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Abstract 

The energy loss dE/ dx for a heavy quark propagating through a quark­

gluon plasma is calculated to leading order in the QCD coupling constant. 

Simple formulae for dE/dx are obtained in the regions E << M~/T and 

E >> 111~/T, where MQ is the mass of the heavy quark and Tis the tem­

perature. The crossover energy between the two regions is determined to 

be approximately l.SM~/T. Under conditions relevant to ultrarelativistic 

heavy ion collisions, charm quarks and bottom quarks lie on opposite sides 

of the crossover energy and therefore experience significantly different en­

ergy losses. 

1This work was supported in part by the Director, Office of Energy Research, Division of 

Nuclear Physics of the Office of High Energy and Nuclear Physics of the U. S. Department of 

Energy under Contracts No. DE-AC03-76F00098 and DE-AC02-76-ER022789 and the Deutsche 

Forschungsgemeinschaft. 



Jets caused by high energy quarks and gluons in ultrarelativistic heavy ion colli­

sions might provide a probe for the existence of a quark-gluon plasma (QGP). High 

energy partons coming from initial hard collisions lose energy by propagating through 

the dense matter formed between the nuclei after collision. The energy loss is expected 

to be greater in AA collisions compared to pp or pA collisions, a phenomenon known 

as jet quenching. Gyulassy and Pliimer1 suggested that jet quenching should be sup­

pressed if the dense matter consists of a QGP instead of hadrons. Their observation 

was based on an estimate of the energy loss of high energy partons in a QGP by 

Bjorken2 (-dEjdx "'0.2 GeV/fm for a 20 GeV quark at a temperature of about 

T = 0.25 GeV), which is considerably smaller than in hadronic matter (-dE/ dx "' 1 

GeV /fm). Bjorken considered the collisional energy loss of a massless quark due to 

elastic scattering off the quarks and gluons in the QGP. At tree level, there is a loga­

rithmic infrared singularity in the integral over the 3-momentum transfer q. Bjorken 

estimated the energy loss by keeping only the logarithmic term with physically rea­

sonable upper and lower limits qmin and qmax· In a complete calculation, the upper 

and lower cutoffs on q should be provided automatically by the physics of the en­

ergy loss process. The purpose of this pa.per is to present a complete calculation of 

the energy loss of an energetic heavy quark to leading order in the QCD coupling 

constant. 

Thoma and Gyulassy3 eliminated the ambiguity due to the lower limit qmin of 

the momentum transfer by properly including the screening effects of the QGP. The 

logarithmic infrared divergence that arises in naive calculations is cut off at the soft 

momentum scale g8 T, where 9s is the QCD coupling constant. Unfortunately their 

calculation was incomplete in the region of hard momentum transfer ( q ,...., T) and 

therefore required the imposition of a.n upper limit qmax· The resulting ambiguity was 

avoided in a. complementary calculation carried out by Svetitsky4 in a. study of the 

diffusion of charm quarks in the QGP. Svetitsky's drag coefficient is directly related to 

the energy loss: A(p2
) = (-dE/dx)jp, where E and pare the energy and momentum 

of the heavy quark. In a straightforward tree level calculation of the energy loss due 

to elastic scattering, the kinematics of the scattering process automatically sets an 

upper limit on the momentum transfer. To cut off the infrared divergence in the tree 

level calculation, Svetitsky used the ad hoc prescription of introducing a gluon mass 

which violates gauge invariance and introduces an ambiguity equivalent to Bjorken's 

choice of qmin· 
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To obtain the energy loss to leading order in g8 , the hard momentum transfer 

contribution can be calculated at tree level, but in the soft q region it is necessary 

to use a resummed perturbation expansion developed by Braaten and Pisarski5
. The 

hard thermal loop corrections to the propagator of the exchanged gl~on must be re­

summed in order to include the screening effects of the plasma, and this resummation 

reproduces the result of Thoma and Gyulassy3 in the soft region. The contributions 

