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Abstract

In this paper we present a finite element algorithm for the solution of plate bend-
ing problems which include the primary effects of shearing deformation. A mixed
variational formulation is employed to approximate a set of three-node triangular
elements. The elements considered possess only the classical three vertex degrees-
of-freedom at the global level (i.e., the transverse displacement and two rotations).
The mixed patch test is utilized to assess each proposed element for possible shear
locking or singularities. Several numerical simulations illustrate the applicability
and accuracy of the elements considered.



1. INTRODUCTION

The development of an accurate finite element for the numerical solution
of a wide class of plate problems remains a difficult task to perform. A litera-
ture on this subject may be found in any standard finite element text (e.g.,
see [1-3,5]).

Early attempts to develop a viable element were made for the thin Kirch-
hoff plate theory. Approaching the problem for this theory requires one to
assume as nodal degrees of freedom at least the transverse displacement and
two rotations at each node. Since the rotations are computed as the deriva-
tives of the transverse displacement, one must use shape functions of class
C'. Also, the implementation of accurate high order elements of this type is
usually very complex relative to traditional iso-parametric solid elements
[6-8]. Moreover within this theory, transverse shear deformation of the plate
is neglected which restricts the range of applications of the theory and some-
times leads to problems in the specification of some simply supported bound-
ary conditions [2-3,5].

In the late sixties attention was devoted to the more general thick,
Reissner-Mindlin, plate theory [9-10], in order to avoid all the above difficul-
ties, as well as to extend the range of problems which could be solved by the
finite element method. Approaching the problem by this theory not only
allows one to take into account transverse shear deformation and to bypass
the previous boundary condition problems, but it also permits one to deal
with shape functions of class C°. On the other hand it was discovered quite
soon that for the limiting thin plate case gross errors could result in the solu-
tion quantities [11]. The problem is a consequence of the energy stored in the
transverse shear terms instead of in the bending terms, as required by the
thin plate theory. This effect is termed shear locking in the finite element lit-
erature.

To avoid shear locking several alternatives have been proposed. The first
techniques that gave good results were based on (uniform or selective) under-
integration of the stiffness matrix; however, sometimes such elements show
rank deficiency or zero energy internal mechanisms [12-14]. During the late
1970’s, it was discovered that use of selective or reduced integration tech-
niques was equivalent to approaching the problem by a mixed finite element
method [15]. This has led to a better understanding of the solution of the
plate problem using a finite element method and many new elements were
proposed [16-20]. As a consequence of the complexity of the formulation of
the problem as contained in the Babuska-Brezzi stability conditions [21-23],
many of the new elements were developed more on physical and mechanical
intuition than on mathematical considerations.

During the last few years, it has been shown not only that a mixed for-
mulation is the most correct way to approach the plate bending problem, but
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that working with a mixed theory also provides additional insight into a
wider class of problems involving constraints (e.g., those concerning incom-
pressible media, elastic-perfectly-plastic solids, contact problems, etc.). Thus,
mixed procedures provide one with the opportunity to design finite elements
capable of good numerical performance for all of the above classes of prob-
lems. Moreover some alternative requirements which are much easier to
check and involve direct computer solutions or simple algebraic considera-
tions have been shown to be nearly equivalent to the more complex Babuska-
Brezzi conditions [24-30].

The purpose of the present paper is to:

(a) briefly review a thick plate theory together with its equivalent varia-
tional formulation,

(b) review general mixed finite element approaches for the thick plate the-
ory,

(¢) show that high quality interpolating functions for the shear strain and
stress fields can be used as well as for the displacement fields,

(d) discuss an existing triangular element and introduce some new simple
triangular elements,

(e) illustrate the performance of these elements on some standard test prob-
lems. ‘



2. A THICK PLATE THEORY

The term plate is used in the present work to denote a flat body in which
one dimension, called plate thickness or transverse direction, is much smaller
than the other two dimensions. Furthermore, loading is restricted to be
applied in the transverse direction only.

