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ABSTRACT. This paper introduces a representation of an integrated vec-
tor time series in which the coefficient of multiple correlation computed from
the long-run covariance matrix of the innovation sequences is a primitive pa-
rameter of the model. Based on this representation, we propose a notion of
near cointegration, which helps bridging the gap between the polar cases of
spurious regression and cointegration. Two applications of the model of near
cointegration are provided. As a first application, the properties of conventional
cointegration methods under near cointegration are characterized, hereby inves-
tigating the robustness of cointegration methods. Secondly, we illustrate how
to obtain local power functions of cointegration tests that take cointegration as
the null hypothesis.

KEyworDs: Cointegration, spurious regression, near cointegration, coin-
tegration tests, local power function, Brownian motion.

JEL CrAssiFicATION: C12, C13, C22.

1. INTRODUCTION
One of the most important contributions to modern time series econometrics is the
development of an asymptotic theory for the analysis of multiple integrated time
series. Much of this research has been inspired by the Monte Carlo study conducted
by Granger and Newbold (1974). That study considered regressions of independent
random walks on each other and found that the usual significance test based on the
regression F-statistic tends to overreject the null. To describe this phenomenon, the
term spurious regression was coined.! The numerical findings of Granger and Newbold
were given an analytical explanation by Phillips (1986), while Park, Ouliaris, and

*This paper was completed while the second author was visiting the University of California,
San Diego in the spring of 2000. The paper has benefited from the comments of H. Peter Boswijk
and seminar participants at Penn State University, Tinbergen Institute, University of California
(Riverside, San Diego), the 1998 European Meeting of the Econometric Society and the 1999 NOS-S
conference on macroeconomic transmission mechanisms.

'Earlier, Yule (1926) had used the term nonsense correlation to describe a similar phenomenon.
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Choi (1988) and Park (1990) provided further clarification. These authors considered
regressions involving quite general integrated processes and found that the asymptotic
properties of the appropriate F-statistic depend crucially on p?, the squared multiple
correlation coefficient computed from the long-run covariance matrix of the innovation
sequences. If p? < 1, the F-statistic diverges at rate T (where T is the sample size)
while 7! x F has a non-degenerate limiting distribution, which only depends on
the dimension of the system. In other words, the regression is spurious whenever the
coefficient of correlation is less than unity. In contrast, when p? = 1 the series are
cointegrated and F' = O, (1) with a complicated limiting distribution. Conventional
asymptotic results therefore depend discontinuously on p?.

On the other hand, it is quite obvious that the finite sample distribution of the F-
statistic depends continuously on p?. As a consequence, there is reason to believe that
conventional spurious regression asymptotics provide a poor approximation to the
finite sample behavior of the F-statistic when the processes are "nearly” cointegrated
in the sense that p? is "close” to unity. More generally, finite sample approximations
based on spurious regression theory are likely to be of limited usefulness whenever
the limiting behavior of the object of interest (e.g. an estimator or a test statistic)
exhibits a discontinuity at p*> = 1 and values of p? close to unity are of particular
interest. In contrast, a model of near cointegration in which p? is a sequence of
parameters lying in a shrinking neighborhood of unity as 7" tends to infinity is much
more appealing in such situations.

Motivated by these considerations, the present paper introduces a model in which
p? is a primitive parameter and uses this model to propose a notion of near cointegra-
tion.? By construction, the limiting behavior of the F-statistic depends continuously
on p? in our setup and the model of near cointegration therefore enables us to bridge
the gap between spurious regression and cointegration with respect to the limiting
behavior of the F-statistic. The usefulness of our model is by no means limited to
the study of the F-statistic. We illustrate this by presenting two further applica-
tions of the model. As a first application, the robustness of cointegration methods
is investigated. Specifically, we characterize the limiting behavior under near coin-
tegration of the usual Wald statistic devised to test hypotheses on a cointegrating
vector. This application complements Elliott’s (1998) study, where the implications
of near-integration in exactly cointegrated models are examined. Our finding is that
under near cointegration the limiting distribution is no longer x?. In fact, the results
of a simulation study indicate that substantial size distortions are encountered even
for moderate values of the noncentrality parameter measuring the deviation from ex-
act cointegration. In our second application, we illustrate how to obtain local power
functions of cointegration tests that take cointegration as the null hypothesis. In the
literature, several different classes of cointegration tests have been proposed. It is

’In the aforementioned papers, p? is computed from a long-run covariance matrix which is itself
defined by taking limits as T — oo. Therefore, it is not immediately obvious how to model p?
as a sequence of parameters that lie in (say) a 1/72 neighborhood of unity. By working with a
representation where p? is a primitive parameter, we circumvent this potential problem.
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therefore desirable to investigate what (if anything) can be said about the relative
power properties of these competing test procedures. As a first step in that direction,
we characterize the behavior of several regression based cointegration tests under lo-
cal alternatives and compute the corresponding local power functions. Among the
six test statistics under study, four are found to have virtually identical local power
properties, while the remaining two are significantly inferior in terms of local power.

The paper proceeds as follows. In Section 2, we present the general model and
discuss how the polar cases of spurious regression and cointegration arise as special
cases of that model. In addition to these familiar concepts, a notion of near cointe-
gration is introduced. Section 3 discusses the behavior of regression estimators under
spurious regression, cointegration, and near cointegration, while Section 4 contains
the corresponding results for inference procedures based on these estimators. Specifi-
cally, Section 4.1 studies the F-statistic and Section 4.2 investigates the robustness of
cointegration methods by characterizing the behavior of a Wald statistic under local
alternatives. In Section 5, we report the behavior of several cointegration tests under
near cointegration. Finally, Section 6 offers a few concluding remarks. Proofs of all
results of the paper are outlined in an Appendix.

Before we begin, a word on notation. The inequality ” > 0” signifies positive defi-
niteness when applied to square matrices and || A| is the Euclidean norm (tr (4’A))"?.
For any symmetric A > 0, A=Y/2 = (Al/ 2)71 and A'/? is the upper triangular matrix
with positive diagonal elements such that AY2AY% = A. To simplify the notation,
integrals such as fol W (r)dr and stochastic integrals such as fol W (r)dW (r)" are
typically written as [W and [ WdW’, respectively. We use £ (X) to denote the
probability law of X, the symbol ” £» signifies equality in law, and ” X Lo Y7 is
shorthand for ” limr_,, £ (X7) and limr_,, £ (Y7) both exist and are equal”. Finally,
all limits are taken as the sample size T' — oo unless otherwise stated.

