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Mining High-Throughput Screening Data to Accelerate Drug Lead
Discovery

Anang A. Shelat

Data mining has two main objectives: (a) to describe patterns and relationships

among existing pieces of information and (b) to predict these patterns and relationships in

future data. The pioneering work of Hansch and Fijuta during the 1960s represents the

first application of this technique to quantitatively express biological activity as a

function of chemical properties (Wermuth, 2003). These quantitative structure activity

relationships, or QSARs, provided valuable insight into the contributions of chemical

moieties, and quickly became an important tool for drug discovery and design.

In this work, we explore how data mining methods can be applied to high

throughput screening (HTS) data in order to accelerate the discovery of suitable lead

compounds. In Chapter 1, we describe the construction of a naïve Bayes classifier to

identify active molecules in a screen for potentiators of AF508 CFTR, one of the mutant

forms of the CFTR gene responsible for Cystic Fibrosis. This work, originally reported in

Yang et al (Yang, 2003) is expanded and updated to reflect how the interpretability of the

model helped inspire pharmacophore-based hypotheses which guided subsequent

optimization.

Chapters 2 and 3 describes the development and application of a consensus model

for predicting promiscuous inhibitors—molecules that nonspecifically disrupt HTS

assays. High-throughput experimental assays and a preliminary computational model

were reported earlier by Feng et al (Feng, 2005). We present new analysis that questions

the reliability of one of the high-throughput models, and detail a novel consensus

modeling method that achieves greater predictive performance by aggregating the results
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from two philosophically different algorithms—support vector machines and generalized

boosting machines.

In Chapter 4, we discuss the need to approach drug discovery as a multivariate

optimization problem and describe the Assay Reporter—an informatics platform that

integrates both chemical and biological information in order to identify “good” molecules

suitable for further development. Future plans to introduce elements of computational

learning into the Assay Reporter framework are detailed in Chapter 5.



Table of Contents

Abstract

List of Tables

List of Figures

1 Elucidation of the Structure-Activity Relationship for Tetra
substituted Thiophenes That Target the AF508 Cystic Fibrosis
Gene using a Naïve Bayes Classifier

1.1 Background on Cystic Fibrosis
1.2 Naïve Bayes Classifiers
1.3 Data Modeling Methods
1.4 Results and Discussion
1.5 Consensus Model for Thiophene AF508 Potentiators
1.6 Conclusion

2 Data Mining in Higher Dimensions: A Review of Theory and
Algorithms

2.1 The Curse of Dimensionality
2.2 Model Bias
2.3 Bias-Variance Tradeoff
2.4 Model Complexity
2.5 Statistical Learning Algorithms
2.6 Selecting the Best Algorithm
2.7 Consensus Models
2.8 Conclusion

3 Data Mining in Higher Dimensions: Computational Models to
Predict Promiscuous Inhibition

3.1 Background on Promiscuous Inhibition
3.2 HTS and initial computational methods for identifying promiscuous

inhibitors
3.3 Revised Models Predicting Promiscuous Inhibition
3.4 Final Round of Modeling Promiscuous Inhibition
3.5 Model Scalability
3.6 Model Interpretation
3.7 Model Failures
3.8 Conclusion

4 Assay Explorer: An Integrated Informatics Environment for
Identifying “Good” Hits from HTS Data

4.1 Introduction to HTS Analysis
4.2 Methods
4.3 Database Structure

iv

viii

ix

1
i

21
21

23

24
25
26
27
29
39
41
42

43

43
44

54
58
68
68
77
79

80

81
84
85

vi



4.4 Assay Reporter Output 88
4.5 Conclusion 105

5 Future Directions 106

Works Cited 109

vii



List of Tables

Relative benefits and limitations of select statistical learning methods
Interquartile Ranges for common physical properties from the
CMC*, and Prediction and Random Sets selected from Chemical
Diversity, Inc.
Results from the HT DLS Classifier and early computational models
applied to the Random Set
Results from the refined computational models applied to the
Random Set
Results from the final round of computational modeling applied to
the Random Set
Results from the aggregate models applied to the Random Set
Results from cross-validation experiments using the consensus
models applied to the 1030 molecules in the study
Computational efficiency of calculating the consensus scoring model
Important variables from the GBMr and SVMc models

40
49

51

57

65

66
67

68
69

viii



List of Figures

Performance of the naïve Bayes classifier
Log-odds values for the active class computed for the six physical
properties explored in the naïve Bayesian model.
Favorable and unfavorable structural elements superimposed onto
representative molecules.
Examples of congeneric series exploring the 3-position of the
thiophene ring.
Examples of congeneric series exploring the 4 and 5-positions of the
thiophene ring.
Examples of congeneric series exploring the 2-position of the
thiophene ring.
Distributions of molecular volume and polar surface area for the C2
R-group of tetra-substituted thiophenes
Extracted minimal consensus substructure and optimal physical
property ranges for active tetra-substituted thiophenes.
Training set and test set error as a function of model complexity
First generation of the HT-DLS Classifier
Refined HT-DLS Classifier
Scatter plot and least squares fit of Promiscuous Inhibition vs. log
(DLS Intensity) for all HTS data.
Scatter plot and least squares fit of Promiscuous Inhibition vs. log
(DLS Intensity) for HTS data from the Random set.
Test Set Mean Squared Error (MSE) as a function of model
complexity for the GBM Regression
Test Set Kappa as a function of model complexity for the SVM
Regression I
Test Set Kappa as a function of model complexity for the SVM
Regression II
Histograms for influential descriptors in the GBMr mode
Histograms for HB1_Nxx and HB2_Nxx
Partial dependence plots for two perfectly correlated variables
Partial dependence plots for interesting GBMr variables
Molecules that failed to be classified as active in any computational
model
Molecules similar to K284_5355
Entity Relationship Diagram (ERD) for the Assay Explorer relational
database
Detecting assay errors using the activity scatter plot I
Detecting assay errors using the activity scatter plot II
Detecting assay errors using the activity scatter plot III
Outlier detection in the Z-prime scatter plots reveals errors in the
negative control wells for the plate
Z-factor analysis reveals two examples of liquid handling errors

11
11-12

14

16

18

19

20

21

28
46
47
52

53

62

63

64

71
72
74
75
77

78
86

89
90
90
92

93

ix



The graph of time dependent Z-factors reveals an increase in
variance for plates sitting longer prior to measurement
Uncovering positional effects in the HTS using well analysis
The PFlag rubric ranks “good” compounds higher on the molecular
profile page.
Information linked from the Molecular Profile page
Activity histories for specific and nonspecific ligands
Activity history for a potential pan-parasitic
Example of a good SAR derived from the Preliminary SAR
algorithm in Assay Reporter
Example of a potential singleton derived from the Preliminary SAR
algorithm in Assay Reporter.

94

95
98

99
100
101
103

104



Chapter I: Elucidation of the Structure-Activity Relationship for Tetra
substituted Thiophenes That Target the AF508 Cystic Fibrosis Gene using a

Naïve Bayes Classifier

Modified from Yang H, Shelat AA, Guy RK, Gopinath VS, Ma T, Du K, et al. Nanomolar affinity small
molecule correctors of defective delta F508-CFTR chloride channel gating. J Biol Chem. 2003 Sep 12;
278(37):35079-85.

In early lead discovery, understanding how the properties of molecules influence

biological activity is sometimes more useful than building the most accurate predictive

model. Knowledge of the role played by chemical moieties or physical attributes helps

chemists formulate verifiable hypotheses which guide the efficient exploration of

chemical scaffolds.

In this chapter, we revise and update our contribution to the work in Yang et al

that reports the discovery of small molecule activators targeting the AF508 Cystic

Fibrosis gene (Yang, 2002). Specifically, we provide an extended discussion of the

application of a naive Bayes classifier to mine high throughput screening (HTS) data

from that drug discovery project. This particular model structure was chosen for two

reasons. First, the binary nature of the HTS output (“active” vs. “inactive”) necessitated

the use of a classifier. Second, and more importantly, the algorithm reported the

contribution of each descriptor as an additive log-odds ratio for favoring activity. By

limiting the independent variables in the study to well-known medicinal chemistry

properties and chemical functional groups, our model provided chemists with an

understandable road-map to further define structure-activity relationships (SAR) for the

validated tetra-substituted thiophene hit. A description of the hypotheses generated, the

evidence accumulated using data mining techniques, and conclusions regarding the

current state of the SAR for thiophene potentiators are reported here.



1.1 Background on Cystic Fibrosis

The Cystic Fibrosis Transmembrane Receptor (CFTR) mediates cyclic-AMP

(cAMP) dependent Chloride ion secretion in the apical membrane of cells lining

mammalian airways and other luminal surfaces. Mutations in the CFTR gene cause

Cystic Fibrosis (CF), the most prevalent lethal hereditary disease among Caucasians

(Yang, 2002). According to the CF Genetic Analysis Consortium, approximately 1400

mutations altering Cl secretion in sweat glands, the pancreas, intestines, reproductive

organs, and airways have been identified (http://www.genet.sickkids.on.ca). However,

90% of all patients with CF have at least one allele containing AF508, a mutation which

causes protein misfolding, disrupts protein trafficking to the membrane, and prevents

proper channel gating (Bobadilla, 2002). CFTR activity in these patients is severely

diminished, and most succumb to respiratory failure due to fluid buildup in the lungs and

subsequent infection.

Thus, AF508 Cystic Fibrosis presents two targets for small molecule therapeutics:

“correctors” which stabilize the mutant protein and increase transport to the membrane,

and “potentiators” which resolve the channel gating defect. Compounds possessing these

types of activity, though rare, have been identified in other systems. Loo and Clark

described substrates of mutant human P-glycoprotein that corrected defective protein

kinesis; interestingly, both P-glycoprotein and CFTR are members of ATP Binding

Cassette (ABC) protein superfamily (Loo, 1997). Indeed, compounds such as

alkylxanthines and the isoflavone genistein have been shown to activate AF508 and other

mutant forms of CFTR; however, the required concentrations far exceeded reasonable



physiological values (1 mM and >50 puM, respectively) and the maximum achievable

activities (Vmax) were less than wild-type (Schultz, 1999).

Unfortunately, the complex nature of CFTR regulation in cells has confounded

mechanistic studies of existing CFTR modulators and hindered the development of better,

more specific compounds. The activity of the protein can be perturbed by modifying and

of the following (Schultz, 1999): (a) the G-protein coupled receptor pathway upstream of

the channel (i.e., binding at the receptor, activation of adenyl cyclase, inactivation via

phosphodiesterases), (b) the protein kinases and phosphatases important in CFTR

regulation, (c) the Na-K-ATPase and Na’-K-2Cl channels that work together to

maintain the CI concentration gradient, (d) the K channels that maintain the membrane

potential necessary to drive Cl out of the cell, and (e) the overall metabolic state which

governs the ATP:ADP ratio (nucleotide binding and hydrolysis are required for channel

gating). Furthermore, CFTR currents must be distinguished from the current conducted

by other Cl channels.

Despite these difficulties, Yang et al were able to develop an HTS assay for small

molecule potentiators of AF508 (Yang, 2002). The experiment entailed transfecting

Fischer Rat Thyroid (FRT) cells with the truncated CFTR gene and a halide-sensing

version of Green Fluorescent Protein (YFP-H148Q/I152L) (Galietta, 2001). Cells were

grown at reduced temperature (27°C) to correct for CFTR misfolding and trafficking

problems. A stable line with high fluorescence and suitable levels of CFTR at the

membrane was cultured and then transferred into 96 well plates. The mutant CFTR was

activated by adding forskolin (20 puM final concentration), a compound which raises

cyclic AMP (cAMP) via adenyl cyclase induction, prior to screening. Under these



conditions any influx of halide, as measured by the change in fluorescence intensity of

YFP-H148Q/I152L, should be attributable to the CFTR channel.

A collection of 100,000 commercially available compounds from the Chembridge

company were screened in this manner at 2.5 puM. Seventy-five compounds representing

six distinct chemical scaffolds were identified as “strong” potentiators (halide influx >

0.1mM/s), 252 were classified as “weak” potentiators (detectable change in halide

influx), and the rest were inactive. The 75 strong hits were then subject to secondary

analysis. None of these compounds stimulated halide influx in FRT cells transfected with

YFP-H148Q/I152L alone or AF508 expressing cells in the absence of forskolin

stimulation. The halide current for each compound was blocked by the CFTR inhibitor,

CFTRinh-172 (Ma, 2002). Dose response studies yielded 32 compounds that activated the

mutant CFTR channel with Vmax greater than 50 puM genistein and EC50 < 1 puM,

indicating the potential for therapeutic benefit at acceptable physiological concentrations.

Short circuit current analysis was performed for these 32 molecules to verify that the Cl’

influx occurred through the apical membrane: 13 of the 32 compounds produced currents

comparable to genistein, but with EC50 < 2 p.W.

An additional 1000 analogs to the 6 structural classes were purchased from

Chembridge to further define structure-activity relationships. However, only one class,

the tetra-substituted thiophenes, afforded active compounds. Representatives of the six

scaffolds identified earlier and the best thiophene analogs underwent additional

secondary screens. None of these compounds produced a significant increase in cellular

cAMP, inhibited phosphatase under conditions where the phosphatase inhibitor okadiac



acid inhibited activity > 90%, or resulted in significant cellular toxicity as measured by

the dihydrorhodamine assay (Wang, 2002) and by unimpaired cell growth.

Thus, considerable evidence suggested that the tetra-substituted thiophenes were

bonafide AF508 potentiators. The activity of compounds belonging to the remaining five

scaffolds was unclear and warrants further investigation. The absence of activity in

chemically similar structures cast doubt on the initial findings, although this result could

be attributable to an incomplete or limited analog series. Nevertheless, the thiophene

scaffold was selected for further development. In order to efficiently guide medicinal

chemistry efforts, a computational analysis using a naïve Bayes classifier was performed

on this series.

1.2 Naive Bayes Classifiers'

For any generic classification problem given an unknown object with

measurement vector x (e.g., a molecules with descriptors), the probability of belonging to

class k out of Mpossible classes can be estimated using Bayes theorem:

p(ck |x) oc p(ck)p(x|ck), where 1 < k < M (1-1)

Here, p(ck) is the “prior” probability, or simply the proportion of all objects in class k. If

the class distribution is unknown, then these values can be estimated from a sample of the

population (i.e., the training set), or a “flat” prior can be used to assign equal probability

to all classes. However, the class conditional probability, p(x|ck), is much harder to

'The equations in this section are adapted from Hand, 2001.



calculate because it requires knowledge of the joint distribution of the p variables in x for

each class:

p

p(x|c.) = TIp(x, y | x... . ), where 1 < k < M (1-2)
J-l

In general, the density of variable x will be conditional on the other variables in x, as

reflected in the right-hand expression in Equation 1.2. The number of parameters

describing these densities increases as O(M■ ), or exponentially as a function of the

number of descriptors. For example, a two-class problem with a measurement vector x

comprised of 10 binary descriptors requires 2" = 1024 parameters to derive the

conditional probabilities for every variable. Most real world applications lack sufficient

data to estimate values in this way.

To avoid the explosion in parameters as p increases, the first-order or naïve Bayes

algorithm assumes that each descriptor is conditionally independent within a class (Hand,

2001). Equation 1-2 then reduces to:

p(x|ck) = IT p(x, cºy, where 1 < k < M (1-3)
j=l

Under these conditions, the number of parameters required to estimate all class

conditional probabilities increases as O(Mp), or linearly in M and p. Computing these

probabilities for discrete variables simplifies to counting the number of occurrences of

each value and dividing by the total number of occurrences for each class. Density

estimation techniques, such as approximating the data as a Gaussian distribution or using



non-parametric kernel functions, can be applied to derive the class conditional

probabilities for continuous variables.

By combining Equations 1-1 and 1-3, the probability that an unknown object

described by x belongs to class k becomes:

p(ck |X) = p(e)II p(x|ck), where 1 < k < M (1-4)
J=l

Moreover, the likelihood of belonging to class 1 relative to class 2 is equal to the ratio of

the conditional probabilities: p(c1 | x)/p(c2 | x). Alternatively, this ratio can be

expressed as log-odds:

p

p(c)II p(x|c.) p

log p(c. | x) - log #
- log p(c.) + log p(x, | ci) (1-5)Pºlº pº■ ingle, pe) pelº

Equation 1-5 underscores the intuitive nature of the naïve Bayes algorithm: the likelihood

of belonging to one class relative to another is equal to the sum of a constant, which

reflects the baseline probability for that class, and the log-odds of having a particular

value for each descriptor. The additive, probabilistic nature of the descriptor

contributions facilitates interpretation. Positive values for the second term on the right

hand side of Equation 1-5 indicate that that value for the descriptor is more likely to be

found in objects from class 1 relative to class 2; negative values indicate the opposite, and

values close to zero suggest negligible or no influence on classification. Thus, the

domain of each descriptor is partitioned into regions favoring one class over another. In



the context of medicinal chemistry, these regions provide targets for identifying new

compounds or further optimizing the activity of an existing molecule.

Unfortunately, the assumption that variables are conditionally independent within

each class is usually not valid; in fact, chemical descriptors are often highly correlated.

This characteristic can artificially inflate the conditional probabilities in the model,

leading to an inaccurate assessment of the covariate log-odds and an over-estimation of

predictive power. To preserve interpretability, the descriptor set could be limited to fairly

orthogonal variables, as was done in this study. Alternatively, if the latter problem is

more important, then variable selection schemes such as the one described in Chapter 3

could be useful. With proper manipulation, then, naïve Bayes classifiers will generally

afford satisfactory performance. The models are resistant to the influence of outliers and

noise due to the smaller number of required parameters (these models have less variance

as described in Chapter 2) (Hand, 2001). Furthermore, errors in estimating the

conditional probabilities are less important, because most classifications depend on the

sign—not the magnitude—of the log odds on the left-hand side of Equation 1-5 (Hand,

2001).

Thus, the naïve Bayes classifier offers powerful interpretive and predictive power.

