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REPORT

Mutations in EMP2 Cause
Childhood-Onset Nephrotic Syndrome

Heon Yung Gee,1,13 Shazia Ashraf,1,13 Xiaoyang Wan,2 Virginia Vega-Warner,2 Julian Esteve-Rudd,3

Svjetlana Lovric,1 Humphrey Fang,1 Toby W. Hurd,4 Carolin E. Sadowski,1 Susan J. Allen,2

Edgar A. Otto,2 Emine Korkmaz,5 Joseph Washburn,6 Shawn Levy,7 David S. Williams,3

Sevcan A. Bakkaloglu,8 Anna Zolotnitskaya,9 Fatih Ozaltin,5,10,11 Weibin Zhou,2

and Friedhelm Hildebrandt1,12,*

Nephrotic syndrome (NS) is a genetically heterogeneous group of diseases that are divided into steroid-sensitive NS (SSNS) and steroid-

resistant NS (SRNS). SRNS inevitably leads to end-stage kidney disease, and no curative treatment is available. To date, mutations inmore

than 24 genes have been described in Mendelian forms of SRNS; however, no Mendelian form of SSNS has been described. To identify a

genetic form of SSNS, we performed homozygosity mapping, whole-exome sequencing, andmultiplex PCR followed by next-generation

sequencing. We thereby detected biallelic mutations in EMP2 (epithelial membrane protein 2) in four individuals from three unrelated

families affected by SRNS or SSNS. We showed that EMP2 exclusively localized to glomeruli in the kidney. Knockdown of emp2 in zebra-

fish resulted in pericardial effusion, supporting the pathogenic role of mutated EMP2 in human NS. At the cellular level, we showed that

knockdown of EMP2 in podocytes and endothelial cells resulted in an increased amount of CAVEOLIN-1 and decreased cell proliferation.

Our data therefore identify EMP2 mutations as causing a recessive Mendelian form of SSNS.
Nephrotic syndrome (NS) is a disorder characterized by pro-

teinuria caused by disruption of the glomerular filtration

barrier. It affects 16 per 100,000 children.1 Although most

affected individuals have steroid-sensitive NS (SSNS),

approximately 10%–20% of children and 40% of adults

do not achieve sustained remission after steroid therapy.2

This steroid-resistant NS (SRNS), which typically manifests

histologically as focal segmental glomerulosclerosis, even-

tually results in end-stage kidney disease through the pro-

gressive loss of the filtration barrier and remains one of

the most intractable kidney diseases.3 The identification

of genes mutated in SRNS and subsequent research on the

function of those genes have helped in the assembly of

essential components of glomerular podocyte function.4

Podocytes are neuron-like cells with a complex cellular or-

ganization consisting of a cell body, major processes, and

foot processes (FPs).5 The FPs assemble into an interdigi-

tating pattern with FPs of neighboring podocytes and

form the glomerular slit diaphragm, which is critical for

the filtration barrier and the retention of proteins in the

blood.6 The loss of the slit diaphragm is a hallmark of NS.

SRNS is genetically heterogeneous, and mutations in

more than 24 distinct genes have been linked to this disor-

der.7Mutations in these genes account for two-thirds of the

SRNS cases that manifest in the first year of life.8 However,

genetic causes of a significant proportion of childhood-
1Division of Nephrology, Department of Medicine, Boston Children’s Hospit

Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA; 3Jules Stein

Los Angeles, Los Angeles, CA 90095, USA; 4Medical Research Council Human

of Edinburgh, Edinburgh EH4 2XU, UK; 5Nephrogenetics Laboratory, Facult

Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA;

AL 35806, USA; 8Department of Pediatric Nephrology, Faculty of Medicine, G

NY 10595, USA; 10Department of Pediatric Nephrology, Faculty of Medicine,

Genomics, Hacettepe University, Ankara 06100, Turkey; 12Howard Hughes M
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and young-adult-onset SRNS are still molecularly unidenti-

fied. In addition, genetic-mapping data strongly suggest

that there are a multitude of additional loci that are linked

to late-onset SRNS.9 Furthermore, no Mendelian form of

SSNS has been described yet, even though SSNS and SRNS

might be part of a clinical spectrum in which prior steroid

sensitivity might evolve into steroid resistance.