2. PRELIMINARIES

Section 2.1 introduces the general model and Section 2.2 discusses how the polar cases
of spurious regression and cointegration arise as special cases of that model. Finally,
Section 2.3 introduces a notion of near cointegration.

2.1. The Model and Assumptions.
We assume that {z : t > 0} is an m-vector integrated process generated by

Az = C(L)ey, (1)
where C (L) and {e; : t € Z} satisfy the following requirements:

Al. C (L) =372, C;L is a lag polynomial, Y o i* |[|Ci|| < co and C (1) = > .2, C;

is upper triangular with non-negative diagonal elements.



SPURIOUS REGRESSION, COINTEGRATION, AND NEAR COINTEGRATION 4

A2. The sequence {e;} is i.i.d. with F (e;) = 0 and F (ei€}) = L.

The memory condition Al is satisfied whenever {Az;} is a stationary vector ARMA
process. Along with the moment condition A2, A1l will enable us to call upon well
known results for linear processes (e.g. Phillips and Solo (1992), Phillips (1988b))
when deriving the results of the paper. Assuming that E (e,e;) = I, and C'(1) is
upper triangular entails essentially no loss of generality. Indeed, suppose B (L) =
Yoo BiL' is a lag polynomial with Y ;° #*||B;|| < oo and suppose the sequence
{ug 1t € Z} is ii.d. with E(u) = 0 and F (wu,) = X, a positive definite matrix.
Define {C; :i >0} and {e; : t € Z} as follows: C; = B;X20 and ¢, = O’ 2y,
where O is an orthogonal matrix such that B (1) ©'/20 is upper triangular (with non-
negative diagonal elements). Then, for all i > 0,¢ € Z, Cye; = Bju; and E (ese)) =
I,,. Moreover, C (1) is upper triangular (with non-negative diagonal elements) and
> 2| < oo.
Applying the Beveridge-Nelson (1981) decomposition to C (L), we have:

2 =C)& +C(L)e + %, (2)

where &, = 3! ey, %0 = 20 — C (L) eg and C (L) = 3.5, C;L' is a lag polynomial
with coefficients C; = — > iein Cj satisfying 3777 i HC’Z ‘ < LS 2G| < oo
Partition the m-vectors 2 and §; into m, = 1 and m, = m — 1 components as
2 = (g, ;) and & = (£,,,&,,) . The cointegration rank of {2z} equals the rank
deficiency of C' (1) and we can therefore parameterize the cointegration rank of {z;}
directly by a suitable parameterization of C' (1). It turns out to be convenient to pa-
rameterize C (1) in terms of the elements of the long-run covariance matrix of Az, viz.

!/

Q.. = ( Yy giﬁ ) = 1im 7Y S E(AnAZ) =C(1)C(1), (3)

w T—00
*Yy t=1 s=1

where the partitioning is in conformity with z;. Specifically, we shall parameterize
C (1) as follows:

A3. Let C (1) be partitioned in conformity with &,. Then
!/
C (1) — w?%Q (1 - ,02)1/2 P <Q$_$1/2(Dmy)
0 Q3 ’

where w,, > 0,{; > 0,0 < p < 1 and &,, is an my,-vector satisfying

=/ -1~ —
wwawm Way = Wyy-
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The assumptions w,, > 0 and €2,, > 0 in A3 imply that {y;} is an integrated process
and {z;} is a non-cointegrated integrated process. Admittedly, the assumption that
{z;} is non-cointegrated is somewhat restrictive. On the other hand, the assumption
of non-cointegrated regressors is fairly standard in the related literature,® so in or-
der to facilitate comparisons with existing results we shall maintain this assumption
throughout.

When A3 holds,

szzcmcm':(p“g:y Pﬂizy).

The parameters w,, and €2, in A3 therefore coincide with the corresponding long-run
variances in (3). The long-run covariance w,, between Az; and Ay, is given by pw,,,
where @, expresses the direction of the covariance while p measures the strength of
the covariance. In fact, as the notation suggests,

! -1
2 wmyﬂzm w-Ty

Y
Wyy

is the squared coefficient of multiple correlation computed from €2,,.

As we shall see shortly, the cointegration properties of {z;} depend solely on the
scalar parameter p. Indeed, {z} is cointegrated if and only if p? = 1. For our purposes,
this is very convenient since it enables us to introduce a notion of near cointegration
by modeling p as a sequence of parameters lying in a shrinking neighborhood of unity
as T tends to infinity.

To complete the specification of the model, we need to make an assumption con-
cerning the initialization of {z;} at ¢ = 0. For convenience, we make the following
assumption, which implies that Zy = 0 in (2):

A4, 20 — é (L) €p.
In a well defined sense, A4 is simply a normalization. Indeed, as we shall see in Re-
mark (i) following Lemma 1, it is straightforward to accommodate a non-zero (possi-
bly time-dependent) mean in z;. Doing so will not alter our results in any interesting
way, however, and we therefore retain A4 in order to simplify the exposition.

Together, A3-A4 imply that (y;, 2})" can be represented as

1/2 oy 1/2 —172- Y
Yo \ _ | Wy (1-p7) p | oz’ "Wy 3 p =
( xt ) N ( 0 ( 0 ) > <5Z,t ) toDe, W

where §, , and £, , are uncorrelated random walks.

$Notable exceptions are Park and Phillips (1989, Section 5.2), Choi (1994), and McCabe, Ley-
bourne, and Shin (1997). See also Phillips (1995) and Chang and Phillips (1995).
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2.2. Spurious Regression and Cointegration.
Since {z;} is non-cointegrated, {z} is cointegrated if and only if {y, — Bz} is sta-
tionary, where (3, is the projection coefficient computed from 2,,, viz.

Bo = Q;c—xlp@my‘ (5)

Following Park, Ouliaris, and Choi (1988), we shall occasionally refer to (3, as the
fundamental coefficient. From (4) — (5), we get

yi — By = w2 (1= p?) 26, + (1 =8, ) C(L)er.

