important observation from Eq. (4.47) is that point-adhesion is not possible in the
thin-dielectric model. That is to say, there does not exist any finite γ for which α0 = 0 is an
equilibrium, even in a limiting sense.

In light of Eqs. (4.1), (4.22), and (4.45) to (4.47), the total potential energy of the
plate-electrode system in the thin-dielectric model is, in dimensionless terms,

Πb2

DH2
= − 8π

Q(α0)

[
1− α2

0 +
α2
0

Q(α0)

(
1− α2

0 + lnα2
0

)2]
. (4.48)

Equation (4.48) is remarkably simple. For any valid equilibrium with 0 < α0 < 1, it tells
us exactly the total potential energy without the need for any intermediate calculations. It
is worthwhile noting, however, that setting dΠ/dα0 = 0 from Eq. (4.48) is not a statement
of the principle of stationary potential energy. This is because the “load” γ is not fixed in
Eq. (4.48), but rather varies as necessary according to Eq. (4.47) in order to ensure that a
solution exists.

Comparison Between Thick- and Thin-Dielectric Models
The thick- and thin-dielectric models can be compared by plotting the total potential energy
Π versus α as in Fig. 4.8. In that figure, the solid lines correspond to solutions of the thick-
dielectric model with various values of ε, the lightest gray being ε = 10−1 and the black
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Figure 4.8: Comparison between post-touchdown equilibrium solutions to the thick-dielectric
equations (ε > 0, solid curves) and the thin-dielectric equations (ε → 0, dash-dotted curve).
The nineteen solid curves correspond to thick-dielectric solutions ranging from ε = 10−1 in
the lightest gray to ε = 10−3 in black, with the intermediate values being logarithmically
spaced.

being ε = 10−3. Each solid line was generated under “displacement” control, i.e., for a given
ε, we swept through a range of values of α0, leaving λ to be determined. The dashed line
represents Eq. (4.48), the result from the thin-dielectric model. Because the thick-dielectric
results so clearly converge to the thin-dielectric result, we can be confident in the usefulness
of the latter model as an approximation to the former for ε small. Indeed, when we move on
to study the dynamics of this system in subsequent sections of the chapter, our focus will be
on the thin-dielectric model.

A method of comparing the thick- and thin-dielectric models that incorporates some
elements of the system’s dynamics is to record how the first eigenvalue Λ1 = µ1 + iω1 of the
linearized dynamics as per Section 4.3 varies as ε and α are varied. (Recall that ω1 is also
the natural frequency.) This comparison is made in Fig. 4.9. It should be noted that the
values of α for which µ1 > 0 correspond exactly to the regimes of instability marked by the
dotted segments in Fig. 4.6.

4.6 Dynamics of the Thin-Dielectric Model
Having shown that the thin-dielectric model is a good approximation to the thick-dielectric
model for ε = d/(Hεr) small, we now turn our attention entirely to the former and investigate
the post-touchdown dynamics.
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Figure 4.9: Evolution of the first eigenvalue Λ1 = µ1 + iω1 of the linearized dynamics for
both the thick-dielectric model (with various ε) and the thin-dielectric model. The dash-
dotted curves correspond to the thin-dielectric model. Note that the curve in the upper
panel is somewhat obscured due to the rapid convergence of the thick-dielectric solutions
as ε is decreased. The instability is of the divergence type, as is expected in the case of a
conservative, non-gyroscopic system.

The free boundary r = a(t) makes analytical solution of the exact dynamics practically
impossible, so we must resort to approximate techniques. One possibility is to use a finite
element code with an algorithm that accounts for contact between the plate and the dielectric.
While such a model may be relatively straightforward to implement, it has the fundamental
limitation that the resolution of a(t) is set by the mesh size, not the time step and wave speed.
It is known that the motion of contact interfaces has a strong influence on the dynamics of
the overall system [11], so we can expect large changes in a(t) over the course of a single
time step to introduce spurious frequency content in the overall response. Indeed, exactly
this setback has been observed in a very similar contact problem [22, Fig. 2].

