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ABSTRACT OF THE DISSERTATION 
 
 

A Randomized Fixed Model Methodology for Genome-Wide Association Studies 
 
 

by 
 
 

Tiantian Zhu 
 

Doctor of Philosophy, Graduate Program in Plant Biology 
University of California, Riverside, December 2017 

Dr. Shizhong Xu, Chairperson 
 
 
 

 
Genome-wide association studies (GWAS) are statistical tools widely used to 

identify the associations between genetic variants and a quantitative trait. Through 

GWAS, the genetic architectures of many complex traits in plants, animals and human 

have been revealed. A commonly used method in GWAS is the linear mixed model 

(LMM). This model is called the fixed model (FM) approach when the marker effect is 

treated as a fixed effect. In contrast to the FM approach, the scanned marker can also 

be treated as a random effect and such a method is called the random model (RM) 

approach. The RM approach allows the use of the effective number of tests to perform 

Bonferroni correction and thus significantly increases the statistical power. However, 

the RM approach requires estimation of two genetic variance components (the variance 

of the scanned marker and the polygenic variance) and thus involves high 

computational cost. The main focus of this dissertation is the development of a new 
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method named randomized fixed model (RFM) methodology. By this method, we can 

perform the RM GWAS using results of the FM analysis without involving additional 

computation.  

There are three chapters in this dissertation. The first chapter introduces the 

main concepts in GWAS, LMM and corrections for multiple hypotheses testing. The 

second chapter describes the RFM methodology, and demonstrates in both simulated 

data and real human data that the RFM is as powerful as the RM, with reduced 

computational complexity. In the third chapter, an outlier detection approach using a 

mixture model for significance test is described. Compared to Bonferroni correction 

method, this approach boosts the statistical power with the genome-wide type I error 

rate still controlled below 0.05. Thus, the outlier detection approach can be an 

alternative method for Bonferroni correction.  
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Chapter 1 

Introduction 

1.1 Genome-wide association studies (GWAS) 

GWAS (Risch & Merikangas, 1996) are statistical approaches that examine a genome-

wide set of single-nucleotide polymorphisms (SNPs) in a large population to identify 

genetic variations that are associated with a complex trait. Compared to the traditional 

linkage analysis, GWAS prove to be more powerful and have higher resolution by taking 

advantage of historical and evolutionary recombination events at the population level 

(Nordborg & Tavare, 2002; Risch & Merikangas, 1996). In recent years, with the 

advances of the Human Genome Project (Lander et al., 2001; Venter et al., 2001) and 

the International Human HapMap project (International HapMap, 2003), novel disease 

loci that were previously unknown were uncovered to be associated with human 

complex diseases through GWAS method (Wellcome Trust Case Control, 2007). The 

same strategy for genetic dissection of complex traits is also being applied to many plant 

and animal species.  
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1.1.1 Applications of GWAS in plants and human 

1.1.1.1  Progress of GWAS in plants 

In rice, Huang et al. (2010) sequenced a large collection of 517 diverse rice landraces 

and constructed a high-density haplotype map containing ~3.6 million SNPs using a 

highly accurate data-imputation method. Through a GWAS for 14 agronomic traits 

including morphological characteristics, yield components, grain quality, coloration and 

physiological features, a total of 80 association signals were detected. Zhao et al. (2011) 

conducted a GWAS in a collection of 413 diverse O. sativa accessions from 82 countries 

by using 44,100 high-quality SNP variants and 34 agronomic, developmental, and 

morphological traits. Dozens of common variants were identified to affect the 

performance of these traits. Revealing the genetic basis of these complex traits provided 

insights into the improvement of yield, quality and sustainability of rice. In a metabolic 

GWAS based on ~6.4 million SNPs collected from 529 diverse Oryza sativa accessions, 

Chen et al. (2014) identified hundreds of common variants influencing numerous 

secondary metabolites with large effects. The GWAS also facilitated the identification 

and annotation of a total of 166 metabolites by linking the unknown metabolites to 

related genes. Yano et al. (2016) identified 4 new genes associated with important 

agronomic traits using GWAS based on whole-genome sequencing and the selection of 

candidate genes based upon the estimated functional importance of nucleotide 

polymorphisms.  
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Wang et al. (2012) carried out a GWAS of head smut resistance in maize using 45,868 

SNPs from 144 inbred lines, showing that 18 novel candidate genes were associated 

with resistance to head smut disease. These candidate genes could be categorized into 

three groups: resistance genes, disease response genes and genes with possible disease 

resistance functions. This research provided a basis for cloning the candidate genes to 

further dissect the complicated mechanism of head smut resistance in maize. In a GWAS 

using 1.03 million SNP markers characterized in 368 maize inbred lines, Li et al. (2013) 

studied the genetic basis of maize oil biosynthesis and disclosed 74 loci significantly 

associated with fatty acid composition and kernel oil concentration. Examined by using 

coexpression analysis, expression QTL mapping and linkage mapping, more than half of 

the loci were localized in the mapped QTL intervals, and one third of the candidate 

genes were implicated in the oil biosynthesis pathway. The 26 loci that were associated 

with oil concentration explained as high as 83% of the phenotypic variation by using a 

simple additive effect model, indicating that the additive effect is of great importance in 

maize oil biosynthesis and accumulation. Mao et al. (2015)discovered that an 82-bp 

miniature inverted-repeat transposable element (MITE) insertion in the promoter region 

of a NAC gene (ZmNAC111) was significantly associated with variation in maize drought 

tolerance. When heterologously expressed in Arabidopsis, the MITE insertion repressed 

the expression of ZmNAC111 via RNA-directed DNA methylation and H3K9 

dimethylation. Increased expression of ZmNAC111 in transgenic maize conferred 
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drought tolerance. Thus, the insertion of MITE resulted in lower ZmNAC111 expression 

and susceptibility to drought. 

GWAS have also been applied to other crops. Jia et al. (2013) constructed a haplotype 

map of foxtail millet by using 0.8 million common SNPs sequenced from 916 diverse 

varieties. The researcher identified 512 associated SNP loci for 47 agronomic traits in a 

GWAS. To facilitate gene discovery and marker-assisted breeding in sorghum, Morris et 

al. (2013) characterized ~265,000 SNPs in 971 sorghum accessions using genotyping-by-

sequencing (GBS), and identified several loci for plant height and inflorescence 

architecture by GWAS.  

1.1.1.2  Progress of GWAS in human 

Since first exploited to study age-related macular degeneration in 2005 (Klein et al.), 

GWAS started to gain favorability in research of many kinds of complex human traits. 

The Wellcome Trust Case Control Consortium (WTCCC, 2007) examined ~2,000 

individuals and a shared set of ~3,000 controls, and detected 24 loci associated with six 

major human diseases with p-values less than 5 × 10-7. Soon afterwards, GWAS 

approaches have been applied to many human complex diseases, with many loci 

identified for type 1 (Hakonarson et al., 2007; Todd et al., 2007) and type 2 diabetes (A. 