The following sections describe an application of the method to elucidate SAR

information for the lead compound series identified from an HTS for AF508 CFTR

potentiators.



1.3 Data Modeling Methods

Data manipulations, property calculations, and model building were performed

using Pipeline Pilot v. 4.0 (Scitegic, Inc.). All graphs were created in Microsoft Excel or

the R statistics package (version 2.1.1). The data set for modeling consisted of all tetra

substituted thiophenes from the 100,000 Chembridge library and 1,000 Chembridge

analogs screened in a follow-up study (N= 3025). Of the 3025 molecules, forty were

classified as “active” based on their performance in the HTS assay and subsequent

secondary analysis; the remaining molecules were labelled “inactive.”

The “Learn Good Molecules” component in Pipeline Pilot provided an algorithm

for the naïve Bayes classifier. This protocol estimated the class conditional probabilities

for continuous variables by first partitioning the range into bins (in a process similar to

constructing a histogram), and then calculating the log-odds values for each bin. For

discrete descriptors, a bin was created for each value in the data set. The Laplacian

correction was applied to avoid bins with probabilities that are either equal to zero or

skewed by small sample sizes. The algorithm also assumed an equal prior probability for

all classes. The model included six physical property descriptors (molecular weight,

surface area, polar surface area, number of H-bond donors, number of H-bond acceptors,

and AlogP), and binary variables (“bits”) derived from Pipeline Pilot’s functional class

fingerprints with a diameter of 6 bonds (FCFP_6). Each fingerprint bit represents a

unique chemical pattern derived from the training set molecules and is set to either 0 or 1

depending on whether the pattern is absent or present.

Four-fold cross-validation (75% training, 25% test) was employed to train the

classifier to distinguish between active and inactive tetra-substituted thiophenes, and



produced four models. Each model output a score proportional to the probability of

belonging to the active class. The Mann-Whitney statistic for non-parametric two-group

comparisons was used to assess the likelihood that the distributions of model scores for

active and inactive tetra-substituted thiophenes in the test sets represented different

populations. Following cross-validation, a final model using all 3025 molecules was

generated and used to analyze the contributions of the descriptors. A table of log-odds

values for each descriptor was supplied by the “Learn Good Molecules” component.

Favourable and unfavourable chemical bits were translated into structural elements using

Pipeline Pilot’s fingerprint manipulation routines. A congeneric series for structure

activity analysis was generated by removing the R-group from each active compound,

and using the resulting scaffold to perform substructure queries on the entire tetra

substituted thiophene set. Student’s T-test was employed to assess whether differences

in the physical property distributions of R-groups from active and inactive thiophenes

were significant.

1.4 Results and Discussion

As a first step in lead optimization, a computational model relating ion transport

activity to structural and physico-chemical parameters of the tetra-substituted thiophene

class of AF508-CFTR potentiators was generated using a naïve Bayesian classifier

methodology. All four models constructed during cross-validation clearly segregated

active and inactive compounds (Mann-Whitney p <0.00001 and Receiver-Operator

Characteristic [ROC] AUC > 0.98, regardless of originating training set). The

10



distribution of model scores and the ROC curve for the poorest performing model are

shown in Figure 1-1.

A 100 r B 100

80 - GD 80 ROC (test set)
-

## 60 active Tº 60 ROC (all)
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‘5 40 test set ºt 40
SR inactive º
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Figure 1-1. Performance of the naïve Bayes classifier. (A) The poorest performing model effectively
differentiated active and inactive tetra-substituted thiophenes in the test set and for all tetra
substituted thiophenes studied (Mann-Whitney, p < 0.00001). The model score has been normalized
to the range 0-100. (B) The AUC of the Receiver-Operator Characteristic (ROC) for the test set and
all tetra-substituted thiophenes are 0.98 and 0.99, respectively. The ROC AUC for random and
perfect models is 0.50 and 1.0, respectively.

A preliminary SAR emerged following an analysis of the contributions of

physical properties and binary descriptors to the naïve Bayesian model. As reported

below in Figure 1-2, five of the six physical property descriptors possessed narrow, well

defined regions that were enriched for potentiators.
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Log-Odds Values for AlogP Log-Odds Values for Molecular Weight
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Figure 1-2. Log-odds values for the active class computed for the six physical properties explored in
the naïve Bayesian model. Compounds falling within a range with log-odds values greater than zero
(the green bars) are more likely to be active; those falling within ranges with values less the zero (the
red bars) are less likely to be active. Property ranges with log-odds close to zero suggest either no
influence on activity or a lack of information due to small sample size.

Active tetra-substituted thiophenes are more likely to have no more than two H

bond acceptors (top right), at least two H-bond donors (top left), AlogP between 2.3 and

3.6 (center right), molecular weight between 254 and 375 Daltons (center left), and total

surface area between 275 and 358 A* (bottom right). The log-odds plot for polar surface

area (bottom left) suggests that regions favoring activity follow a bimodal distribution
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with peaks around 72-79 and 105-119 A*. Interestingly, inspection of the molecules in

the 105-112 and 112-119 bins reveals that a single functional group—a nitro,

sulfonamide, or phthalate belonging to the R-group at the 2-position on the thiophene

ring—accounts for the higher values. Thus, the amount of polar surface area in the core

thiophene scaffold appears to be constrained to the range 72-79 A*.

Decomposing the contribution of the FCFP 6-based descriptors to the naïve

Bayesian model revealed favorable and unfavorable structural elements. Figure 1-3

depicts some of the interesting fingerprint bits as colored spheres superimposed onto

representative structures to illustrate their meaning. For dark green and dark red spheres,

the pattern contains the element type and hybridization of the underlying atom; the light

green and light red spheres allow for any heavy atom.
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Favorable Chemical Patterns
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Figure 1-3. Favorable and unfavorable structural elements superimposed onto representative
molecules. The chemical pattern for dark green or red colored spheres follows the element type and
hybridization of the underlying atom; light green or red spheres implies that any heavy atom is
acceptable.

The Favorable bits A-C suggest that thiophene rings possessing a secondary amine at the

2-position, an unsubstituted amide at the 3-position, and an aliphatic fused ring at the 4

14



and 5 positions are more likely to be active. Favorable patterns D-Findicate that an

aromatic or aliphatic substituted carboxamide at C2 promotes activity. In contrast,

unfavorable elements A-C signal that molecules with either an ester or a di-substituted

amide at C3 are more likely to be inactive. Furthermore, active molecules are less likely

to possess a cyclopentyl or branched aliphatic ring fused to positions 4 and 5 (patterns D

and F), or a cyclization between R-groups at positions 2 and 3 (pattern E).

Thus, the naïve Bayes model afforded early insight into how physical properties

and chemical structures influence thiophene potentiator activity. These findings provided

a roadmap for defining more concrete structure-activity relationships. Using knowledge

of the favorable and unfavorable elements, hypotheses regarding the thiophene

pharmacophore were proposed. For each supposition, supporting or contrary evidence

was collected by generating congeneric series (molecules that differ at only one position)

via complex substructure query techniques applied to the entire thiophene data set. The

hypotheses, exemplar data, and conclusions are presented below:

Hypothesis 1: H-bond donor and acceptor functionality is required for activity at the 3

position on the thiophene ring.

Data Mining Results for Hypothesis 1:
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Figure 1-4. Examples of congeneric series exploring the 3-position of the thiophene ring. The
variable positions in the molecules are delineated by bluish-gray spheres.

Unsubstituted amides at the 3-position—but not di-substituted amides or esters—

favor activity according to the Bayesian model. Indeed, data mining revealed numerous

congeneric series similar to panels A and B in Figure 1-4 that support this assertion. The

lack of H-bond donor capability might account for the loss of activity; however,

inactivity could also be the result of the additional steric bulk. For example, both the

mono-substituted amide in panel C and the bis-compound in panel F are inactive, despite

providing an H-bond donor. The inactive carboxylic acid in panel D suggests that at least

one H-bond donor is required at C3 of the thiophene ring, although desolvation penalties

for burying a negative charge may also be important. Thus, the evidence regarding the

necessity of an H-bond donor at C3 is substantial, though not conclusive.

**s

■ .
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The orientations of the H-bond donor and acceptor also appear to be important.

Molecules in which the 3-position amide has cyclized with a carbonyl group at the 2

position (panel E) possess H-bond donor and acceptor functionality that is

conformationally locked. The constraints imposed by the new ring might account for the

inactivity, although the importance of other changes to the scaffold (e.g., loss of the

carbonyl at C2) cannot be ruled out.

Unfortunately, no evidence was available to assess the significance of the H-bond

acceptor. The methyl ketone and the alcohol resulting from the reduction of the ketone

would be logical analogs to assay. The ketone, which is neutral and isosteric with the

amide, could provide conclusive evidence regarding the H-bond donor requirements.

The alcohol could test the requirement for an H-bond acceptor.

In summary, the C3 side-chain must be roughly isosteric with an amide group and

is likely to require an H-bond donor. The function of the carbonyl group is unclear. Two

additional molecules, the methyl ketone and its reduced alcohol, were proposed to

confirm the H-bond donor and acceptor requirements.

Hypothesis 2: The 4 and 5 positions must provide sufficient hydrophobic bulk.

Data Mining Results for Hypothesis 2

17



A H H

H H H N NO2 H \ NO2cº, º o:
-

ºS S S S
O 3 & /

©

B H

O O

Activ Inactive Active Inactive

C H H D H H
H-"Neo H-" -o H^eo H*"Seo

H H H F H F

S
}-4) S S SO O O O

O2N O2N
Active Inactive Active Inactive

Figure 1-5. Examples of congeneric series exploring the 4 and 5-positions of the thiophene ring. The
variable positions in the molecules are delineated by bluish-gray spheres.

The Bayesian model suggests that a six-membered, unsubstituted aliphatic ring

fused at C4 and C5 of the thiophene ring promotes activity, whereas a cyclopentyl ring is

unfavorable. Further evidence from data mining indicates that either a six or seven

membered, unsubstituted ring is favorable at this position (Figure 1-5). The loss of

activity associated with the eight-membered ring (panel C) and the substituted, six

membered ring (panel D) could be rationalized in terms of excessive steric bulk.

However, the cyclopentyl system in panel D and the dimethyl substituted thiophene in

panel A are difficult to interpret. The three dimensional structures of these two

molecules are unlikely to produce additional van der Waals clashes relative to the larger

ring systems. Perhaps the hydrophobic binding surface provided by these molecules is

not sufficient for activity. Alternatively, issues resulting from the cell-based nature of the

HTS, such as limited cell permeability or faster metabolism, might be important.

Interestingly, the data set contained no benzothiophenes or thiophenes with

heterocycles at the 4 and 5 positions. If the hydrophobic pharmacophore hypothesis is

correct, then ether oxygen or sulfur in the fused rings might be tolerated; in contrast,
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nitrogen atoms would be unfavorable because they would be positively charged and/or

possess unsatisfied H-bond donors or acceptors. The benzothiophenes could be a

promising scaffold because they satisfy the hydrophobic requirements and provide

greater flexibility in terms of synthetic options and functionality.

Thus, the 4 and 5 positions of the thiophene ring appear to provide a hydrophobic

binding surface that is optimal for unsubstituted six and seven-membered rings. No

evidence was available for the effect of heteroatoms in these rings, or for the activity of

benzothiophenes.

Hypothesis 3: The 2-position requires a hydrophobic binding moiety and an H-bond

acceptor.

Data Mining Results for Hypothesis 3:
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Figure 1-6. Examples of congeneric series exploring the 2-position of the thiophene ring. The
variable positions in the molecules are delineated by bluish-gray spheres.

The naïve Bayes model predicts that carboxamides substituted with aliphatic or

aromatic groups are favorable at C2 of the thiophene ring. Unfortunately, data mining

revealed that the thiophene set contains few variations other than carboxamide. Figure 1

6 reports the only congeneric series obtained for this position. An unsubstituted amine is

not tolerated at the 2-position, suggesting that the additional binding contacts afforded by

the carbonyl and/or its substituent are essential for activity. The nature of the
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carboxamide R-group was further explored by analyzing the distribution of physical

properties for active and inactive molecules. Figure 1-7 describes histograms for the

molecular volume and polar surface area of inactive, active, and the best active tetra

substituted thiophenes (molecules with sub-micromolar EC50). The carboxamide side

chains of active compounds appear to have smaller volumes and less polar surface area

relative to inactive molecules (T-test p-0.04 and p-0.0025, respectively). These trends

are even more apparent for the “best active” compounds. As noted earlier, the second

peak in the polar surface area histogram for active molecules results from the presence of

a single, uncharged functional group (a nitro, sulfonamide, or phthalate moiety), and

might be considered an outlier.

In summary, C2 of the thiophene ring is not well explored. Data mining suggests

that an H-bond acceptor and a relatively non-polar moiety (PSA - 20 A*) with volume

<120 A* are favorable for activity.

Histogram: C2 R-group Volume Histogram: C2 R-group Polar Surface Area

80 best active

§ 40H best active $ 70 A.”60
- T

#x. YS y- # 50
º º
- *: 40 II acti
© 20 o all active

SR inactive

O
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Molecular volume (Angstroms’) Polar Surface Area (Angstroms”

Figure 1-7. Distributions of molecular volume and polar surface area for the C2 R-group of tetra
substituted thiophenes. The “all active” and “inactive” tetra-substituted thiophenes are statistically
distinguishable (T-test p-0.04 and p-0.0025, respectively). Only molecules with sub-micromolar
ECses were included in the “best active” set. The peak centered around 40 Å in the polar surface
area histogram for active molecules results from a single nitro, sulfonamide, or phthalate moieties.
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1.5 Consensus Model for Thiophene AF508 Potentiators

The minimal consensus substructure and optimal physical property ranges for

active tetra-substituted thiophenes, based on an analysis of the naïve Bayes model and

evidence collected from subsequent data mining, is described in Figure 1-8.

H
–NHT", o

H
| Y-N

(CH2)n S A
n = 1 or 2

Physical Property Range
2.3 s ALogP < 3.6

254 s MW s 375 daltons
275 x surface area × 358A2

72 < polar surface areas 119A3
H-bond acceptors < 2

H-bond donors > 1

Figure 1-8. Extracted minimal consensus substructure and optimal physical property ranges for
active tetra-substituted thiophenes.

The substructure allows for variation in the composition of the aliphatic ring fused

at the 4 and 5-positions of the thiophene ring, but requires an amide at C3 and a relatively

non-polar aliphatic or aromatic group appended to the nitrogen at C2. The physical

properties of active tetra-substituted thiophenes fall within a narrow subset of the classic

Lipinski parameters.

1.6 Conclusion

Computational learning models based on the naïve Bayes classifier algorithm

offer facile interpretability and reasonable predictive performance. In this chapter, we

described an application of the method to the tetra-substituted thiophene class of AF508
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CFTR potentiators, yielding cross-validated models that successfully differentiated active

and inactive molecules. Knowledge of the importance of the physical properties and

structural descriptors extracted from the model helped formulate hypotheses about the

thiophene pharmacophore. Subsequent data mining efforts established a concrete SAR

that will efficiently guide the synthesis of new compounds.
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Chapter II. Data Mining in Higher Dimensions: A Review of Theory and
Algorithms

In the previous chapter, we described an application of the naïve Bayes algorithm

that afforded both reasonable predictive accuracy and powerful interpretability. By

focusing on a limited set of descriptors known to be relevant in SAR studies a priori

(e.g., molecular weight, AlogP, number of hydrogen-bond donors, etc), we built a model

predicting AF508 activity that was easily understood and communicated. This aspect

facilitated the development of pharmacophore hypotheses, and helped guide further

synthesis and screening.

However, our modeling strategy was simplified by an important aspect of the

AF508 data set: all molecules were constrained within the tetra-substituted thiophene

scaffold. The lack of chemical diversity effectively held many variables constant or

limited their range, allowing us to better discern the contributions of our descriptors. In

the next two chapters, we detail the construction and performance of computational

learning models that reliably predict promiscuous inhibition across multiple, diverse

Scaffolds. Since the physical basis for the chemical phenomena was poorly understood,

we lacked knowledge of the suitable variables to use in our model. As a result, we

employed all available chemical descriptors—a set with a size on the on the order of the

number of experimental data points. Furthermore, the diverse nature of the training data

suggested the likelihood of nonlinear relationships between the descriptors. Under these

model building conditions, two fundamental concerns in statistical learning became

paramount: the curse of dimensionality and model bias.

In this chapter, we discuss the nature and consequences of these two concepts,

and explore how modern statistical learning algorithms attempt to mediate them. The
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equations employed here are derived from standard references (Hastie, 2001; Hand,

2001), whereas the interpretations and commentary reflect our understanding unless

otherwise noted.

2.1 The Curse of Dimensionality

Consider a K nearest-neighbors approach to property prediction: the value of an

unknown molecule is calculated by averaging over the values of nearby, known

molecules. Here, a metric such as Euclidean distance, is applied to the p descriptors of

points i and j to calculate “closeness”:

aúj)=(X 6.0-20))” 2.)
Assume that N molecules are uniformly distributed in a p-dimensional, unit

hypercube, so that the Knearest-neighbors of any point lie in a volume that
corresponds to a fraction r of the unit volume, where r is K/N. The edge length of
this volume is described by: e(r)- r". In order to average over 5% of the data in a
nearest-neighbors model with ten descriptors, the edge length of the “neighborhood”
must be ~ 0.05", or 0.74. Thus, over 74% of the entire range for every descriptor
must be captured in order to form a local average using only 5% of the data. The
meaning of “local average” in this high dimensional space falls apart. Thus, as the
number of descriptors in the analysis grows, the curse of dimensionality demands

that the amount of data necessary to make reliable predictions increases

exponentially (Hastie, 2001).

One solution might be to decrease r dramatically, which corresponds to reducing

the value of K in our algorithm. As the sample size becomes smaller, however,

uncertainty in the estimated mean increases. The presence or absence of a few points can

cause significant deviations from the true average. Because real world data often lacks

º
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adequate coverage in large areas of the descriptor space, predictions in these sparse

regions suffer.