A remedy to the issue of spurious spectral content is to use a sort of arbitrary Lagrangian-
Eulerian (ALE) method in which the time-varying spatial domain a(t) < r < b is mapped
to a fixed spatial domain a0 < R < b. The simplest mapping that accomplishes this is the
linear one:

R(r, t) =
b− r

b− a(t)
a0 +

r − a(t)

b− a(t)
b. (4.49)
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Recognizing that any function f = f(r, t) can also be written f = f̄(R, t), we have f(r, t) =
f̄(R(r, t), t). Differentiating with respect to r and t, respectively,

f ′ =
∂f

∂r
=

∂f̄

∂R

∂R

∂r
and ḟ =

∂f

∂t
=

∂f̄

∂t
+

∂f̄

∂R

∂R

∂t
. (4.50)

These formulas allow us to transform the original problem, Eq. (4.41), which was posed on
the time-varying spatial domain, to one posed on the fixed spatial domain. The new problem
can then be solved by any number of standard numerical techniques, such as finite elements
[11, 46] or modal superposition [74]. The downside to this approach is that it introduces
new terms to the PDE that are highly nonlinear in a.

A third numerical technique is based on the assumption

w(r, t) = w0(r; a(t)) +
N∑

n=1

φn(r; a(t))qn(t) (4.51)

where φn(r; a) are the axisymmetric vibration modes of a plate with inner radius a (and
density ρ, flexural rigidity D, etc.). Equation (4.51), which automatically satisfies the
requisite kinematic boundary conditions, is inserted into the Lagrangian to obtain L =
L(a, q1, q2, . . . , qN , ȧ, q̇1, q̇2, . . . , q̇N), from which N + 1 Euler-Lagrange equations for (a, qi)
follow. Approaches of this type have been employed in several applications, including axi-
ally moving media [75, 76], contact [77], and fracture mechanics [78, 79]. One shortcoming,
noted by Abdelmoula and Debruyne [79], is that this method can lead to violation of the im-
penetrability constraint w ≤ H. However, the same authors do mention that said violation
is small and does not significantly affect the overall dynamics in their application.

The three methods outlined above are entirely numerical and provide no insight into the
fundamental dynamics of the system, not to mention that they all have unique challenges in
computational implementation. It is therefore desirable to have some approximate analytical
tools available to gain at least a qualitative understanding of the dynamics. Perturbation the-
ory has proven successful in analyzing small vibrations about equilibria in similar problems
[10, 11, 33, 42], but this approach has the major downside of not being able to accommodate
large deviations of a(t) from a0, such as occur in a dynamic release of the actuator. For this
purpose it is useful to borrow an approach commonly used in dynamic fracture mechanics
[78] and employed on a handful occasions in the context of MEMS adhesion [22, 59, 60]. We
assume Eq. (4.51) holds with N = 0, i.e.,

w(r, t) = w0(r; a(t)). (4.52)

In similar fashion to the previously described numerical method, Eq. (4.52) is inserted into
the Lagrangian to obtain L = L(a, ȧ), from which follows a single Euler-Lagrange equation
known in the fracture literature as a “crack tip equation of motion.” While this method
does neglect the small-scale vibrations that occur as the plate moves, it has the distinct
advantage of capturing the underlying bulk motion all the while enabling the application of
many standard analytical tools.
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Equation of Motion
Under the assumption of Eq. (4.52), the kinetic energy is

T

2π
=

1

2
ρhH2m

(a
b

)
ȧ2 where m(α) =

∫ 1

α

(
∂w̄0

∂α

)2

r̄ dr̄ . (4.53)

The quantity m(α), the meaning of which will be discussed momentarily, has a lengthy
expression that we omit here. With the strain energy being

W

2π
=

DH2

b2
4(α2 − 1)

Q(α)
. (4.54)

and recalling that U = εdV
2/(2d) in the thin-dielectric model, the Lagrangian is given by

L(a, ȧ) = T (a, ȧ)−W (a) + U . Introducing the following dimensionless quantities,

r̄ =
r

b
, τ =

t

b2
√
ρh/D

, w̄ =
w

H
, L̄ =

Lb2

2πDH2
, (4.55)

and using α̇ to denote dα/dτ rather than dα/dt as used previously, the dimensionless La-
grangian can be expressed as

L̄(α, α̇) =
1

2
m(α)α̇2 − v(α) where v(α) =

4(α2 − 1)

Q(α)
− 1

2
γα2, (4.56)

which reflects a particle of position-dependent mass m(α) in a one-dimensional potential
V (α). It should be noted that the condition of equilibrium, dV/dα = 0, is equivalent to
Eq. (4.47).