P. Morris et al., 2012; Zeggini et al., 2008), coronary heart disease (Helgadottir et al., 

2007; McPherson et al., 2007; Samani et al., 2007; Schunkert et al., 2011), prostate 

cancer (Eeles et al., 2008; Gudmundsson et al., 2007; Gudmundsson et al., 2008; Haiman 
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et al., 2007), breast cancer (Easton et al., 2007; Hunter et al., 2007; Stacey et al., 2007), 

obesity (Thorleifsson et al., 2009), atrial fibrillation (Gudbjartsson et al., 2007) and 

schizophrenia (Ripke et al., 2013). National Human Genome Research Institute and 

European Molecular Biology Laboratory - European Bioinformatics Institute 

collaboratively developed an online catalog of SNP-trait associations database 

(www.ebi.ac.uk/gwas) regularly updated from published GWAS for investigating genetic 

architecture of common diseases (Welter et al., 2014). This catalog includes all eligible 

GWAS and association studies since the first published GWAS discovery on age-related 

macular degeneration in 2005 (Klein et al.).  

Helgadottir et al. (2007) conducted a GWAS on Icelandic patients with Myocardial 

Infarction (MI) by testing 305,953 SNPs in a sample of 1607 cases and 6728 controls, and 

identified that a common sequence variant on chromosome 9p21, located near the 

tumor suppressor genes CDKN2A and CDKN2B, was associated with MI with high 

significance. Based upon a well-powered meta-analysis of 46 GWAS studies, 95 loci were 

revealed to associate with blood lipid traits such as high-density lipoprotein (HDL), low-

density lipoprotein (LDL), total cholesterol and triglycerides (TG) in a population of more 

than 100,000 (Teslovich et al., 2010). These blood lipid traits are strong predictors of 

heart disease. Schunkert et al. (2011) performed a meta-analysis of 14 GWAS of 

coronary artery disease (CAD) and identified 13 new loci associated with CAD with a p-

value of less than 5 × 10−8. They also confirmed 10 out of 12 previously reported loci 

associated with CAD.  
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The WTCCC (2007) uncovered 7 loci associated with type 1 diabetes (T1D) and 3 loci 

associated with type 2 diabetes (T2D) at p-value < 5 × 10−7 by using SNP dataset 

undertaken in the British population. Todd et al. (2007) validated 4 of the 7 T1D 

associated loci detected by WTCCC (2007) and found robust associations of 4 more 

novel chromosome regions with T1D. Huang et al. (J. Huang et al., 2012) described that 

imputation based upon data from 1000 Genomes Project revealed novel association 

signals attributed to the very dense marker map and the great number of haplotypes. 

They observed two diabetes associated variants that were undetected in the original 

WTCCC (2007) analysis, but were reported by other later studies. One locus which is 

within the IL2RA gene is associated with T1D. The other locus associated with T2D is 

adjacent to the CDKN2B gene. Besides, they also identified two novel loci that were not 

previously reported. One is SNP rs11209026 in exon 9 of IL23R associated with Crohn’s 

disease, and the other SNP rs1265564 is in the CUX2 gene for association with T1D.  

Human height is a heritable quantitative trait influenced by multiple loci. Weedon et al. 

(2007) examined a genome-wide association data from a total of 4,921 individuals, 

finding that a common variant of HMGA2 oncogene rs1042725 was associated with 

adult and childhood height in the general population. Furthermore, this variant could 

explain approximately 0.3% of population height variation (about 0.4 cm increase in 

adult height per C allele). Hao et al. (2013) performed a GWAS in a Han Chinese 

population of 6,534, and identified three novel associated loci for human height. This 

study also confirmed the two loci CS (rs3816804) and CYP19A1 (rs3751599) that were 
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previously reported in European populations, and detected 35 SNPs reported by 

previous study as well. Berndt et al. (2013) identified 4 new loci (IGFBP4, H6PD, RSRC1, 

PPP2R2A) affecting height by analyzing 263,407 European individuals.  

1.1.2 Linkage disequilibrium 

The basis of the comparative high-resolution of association mapping is the structure of 

linkage disequilibrium (LD) across the genome. LD describes the degree of non-random 

association between alleles at different loci along the genome in a population. Loci are 

in LD when the observed frequency of co-occurrence for two alleles is different from the 

frequency expected if the two loci are independent. The structure of LD could be 

affected by many genetic and non-genetic factors, such as selection, drift, 

recombination, mating pattern and admixture (the mixture of two or more genetically 

distinct populations). In a population of a fixed size under random mating/crossing, 

accumulated random recombination events will break apart contiguous chromosomal 

segments. Eventually, a pair of loci on a chromosome in the population will move from 

linkage disequilibrium to linkage equilibrium.  

The rate of LD decay is influenced by many factors, including the number of founding 

chromosomes in the population, the number of generations through which the 

population has passed, the population size and the reproduction mode. Generally, the 

LD decays slower in self-pollinated crops, such as wheat and rice, than it does in cross-

pollinated crops, such as maize (Flint-Garcia, Thornsberry, & Buckler, 2003). In a genome 
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with strong LD, only a small number of SNPs are required to adequately cover the whole 

genome, but the mapping resolution will be low. In a genome where LD decays in a 

short distance, a great number of SNPs are needed, but the mapping resolution will be 

high.  

There are several metrics proposed to measure LD (Devlin & Risch, 1995). The two most 

commonly used measures are D’ (Lewontin, 1964) and r2 (Hill & Robertson, 1968). Both 

are ultimately related to D, which is the deviation of the observed haplotype frequency 

from the expected frequency in the equilibrium state (Lewontin & Kojima, 1960).  

 
AB A BD P P P   (1.1) 

ABP  is the frequency of haplotype AB; AP  and BP  represent the frequency of the allele A and B, 

respectively.  

 
max

'
D

D
D

  (1.2) 

where  max min ,A b a BD P P P P , if 0D  ;  max min ,A B a bD P P P P , if 0D  . 

 
2

2

A a B b

D
r

P P P P
  (1.3) 

D’ is the absolute ratio of D over the maximum value that D could take given the allele 

frequencies and is scaled between 0 and 1. A D’ value of 0 denotes no LD, and D’ = 1 

indicates complete LD, implying no recombination between the two loci. r2 is a 
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statistical measure of correlation between the two alleles of the two loci. It also has a 

range between 0 and 1. r2 = 1 indicates that given the genotype of one locus, one can 

directly predict the genotype of another locus, thus only one of the two loci needs to be 

genotyped to capture the allelic variation.  

The set of SNPs selected based on LD patterns to capture the allelic variation of nearby 

SNPs are called tag SNPs. In an association study, due to the presence of LD, the 

detected association between a SNP and a quantitative trait could be a direct 

association or an indirect association. If the functional SNP itself is genotyped in the 

study and identified to be associated with the trait, then it’s a direct association. If the 

functional SNP is not typed, but a tag SNP which is in high LD with the causal SNP is 

typed and identified to associate with the trait, then it’s an indirect association. Thus, a 

statistically significant association signal in a GWAS does not necessarily mean that the 

associated SNP is the causal variant and additional studies are required to further locate 

the causal SNP. 

1.1.3 Population structure and relative kinship 

Population structure refers to the presence of allele frequency differences among 

subpopulations in a population, due to systematic ancestry differences, e.g., various 

geographical origins in plants, different breeds in animals, and Asian, African and 

European subpopulations in human. When subpopulations differ both in allele 

frequencies and in phenotype prevalence, this will lead to spurious associations in a 
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GWAS. Because some SNPs may be specific in a subpopulation for a historical reason, 

but not necessarily associated with any traits. If a method does not take population 

structure into account, these subpopulation-specific SNPs will be detected as loci 

associated with the trait of interest. 