When p < 1 (and fixed), {y; — f'x;} is an integrated process for any value of 3. We
shall refer to this as the spurious regression case. In contrast, {z;} is cointegrated
when p = 1. Indeed, when p = 1, y; — Byz; = u;, where

U = ( 1 _/BIO ) é (L) €t, /BO = Q:;:Ela)xy

Under spurious regression, our distributional results depend solely on €2,.. Under
cointegration, in contrast, our distributional results depend on the following param-
eters:

T t—1
Pow— (T T ) = ( Tow Vs > — i TS F (wl),

T—o0
Vau t=1 i=0

T
!
S = ( Tuu T g ) = lim 7' E (waw),

Oz ECECE T—o0 P

where w, = (u;, Az}) and Q) [y and 3, are partitioned in the obvious way.
The case where 2, and T'y,, are block lower triangular (i.e. W/, = Vuo = O1xm, )

is of particular interest, since the asymptotic theory simplifies considerably in this

case. In most applications, however, we would not expect the raw data {z} to
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satisfy such requirements.! On the other hand, we can transform {z} in such a
way that the transformed data, {ztT } (say), does meet these requirements. One such

transformation, the CCR transformation suggested by Park (1992), is z) = <ytT , m;”) ,

where

yl =y — Bl Sriwy — W, Qi Ay, (6)

IUu- "xT

o) =z, — T, 5w, (7)

Let w)’ = (uz : Axl') , where u] = v, — ' Q- Az, and define Qf | Tt and Sf in
analogy with €, [y, and ¥,,. Then Q:fuw and Ffuw are block lower triangular with
Q;w = ., and wLu = Wyuz = Wuu — W Q- wa,, the conditional variance computed

U rxr
from €2,,.

Remark. In applications, 5y, Quw, Lww and X, are typically unknown and {w;} is
unobserved, so the CCR transformations (6) — (7) are infeasible. On the other hand,
consistent estimators of BO,wa,Fww and Y, are easily constructed. Indeed, the
OLS estimator 3 in equation (9) below is consistent for 3, (Lemma 1 (b)). Likewise,
conventional kernel estimators of 2., . and ¥, can be shown to be consistent
under (near) cointegration (Jansson (1999)). As it turns out, our asymptotic results

derived under (near) cointegration are unaffected when {z;r } is constructed using a

feasible CCR transformation based on consistent estimators of BO, Qs Lww and 2,
(e.g. Park (1992)). For convenience, we therefore assume throughout that {th } is

observed and that (nuisance) parameters such as Q, ' and 3, are known. [ |

2.3. Near Cointegration.

In addition to the familiar concepts of spurious regression and cointegration, we now
introduce a notion of near cointegration. We say that {z;} is nearly cointegrated
when the following assumption holds:

A5, (i) 1= p? = T72N2Wyup /wy, for some A > 0, (ii) Wyye = Wuy — Wy gt W > 0,
and (iii) (1 =3, )C(1) (1 Oixm, ) >0.

Of course, near cointegration reduces to cointegration when A = 0 in A5 (i). When
A =0, A5 (ii) states that the cointegration is regular in the sense of Park (1992, Def-
inition 2.3). On the other hand, when A # 0, A5(iii) is essentially an identification

4 A sufficient condition for these block triangularity requirements to hold is that {x;} is strictly
exogenous in the sense that F (Azsus) =0Vt > 1,5 > 1.
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assumption.” Under A5, p (and hence also the fundamental coefficient ;) is a se-
quence of parameters. Likewise, {2} is a triangular array rather than a sequence. As
is common in the literature, we follow Phillips (1987, 1988a) and omit an additional
subscript 7T, since it is inessential to the discussion.

The parameter A introduced in A5 will play a prominent role in the asymptotic
theory developed under near cointegration. Under A5,

A= C o) ®)

Wuu.x

and we see that A\ can be interpreted as a signal-to-noise ratio. Specifically, the
numerator in (8) is proportional to wi (1-— p2)1/ ? | the long-run standard deviation
of Ay, conditional on Az, while the denominator, wi{fm, is the long-run standard
deviation of u; conditional on Ax;. Under cointegration, the former is zero and A = 0.
Under spurious regression (when p < 1 is fixed), on the other hand, the right hand
side of (8) diverges. Near cointegration corresponds to the intermediate case where
the numerator and denominator of (8) are of the same order of magnitude.

In closely related work, Tanaka (1993; 1996, p. 449) has introduced a notion of
near cointegration, which might appear to differ slightly from the notion introduced
here.® Essentially, those works consider the seemingly more general case in which our

Assumption A2 is replaced with the following assumption:

A2'. The sequence {e;} is i.i.d. with E (e;) = 0 and F (ese}) is positive definite and
finite.

5For T > 1, let

prwy= (4 0 )ew,

where the subscript 7" on D (L) reflects the fact that 5, and C (L) depend on T (through p). It is
not hard to show that the following identification/invertibility condition is sufficient for A5 (iii) to
hold:

inf {|2| : Dy (2)] =0} >1 VT, > 0.

6 Alternative conditions of near cointegration have appeared in Quintos and Phillips (1993, Section
5) and Phillips (1988a, p. 1025). The (multivariate extension of the) notion of near cointegration
introduced by Quintos and Phillips (1993) is more general than the notion suggested here. On the
other hand, the notion of near cointegration discussed in Phillips (1988a) is fundamentally different
from ours, since the series {h'y;} generated by equation (5) of that paper is nearly integrated.
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As discussed previously, working under A2 rather than A2’ entails no loss of generality,
so our notion of near cointegration coincides with that of Tanaka. On the other
hand, our normalization results in a great simplification of the representation and
interpretation of the limiting distributions of interest (cf. the discussion following
Theorem 6). For this reason, we prefer the present setup.

3. DBEHAVIOR OF REGRESSION ESTIMATORS
Let & and (3 be the OLS estimators in the multiple regression

yt:d/dt+3/xt+ﬁt, (tzl, ,T), (9)

where d;, = (1,...,t™ 1) for some my > 1.7 In addition to the OLS estimator
N

(d’, ,> , we want to study an estimator that has a compound normal distribution

under cointegration. For concreteness, we study the CCR estimator (Park (1992))

N
<&,T’ ﬁ;) obtained from the multiple regression
t_ ald Ao At t=1 T 10
Yt O‘Tt+ﬁth+ut> ( A )7 ( )

using the CCR transformed data.® Lemma 1 characterizes the limiting behavior of

Y Y
(oz, ) and (aT,ﬁT>.

Lemma 1. Suppose {z} is generated by (1) and suppose A1-A4 hold.