from the hard and soft regions must then be matched together consistently to give 

the complete energy loss to leading order in 9s· A general method for carrying out 

this matching has been developed by Braaten and Yuan6
• One introduces an arbi­

trary intermediate momentum scale q* satisfying g8 T << q* << T, which is always 

possible in the weak coupling limit 9s --+ 0. For moderate values of gs, this should be 

interpreted as merely a mathematical device for isolating all terms of leading order 

in 9s· The contribution from hard q > q* is calculated using tree level Feynman 

diagrams while ignoring any screening due to the plasma. The logarithmic infrared 

divergences of the tree level calculation manifest themselves as logarithms of q*. The 

contribution from soft momentum transfers q < q* is calculated using the resummed 

perturbation expansion to take into account the effects of screening, and it also de­

pends logarithmically on q*. Adding the hard and soft contributions, the dependence 

on the arbitrary scale q* cancels. 

In Ref. [7), a quantum field theoretic formulation of the energy loss was developed. 

The method of Braaten and Yuan6 was then used to compute the energy loss of a 

muon propagating through a plasma. of electrons, positrons, and photons to leading 

order in the QED coupling constant e and in T I Mw In this paper, that calculation 

will be extended to obtain the energy loss of a. relativistic heavy quark propagating 

through a QGP to leading order in 9s and in T I MQ, where MQ is the mass of the 

heavy quark. We assume that the mass MQ and the momentum p of the heavy quark 

are both much larger than the temperature T of the plasma. Simple results can 

be obtained in two energy regimes, E < < 111~ IT and E > > M~ IT. The maximum 

momentum transfer q from elastic scattering off a thermal quark or gluon with energy 

k is qmax = 2k(l + kl E)l(l - v + 2kl E), where v is the velocity of the heavy quark. 

In the region E << M~IT, we can set qmax = 2kl(l- v), while forE>> M~IT, 

the maximum momentum transfer is the energy of the heavy quark: qmax = E. 

In the region E "' M~ IT, the formula. for dE I dx is very complicated because the 

general expression for qmax must be used. A good approximation to dE I dx in this 
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crossover region can be obtained by switching from the formula forE<< M~IT to 

the formula for the ultrarelativistic region E > > M~ IT at a crossover energy Ecross 

which is determined by continuity. 

At leading order in g 5 , the energy loss of a heavy quark comes from elastic scat­

tering from thermal quarks (Qq scattering) and thermal gluons (Qg scattering). We 

first consider the energy loss in the region E << M~IT. We assume that the heavy 

quark has a kinetic energy much greater than T. Some of the contributions to dE I dx 

can be obtained from the corresponding QED calculation in Ref. [7] by simple substi­

tution. The soft contribution from Qg and Qq scattering is obtained from the QED 

case by replacing e by the QCD coupling constant g 5 , multiplying by a color factor 

413, and replacing the thermal photon mass m-y = eT 13 by the thermal gluon mass8 

m9 = (gsT I v'Jh/1 + n f 16, where n f is the number of active flavors in the QGP. The 
result is· 

(. 
dE)Qg+Qq g:T2 

( nf) { [1 1- v
2 1 + vl q* -- = -- 1+- -- log-- log-

dx soft 61r 6 v 2v2 1 - v m 9 

- : 2 1av dx x2 [log 
3
;x +~log (1 + QR(x) 2

) + QR(x) (%-arctan QR(x))] 

- 2~2 fov dx x2 ~
2 

~ : 2

2 

[log 
3
:x +~log ( 1 + Qt(x )2

) + Qt(x) (i -arctan Qt(x))]} , 
(1) 

where QR(x) = [-log((1 + x)l(1- x)) + 2lx]IK and Qt(x) = [log((1 + x)/(1- x)) + 

2xl(1- x2 )]l1r. The hard contribution to dEidx from Qq-scattering is obtained from 

the QED calculation in Ref. [7] by replacing e by g5 , multiplying by a color factor 

213, and summing over the n f flavors of the initial thermal quark: 