The equation of motion associated with Eq. (4.56) can be written in several insightful
forms, one being

m(α)α̈ = F (α, α̇) where F (α, α̇) = − ∂

∂α

[
1

2
m(α)α̇2 + v(α)

]
, (4.57)

which bears a superficial similarity to Newton’s second law. A consequence of Eq. (4.57) is
the conservation of the (dimensionless) total mechanical energy

e =
1

2
m(α)α̇2 + v(α). (4.58)

Phase Portraits
The equation of motion, Eq. (4.57), describes a single-degree-of-freedom system whose so-
lutions depend on a single parameter γ. A great deal of insight can therefore be gained by
investigating how the (α, α̇)-phase portrait changes as γ is varied. Figure 4.10 shows three
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Figure 4.10: Phase portraits for (a) γ = 185, (b), γ = γc ≈ 157.3, and (c) γ = 100. Where
present, the dashed curves are the separatrices that form the boundary between closed and
non-closed trajectories of the system. The direction of the closed trajectories is clockwise,
and the non-closed trajectories run from top to bottom. “Warmer” colors correspond to
larger e, while “cooler” colors correspond to smaller e.
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Figure 4.11: Time series of a typical closed trajectory (left) and typical non-closed trajectories
(right) corresponding to the labels A, B, and C in Fig. 4.10(a). The dashed line in each plot
indicates the stable equilibrium.
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phase portraits, one where γ > γc, another where γ = γc, and a third where γ < γc. The
direction of the non-closed trajectories is from top to bottom, while the direction of the
closed orbits is clockwise.

Several interesting features can be gleaned from the phase portraits. For one, when γ >
γc, closed orbits around the stable equilibrium α(t) = αH exist. What’s more, these orbits are
asymmetric, meaning that the plate’s excursion from equilibrium is greater when it is lifting
off of the dielectric (α(t) > αH) than when it is pushing down onto the dielectric (α(t) < αH).
Another interesting feature is that all of the non-closed trajectories are asymptotic to α = 0,
but α(t) → 0 in finite time from any initial condition outside of the separatrix. (This is finite-
time blow up in mathematical terms.) Physically speaking, α = 0 means that the plate has
released from the dielectric. A real-world MEMS device of the sort being considered here can,
of course, achieve release in finite time. It is remarkable that our qualitative model, with
its many drastic simplifying assumptions, still reflects this behavior. Numerical solutions
starting from the points labeled A, B, and C in Fig. 4.10(a) are illustrated in Fig. 4.11,
clearly demonstrating the asymmetry of the closed orbits and the finite-time blow-up of the
non-closed trajectories.

Parametric Excitation and Application to Stiction Repair
We now briefly apply our model to the problem of vibration-assisted stiction repair, a topic
that has been studied previously [59, 60]. Consider the following idealized case: a certain
voltage V0 has been applied that is large enough to cause stiction, meaning that the actuator
is “stuck” at the stable fixed point α = αH (cf. Fig. 4.10(a)). If we only have control over
small dynamic deviations from V0, can the actuator be released from the initial conditions
α(0) = αH and α̇(0) = 0? This is a problem of parametric excitation in a strongly nonlinear
system, a complete treatment of which would require its own full-length chapter. Here we
merely demonstrate the ability of our model to capture the qualitatively correct dynamics.

Recall that γ is proportional to the squared voltage. It is therefore somewhat more
useful, though we are still dealing with a purely qualitative model, to replace γ = ν2. We
can accomplish stiction repair by superposing a small linear chirp of amplitude δ on top of
the static ν0:

ν(τ) = ν0 + δ sin (Ω(τ)τ), Ω(τ) = (1− βτ)ωH . (4.59)

Here, ωH is the linearized natural frequency about the stable fixed point. Savkar and Murphy
[60] investigated a similar excitation technique for releasing a stiction-failed MEMS beam,
and found that a decreasing chirp was more effective than an increasing one, motivating our
choice of the former. Figure 4.12 shows the response of a system with γ0 = 160 to a chirp
of amplitude δ = 0.01 and decay rate β = 0.002, suggesting that the strategy of applying a
small-amplitude decreasing voltage chirp may be a feasible technique to use in a real device.
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Figure 4.12: Response of the reduced-order dynamics with γ0 = 160 due to the voltage chirp
given by Eq. (4.59) with δ = 0.01 and β = 0.002: time series (left) and phase plane trajectory
(right). The dashed lines in the time series represent the maximum and minimum values of
α for orbits within the separatrix indicated by the dashed curve in the phase plane.

