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Peripheral nervous system: A
promising source of neuronal
progenitors for central nervous
system repair
Jessica L. Mueller, Rhian Stavely, Ryo Hotta and
Allan M. Goldstein*

Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston,
MA, United States

With a steadily aging population there is an increasing prevalence of

neurological disorders. Given the lack of effective treatment strategies

and a limited ability for the central nervous system (CNS) to regenerate

endogenously, there is a critical need to better understand exogenous

strategies for nervous system repair. Stem cell therapy offers a promising

approach to promote the repair of neurologic tissue and function, however

studies to date have been limited by various factors including challenges

in harvesting donor cells from the CNS, ethical concerns regarding use

of embryonic or fetal tissue, tumorigenic potential of induced pluripotent

stem cells, and immune-mediated rejection of non-autologous cell sources.

Here we review and propose two alternative sources of autologous cells

derived from the peripheral nervous system (PNS) for CNS repair: enteric

neuronal stem cells (ENSCs) and neural crest-derived Schwann cells found in

subcutaneous adipose tissue (termed SAT-NSCs). ENSCs can be successfully

isolated from the postnatal enteric nervous system, propagated in vitro,

and transplanted successfully into models of CNS injury via both direct

intracerebral injection and systemic tail vein injection. Similarly, SAT-NSCs can

be readily isolated from both human and mouse adipose tissue and, although

not yet utilized in models of CNS injury, have successfully been transplanted

and restored function in models of colonic aganglionosis and gastroparesis.

These unique sources of PNS-derived autologous cells offer an exciting option

for stem cell therapies for the CNS as they have proven neurogenic potential

and eliminate concerns around tumorigenic risk, ethical considerations, and

immune-mediated rejection.
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neurologic disorders, peripheral nervous system
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Introduction

When damaged, the central nervous system (CNS) has a
limited ability to regenerate endogenously. This is clinically
important as it results in ineffective treatment strategies for
most diseases involving CNS injury. With a steadily aging
population, there is an increasing prevalence of CNS disorders,
including neurodegenerative diseases, traumatic brain injury,
neurotoxicity from cancer therapy, and spinal cord injury. Given
the significant public health burden of neurologic diseases and
the dearth of effective therapies, recent efforts have focused on
regenerative therapy via exogenous stem-cell based therapies
(Alessandrini et al., 2018; Andrzejewska et al., 2021).

Stem cells have the unique ability to self-renew and
to differentiate into multiple different lineages (Venkei and
Yamashita, 2018). Stem cell therapy, or treatment of affected
tissue with these regenerative progenitor cells, offers an exciting
approach to promote repair of neurologic tissue and restore
function in CNS diseases. However, thus far, studies have
been limited by various factors including challenges gathering
donor cells directly from the CNS, ethical concerns with use
of embryonic or fetal tissue, tumorigenic potential of induced
pluripotent stem cells, and immune-mediated rejection of non-
autologous cell sources.

There are numerous candidate donor cells that have been
studied in the context of CNS injury (Table 1 and Figure 1).
Neural stem/progenitor cells (NSPCs), which are harvested
directly from the neural tissue itself, when utilized in models
of spinal cord injury can replace lost neurons and glia and
promote a local environment of growth and regeneration
(Mothe and Tator, 2013). NSPCs can be harvested from both
adult and embryonic brain and spinal cord tissue. These cells
are widely considered the ideal cell type for use in CNS injury
because they most closely resemble the cells being replaced and
may therefore respond best to signals from the surrounding
local environment. Unfortunately, NSPCs are located deep
within the brain so their harvest requires an invasive procedure
(Deng et al., 2018). To overcome the challenge of harvesting
donor cells directly from the CNS, efforts have focused on
embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs). Use of embryonic stem cells in spinal cord injury
showed significant potential as they were able to engraft,
promote axonal growth, undergo remyelination, promote
angiogenesis, and recover locomotor function (Kumagai
et al., 2009). Similarly, in both rat (Andres et al., 2011)
and gerbil (Ishibashi et al., 2004) models of stroke injury,
transplantation of fetal-derived neural progenitor cells resulted
in improved axonal rewiring and axonal transport as well as
enhanced functional recovery. However, the use of embryonic
or fetal tissue is controversial and raises ethical concerns.
Additionally, treatment with non-autologous cell sources
requires immunosuppressive medications, which are associated
with numerous risks, including higher rates of infectious

diseases, increased development of lymphoproliferative
disorders and cancers, and medication specific toxicities.
Furthermore, immune cell infiltration following neurotrauma
and during neurodegeneration promotes CNS protection and
repair (Schwartz and Moalem, 2001; Simard et al., 2006; Ziv
et al., 2006; Beers et al., 2008), and this may be inhibited by the
use of immunosuppression (Kulbatski, 2010).