(
_dE)Qq = g;T

2
n1 {[.!._1-v

2

10g1+v] (lo 4TE +~- 1 +('(2)) 
dx hard 61r 6 V 2v2 1 - V g q* 111Q 2 ((2) 

1 - v2 
[ ( 1 + v) ( 1 - v) 1 1 + v 1 - v

2
] 2 } - Sp -- --'- Sp -- +-log--log - -v 

4v 2 2 2 2 1 - v 4 3 ' 
(2) 

where Sp(x) = - Jt dt(11t) log(1 - t) is the Spence function, 1 = 0.57722 is Euler's 

constant, and ((z) is the Riemann zeta function: ('(2)1((2) = -0.56996. Note that 

the logarithm of q* in (2) cancels against the log(q*) term proportional to nf in (1). 
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The only new calculation that is required to obtain dE I dx for a heavy quark is the 

hard contribution from Qg scattering. The rate of energy loss -dE I dx is obtained by 

computing the interaction rate of the heavy quark weighted by the factor (E- E')lv, 

where v is the velocity of the heavy quark and E' is its energy after the collision. The 

hard contribution can be isolated by imposing a constraint q > q* on the magnitude 

of the 3-momentum transfer q = k'- k. The hard contribution from Qg scattering is 

( 
dE)Qg 1 J d

3
p' J d

3
k J d

3
k' I 

- dx = 2E (27r)3 2E' (27r)32knB(k) (27r)32k'(1 + nB(k )) 

(27r)\54 (P +I<- P'- I<') 16 (IMI 2
) E- E' B(q- q*), 

v 
(3) 

where P = (E, jJ) and I< = (k, k) are the 4-momenta of the incoming quark and gluon 

and P' and I<' are the momenta of the outgoing quark and gluon. The phase space 

is weighted by a Bose distribution n 8 (k) = (ek/T -1)-1 for the incoming gluon and 

a Bose-enhancement factor 1 + nB(k') for the outgoing gluon. The factor 16 is the 

number of spin and color states of the thermal gluon, and (IMI 2 ) is the square of the 

. matrix element, averaged over initial and summed over final spins and colors. 

The matrix element M = Ms + Mt + Mu for Qg scattering is given by the sum 

of the 3 Feynman diagrams in Figure 1. There are s- and u-channel diagrams that 

correspond to Compton scattering in QED and at-channel diagram involving the 3-

gluon vertex. In QED, Compton scattering does not contribute to dEidx for a heavy 

lepton at leading order in T I MJ.L due to a cancellation between the s- and u-channel 

diagrams. In QCD, the cancellation is upset by the nonabelian coupling of quarks to 

gluons. The square of the amplitude Ms + M" reduces in the limit k, k' < < E to 

· 2 4 M~ 
(IMs + Mul ) = 9s (P. I<)(P. I<') (4) 

The interference term Re(Mt(Ms + Mu)*) between the t-channel and the s- and 

u-channel amplitudes vanishes in this limit. In the Feynman gauge, the square of the 

t-channel amplitude reduces in. the limit k, k' < < E to 

(I 12
) _ 4 (P · K)(P · K')- M~(I<. K') 

Mt - 8gs Q4 ' (5) 

where Q = J('- J( is the four momentum of the exchanged gluon. One must take 

care in computing (5) to sum only over the physical polarization states of the gluons. 
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If a covariant expression is used for the polarization sum, then a contribution to (5) 

from quark-ghost scattering must be included in order to cancel that of unphysical 

gluon polarization states.9 

The squared matrix elements (4) and (5) must be inserted into (3). The integrals 

can be evaluated analytically using the methods of Ref. [7]. Scattering in the s- and 

u-channels does not give rise to an infrared divergence from the small q region, so the 

infrared cutoff q* can be set to zero in this calculation. The result is: 

(
-dE) Qg(s+u) = g~T2 [~- 1 - v2 log 1 + vl . 

dx hard 1211" V 2v2 1 - v 
(6) 