4.7 Conclusion
In this chapter, we studied the fundamental mechanics of contact in plate-based electrostatic
actuators, with a special interest in the nonlinear effects induced by the motion of the con-
tact interface. Using a variational principle, we derived two models: one in which a certain
dimensionless parameter was finite (what we called the thick-dielectric model) and another
where the parameter was vanishingly small (the thin-dielectric model). After characteriz-
ing the equilibrium solutions to the axisymmetric problem for both models, we discussed
the challenges associated with solving the transient dynamics before applying a simplifying
approximation to the thin-dielectric model to obtain a single second-order ordinary differ-
ential equation for the location of the contact interface. The solutions of this differential
equation were studied in the phase plane and the relevance of the model to the problem of
vibration-assisted stiction repair was discussed briefly.

There are a number of aspects of touchdown dynamics that deserve further study. One is
the issue of nonlinear vibrations. As suggested by previous work on problems involving rods
and beams [11], the leading-order nonlinear effect of the contact interface should be to induce
superharmonic and combination resonances. It may be possible to exploit these resonances
to accelerate stiction repair. Another avenue of research would be to study the comparative
advantages of the various numerical methods discussed in Section 4.6 and to extend them
to non-axisymmetric solutions. Finally, it would be useful for the design of practical MEMS
devices to extend the models proposed in this chapter to incorporate the effects of several
physical phenomena we omitted, including the electrical fringing field, mid-plane stretching
of the plate, and squeeze-film damping.
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Chapter 5

Concluding Remarks

In this dissertation we have explored several topics in the dynamics of structures with uni-
lateral contact constraints by way of example. After having presented some basic ideas in
Chapter 1, we proceeded to study in Chapter 2 the linearized dynamics of a system that
models microelectromechanical cantilevers and flexible risers. Then, in Chapter 3, we inves-
tigated the nonlinear dynamics of the same system and discovered a pattern in the nonlinear
resonances induced by the constraint of contact. A generalization of this result led us to
the conclusion that similar patterns would likely arise in a wide array of structural systems
with contact, a result with implications for the design of vibration-critical systems. While
Chapters 2 and 3 concerned only problems of beams moving in the plane, we studied in
Chapter 4 a problem of a plate in three dimensions. Despite the fact that the plate prob-
lem was significantly more involved to formulate, its dynamics had many similarities to the
beam problems, in large part due to both beams and plates being governed by a spatially
fourth-order partial differential equation.

Chapters 2 and 3 suggest a number of avenues for future research on the problem of
the contacting cantilever. One direction could be to apply similar methods of analysis to
more sophisticated models of MEMS cantilevers and flexible risers and determine the extent
to which the nonlinear resonances are important for realistic parameter values. Another
direction could be to continue to study our simplistic model but with a handful of added
features. For example, a natural question is whether contact can generate chaotic motions,
especially in the presence of forcing. The conditions under which the beam can sustain mul-
tiple regions of contact may also be interesting. The beam could hypothetically eject pulses
into the contacting region that then travel off to infinity, thereby dissipating energy from the
initial non-contacting region. It would also be interesting from a theoretical point-of-view to
investigate how the dynamics differ when a rod theory that accounts for additional effects
such as extension, shear, cross-sectional deformation, and warping is employed. Indeed, it is
well-known that inextensible, unshearable rod theories (such as Euler-Bernoulli beam the-
ory) fail to capture the correct three-dimensional deformation fields in the vicinity of contact
interfaces.