To identify additional genes mutated in NS, we applied

homozygosity mapping and whole-exome sequencing

(WES) to 67 families affected by NS. We obtained blood

samples and pedigrees after acquiring informed consent

from individuals with NS and their family members.

Approval for human subjects research was obtained from

the institutional review boards at the University of Michi-

gan and Boston Children’s Hospital.

Homozygosity mapping in a Turkish family (A1679)

with two children affected by SSNS yielded four candidate

regions of homozygosity by descent with a cumulative

genomic length of ~55 Mb (Figure 1A). We performed

WES in one affected child (A1679-21) by using NimbleGen

SeqCap EZ Exome with consecutive next-generation

sequencing (NGS) on an Illumina-Genome Analyzer II.

We detected in this individual a homozygous truncating

variant (c.184C>T [p.Gln62*]) in EMP2 (epithelial mem-

brane protein 2 [MIM 601223, RefSeq accession number

NM_001424.4]) (Figures 1B–1E; Table 1; Table S1, available
al and Harvard Medical School, Boston, MA 02115, USA; 2Department of

Eye Institute, David Geffen School of Medicine, University of California,

Genetics Unit, Institute of Genetics and Molecular Medicine, University

y of Medicine, Hacettepe University, Ankara 06100, Turkey; 6Biomedical
7HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville,

azi University, Ankara 06570, Turkey; 9New York Medical College, Valhalla,

Hacettepe University, Ankara 06100, Turkey; 11Center for Biobanking and

edical Institute, Chevy Chase, MD 20815, USA
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Figure 1. Homozygosity Mapping and WES Identify EMP2 Mutations in Families Affected by NS
(A) Homozygosity mapping identified four recessive candidate loci. A nonparametric LOD (NPL) score profile across the human genome
is shown for two SSNS siblings from consanguineous family A1679. The x axis shows Affymetrix 250K StyI Array SNP positions concat-
enated from pter (left) to qter (right) on all human chromosomes. Four maximum NPL peaks (red circles) indicate candidate regions of
homozygosity by descent. Note that none of the peaks overlapped any of seven known recessive NS-associated loci (in boxes). EMP2
(arrow head) is within one of the maximum NPL peaks on chromosome 16.
(B) Exon structure of human EMP2 cDNA. EMP2 contains five exons. The positions of the start codon (ATG) and the stop codon (TGA)
are indicated.
(C) Domain structure of EMP2. The transmembrane (TM) and claudin-2 domains are depicted by colored bars in relation to the positions
of the encoding exons. EMP2 has three N-linked glycosylation sites (amino acid positions 44, 47, and 52).
(D) Three homozygous or compound-heterozygous EMP2mutations detected in three NS-affected families. Family numbers, mutations,
and predicted translational changes are indicated (see Table 1). Sequence traces are shown for the mutation above the normal control
individuals. Arrowheads denote altered nucleotides.
(E) Renal histology of individual A4601-21 revealed minimal change disease (upper), and electronmicroscopy (lower) showed diffuse FP
effacement.
online). Themutation segregatedwith the affected status in

this family and was absent from 86 Turkish healthy control

individuals. NS of both affected individuals was initially

treated with steroids and relapsed frequently. Therefore,
The Am
cyclophosphamide was given for 3 months in 2006, and

both of these individuals have been in remission until now.

In order to investigate whether EMP2mutations occur in

additional individuals with NS, we examined a worldwide
erican Journal of Human Genetics 94, 884–890, June 5, 2014 885
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cohort of over 1,600 individuals with NS by performing

exon resequencing of all four EMP2 coding exons

(Figure 1B) and using an in-house-developed approach of

multiplex PCR followed by NGS.10 In an individual with

SSNS (A150-21), we detected compound-heterozygous mu-

tations c.21C>G (p.Phe7Leu) and c.184C>T (p.Gln62*) in

EMP2 (Figures 1C–1E; Table 1). The c.21C>G (p.Phe7Leu)