Recently, several methods have been proposed to diagnose and correct for population 

structure. Structured association (SA, Pritchard, Stephens, & Donnelly, 2000) and 

principal components analysis (PCA, Price et al., 2006) are the two most common 

methods. SA uses the STRUCTURE software package to infer population structure (Q) by 

using a set of random markers and then classify individuals into different subpopulation 

clusters. One limitation of this method is its intensive computational cost on large data 

sets. Besides, the definition of subpopulations is typically very subjective, and the 

assignments of individuals to clusters are quite sensitive to the number of clusters 

defined. PCA can be implemented by the EIGENSTRAT method. It summarizes genetic 

variation observed from all markers into a smaller number of underlying variables called 

principal components. These principal components reduce the data to a small number 

of dimensions, while accounting for as much variation in the data as possible. Usually 

the first few principal components will be incorporated as covariates into a GWAS model 

to adjust for the effects caused by population structure. Compared to SA, PCA does not 

need to deduce the number of subpopulations, and is also more computationally 

tractable on a genome-wide scale.  
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Apart from population structure, relatedness among individuals can also result in false 

positives. Yu et al. (2006) developed a unified mixed-model method for association 

mapping to simultaneously account for multiple levels of relatedness as detected by 

random genetic markers. In this method, marker-based population structure Q and 

relative kinship (K, defines the degree of genetic covariance among individuals) were 

simultaneously introduced into a mixed-model framework for marker-trait associations. 

This method is commonly known as the Q + K model. In general, the Q + K model results 

in a better performance than the Q model or the K model alone (Yu et al., 2006). 

1.1.4 Missing heritability 

GWAS have identified a great number of genetic variants associated with complex traits, 

shedding light on the genetic architecture of these traits. However, most variants 

identified so far accounted for only a trivial fraction of the phenotypic variance in the 

population. The remaining unexplained heritability is called the missing heritability 

(Manolio et al., 2009). Many reasons for this missing heritability have been proposed, 

including rare variants, gene-gene interactions (epistasis) and gene-environment (G × E) 

interactions. 

The power to detect a variant is a function of the allele frequency. Causal variants with a 

low allele frequency can hardly have adequate effect on the population as a whole, 

therefore they are difficult to detect (Myles et al., 2009). Even if a rare allele has a 

strong effect on the phenotype, it might be difficult to detect by population mapping 
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because it is less well represented in SNP databases and the tag SNPs are usually 

designed to tag common variants (with frequencies > 5%). Unfortunately, in most 

species, a large proportion of alleles are rare, according to a population genetics theory. 

For instance, in rice, there are about 44% of the polymorphisms are rare variants. 

Family-based mapping can be used to detect such rare functional alleles (Laird & Lange, 

2006). Because by creating crosses, the allele frequencies in the progeny can be 

artificially inflated to provide increased mapping power. De et al. (2013) included both 

common and rare variants in their analysis by introducing suitable weighting schemes to 

downweight the more common variants and upweight rarer variants.  

Zuk et al. (2012) thought that a substantial proportion of missing heritability could be 

due to the genetic interactions among loci. There has been notable development of 

methodology and software to detect epistasis among loci in the past few years (Wei, 

Hemani, & Haley, 2014). However, efficient testing of epistasis in a GWAS is still a 

challenging problem owing to the large number of possible pairs of interaction to be 

considered. For instance, with a total collection of 1 million SNPs, there are going to be 

approximately 500 billion possible interactions. The large number of interactions causes 

a severe penalty to multiple hypothesis testing. With 1 million SNPs, to achieve 5% 

genome-wide significance, a Bonferroni correction would require a p-value of less than 

10-13 for a single test. Besides, the computational burden further limits the complexity of 

any genome-wide epistasis testing model that one may consider. In general, people use 

the two-step strategy for a genome-wide search for epistasis. In the first step, use an 
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approximate but fast pair-wise interaction tests for an initial genome-wide screening. In 

the second step, apply the full regression models to test for significance of the most 

promising interactions from the initial screening (Lewinger et al., 2013).  

Complex traits can also be influenced by the environment. Therefore, the missing 

heritability could be partially due to the G × E interactions, defined as the joint effect of 

genetic and environmental factors which cannot be explained by their marginal effects 

(Thomas, 2010). The major challenges to a successful G × E study are exposure 

assessment, sample size and heterogeneity. Many statistical analysis approaches have 

been developed to study G × E interactions, into which the various ways of genetic 

effects can be modulated by environmental exposures and the number of levels of 

environmental exposures will be taken account.  

1.2 Linear mixed model (LMM) 

LMM, firstly proposed by Yu et al. (2006), is a widely used method in GWAS. When the 

kth marker (k = 1, …, m) is scanned, the model is described as 

 
k ky X Z        (1.4) 

where y  is an n × 1 vector of phenotypic values for a quantitative trait, X  is a design 

matrix of covariates,   is a vector of effects for the covariates to reduce inference from 

other non-genetic factors, 
kZ  is an n × 1 vector of genotype indicator variable of the kth 

marker, k  is the marker effect, 2~ (0, )N K   captures the polygenic effect with a 
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multivariate normal distribution where K is the covariance structure (kinship matrix) 

derived from genome-wide markers, 2  is the polygenic variance, 2~ (0, )N I   is a 

vector of residual errors normally distributed with a common error variance 2 . If k  is 

treated as a fixed effect, the expectation of y  is  

 ( ) k kE y X Z    (1.5) 

and the variance is 

 2 2var( )y k I     (1.6) 

Parameters can be estimated using the restricted maximum likelihood (REML) and the 

log-restricted likelihood function is 

 1 11 1 1
( ) ln ( ) ( ) ln

2 2 2

T TL Y X Y X X X             (1.7) 

where  2 2, , ,k     . The Wald test statistic for 
0 : 0kH    is 

 
2ˆ

ˆvar( )

k
k

k

W



  (1.8) 

kW  follows a Chi-square distribution with one degree of freedom under the null 

hypothesis. The p-value for the kth marker is 

  2

11 Prk kp W    (1.9) 
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However, the original mixed model is very computationally intensive because it involves 

a large number of matrix multiplications and inverses. Kang et al. (2008) proposed a new 

method called efficient mixed-model association (EMMA), substantially improving the 

computational efficiency and reliability of the results by implementing eigen-

decomposition. They first decomposed the K matrix to reduce the computational cost 

from cubic to linear complexity, and then estimated the polygenic and residual variance 

components for each marker by treating the variance ratio 2 2/    as the 

parameter. Eigen decomposition of matrix K is performed as 

 TK UDU  (1.10) 

where D  is a diagonal matrix of the eigenvalues and U  is an n × n matrix of 

eigenvectors. The eigenvector matrix is orthogonal in the sense that TUU I . Let 

 ( )T TH K I UDU I U D I U        (1.11) 

The log determinant of matrix H  is 

 
1

ln ln ln( 1)
n

j

j

H D I  


     (1.12) 

There are various quadratic forms involved in the likelihood function in the form of 

1Ta H b , for instance, 1TX H X , 1TX H y  and 1Ty H y . By employing eigenvalue 

decomposition, we can rewrite the quadratic form by 
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 1 1 * 1 * * * 1

1

( ) ( ) ( 1)
n

T T T T T
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j

a H b a U D I U b a D I b a b      



       (1.13) 

where * Ta U a  and * Tb U b .  