2.2 Model bias

Consider an alternative to the K-nearest-neighbors algorithm: instead of allowing

only a small subset of points in the training set to govern predictions in their local

vicinity, a global function is constructed based on all points. This process introduces

assumptions about the functional form of the model and how best to fit it to the training

data. One popular choice is the linear regression model, which has the form:

a p

y = ■ o + Xx/3 (2-2)
j=l

In Equation 2-2, x, is the j" descriptor variable, B, is the j" model parameter, and ■ o is the

model offset. If the data is truly derived from a linear system that fluctuates with

random, Gaussian noise, then the best linear model based on all descriptors is found by

minimizing the residual sum of squares (RSS) criteria:

N p

RSS =X (y-º-XX/3)? (2-3)
i=1 j=l

Thus, the parameters of the model are determined by all points in the training set. In

general, linear models are more stable than K nearest-neighbors because the absence or

presence of individual data points will have less impact on the estimation of the model
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parameters. Unfortunately, this stability comes at a price. Even if the original

independent variables are transformed via arbitrary functions to achieve greater flexibility

as in Equation 2-4, the additive nature of our model prevents interactions between

descriptors:

y = p +X f(x)}, (2-4)

The number of interactions grows combinatorially as a function of the number of

descriptors, so adding extra terms to the model augments the number of dimensions and

forces confrontation with the curse of dimensionality. Thus, imposing structure on the

data introduces a model bias; predictions suffer if the model assumptions fail to reflect

the truth.

2.3 Bias-Variance Tradeoff

To summarize, as the number of descriptors in a model increases, the ability to

adequately describe the local environment around known points suffers due to the curse

of dimensionality. The resulting prediction function becomes rougher as it attempts to fit

the fluctuations inherent in the training set. The model can be made less prone to outliers

by imposing a less complex structure on the data; however, such assumptions impose a

bias if they do not properly describe reality. These opposing forces constitute the bias

variance tradeoff. More formally, suppose a population is described as below (Hand,

2001):

sº
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y = f(x; 6) + e, the observed property y is a function of descriptors x and model

parameters 0, plus some experimental random noise 8.

My = ELyx], the true value of y given the descriptors x. The expectation, E[ ], is employed

in order to average over the experimental noise.

j} = f(x, 0')', the estimate of the property y using a model fit with parameters 0°

The mean squared error (MSE) of the prediction given x is:

MSE(x) = ELy-u,” (2-5)

=ELy–EO)] + E[E()—u,” (2-6)

The first term in Equation 2-6 assesses the contribution of variance to the error, and

represents how much the prediction fluctuates when the model is fit using different data.

Each training set approximates the true parameters of the population, 0, as 0°. Errors

accumulate as the number of estimated model parameters increase, yielding greater

deviations inj. The second term describes how far the model prediction deviates from

the true value, and results from the innate bias of the function, f(x, 0')'. Models that are

too simple are subject to bias; overly complex models with many parameters suffer from

high variance. Therefore, in order to maximize predictive performance, model

complexity must be tuned to balance the tension between bias and variance.

2.4 Model Complexity

Low complexity models fail to describe either the training set or the test set. As

complexity increases, the training set error can be driven to zero; however, at some point,

over-training occurs, and the fitted model generalizes less and less well to external data.
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As demonstrated in Figure 2-1, the optimal model lies somewhere in between these two

extremes (image adapted from Hastie, 2001).

High Bias, Low Bias,
Low Variance High Variance
<- ->

|
Training Set

Low Model Complexity High

Figure 2-1. Training set and test set error as a function of model complexity

Complexity is a function of the type of model structure employed and the number of

descriptors. Most modern statistical learning algorithms are adaptations of either linear

regression or K nearest-neighbors that modulate the level of complexity. For example,

the nearest-neighbor method can be modified to calculate a local average using a kernel,

which weights the contribution of points via a function that goes to zero with increasing

distance. Though the influence of local points remains dominant, the prediction function

is smoother and has less variance. Flexibility can be introduced into linear models by

fitting basis expansions of the original input variables, thereby decreasing model bias.
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The algorithms used in the study of promiscuous inhibitors described in Chapter 3

are introduced below, with an emphasis on how complexity is adjusted to balance the

variance-bias tradeoff.

2.5 Statistical Learning Algorithms

The promiscuous inhibitor data set, described in the next chapter, contains percent

inhibition measurements for 1030 compounds. Criteria for classifying compounds as

“active” (promiscuously inhibiting) or “inactive” were based on the distributions of

known controls. The goal was to construct a binary classifier for distinguishing

promiscuous inhibitors (j = 1) from normal compounds (■ = 0).

Background

Classifiers generally follow three paradigms (Hand, 2001):

• Class-conditional approaches attempt to model the densities of input variables in
each category explicitly, and then use Bayes rule to derive the posterior class

probabilities. The predicted class is the class with the highest posterior

probability. The naïve Bayes algorithm is an example of this type of classifier.

• Discriminative approaches attempt to model the decision boundary in the

descriptor space. Molecules mapped to one side of the boundary are classified

to one group, and vice-versa. Some methods attempt to identify linear

boundaries using transformed versions of the input vectors, resulting in more

complex, non-linear boundaries in the original descriptor space. Examples
include support vector machine classifiers and some decision trees.

• Regression approaches attempt to model the posterior class probabilities explicitly;

again, class assignment is made based on the maximum probability.
Traditionally, such algorithms are applied to model categorical data and yield

log-odds predictions for each class. However, models trained on continuous
response data can also be included if categories are assigned using threshold
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values on the continuous prediction. Regression algorithms following this
paradigm include support vector machine regression, some decision trees,
general boosting machines, principal components regression, partial least

squares, and least angle regression.

Naïve Bayes

The naïve Bayes algorithm was discussed in Chapter 1. A variable subset

selection procedure, such as backwards stepwise selection, is one way model complexity

can be adjusted. In this method, p-H1 models are built (one model with all variables and p

additional models lacking one variable). Performance is assessed via cross-validation.

The variables are ordered according to how they affect predictive power when absent

from the model; a percentage of the lowest ranking covariates is then removed, and the

procedure repeats. The optimal subset of the descriptors yields the most parsimonious

model performing equally or better than more complex models.

Least Angle Regression (LARS)

LARS (Efron, 2003) is an enhancement to ordinary least squares (OLS). In the

first step of OLS, the descriptor vector x is regressed onto the response y to yield its

univariate regression coefficient, ■ º. The next vector, xj+1, is made orthogonal with

respect to all prior vectors, and is then regressed onto the residual of the response to yield

the next coefficient, ■ ºil. The linear regression model is then:

j =XX/3 (2-7)
p

j=l
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However, this is a greedy process: the regression of the current orthogonalized vector

might eliminate the contribution of other covariates that happen to be correlated with the

residual of the response (Efron, 2003). With LARS, the descriptor vectors are

fractionally added to the regression equation. The first vector is chosen such that is has

maximum correlation with y. It is partially regressed onto y until the residual of the

response is equally correlated with another covariate. Instead of regressing onto an

orthogonal projection of this new variable, LARS uses a vector that is equiangular to all

prior descriptors in the model. This bisecting vector is then regressed onto the residual of

the response, until the resulting residual is equally correlated with another descriptor, and

so on. In this way, the regression equation is constructed by incrementally adding

contributions from the independent variables. Furthermore, the equiangular constraint on

the regression vectors parallels conjugated gradient techniques for minimization: each

“downhill” step taken to reduce the response residual is weighted by previous steps.

These modifications afford greater opportunity for weakly correlated variables to

contribute to the model.

For p descriptors, the algorithm has a maximum of M = p steps, whereby the OLS

solution is returned. The LARS procedure essentially provides all solutions to the Lasso,

a least squares variant that imposes an additional constraint such that the sum of the

absolute magnitudes of all regression coefficients is less than the L1 norm, the length of

the coefficient vector from the OLS solution (Efron, 2003). The upper bound on the sum

forces a “competition” among the descriptors, whereby the contributions of poorly

correlated covariates are driven to zero. Thus, LARS can be regarded as a smooth

version of a variable subset selection procedure. Complexity can be adjusted by Selecting
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a model derived from an intermediate number of steps (or equivalently, a fraction of the

L1 norm) that minimizes test set error as estimated by cross-validation.

Principal Component Regression (PCR)

PCR uses a subset of the principal components (PCs) of the p input descriptors as

regression terms in a linear model constructed using RSS minimization. The PCs are the

eigenvectors of the descriptor covariance matrix; they describe orthogonal directions of

variance in the original descriptor space (Hastie, 2001). The model is built by adding

principal components to the regression equation in order of decreasing eigenvalue, until

all p eigenvectors are added. Complexity is tuned by identifying the ideal Msp number

of principal component terms to use in the regression via cross-validation. Using less

than p terms in the regression function reduces or eliminates the contributions of some

descriptors, thereby lowering variance in the predictions.

Partial Least Squares (PLS)

Like PCR, PLS builds a linear regression model using transformations of the

input descriptors. However, these transformations are performed with respect to the

matrix of input vectors and the response vector, y, in order to identify directions in the

descriptor space that have high variance, and high correlation with the dependent variable

(Hastie, 2001). The algorithm begins by regressing descriptor vector, xi, ontoy, yielding

the univariate regression coefficient (p). A derived input, zm is constructed as the sum:

p

zm =XX% (2-8)
j=l
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The vector zm is now regressed ontoy, yielding another univariate regression coefficient

6. Each xj is orthogonalized with respect to zm; the resulting x, residuals are used to

derive zm.1 as before, and Zmii is then used to obtain 0m+1. The prediction function after

step M is then given by:

y = 5x600.
M

where ■ º(M) = X016 (2-9)
l=l

The process continues until M = p derived inputs are constructed. Using M → p terms in

the prediction function reduces the effective number of descriptors as in PCR.

Support Vector Machines (SVM)

SVM classifiers attempt to define a separating boundary between two populations

of data where the closest distance to any point in either group is maximized (Hastie,

2001). Geometrically, this can be interpreted as creating a buffer space or margin around

the decision boundary, countering the effects of over-training by providing “slack.”

Mathematically, the problem is formulated as:

maxC,

subject to y(x'■ ; +/30) = C, for i = 1...N and ye (1,–1) (2-10)
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In Equation 2-10, x'81 ■ o describes a linear hyperplane (i.e., a line in two dimensions, a

plane in three, etc.) which acts as the decision boundary, and C is the size of the margin.

An unknown point i is assigned a class label according to sign(x'■ ; +/3). Any

misclassified point will appear on the wrong side of the decision boundary, and yield a

negative value for the term y(x'B+■ ). Points within the margin have y(x'B+ £6) < C.

In real world applications, the data may never be perfectly separable into two

populations, so the equation is modified to tolerate some rogue points:

maxC,

subject to y(x'■ ; +/3)2C(1–5), for i = 1...N and ye (1,–1)
N

where {, - 0 and X #i s some constant (2-11)
i=l

The slack variables & allow for some points to fall within the margin, or even on the

wrong side of the boundary if & P 1. The amount of error is constrained by setting an

upper bound on the sum over all C. This set of equations and constraints can be

formulated as a convex optimization problem solvable via Lagrange multipliers (Hastie,

2001). The solution is:

N

Á -
X. QiyiXi
i-l

subject to the constraints:

a■ y,(x■ /3+/30)-(1-fi)] = 0
y(x|A +/30)-(1-#i) > 0 (2-12)

º:

34



Only a subset of the training inputs contribute to the solution for ■ º, because a will be

nonzero only when y(x'■ + £6)– (1 – (i) = 0. These points are the support vectors, and

they completely define the decision boundary (Hastie, 2001).

The math to this point has assumed a linear form of the decision boundary, x'84.

/30. In order to increase model flexibility, the descriptor space can be transformed via a

basis set expansion. A linear boundary in this new space can be nonlinear in the original

space, thus affording better separating power (Hastie, 2001). A popular choice for the

expansion is the radial basis function kernel (RBF):

K(x,x)= exp(-|x-x|), where x > 0 (2-13)

This kernel generates a basis centered at each point i which falls off exponentially in

every direction. The parameter M can be modified to control the smoothness of the

function; for example, a large value of A will produce peaks centered at the individual

points, resulting in a bumpier curve. Again, Equation 2-11 employing an RBF can be

Solved as a constrained optimization problem, yielding the following solution for the

decision boundary:

N

f(x)=XXoyK(x,x)+/30 (2-14)
i=1

SVM complexity can be modulated by modifying the cost of errors (i.e., the upper bound

on the sum over all (i) and the kernel function parameters (A for the RBF), and limited
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the number of descriptors available to the model. Large cost values discourage errors on

the margin, leading to rougher decision boundaries with higher variance (Hastie, 2001).

As noted above, A controls the smoothness of the decision boundary.

The SVM can be adapted for regression purposes. In the case of the classifier,

points far away from the margin do not contribute to the solution. Similarly, in a

regression context, points with residuals less then a user-defined threshold are ignored

(Hastie, 2001). Thus, SVM regression minimizes residual error by amplifying the

influence of points contributing the greatest deviance according to the error function. As

before, complexity is adjusted via variable selection and the cost and A parameters. Here,

the cost relates to the threshold of the error function, as opposed to the size of the margin.

Decision Trees

A decision tree is formed by recursively partitioning the training data using binary

splits on single variables in order to maximize a measure of class purity in the resulting

two nodes (Hand, 2001). Trees continue growing until the purity of the resulting nodes

fails to increase, or some pre-defined threshold for minimum node size or maximum

depth are reached. Predictions on external data are made by beginning at the root node

and Sequentially traveling down the tree, choosing the appropriate branch at each

junction. The unknown molecule is assigned the majority class (or weighted majority) of

the terminal node or “leaf”.

In a classification context, RSS error is not an appropriate metric for measuring

the utility of a binary split. Instead, the following measures are employed to quantify

class purity at node m with K classes (Hastie, 2001):
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• Misclassification error: 1 – pºk(m), the probability of not belonging to the class º

assigned at node m
K

• Gini Index: X pºs(l – pmk), the probability of belonging to class k at node m
k =l

multiplied by the misclassification probability at that node ;
K

• Cross-entropy or deviance: X. pnk log.pnk
k =l ºr ,

--,

The node splitting process at each branch point follows a greedy algorithm, because the

selected variable and threshold are chosen only to maximize class purity in the immediate

child nodes. As a result, single trees are often prone to over-fitting. In order to decrease

variance, the predicted response is calculated by aggregating over multiple trees in a

process called bagging (Hastie, 2001). These additional trees are trained on bootstrap or

otherwise perturbed versions of the original data (i.e., subsets of the original descriptors

and/or data points), yielding different models than the original tree. The average

prediction from multiple bagged trees is more stable than the estimate from an individual

tree. Another method to generate additional trees called boosting is described in the

general boosting machines section below.

The complexity of decision trees can be tuned by modifying the number of trees

and the maximum numbers of nodes per tree.

Generalized Boosting Machines (GBM)

Earlier, Equations 2-3 and 2-4 described a general approach to constructing a

linear model. It was noted that transformations of the original descriptors afforded

greater flexibility; for example, PCR uses principal components. However, such methods

are limited to a finite number of functions that are fit simultaneously. In contrast, LARS
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and Decision Trees seek new functions to add to the model based on the negative

gradient of the loss function, and the addition of new terms does not affect previously

determined parameters. GBMs can be viewed as a generalization of these two

algorithms: they build models by adding terms one-by-one from a potentially infinite set

of functions derived from the original descriptor set. More formally, a GBM can be

described as a function, f(x), such that (Hastie, 2001):

M

f(x)=X ■ hb(x;%m) (2-15)
m=1

In Equation 2-15, b(x; Am) describes any additive expansion of the original descriptors

(such as a neural network, a regression spline, a decision tree, etc.), £m acts as a

weighting factor, and M describes the current iteration of the GBM. At step m of model

construction, the current term, ■ ºmb(x; Am), is adaptively chosen to maximize overlap with

the negative gradient of the loss function.

Any loss function can be driven to zero by following the gradient and adding

enough terms. Unfortunately, this result almost certainly leads to an over-trained model.

Two strategies are used to prevent this scenario: (a) adding limited basis functions that

are unable to perfectly match the negative gradient, (b) shrinking the contribution of

terms to the model (Ridgeway, 2005). By using constrained basis functions, the GBM

only approximates the negative gradient, and therefore moves in the right direction with

imprecision or “slack”. Decision trees are a popular choice for these functions, as the

node structure imposes limits on how well the tree can match the gradient. Down

weighting the contribution of each term to the model slows the rate of learning. Although
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the GBM will require more terms to achieve the same reduction in the loss function, the

resulting model is more likely to have explored the effects of weakly predictive

descriptors.

By applying these two criteria, the GBM can be viewed as a collection of weak

classifiers (Hastie, 2001). By virtue of following the gradient, the GBM emphasizes the

most poorly fitting data points in subsequent rounds of model building. This process is

known as boosting, and has been shown to dramatically improve prediction accuracy

(Hastie, 2001). Moreover, GBMs can utilize different loss functions that are optimized

for certain prediction problems. For example, exponential and Bernoulli loss functions

are ideal for classification problems, with the latter providing more robust solutions

(Hastie, 2001). Gaussian and Laplace loss functions are more appropriate for regression

problems (Hastie, 2001).

The GBM complexity is modulated via the constraint places on the basis

functions (e.g., the maximum depth of a decision tree), the number of terms in the model,

and the shrinking factor. Practical experience suggests using the Smallest possible

shrinking factor given computational and time constraints (Ridgeway, 2005). The ideal

number of terms and the type of basis functions employed are then chosen via cross

validation.

2.6 Selecting the Best Algorithm

Model performance is a function of the structure and quality of the underlying

data. However, issues besides prediction accuracy, such as the ability to handle multiple

data types and scalability, are also important to consider when selecting a computational
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learning method. Table 2-1 summarizes the relative benefits and limitations of the

algorithms detailed in this chapter.