allele alters an evolutionarily conserved amino acid residue

and is predicted to be deleterious to protein function

by publically available software programs (Table 1). In an

SRNS-affected individual (A4601-21) of African American

descent, we detected a homozygous missense mutation

(c.28G>A [p.Ala10Thr]) in EMP2. This mutation alters an

amino acid residue conserved throughout evolution from

C. intestinalis. These mutations segregated in a recessive

mode with the affected status in their families and were ab-

sent from >190 ethnically matched healthy control indi-

viduals and from >4,300 European control individuals in

theNHLBIExomeSequencingProject ExomeVariant Server

(EVS). For exclusion of known genetic causes of SRNS, 23

known genes previously linked to SRNS were screened in

this individual, but no explanatory mutations were de-

tected.When individual A4601-21 was 5 years of age, renal

histology exhibited minimal change disease, and electron

microscopy showed diffusely effaced FPs of podocytes

with microvillous changes (Figure 1E). In total, we identi-

fied both disease-causing alleles of EMP2 in three NS-

affected families and detected three different homozygous

or compound-heterozygous EMP2 mutations (Table 1;

Figure 1C). We thereby identified recessive mutations in

EMP2 as a cause of NS. EMP2 (also known as XMP) is a tetra-

span protein that contains four transmembrane domains

(Figure 1C). It was initially identified by its homology

with the PMP-22 (peripheral myelin protein 22) family of

proteins.11 EMP2 is highly enriched in kidney glomeruli

and localizes to both podocytes and nonpodocyte glomer-

ular cells.12 EMP2 is known to control cell-membrane

localization of integrins, caveolins, and glycosylphospha-

tidyl-inositol-linked proteins,13–15 but little is known about

its function in the kidney.

To recapitulate the human phenotype and investigate

the function of EMP2 in vivo, we performed whole-mount

in situ hybridization (WISH) and knockdown of the EMP2

zebrafish ortholog, emp2 (Figure 2). We did WISH on em-

bryos at 3.5 days postfertilization (dpf), when the nephrons

become mature structurally and functionally.16 Our data

showed that emp2was expressed in the arches, orbits, pecto-

ral fins, vessels, pronephric renal tubules, andglomeruli (Fig-

ures 2A and 2B). Specifically, targeting the emp2 ortholog in

zebrafishbyeither translation-blocking (MO1)or two splice-

blocking (MO2 and MO3) morpholino oligonucleotides

(MOs) caused pericardial effusion in more than 85% (78/

96, 79/94, and68/72 forMO1,MO2, andMO3, respectively)

of injected embryos at 3.5 dpf (Figures 2C–2F; Table S2). We

coinjected the p53 MO along with emp2 MOs to reduce

toxicity of MOs.17 The efficiency of splice-blocking MOs

wasdemonstratedbyRT-PCR(FigureS1). Pericardial effusion
014



Figure 2. emp2 Knockdown Causes Pericardial Effusion in Zebrafish
(A and B) The expression pattern of emp2 in 3.5 dpf embryos (lateral view, A; dorsal view, B) was examined by WISH.
(C–F) emp2 knockdown in zebrafish replicated a nephrosis phenotype. Compared to control-MO-injected embryos (C), embryos injected
with three different emp2 MOs (MO1, D; MO2, E; and MO3, F) showed pericardial effusion at 3.5 dpf (arrows). p53 MO coinjection was
used for minimizing nonspecific apoptotic MO effects. Arrows indicate pericardial effusion.
(G–J) Coinjection of emp2MO3with a full-length human EMP2mRNA (G) rescued the pericardial effusion, whereas three EMP2mRNAs
encoding p.Phe7Leu (H), p.Ala10Thr (I), or p.Gln62* (J) failed to rescue the nephrosis phenotype.
(K) Quantification of the percentage of pericardial effusion.
is a disease phenotype associated with defective glomerular