On the basis of EMMA, Zhou and Stephens (2012) proposed an efficient exact method,  

genome-wide efficient mixed-model association (GEMMA), which is approximately n 

(the sample size) times faster than EMMA, making exact analysis feasible for GWAS with 

a large population. Lippert et al. (2011) presented an efficient method, factored 

spectrally transformed linear mixed models (FaST-LMM), that requires only one singular 

value decomposition of the K matrix to test all SNPs. They also suggested using a 

relatedness matrix calculated from only a few thousand SNPs to reduce computing time. 

Several approximate methods have also been proposed to save the computational cost, 

for example, EMMA expedited (EMMAX, Kang et al., 2010) and population parameters 

previously determined (P3D, Zhang et al., 2010). These two approaches assumed that 

the variance parameters are the same across all SNPs and simply used the pre-

estimated variance components under the null model for each tested marker, thus 

avoiding estimating variance components repeatedly and removing the expensive cubic 

computation per SNP.  

1.3 Corrections for multiple hypotheses testing 

If one hypothesis test is performed at the 5% level, then the null hypothesis is rejected if 

the p-value falls below 0.05. This means that 5% of the time, the null hypothesis is 
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rejected incorrectly and we detect a false positive (also known as the type I error). This 

probability is relative to a single hypothesis test; however, in the case of GWAS where 

thousands to millions of tests are conducted simultaneously and each one with its own 

probability of false positive, the probability of detecting one or more false positives over 

the entire analysis (family-wise error rate, FWER) is given by 1 - (1-α) m (m is the number 

of tests performed), which will be larger than 0.05. Consider a case where there are 20 

hypotheses tests and the significance level of each test is 0.05. The FWER will be 1 - (1-

0.05) 20 ≈ 0.64. With the number of tests increase, the rate of type I error keeps going 

up. Therefore, in order to retain a prescribed FWER α in an analysis involving multiple 

tests, the type I error rate for each test must be more stringent than α.  

1.3.1 Bonferroni correction 

Bonferroni correction is one of the most commonly used methods to correct for 

multiple comparisons, and is the most conservative method. The Bonferroni correction 

adjusts the α value from 0.05 to 0.05/m where m is the number of tests performed. This 

is based on Boole’s inequality that if each of the m tests is conducted to have a type I 

error rate of α/m, the FWER will not exceed α. This correction assumes that all tests are 

independent of one another, which is usually not the case due to the LD among 

markers. Thus, the Bonferroni correction could be extremely conservative, leading to an 

increased rate of type II error (false negative).  
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Several strategies have been proposed to maintain the overall rate of false positives 

without excessively inflating the rate of false negatives. One technique is to use the 

number of markers on each chromosome as their own denominator, so that every 

chromosome has its own significance criteria based on the number of markers on that 

chromosome. Another strategy is to evaluate the effective number of independent 

tests, and to use the effective number rather than the total number of markers as the 

denominator (M. X. Li et al., 2012). Due to the presence of LD in the genome, there are 

an effective number of independent genomic regions, which represent an effective 

number of independent tests. 

1.3.2 Sequentially rejective test 

Holm (1979) developed a simple sequentially rejective multiple test procedure, which 

was also based on the Boole inequality, and was therefore also called the sequentially 

rejective Bonferroni test. It uses a stepwise algorithm in simultaneous inference by 

adjusting the rejection criteria of each of the individual hypotheses. Let H1 … Hm be a 

family of hypotheses and P1 … Pm the corresponding p-values. This method starts by 

ordering the p-values from lowest to highest as P(1) … P(m) and let the associated null 

hypotheses be H(1) … H(m). For a given significance level α, compare P(1) with α/m. If P(1) is 

smaller than α/m, we reject H(1), and compare P(2) with α/(m-1), and so forth. Until we 

reach the kth test where P(k) > α/(m-k+1), then we reject all previous k-1 hypotheses and 
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do not reject H(k) … H(m). This correction ensures that the FWER will not exceed α and is 

uniformly more powerful than the classical Bonferroni correction.  

1.3.3 False discovery rate (FDR) 

The FDR is defined as the proportion of false positives among all significant detections. It 

was formally described by Benjamini and Hochberg (1995) as a less conservative 

approach than the FWER in flagging possibly noteworthy observations. The Benjamini-

Hochberg procedure (BH procedure) controls the FDR at level α. First, we sort the p-

values in ascending order and denote them by P(1) … P(m). For a given significance level α, 

find the largest k such that P(k) ≤ (k/m)α. Then reject the null hypothesis for all H(i), for i = 

1,2, …, k. This procedure which controls the FDR is generally more powerful than the 

FWER controlling methods. In addition, the advantage increases with the number of 

tested hypotheses and the number of non-true null hypotheses.  

1.3.4 Permutation test 

Permutation test, which has evolved from the works of Fisher and Pitman in the 1930s, 

is a type of widely applicable non-parametric test. It is a straightforward approach to 

generate the empirical distribution of the test statistic under the null hypothesis by 

random reassigning the labels on the data points. In a GWAS, we randomly shuffle the 

genotypes of individuals in the dataset while leaving the phenotypes unchanged, 

effectively breaking the association between genotypes and phenotypes of that dataset. 
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Perform a GWAS on the permutated data, calculate the test statistic for each marker, 

and record the largest test statistic from it. Then repeat this process a predetermined 

number of times n, and we will get n maximum test statistics. The collection of the best 

statistics which show the greatest associations caused by chance can be used to 

construct a null distribution. We then compare the test statistics in the original dataset 

with the null distribution to obtain an estimate of statistical significance. For a 

significance level of α, the 100(1-α) percentile is the empirical critical value. Any test 

statistic that is greater than the 100(1-α) percentile is significant, and the type I error 

rate is controlled to be α or less (Churchill & Doerge, 1994).  

A crucial question of permutation test is how large n should be. This depends on the 

significance level α. It is recommended that at least 1,000 shuffles be made at α = 0.05, 

and as many as 5,000 shuffles be used at α = 0.01. This method provides robust and 

powerful significance tests that is easy to apply in practice, although it is more 

computationally expensive than other statistical tests. Several packages have been 

developed to conduct permutation test for GWAS, including PLINK (Purcell et al., 2007), 

PRESTO (Browning, 2008), and PERMORY (Pahl & Schafer, 2010).  
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Chapter 2 

Randomized Fixed Model 

2.1 Introduction 

The state of the art method for genome-wide association studies (GWAS) is the mixed 

model methodology implemented using the exact method in which the polygenic 

variance is re-estimated for each marker scanned (GEMMA). This model treats the 

scanned marker effect as a fixed effect. Therefore, we call it the fixed model (FM) 

approach. In contrast to the FM approach, the scanned marker can be treated as a 

random effect and such a method is called the random model (RM) approach. The 

empirical Bayes (EB) method of genome-wide association studies (GWAS) developed by 

Wang et al. (2016) is a RM approach in the sense that the effect of a scanned marker is 

considered as a random effect. The estimation and test of a random marker effect are 

selectively shrunken toward zero, leading to reduced background noise in the test 

statistic profile (Manhattan) plot of GWAS. To compensate the reduced test statistic, 

Wang et al. (2016) adopted the effective number of tests to perform Bonferroni 

correction and showed that the modified Bonferroni correction has significantly 

increased the statistical power and, in the meantime, maintained the genome-wide type 

I error below the controlled 0.05 level. The RM approach requires simultaneous use of 
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eigen-decomposition and Woodbury matrix identity to improve the computational 

speed so that the method is practically applicable to data sizes commonly seen in 

GWAS.  