Algorithm Naïve LARS | PCR PLS SVM | Decision | GBM
Bayes Trees

Ease of
handling O O O O
mixed data
types
Scalability
(for large N.) O O O O

Computational O O O O
-burden

Flexibility of -

the model O O --

Structure

Predictive
O O O O Operformance

Interpretability O O º O O ©
-

Table 2-1. Relative benefits and limitations of select statistical learning methods (s = poor, e = fair,
e = best)

In general, the Naïve Bayes, Decision Tree, and GBM algorithms handle multiple

data types (categorical, ordinal, interval, and ratio) without requiring significant pre

processing. The other methods require binarization of categorical variables, as well as

scaling, centering, and additional normalization. The SVM scales poorly with the

number of data points due to the demands of the kernel function, whereas the Naïve

Bayes, Decision Tree, and GBM methods scale linearly. Computational burden refers to

the time spent optimizing the complexity parameters via cross-validation. Only a single

parameter needs to be investigated for LARS or PCR and PLS (either the fraction of the

L1 norm or the number of components, respectively). The naïve Bayes and SVM

methods often employ an external variable selection method that requires parameter

f
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optimization at each step. Moreover, the cost and gamma values of the SVM are usually

explored using an expensive grid search. On the other hand, the SVM offers the most

flexible model structure via the kernel function. The basis functions employed by

Decision Trees and GBM also allow for complex interactions between variables, whereas

the remaining algorithms only afford additive relationships. The SVM’s ability to

explore nonlinear spaces translates to better predictive performance, though at the

expense of model interpretability. Indeed, naïve Bayes, Decision Trees, and LARS offer

the best interpretability because they do not transform the descriptors. The GBM also

uses the original variables, but is less comprehensible because it aggregates hundreds or

thousands of basis functions.

Thus, the selection of the best computational learning algorithm depends on the

nature of the data, time and resource constraints, and the goals of the project.

2.7 Consensus Models

One alternative to focusing on a single, “best” algorithm is to amalgamate the

results from a collection of satisfactory models derived by different methods. This

process is a logical extension of the bagging procedure described earlier. Each method

imposes a structure that might be particularly adept at learning a portion of the data;

however, the bias and variance inherent in every model also introduce errors. By

combining different predictions, a consensus model attempts to reinforce the “good”

while averaging out the “bad.” A critical assumption is that the original models

performed well: combining the results from poor estimators will likely increase error.

Indeed, O’Brien and de Groot recently reported improved specificity and selectivity for
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predicting hERG channel blocking and Cytochrome P450 2D6 inhibition by aggregating

results from a neural network and a naïve Bayes classifier (O’Brien, 2005). Thus,

consensus models benefit from the advantages of multiple learning algorithms, and

therefore, might enjoy significant improvements in predictive performance.

2.8 Conclusion

In this chapter, we covered some of the theory behind data mining in high

dimension descriptor spaces. A brief description of popular statistical learning

algorithms was presented. The key feature of these methods is the ability to finely tune

model complexity. In essence, identifying the best predictive model entails traveling

down the training error curve presented in Figure 2-1, and determining an optimal point

to stop based on an estimate of test set error. Unfortunately, trial-and-error is often the

only way to determine which algorithm to use. In the next chapter, we explore an

application of these statistical learning algorithms to a real world problem: promiscuous

inhibition in high-throughput screening assays.
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Chapter Ill. Data Mining in Higher Dimensions: Computational Models to
Predict Promiscuous Inhibition

Modified from Feng B, Shelat A, Doman T, Guy RK, Shoichet BK. High-throughput assays for
promiscuous inhibitors. Nat Chem Bio. 2005;1(3):146.

In this chapter, we describe methods to detect promiscuous inhibitors—

compounds that nonspecifically disrupt the action of biological macromolecules by

putatively forming large aggregates in Solution. Experimental high-throughput enzyme

and Dynamic Light Scattering (HT DLS) assays and preliminary computational models

to identify such molecules were reported earlier (Feng, 2005). We extend and revise that

work by first showing how HT DLS correlates poorly with the enzyme-based screen. We

conclude by describing the development of a consensus computational model that

efficiently classifies promiscuous inhibitors with good specificity and selectivity.

Interpretation of the model offers insight into the nature of this intriguing phenomenon.

3.1 Background on Promiscuous Inhibition

High-throughput screening is commonly-used to discover drug leads in industrial

settings, and is increasingly penetrating academic and non-profit institutions as well.

However, many hits identified using HTS often show up in multiple, unrelated screens

and are therefore not useful in subsequent development. These “frequent hitters” or

“promiscuous inhibitors” usually display noncompetitive activity and flat structure

activity relationships.

A number of criteria have been proposed to identify such molecules, including the

presence of reactive functionality (Rishton, 1997), physical properties that disrupt HTS

detection methods (Roche, 2002), and “privileged” scaffolds (Roche, 2002). Recently,

the Shoichet group provided strong evidence for a mechanism based on compound
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aggregation. Dynamic Light Scattering (DLS), an experimental technique used to

measure light scattering in solution, detected aggregates in the solutions of 15 compounds

that were reported as inhibitors of one or more proteins or nucleic acids and of a diverse

panel of model enzymes, (McGovern, 2002). Subsequent work using transmission

electron microscopy (TEM) provided visual evidence of the physical association of

enzyme with these structures, suggesting that the proteins were sequestered and unable to

catalyze reactions (McGovern, 2003a). The addition of 0.01% Triton X-100 removed

promiscuous inhibition, consistent with an adsorption hypothesis (McGovern, 2003a).

This phenomenon has been widely reported in other compound collections, such

as the in-house library of a pharmaceutical company, commercially available kinase

inhibitors, and known drugs (McGovern, 2003b; Seidler, 2003). Thus, the rapid

detection of promiscuous inhibitors would be considerably useful to the screening

community.

3.2 HTS and initial computational methods for identifying promiscuous inhibitors

Feng et al proposed two different HTS screens for identifying promiscuous

compounds: (a) directly measuring nonspecific inhibition using a model■ '-lactamase

system, (b) detecting aggregation using HT-DLS (Feng, 2005). In the ■ -lactamase,

inhibition was measured in the presence and absence of 0.01% Triton-1000; the loss of

activity upon the addition of a small amount of detergent is a hallmark of promiscuous

inhibition. Known active and inactive compounds identified earlier via biochemical and

physical methods validated the HTS assay. Based on the distribution of activities from

controls, compounds inhibiting 3-lactamase with >23.8% were deemed promiscuous,
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compounds with activity < 10.9% were considered inactive, and compounds with

activities between these bounds were classified as ambiguous. The HTS was further

verified by applying the method to a set of 1030 unknown compounds (described below),

and confirming the activities of a subset of predicted actives and inactives via low

throughput enzyme assays.

It appeared logical to pursue high-throughput DLS, which measures the amount of

light scattering by particles in Solution, due to the strong evidence linking promiscuous

compounds and aggregation. Forty-nine known aggregating, promiscuous inhibitors and

known non-aggregating, inactive molecules were used to calibrate the HT DLS-based
classifier. Light scattering intensity was converted to a probability of aggregation as

follows:

The probability of being an aggregator given a scattering intensity x, p(cAGG|x),

was estimated using Bayes’ Theorem:

p(cAGG|X) = p(AGG)p(x|cAGG)/((p(AGG)p(x|cAGG) + p(NAGG)p(x|cNAGG)) (3-1)

The prior probabilities, p(AGG) and p(NAGG), were set to 0.5 assuming a flat prior

distribution. The class conditional probabilities p(x|cAGG) and p(x|cNAGG) were derived

from the densities of the known aggregators and non-aggregators as a function of HT

DLS intensity. Examination of the raw and log-transformed scattering intensity

histograms for both populations revealed a significant departure from normality; thus,

modeling the two probability distributions as normal was not appropriate. Instead, the

distributions were estimated for the range of the log-transformed intensity values using
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the density function in the R statistics package (v. 2.0.1, http://www.r-project.org/) with a

Gaussian kernel and bandwidth="nrd0". For smoothing purposes, the “adjust parameter

was set to 1 for the aggregator density and 2 for the non-aggregator density. The

probability for a given distribution was set to one past the mean of that distribution to

avoid edge effects.

The distributions for p(cAGG|x) and p(cNAGG | x) (calculated as 1 – p(cAGG|x)) as

a function of log-transformed light intensity based on the initial training set of 49

molecules are shown in Figure 3-1.
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Figure 3-1. First generation of the HT-DLS Classifier. Distributions for p(cAGG|x) (red) and p(cNAcc
| x) (blue) as a function of log-transformed light intensity. Molecules with 0.1 <=p(cAcc|x) <= 0.9
were assigned as ambiguous. Under these criteria, molecules with intensities < 10159 (cnts/s) were
classified as non-aggregators; molecules with intensities > 63609 (cnts/s) were classified as
aggregators; all other molecules were classified as ambiguous.

Unfortunately, this version of the HT DLS classifier failed to accurately

distinguish between aggregators and non-aggregators from external data. Therefore, an

additional 58 known molecules were added to the training set. The refined HT DLS

classifier correlated better with measurements from low throughput experiments. The
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distributions of p(cAGG|x) and p(cNAGG | x) for the updated model are presented in Figure

3-2.

| | | I

4.0 4.5 5.0 5.5

3. -

Log Intensity (cnts/s)

Figure 3-2. Refined HT-DLS Classifier. Refined distributions for p(cAcG|x) (red) and p(cNAcc | x)
(blue) as a function of log-transformed light intensity. Molecules with 0.1 <= p(cAGG|x) <= 0.9 were
assigned as ambiguous. Using these criteria, molecules with light scattering intensity < 10991 (cnts/s)
were classified as non-aggregators, and molecules with light scattering intensity > 310934 (cnts/s)
were classified as aggregators.

Although the HT DLS classifier was trained to distinguish aggregators from non

aggregators, it was believed that promiscuous inhibitors could also be identified by

proxy. To test this hypothesis, the HT DLS was applied to the 1030 “drug-like”

molecules used to validate the HTS enzyme assay. This set was composed of 298

randomly chosen molecules and 732 molecules selected by two preliminary

computational models that were trained on a total of 110 known promiscuous inhibitors

and inactive compounds reported in the literature. Details of the compounds selection

Strategy are given in the section below.
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Compound Selection Strategy

Compounds were purchased from Chemical Diversity, Inc. “Prediction” set

molecules were classified as either promiscuous inhibitors or inactive by one of two

models: a previously described recursive partitioning model (RP) or a naïve Bayesian

model (NB, see below for details). The Prediction set contained 493 predicted inhibitors

(200 Bayesian/298 RP) and 239 predicted inactive molecules (97 Bayesian/142 RP).

The “Random” set contained 298 molecules. All compounds were prepared as 10 mM

stocks in neat DMSO.

All purchased molecules satisfied the following Lipinski criteria; (Nitrogen count

+ Oxygen count) <= 10, molecular weight •= 500, number of H-bond donors <= 5, and

AlogP <= 5.6 (Lipinski, 2001). An upper bound of 5.6 was more appropriate for the

AlogP-based estimation of logP (Ghose, 1999). Common physical property distributions

for the Prediction Set, the Random Set, and the Comprehensive Medicinal Chemistry

(CMC) database (v. 2004, Elsevier MDL) were compared to further ensure that the test

sets were reasonable representations of drug-like molecules. The CMC was filtered

according to Ghose et al to remove compounds that were unlikely to be orally

bioavailable, such as contrast agents, solvents, and pharmaceutical aids (denoted CMC”)

(Ghose, 1999). As shown in Table 3-1, the interquartile ranges of chemical properties for
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Property CMC* (N=7790) Prediction Sets Random Set
(N=732) (N=298)

AlogP 1.13 - 3.96 2.62 - 4.35 2.12 – 4.02
Molecular -5.72 — -2.82 -6.22 — -4.39 -5.88 — -3.76
Solubility

(log ug/ml)
Molecular Weight 261 – 411 303 – 400 309 – 411

(Daltons)
Polar Surface Area 42 – 105 59 – 100 67 – 102

(A2)
Total Surface Area 255 – 395 282 — 365 289 – 383

(A2)
# H Donors 1 – 2 1 – 2 1 – 2

# H Acceptors 3 – 6 3 – 5 3 – 5
# N + O Atoms 3 – 7 3 – 6 4 – 6

# Rotatable Bonds 3 – 7 4 – 6 4 – 7

Table 3.1. Interquartile Ranges for common physical properties from the CMC”, and Prediction and
Random Sets selected from Chemical Diversity, Inc.

Recursive Partition (RP) Model

The RP model has been described elsewhere (Seidler, 2003)

Naïve Bayesian Model

The initial Bayesian model employed the naïve Bayesian classifier component in

Pipeline Pilot 4.5.0 (Scitegic, Inc). The algorithm, described in Chapter 1, calculates the

sum of log-odds for the occurrence of a given feature in a set of molecules belonging to

one of two classes (“promiscuous inhibitor” and “inactive” in this case).

The descriptors used in the initial model included bits from Scitegic's ECFP 6

molecular fingerprint and the first five principal components (PCs) calculated from a

principal component analysis (PCA) of all 1D and 2D descriptors from MOE (v. 2002.3,

Chemical Computing Group). These five PCs accounted for 92.5% of the variance

in the MOE descriptor space.
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The initial data set contained 110 known inhibitors and inactives (McGovern,

2002; McGovern, 2003a and b; Siedler, 2003). Ten percent of the data was withheld from

the model building process (the “validation” set). Using the remaining data, models were

trained on 80%, and scored on the other 20% using the Receiver-Operator Characteristic

(ROC, calculated in Pipeline Pilot). One hundred models were generated using different

partitions of the data and the top ten performing models were selected. The consensus

model score, or CSCORE, was the mean of the 10 models.

The probability of an unknown compound promiscuously inhibiting was

calculated using a method similar to that of the HT DLS classifier (see above). A flat

prior distribution was assumed. The probability mass function was modeled as two

normal distributions estimated using the CSCORE distributions from known actives and

inactives in the validation set. Molecules with a posterior probability for nonspecific

inhibition >= 0.6 were classified as active; molecules with a probability <= 0.4 were

classified as inactive, and no classification was made for molecules in the probability

range 0.4–0.6.

To assess the utility of the initial Bayesian model, a test set of predicted

promiscuous inhibitors and predicted inactive molecules were selected from Chemical

Diversity, Inc's compound library. In order to minimize uncertainty in the predictions,

only putative active compounds with posterior probabilities > 0.99 were selected;

likewise, the selected inactives had probabilities < 0.01. These constraints yielded 968

predicted inhibitors and 80,778 predicted inactives. Within each set, a maximum

dissimilarity metric (implemented in the Diverse Molecules component in Pipeline Pilot)
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was employed to select the most diverse set of 300 inhibitors and 300 inactives, of which

200 predicted inhibitors and 97 predicted inactives were purchased.

Accuracy of the DLS and Computational Models

For comparison, the RP and NB models were also applied to the Random set.

Remarkably, both computational models outperformed the HT DLS classifier with

respect to the misclassification rate (Table 3-2).

Model Active Active Inactive | Inactive Mis- Not
Precision | Recall | Precision | Recall | classification | Classified

Rate

Recursive 43% 77% 92% 73% 26% (72/276) 0%
Partioning (44/103) (44/57) (160/173) (160/219)

Naïve 33% 23% 81% 82% 26% 5%

Bayes (13/39) (13/57) (180/222) (180/219) (68/261). (15/276)
HT DLS 40% 65% 97% 15% 45% 54%
Classifier (37/93) (37/57) (33/34) (33/219) (103/200) (149/276)

Table 3-2. Results from the HT DLS Classifier and initial computational models applied to the
Random Set (57 Aggregators, 219 Non-aggregators; 22 compounds were ambiguous and removed
from this study). Misclassification rate is defined as: total number of incorrect predictions / total
number of prediction.

A number of reasons could have accounted for the unreliability of the HT DLS

classifier. First, DLS in a high-throughput setting might be prone to significant noise. As

noted in the rightmost column in Table 3-2, HT DLS failed to provide a classification for

54% of the Random set. This deficiency stems from the fact that many compounds fell

within the ambiguous region of the probability distributions. Perhaps a larger training set

would provide better resolution. To examine whether there was any detectable

correlation between HT DLS measurements and promiscuous inhibition, a simple linear

regression model was used to fit log(DLS intensity) as a function of %inhibition. A
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scatter plot of the data and the least squares fit (red) are reported below (R*=0.2441, slope

= 0.014 (0.001), p < 10"):

Inhibition vs DLS Intensity (N=1030)

tº)

I I I

–20 O 20 40 60 80 100

Promiscuous Inhibition (%)

Figure 3-3. Scatter plot and least squares fit (red) of Promiscuous Inhibition vs. log (DLS Intensity)
for all HTS data.

Although HT DLS failed to account for roughly 75% of the variance in

promiscuous inhibition, a slight correlation did exist. However, it was noted that 732 of

the 1030 molecules were chosen based on computational models trained on promiscuous

inhibitors that were also aggregators and inactive molecules that were shown not to form

particles. The learning algorithms could have selected for compounds that aggregated in

addition to, or as a proxy for, promiscuous inhibitors. The Random set, however, did not
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contain this bias. A least squares fit for the 298 randomly chosen molecules performed

even more poorly (R*= 0.1131, slope = 0.011 (0.002), p < 10°) (Figure 3-4):

Inhibition vs DLS Intensity (Random Set, N=298))

i
I I I I I I I

–20 O 20 40 60 80 100

Promiscuous Inhibition (%)

Figure 3-4. Scatter plot and least squares fit (red) of Promiscuous Inhibition vs. log (DLS Intensity)
for HTS data from the Random set.