Plate theories are commonly classified as thick or thin. Thick plate theo-
ries include both bending deformation and the primary effects of transverse
shear whereas thin plate theories include only bending effects. Early devel-
opment of a thick plate theory are commonly attributed to Reissner [9] and
Mindlin [10] and the theory here presented is a simplification of those origi-
nally proposed. The basic assumptions, under which the thick plate theory is
developed, are:

Q:{(x,y,z)e R® | ze[-—%tﬁ%t}, (x,y)eAc:Rz} (2.1a)

0, =0 (2.1b)
u=2z0,(x,y), v=- 20 (x,y) , w=w(x,y) (2.1c)

where u, v and w are the displacements along the x, y and z axes, respec-
tively, and 6, and 6, are the small rotations of the transverse line elements
about x and y axes. Equation (2.1a) implies that the xy plane for z=0 coin-
cides with the mid-surface of the undeformed plate and is merely a geometric
definition of the domain occupied by the plate. Equation (2.1b) implies that
the normal stress in the z direction is negligible compared to all the other
stresses. Although this is inconsistent with a general three-dimensional the-
ory, we can accept it as a consequence of the predominance of the behavior
associated with the in-plane two dimensions and as a matter of the fact that
it does not influence the development of a viable finite element formulation.
The assumption in (2.1b) is not present in the original works by Reissner,
where o,, varies along the thickness. Equation (2.1c) implies that a straight
line element, which is normal to the mid-surface of the plate (z=0) in the
undeformed configuration, remains straight but not necessarily normal to the
deformed mid-surface, thus leading to transverse shear deformations. Due to
(2.1c) the in-plane displacement u and v can be expressed in terms of the two
mid-plane rotations 6, and 8,; for this reason the only quantities that deter-
mine the displacement fields are w, 6, and 6, and so in the following we will
refer to them with the general term displacements, without distinguishing
between transverse displacement and rotations.

Starting from (2.1), we can divide the strain components into the in-
plane bending strains:

£, = =—— = 286, £y = z— = —20,, (2.2a)
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In the thin plate theory the transverse shear strains are assumed to be zero,
thus providing constraint equations to replace the 6, and 6, rotation compo-
nents n terms of derivatives of the transverse displacement w. In the thick
plate theory this is not possible since shear deformation is considered.

Introducing the hypothesis of an isotropic linear elastic material, for the
in-plane stresses the stress-strain relations are:

E
zem[£x+vgy] , 0Oy = 1?v2[5y+vgx} (2.4a3)
O = Gy (2.4b)

and for the transverse stresses are:

Opz = G73:z , Oy, — G7yz (2.5)

where E (Young’s modulus), v (Poisson’s ratio) and G (shear modulus) are
related through the expression:

E
G = —— 2.6
2(1+v) (2.6)
Integration of the stresses in the thickness direction permits one to eval-
uate stress resultants in terms of displacements. If the resultant moments
per unit length are defined as:

1

gt 3t
M. = j.crxzdz , M, = J'ayzdz (2.7a)
-4t -3t
4t
M, = '[ Ox2dz (2.7b)
_.%t

then from the in-plane stress expressions, we obtain:

M = D’Ls¢ (2.8)
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(2.9a)

(2.9b)

(2.9¢)

Equation (2.8) can be directly expressed in terms of the curvatures x using

the relation:

M =D«
where:
Hy,x
x = Lo = Ory
gy,y'_ex,x

Similarly, defining the resultant transverse shear forces as:

1

7 t

S, = J 0., dz
...% t
'

S, = [o.dz
_.% ¢

from the transverse stress expressions we obtain:
S =Dy

where

Sz{sx} , rz{yxz}:[ee+\7w]
Sy Yyz

(2.10)

(2.11)

(2.12a)

(2.12b)

(2.13)

(2.14)



and

. 1 0 [0
D* = kGt [o 1}, e-[ml 0} (2.15)

where e is the so called alternating tensor. In D°, %2 1s a correction factor
which depends on the plate properties and for isotropic homogeneous plates
is often set equal to 5/6 [9-10,30]. It1is introduced to correct the inconsistency
with the classical theory due to the transverse shear strain which is constant
throughout the thickness as it can be seen from equation (2.3).

Finally, we have to consider transverse linear momentum equilibrium:
ViS+q =0 (2.16a)
and angular momentum equilibrium about the x and the y axes:

L'M+S =0 (2.16b)

In summary, the complete set of equations governing the thick plate
problem may be summarized as:

M =D« (2.17a)
S = D’y (2.17b)
viIS+g =0 (2.17¢)
L"T™M+S =0 (2.17d)

It is clear that (2.17) represents a reducible system of equations and that
different possible choices exist concerning the variables to retain in the final
group of equations to solve numerically [5]. A possibility is to retain w, 8 and
S such that the final system become:

L'D°xk+S =0 (2.18a)
S=D°y (2.18b)
ViS+q =0 (2.18¢)