The RM approach requires estimation of two genetic variance components (the variance 

of the scanned marker and the polygenic variance) and thus involves high 

computational cost. In this study, we developed a new method to perform the RM 

GWAS using results of the FM analysis (marker effects treated as fixed effects) without 

involving additional computation. We call the new method randomized fixed model 

(RFM) methodology. With this new method, the modified Bonferroni correction (Q. 

Wang et al., 2016) can still be used to control false positive rates more precisely to 

boost the statistical power. 

2.2 Methods 

2.2.1 GWAS using the FM 

Let y  be an 1n  vector of a quantitative trait to be studied. Let 1,...,k m  indexes 

markers where m is the total number of markers. When the kth marker is scanned, the 

FM is described as 

 
k ky X Z        (2.1) 
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where X  represents some systematic covariates placed in the model to control the 

residual error, 
kZ  is a vector of numeric codes for the genotypes of the kth marker, k  

is the marker effect, 2~ (0, )N K   is a polygenic effect with a multivariate normal 

distribution with a covariance structure K inferred from genome-wide markers (called 

the kinship matrix), 2  is the polygenic variance, 2~ (0, )N I   is a vector of residual 

errors of normally distributed with a common error variance 2 . Under the FM 

approach, k  is a fixed effect (parameter) estimated and tested using the conventional 

mixed model methodology. Although the model is a mixed model, we call it FM because 

the marker effect of interest is treated as a fixed effect. This is in contrast to the RM 

where k  is treated as a random effect with a normal distribution. 

Parameters are estimated using the restricted maximum likelihood (REML) as given by 

Zhou and Stephens (2012). Let k  and var( )k kV   be the estimated marker effect and 

the variance from the FM analysis. The Wald test for 
0 : 0kH    is 

 
2

k
k

k

W
V


  (2.2) 

Assuming that the Wald test statistic follows a Chi-square distribution with one degree 

of freedom, the p-value for the kth marker is calculated using 

 2

11 Pr( )k kp W    (2.3) 
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2.2.2 Randomization of the FM 

For the same linear model given in equation (1), if 2~ (0, )k kN   is assumed, the model 

becomes a RM. Approximate and exact methods for REML estimates of variance 

components are available (Wang et al. 2015). Here, we do not estimate 2

k  along with 

the other variance components; rather, we use the results of the FM analysis to 

estimate 2

k  and then derive the posterior mean of k . This posterior mean is called the 

best linear unbiased prediction (BLUP). Significance test is then performed for the BLUP 

of k . The new method of estimation for 2

k  is based on the assumption that k  and 
kV  

estimated from the FM are sufficient statistics (all information from the data has been 

captured by k  and 
kV ). This assumption is true when the polygene and the residual 

error are normally distributed. We want to derive a randomized counterpart of k  from 

these sufficient statistics.  

Let k be the true but unknown effect. Before we collect data and obtain the sufficient 

statistics, we assign a prior distribution to the effect, 2~ (0, )k kN  . Assume that k  is 

an unbiased estimate of the true effect, we can write a simple RM for k  

 2~ (0, )

~ (0, )

k k k

k k

k k

N

N V

  

 



 

 (2.4) 
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where k  is an error term with a normal distribution of mean zero (because k  is an 

unbiased estimate of k ) and known variance 
kV . This model allows us to estimate 2

k  

and then predict k . The log likelihood function of the RM is 

 
2

2 2

2

1 1
( ) ln( )

2 2

k
k k k

k k

L V
V


 


   


 (2.5) 

The derivative of the likelihood function with respect to 2

k  is 
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 (2.6) 

Setting the derivative to zero and solving for 2

k  yields 

 2 2

k k kV    (2.7) 

When 2 ˆ
k kV  , we set 2 0k   because a variance cannot be negative. The BLUP of k  is 
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 (2.8) 

where 

 
2

1 k
k

k

V
d


   (2.9) 

Derivation of the above equation was obtained by substituting 2

k  by 2

k kV   (see 

Supplemental Material Note S1). The posterior variance of ˆk  is 
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 (2.10) 

The Wald test statistic under the RM framework is 
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 (2.11) 

The degree of confidence (Mackay, 1992) of marker k is defined as 
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     (2.12) 

Note that 

 
2

1
1 k k

k

k k

V W
d

W


    (2.13) 

Further manipulation of ˆ
kW  leads to 

 ˆ 1k k k kW d W W    (2.14) 

When 1kW  , we set ˆ 0kW  . Since majority of the markers are not associated with the 

trait and they should have 1kW   and thus ˆ 0kW  , which explains why the RM 

approach will reduce the background noise to zero in the Manhattan plot of the test 

statistics.  



27 
 

The score test under the FM for 
0 : 0kH    is equivalent to the Wald test 

kW , as proved 

in Note S2 in the Supplemental Material. The advantage of the score test is that 

nuisance parameters are only estimated under the null model and the parameter of 

interest k  is not estimated. The randomized score test remains the same as the 

randomized Wald test. The degree of confidence kd  is calculated using 

( 1) /k k kd W W  . 

2.2.3 Likelihood ratio test for the variance 

Alternatively, we can test the null hypothesis 2

0 : 0kH    using the likelihood ratio test. 

The likelihood value evaluated at 2 2 2

k k k kV      (MLE of the parameter) is 
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2 2 2 2
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 (2.15) 

Under the null model, the likelihood value is 
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The likelihood ratio test statistic is 
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The degree of shrinkage of the likelihood ratio test is even stronger than the Wald test. 

2.2.4 Effective number of tests 

Let m be the number of markers scanned in the entire genome. The effective number of 

tests is defined as 

 
1

1
m

e k

k

m d


   (2.18) 

where the value 1 added to make sure that the effective number of test is at least 1. 

Since 0 1kd  , we have 
em m . The Bonferroni correction is performed with 

em  

instead of m so that the nominal p-value criterion should be calculated using 0.05 / em  

to control a genome-wide type I error at 0.05. 

2.2.5 Theoretical consideration about the degree of confidence 

Recall that the degree of confidence per marker is 

 
2

2

V
d






  (2.19) 

which can be further manipulated as 
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where /z V  is a standardize normal variable under the null model. The 

expectation of d is 

 
1 2 2

2 2
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0.0753398 0.1
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       (2.21) 

This means that, on average, the effective number of tests is 15% of the actual number 

of markers. Therefore, using the randomized FM approach, we may approximately use 

 0.15em m  (2.22) 

to calculate the effective number of tests. This approximate effective number of tests 

only serves as a guide line. The best strategy is to use data to calculate the effective 

number of tests. 