Induced pluripotent stem cells, in which somatic cells are
reprogrammed via the introduction of specific transcription
factor genes to become pluripotent stem cells that exhibit
the proliferation and differentiation capacity analogous to
embryonic stem cells, bypass these ethical concerns. These cells
are also easily obtained from skin biopsies and are autologous,
avoiding some of the accessibility and immunogenic concerns
of the cell sources described above. Application of iPSCs in
models of spinal cord injury and stroke have shown successful
engraftment and improved functional recovery (Oki et al., 2012;
Nakamura and Okano, 2013), but there have been concerns
regarding their tumorigenic potential (Nakamura and Okano,
2013; Deng et al., 2018).

Given the current obstacles hindering stem cell therapy in
the CNS, identification of a readily available, not genetically
reprogrammed, and autologous source of neural progenitor
cells would be optimal. Other autologous sources of stem cells
have been proposed and reviewed, including mesenchymal stem
cells (MSCs), hematopoietic stem cells (HSCs), and dental
pulp derived stem cells (DPSCs). MSCs can be obtained from
multiple sources, including bone marrow, umbilical cord blood,
and adipose tissue and demonstrate a high differentiation
plasticity including the ability to differentiate into mesodermal
lineages, including osteocytes, adipocytes, and chondrocytes, as
well as reported abilities to differentiate into non-mesodermal
lineages, including the neuronal linage (Hernández et al.,
2020). They have been reviewed previously and have shown
promise in multiple clinical trials of neurodegenerative diseases,
including amyotrophic lateral sclerosis, Alzheimer’s disease, and
Parkinson’s disease (Ullah et al., 2015; Andrzejewska et al.,
2021). HSCs can be obtained via peripheral blood, and have
been primarily studied in the context of autoimmune neurologic
disorders, particularly multiple sclerosis (Balassa et al., 2018;
Massey et al., 2018). Dental pulp derived stem cells have been
isolated from humans (Gronthos et al., 2000; Nuti et al., 2016)
and successfully transplanted into a rat model of spinal cord
injury, demonstrating regeneration of transected axons and
recovery of hindlimb motor function (Sakai et al., 2012), and
have shown promise in models of both retinal and CNS injury
and disease (Mead et al., 2017).

Although these cell sources have shown great potential
in models of CNS disease, they are not derived from a
neuronal niche. Moreover, in the case of MSCs, their therapeutic
effects are predominantly reliant on paracrine signaling and
neurotrophic support of the injured nervous system, with
limited cell survivability. In this review, we therefore propose
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TABLE 1 Cell sources for regenerative central nervous system (CNS) therapy.

Source of cells Accessibility Ethical concerns Tumorigenic Autologous Nervous system-derived

NSPCs Low Moderate Sometimes Sometimes Yes

ESCs Low Significant Yes No No

iPSCs High None Yes Yes No

MSCs High None No Yes No

HSCs High None No Yes No

DPSCs High None No Yes No

ENSCs High None No Yes Yes

SAT-NSCs High None No Yes Yes

NSPCs, neural stem/progenitor cells; ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; MSCs, mesenchymal stem cells; HSCs, hematopoietic stem cells; DPSCs, dental
pulp stem cells; ENSCs, enteric neuronal stem cells; SAT-NSCs, subcutaneous adipose tissue–neural stem cells.

FIGURE 1

Cell sources for regenerative central nervous system (CNS) therapy.

two alternative sources of autologous cells for CNS repair,
both directly derived from the peripheral nervous system and
therefore with intrinsic neurogenic potential: enteric neuronal
stem cells (ENSCs) and neural crest-derived Schwann cells
found in subcutaneous adipose tissue (termed SAT-NSCs).

Enteric neuronal stem cells

The enteric nervous system (ENS) is an extensive network
of neurons and glia within the wall of the gastrointestinal (GI)