There is an infrared divergence from the t-channel diagram, so the cutoff q > q* is 

necessary. Using q* < < T, the result is 

(
- dE)Qg(t) = g!T

2 
{ [~ _ 1- v

2 
log 1 + vl ( 2T E ('(2)) 

d 6 2 2 log q*MQ + 1 - I + 1(2) 
. X hard 7r V V 1 - V ':, 

1- v
2 

[ (1 + v) (1- v) 1 1 + v 1- v
2

] 2 } - · Sp -- - Sp -- +-log--log - -v . 
4v2 2 2 2 1 - v 4 3 

(7) 

The complete result for dE/ dx for a relativistic heavy quark with energy E < < 
M~/T is obtained by adding the soft contribution (1) and the hard contributions (2), 

(6) and (7). It can be written in the form 

dE 
dx 

81ra;T
2 

( n 1 ) [ 1 1 - v
2 

1 1 + v ll ( -d{;- B( ) ET ) ( ) 1 + - - -
2 

og -- og 2 J v , 8 
3 6 v 2v 1 - v m 9 MQ 

where B( v) is a smooth function of the velocity that increases monotonically from 

B(O) = 0.604 at v = 0 to a maximum of 0.731 at v = 0.88, and then decreases to 

B(1) = 0.629 at v = 1. 

We next consider scattering in the ultrarelativistic region E >> M~/T. Here 

again several of the contributions can be extracted from the QED calculation pub­

lished in Ref. [7]. The soft contribution from Qg and Qq scattering is 

__ = !b._ 1 + nf . logL - 0.843 . ( 
dE)Qg+Qq 

4
T

2 
( ) [ * l 

dx soft 61r 6 m 9 

(9) 
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The hard contribution from Qq scattering is 

(
_dE)Qq _ g!T2 nt [ 2TE ~ ('(2)] 

dx hard - 121l" 6 log (q*)2 + 3 - I + ((2) . 
(10) 

The hard contribution from Qg scattering requires a new calculation. The s- and 

u-channel contributions vanish, and the t-channel gives 

( 
dE) Qg g!T2 

[ T E 8 ('(2)] 
- dx hard = 121!" log (q*)2 + 3 - I + ((2) . (11) 

Adding up the contributions to dE I dx in (9)-(11 ), the total energy loss for energies 

E >> M~IT is 

- dE = 81l"a;T2 (1 + nf) log (2*:/ntl 0.920 VET) ' 
dx 3 6 m 9 

(12) 

In the region E "' M~ IT, the formula for the energy loss must cross over from 

the v -t 1 limit of (8) to (12). It should be a good approximation to simply use 

(8) up to some crossover energy Ecross and then switch to (12). By demanding that 

dE I dx remain continuous at E = Ecross, we determine the crossover energy to be 

Ecross = 1.80M~IT for nf = 2 active flavors of quarks. 

The energy loss formulae (8) and (12) are illustrated by the solid lines in Figures 

2 and 3 for conditions of relevance to ultrarelativistic heavy ion collisions. We take 

the temperature of the plasma to beT= 250 MeV, and we take the strong coupling 

constant at that temperature to be a 8 = 0.2, which is in accordance with some 

lattice QCD calculations.10 In Figure 2, we show the energy loss of the charm quark, 

assuming a mass Me = 1.5 GeV. The crossover energy is Ecross = 16 GeV, so that 

most Of the range of energy relevant for jets in heavy ion collisions is covered· by 

the ultrarelativistic formula (12). The discontinuity in slope at the crossover point 

could be avoided by a more complete calculation for the region E "' 111~IT. In 

Figure 3, we show the energy loss of a bottom quark with mass Mb = 5.0· GeV. 