2.3 Results 

2.3.1 Demonstration in simulated data 

The purpose of the simulation experiment is to compare the result of the RM approach 

with the RFM approach in terms of the estimated marker variances and the BLUP 

estimates of marker effects. In addition, we demonstrated that this method can be 

applied to QTL mapping in line cross experiments. Therefore, we simulated an F2 

population with a sample size 1000. We simulated a single large chromosome with 2400 

cM in length. We placed 961 markers evenly distributed along the genome with 2.5 cM 



30 
 

distance per marker interval. We simulated 20 QTL with sizes and locations depicted in 

Figure 2.1. The mean of the simulated trait was 10 and the residual error variance was 

10. No polygene was simulated but when a marker is scanned, the QTL not overlapping 

with the scanned marker will go to the polygene and be captured by the polygene in the 

model.  

 

Figure 2.1 Effects of 20 QTL in the simulated data. 
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Figure 2.2 Wald test statistic profiles of GWAS on the simulated data by using three different 
models: FM, RFM, and RM. The horizontal dashed lines represent the critical values of each 

analysis at the significance level of 0.05. 
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Figure 2.3 Pairwise comparisons of the -log10(p) among the three models: FM, RFM and RM. The 
GWAS was performed using the simulated data. The x axes and y axes represent the -log10(p) of 

the markers under the corresponding models. 
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Table 2.1 Number of detected markers and type I error rate under three models when 
performing GWAS on the simulated data. 

Method 
Number of detected 

SNPs Type I error rate 

FM 12 0 

RFM 17 0 

RM 17 0 

 

Figure 2.2 showed GWAS result using three models in the simulated data. Compared to 

the FM analysis, markers in both RFM and RM analysis had a shrunken Wald statistic, 

leading to a reduced background noise. In spite of the shrinkage of the test statistic, the 

RFM and RM both had an increased power in detecting significant markers. This is due 

to the advantage that RFM and RM allow the use of an effective number of tests for 

Bonferroni correction and still maintain the genome-wide type I error rate below the 

controlled 0.05 level. From the figure, we can see that even though the Wald statistics 

were lowered down in RFM and RM methods, the criteria values were raised up, 

resulting in an increasing statistical power. The criteria of Wald statistic which follows a 

Chi-square distribution with one degree of freedom, was calculated from the critical p-

value after Bonferroni correction. The critical Wald values in FM, RFM and RM were 

16.37, 11.81, and 11.84, respectively. There were 12 markers detected as significant in 

the FM approach, 17 markers in the RFM approach and exactly the same 17 markers in 

the RM approach. All the 12 markers identified in FM were also detected in RFM and 

RM. There was no type I error, since all markers detected in the three methods were 

either true simulated QTL or neighboring QTL which is 2.5 cM apart from the true QTL. 
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More importantly, this figure supported that our RFM method produced almost the 

same result as the RM method with regards to the Wald statistic, the criteria level, and 

the detected SNPs. Therefore, the RM analysis could be realized by performing a RFM 

analysis since RFM is more computational efficient.  

Figure 2.3 showed pairwise comparisons of the -log10(p) among the three models. Both 

the x axes and y axes represented the -log10(p) of the markers under the corresponding 

models. Negative log10(p) is positive correlated with the Wald statistic. It was shown 

that FM had higher -log10(p) values than RFM and RM, and RFM had almost identical -

log10(p) as RM, supporting that we can use the efficient RFM to replace RM.  

2.3.2 Demonstration in Framingham heart study data 

Since originating in 1948, the Framingham Heart Study (FHS), has been committed to 

identifying risk factors that contribute to cardiovascular disease (CVD), under the 

direction of the National Heart, Lung and Blood Institute (NHLBI). They have followed 

CVD development over a long period of time in a large group of three generations of 

participants who had not yet developed overt symptoms of CVD. The FHS first recruited 

an original cohort consisted of 5,209 individuals (2,336 men and 2,873 women) between 

the ages of 30 and 62 with no history of heart attack or stroke at the time of first 

examination, in the town of Framingham starting in 1948. Since then, participants of the 

original cohort have continued to return to the study every two years for a detailed 

physical examination, laboratory tests, and medical history. In 1971, the FHS added an 
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offspring cohort where adult children of the original participants and the spouses of 

these adult children were enrolled. A third-generation cohort was founded in 2002, 

consisting of children of the offspring cohort and grandchildren of the original cohort 

participants. Over the years, study on the FHS data had led to the identification of the 

major CVD risk factors including blood pressure, blood cholesterol, blood triglycerides, 

HDL (high density lipoprotein), diabetes, obesity, smoking, physical inactivity, as well as 

age, gender, and psychosocial issues. As to today, the study remains a world-class 

center for leading-edge heart, brain, bone, and sleep research.  

In our study, the FHS data were downloaded from the dbGAP databases 

(phg000005.v5). There are 6,161 subjects genotyped at ~500,000 SNP markers and 

examined with 21 clinical phenotypes including HDL, total cholesterol and triglycerides, 

as well as a few phenotypes that can be used as covariates such as IDtype (generation), 

sex, age and body mass. In section 2.3.2, our purpose is to demonstrate that our RFM 

model generates almost the same GWAS result as that of the RM. Therefore, we only 

use markers on chromosome 8 and triglycerides phenotype to perform GWAS. In the 

next section (section 2.3.3), we will show the GWAS result using the genome-wide 

markers of all 22 chromosomes with three phenotypes: triglycerides, total cholesterol 

and HDL.  
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Figure 2.4 Wald test statistic profiles of GWAS on the FHS data by using three different models: 
FM, RFM, and RM. The GWAS was performed using SNPs on chromosome 8 and trait 

triglycerides. The horizontal dashed lines represent the critical values of each analysis at the 
significance level of 0.05. 
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Figure 2.5 Pairwise comparisons of the -log10(p) among the three models: FM, RFM and RM. The 
GWAS was performed using the FHS data. The x axes and y axes represent the -log10(p) of the 

markers under the corresponding models. 



38 
 

Table 2.2 Critical p-values and numbers of detected SNPs under three models when performing 
GWAS on the FHS data 

Method Critical p-value 
Number of detected 

SNPs  

FM 2.09E-06 16 

RFM 1.33E-05 21 

RM 1.07E-05 21 

 

Similar to the results in the simulation study, GWAS using the RFM had a reduced 

background noise compared to the FM, due to the shrinkage of the Wald statistic, as 

shown in figure 2.4. The effective number in the RFM was 3772, thus the critical p-value 

after Bonferroni correction was 1.33e-5 and the critical Wald statistic was 18.97, which 

was less than the critical Wald value (22.51) in the FM analysis. There were 16 markers 

identified using FM, and additional 5 more markers were detected using RFM. 