tract that regulates many of the GI functions independently
from CNS input (Furness, 2012). It has been shown that neural
progenitors can be isolated from the GI tract of embryonic and
postnatal rodents (Kruger et al., 2002; Almond et al., 2007).
Subsequently, these ENSCs have been identified in human
gut tissue ranging from embryonic stages to late adulthood,
including even an octogenarian (Metzger et al., 2009a). They
are easily accessible and have been successfully isolated from
neonates (Almond et al., 2007; Lindley et al., 2008), children
(Rauch et al., 2006), and adults (Metzger et al., 2009a), from
both the small and large intestine (Cheng et al., 2016), and from
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full-thickness biopsies and mucosa (Metzger et al., 2009b).
Importantly, these cells can be harvested using minimally
invasive techniques, including endoscopy (Metzger et al.,
2009b). Enteric neuronal stem cells can be propagated in vitro
as floating neurospheres (clusters of concentrated NSCs) and
expanded exponentially (Rauch et al., 2006; Lindley et al., 2009;
Metzger et al., 2009a; Cheng et al., 2017). This expansion step
is crucial, as it allows a significant increase in the size of the
donor cell pool without having to harvest more cells. These
neurospheres contain ENSCs that give rise to neurons and glial
cells following their transplantation to the embryonic (Lindley
et al., 2009; Cheng et al., 2017) and postnatal (Hotta et al.,
2013; Hetz et al., 2014; Cheng et al., 2017) mouse gut and
restore GI motility in mice with enteric neuropathies (Lindley
et al., 2008; McCann et al., 2017). ENSCs have also been
transplanted into aganglionic mouse colon generated using
diphtheria-toxin mediated ENS ablation (Bhave et al., 2019),
where successful cell engraftment, migration, and differentiation
of transplanted ENSCs were observed. More importantly,
transplantation of ENSCs restored gut architecture changes and
reduced mucosal inflammation (Bhave et al., 2019). To build
upon the success of ENSCs as a stem cell source for treating
enteric neuropathies, two studies have demonstrated their
application for the treatment of brain injury (Osman et al., 2014;
Belkind-Gerson et al., 2016). ENSCs were transplanted directly
into the brains of mice following blunt injury (Belkind-Gerson
et al., 2016) or radiation-induced injury (Osman et al., 2014;
Belkind-Gerson et al., 2016). The cells survived at least 4 weeks
following transplantation, differentiated into neurons and glia,
and modulated the local environment to stimulate endogenous
neurogenesis (Belkind-Gerson et al., 2016). Additionally, ENSCs
delivered via tail vein injection were found to home to the site
of injury in the brain where they survived for 10 weeks post-
injection, and similarly stimulated endogenous neurogenesis
(Belkind-Gerson et al., 2016). The success of systemic injection
is clinically appealing compared to a direct approach to the
brain or spinal cord.

Other studies have found similar success using ENSCs in
models of spinal cord injury (Jevans et al., 2018, 2021). ENSCs
were first co-cultured in vitro with spinal cord-derived cells,
which revealed the formation of extensive cellular connections
between the ENSCs and spinal cord-derived cells, as well as
the presence of differentiated TuJ1+ neurons, S100+ glia,
and Sox10+ stem cells within the transplanted neurospheres.
Furthermore, following in vivo transplantation of ENSCs to an
ablated region of chick spinal cord, donor ENSCs were found
to form bridging connections within the injury zone up to 12
days later (Jevans et al., 2018). Combined in vivo treatment
with ENSCs and chondroitinase ABC, an enzyme that breaks
down chondroitin sulfate proteoglycans, which play a role in
scar formation following injury, revealed improved regenerative
effects compared to treatment with stem cells alone (Jevans et al.,
2021). These studies suggest that transplantation of ENSCs can

be an exciting treatment option for repair in CNS disorders,
particularly when combined with other therapies to enhance
their regenerative abilities.

Neural crest-derived Schwann
cells in subcutaneous adipose
tissue

Adipose tissue has been studied extensively as a potential
source for cell based therapies since the isolation of progenitors
with mesenchymal trilineage and neuronal differentiation
potential were first reported 20 years ago (Zuk et al., 2001,
2002). Specifically, the SAT contains a reservoir of adipose
stem cells within the stroma that can be easily obtained
via minimally invasive techniques, including simple aspiration
or suctioning of the fatty tissue (Zuk et al., 2002). This
heterogenous population of progenitor cells are often referred
to collectively as mesenchymal stem cells or multipotent
stromal cells (MSCs) due to their differentiation potential and
presumptive stromal cell origin. From 2007 to 2019 there were
over 270 clinical trials worldwide studying this cell population
in a variety of diseases, which overall suggested a favorable
patient safety profile (Chu et al., 2019). Adipose stem cells have
been primarily studied in the context of regenerative medicine
and numerous inflammatory diseases including osteoarthritis,
degenerative arthritis, cartilage or tendon injury, graft-vs.-
host diseases, and chronic kidney diseases (Peng et al.,
2019). They have not been well studied in the context of
neurologic diseases (Hernández et al., 2020). Recent trials
examining the safety of intracerebroventricular (ICV) injection
of autologous adipose-derived stromal vascular fraction cells
indicate favorable safety profiles across various disease states
(24 subjects across 7 diseases) and promising clinical outcomes
in the limited data for subjects with Alzheimer’s disease
(n = 10) and progressive multiple sclerosis (n = 6) (Duma
et al., 2019). It was estimated that only 7.5% of the injected
cells are adipose stem cells; therefore, these results could be
improved upon by administering a more homogenous stem
cell population.