One explanation for the lack of correlation in Figures 3-3 and 3-4 was the

occurrence of precipitates among inactive compounds. The high scattering intensities

observed for these molecules might have been due to precipitation, a behavior that was

distinguishable from aggregation (Feng, 2005). However, this rationale did not account

for the high proportion of promiscuous inhibitors with low scattering intensities. On the

other hand, promiscuous compounds could have optical properties that perturb HT DLS

measurements. For example, the nonspecific inhibitor Congo Red can only be studied at
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DLS concentrations much higher than its IC50 for B-lactamase, the model protein used in

the enzyme-based assay (Feng, 2005). Alternatively, this phenomenon could have arisen

from aggregates only after particle size has exceeded some threshold; such dependencies

were not detectable via HT DLS intensities, which only reflected the number of scattering

particles. Finally, it was conceivable that promiscuous inhibition and aggregation were

distinct properties, or that multiple mechanisms existed by which molecules

promiscuously inhibit.

Intrigued by the possibility of gaining insight into the physical basis behind

promiscuous inhibition and by the desire to develop robust tools for virtual detection, we

pursued refinements to the computational models. The training set was enlarged to

include the Prediction set in addition to the 110 compounds identified from the literature

while the Random set was withheld for validation.

3.3 Revised Models Predicting Promiscuous Inhibition

Prior Art

Roche et al completed the first computational assessment of “frequent hitters”

(Roche, 2002). In their study, the definition of “promiscuous” encompassed molecules

interacting via nonspecific mechanisms and compounds with physical properties that

hampered detection during HTS. First, the authors selected compounds that repeatedly

showed up as hits in HTS assays, were frequently requested from in-house libraries, or

were specially submitted by medicinal chemistry groups. A group of expert medicinal

chemists then examined the list to identify molecules that were likely to be frequent

hitters and not compounds that were wrongly annotated, chemically degraded, or
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significantly impure. Nine of the eleven chemists needed to concur in order to assign a

compound as promiscuous. A selection of commercially available drugs was chosen as

the control group. The resulting computational model performed well, correctly

classifying 90% of all frequent hitters and 91% of all controls.

In the current study, the data set was limited to compounds known to inhibit

promiscuously based on the model enzyme HTS, and did not preclude commercially

available drugs as in the Roche study. This distinction was important because known

therapeutics are often included in HTS experiments as controls or for profiling purposes.

Any compound that inhibits promiscuously, whether it be a drug or an undistinguished

molecule, can disrupt biological screening assays. Furthermore, though both data sets

were “drug-like” according to such criteria as Lipinski rules, significant differences in

composition existed. Thus, the promiscuous inhibitor model was likely to behave

differently than the Roche model.

Refinement of the RP model (Random Forest)

A random forest model was constructed as described elsewhere (Feng, 2005)

Refinement of naïve Bayesian model (rMB):

Chemical fingerprint bits were derived as before, except now using Scitegic’s

FCFP 6 fingerprint. Physico-chemical descriptors were calculated using molconnz

(EduSoft LC, version 4.09). Initially, the training set contained 765 descriptors. Using

the R statistics package, correlated descriptors or descriptors with zero variance were

removed, yielding 540 covariates.
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The initial Bayesian model used bits present in Scitegic's ECFP_6 fingerprint and

the first five principal components derived from PCA of MOE descriptors. Reducing the

dimensions of the MOE descriptor space effectively captured the variance of the data in

fewer variables; however, PCA confounded interpretation of the contribution of

individual descriptors. In the refined model, PCs were avoided; instead, a subset of the

original variables was selected using the backward stepwise method (described in

Chapter 2). The ideal set was determined by maximizing the Z-factor as a function of the

number of descriptors. Models were trained on 80% of the data using all descriptors,

then evaluated using the remaining 20% via the Z-factor metric (Zhang, 1999). Each

descriptor was then individually removed, and the model was rebuilt and reassessed. The

entire procedure was repeated 10 times, and then descriptors were rank ordered according

to their average contribution to the Z-factor. The lowest performing one-half of all

descriptors was removed, and the process was repeated until an optimal set was

determined. The final model consisted of 43 descriptors. An ensemble of 25 models was

generated using the 43 descriptors, and the probability of aggregation was determined

using the mean of all model scores as described previously.

Results from the Refined Models

The results from the refined models are presented in Table 3-3:
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Model Active Active | Inactive | Inactive Mis- Not
Precision | Recall | Precision | Recall classification | Classified

Rate
Random 83% 60% 90% 97% 1.1% 0%

Forest (34/41) (34/57) (212/235) (212/219) (30/276)
rNB 50% 74% 95% 73% 20% 9%

(42/84) (42/57) (158/167)|(158/219) (51/251) (25/276)

Table 3–3. Results from the revised computational models applied to the Random Set (57
Aggregators, 219 Non-aggregators; 22 compounds were ambiguous and removed from this study).

The Random Forest was the most accurate model as reflected by the

misclassification rate. However, it fails to identify 40% of the promiscuous inhibitors.

The Refined Bayes correctly identifies a larger number of the inhibitors, albeit with more

false positives. Thus, both models were unsuitable for virtual screening, necessitating

additional refinement.

The contrasting performance of the models underscored the tradeoff between

identifying inhibitors (active recall) and incorrectly classifying compounds

(misclassification rate). Because the data set was imbalanced by a smaller number of

promiscuous compounds, it was more difficult to correctly identify true positives than

true negatives. To account for this characteristic, further optimizations and comparisons

employed Cohen’s Kappa in place of the misclassification rate (Equation 3-2):

K = (po – pe) / (1.0 – pe), (3-2)

where po is the observed proportion of agreement (the classification rate) and pe is the

expected agreement from chance alone. Kappa expresses the agreement between a

prediction and the truth as a proportion of the maximum possible agreement not due to

chance.
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3.4 Final Round of Modeling Promiscuous Inhibition

In the final round of modeling, we explored a larger descriptor space and a

different set of statistical learning algorithms (see Chapter 2 for a theoretical

background). The methods are described below.

Software

Unless otherwise stated, the following versions of software were used: Pipeline

Pilot (v. 4.5.2, Scitegic, Inc.), the R program (v. 2.1.1), MOE (v. 2004.3, Chemical

Computing Group), Volsurf (v. 4.1.3, Molecular Discovery Ltd.), Grid (v. 22a, Molecular

Discovery Ltd.), and Molconnz (v. 4.09, Edusoft, LC). Default parameters were used

unless explicitly noted.

Data Preparation

For consistency, the data set for this new generation of models was limited to

compounds screened in the HTS. The 732 molecules selected via computational methods

were used as the training set, while the remaining 298 were withheld for validation. All

molecules were standardized using a Pipeline Pilot protocol that removes all hydrogen

atoms and salts, chooses a canonical tautomer, sets all atoms to formal charge, and selects

a single topology for certain functional groups (such as nitro and carboxylate). Each

molecule was then minimized into a low energy three-dimensional conformation and

ionized to physiological pH in MOE. A total of 864 descriptors were computed,

including all 2D descriptors in MOE, all Volsurf descriptors, a selection of the most

relevant Molconnz descriptors, and physical properties and binary descriptors
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representing structural features in Pipeline Pilot. The binary features were derived from

Pipeline Pilot’s FCFP 6 fingerprint; to limit their number, only structural features present

in P 5% of all molecules, but s 95% of all molecules were allowed. The data set was

then filtered to remove descriptors with zero variance or with perfect correlation to other

descriptors using the R program, resulting in a final set of 627 descriptors. Next, all

variables in the data were centered to zero mean and scaled to unit standard deviation

using the R scale function. The response variable was either the experimentally

measured promiscuous inhibition at 30uM or a class label assigned using inhibition

thresholds described elsewhere (Feng, 2005). Ambiguous molecules were removed from

the training data when employing classification algorithms. For regression algorithms,

no molecules were discarded from training; molecules with predicted activities greater

than 23.8% were classified as predicted inhibitors and all others were predicted as

inactive. Ambiguous molecules were removed when computing the test set kappa for all

models.

Benchmark experiments to assess the scalability of the computational models

were programmed within the Pipeline Pilot environment using a combination of the

native Pilot Script language and external calls to R program scripts. All calculations

were performed using a single 3.4 GHz CPU running Redhat Linux AS3 with 1 GB

RAM.

Computational algorithms

The PCR (method=’svdpc”, numcomp=”200”) and PLS models

(method=”kernel”, numcomp=”200”) were constructed and assessed using the myr and
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predict.mvr functions in the R pls package (v. 1.0-3; Wehrens and Mevik; 2005). The

ideal number of components (numcomp) was estimated via cross-validation (see below).

The LARS (method="lar”) model was constructed and assessed using the lars and

predict.lars functions in the R lars package (v. 0.9-5; Hastie and Efron; 2004). The

algorithms required all descriptors to be scaled to unit length. The optimal fraction of the

L1 norm of the coefficient vector was estimated via cross-validation. This number ranges

from 0 to 1, with 1 yielding the OLS solution (see Chapter 2).

The naïve Bayes model was constructed and assessed using the naiveBayes and

predict. naiveBayes functions in the Re1071 package (v. 1.5-8; Dimitriadou, Hornik,

Leisch, Meyer, and Weingessel; 2005). The class conditional probabilities were modeled

as Gaussian distributions. An optimal number of descriptors were determined using the

backward stepwise selection method described in Chapter 2. Initially, 90% of the

variables were removed at each step of the procedure; selection occurred on individual

descriptors once the range was narrowed to a workable space.

The SVM classification (scale="FALSE”, type="C-classification”,

kernel="radial”, cachesize=”500”) and regression models (scale="FALSE”, type="eps

regression”, kernel="radial”, cachesize=”500”) were constructed and assessed using the

svm and predict.svm functions in the Re1071 package (v. 1.5-8; Dimitriadou, Hornik,

Leisch, Meyer, and Weingessel; 2005). Cross-validation was used to identify the ideal

subset of descriptors using the backward stepwise selection method. For each subset of

descriptors, the cost and gamma parameters were explored via a grid search. Initially,

50% of the variables were removed at each step of the procedure, and the grid search was

coarse (cost ranged from 2', 2°. 2’, gamma ranged from 2°, 2°. 2"). The granularity
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of the exploration increased as the bounds of the optimal range for the SVM parameters

decreased.

The GBM classification (distribution=”bernoulli”, n.trees=”100000”,

interaction.depth="3”, n.minobsinnode="5”, shrinkage=”0.001”, bag.fraction=”0.5”,

train.fraction=”1.0”) and regression models (distribution=”gaussian”, n.trees=”50000”,

interaction.depth="3”, n.minobsinnode="5”, shrinkage=”0.001”, bag.fraction=”0.5”,

train.fraction=”1.0”) were constructed and assessed using the gbm and predict.gbm

functions in the R package gbm (v. 1.5-1; Ridgeway; 2005). Cross-validation was used

to identify the optimal number of trees to use for predictions.

The Bagging (split method="Gini index”, minimum samples in node="2",

enrichment threshold=”0.5”, good bias-”1”, preserve minority="TRUE”) and Boosting

Decision Trees (split method="Gini index”, minimum samples in node="2", enrichment

threshold=”0.5”, good bias—"1") were constructed and assessed using the Recursive

Partitioning with Decision Trees components in Pipeline Pilot. The ideal number of trees

and the tree depth were determined via cross-validation.

Cross-validation

As noted above, adjustable model parameters governing complexity were

optimized using cross-validation. Models were trained on a random partition containing

85% of the 732 molecules (640 molecules when ambiguous compounds removed for

classifier algorithms); test set error was estimated by applying the model to the remaining

15%. To avoid the influence of structure in the training set, the cross-validation was

repeated between 10-200 times depending on the computational burden of the
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calculation. For example, the naïve Bayes algorithm was repeated 200 times for each

subset of variables. The SVM classification grid search used 10 repetitions in the early

stages of variable selection, and 200 when identifying the ideal cost and gamma

parameters after the optimal number of variables was identified. For each algorithm, the

ideal set of parameters was determined by identifying the most parsimonious model with

estimated test set error (kappa or mse) within one standard error of the mean of the best

performing model.

Figures 3-5 – 3-7 below show graphs of test set error as a function of model

complexity as assessed via cross-validation studies for the GBM Regression and the

SVM classifier.
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Figure 3-5. Test Set Mean Squared Error (MSE) as a function of model complexity for the GBM
Regression (each data point averaged over 50 repetitions). Here, model complexity refers to the
fraction of the 50,000 trees constructed by the algorithm. The optimal model contained 8,000 trees.
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Figure 3-6. Test Set Kappa as a function of model complexity for the SVM Regression I (each data
point averaged over >10 repetitions). Here, model complexity refers to the fraction of the 627
descriptors available to the algorithm. The optimal model employed 133 descriptors.
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Figure 3-7. Test Set Kappa as a function of model complexity for the SVM Regression II (each data
point averaged over 200 repetitions). Here, model complexity refers to the Cost and Y parameters ofthe algorithm. The optimal model had Cost=2° and Y=2”.

Modeling Results

Results from the final round of modeling are shown in Table 3-4.
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Model Parameters | Active | Active | Inactive | Inactive Mis- Kappa
Precision | Recall | Precision | Recall | classification

Rate
SVM ndesc=133, 67% 60% 90% 92% 14% 0.540

Classifier C. (34/51) (34/57) (212/235) (202/219) (40/276)
Y=2*

SVM ndesc=109, 56% 74% 93% 85% 17% 0.524

Regression Cº., (42/75) (42/57) (186/201) (186/219) (48/276)
y=2"

DT ntrees=32 57% 61% 90% 88% 17% (48/276) 0.482
Bagging ply-16 (35/61) (35/57) || (193/215) (193/219)

DT ntrees=45, 49% 61% 93% 79% 21% (59/276) 0.462
Boosting ply=45 (44/90) (44/57) (173/186) (173/219)

Naïve ndesc=172 42% 72% 91% 74% 26% (72/276) 0.368
Bayes (41/97) (41/57) (163/179) (163/276)
GBM ntrees=84500 70% 54% 89% 94% 14% (39/276) 0.529

Classifier (31/44) (31/57) (206/232) (206/219)
GBM ntrees=8000 62% 72% 92% 89% 15% (41/276) 0.572

Regression (41/66) | (41/57) || (194/210) || (194/219)
PLS ncomp=5 48% 74% 92% 79% 22% (61/276) 0.439

(42/88) (42/57) (173/188) (173/219)
PCR ncomp=75 50% 77% 93% 80% 21% (57/276) 0.475

(44/88) (44/57) (175/188) (175/219)
LARS fraction=2.5e- 53% 72% 92% 83% 19% (53/276) 0.484

07 (41/78) (41/57) || (182/198) (182/219)

Table 3-4. Results from the final round of computational modeling applied to the Random Set (57
Aggregators, 219 Non-aggregators; 22 compounds were ambiguous and removed from this study).
The top three models are shown in bold.

The GBM Regression model performed the best according to the kappa metric,

and yielded an active recall rate and misclassification rate similar to the naïve Bayes

model and Random Forest, respectively, from the previous round of modeling.

Interestingly, performance was improved by aggregating the predictions from the top two

models—the GBM Regression (GBMr) and the SVM Classifier (SVMc)—such that any

molecules classified as active in either model were designated promiscuous inhibitors.

Indeed, the benefits of such consensus models were discussed earlier in Chapter 2.

Adding the third best model, the GBM Classifier (GBMc), afforded only marginal

improvement (Table 3-5).



Model Active || Active Inactive | Inactive | Misclassification | Kappa
Precision | Recall | Precision | Recall Rate

GBMr 62% 72% 92% 89% 15% (41/276) 0.572
(41/66) (41/57) (194/210) (194/219)

GBMr + 58% 86% 96% 84% 16% 0.596

SVMC (49/84) (49/57) || (184/192) (184/219) (43/276)
GBMr + 59% 88% 96% 84% 15% (42/276) 0.607
SVMC + (50/85) (50/57) (184/191) (184/219)
GBMC

Table 3-5. Results from the aggregate models applied to the Random Set (57 Aggregators, 219 Non
aggregators; 22 compounds were ambiguous and removed from this study).

Thus, the consensus model derived from the GBMr and SVMc afforded both high

active recall and low misclassification rate. The majority of promiscuous inhibitors in the

Random set were identified while maintaining a reasonable false positive rate.

However, we were skeptical about this post hoc conclusion, as we suspected that

the results might only be applicable to the Random set and not to external data. In order

to assess the generality of the two-component model relative to the GBMr alone, we

performed an additional round of cross-validation. In this experiment, the parameters of

the component models were not re-optimized; instead, the values reported in Table 3-4

were used. Each model in Table 3-5 was trained on 85% of the 1030 molecules, and then

applied to the remaining 15%. The procedure was repeated 200 times to yield the

following results:

*
sº

*1
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Model Active | Active | Inactive | Inactive Mis- Kappa
Precision | Recall | Precision | Recall classification

Rate

GBMr 67% 73% 88% 85% 19% (2.7%) 0.560
(4.6%) (6.8%) (2.5%) (3.1%) (0.064)

GBMr + 66% 83% 92% 82% 17% (3.4%) 0.609
SVMC (5.7%) (5.8%) (2.5%) (4.3%) (0.071)

GBMr + 66% 82% 92% 83% 18% (3.5%) 0.603
SVMC + (5.7%) (7.1%) (2.9%) (4.3%) (0.075)
GBMC

Table 3-6. Results from cross-validation experiments using the consensus models applied to the 1030
molecules in the study (N=200, 85% train: 15% test). Standard deviations are reported in
parenthesis.

As evident in Table 3-6, the two-component model appeared to perform better

than the single component GBMr, and roughly equal to the three-component model. A

One-Way ANOVA on kappa with respect to the three models rejected the null hypothesis

that the differences in mean kappa across factors were insignificant (df+2, F=7.22, p <

0.001). The mean kappa for the GBMr was different from the GBMr + SVMc according

to Student's t-test (p<0.0005, 95% CI [-0.076, -0.022]). In agreement with the prior

assessment, the difference in mean kappa between the two-component model and the

three-component model was not statistically significant (p > 0.71, 95% CI [-0.024,

0.034]).