Furthermore, RFM and RM produced very similar result by comparing the middle panel 

and the bottom panel in figure 2.4. GWAS using RM also identified 21 associated 

markers with triglycerides. Besides, the 21 markers detected in RM are exactly the same 

as those detected in RFM. Application in both simulated data and real data 

demonstrated that the computational expensive RM can be substituted by our RFM 

approach.  
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2.3.3 Application of RFM in Framingham heart study data 

 

Figure 2.6 Manhattan plot of GWAS for triglycerides using FM and RFM approaches. The x axes 
represent the order of chromosomes and y axes represent statistic -log10(p). The horizontal red 

lines represent the critical values of each analysis at the significance level of 0.05. 
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Figure 2.7 Manhattan plot of GWAS for total cholesterol using FM and RFM approaches. The x 
axes represent the order of chromosomes and y axes represent statistic -log10(p). The horizontal 

red lines represent the critical values of each analysis at the significance level of 0.05. 
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Figure 2.8 Manhattan plot of GWAS for HDL using FM and RFM approaches. The x axes 
represent the order of chromosomes and y axes represent statistic -log10(p). The horizontal red 

lines represent the critical values of each analysis at the significance level of 0.05.  
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Table 2.3 Effective number of each chromosome in three analyzed phenotypes when performing 
GWAS using RFM approach 

Chromosome 
Total analyzed 

markers 

Effective number 

Triglycerides Total cholesterol HDL 

1 34,186 4,883 5,155 5,415 

2 35,768 5,488 5,518 5,216 

3 29,396 4,423 4,284 4,267 

4 27,796 4,208 4,291 4,149 

5 28,276 4,425 4,242 4,102 

6 28,149 4,384 4,319 4,247 

7 22,886 3,308 3,478 3,377 

8 23,974 3,772 3,513 3,690 

9 20,165 2,973 2,994 3,153 

10 24,940 3,750 3,574 3,643 

11 22,759 3,569 3,605 3,677 

12 21,764 3,266 3,209 3,432 

13 16,659 2,423 2,401 2,544 

14 13,640 1,990 2,076 2,151 

15 12,284 1,817 1,868 1,964 

16 13,111 2,007 1,969 2,075 

17 9,820 1,584 1,482 1,484 

18 12,768 1,982 2,048 1,921 

19 5,582 821 871 898 

20 10,860 1,507 1,709 1,620 

21 6,201 882 1,013 972 

22 5,414 786 838 836 

Total 426,398 64,248 64,457 64,833 
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Table 2.4 Numbers of detected SNPs in three phenotypes under two models 

 

Number of detected 
SNPs 

 FM RFM 

Triglycerides 19 24 

Total cholesterol 1 3 

HDL 19 20 

 

Since it was shown that RFM was as powerful as RM, we performed GWAS using three 

phenotypes using RFM. First, we used GEMMA to perform GWAS using FM. Then we 

randomized the marker effect by subtracting one from the Wald statistic of FM, and 

assigned each marker a degree of confidence kd  according to equation 2.13, with the 

limitation that kd  ≥ 0. The total effective number for Bonferroni correction could be 

derived by summarizing kd across all markers. Figure 2.6, 2.7, 2.8 showed the Manhattan 

plots of GWAS under two models (FM and RFM) with three phenotypes: triglycerides, 

total cholesterol and HDL. For each phenotype, RFM was more statistical powerful than 

FM since that more markers were identified using RFM approach. Table 2.4 summarized 

the number of SNPs detected by using the two models for the three phenotypes of 

interest. In GWAS using RFM, there were 24 markers identified to be associated with 

triglycerides, 3 markers associated with total cholesterol, and 20 markers associated 

with HDL. Twelve markers were associated with both triglycerides and HDL, and no 

marker was associated with all three phenotypes. 
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2.4 Discussion  

Among all associated markers in this study, most of them were reported in previous 

GWAS results. Besides, we detected one novel SNP (rs17005774) associated with 

triglycerides, and another novel SNP (rs10925994) associated with HDL. The SNP 

rs17005774 is located in the intron of gene TGFA (transforming growth factor alpha). It’s 

annotated that variants in this gene are associated with body weights, obesity related 

traits, etc. The SNP rs10925994 is within the intron region of gene CHRM3 (cholinergic 

receptor, muscarinic 3), and variants of this gene are associated with traits including 

blood pressure, body fat distribution, body mass index, epilepsy, erythrocytes and 

fibrinogen. Further experiments need to be carried out to verify the association and 

dissect the genetic architecture of the two newly identified SNPs with coronary heart 

disease related traits.  

When performing GWAS, the RM approach is very computationally intensive since it 

requires estimation of two genetic variance components (the variance of the scanned 

marker and the polygenic variance). However, the advantage of the RM approach is that 

it allows us to adopt the effective number of tests to perform the Bonferroni correction, 

therefore boosting the statistical power. In this study, with the objective of taking 

advantage of the RM approach and avoiding its disadvantage, we proposed a RFM 

method to perform the RM GWAS using results of the FM analysis without involving 

additional computation cost. In this new method, the modified Bonferroni correction 
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can still be used to control false positive rates more precisely to improve the statistical 

power.  

In the simulation study, we performed the association analysis using the FM, RFM and 

RM, respectively. Five more QTL were identified as significant in the RFM compared to 

the FM. And the RFM detected the same markers as those detected in the RM 

approach. In analysis of the real human data, both the RFM and RM approaches 

identified 5 more SNPs than the FM approach. Figure 2.4 showed that RFM and RM 

generated very similar plots of the Wald test statistic. These results supported that we 

can get the RM GWAS results by using the results from the FM approach and save 

computational cost without losing statistical power. This RFM approach could be widely 

used in many GWAS research, especially those involve high-density genetic markers and 

a large number of individuals. 
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Chapter 3 

Significance Tests Using an Outlier Detection 

Approach 

3.1 Introduction 

Bonferroni correction is the most widely used method for multiple hypotheses testing in 

GWAS. However, this method is usually somehow too conservative, since it assumes 

that each test is independent, leading to an increase in the type II error rate. FDR 

controlling (Benjamini & Hochberg, 1995) is another strategy used to correct for 

multiple comparisons, but it has been observed that the power will decrease with the 

increase of the dependency among SNPs (Sabatti, Service, & Freimer, 2003).  

We assume that the SNPs that have effect on the phenotype account for only a small 

proportion of the entire set of genome-wide SNPs, thus, these associated SNPs can be 

treated as outliers. Here we propose an alternative method for multiple testing, outlier 

detection approach, to detect significant markers using a mixture model. A mixture 

model refers to a mixture distribution which describes the probability distribution of 

each observation in the population. To be simple, a mixture distribution is a mixture of 

two or more distributions. We will show that the mixture model outlier detection 
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approach can be a powerful alternative method for Bonferroni correction and FDR 

controlling in GWAS. 

3.2 Methods 

3.2.1 Gaussian mixture 

Let 
jy  be the jth observation of a target variable in the outlier detection problem. We 

assume that 
jy  follows a mixture of two distributions. We assume that the majority of 

the observations come from one distribution and the outliers come from another 

distribution. The two distributions may be from the same family of distributions or from 

different distribution families. For simplicity, let us assume that the two distributions 

come from the same family of distributions, e.g., normal distribution. The simplest case 

is the Gaussian mixture where both distributions are normal. There are five parameters 

in a Gaussian mixture of two components. The first component is 2

1 1( , )N    and the 

second component is 2

2 2( , )N   , each component has two parameters (mean and 

variance). There is another parameter   called the mixing proportion which represents 

the proportion of observations coming from the first distribution. Therefore, the 

Gaussian mixture is described by 

 2 2

1 1 2 2~ ( , ) (1 ) ( , )jy N N        (3.1) 

The probability density of such a mixture distribution is written as 
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1 1 2 2( | ) ( | ) (1 ) ( | )j j jf y f y f y        (3.2) 

where 

 2

22

1 1
( | ) exp ( )   for 1,2

22
k j k j k

kk

f y y k 


 
    

 
 (3.3) 

and  2,k k k    are parameters of the kth components. Parameters are estimated 

using the maximum likelihood methods. The finite mixture model procedure in SAS is 

particularly design to perform such analysis. The procedure is called PROC FMM.  