The plate problem from Chapter 4 provides countless opportunities for future research.
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There is a wide variety of rich behaviors that can arise due to the fact that the contact
interface is a curve rather than a point. As an example, it could be the case that certain
non-axisymmetric perturbations to an axisymmetric motion are unstable in a manner that is
geometrically similar to the fingering instability in Hele-Shaw cells [80]. Studying this sort of
problem would necessitate the development of numerical techniques that can track the non-
axisymmetric contact interface, which is no small task in and of itself. One promising method
might involve regarding the current domain as a conformal mapping of a simple reference
domain, such as a sphere. The mapping could then be approximated by some means and
then introduced into the governing equations. The advantage of using a conformal mapping
is that it would preserve the biharmonic operator in the differential equation. In addition
to non-axisymmetric motions, one could also study the dynamics of the transition from
pre-touchdown to post-touchdown configurations, especially the moment at which the plate
impacts the substrate. There are also several additional nonlinear-dynamical matters worth
pursuing, such as a detailed analysis of the periodic motions the plate can execute after
touchdown and the implications of the saddle-node bifurcation in the static equilibria of the
thin-dielectric model for bottlenecking.

There are countless technological applications where a proper modeling of contact dy-
namics using the principles from this dissertation would be beneficial. One mentioned briefly
in Chapter 1 is vibration-mediated adhesion, in which small-amplitude, high-frequency vibra-
tions can be used to greatly enhance the pull-off force of an adhesive contact, or reduce it to
zero. Recent research has shown that this technique can outperform the well-known “gecko”
adhesion technology by certain metrics [5]. Mechanical metamaterials are another potential
application; contact interactions between cells could be used to tune exotic dynamics in
the bulk “material.” Vibration-induced loosening of bolted joints, a major nuisance across
countless industries, also poses several opportunities for contact dynamicists, as analyses are
typically limited to the case where a bolt is sufficiently tight that the contact surface (often
called the bearing surface in this context) is fixed. During incipient loss of bolt tension,
however, the bearing surface can change size and shape. Taking this into account would be
an especially challenging, but rewarding, application of the sort of analysis conducted in this
dissertation.
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A.1 Small-on-Small Vibrations with Combined
Gravity and Adhesion

Recall that the leading-order dynamics of the linearized system are governed by Eqs. (2.21)
to (2.24) and Eq. (2.29), except with the rotational spring stiffness K given by Eq. (2.32).
Following the standard procedure, we seek solutions of the form y1(x, t) = Y (x) sin(ωt) with
the goal of determining the admissible natural frequencies ω. We then must solve

−ω2Y +
d4Y

dx4
= 0 (A.1)

subject to

Y (0) = 0 ,
dY

dx
(0) = 0 , Y (`0) = 0 ,

d2Y

dx2
(`0) = K

dY

dx
(`0) . (A.2)

Introducing β =
√
ω, the general solution of Eq. (A.1) is

Y (x) = A cos(βx) +B sin(βx) + C cosh(βx) +D sinh(βx) . (A.3)

Applying Eq. (A.2)1,2 leads to

Y (x) = A [cos(βx)− cosh(βx)] +B [sin(βx)− sinh(βx)] . (A.4)

Equation (A.2)3,4 give rise to an algebraic system of the form[
c1 c2
c3 c4

] [
A
B

]
=

[
0
0

]
, (A.5)

where

c1(β;w,M`) = K [sin(β`0) + sinh(β`0)]− β [cos(β`0) + cosh(β`0)] , (A.6)
c2(β;w,M`) = −K [cos(β`0)− cosh(β`0)]− β [sin(β`0) + sinh(β`0)] , (A.7)
c3(β;w,M`) = cos(β`0)− cosh(β`0) , (A.8)
c4(β;w,M`) = sin(β`0)− sinh(β`0) . (A.9)

In order for non-trivial solutions of Eq. (A.5) to exist, we must have

c1c4 − c2c3 = 0 . (A.10)

Given the parameters w and M` as well as `0 from the corresponding static solution,
Eq. (A.10) is a transcendental equation for β =

√
ω that is readily solved with a numerical

root-finding method.



APPENDIX A. DETAILS ON THE LINEAR ROD VIBRATION PROBLEM 85

A.2 Nonlinear Stability
For completeness, we present a nonlinear stability criterion for the static equilibrium con-
figuration of a heavy elastic rod with one end fixed and the other end contacting a smooth
surface with the possible presence of dry adhesion. The criterion was developed by Majidi et
al. [31, 32] and is based on establishing conditions by which the potential energy functional
is minimized with respect to perturbations in θ0(s) and `0 that preserve the boundary con-
ditions. The version of the criterion for the problem of interest here is discussed by O’Reilly
[7, Section 4.7.2].