In conclusion, the best performing predictive model combined the GBM

Regression and the SVM Classifier, such that any molecule predicted to be active in

either model was classified as a promiscuous inhibitor.
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3.5 Model Scalability

The computational efficiency of the consensus model was sufficient for

annotating large virtual libraries (10°molecules per CPU-Day). However, peak

performance was achieved by pre-processing the input into smaller sets of molecules.

The R program functions that calculate the GBMr and SVMc models evaluate entire sets

of molecules during a single call. As reported in Table 3-7, the time required to compute

the consensus score per molecule degrades exponentially as the size of the input set

increases. The ideal partition size, taking into account the overhead of creating subsets,

was approximately ~10000 molecules.

Partition Size Time Molecules /
(molecules) (seconds) Second

1000 51 19.6
10000 508 19.7
25000 1898 13.2
50000 482.5 10.4

Table 3-7. Computational efficiency of calculating the consensus scoring model (see Methods section
for details). The ideal partition size is ~10000 molecules.

3.6 Model Interpretation

In general, interpreting the effects of variables in GBM and SVM models is

difficult due to non-linearity. GBM models, though additive in nature, are composed of

hundreds or thousands of recursively-partitioned trees that can form highly complex

response functions. SVM models convolve the relationships between descriptors by

constructing the decision boundary in a transformed version of the original input space.

Nevertheless, the importance of variables to the predictive performance of both learning

methods can be estimated, albeit with some caveats. For example, the “relative

68



influence” of variables in GBMs (Friedman, 2001) can be assessed using the summary

function in the R gbm package. Relative influence measures the amount a variable

reduced the loss function during model training. The importance of a variable in an SVM

model can be assessed by measuring the change in test error due to the absence of the

descriptor; however, the true influence of the covariate can sometimes be masked by the

presence of correlated variables that compensate for the missing contribution to the

model.

Table 3-8 identifies the highest ranking variables from the GBMr and SVMc

models in the present study according to relative influence and change in kappa, irespectively.

GBMr Model Relative Influence SVMc Model A Kappa
Variables Variables
molalog.p 8.953 Hamidine –0.023
logP.o.w. 4.220 Nazo -0.018
mollogD 3.569 Saas M -0.017

HB2 Nxx 2.634 Emin1 OH2 -0.014
D4 DRY 2.344 BIT –2090462286 -0.013
SHCsats 2.312 nXCh.7 -0.013
D2_DRY 2.288 Tm3 -0.013
SlogP 2.265 Sqsn] -0.012

Hamide 1.913 VSa base -0.011
HB1 NXX 1.702 BIT 436915834 -0.009

PEOE VSA N2 1.590 BV12 OH2 –0.007
PEOE VSA P2 1.445 BIT -10900.46377 -0.007

LogP 1.424 molalog.p -0.007
SHBC 1.369 SqssC -0.006

D3 DRY 1.361 Sester –0.004

Table 3-8. Important variables from the GBMr and SVMc models (list truncated to 15 for brevity).
The relative influence values for the GBMr reflect an average over three independently-generated
models. The SVMc variables are ranked according to amount kappa changed in the absence of the
variable. Variables in boldface appear in the top 25 descriptors for the GBMr models and the 133
descriptors in the SVMc. Descriptors beginning with ‘H’ followed by a functional group indicate a
sum over HE-states for the moiety. Variables beginning with ‘S’ indicate a sum over the E-states for
a functional group or an atom in a chemical substructure; the ‘s’,’d’, or ‘a’ refers to single, double,
or aromatic bonds in the fragment. Descriptors beginning with BIT refer to individual bits from the
Scitegic FCFP 6 fingerprint.

;
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The table clearly identifies hydrophobicity as a dominant feature in promiscuous

inhibition. Both models employed multiple direct measures of the octanol:water

coefficient (molalogp, SlogP, LogP), and an indirect metric via D2 DRY, a descriptor

describing the volume of interaction between a molecule and a non-polar probe (D1, D2,

etc., refers to a particular energy level for the interaction). Correlation probably

accounted for the lack of more hydrophobic terms in the top 15 list of the SVMc. This

problem was less apparent in the GBMr method because it uses a bagging procedure,

whereby only 50% of the variables were available for each round of tree construction.

Under such conditions, variables correlated with other descriptors were given more of an

opportunity to contribute to the model.

Further analysis of the GBMc covariates revealed three additional descriptors

important for predictivity: PEOE_VSA_FNEG, SHCsats, and SHBd.

PEOE_VSA_FNEG is the proportion of negatively-charged van der Waals surface area.

SHCsats is the sum of the electrotopological states of all hydrogens (HE-states) on

carbon atoms sp' bonded to saturated carbon. SHBd is the sum of HE-states for

hydrogen bond donors. Hydrogen atoms bonded to or near an electronegative atom have

high HE-state values. Histograms of these descriptors are shown in Figures 3-8

(molalogp is included for comparison).

i
;
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Figure 3.8. Histograms for influential descriptors in the GBMr model. In all graphs, the x axis is in
standardized units (the descriptors values are mean-centered and scaled to unit variance).

As evident in the top left histogram of Figure 3-8, descriptors measuring logP

discriminate between promiscuous inhibitors and inactive molecules well. The top right

histogram demonstrates how inhibitors tend to have lower than average values for

SHCsats, which is indicative of either a molecule with a non-polar environment around

sp' carbons, or a lack of sp” carbons, or both. An interesting interpretation of this

property is that an absence of tetrahedral centers might facilitate molecular packing,



consistent with the aggregator hypothesis for promiscuous inhibition. The bottom left

histogram suggests active molecules have a larger portion of negatively charged van der

Waals surface area. Other descriptors in both the SVM and GBM models support this

assertion: inhibitors have larger values for PEOE_VSA_NO, PEOE_VSA_N1,

PEOE_VSA_N2, and PEOE_VSA_N3 (proportion of van der Waals surface area with

negative charge within a specified range); and larger values for PEOE_PC_N (total

negative partial charge). Finally, the bottom left histogram associates promiscuous

inhibitors with higher values for the SHBd descriptor. Higher SHBd values suggest

either more polarized hydrogens available for H-bonding, a greater number of H-bond

donors, or both. Other descriptors, such as HB1_Nxx and HB2_Nxx, support this claim

(Figure 3-9).
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Figure 3-9. Histograms for HB1_Nxx and HB2_Nxx. In all graphs, the x axis is in standardized
units (the values were mean-centered and scaled to unit variance). Only two of the HBX_Nxx series
are shown as examples; in fact, the majority of HBX_Nxx metrics show discrimination between
active and inactive molecules.

The HBX_Nxx series measures the difference in the volume of interaction (at

energy range X) between a water probe (2 H-bond donors and 2 H-bond acceptors) and a

.
:
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spº N probe (0 H-bond donors and 1 H-bond acceptors) such as pyridine nitrogen. The

water probe presents the optimal H-bond donor and acceptor for these calculations: any

other probe will yield less favorable interactions. For promiscuous inhibitors, the

HBX_Nxx metrics are lower than average, suggesting that there is less difference

between the interactions of the spº N probe and the ideal water probe. This fact supports

the notion that activity is correlated with the strength of, or the number of H-bond

donors.

Thus far, the analysis has been limited to observing how a single variable

segregates promiscuous inhibitors and inactive molecules. If the descriptors in the

histograms from Figures 3-8 and 3-9 were independent, then their net effect towards

predicting activity would be additive. However, the variables in most real world

problems are often correlated to some degree. In such environments, the joint

dependence of a descriptor—how the variable interacts with other variables in the context

of activity—must be examined. Partial dependence plots attempt to assess these

relationships for a subset of covariates by “averaging” out the contributions of all other

variables. More formally, the partial dependence of a function of descriptors X, given a

subset of interesting variables, Xs, and its complement, Xc, can be estimated as:

-
1 *

f(Xs) = X'■ (Xs, xic) (3-3),1–1

where {x1c, x2c, ..., xNc} are the values of Xc in the training set (Hastie, 2001). This

calculation is computationally efficient for GBMs and other tree based algorithms.
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However, the number of covariates in Xs is often limited to two or three, as higher

dimensional functions are difficult to visualize.

Figure 3-10 shows an example of a partial dependence plot for two perfectly

correlated variables (in this case, the two variables are identical). Activity does not

change in the vertical direction, indicating that the ordinate variable provides no

additional effect on activity and can be completely accounted for by the abscissa variable.

On the other hand, the checkered patterns in the graphs from Figure 3-11 reveal that both

variables contribute to activity.

Partial Dependence Plot: No Interaction Effect
—— —l —l

!

molalogp

Figure 3-10. Partial dependence plots for two perfectly correlated variables. Cooler colors indicate
increased favorability for promiscuous inhibition. The solid vertical bars indicate that the abscissa
variable accounts for the entire effect on activity, making the ordinate variable redundant.
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Partial Dependence Plot molalogp vs SHBd Partial Dependence Plot: SHCsats vs SHBd
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Figure 3-11. Partial dependence plots for interesting GBMr variables. In all graphs, the x axis is in
standardized units (the descriptor values are mean-centered and scaled to unit variance). Cooler
colors indicate increased favorability for promiscuous inhibition.

Additional insights emerged from Figure 3-11. First, it appeared that the four

descriptors can be ranked in terms of their influence on activity as such: molalogp >

SHBd X SHCsats » PEOE_VSA FNEG. The plot of molalogp vs. SHBd indicated that a

threshold value for the logP metric must be reached before inhibition is favorable,

independent of the value of SHBd. This characteristic suggested that SHBd cannot

overcome the influence of molalogP. Similar thresholds levels existed for SHBd with

i
-

;
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respect to SHCsats and PEOE_VSA_FNEG, and SHCsats with respect to

PEOE_VSA_FNEG. Second, the relationships between the variables appeared to be

additive at the least, and potentially synergistic for molalogp with respect to SHBd and

SHBd with respect to PEOE_VSA_FNEG. For these two cases, the change in the

favorability for inhibition increased faster for certain values of the variables. For

example, the difference in favorability at high molalogp across the entire range of SHBd

was roughly 0.40 – 0.15 = 0.25; this change was only -0.20 – (-0.05) = 0.15 at low

molalogp. Likewise, the change in favorability at high SHBd across the range of

PEOE_VSA_FNEG was approximately 0.17–0.09| = 0.08, versus 0.01 - (-0.05) = 0.06

at low SHBd. These two cases described interactions between the variables which

produced an effect that could not be modeled via a linearly independent system.

A similar analysis of the descriptors from the SVMc model was more difficult.

The GBMr algorithm constructed an additive model using decision trees built from

binary splits on single variables. In contrast, the SVMc algorithm did not model the

population as a whole, but instead focused on the boundary separating the two classes in

a transformed version of the original input space. Histograms of the SVMc influential

descriptors reported in Table 3-7 did not show significant separation between active and

inactive populations. However, it was interesting that the SVM model had many

descriptors pertaining to spº or sp’ conjugated nitrogen atoms: Hamidine (HE-state for

amidine moiety), nazo (number of azo groups), SaasN (sum of E-states for nitrogen

bonded to an aromatic ring), BIT_-2090462286 (Nitrogen containing substructure

containing substructure described by the SMARTS [*]C(=[*])NC(=O)(c)(;c:[*]):c:[*]),

|
;
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and SdsN (sum of E-states for nitrogen bonded another atom which contained a double

bond). It was unclear how these variables influence promiscuous inhibition.

In summary, high values for logP, a low number of non-polar sp3 carbons, a high

number of more polar hydrogen bond donors, and a larger proportion of negatively

charged van der Waals surface area tended to favor promiscuous inhibition. Furthermore,

the character of spº or spº-conjugated nitrogen atoms also appeared to be an important

predictor of activity.

3.7 Model Failures

Five of the 57 promiscuous inhibitors in the Random set failed to be correctly

identified by any of the computational models, including the Random Forest.

Nºs 2× NJ
N N° N

HN–K - F S.
º,

S N O
NF

K284_5355 C801_0362

Figure 3-12. Molecules that failed to be classified as active in any computational model.

.
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A closer examination of one of these molecules, K284_5355, highlights the

difficulty in predicting promiscuous inhibitors (Figure 3-13). Four molecules similar to

K284_5355 were retrieved from the set of 1030 compounds (Tanimoto Similarity > 0.3,

Scitegic FCFP 6 fingerprint). Despite the fact that each similar molecule shared either

the dioxolo-quinazolinone or the 4-phenyl-piperazine moieties present in the query

molecule, none were active.

gº O
~~

n—ºs* ... 3
K284_5355 (Active)

gº O 6 O O O "º, “… ."
K284_4933 (Ambig) K284_5135 (Inactive)

C069_0088 (Inactive) C547_0563 (Inactive)

Figure 3-13. Molecules similar to K284_5355 (Tanimoto Similarity > 0.30, FCFP_6 fingerprint).

In some circumstances, then, promiscuous inhibition appears to be a complex

phenomenon emerging only in particular molecular contexts.

.
:
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3.8 Conclusion

In this chapter, we introduced the concept of promiscuous inhibitors and

described how such molecules could be identified using a high-throughput enzyme-based

screen. We then demonstrated how HT-DLS, a technique that measures particle

formation in solution, failed to correlate with nonspecific inhibition, despite considerable

evidence linking the activity with compound aggregation. Using algorithms designed for

data mining in high dimensions, we developed a computational model that correctly

classified > 80% of promiscuous inhibitors, while maintaining a misclassification rate of

< 20%. This consensus model should be a valuable tool for flagging suspicious or

undesirable molecules during such tasks as chemical library selection and the analysis of

HTS screening hits.

An investigation of the model’s descriptors revealed how certain physical

properties, such as high logP, are associated with promiscuous inhibition. However, the

presence of inhibitors that were not correctly classified by any computational model

underscored our limited understanding of this phenomenon. The interesting covariates

identified in this study should provide the starting point for further investigation into the

mechanisms behind this complex biophysical property.

;
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Chapter IV. Assay Reporter: An Integrated Informatics Environment for
Identifying “Good” Hits from HTS Data

In the previous three chapters, we described the development and application of

machine learning methods to predict interesting molecular properties. In Chapter 1, a

naïve Bayes algorithm was trained to identify AF508 CFTR potentiators; the model’s

interpretation formed the foundation of pharmacophore-based hypotheses which guided

the search for novel, more potent compounds. In Chapters 2 and 3, we detailed the

construction and performance of a consensus model for detecting promiscuous

inhibitors—compounds that nonspecifically perturb the function of biological

macromolecules. This predictor can be used to flag likely false-positives in HTS data,

thereby reducing the amount of time and resources expended for costly re-screening and

orthogonal assays. Such data mining techniques accelerate lead discovery by facilitating

the analysis of primary screening data.

Unfortunately, when applied in isolation, the gains from these computational tools

are modest. Translating an HTS hit into a bona fide lead scaffold with high potency and

selectivity, good bioavailability, and little toxicity is a formidable multivariate

optimization problem. The relationships between important properties are often non

linear, and attempts to improve one molecular characteristic might be detrimental to

another. In order to make the best decisions on how to proceed, pertinent information

must be readily accessible, appropriately indexed, and examined in the context of other

chemical and biological knowledge. In this chapter, we describe the Assay Reporter, a

computational framework for integrating all available data in an HTS experiment. Our

methods provide a work flow that helps to identify “good” hits—molecules that are more

likely to become quality leads—from the assay. Examples of results from screens

;
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conducted at the Bay Area Screening Center are presented. We conclude with comments

on the future direction of this research.

4.1 Introduction to HTSAnalysis

Traditionally, drug leads were derived from natural products with a proven history

of in vivo activity (Lipinski, 2004). As a result, such molecules had already been filtered

for minimal levels of bioavailability and cytotoxicity. The paradigm of drug discovery

changed in the 1980s with advances in robotics, molecular biology, and combinatorial

chemistry. Synthesizing or screening compounds were no longer rate-limiting steps:

hundreds of thousands of compounds could be assayed directly against a biomolecular

target using high-throughput methods. But despite the large number of initial hits

generated from this technology, the number of New Chemical Entities (NCE) reaching

the market has remained constant (Bleicher, 2003). Seminal work by Lipinski et al

demonstrated that the quality of hits emerging from HTS was poor (Lipinski, 2000). A

number of factors, from the techniques employed by combinatorial chemistry to the

physical methods of detecting active molecules, biased hits towards high lipophilicity,

high molecular weight, and low solubility. Such compounds proved to be unworkable

and failed to advance to subsequent rounds of development.

The unfulfilled promise of combinatorial chemistry and HTS spawned two recent

movements: early ADMET (absorption, distribution, metabolism, excretion, and toxicity)

assessment and robust methods for HTS data analysis. The notion of applying ADMET

criteria earlier in drug discovery projects stems from the fact that any orally administered

drug must be absorbed, distributed to the site of action, and then excreted either

i
:
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unchanged or as a metabolite. It follows then that only compounds possessing such

properties, or able to be modified accordingly, should be screened. Consequently, a

considerable amount of research has been directed at describing “drug-likeness,” the

characteristics that differentiate drugs from other organic compounds”. Some of the

computational methods now employed to predict these qualities include simple counting

schemes such as Lipinski’s “rule of five” (Lipinski, 2001) and similar work (Ghose,

1999; Oprea, 2000), knowledge-based metrics (Andrews, 1984; Muegge, 2002) gleaned

from medicinal chemists, substructure filtering techniques such as REOS (Walters,

1998), chemical space formulations (Oprea, 2002), and machine learning models (Ajay,

1998).

In parallel, researchers have developed new statistical techniques for assessing the

quality of HTS assays. High-throughput methods, due to the reliance on automation,

parallelization, and miniaturization, are often prone to significant systematic error.

Moreover, screening compounds with behaviors such as auto-fluorescence and

promiscuous inhibition can exacerbate the problem. In response, quality control

procedures were developed to help detect specious results. For example, Zhang et al

proposed Z-prime and Z-factor, a pair of metrics that capture aspects of the performance

of entire plates in a single value (Zhang, 1999). Z-prime measures the separation

between positive and negative controls; Z-factor assesses how well the positive control is

distinguished from the screening compounds, which are presumed to be mostly inactive.