After the parameters are estimated, we can calculate the posterior probability of cluster 

for each observation using the Bayes theorem, 

 1 1

1 1 2 2

ˆˆ ( | )

ˆ ˆˆ ˆ( | ) (1 ) ( | )

j

j

j j

f y

f y f y

 


   


 
 (3.4) 

Observation j is classified into the second component (the outlier cluster) if 0.5j  . An 

observation classified into the outlier group is considered to be statistically significant. 

In fact, it should be interpreted as statistically different from the majority of 

observations.  

Any mixture model analysis is associated with a cluster identifiability problem. Without 

any constraints, PROC FMM may treat the first cluster as the outlier. To make sure that 

the second cluster is the outlier group, we often place the following constraint, 
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2 2

2 1c  , where c  is a positive integer arbitrarily assigned by the investigator, say 

100c  . The larger the c, the smaller the outlier cluster. 

3.2.2 Statistics used as the target variable in outlier detection 

(1) Estimated marker effect 

In genome-wide association studies, 
jy  may represent the estimated effect for the jth 

SNP, denoted by ˆ jb , i.e., ˆ
j jy b . In this case, we should incorporate the variance of the 

estimation ˆvar( )jb . PROC FMM allows the use a WEIGHT variable to incorporate such 

information. The weight variable in this case is defined as, 

 
1

ˆvar( )
j

j

W
b

  (3.5) 

Gaussian mixture will be appropriate for this analysis.  

(2) t test statistic 

The target variable 
jy  may be the t test statistic, i.e., 

j jy t , where 

 
ˆ

ˆvar( )

j

j

j

b
t

b
  (3.6) 

Gaussian mixture without a weight variable will be appropriate for the t variable 

analysis.  
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(3) p-value 

If the 
jy  variable is the p-value, 0 1jp  , there are two options we can try. One is 

directly model 
jp  using a Beta mixture distribution, i.e., both components are Beta 

distributions with different parameters. Alternatively, we may perform probit 

transformations,  

 
1( )j jy p 

 (3.7) 

and then model 
jy  using the Gaussian mixture. 

3.3 Results 

3.3.1 Application in simulated data 

We performed the outlier detection approach for significance test on the simulated data 

first. Statistics t-value, weighted marker effect and the probit transformation of p-value 

(probit(p)) were selected as the target variables used in the Gaussian mixture model. 

We also tried to use the raw p-values for a Beta mixture distribution, but the detection 

result was not satisfactory since that almost 300 out of a total of 426,398 markers were 

grouped into the outlier cluster. Thus, we used probit(p) rather than the p-value for the 

mixture model. Figure 3.1 to 3.3 showed the mixture distribution of probit(p), t-values 

and weighted marker effects in the simulated data. In all three cases, most markers 

followed the distribution with a small variance and only a small number of markers were 
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categorized into the distribution with a greater variance. The latter group is the 

distribution of the outlier. Table 3.1 summarized number of detected SNPs and type I 

error rate by using the three different statistics as the target variable. Mixture models 

using t-values and weighted effects were more powerful than model using probit(p). But 

mixture model using probit(p) had a lower type I error rate. We detected 28 markers as 

outlier (significant) using probit(p) with a type I error rate of 0.0055, and 38 markers 

were detected using t-value and weighted effect with type I error rate both at 0.011.  

 

 

Figure 3. 1 Mixture distribution of the probit transformation of p-values of the simulated data. 
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Figure 3. 2 Mixture distribution of the t-values of the simulated data. 

 

Figure 3. 3 Mixture distribution of the weighted marker effects of the simulated data. 
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Table 3. 1 Number of detected SNPs and type I error rate by using three different statistics as 
the target variable in the mixture model for outlier detection 

Variable  
Number of detected 

SNPs 
Type I error 

rate 

probit(p) 28 0.0055 

t-value 38 0.011 

weighted effect 38 0.011 

 

3.3.2 Application in Framingham heart study data 

 

Figure 3. 4 Mixture distribution of the probit transformation of p-values from GWAS for 
triglycerides using the FHS data. 
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Figure 3. 5 Mixture distribution of the t-values from GWAS for triglycerides using the FHS data. 
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Figure 3. 6 Mixture distribution of the weighted marker effects from GWAS for triglycerides 
using the FHS data. 
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Figure 3. 7 Mixture distribution of the probit transformation of p-values from GWAS for total 
cholesterol using the FHS data. 
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Figure 3. 8 Mixture distribution of the t-values from GWAS for total cholesterol using FHS data. 
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Figure 3. 9 Mixture distribution of the weighted marker effects from GWAS for total cholesterol 
using the FHS data. 
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Figure 3. 10 Mixture distribution of the probit transformation of p-values from GWAS for HDL 
using the FHS data. 



60 
 

 

Figure 3. 11 Mixture distribution of the t-values from GWAS for HDL using the FHS data. 
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Figure 3. 12 Mixture distribution of the weighted marker effects from GWAS for HDL using the 
FHS data. 

 

 

Table 3. 2 Comparison of number of markers detected using the outlier detection approach and 
Bonferroni correction method 

 Outlier detection Bonferroni correction 

Phenotypes probit(p) t-value weighted effect traditional effective number 

Triglycerides 27 33 33 19 24 

Total cholesterol 2 2 3 1 3 

HDL 22 22 22 19 20 
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Figure 3.4 to 3.12 showed the mixture distribution of probit(p), t-values and weighted 

marker effects with three phenotypes in the FHS data. Similarly, most markers followed 

the distribution with a small variance and only a small proportion of markers followed 

the distribution with a greater variance. Table 3.2 summarized number of detected SNPs 

by using outlier detection and Bonferroni correction. In general, significance test using 

the outlier detection approach was more powerful than the Bonferroni correction 

method even with the use of the effective number of tests.  

3.4 Discussion 

In GWAS and any other studies that involve multiple hypotheses testing, the choosing of 

the correction method is crucial. Bonferroni correction is the method that is used most 

widely, because it is very conservative and can guarantee a low type I error rate. 

However, this is always accompanied with the price of decreased statistical power and 

an increased type II error rate. In chapter 2 of this dissertation, we adopted the concept 

of effective number of tests in performing Bonferroni correction. This modified 

Bonferroni correction is significantly less conservative compared to the original 

Bonferroni correction. 

In this study, we used a different strategy to realize significance testing. We did not try 

to set up a critical p-value for each test; rather, we considered the significantly 

associated markers as outliers and the whole population followed a mixture 

distribution. We employed probit(p), t-value and weighted marker effect as the target 
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variable to perform outlier detection using Gaussian mixture model in both simulated 

data and the FHS data.  

In the simulation study, the outlier detection approach showed enhanced power 

compared to the result generated from Bonferroni correction either with or without 

using the effective number of tests, with the type I error rate equal to or less than 0.011. 

Then we applied this method to the FHS data to detect associated SNPs for triglycerides, 

total cholesterol and HDL. Similarly, the outlier detection approach detected 11 more 

significant SNPs than the modified Bonferroni correction method in GWAS of all three 

phenotypes. Overall, this method can be an alternative method for Bonferroni 

correction and can be widely applied to not only GWAS, but also many other studies 

that involve multiple testing. 
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