filtration barriers in zebrafish. It has been confirmed inmul-

tiple zebrafishmodels of NS, such as knockdown of nephrin,

podocin, or other genes essential for podocyte function.18,19

Knockdown of emp2 in zebrafish larvae led to the disruption

of the glomerular filtration barrier, consistent with NS

phenotypes seen in individuals with EMP2 mutations. To

demonstrate the observed phenotype specifically caused

by loss of functionof emp2 in zebrafish,weperformed rescue

experiments with human EMP2 mRNA. When wild-type

(WT) EMP2 mRNA was coinjected with the emp2 MO3, the

percentage of morphants that showed pericardial effusion

was reduced from 94% (68/72) to 39% (24/62), indicating

that emp2 is necessary for renal integrity and that there is

functional consistency betweenhuman EMP2 and zebrafish

emp2 (Figures 2G and 2K). Coinjection into zebrafish emp2

morphants of mRNA containing EMP2 missense variants

c.21C>G (p.Phe7Leu) or c.28G>A (p.Ala10Thr) or trun-

cating mutation c.184C>T (p.Gln62*) (all of which we

identified in individuals with NS) not only failed to rescue

pericardial effusion but also caused embryonic malforma-

tion and accelerated lethality (Figures 2H–2K). After coinjec-

tionwithEMP2mRNAwithc.21C>G(p.Phe7Leu), c.28G>A

(p.Ala10Thr), or c.184C>T (p.Gln62*), 87% (66/76), 95%

(79/83), or 84% (70/83), respectively, of emp2 morphants

still showed pericardial effusion.

Most gene products that are altered in SRNS localize to

glomerular podocytes. We therefore examined the localiza-

tion of EMP2 by immunofluorescence. EMP2 is highly

enriched in glomeruli of the adult rat kidney, but not in
The Am
tubules (Figure 3A). In glomeruli, EMP2 localizes to the

cytoplasm of podocytes, as identified by the presence of

nuclear WT1 (Figure 3B). However, EMP2 is also present

in other glomerular cell types, as shown previously at the

transcriptional level.12 EMP2 is cytoplasmic in podocytes

and does not colocalize with podocytic markers such

as PODOCALYXIN, GLEPP1, or SYNAPTOPODIN (Figures

3C–3E). Immunogold electron microscopy of the adult

rat kidney confirmed the presence of EMP2 in podocytes

and endothelial cells (Figures 3F–3I). In podocytes, immu-

nogold labeling was detected in both the FPs and the cell

bodies (Figures 3G and 3I), whereas in endothelial cells,

EMP2 labeling was detected predominantly in the nucleus

(Figures 3H and 3I).

EMP2 is known to regulate the amount of CAVEOLIN-

1,13,15 which is the primary structural component of

caveolae, flask-shaped invaginations in the plasma mem-

brane. Caveolae contribute to many cellular functions,

including endocytosis, cell signaling, and the transcytosis

of cholesterol and albumin.20 CAVEOLIN-1 is highly en-

riched in podocytes and is partially localized to the slit dia-

phragm.21 Interestingly, it was reported that the amount of

CAVEOLIN-1was significantlyhigher in the glomeruli of 99

individuals with glomerular diseases than in those of 50

healthy individuals.22 The accumulation of CAVEOLIN-1

was positively correlated with urinary albumin excre-

tion.22 Previously, EMP2was also shown to positively regu-

late the amount of VEGF in retinal pigment epithelial

cells.23 Podocyte-specific deletion of VEGF-A leads to

glomerular disease in mice.24
erican Journal of Human Genetics 94, 884–890, June 5, 2014 887



Figure 3. Localization of EMP2 in the Kidney and Cultured Podocytes
(A) Coimmunofluorescence of EMP2 (Sigma) with CAVEOLIN-1 (BD Transduction Laboratories). EMP2 (red) localized to glomeruli in the
adult rat kidney but was not detected in tubules.
(B) Coimmunofluorescence of EMP2withWT1 (Santa Cruz). EMP2 (red) localized to podocytes, whose nuclei aremarked byWT1 (green,
arrow).
(C–E) Coimmunofluorescence of EMP2 with podocytic markers PODOCALYXIN (C), GLEPP1 (D), and SYNAPTOPODIN (E) (American
Research Products). EMP2 localized to the cytoplasm of podocytes (arrowheads). White scale bars in (A)–(E) represent 25 mm.
(F–H) Immunogold electronmicroscopy of EMP2 in the adult rat kidney. A control individual without a primary antibody is shown in (F).
In podocytes, EMP2 localized to the sole plate (arrow) and the body (arrowheads) of FPs and to the cytoplasmof podocytes (asterisk, G). In
endothelial cells, most of the gold particles (arrowheads) were detected in the nucleus (H). Black scale bars in (F)–(H) represent 1 mm.
(I) Quantification of gold particles in rat glomerular endothelial cells and podocytes. Data represent the mean 5 SEM. EMP2 antibody
was highly diluted so that background label was negative.
In order to gain insight into a potential mechanistic link

between EMP2mutations andNS, we performed lentivirus-

mediated knockdown of EMP2 in cultured human podo-

cytes by using small hairpin RNAs (shRNAs) (Table S2).