The crossover energy is Ecross = 180 GeV, so the entire range of energy is covered 

by the formula (8). Note that the energy loss for a bottom quark in a QGP has a 

different momentum dependence from the charm quark, and is significantly smaller 

in magnitude. For example, for a momentum of 20 GeV, we find -dEidx = 0.30 

GeV /fm for a charm quark and -dEjdx = 0.1.5 GeV/fm for a bottom quark, both 
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of which are considerably smaller than the energy loss in hadronic matter of about 1 

GeV lfm. Bottom quark jets should therefore suffer significantly less quenching than 

charm quark jets if a QGP is created in a heavy ion collision. 

Also shown for comparison in Figures 2 and 3 are the results of previous calcu­

lations of the energy loss. The dotted curves are the estimates of Bjorken2 for light 

quarks adapted to the case of heavy quarks: 

dE 81ra~T2 
( nf)· [1 1- v

2 l 1 + Vll qmax -- = 1+- -- og-- og--. 
dx 3 6 V 2v2 1 - v qmin 

(13) 

For the upper limit on the momentum transfer, we follow Bjorken in using qmax = 

V4Tlf, while for the lower limit we use the Debye screening mass qmin = yJm9 • The 

dashed curves in Figures 2 and 3 are the calculations of Thoma and Gyulassy3
. For 

the charm quark in Figure 2, the complete calculation is in reasonable agreement with 

that of Thoma and Gyulassy at low energy, but then crosses over to a form that is 

closer to Bjorken's estimate (13) at high energies. 

The formula (8) for the energy loss breaks down at thermal energies v "' Jr I MQ. 

The energy loss inust change sign in this region, because a quark with v = 0 can only 

gain energy in a collision. The methods used above to compute dE I dx at high energies 

can also be used to compute it in the limit v -4 0. For weak coupling g 8 , -dE I dx is 

negative corresponding to energy gain and it has a kinematic 1lv divergence: 

(14) 

Note that the coefficient inside the logarithm agrees with the one in (8) in the limit 

v -4 0. A comparison of (14) with the v -4 0 limit of (8) can be used to make 

a semiquantitative estimate of the velocity at which the energy loss changes sign: 

v ~ J3T I MQ. With a plasma temperature of 250 MeV as used in Figures 2 and 3, 

this correponds to a momentum of 1.5 GeV for charm quarks and 2.1 GeV for bottom 

quarks. 

The formula (8) for dEidx also breaks down at low energies for another reason . 

For coupling constants 9s > 1.08, the argument of the logarithm in (8) is less than 1 

for E < 0.93gsMQ and the energy loss is negative, implying a gain of energy. If MQ 

is sufficiently large, the energy below which (8) turns negative is much greater than 

the thermal energy. This unphysical behavior is due to a failure of the extrapolation 
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from the weak coupling limit 9s --+ 0 to the physical value of 9s· This failure is not of 

great practical importance for the properties of heavy quark jets in ultrarelativistic 

heavy ion collisions. For the charm quark as shown in Figure 2, (8) turns negative 

at a momentum of about 1.2 GeV, while for the bottom quark as illustrated in 

Figure 3, it turns negative around 4.1 GeV. These are both lower than the energies of 

experimental interest. Nevertheless, this result serves as a warning that for properties 

of the QGP that have a logarithmic sensitivity to different energy scales, calculations 

to leading order in 9s may be meaningless. The usefulness of such a calculation can 

be determined only after computing the multiplicative constant inside the logarithm. 

In particular, any calculation that keeps only the leading order log(11 9s) term is 

meaningless until the constant is also calculated. 

The negative values of -dE I dx predicted by (8) arise from isolating the terms 

of leading order in 9s, without any contamination from higher orders in 9s· This 

difficulty can be circumvented by using an effective propagator for soft gluons not 

only at soft momentum transfers q as in Ref. [7), but for all q. In the hard q region, 

this corresponds to including a subset of corrections that are higher order in 9s· 

Consistency and gauge invariance then demand that the effective vertices of Braaten 

and Pisarski5 be used for the coupling of the virtual gluon to the thermal quarks and 

gluons and that the thermal quarks and gluons be placed on the mass shells of their 

respective effective propagators. This would of course greatly increase the complexity 

of the calculation of dE I dx. 