For a given static configuration of the rod, θ0(s) and `0 are known. There are two parts
to the criterion. The first part verifies that the rod has not buckled by finding a bounded
solution r(s) to a Ricatti equation:

dr

ds
+ P0 −

r2

EI
= 0 , r(0) = 0 , s ∈ [0, `0) , (A.11)

where P0 = P0(s) is the tangential component of the contact force (or tension) in the rod:

P0 = F0 cos θ0 +G0 sin θ0 . (A.12)

The second part captures stability with respect to perturbations to `0:

S0
dθ0
ds

(`−0 )− ρ0g sin θ0(`
−
0 ) ≥

[
dθ0
ds

(
`−0
)]2

r(`−0 ) , (A.13)

where
S0 = −EI

d2θ0
ds2

(`−0 ) , (A.14)

and, for any function f(x),

f(`−0 ) = lim
σ→0

f(`0 − σ) , σ > 0 . (A.15)

For a given static configuration of the rod, if a bounded solution r = r(s) to Eq. (A.11) can
be found and Eq. (A.13) is satisfied, then the static configuration is said to be nonlinearly
stable.

For the problem at hand θ0(`0) = 0 and we can use Eq. (2.41) to simplify the expression
for S0: S0 = G0. Thus, Eq. (A.13) simplifies to

G0 ≥
[
dθ0
ds

(`−0 )

]
r(`−0 ). (A.16)

While G0 is the vertical component of the contact force in the rod, the inequality Eq. (A.16)
has no obvious physical interpretation.
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Here we describe the numerical method used in Section 3.2 to solve Eqs. (3.1) to (3.5).
A similar approach for a more general class of problems has been developed by Humer et
al. [45, 46], motivated by the earlier method of Vu-Quoc and Li [13]. The first step is to
introduce the stretching transformation z = ξ/γ(t), which maps the variable spatial domain
[0, γ(t)] to the fixed one [0, 1]. By writing y = y(ξ, t) = ỹ(γ(t)ξ, t) and then applying the
chain rule, Eq. (3.1) becomes

ρ0

[
∂2ỹ

∂t2
+

(
2γ̇2

γ
− γ̈

)
z

γ

∂ỹ

∂z
− 2γ̇z

γ

∂2ỹ

∂t∂z

+

(
γ̇z

γ

)2
∂2ỹ

∂z2

]
+

1

γ4

∂2

∂z2

(
EI

∂2ỹ

∂z2

)
= −ρ0g .

(B.1)

The appropriate boundary conditions are ỹ = a and ∂ỹ/∂z = 0 at z = 0, and ỹ = ∂ỹ/∂z =
∂2ỹ/∂z2 = 0 at z = 1. We have now transformed the free-boundary-value problem to one on
a fixed domain, a simplification that comes at the cost of a substantially more complicated
differential equation, Eq. (B.1), that contains an advective term as well as γ, γ̇, and γ̈. Our
method is quasi-Eulerian in the sense that fixed values of the coordinate z correspond neither
to fixed material points nor to fixed locations in space.

In order to obtain the weak form for a typical interior element Ωe = (ze1, z
e
2) ⊂ (0, 1), we

multiply Eq. (B.1) by the test function w = w(z, t) and integrate the result over Ωe. After
applying integration by parts twice to the bending stiffness term, we obtain the following:∫

Ωe

wρ0
∂2ỹ

∂t2
dz +

[
2

(
γ̇

γ

)2

− γ̈

]∫
Ωe

wρ0z
∂ỹ

∂z
dz

− 2γ̇

γ

∫
Ωe

wρ0z
∂2ỹ

∂z∂t
dz +

(
γ̇

γ

)2 ∫
Ωe

wρ0z
∂2ỹ

∂z2
dz

+
1

γ4

∫
Ωe

∂2w

∂z2
EI

∂2ỹ

∂z2
dz +

∫
Ωe

wρ0g dz

+

[
w

∂

∂z

(
EI

∂2ỹ

∂z2

)
− ∂w

∂z
EI

∂2ỹ

∂z2

]ze2
ze1

= 0 ,

(B.2)

which can be readily discretized in the spatial dimension. We define the vector of element-
wise generalized displacements to be

[qe(t)] =

[
ỹ(ze1, t) ,

∂ỹ

∂z
(ze1, t) , ỹ(z

e
2, t) ,

∂ỹ

∂z
(ze2, t)