We found that upon knockdown of EMP2 in undifferenti-

ated podocytes, the amount of CAVEOLIN-1 was increased

(as reported in other cell types13,15), whereas that of VEGFA

did not change (Figure 4A). To further define this relation-

ship in podocytes, we performed real-time PCR of CAV1

(MIM 601047) and VEGFA (MIM 192240) mRNA. The

amount of CAV1 mRNA was higher in undifferentiated

podocytes stably transfected with EMP2 shRNAs than in

podocytes transfected with scrambled shRNA (Figure 4B).

However, there was no change in the amount of VEGFA

mRNA upon EMP2 knockdown (Figure 4C). These results

were also confirmed in differentiated podocytes cultured

at 37�C for 14 days (Figure S2). EMP2 knockdown in differ-

entiated podocytes also resulted in increased amounts

of CAV1 mRNA (Figure S2A), but no change in VEGFA

mRNA (Figure S2B). To further test the pathogenicity

of the identified mutations, we transfected EMP2 cDNA

resulting from the identified mutations (Figure 4D).

When transfected, WT EMP2 decreased the amount of

CAVEOLIN-1, but it did not change the amount of VEGFA.

Like WT EMP2, EMP2 proteins harboring p.Phe7Leu or

p.Ala10Thr decreased the amount of CAVEOLIN-1; how-

ever, the truncated protein (p.Gln62*) failed to decrease
888 The American Journal of Human Genetics 94, 884–890, June 5, 2
the amount of CAVEOLIN-1, indicating that the homozy-

gous truncating mutation might at least in part induce loss

of function by a CAV1-mediated mechanism. None of the

proteins resulting from missense or nonsense mutations

affected the amount of VEGFA.

Finally, we investigated the effect of EMP2 knockdown

on cultured human podocyte proliferation by using the

xCELLigence system (ACEA Biosciences). We performed

the proliferation assay at 33�C to maintain podocytes

in the undifferentiated state. Compared to podocytes

transfected with scrambled shRNA, podocytes stably trans-

fected with EMP2 shRNAs exhibited reduced cell prolif-

eration (Figure 4E). Because EMP2 is also localized in

glomerular cell types other than podocytes (Figure 3B),

we also investigated the effect of EMP2 knockdown on

human umbilical vein endothelial cells (HUVECs). The

knockdown of EMP2 in HUVECs via lentivirus-mediated

shRNAs resulted in increased amounts of CAVEOLIN-1

(Figure S3A) and CAV1 mRNA (Figure S3B), consistent

with our findings in podocytes (Figures 4A and 4B). Similar

to podocytes (Figure 4E), HUVECs exhibited decreased

proliferation upon knockdown of EMP2 (Figure S3C).

Therefore, EMP2 knockdown causes an increased amount

of CAVEOLIN-1 and reduced cell proliferation in both

podocytes and HUVECs. However, the pathogenic link

among EMP2, CAVEOLIN-1, and NS will require further

investigation.
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Figure 4. Knockdown of EMP2 in Cultured Human Podocytes Increases the Amount of CAVEOLIN-1 and Decreases Cell Proliferation
(A) shRNA-mediated knockdown of EMP2 resulted in increased amounts of CAVEOLIN-1 without changing the amount of VEGFA.
(B and C) mRNA levels of CAV1 and VEGFAwere measured by real-time PCR using TaqMan probes for CAV1 (Hs00971716_m1), VEGFA
(Hs00900055_m1), and GAPDH (Hs02758991_g1, control). Knockdown of EMP2 increased CAV1 expression at the transcriptional
level (B), whereas the amount of VEGFAmRNA did not change (C). Data represent the mean5 SEM, denoted by three horizontal lines.
**p < 0.01; ns, not significant (two-tailed Student’s t test).
(D) Transfection of cDNAs encoding WT EMP2 and EMP2 harboring missense changes p.Phe7Leu or p.Ala10Thr decreased the
amount of CAVEOLIN-1, whereas transfection of cDNAs encoding the truncated protein (p.Gln62*) failed to decrease the amount of
CAVEOLIN-1.
(E) Compared to podocytes transfected with scrambled shRNA negative control (black line), podocytes transfected with EMP2 shRNAs
(red lines) showed reduced cell proliferation. Bar graphs represent the area under curves, and data represent the mean5 SEM. *p< 0.05,
**p < 0.01.
Taken together, our data show that mutations in EMP2