(a) When p < 1 and fixed (spurious regression),

TA\I]T(B—&B )EZOOT_I\I]T<BTGLT )
0

Bo
-1
s upami (o) (for).

(b) When A5 holds (near cointegration),

Q
(50 )
-1
=(feq) (w4 e [ () ),

"For a justification of the inclusion of d; in (9), see Remark (i) following Lemma 1.

# Alternative estimators with identical asymptotic properties include the estimators proposed by
Johansen (1988, 1991), Phillips (1991a, 1991b), Phillips and Hansen (1990), Saikkonen (1991, 1992),
and Stock and Watson (1993).
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()= (Ja) (11" fou)

where

Omzxmd T : Im

x

v, — ( diag (T*2,... ,T™7%) Oy, ) ,
Q. (r) = (D), X)), D(r)=(L,r,..., 7™, X (r) = QLV (r),

U,\(T):/\/OTU(s)ds—i-U(T),

while V' and U are independent Wiener processes of dimension m,, and 1, respectively.

Part (a) is well known (e.g. Phillips (1986)), as is part (b) in the case where
A = 0 (e.g. Phillips and Durlauf (1986)). When A # 0, the limiting distribution
in (b) is a linear combination of the spurious regression distribution reported in (a)
and the distribution corresponding to exact cointegration (A =0). A similar result
was obtained by Tanaka (1993, Theorem 6). Under near cointegration, 3 and BT are
super-consistent estimators of 3,. Moreover, the limiting distribution of 7' <BT — ﬁ())

is compound normal (see Remark (iii) below). In important respects, the near coin-
tegration case therefore closely resembles the cointegration case.

Remarks. (i) A non-zero mean of the form F (z;) = Ad; (where A is some m X my
matrix) is easily accommodated. Suppose we run the regressions

Y, =dd,+ B X+, (t=1,...,T),
Y —Oé.i.dt—i_/BTX +ut7 (tzl,,T>,

where 7, = (Y, X)) = Ad; + 2, 2 = (YJ,X*’) — Ad, + #, while {2} and {ZZ}

are as before. Then the limiting behavior of (6/, BI> and (ézﬁr, B;) is exactly the
same as in Lemma 1 apart from the fact that the limiting distributions of & and é;
are centered at ay = ( 1 —Bg ) A rather than zero. In this sense Assumption A4
is merely a normalization whenever the deterministic regressors d; are included in

(9) — (10).
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(ii) The results in the case (corresponding to m4 = 0) where d; is omitted from
(9) — (10) are completely analogous. Specifically, let 3 and BT be the OLS estimators
in the multiple regressions

~l .
yt:ﬁl.t_*—ut; (t:L?T);
~t

y;r_ﬁf$t+ut7 (t:LaT)

Then

-y (e =t (fv) ' (f0).

under spurious regression, while

7 (5 py %(/XX) (Mﬁ/XﬂA+/XMx%uw+mQ,
T -) = (/ XX')_l (vt [ xaus).

under near cointegration.
(iii) Using integration by parts, we obtain

[@.an £ [ Qv

where

Qup (1) =2AQu (1) + Qu (1),  Qu(r)= / Q. (s)ds

As a consequence, the limiting distribution of

&
w5
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is compound normal:

(Joa) (s foum)
Ly <o,wuu.x ( / QmQ;) h ( / Qw’*Q;’*) (/ QmQ;) _1> |

where” | -, 7 signifies the conditional distribution relative to Fy = o (V (r) : 0 <r < 1),
the o-algebra generated by V. ]

4. INFERENCE ON REGRESSION COEFFICIENTS
This section is concerned with inference on regression coefficients. In Section 4.1, we
consider the standard regression F-statistic and demonstrates that it’s limiting dis-
tribution depends continuously on A under near cointegration. Section 4.2 considers
the behavior of cointegration procedures under near cointegration.

4.1. The F-statistic.

Let F (B) and F' (@) be the standard F-statistics used to test the null hypothesis
Hy : B = B, based on the regressions (9) and (10), respectively. As is well known ,
F (B) and F' (@) diverge at rate T under spurious regression (e.g. Phillips (1986)).
Indeed, we have:

Lemma 2. Suppose {z:} is generated by (1) and suppose A1-A4 hold. When p < 1
and fixed,

—~ 2
e [I7oU|

T (o r () & (o P (30)) =

where
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1

Up (r) = U (r) — (/OlU(s)D(s)'ds> (/OlD(s)D(s)/ds> D),

1

vo) =0~ ([veewrs) ([ awaenrs) em.

Q(r)' = (D(r),V(r)), while D,V and U are defined as in Lemma 1.

Quite remarkably, the limiting distribution of 77! - F <B) (and T71 - F <BT>)
does not depend on any unknown parameters. In particular, it does not depend

on p. However, as demonstrated by Phillips and Durlauf (1986, Theorem 5.1), the
conclusion of the lemma depends crucially on the assumption that p < 1, since

F (B) = O, (1) with a complicated limiting distribution when p = 1. Theorem 3
generalizes that result to the case of near cointegration.

Theorem 3. Suppose {z;:} is generated by (1) and suppose A1-A5 hold. Then

pXxF (B) L
. N ~1/2 2
uu.T /VDdU/\ + w;}.{f (/ XDX,D> |:</ XDdX/) Qm_mlwﬂm + /}/ZM?] ’
Uuu
N L wT i ?
px F(B) = 2| [ Voarn |
Ouu
where

Xo () =% - ([ X9 Doy (/01D<s>D<s>'ds)_lD<r>,

while X and U, are defined as in Lemma 1 and ‘A/;) is defined as in Lemma 2.

/ VU, £ / VidU,

Since

where
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VD,)\(T’):)\@(T’)—FVD(T’), VD(T’):/ VD(S)dS,

we see that the limiting behavior of F’ (3) depends continuously on A as A approaches

zero. The notion of near cointegration therefore seems to suggest a useful way of
bridging the apparent gap between spurious regression and (exact) cointegration.