]T
, (B.3)

and the element test function vector [we(t)] analogously. Introducing the normalized coor-
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dinate s = (z − ze1)/h
e, we use the following shape functions to interpolate ỹ and w:

N e
1 (s) = 1− 3s2 + 2s3 , (B.4a)

N e
2 (s) = hes(1− s)2 , (B.4b)

N e
3 (s) = s2(3− 2s) , (B.4c)

N e
4 (s) = hes2(s− 1) . (B.4d)

Writing the shape functions as the row vector [Ne(s)] = [N e
1 (s) N

e
2 (s) N

e
3 (s) N

e
4 (s)], the

interpolations are ỹ = [Ne][qe] and w = [Ne][we].
After assembly and imposition of the z-domain versions of the first four boundary con-

ditions in Eq. (3.3), Eq. (B.2) gives rise to a global matrix problem of the form

[M][q̈]−2γ̇

γ
[D1][q̇]+

{(
2

(
γ̇

γ

)2

− γ̈

γ

)
[D1] +

(
γ̇

γ

)2

[D2] +
1

γ4
[D3]

}
[q] = [F(γ, γ̇, γ̈)] . (B.5)

The corresponding element matrices, which are apparent from Eq. (B.2), are

[Me] =

∫
Ωe

[Ne]Tρ0[N
e] dz , (B.6a)

[De
1] =

∫
Ωe

[Ne]Tρ0z

[
dNe

dz

]
dz , (B.6b)

[De
2] =

∫
Ωe

[Ne]Tρ0z

[
d2Ne

dz2

]
dz , (B.6c)

[De
3] =

∫
Ωe

[
d2Ne

dz2

]T
EI

[
d2Ne

dz2

]
dz , (B.6d)

[Fe] =

∫
Ωe

−[Ne]Tρ0g dz . (B.6e)

We introduce the temporal discretization t = tk for k = 1, 2, . . . and define ∆tn = tn+1−tn.
Given [qn], [q̇n], [q̈n], γn, γ̇n, and γ̈n, we seek to use Eq. (B.5) to determine [qn+1], [q̇n+1],
[q̈n+1], γn+1, γ̇n+1, and γ̈n+1 by way of the Newmark method. Thus we assume

qn+1 = qn + q̇n∆tn +
∆t2n
2

[(1− 2β)q̈n + 2βq̈n+1] , (B.7a)

q̇n+1 = q̇n + [(1− γ)q̈n + γq̈n+1]∆tn . (B.7b)

and similarly for γ. A nonlinear matrix problem for [qn+1] and γn+1 results upon inserting
Eq. (B.7) into Eq. (B.5). To solve, we iterate [qn+1] and γn+1 until the z-domain counterpart
of Eq. (3.3)5 is satisfied. Then the velocities and accelerations at t = tn+1 can be computed
from Eq. (B.7).


	Contents
	List of Figures
	List of Tables
	Introduction
	Contact is a Nonlinearity
	Contact is Often Asymmetric
	Adhesive Contact Problems Can Have Multiple Solutions
	Contact Problems Can Be Approximately Linear
	Contact Poses Computational Difficulties
	Outline

	On Contact Point Motion in the Vibration Analysis of Elastic Rods
	Introduction
	Small-Amplitude Vibrations Superposed on Small-Amplitude Equilibria
	Small-Amplitude Vibrations Superposed on Large-Amplitude Equilibria
	Results
	Conclusion

	Pervasive Nonlinear Vibrations Due to Rod-Obstacle Contact
	Introduction
	Formulation of a Prototypical Problem
	Numerical Evidence of a Quadratic Nonlinearity
	Derivation of Perturbation Equations
	Solution of the Perturbation Equations
	Kinematics of Contact
	Conclusion

	Electrostatically Actuated MEMS in the Post-Touchdown Regime
	Introduction
	Problem Description
	Derivation of Governing Equations
	Static Equilibria Before Touchdown
	Static Equilibria After Touchdown
	Dynamics of the Thin-Dielectric Model
	Conclusion

	Concluding Remarks
	Bibliography
	Details on the Linear Rod Vibration Problem
	Small-on-Small Vibrations with Combined Gravity and Adhesion
	Nonlinear Stability

	Details on the Nonlinear Rod Vibration Problem