Importantly, adipose stem cells can be cultured in
conditions favoring the production of a cell population
consistent with neural progenitor cells (Zuk et al., 2002; Peterson
et al., 2018; Peng et al., 2019) that display a phenotype
similar to stem cells derived directly from embryonic brain
(Peterson et al., 2018). These adipose-derived neural progenitor
cells are thought to arise from the transdifferentiation of
isolated MSCs which acquire neural progenitor traits including
propagation in culture as neurospheres, and can be induced
in neuronal media conditions to become neurons and glia
(Peng et al., 2019). When differentiated into neurons, cells
derived from adipose tissue have network characteristics and
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spontaneous spiking activity similar to primary neuronal
cultures (Peterson et al., 2018), suggesting their ability to form
a functioning nervous system.

Despite this knowledge of a neural progenitor population
within adipose tissue, there have been few studies to date on
adipose stem cells in the context of neurologic diseases. In a
mouse stroke model, adipose-derived stem cells were found to
reduce the size of the infarct and increase neurologic recovery
via decreasing autophagy (Kuang et al., 2020). Another study
found that the early delivery of adipose-derived stem cells
combined with a rehabilitation program improved behavioral
recovery, but not infarct size, in a rat stroke model (Mu et al.,
2019). Our lab recently studied adipose-derived stem cells in
diseases involving the enteric nervous system (Stavely et al.,
2022). Importantly, while previously it was thought that the
neural progenitors found within adipose tissue were derived
from MSCs, we determined that these neural progenitors
are likely to be NSCs that are distinct from adipose-derived
MSCs and reside within the local nervous system niche of
the SAT. These cells become transcriptionally distinct from
Schwann cells and acquire features of NSCs during in vitro
culture, which we anticipate is essential for their expansion
and differentiation potential. Following transplantation into
the gastrointestinal tract, these SAT-NSCs can successfully
engraft, migrate within the muscularis layer, and differentiate
into enteric neurons and glia. Transplantation of these cells
directly into the gastric antrum in a mouse model of
gastroparesis improved gastric emptying of both liquids and
solids. Furthermore, transplantation of these cells into the
aganglionic distal colorectum of a mouse model of Hirschsprung
disease showed successful engraftment, migration, and survival
of SAT-NSCs two to 3 weeks after surgery, as well as restoration
of neural-evoked smooth muscle contractility. This evidence
of functional recovery suggests that SAT-NSCs represent a
source of autologous NSCs that could be used for treating
enteric nervous system disorders. Given the exciting therapeutic
potential of SAT-NSCs in ENS disorders, we believe that these
cells offer significant potential for treatment of CNS disorders
and further research is warranted.

Discussion

The above data reveal the exciting potential of two
alternative sources of autologous stem cells, both of which are
easily accessible and can be harvested from the donor with
minimal risk. Importantly, they are derived from the nervous
system and therefore possess intrinsic neurogenic potential
that can be leveraged for CNS applications. ENSCs have been
shown numerous times to be easily accessible from donors
of all ages, from both small and large intestine, and from
full-thickness and mucosal biopsies, making them a feasible

source of donor cells for regenerative cell therapy. They
engraft, migrate, differentiate, and survive when transplanted
into the gut, and have shown restoration of normal gut
architecture and improved survival when transplanted into
models of ENS injury. Moreover, these cells have been shown to
engraft, migrate, differentiate, survive, and promote endogenous
neurogenesis when injected intracerebrally into areas of injured
brain or when delivered systemically. Furthermore, ENSCs
have also successfully engrafted, differentiated, and survived
in in vitro and in vivo models of spinal cord injury. Further
research is needed to assess functional recovery following ENSC
transplantation in models of CNS injury.

Neural crest-derived Schwann cells found in subcutaneous
adipose tissue are even more easily accessible than ENSCs,
and can be isolated via simple aspiration or liposuction.
These cells can similarly be expanded in culture to form
neurospheres, and can engraft, migrate, undergo neuroglial
differentiation, and survive when transplanted directly into
the gut. Importantly, these cells form functional neuronal
networks, as evidenced by the functional recovery following
transplantation in two models of ENS disease, gastroparesis and
Hirschsprung disease. Given this success, we believe SAT-NSCs
offer great potential for treatment of CNS diseases, and further
research is certainly warranted. These unique sources of PNS-
derived autologous cells offer an exciting option for regenerative
cell therapy in the CNS.
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