Remark. Although the motivation underlying the notion of near cointegration is
very similar in spirit to the motivation underlying the notion of near integration,
the limiting behavior as the noncentrality parameter A increases without bound is
qualitatively different. Under near integration, the asymptotic behavior as the non-
centrality parameter approaches it’s boundary of definition coincides with the results
for the stationary and explosive AR(1)’s (Chan and Wei (1987, Theorem 2), Phillips
(1987, Theorem 2)). As emphasized by Phillips (1987, pp. 542-543), these findings do
not constitute a rigorous proof of the results for stable and explosive AR(1)’s. None
the less, we might expect to discover a close connection between the distributions
described in Lemma 2 and Theorem 3. Heuristically, spurious regression corresponds
to near cointegration with a ”large” A and in some sense the results in Lemma 2
and Theorem 3 are similar, since both results can be interpreted as suggesting that

F (B) diverges under spurious regression (letting 7" — oo in Lemma 2 and A — oo

in the distribution reported in Theorem 3). However, we notice that 1/\* times the
limiting distribution in Theorem 3 converges to

fi

as A — oo. Therefore, Lemma 2 cannot be deduced from Theorem 3. As such, our
results complement Phillips and Moon’s (1999, Section 3) recent discussion of multi-
index asymptotic theory by providing an illustration of the point that one cannot
deduce rigorous asymptotic results that apply for 7' — oo with p? fixed by telescop-
ing the limits as 7' — oo and A — oo. |

2
Wyu.x

?

Uuu

4.2. Cointegration Procedures.
Even under cointegration (when A = 0), the limiting distribution of F’ (BT) reported

in Theorem 3 is not particularly useful in itself, since it depends on the (unknown)
parameter w,, /of . On the other hand, it is straightforward to modify Wald statistics

such as F <BT) in a way that makes the modified test statistic asymptotically pivotal

under cointegration. Consider a general linear hypothesis of the form Hy : @308 = ¢4,
where @ is a p X m, matrix of rank p and ¢4 is a p-vector. Define
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. <3T> _ <(I),6’BT - ¢ﬂ)l (‘I)ﬁ (Z?ﬂ wl,:xifd)l %) h <‘I),6’BT - ¢ﬂ) | 1)

Wuu

T T -1
ol =af — (Z mgdg> (Z dsd’5> ds.
s=1 s=1

Under cointegration, G (BT) Lo X2 (p) when Hj is true. More generally, under near

cointegration, we have:

Theorem 4. Suppose {z} is generated by (1) and suppose Al-A5 hold. When
Hy : ®p03 = ¢ is true,

2

Y

o(3) =7

where

VD(T):<V1D<T>> v

‘/2D (T) Imz_p

while Vi, and U, are defined as in Lemmas 2 and 1, respectively.

Remarks. (i) Using integration by parts, we obtain

/ VEZdU, £ / Vh \dU,
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where

Now,

SO

/ VEAU,

1T —
éN(o,Ip+A2/ VE(r)VE (T)'d?"),
]

Fv

7

where, once more, ” | o signifies the conditional distribution relative to F,, =
o(V(r):0<r<1). As a consequence,

I

where {x7 (1)};_; are i.i.d. x* (1) variables and 0 < yi; < ... < p, are the eigenvalues
of the matrix

2 p

EXQ+Nm) ),

Fv =1

/0 VB () VB (r dr

~ 2
The random variable H [VhaU. AH therefore has a complicated mixture distribution

— 2
whenever \ # 0, whereas H [ VEaU AH £ 2 (p) under cointegration (when A = 0).

(ii)) Theorem 4 can be generalized to the case of a nonlinear hypothesis of the
form Hy : ¢ (0) = 0, where §' = (o/,3') and ¢ : R™¢*™ — RP is assumed to be
continuously differentiable with Jacobian ® (6) = 0¢/0¢'. For brevity, we merely
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state the result, whose proof is a bit more tedious than that of Theorem 4 due to the
N
fact that the elements of 6, converge at different rates. Define

-1

sy OV (O ) e0)) o)

wuu

where 9; = <d/T’B/T> and th' = (dg,x?). Suppose ¢ (@0) has rank p, where @g =
o, Bg) . Then we can find a sequence {Ar};, of invertible p x p matrices along

with a full (row) rank p x (mg -+ m,) matrix ®y such that A, '® (6y) Uy — Py. When
Hy is true and A1-A5 hold,

H <9t> = H/QfedUA

2

Y

where

—_—

ro=(f QR () QM (5) i) " on ),

ax = [ 0. (5)Qu ) i) T,

while @, and U, are defined as in Lemma 1. As in remark (i), the limiting distribu-

tion is a complicated mixture distribution whenever \ # 0, whereas H (@T) Lo X% (p)

under cointegration. |

Recently, Elliott (1998) has investigated the robustness of cointegration methods by
considering a model in which the regressors are nearly integrated while some linear
combination of the regressand and the regressor is exactly stationary. It turns out
that the aforementioned x? result can break down when the regressors are not exactly
integrated. Theorem 4 enables us to conduct a complimentary experiment: we can
investigate the behavior of cointegration methods in a model where the regressors are
exactly integrated while some linear combination of the regressand and the regressors
is nearly stationary.
It follows from the preceding Remark (i) that the family

QUEZIES
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—~ 2
is stochastically increasing in A. In other words, P ( ‘ [ VhdU AH < t> is a strictly

decreasing function of A for all ¢ > 0 and, in particular,

(| fo

for all t > 0 whenever A # 0. As a consequence, tests based on the distribution ap-
plicable under cointegration (the x? (p) distribution) are over-sized (asymptotically)
under near cointegration. For concreteness, consider the case where mq = 1, &3 = I,
and ¢ = (. In other words, consider the null hypothesis Hy : 8 = [3; in a regression

2§t> <P (x*(p) <t),

of y! on z| and a constant. To illustrate the magnitude of the size distortions encoun-
tered under near cointegration, we have simulated the limiting distribution of G BT

form, = 1,... ,4 and for various values of A. Specifically, we have made 20,000 draws
from the distribution of the discrete approximations (using 2,000 steps) to the limit-

ing random variables. Figure 1 plots the rejection frequencies corresponding to a test
with a nominal size of 5%.

| FIGURE 1 ABOUT HERE |

The evidence presented in Figure 1 suggests that severe size distortions can oc-
cur if conventional cointegration methods are being used when the series are nearly
cointegrated rather than exactly cointegrated. In fact, the size increases dramati-
cally as (the absolute value of) A increases from 0 and substantial size distortions
are encountered even for values of A in the range 5 to 10. Whether or not this is a
problem obviously depends on whether or not researchers can be expected to be able
to detect such departures from exact cointegration. It is therefore of interest to know
whether or not tests for cointegration can be expected to reject the null hypothesis of
cointegration when A is equal to 10, say. A partial answer to this question is provided
in the next section, where we illustrate how to obtain the local power functions of
several available tests for cointegration.