Irregular plates can be quickly identified by surveying a scatter plot of both metrics.

Alternatively, Brideau et al reported a method to reduce systematic error in HTS that was

independent of the controls (Brideau, 2005). Their “B-scores” correction employs

* For an excellent review, see Walters, 2002.

82



** a ti - * * * * * * * * *

º: . …a wº

-, * * * * * *
-a -

º ... at is *
-

, - . * * : *
1, a ºr * - sº

. . . " " - ºr ºr " * *
ºf

rº, * --- i.
---- ** * * * *..., u " . . ." * * *

*

º * .
a wºº

as 'i wºn

* * * * * *

*** ***'.

- a . * * * * * * *
**** *

... ', ºtºiº■ º* r * * *
tº****

sº g" -- *
* * * * * sa --
... “
* , . . . . . . . ."

an "tº ºne tº a
tº as a "

ºn tº ºn tºas*** ***

*-



techniques including median polishing and temporal Smoothing to normalize the assay

response of the screening compounds, thereby providing a more accurate measure of

activity.

Thus, a thorough investigation of HTS data must include an assessment of both

quality control (QC) and ADMET parameters. For example, a biologist might define an

interesting “hit” as one the most active molecules in a set that satisfies some statistically

significant threshold (e.g., minimum Z score) for activity. On the other hand, a chemist

might prefer a less active molecule that corresponds better to her notion of “drug

likeness.” The definition of a “good” hit, then, takes into account confidence in the

biological information derived from the assay, and any relevant chemical knowledge

about the molecule. Indeed, the occurrence of such behaviors as promiscuous inhibition

demonstrates that the concepts of QC and ADMET are intimately related; successful

quality control requires knowledge about the chemical properties of the molecules in the

HTS.

The goal of the Assay Reporter is to bring these disparate streams of information

together in a single place where biologists and chemists can jointly assess the quality of a

screening hit. For each HTS project, our system employs a relational database to store

both the raw and metadata from biological assays and the chemical properties of the

screening library. The “drug-likeness” of molecules is predicted using computational

ADMET models such as the ones described earlier in this chapter. In parallel, QC

measures of the reliability of the biological data are calculated and suspicious results are

automatically flagged for in-depth investigation. Our algorithms then query the database

;
l
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to produce an html hierarchy that reports the original HTS data and all derivative

information in a readily accessible and intuitive manner.

The output from our program mimics a natural work flow. The root page contains

visual elements such as heat maps and scatter plots that facilitate the detection of

systematic errors present in the HTS. Once assay results are reviewed and verified,

investigators can follow a link to a separate page containing an analysis of the top hits

(defined by a user-defined cut-off). Here, the hits are ranked according to a user-defined

rubric that takes into account activity, the confidence in the assay result, chemical

similarity to known bioactive molecules, commercial availability, and ADMET

properties. Each molecular record contains URLs to additional pertinent information—a

table detailing the activity of the compound in prior assays and a preliminary SAR based

on automated similarity and substructure searches.

By integrating chemical and biological data, Assay Reporter allows investigators

to weigh the assay results of HTS hits in the context of other important data, thereby

providing a more complete view of the suitability of the compound for further

development.

4.2 Methods

All programs are executed within the Pipeline Pilot 4.5.2 environment using

native PilotScript and Perl 5.8.1. Scatter plots and statistical metrics were calculated via

external calls to the R program (version 2.0.1). Data pertaining to the screening library,

chemical properties, and assay results was stored in mySQL databases (version 4.1.7).

.
l
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4.3 Database Structure

The entity relationship diagram (ERD) for the Assay Reporter relational database

is presented in Figure 4-1. The three colored squares group collections of related data:

location and source information about the screening library (blue), chemical properties of

the screening compounds (green), and biological assay results and associated meta-data

(red). Each text box represents a table in the database; the rows in each box define the

name and type of data stored. Relationships between records from different tables are

identified by connecting lines. For example, Rel_01 in the green box indicates that a

single record in the compound table corresponds to a single record in the molprops table.

On the other hand, every record in the protocol table is associated with one or more

records in the assay table (red box).

According to the principles of relational database design, each record in a table

must be designated with a unique value, or primary key (identified by the key icon in

Figure 4-1). More than one column can be aggregated to form this element.

Furthermore, redundant information is eliminated by employing foreign keys (denoted by

the FK in Figure 4-1), data columns whose values are derived from another table. These

constraints save storage space and preserve data integrity by avoiding the need to

simultaneously update different tables sharing the same information.

.
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Figure 4-1. Entity Relationship Diagram (ERD) for the Assay Explorer relational database.
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Details of the three data groups are described below:

Library Data

These tables contain source and plate information about the compounds in the

screening library. Purchased or synthesized compounds are registered into the system as

96 or 384 well plates with an accompanying data file containing information about the

contents of each well. The storageplate table keeps track of the plate IDs for these

incoming items as well as other annotation information such as the date received and the

supplier name. The contents of these plates are described in storagewell. The process of

extracting chemical structure information is rather complex and involves topological

assessments and manipulations (e.g., assigning a canonical tautomer, formalizing charge

state, stripping salts, etc.); such details will not be described here. Each physical instance

of a molecule is represented by the combination of an “objectid’ and a ‘batchref number.

The “objectid’ corresponds to a unique chemical topology; the ‘batchref’ identifies

duplicates of the same compound with different salt forms. Prior to screening,

compounds must be mapped onto screening plates. Details about these plates are stored

in the screeningplate and screeningwell tables.

Chemical Data

The chemical structure associated with each objectid' is reported in the

‘molsmiles’ field via a SMILES string (Weininger, 1988). The molprops table contains

calculated molecular properties. The bioactives table contains information about

molecules with known biological action mined from various commercial and public

databases. Likewise, the availcmps table provides information about commercially

87



* -- - -
# , t ,

- * * * ** *** -.ºria"? sº
* * * * * *... nº hºur-tie

* . . . . . " - *** * *

. . . . ºr "º", * * *
- - - # ... , ,

...-a, -e- ºn, • *
º tº * * * * * * * * *

* * * * * * * * +

, rºº * : * ,
* * * * * * * ! - "

* *
_º -aš º ni. -*** * : * ~ * *** * * * -in

*** *- : * * "*.*.*.

". . . .
- *** * * * * *~
*** ***.
* * * * * * *

*** ** * *
*

* * * * * * * * º
*****, ºr

*H,

*** *** * * * * * *..."



available compounds. Using the Tanimoto similarity metric, compounds in these two

tables can be related to compounds in the screening library by a many-to-many

relationship; this similarity matrix is stored in the compound has bioactive and

compound has availcmp tables.

Each table in the Chemical Data collection must be updated every time a new

chemical entity enters the system. Additionally, the compound has bioactive and

compound has availcmps tables must be modified to reflect changes in their parent

tables. However, the computational cost of this method is significantly cheaper than

calculating these properties for each Assay Reporter run.

Biological Data

The assay and protocol tables in this collection contain metadata about each HTS

experiment, such as the name of the screener, the date screened, and a description of the t

protocol employed. Each assay is an instance of a protocol, and is related to the rawdata |

and rawstats tables via a one-to-many relationship. The rawdata table parses the output

of the assay detection devices: all data associated with a plate and well location, and the

calculated activity relative to the control, is stored here. Statistical measures for each

plate are captured in the rawstats table.

4.4Assay Reporter Output

The Assay Reporter generates an html hierarchy for each HTS project—a set of

assays conducted under a single protocol for a single target. Rather than providing a

cursory description of all aspects of the output, this section will focus on specific
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examples of how the application has helped identify systematic errors, suspicious results,

and “good” HTS hits using real-world data from screens conducted at the Bay Area

Screening Center.

Diagnostics Page

The first page encountered by investigators assesses the quality of the HTS using

data visualization tools and summary statistics. Scatter plots of activity vs. compounds in

the order screened can be a powerful tool for discerning anomalies in the experiment.

Figures 4-2 through 4-4 depict common HTS problems.

;

8 . *

Compounds (in order screened)

Figure 4–2. Detecting assay errors using the activity scatter plot I. The mean activity of the plate
containing the compounds marked by the red sphere is shifted (red and green lines correspond to Z
score equal to 1.96 and 2.5). This could be indicative of a malfunction in the controls, aberrant
reaction conditions, or a peculiarity of the compounds on the plate.

89



*** * * . --
tº -** º * *s

*** * r * . ...e. e. wº
J

* --- ** * *-* * *. -* -

tº º - * * * * *
* * * * . . . . .

* :--
-------- * * - *s ".. ºne- .

* *-* -ºº ºn tº ºn tº * -º

º * = **. ºn. * .
* **, *, *
* * * * * * * * * *

º,
* * * * * * * u, , , -

- *-

i
-
|

* * * * *r i,j, #F#, ****
* * * * ***.
* …"

-

****
**. * Hºº + 2, 1,1-stº,
*** * * ******* sin.

****** * * *…*



;

O 20000 40000 6OOOO 80000 *OOOOO 120000 14000

Compounds (in order screened)

Figure 4–3. Detecting assay errors using the activity scatter plot II. Areas of extremely low and high
variance are marked by red ellipses (red and green lines correspond to Z score equal to 1.96 and 2.5).
This characteristic is highly usual for the type of assay employed (fluorescence polarization).

;

Compounds (in order screened)

Figure 4-4. Detecting assay errors using the activity scatter plot III. The thick red curves describe
periodicity in the assay with frequency on the order of one plate (red and green lines correspond to Z
score equal to 1.96 and 2.5), indicative of positional effects.
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The scatter plot for an optimal assay would normally be tightly clustered around

zero activity, as the vast majority of randomly selected compounds would be inactive.

The quality of the HTS in Figure 4-2 is generally good, except for a single plate wherein

the mean activity is shifted higher. Such behavior might indicate a malfunction in the

controls on this plate, or aberrant reaction conditions for the screening compounds.

Alternatively, the activity results could be accurate if derived from a cell-based screen

using compounds known to be biologically active (e.g., cytotoxins). In Figure 4-3, the

activity scatter plot suggests that the assay failed at the end of the screen. This HTS

employed a fluorescence polarization detection method known to produce high scatter in

both positive and negative directions of the activity axis (Gribbon, 2003); the unusually

low and high variance after 110,000 compounds merits further investigation. Finally, the

periodicity in the screen in Figure 4-4 is indicative of positional effects, whereby the

upper left-hand and lower right-hand corners of the plate have intrinsically lower

activities due to systematic errors (see well analysis section below). Thus, an entire HTS

can be quickly surveyed for spurious results using activity scatter plots.

The behavior of individual plates can be further assessed using scatter plots of the

Z-prime and Z-factor metrics described earlier in this chapter. Assay Reporter

automatically flags poor performing outliers for both statistics using a user-defined Z

score cutoff, these plates are reported in a table which provides a link to the plate heat

map. An example of this process is detailed in Figure 4-5. Tracing back to the

Suspicious plate revealed discrepancies in the negative control wells. The top and bottom

wells had unusually high and low activities respectively, suggesting an error in the

handling of these controls.
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Plates With Poor Z-Prime Values
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Z-Prime Scatteplot
Z_score > 1.96 (red ºne), Z_score > 2.94 (green ºne)

Anomalous Negative
Control Activities

Figure 4-5. Outlier detection in the Z-prime scatter plots reveals errors in the negative control wells
for the plate.

Additional examples of the utility of this type of analysis are reported in Figure 4

6, which presents the heat maps for two plates flagged for poor Z-factor. The grid-like

pattern of activity probably stems from a failure to properly deliver reagents to the wells

because of liquid handling errors. Remarkably, both plates would have escaped detection

if only Z-prime was assessed.

92



+CTRL_AvG

zfactor zºne
–3.16 o.o.1

| +cirl so | -cIRL Avg | -CIRL so |
72-oo: o.70 111.80 0.40

plate Ratio Mean■ plate Ratio spplate Ratio Min■ plate Ratio Max
126.80 75.30 97.00 496.00

Intensity Mean intensity so | Intensity Min Intensity Max |
21959.400 82.70.220 |- 40.1653 _138332000_

-º- --- --- --- --º-, -º- || --

------------- *__º_I_1--__ll-º'-----
soi - sor - - - - -27 || --

-º-º-º- ºr-- --__ 1.
-- - - - - - - - --- I - ---
-º-º-º-º-º-º-º-º-º-º-1__-º-º:
poi | box || - - - ---

_lº -º-º- ---4-4

--- --- --- Fºº F-7 ---

kos I ºf kos
--- --- º -.

LINº. Los | Low I Los | Los | 11a | 111 || -12 112 || --- || Lºs | Lie | Liz --- I --- ---
--- -4 --- --- --- 1. --- --- --- --- --- -- -º-º: ---

was woz was woº Mio || mul wiz wia | * was was muz was was are
-3-1 || --> 11-> --> 1-> i.e. l. lºs - - - - --- a-- || -- e.g. || --- || --- || --
--- --- was mos mid || al- | Nº || --> --- --- --- --- --- -- || --
14.5 -old alo -dia -als as a.a. s.a. J.-12.2 a.a. --- __1--___º__---
pººl ºz poºl ooz out oil | puz oux gº ous || 91a || 912 || ous || ous ozº
-- I -7-- I - 1-a -d-e ºs º-a 1-0 | a__-old its 12.0 a.a. J. a.o. 17.0

_-8-2 4-4 tº 14------------__
coe cow | cos
-- - -º- || ---

-- I - I -
------4--__-º-2
-- I - I -
- || --

---
---

---
---

º

ED-- -º- --- --- -07 E-- --- --- E-- --- --- --- E1. --- ---
_- --- --- --- --- --> --- --- - | --> --- --- --- --- --- --

rº
---

---
Q--

---

º

--> 1 -->_-0-------__--- -- || -- .
--- --- --- --- --- A15 Ai- --7 || --

--- ---

sia ei- eiz eas ea- leis eae eiz eas
--- --- --- --- --- --- -- --- ---

--- - --- -12. c13 --- --- --- -17
__--- --- --- --- --> --- --- --- --- ---

---
---

| pic | * | * | *z | pººl pus piº | puz | pºs
--- -º-º: --- --- --- ----| -- --- -----

--- --- Jºº. -- I -11. --- --- 114 || 11: --- I -17.
--> | -- --- --- -- || -- ---------- - || -- ---- 1-9

--- --- --- --- --- --- ºrie air ---
--- - --d-- 4. --- -º-º: - --- -- ---

-

rio || F-1 F12 | fix F14 || Fis | Fis Fiz ris
|----1--0-------__*-*__-0-0 || 14-> - || --- || --

--- - --- I -12 G12 - G- || --- I --- || -->
- - -º -- I -1-7 || --- - - - -- || --

--O. I --- || --- - --- - - - - - - - --- I -17 | *---
º - I - I - || --- || --- - - - - - - - --- || --

tºo 111 || 11a | 11a | 11a | ris || 11a | 117 | ris
-- I - --- || --- I - || --- || --- || -- --- --- || --
--- _-_

- - - - - -
-- --- ---- ---

--- - - - - --- || --
-º-º- - - ---- | ºr
: ºf 3: ºf ºr ºrir
º, --- --- ---

--- D-O
-

pai paz
--- -- ----->

--- ---
--- ---

--- r
-- ---

E-1 E
-----|------

F-1 ---
--- ---

--- cis I can --- ---
--- -- ----- --- ---

-- I - * | *z
- || --

# * : * ~ | *
--- --- || --- || --> |*|| “…--- || --- I --- || --

ºn xzz
--> || -- I - || ----
--- --

- --- --- --- --- --- --- --- --- --- --- ---
--- -- ---> --- -º-º: -º-º: - --- --- - || --> -- --- ---

-- L-1 ºf | ºr ºrLºlº--- || --

--- || --

--- || --

can ozz#| 3: … I ºr

Figure 4-6. Z-factor analysis reveals two examples of liquid handling errors. Note the grid-like

zfactorizprime

--- --- ---

–39.74 0.20 !

+CTRL_AvG +CTRL SD | -CTRL_AvG | -CTRL so |
517.00 5.50 | 726-10 *>0.40

Plate Ratio Mean Plate FRET_sDIPlate_FRET_Min Plate Ratio Max
549.00 _428.50 112.00 G-75-00

Intensity Mean || Intensity_so | Intensity Min || Intensity Max ||
45187200 66780700 638.1330 340363000 —ll

* | *2 Aº | * | *** | * | *z | * | * | Aio || Ali Alz Alz A13 || Als are any A1s A12
2.9 ---- 7.9 5.7 º- d.o. 1-0 || -8.1 0.5 ! -35.s -4-3 -1.4 ---- --- -2-4 --> 1-0 --- 11-9

son soz soa scal sos | Boe Boz Boa soº | Bill siz six 1 si4 Bis a --- B-e Lic
-6.7 || --7 || ----, -º-º-, 30.2 || -- ----, -97.5.1 ---- | 28.7.5:1 z+.4 || 2:38.41 -3.7 -2.d. 0.5 || 2:30.8

col coz coa co-4 co: coe coz I cos cop cio | c.11 | c.12 c-- I c-4 c-- cle c-7 c-- I c.19 cro c-1
-11-0 ---- -0-4. 7.6 0.0 -6.2 0-0 || -1-- J -3.3 -0-4 -7.1 -11-9. 0.3 -6-2 -2.4 1.0 --- 7-7 -1-3
ool | poz pos | poal pos■ poe 1 poz poe poºl pio oil piz pial dis ous 1 pie paz I pus ous I ozoIo.s ºn sº slasººl isºal ºel ºz ºil zººl zººl issºl ºz ºal º zººl sº zºº -70-G -7-6

* | * | * | * | * | * | * | ** | * | **2 ºf 12 ºz | *** | *: *** | *z sº | ***. tº
---a -4.7 -3-a__-2-3 tº J_-0-4 -5-2 J_---> J_-2-e J_-3-e J_-1.- J -o- -a.e J_-1-> 2.4 - -o-> || --- I -----, -->
Fol | Foz || Fox row Fos foe for fee roo Fio || Fit F12 || Fra fis | ris fis | Fiz F1a | rig. 1 ºzo

_-2-a__-8-1 || 127-3-2-3-2-1-2a1-> 287.0 272-2)-278-9 2a4-2-283.7 277.3 ºf 287-al_-4-3 || 2a4-2, -3-3 || 215, a 1-0 | *-* -7.6
cº, ºz º cº: -o- | * | * | coa coº 212 | <11 | <12 | <13 || 514 | <13 | <12 --> ci- c.19 -207-1 || -º-º -º-1 2-1 || 0-0 0-5 °-e J_-4-2 || -3-e J_0-0 J_-1-9 J_---> -5-2 || -11-0 J_-0-4 -e-2__-2-2 102.2 J_--_J_-e-2
-01 || HO- Hoº Hox was how Hos how Huo || Hui 1 Hua nual his his 1 rue air his

_-4-2 || -a-, -122-1 287--1-296.5-1-249-1-2-1--1-2-7-0------- ** 28zººl -o- 2a+2]_2-c_128.21_2?sº
º, º tº . . . . . . . . . . . . .” ºf ºf | * | *: | * | * | * | * | *:----- 7-0. -7.8 || 3.4 --- 8.2 0-- 1-0 --> 3.9 4.3 c.- 6.3 ---> o-> --- a.º. 17-7 -3.3 3-9.