We discuss briefly the energy loss of a high eilergy light quark in the QGP. The 

energy loss of an ultrarelativistic heavy quark in (12) was calculated under the as­

sumption T << MQ <<E. To obtain the energy loss of a light quark to leading order 

in g8 , the calculation should be repeated under the assumption mq << T << E. A 

recent calculation by Mrowczynski11 improves on previous calculations but is incom­

plete. Mrowczynski recognized the need to include contributions from both hard and 

soft momentum transfer. Mrowczynski's separation of the integral over the trans­

verse component qr of the momentum transfer into 2 regions qr < k0 and qr > k0 

is similar to our separation of q into soft ( q < q*) and hard ( q > q*) regions. In 

contrast to our calculation of dEidx for a heavy quark where the dependence on q* 

cancels, Mrowczynski 's final result depends on k0 • He makes the arbitrary choice of 

setting k0 equal to the Debye screening mass J3m9 • The failure of the k0-dependence 

to cancel in the final answer is a symptom of an incomplete calculation. Mrowczyn-
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ski's calculation also suffers an additional ambiguity in the choice of the maximum 

energy transfer, which should be imposed automatically by the physics in a complete 

calculation. Very large energy transfers arise from the energy of the quark being 

transferred to a collinear gluon, in which case the energy is not dispersed into the 

plasma. For light particles, it is most appropriate to think in terms of the energy of 

the jet rather than that of individual particles. Energy transfer to a collinear particle 

should then be interpreted not as energy loss, but instead as evolution of the jet due 

to its interactions with the plasma. A complete calculation of dE I dx for the jet will 

necessarily depend on the definition of a jet. 

In this paper, we have only considered the collisional energy loss due to elastic Qg 

and Qq scattering. In addition, there is radiative energy loss due to bremsstrahlung 

processes, such as Qq scattering into Qqg with exchange of a virtual gluon. While a 

naive tree level calculation of the radiative energy loss gives a result that is higher 

order by a factor of g;, it suffers from a quadratic infrared divergence in the integral 

over the momentum transferred through the virtual gluon. When the screening of 

the plasma at the scale gsT is taken into account by resumming hard thermal loop 

corrections to the gluon propagator, the quadratic divergence is replaced by a factor 

of 1 I g;T2
• Thus the radiative process contributes to the energy loss at the same order 

in 9s as elastic scattering. Unfortunately, as is the case with the damping rate for 

a high energy particle12
•3 , the screening of the plasma at the scale g8 T only softens 

the quadratic infrared divergence of the tree level calculation into a logarithmic one. 

Due to the lack of screening of the static magnetic interaction at the scale g5 T, the 

radiative energy loss has a logarithmic infrared sensitivity to the smaller momentum 

scale g;T. A complete leading order calculation of the radiative energy loss must 

therefore await the development of more powerful resummation techniques than those 

needed to calculate the energy loss from elastic scattering. 

This work was begun at the Nuclear Theory Institute at Seattle during the pro­

gram on Hard QCD Probes of Dense Nuclear and Hadronic Matter in October, 1990. 

We thank the Institute for its hospitality and we thank the organizer of the program, 

Miklos Gyulassy, for valuable discussions. 
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Figure Captions 

1. Tree level Feynman diagrams for Qg scattering ( s-channel, u-channel, and t-

channel). 

2. Energy loss dE I dx of a charm quark as a function of its momentum for T = 

2.50MeV and as = 0.2. The complete result to leading order in gs (solid curve) 

is compared to previous calculations by Thoma and Gyulassy (dashed curve) and 

Bjorken (dotted curve). 

3. Energy loss dE I dx of a bottom quark as a function of its momentum for T = 

250MeV and as = 0.2. The complete result to leading order in gs (solid curve) 

is compared to previous calculations by Thoma and Gyulassy (dashed curve) and 

Bjorken (dotted curve). 
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Figure 1 
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