5. LocAL POWER OF COINTEGRATION TESTS
During the last decade, numerous cointegration tests taking cointegration as the null
hypothesis have been proposed. These test procedures utilize different properties of
cointegrated systems and it therefore seems desirable to investigate what, if anything,
can be said about the power properties of the different tests. In this section, we
characterize the behavior of several regression based cointegration tests’ under local
alternatives and obtain the corresponding local power functions.

YHarris (1997) and Snell (1998) have proposed tests for cointegration that utilize principal com-
ponent methods, while Breitung (1998) has developed a test based on canonical correlation analysis.
These tests are not considered here.
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All of the cointegration test procedures under study here involve an asymptotically
efficient estimation procedure in their original formulations. Different authors have
advocated different procedures, but all of the testing procedures can be based on
any one of the available estimation procedures. For concreteness, we have decided to
present test statistics based on the CCR procedure. This allows us to give a simple,
unified treatment that focuses on the question of interest without complicating the
discussion unnecessarily. We emphasize, though, that some of the test statistics
presented below differ slightly from the test statistics proposed in the original papers.

This section is divided into four parts. Section 5.1 deals with tests based on
the variable addition procedure. In Section 5.2, we study tests based on partial
score sums, while Section 5.3 is concerned with tests based on residuals from an I(2)
regression. Finally, Section 5.4 obtains the local power functions of the different tests
and addresses the following important questions:

(i) Does any one of these tests dominate the others in terms of local power?

(ii) Can cointegration tests be expected to detect those departures from cointegra-
tion that seriously distort the size of conventional cointegration procedures (cf.
Section 4.2)?

5.1. Variable Addition Tests.
The variable addition test procedure proposed by Park (1990) can be motivated using
the results from Section 4: under cointegration, appropriately constructed Wald tests

(such as G (@) and H (@T>) on (subsets of) regression coefficients have limiting

x? distributions, while they diverge under spurious regression. As a consequence,
the null of cointegration can be tested by means of a variable addition test where
superfluous regressors are added to (10).

Let k; and k5 be arbitrary non-negative integers such that k = k; +k; > 1 and for
t=1,...,T, let ryy = (t™,... ,tmd““l_l)/ (if k; > 1) and (if k2 > 1) let {ro;} be a ko-
dimensional computer generated random walk such that {Ary} ~ d.i.d. N (0,1,)."
Finally, let 7, = (r},,75;) -

Based on the multiple regressions (10) and

yl = dfdy + Bl + Ao +iif,  (t=1,....T), (13)

construct the statistic

sr () - s (i)

W'LU

Ji (kr, k2) = (14)

10This particular choice of superfluous regressors is advocated by Park (1990, Remark b). On the
other hand, little guidance on the optimal choice of £y and ks is provided although Remark c of the
paper suggests that ky + ko > 2 is preferable.
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This is simply the Wald test used to test the significance of the regressor r; in (13).

Under the null hypothesis of cointegration, Ji (ki, k2) Lo x% (k). More generally,

under near cointegration, we have:

Theorem 5. Suppose {2} is generated by (1) and suppose A1-A5 hold. Then

/ RodUy

2

Iy (ky, ko) &

Y

where

1

ro =k - ([ RQWs) ([ @weers) aw,

R(r) = (Ri(r),Re(r)), Ri(r) = (r™,... ,rm”kl_l),, Ry is a ko-dimensional
Wiener process independent of () and Uy, while () and U, are defined as in Lemmas
2 and 1, respectively.

5.2. Tests Based on Partial Score Sums.
Several cointegration tests based on partial score sums have been proposed. We
shall consider the tests due to Shin (1994) and Hansen (1992b). Closely related
tests have been proposed by Harris and Inder (1994), Kuo (1998), Leybourne and
McCabe (1993), McCabe, Leybourne, and Shin (1997), Quintos and Phillips (1993),
and Tanaka (1996, Section 11.6.2).

Shin’s (1994) test is based on'!

o7 - T Zil (§?>2,

Wuu

(15)

where S = S at. This is simply the stationarity test proposed by Kwiatkowski,
t Yy Yy Yy

s=1 "s"

Phillips, Schmidt, and Shin (1992) applied to the residuals {aj } from (10).

UTn it’s original formulation, Shin’s (1994) test uses Saikkonen’s (1991) estimator.
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Hansen (1992b) notes that a test of cointegration can be based on'?

T A**/ A**
LC — T—l ZtZI St St (16)

T )
Wuu

where

T —1/2
S (i) il o - (st).
s=1 s=1

Theorem 6. Suppose {z;} is generated by (1) and suppose A1-A5 hold. Then

where

Gio0) = [(ani - ([[@wras) ([ awane).

1

a0 = [ @wane - ([[@waers) ([ awawe).

a0 ([ 00 (s)'d8>1/262(7"),

while () and U, are defined as in Lemmas 2 and 1, respectively.

Tanaka (1996, Theorem 11.11) reports a result very similar to the result for C'I.
However, the limiting distribution reported there depends on an m-dimensional pa-
rameter. In contrast, both limiting distributions reported here only depend on a
scalar parameter, A. Therefore, our notion of near cointegration yields much simpler
representations of the limiting distributions than the notion introduced by Tanaka.
In turn, this enables us to visualize our results in an easily interpretable manner.

2In Hansen (1992b), the L. test is based on Phillips and Hansen’s (1990) estimator.
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5.3. Tests Based on Residuals from an I(2) Regression.
Choi and Ahn (1995) propose three cointegration tests based on the residuals {S;}
from the multiple regression

SY =a&/S¢+ 3SF+ 8,

where SY = 3!yl S8 =" d,and S¥ = 3! | 2f. Consider the test statistics

« « 2
T3, 8 1AS, — 3 (wh, —of
LM[ — Zt:Q t—1 Tt 2 (wuu Uuu) , (17)
Wuu
AT & AG Lt — o]
|:T Zt:Q St—lASt ) (wuu - O-uu):|
LM][ - T 9 T 59 ) (18)
wuu -T2 5S4
92 T 2
SBDH; = LthlS?f (19)

Wuu

These tests are intimately related to the stationarity tests proposed by Choi and Ahn
(1998).