From (2.17) the thin plate case can be obtained as a limiting case. In fact,
for D° — o, in order to have a finite value of the shear stresses S, y must go
to zero and (2.17b) and (2.14) become the well known constraint of the thin
Kirchhoff plate theory:

y=e6+Vw=0 (2.19)
Due to the numerous manipulations that will be performed in the next

sections, it is useful to introduce a more compact notation. The displace-
ments, i.e. w, 8, and ,, can be arranged in an unique vector u given by:



w
u =<6, (2.20)
03’
Therefore, the following relations hold:
x(8) = L’u (2.21a)
Vw+eg = L°u (2.21b)

where L? and L¢ are appropriate operators and equations (2.17) can be writ-
ten in terms of u:

M =DLbu (2.22a)
S = D’L°u (2.22b)
ViS+q =0 (2.22¢)

LTM+S =0 (2.22d)
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3. MIXED VARIATIONAL APPROACH TO THE THICK PLATE THE-
ORY

Approaching the thick plate problem by a mixed variational principle is
worthwhile since it allows one to consider several reductions and therefore to
develop different solution alternatives.

The starting functional is based on the minimum potential energy princi-
ple for the bending energy and on the Hu-Washizu principle for the trans-
verse shear energy. Accordingly,

Myw,0,7,8) = 1 [7(0)D x(0)dA+1 [y D ydA
A A

-—jST(y-Vw-ea)dA—jwqu+nm (3.1)
A A

where ¢ is the distributed transverse load and Il,,, describes the effects of
boundary and other loads.

The problem can be easily split into two parts. Taking the variation of T1,
with respect to S, we get:

jasT(y-Vw—-emciA -0 (3.2)
A

which can be interpreted as a constraint on the functional ITy:

My(w,8,7) = 1 [x7(6)D x(9)dA+1 [7" D" ydA
A A

- jwqumm (3.3)
A

If (3.2) is used to express y in terms of w and @, a I1; functional can be gener-
ated from (3.3) as:

My(w,8) = § [«7(6)D" x(6)dA+1} [y (w,0)D* y(w,6)dA
A A
- fwgdA + 1. (3.4)
A

where ¥ is no longer an independent variable.

If the constraint (3.2) is imposed in a strong (point-wise) sense in going
from I1, to I1;, we arrive at the minimum potential energy principle (classical
displacement formulation) given by:

Mw,6) = 3 [x(6)" D' x(6)dA+1 [(Vw+ed) D' (Vw+es)dA
A A
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-jwquJrnm (3.5)
A

However, as we shall demonstrate in the next section, the problem remains
mixed if the constraint is imposed in a weak sense .

It is also interesting to note that the limiting case of thin plates (.e.
D' — o and y — 0 ) can be considered starting directly from II; which
becomes:

My(w,8,8) = —;-ij(a)Dbx<a)dA+%jsT<\7w+ea)dA
A A
~—'J‘wqu+H‘m (3.6)
A

As a last point, note that using the notation introduced at the end of
Chapter 2, I1 can be rewritten in the more compact form:

Mw,6) = -Zl-juT[LbTDbLbJrLSTDSLS}udA-jwquwLHexl (3.7)
A A
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4. MIXED FINITE ELEMENT SOLUTION

In the previous sections the equations governing a thick plate problem
together with equivalent variational formulations have been presented. In
this section a general finite element solution strategy is considered.

Starting from functional I1;, or an equivalent one, the goals of the finite
element approximation are to:

e  Construct appropriate finite element discretizations for each of the vari-
ables appearing in the functional I1;, and

e  Manipulate the resulting discrete equations in order to reduce the
dimension of the global problem to be solved numerically.

Since at the beginning all the variables are retained, the approach is
called mixed. Therefore, the fields w, 6, ¥ and S are independent and differ-
ent approximation schemes may be used for each of them. Accordingly, we
take:

w=N_W+N,,0 (4.1a)
6=N,é (4.1b)
y=N,7 (4.1c)
S=N,S (4.1d)
where
w,6,7,8 (4.2a)

are the degrees of freedom of the discretized system and
Nw y Nw9 3 Nr 2 Na 3 Ns (42b)

are the corresponding shape functions. It is noted that the rotational field has
been used in order to improve the displacement field approximation and this
is explicitly stated by the N, shape functions.

The variational theorems in the previous section require w and 6 to be
continuous (C°) while y and S may be approximated by piece-wise continuous
functions (H1). Hence interpolation for the shear force and the strain can
have parameters which are associated with individual elements; in this case
it is possible to eliminate the dependence in the shear parameter at the ele-
ment level, while at least some of those for the displacement fields must be
carried to the global level.