* | *2 | dº. º. º. º. º. º. º. 112 || 311. 112 || 312. 213 || 21s. 21% 217 | 11a | 11a | no
3-3 || -7.5 -236.8 ± 28-6.1-237-0------|------------, --> -237- 2.0 28-- --> 27- -3-3 || 267- --> ------| --

koi coal kos ko- kos koe * | * “º *** | *** | *** | *13 | *** | *13 | "12 -17 | x-e --9 -o1-5 J-5-7 || -4.3 -9-0 || -9-0 || -2-2 -8-1 || -13-a -3-e ---e J_-1-p__-11-0 -3.8 -19-e J_-5-2 -º-1 - 1.4 -6-2 || 24-0 |_-14
Lou Loz || Los toº tº Los 107
0.4 º-__2=a_al_2a-i-rez-e J-2a-o.J._ºa-i J_

Po- po- -> po-, -o- -- Pººr -o-

Los | 11a | 111 || L12 us | 11a |-usº us |
|ase.1 2-0 || 122-s] -7-1 || 2s2.2] -5.2 --->

Mo1 rºoz I -03 Moe rºof Mos nos | Mio || M11 Miz M12 wi. wis ºne
--- ---> -2-3 ---a -6.7 -7-1 2-0 _-a-2 _-2-4 -º-º: -2-0 --- ---> --- -8 17-7
Moi I no.2 | Noa no-1 was 1 was nor woe 1 nog
-5-2 || -10-5 ------|--º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-, -----| --9 |_2E-- 12-0 || -----, --> ------, -->
Go- ooz cºod cº- co- oo- ooz Cºº oº

-º-0 J_-7-1 || -2.1 - 12.9 -3.3 J_---> 2.8 2-d

pº

- azz Tazz az
- --> -o-, -7.

sail szz sza ex4
º- 19.7 99.- 9-6.

c| --
-25.9 Q---| 101--

D2- Dzz oza p24
24-H -4-2 || --- 08.1

£21 Ezz Ezz E24
-6-2 27-3-1 -o-o- 10

F-1 *22 F2a | F24.* † ºliºs
-21 --- --> --
2- . 162-e J_102-e J_101-0

-12. razo H.-- *zz was ---
27- 0.0 27- d.- 10-0-1 10

n-d --- -12 --> was wis -1-

one out oºz olz on- 215 º: D17-6-7 || --- || --> -2.- I -0-9 o-> --- d.o.

L1- I -20
-----. -->

*19 wro
--- -7

---, -o
-º-º: -3-8

---> ozo
--> ---

P-0 --- p12 --- P-4 --- P-6 p- --- --- Pro
1 || -- - 2-- --0 ---

121 1zz 1za 124
-7-6 || ----- ºr-- gº.--

--- 22- --> 224
-º-º: -7-6 | id- -o-º:

--- -22 | xzz k24
-13-3 || ----, --- ~~1.

--- I -22 || -- || --
27- -----|----|--00--

*21 ºz was wz
----9 || 7-0-- || --- ---

nzi I waz was was
2e2=a__-12-4 ºn 27-6.
ozi ozz ozº. 1 oz.
--- || ---, --, -º-º:

--- p-22 --> º
--- ----|--

pattern of activity.

º/?

93



*
** * . *...* 's-- * *s

**** *

**** - ** -, * * * * *
* -

º * =--- *-** intº as * ~ *
------, * * ****

+ =* - a 4

* * * * * * : , , * *

-*** * ***. * *
*

-

* . . . . ." ***- - -, -º- tº * ~ *
-- ºneº

* *** * * * * * *
** *...* an * * * * * *

fi:
º:

a sº-, * * * * * *- *-*.

º -*t, *.*.*, **sa
*** tº Estºw.tº *** * * * ar- º
**** **** #

º º* * * * * * * *** *
tº . º.º. ºº is º

*** * * * * **** *****



An analysis of the time-dependence of the Z-prime and Z-factor metrics can also

be informative. Despite best efforts to manage the work flow, plates may experience

significantly different incubation times during the course of an HTS experiment.

Plotting a quality control statistic for a plate as a function of the time taken to be

measured can reveal trends in the performance of the assay. Though not as ideal, the

order in which the plate was screened, as determined by its sequence in the raw data, can

approximate time effects. For example, as demonstrated in Figure 4-7, the standard

deviation of Z-factors for plates screened at later times tends to be larger, perhaps

indicative of reagent degradation

C . : . A. .
A

A. . A.;

I I T i

5 10 15 2O

Order Plate Screened

Figure 4-7. The graph of time dependent Z-factors reveals an increase in variance for plates sitting
longer prior to measurement (points include 95% confidence interval).

Finally, a statistical analysis of the assay values across an entire screen for each

well position can be useful for determining edge effects. Under optimal conditions, no
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privileged position on the plate exists—the average variance and mean of the activity

should be roughly equal at any location. However, the outer edges of a screening plate

might experience different temperatures, or be located farther away from the detector,

relative to central positions. Alternatively, flaws in the liquid handling device might

produce deviations in the reagent conditions depending on plate geography. The signal

for such errors might be masked by the random noise of the screening compounds;

therefore, assay values for each well must be examined across multiple plates. Figure 4-8

demonstrates this type of well analysis. A clear positional effect is apparent in the mean

well activity heat map (bottom).

Well Analysis Across Project
Each well is color coded by its variance Z-score (in Master Reference Frame)
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Figure 4-8. Uncovering positional effects in the HTS using well analysis.
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Molecular Profile and the Identification of “Good” Hits

Examination of the Diagnostics page is the first step in the analysis of HTS data.

Suspicious plates or anomalous results should be reviewed, and corrections or

normalization to the raw data made accordingly. Upon assurance of satisfactory quality

control, an investigator can proceed to a URL containing the “Molecular Profile” of each

compound that satisfies a user-defined threshold for activity (i.e., a minimum Z score).

This profile provides links to all available information, including a plate heat map and the

raw data, the performance history from different HTS experiments, a preliminary SAR, a

summary of similar compounds with known bioactivity (including toxicity), a summary

of commercially available compounds, and ADMET model predictions. Moreover, the

molecules on this page are ranked according to a user-defined rubric, such that the most

suitable candidates for further development appear at the top. Specifically, compounds

are first ordered by increasing number of ‘PFlags’, or violations of QC and “drug

likeness” criteria, and then by decreasing activity. Compounds originating from plates

with poor Z-prime or Z-factor are flagged; additional criteria, such as maximum

allowable activity or aberrant fluorescence behavior, can be added at the discretion of the

investigator. Furthermore, the user defines a “drug-likeness” flag by setting a minimal

threshold value for the ‘DScore,” a metric that quantifies similarity to known bioactives

and toxic molecules (see relational database section for details), commercial availability,

and ADMET model performance.

Thus, the PFlag rubric is meant to emphasize the “goodness” of an HTS hit, as

determined by the confidence in the assay results and “drug-likeness.” The definition of

“good” is intentionally left imprecise and adjustable, as the criteria for a lead candidate
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might vary according to the goals of a particular drug design project. Nevertheless, the

Assay Reporter provides a framework for the qualitative assessment of important

molecular properties in addition to HTS activity.

Figure 4-9 below shows an example of how molecules with higher assay values

were ranked lower due to PFlags. Figure 4-10 details the four components of the

‘DScore: the BioScore (a measure of the similarity to known bioactives), the ToxScore

(a measure of the similarity to compounds with cytotoxic or genotoxic activity), the

AvailScore (an assessment of the commercial availability of a compounds), and the

ADMEScore (predictions from ADMET models). For each of these components, the

Assay Reporter links to a web page that describes the results from database searches or

model predictions.
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Figure 4-9. The PFlag rubric ranks “good” compounds higher on the molecular profile page.
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Figure 4-10. Information linked from the Molecular Profile page. Each molecular record contains
links describing the similarity to known drugs (green), similarity to toxic molecules (blue),
commercially availability (orange), and ADMET predictions (red)
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The molecular profile page includes two additional links that are also useful for

measuring “lead-like” qualities: a history of the performance of the molecule in previous

HTS experiments and a preliminary SAR. These assessments were left out of the PFlag

rubric because they require a more sophisticated level of interpretation that is less

amenable to quantification.

For example, consider the histories presented for two molecules in Figure 4-11

(the table entry written in blue refers to the current HTS). The top molecule is selective

for the Androgen Receptor (AR_Effector), whereas the bottom compound appears to be a

“frequent hitter” that is active against two other unrelated targets: Thyroid Receptor Beta

(TRbeta_Effector) and a GTPase (Soderholm Inhibitor). All other things being equal,

the top molecule would be considered the better hit.

Probe Activity History

§ 2" weacTl■ um | Batchne■■ Plateid well Project |screener screendate] Protocol
o & Sy’ > 108.76 200506.2/174909 ball Ch-01 01652sr F19 AR_Effector LeggyA 2005-06-20 Protocol/A
". N- 2 | 28.43 200505:12204041 BATCH-01 old 52sf F19 TRbeta_Effector LeggyA 2004-11-19 Protocol1A

o 26.09 20050824134444 BATCH-01 01652SF F19 Soderholm Inhibitor Jons 2005-06-20 Protocol&A©
3 record(s) retrieved from the database

AB-00118138

Probe
-

Activity History
-

| coacTL RefNum_j Batch.RefL Plated wen■ Project screener screendate] Protocol
o o lots. Z2 200soto27 1/5341. Bai Cri-o-1 o 1455 CD in 12 AR_Effector Leggy A 2005-06-24 Protocol/A

r O
n 120 20050512192312 BATCH-01 on 455CD N12 TRbeta_Effector LeggyA 2004-10-08 Protocol1A` 84.48 20050824135123 BATCH-01 on 455CD N12 Soderholm Inhibitor Jons 2005-06-24 Protocol&Ao

3 record(s) retrieved from the database

A8-00055376

Figure 4-11. Activity histories for specific (top) and nonspecific ligands (below).

On the other hand, Figure 4-12 depicts a molecule that is active in three species of

parasites: Trypansome Brucei (McKerrow Inhibitor 1), Plasmodium Falciparum W2
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(Anti Malarial, Protocol 6A), and Plasmodium falciparum 3D7 (Anti Malarial 1,

Protocol 6A). Here, the notion of a broad spectrum anti-parasitic is interesting and worth

pursuing. Thus, the activity history of a molecule is another useful criterion for

identifying “good” HTS hits.

Probe | Activity History
“I wact Remum estanael Peted well project screener screendate protocol

O 92.85 20050630.212908 BATCH-01 01839Ms C08 McKerrow inhibitor 1. ZachM 2005-06-25 Protocol.3B
As 107.57 200509081.24157 BATCH-01 on 839 Ms Cob Anti Malarial1 Allyl 2005-08-30 Protocolób

z o 101.01 20050908123438 BATCH-ol Olsogºs cog Anti Malarial1 Allyl 2005-06-30 Protocol.6A~& D.
99.74 200505:16120310 BATCH-01 on 839MS COB McKerrow_Inhibitor 1 ZachM 2005-05-04 Protocol&A

N. 96.21 20050630213709 BATCH-01 01839MS CO8 McKerrow_Inhibitori ZachM 2005-06-25 Protocols.C
--

12.45 20050824.133237 BATCH-01 olò71MS F16 Soderholm Inhibitor Jons 2005-06-14 Protocol&A
o.97 20050513os244o BATCH-01 olszlms F16 TRbeta_Effector LeggyA 2004-11-22 Protocol1A

Ae-oxolilxsz 7 record(s) retrieved from the database

Figure 4-12. Activity history for a potential pan-parasitic.

The preliminary SAR page can be helpful for recognizing “singletons,” or

compounds that do not show gradual change in activity with structural variation. In

general, medicinal chemists will avoid such molecules because optimization might prove

difficult. In addition, the presence of only one active molecule in a series of related

compounds casts doubt on the reliability of the biological data, as the assay result might

be due to impurities or degradation.

However, the definition of a “singleton” is not rigorous and depends on the

perception of how well the chemical structure has been explored. To aid this process, the

Assay Reporter collects similar molecules for each hit on the Molecular Profile page

using the Tanimoto metric and substructure searching. The latter employs the Murcko

fragment, whereby the side chains of a molecule are stripped off to expose the core

scaffold. The program then attempts to orient the molecules in the same direction in
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space. Investigators can use the resulting congeneric series to help determine whether the

HTS hit is a singleton.

Figures 4-13 and 4-14 present an example of a good SAR and a potential

singleton, respectively. The colored borders around the molecules in the series

correspond to activity (green=high activity, yellow-moderate activity, red=inactive).
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4.5 Conclusion

In this chapter, we provided examples of how “good” HTS hits can be identified

by combining quality control techniques and the knowledge of “drug-likeness.” Though

useful in the analysis of a number of projects (Arnold, 2005; Mackey, in preparation;

Weisman, in preparation), the Assay Reporter is only the first step in the construction of

a complete informatics system for handling HTS data. For example, the relational

database must be modified to include secondary analysis data and experimentally derived

molecular properties, and to track corrections and modifications to the raw data during

QC assessment. More robust statistical techniques, such as replacing the mean and

standard deviation with the median and median absolute deviation, should be explored.

Median polishing and Fourier analysis could be useful for correcting positional effects

and other frequency dependent systematic errors. Additional models, such as

promiscuous inhibition, should be incorporated into the PFlags rubric of the Molecular

Profile.

In the next chapter, we conclude by discussing how the Assay Reporter and the

computational learning models described earlier fit together in the larger context of data

mining HTS data to accelerate lead discovery.
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Chapter V. Future Directions

What is the best way to discover new drugs? The most prolific drug-maker,

Mother Nature, uses natural selection over thousands of years to optimize compounds.

Indeed, some of the most important small molecule therapeutics used today, such as

antibiotics, statins, and anti-neoplatic agents, are either modifications of natural products

derived from extracts of bacteria, fungi, and other organisms or chemical analogs of

human metabolites.

However, technological advances within the last two decades promised new

avenues for the detection of novel chemotherapeutics. Combinatorial chemistry and HTS

enabled the rapid synthesis and screening of thousands to hundreds of thousands of

molecules for biological activity. Cloning and other tools from molecular biology

facilitated the isolation and characterization of interesting biomolecular targets. High

speed computation and chemical informatics systems paved the way for virtual screening

and structure-based drug design.

But despite the dramatic rise in the number of active molecules generated from

these technologies, the rate with which new chemical entities were successfully launched

during remained constant (Bleicher, 2003). A study of drug failures during the 1990s

revealed that the focus on selectivity and specificity, the primary qualities emphasized

during lead evaluation, needed to be balanced by a thorough assessment of ADMET

properties (Kennedy, 1997). The pharmaceutical community came to the realization that

drug discovery was a multi-dimensional problem requiring holistic strategies for

optimization, and that translating HTS hits into quality lead candidates was critical to

SUICCCSS.
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This work represents an initial effort to improve the decision making process for

identifying molecules from early screening hits that may potentially be good leads. We

present the Assay Reporter as a framework from which to assess HTS results in the

context of all available data, including predictions from computational models such as

those described in earlier chapters. The PFlags rubric attempts to integrate this

information into a single quantity that represents the suitability of a compound for further

development.

This scoring function will be the primary focus of future research. As more

chemical and biological data becomes available, we hope to refine our ability to

recognize “good” lead compounds using the computational learning algorithms explored

in Chapters 1 through 3. One can imagine building models of important ADMET

properties using GBM and SVM technology, and using their predictions as inputs;

indeed, those algorithms might eventually serve as the structure for a “meta-model” that

identifies “lead-like” molecules.

Furthermore, the interpretative nature of the naïve Bayes algorithm could be

harnessed to guide better optimization strategies. For example, knowledge of the

favorable and unfavorable structural elements in a molecule with respect to property A

will help identify flexible positions on the scaffold; these positions may be safely

modified to affect other properties without disturbing property A. This technique will

allow investigators to explore the tradeoffs between different properties in our scoring

function, and will simplify the multivariate optimization problem by constraining the

search space.
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Our system will not only guide present day decisions, but will also be a source of

information for retrospective analysis and an inspiration for new hypotheses. As we

follow the trajectories of compounds through lead development, we can challenge the

assumptions about the characteristics of quality leads. We can ask questions about the

relative importance of molecular properties, when compound development should be

terminated due to intractability, and how the nature of the disease for which a treatment is

sought (e.g., a chronic condition requiring long-term therapy vs. an acute, short term

infectious disease) changes our definition of “lead-like.” With such knowledge, we can

revise our scoring function and propose a new set of experiments for testing and

improving our selection criteria.

By accelerating the identification of quality leads, we hope this work and

developments in the future will remove some of the obstacles to modern drug discovery

and uncover new possibilities for therapeutic intervention.
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