cause an autosomal-recessive form of SSNS. EMP2 localizes

to glomeruli in the kidney and regulates the amount of

CAVEOLIN-1, and its depletion causes decreased cell prolif-

eration. Knockdown of the zebrafish ortholog, emp2, reca-

pitulated the human nephrosis phenotype. It will be of

interest in the future to investigate the exact mechanism

through which defects in EMP2 cause NS.
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Nürnberg, G., Becker, C., Seelow, D., Huebner, N., Chernin, G.,

Vlangos, C.N., et al. (2009). A systematic approach tomapping

recessive disease genes in individuals from outbred popula-

tions. PLoS Genet. 5, e1000353.
890 The American Journal of Human Genetics 94, 884–890, June 5, 2
10. Halbritter, J., Diaz, K., Chaki, M., Porath, J.D., Tarrier, B., Fu,

C., Innis, J.L., Allen, S.J., Lyons, R.H., Stefanidis, C.J., et al.

(2012). High-throughput mutation analysis in patients with

a nephronophthisis-associated ciliopathy applying multi-

plexed barcoded array-based PCR amplification and next-gen-

eration sequencing. J. Med. Genet. 49, 756–767.

11. Taylor, V., and Suter, U. (1996). Epithelial membrane protein-2

and epithelial membrane protein-3: two novel members of

the peripheral myelin protein 22 gene family. Gene 175,

115–120.

12. Takemoto,M.,He,L.,Norlin, J., Patrakka, J.,Xiao, Z., Petrova,T.,

Bondjers, C., Asp, J., Wallgard, E., Sun, Y., et al. (2006). Large-

scale identification of genes implicated in kidney glomerulus

development and function. EMBO J. 25, 1160–1174.

13. Forbes, A., Wadehra, M., Mareninov, S., Morales, S., Shima-

zaki, K., Gordon, L.K., and Braun, J. (2007). The tetraspan pro-

tein EMP2 regulates expression of caveolin-1. J. Biol. Chem.

282, 26542–26551.

14. Wadehra,M., Forbes, A., Pushkarna, N., Goodglick, L., Gordon,

L.K., Williams, C.J., and Braun, J. (2005). Epithelial membrane

protein-2 regulates surface expression of alphavbeta3 integrin

in the endometrium. Dev. Biol. 287, 336–345.

15. Wadehra, M., Goodglick, L., and Braun, J. (2004). The tetra-

span protein EMP2modulates the surface expression of caveo-

lins and glycosylphosphatidyl inositol-linked proteins. Mol.

Biol. Cell 15, 2073–2083.

16. Drummond, I.A., Majumdar, A., Hentschel, H., Elger, M., Soln-

ica-Krezel, L., Schier, A.F., Neuhauss, S.C., Stemple, D.L.,

Zwartkruis, F., Rangini, Z., et al. (1998). Early development

of the zebrafish pronephros and analysis of mutations

affecting pronephric function. Development 125, 4655–4667.

17. Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner,

C., Farber, S.A., and Ekker, S.C. (2007). p53 activation by

knockdown technologies. PLoS Genet. 3, e78.

18. Kramer-Zucker, A.G., Wiessner, S., Jensen, A.M., and Drum-

mond, I.A. (2005). Organization of the pronephric filtration

apparatus in zebrafish requires Nephrin, Podocin and the

FERM domain protein Mosaic eyes. Dev. Biol. 285, 316–329.

19. Ebarasi, L., He, L., Hultenby, K., Takemoto, M., Betsholtz, C.,

Tryggvason, K., and Majumdar, A. (2009). A reverse genetic

screen in the zebrafish identifies crb2b as a regulator of the

glomerular filtration barrier. Dev. Biol. 334, 1–9.

20. Parton, R.G., and del Pozo, M.A. (2013). Caveolae as plasma

membrane sensors, protectors and organizers. Nat. Rev. Mol.

Cell Biol. 14, 98–112.
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