Once independent approximations have been assumed for the four
unknown fields, the second step , i.e. a reduction in size of the global finite
element problem, can be performed for the case where S and # are restricted
to an individual element. Accordingly, substituting (4.1) into (3.2) we get:
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58" [ NT(N,7-VN, W-eN,8)dA= (4.3)
:5QTUJANSTN7dA)f-(jANZ"VNwdA)W—UANSTeNQdA }é} =0

Since & éT is arbitrary, the term in the square bracket must vanish and so:
U NN, dA )? = (j NTVN,dA )v‘v + (j NTeN,dA Jé (4.4)
A A A

which may be written in a more compact form as:

Fy = GWw + Hé (4.5)
where:
F=| NINdA (4.6a)
G= jA N7 VN, dA (4.6b)
H= JA Nl e N,dA (4.6¢)

From (4.5) we can express 7 in terms of W and :
7=F'Gw+F'Hé (4.7)
Thus, (4.1c) may be written as
y=N,7=B"1 (4.8)

where the unknowns W and @ have been arranged into a unique vector @,
which is similar to (2.20) and (2.21b). In the same way, the change in curva-
ture (2.21a) may be written as:

«=B6=B"0 (4.9)

where in the above BY merely adds some zero-columns, associated with 0, to
form B’.

Equations (4.8) and (4.9) can now be inserted into (3.4):
M, (W%,6)= %ﬁT{ [, (8" DB’ +B DB’ 1dA } @

_J’AwquJrnext (4.10)

which represents the mixed finite element version of 5.
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It is worthwhile to compare (4.10) with the discretized form of T, which
becomes:

H(v‘v,é)zéﬁT{ jA[BbTDbBb+BSTDSBSJdA}ﬁ

- jAwqu+nw (4.11)

where B’ is the standard displacement representation for the shear strain-
displacement equations.

Equations (4.10) and (4.11) are very similar formally but differ since in

the first one the the matrix B® obtained from the mixed approach is present,
while in the second one the B’ is present, which is obtained from the more
traditional displacement approach. It has to be noted that in constructing I3
no hypotheses are stated about the relations between the unknown fields and
from this point of view the constraint equation (3.2) can be satisfied also in a
weak sense and, therefore, from a finite element point of view, in a more gen-
eral sense. Instead, in constructing I1, equation (3.2) is imposed in a strong
(point-wise) sense. This is the main difference between the displacement and
the mixed finite element approach.

The choice of the interpolating functions used to approximate each field
variable is the most vital and important step of any finite element procedure.
Starting from (4.1) different families of plate elements can be generated by
making different choices for the interpolating functions. Considerable effort
has been devoted to generating shape functions for the displacement fields
(transverse displacement and rotations), mostly based on some form of iso-
parametric interpolation. However, these are often combined with quite poor
interpolating functions for the shear strain and stress fields. As an example,
collocation functions have been used for the shear field interpolation in some
well-performing plate elements, known as Discrete Reissner-Mindlin (DRM)
elements [29,30]. The reason for using the collocation functions was justified
by the necessity to not over-constraining the shearing strain part of the func-
tional, since in this way (3.2) is satisfied only at a discrete set of points. As it
will be shown here, there is no particular reason for choosing such simple
shape functions. In fact in the following sections smoother interpolating
functions will be adopted for the shear strain and stress fields also.
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5. REQUIREMENTS FOR STABILITY AND CONVERGENCE OF A
MIXED FINITE ELEMENT SOLUTION

The mathematical conditions that a mixed finite element formulation
has to satisfy in order to ensure the stability and the convergence of the solu-
tion are embedded in the Babuska-Brezzi conditions [21-23]. These condi-
tions employ specific mathematical arguments and must be checked for each
proposed finite element. A thorough evaluation involves considerable calcula-
tion, consequently, alternatives which utilize direct computer solutions have
been sought.

In the late 1980’s, the mixed patch test was introduced and shown to gen-
erate many of the results needed in the Babuska-Brezzi condition evaluation
[24-30]. The mixed patch test is easier and more intuitive to perform and
provides necessary and sufficient conditions for the stability and convergence
of a mixed finite element. Consequently, in the following discussion we pre-
sent general results from the mixed patch test for the thick plate formulation
discussed above. In Section 6 we propose a set of triangular elements which
have external (global) vertex displacement degrees-of-freedom only together
with suitable internal unknowns involving displacements, shear strains, and
shear forces. In Section 7 we employ results from the mixed patch test to
evaluate general characteristics of the proposed elements for applications to
thick and thin plate problems. Subsequently, we test the performance of the
elements on a set of standard test problems.