Theorem 7. Suppose {2} is generated by (1) and suppose A1-A5 hold. Then

2
[Jj\4-[£go (/ U)\,QdU)\7Q) 3

(f UngdUng)”
JU s,

L

8

LM,

ﬂwHﬁé/@@

o) =) ( [ U (9T () ) (] 2067 <s>'ds)_1@<r> |

@(T)Z/OTQ(S)ds,

while () and U, are defined as in Lemmas 2 and 1, respectively.
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5.4. Local Power Functions.

In order to obtain local power functions, we have simulated (the discrete time counter-
parts of ) the limiting distributions of the J; (2,2),'* CI, L., LMy, LM and SBDH;
test statistics in the case where mgy = 1. As in Section 4.2, we have used 2, 000 steps
and have repeated the procedure 20,000 times. Figures 2-5 show the local power
functions for m, = 1,... ,4. The size of the tests is 5%.

FIGURE 2 ABOUT HERE
FIGURE 3 ABOUT HERE
FIGURE 4 ABOUT HERE
FIGURE 5 ABOUT HERE

In short, the figures suggest that the local power properties of J; (2,2), CI, L.
and SBDH| are very similar, whereas LMy and (in particular) LM/, are remarkably
inferior in terms of local power. Since the local power properties of J; (2,2), CI, L.
and SBDH; are almost indistinguishable, our tentative conclusion is that the choice
among these tests should be guided by finite sample considerations concerning size
distortions.

Remarks. (i) Notice that

Lo LM
LM = sppm;
Under fixed alternatives (i.e. under spurious regression), LM, diverges at a faster
rate than SBDH| and a test based on LMj; is therefore consistent (Choi and Ahn
(1995, Theorem 2)). In contrast, since both LM; and SBDH; are bounded under
near cointegration, there seem to be no reasons whatsoever to expect that LM;;
should be better than LM; in terms of local power. In fact, if the local power of
SBDH),; is higher than the local power of LM;, LM;; might be expected to have
rather disastrous local power properties and this is indeed what the figures suggest.
(ii)) Remark (i) illustrates an important point. As mentioned by Choi and Ahn
(1998, p. 46), the difference between LM and LMy lies in how the estimate of the
information matrix is chosen. Specifically, LM, is simply the square of the (scaled)
first derivative of the log-likelihood function, whereas LM;; involves the (scaled) sec-
ond derivative of the log-likelihood function. With integrated processes, the (scaled)
second-derivative of the log-likelihood function will typically converge weakly to a ran-
dom variable rather than a non-stochastic limit.'* Therefore, the asymptotic prop-
erties of otherwise identical (Lagrange Multiplier) test statistics will often depend

BThat is, r1; = (t, t2)/ and rg; is a two-dimensional random walk in (13). Changing the values of
k1 and ks does not seem to affect the local power of the J; test much.

l4Here, for instance, the scaled second derivative of the log-likelihood function is SBDH; —
7282 /wh, == SBDH;.

uu
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on whether or not they involve the second derivative of the log-likelihood function
and some caution should be exercised whenever a test statistic involves the second
derivative of the log-likelihood function.

(iii) Another lesson to be learned from our findings is that the rate of divergence
under fixed alternatives might be a poor measure of the (local) power properties of
a test. In the present example, for instance, LM and SBD H; diverge at the same
rate under fixed alternatives and LM diverges faster than both of these (Choi and
Ahn (1995, Theorem 2)). Evidently, figures 2-5 tell an entirely different story.

(iv) A somewhat related point is that the local power of all the test under study
here depends solely on A, whereas the rate of divergence under fixed alternatives
depends on the particular non-parametric estimator used to estimate nuisance pa-
rameters such as w! = wy, — ', Q7 lw,,. Our results, in contrast with existing
results, therefore suggest that trying to improve power by letting the lag truncation
number grow slowly (as suggested by e.g. Choi and Ahn (1995, p. 966)) is not worth-
while. Instead, we suggest that the lag truncation number should be chosen so as to
minimize finite sample size distortions. |

In the previous section, we argued that Wald tests based on conventional cointe-
gration methods can encounter severe size distortions when the series are nearly
cointegrated and A exceeds 5. On the other hand, the evidence presented in figures
2-5 indicates that even when A = 10 the power of the tests for cointegration can be
well below 50%. This suggests that even if the departure from (exact) cointegration
is substantial (in the sense that it severely affects the size of the conventional tests),
tests for cointegration cannot be expected to detect such departures very frequently.
Therefore, whenever a researcher rejects a structural hypothesis (on the coefficient
() using cointegration methods, the result should be interpreted carefully. Indeed,
it might be the case that the structural hypothesis is correct, whereas the (possibly
auxiliary) assumption of cointegration is not. This of course leaves open the question
of how to interpret the coefficient vector in a non-cointegrated system, a question
which we shall not attempt to answer here.'?

6. CONCLUDING REMARKS

A notion of near cointegration was proposed and it’s usefulness was demonstrated by
means of several examples. Throughout, we have deliberately studied the properties
of known inference procedures under near cointegration rather than proposed new
methods. As a result, several extensions are possible. For instance, a companion
paper by one of us (Jansson (2000)) takes the analysis of Section 5 one step further
and uses the model of near cointegration to propose a new cointegration test with
(essentially) optimal local power properties.

%For a recent contribution to this discussion, see Phillips (1998).
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7. APPENDIX: PROOFS

This Appendix contains proofs of Lemmas 1-2 and Theorems 3-7. To facilitate the
proofs, we start with a preliminary lemma. The lemma follows from standard results
(Phillips and Solo (1992), Phillips (1988b), Hansen (1992a)) and is stated without
proof.

Lemma 8. Let ¢, = (d,21), v =y — Boae, af = (di,al') and of = yi — Fa].
Suppose {z;} is generated by (1) and suppose A1-A4 hold. Then

- Loo

(a) TV Q‘I’quw Qx (1)
Loo

(at) TV/20 ! un] Qa (1) ,

where [T'u] denotes the integer part of Tu. Moreover, if p < 1 and fixed,

(b) T 2v == Wy (1= p2)? U (),
(b) T Y200 = wif (1= p2) 2 U () .

On the other hand, if A5 holds,
Loo 1/2
@wTWzﬂWAww>/w<>
(dT)leTu](Zs lvl) Uy _w fO U)\ dU/\() Q(WT _U )M?
(€) Ut S g, 22 wille [ Qu (1) AU (7) + [ Qu (1) dX (1) Qpdwin + ( 7‘,) )u,

@N’ﬂﬁwﬁw D[R Qu (1) dUN (1)
() T T3ty = R (),
@H‘ZﬂWW—(mWL ) dU, (7),
) T3 2= g,
mﬂ”zu<f%dm

where

Yy = diag (de+1/2, . ,tmd+k171/2> Oy xksy
O]CQXkl T : Ikg ’

while W, Q,,U, Uy, X and R are defined as in the text.

In Lemma 8, all random variables are understood to be functionals defined on
the unit interval. Equipped with this Lemma, Lemmas 1-2 and Theorems 3-7 can be
established using conventional techniques. We merely outline the proofs.
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7.1. Proof of Lemma 1. The results for (

'T B ) follow immediately from the
results for (é/, BI> , so it suffices to consider ( B )

(a) We have:

. T -1 T
ol o) i)
0 t=T t=T

Now, by Lemma 8 (a)-(b) and the continuous mapping theorem (CMT),

T
o, (Z qtq;> v = [a.q.
t=T
(Z Qtvt> — W1/2 I/Q/Q;c

SO

~ -1
T_ILIIT ( B _aﬁ ) L— W;QQ - ,02)1/2 (/ QmQ!Is) (/ QmU> )
0

as claimed.

(b) We have:

(050 (o) e ()

Now, by Lemma 8 (e),

T

t=T

and we have

\DT(BE‘% > = (/QM) ( i{fm/deUw/deXQm +(70 ))

as claimed. [ |



SPURIOUS REGRESSION, COINTEGRATION, AND NEAR COINTEGRATION

7.2. Proof of Lemma 2. We have:

—1/2
H <ZtT:1 xt,dmé,d) (Zthl It,d%,d)

—1 T
(T —mgy —mq) Zt:l Utz,q

2

where

s=1

T T -1
Vig = U — (Z wz;) (Z dsd’s> dy,
s=1

s=1

= — (Z vsq8> (é qsq§> : G-

Now, by Lemma 8 (a)-(b) and CMT,

T -1
Toaq = Ty — (Z xsd’8> (Z dsd’8> dy,

T
*QE 1 Loo /
t=1

12
T ZfL’td’Utd = w1/2 / /XDUD7

T
12y ik, = (1= ) [ U3

t=1

where X, = Q4?V) (as in Theorem 3). Clearly,

~1/2 -
(/XDXb) /XDUD = | VbUp,

27

and the result for F (B) follows immediately. Identical arguments can be used to

establish the result for F' <BT> ) |
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7.3. Proof of Theorem 3. We have:

2

~1/2
H <Zfz1 xt,dxf:,d> <ZtT:1 xt@”t)

—1 T
(T —m, — md) Zt:l UtQ,q

pxF(ﬁ):

where {x;4} and {v;,} are defined as in the proof of Lemma 2. Now, by Lemma 8
(a), (e), (h) and CMT,

T
7! Z Ty qUy Leo Wz / XpdUy, + (/ XDdX’) QW + 7o
=1

T T
-1 2 Lo —1 2 Loo
T E Vig = T g V; = Oy,

t=1 t=1

and the result for F (B) follows immediately. Identical arguments can be used to

establish the result for F <BT> : |

7.4. Proof of Theorem 4. Since

T
_ Loo
T 2§ :JUI,dzI,Id = /XDXba
=1

T (B - 6) = ( / XDX5>_1 (<wzu>” ‘/ XDdUA> ,

and Xp = Q%QVD, we have

where
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x5 ) = (@) (| Vo (5) Vi (5) i) Vo 1)

0

—_—

Now, the distribution of Xf;ﬁ depends on @45 and €2,, through (I)ﬁQ;ml /% and is invari-
ant under transformations of the form

q)ﬂﬂgml/2l — K@gﬂgj/mo,

where K is non-singular p x p matrix and O is an orthogonal m, x m, matrix. Take
O such that QDﬁQ;ml/ 70 = ( L Opx(my—p) ) , where L is lower triangular. Setting
K = L1, it follows that we can assume that Q,, = I,,,, and Op = ( I, Ops(my—p) )
The conclusion now follows by applying the partitioned inverse formula. |

7.5. Proof of Theorem 5. We have:

2

2 2 T 71/2 T
2@9—2@D=(2m@3 (z%@),
t=1 t=1

t=1 t=1

where

T T -1
Tigh =70 — (Z rsqs') (Z (Jl(Jl’) a.
s=1 s=1
Now, by Lemma 8 (af), (e), (f), (g') and CMT,

T

_ Loo
TS iy = [ R,

t=1

T

Ty rgol = (],) / RqdUy,

t=1

and the result follows. [ |
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7.6. Proof of Theorem 6. Using Lemma 8 (af), (c), (e") and CMT, we have:
s 1/2
1/QS[T7‘] = ( ) UA( )

SO

n 2
T3, (5
o1 = ol ( ) E:w/(U;,Q)27

as claimed. Likewise,

w;! (i qlql'> e X
v ([ ([ aoaurs) ([onaan)

SO
T8 (W) O (),

and the result follows. [ |

7.7. Proof of Theorem 7. Using Lemma 8 (af), (c)-(ef) and CMT, it is not
hard to show that

1
1
12&5 1ASt = W /0 UAQ( )dUA,Q (7')+§ (WZU—ULU)-

As a consequence,
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.i.
Wuu

« - 2
T3, 8 1 AS — L (wl, — ol 2
LM; = g 51 A% — 5 (W U““>] E (/ U)\,QdU)\,Q) :

T_2 Zf:l 5'752 Lo 2
SBDHI:T - /U)\,Q’
2
LM;, Loo LM; Loo (f U/\,QdU/\yQ)

SBDH; JUis

as claimed. [ |

31
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FI1GURE 1: Rejection rates for G <BT) : Nominal size is 5%.
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FI1GURE 2: Local Power of Tests for Cointegration; m, = 1.
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F1GURE 3: Local Power of Tests for Cointegration; m, = 2.
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F1cURE 4: Local Power of Tests for Cointegration; m, = 3.
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F1GURE 5: Local Power of Tests for Cointegration; m, = 4.