FIRST TEST: This part of the mixed patch test consists in checking

some simple algebraic inequalities involving the number of unknowns in

each variable set. The algebraic requirements for a thick plate formula-
tion are:

n,ng Ng+ Ny 2N ng2n, (5.1)

where n,, ng, n, and n, stand for the number of degrees-of-freedom in

the discretized system for w, 6, ¥ and S respectively. Equation (5.1)

must be satisfied for any generic finite element mesh.

In the following we summarize the steps needed to obtain the above
results. Starting from functional (3.1), taking variations with respect to all
the variables and arranging the equations in a matrix form leads to:

A o H o é f,
0 0 G' o |w|_|f 5.2)
HG 0 -F| |S f, '
(0 0 -FI P 7 f,

where

- bT ~
A= B D’B'dA , H=[ NleN,dA (5.32)
A A
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G:-.j NTYN,dA F:j NN, dA (5.3b)
A A
P = [ N/D'N,dA (5.3¢)

and f,, f,, f; and f, account for generalized loading conditions which may
include both essential and natural boundary conditions.

Equation (5.2;) is the weak form of the angular momentum equations,
(5.2,) is the weak form of the transverse linear momentum equation, (5.23) s
the weak form of the transverse shearing strain-displacement relations and
(5.2,) is the weak form of the transverse shear constitutive equation. We also
recall that locking is associated with the transverse shearing behavior as a
plate becomes thin.

It was noted in Sections 2 and 3 that mixed formulations for plates are
reducible. Similarly, the weak form of a mixed formulation is reducible and
there are different ways to perform a reduction on (5.2). As an example, 7
can be condensed: using (5.2,) # can be expressed in terms of S and the result
can be substitute in the remaining equations of (5.2). In order to perform this
step, the matrix P 'FT must be computed and the following inequality must
hold:

y 2 N (5.4)

which is the first requirement contained in (5.1). Equation (5.4) implies that

the rank of P! is not less than the rank of F, and, consequently, the reduc-
tion cannot cause a lowering of the rank of the global system (the non-
singularity of the P matrix will be guaranteed if the basis functions used in
the shape functions N, are linearly independent).

Performing the condensation described above, the system becomes:

A o H é £,
0 0 GT| {w!=1{1f (5.5)
H G E S £,
where
E=-FPF’ (5.6)

and the loads f;” include modifications from the reduction.

The form given in (5.5) is appropriate for evaluating performance at the
thin plate limit. Noting from Section 3 that the thin plate limit is equivalent
to D° — oo leads to the result that E — 0 for this case. Consequently, for a
mixed formulation to produce viable results in thin plate applications, the set
of equations



A o HT é £,
0 0 GI| (&} =11 (5.7)
H G 0 S £,

must have a stable solution. It may be noted that (5.7) follows directly from a
discretization of (3.6). This case has been evaluated in references 24 to 27,
and satisfaction leads to the second and third part of (5.1).

It is important to emphasize that the conditions in (5.1) represent only a
necessary condition for the stability of the solution; however, checking the
conditions for different patches (including both single elements and meshes
with several elements which have a maximum or a minimum number of
essential boundary conditions), the requirement becomes very stringent and
therefore can be considered also as a sufficient condition for assessing stabil-
ity, provided that the second test described below is satisfied. In the cited lit-
erature (5.1) is usually checked on three standard patches, called respec-
tively restrained, relaxed and infinite patch (e.g. see [4]).

SECOND TEST: The eigenvalues of the stiffness matrix of a patch are
computed and the presence of zero eigenvalues in excess of the number of
rigid body modes indicates rank-deficiency (or zero energy modes). This
part of the test is commonly performed on a very small patch of elements
(often on a single element) and preferably no boundary conditions are
imposed (or if required by the software available only a minimum num-
ber are set in order to restrain rigid body motions).

The importance of this second test is related to the fact that solving more
general problems using rank-deficient elements can lead to instability in the
solution and often results in non converging solutions (such as oscillations
fluctuating around the exact selution) or it can occasionally result in a singu-
lar global stiffness matrix. On the other hand, it can also happen that the
boundary conditions used result in a non-singular coefficient matrix, such
that no zero-energy modes are globally present. It is clear that these uncer-
tainties are such that the presence of excess zero eigenvalues at a multi ele-
ment level must be considered as an index of possible ill-conditioned behavior
and of non-robustness of the associated discretized problem. If such singular-
ity exists only for a single element the issue is not so clear but remain
undesiderable.

An additional aspect which may be recovered from the eigen-analysis is
the full evaluation of the number of modes available in an element to repre-
sent the bending and the shear response. The eigenvalues of the bending
modes are proportional to thickness to the third power, whereas, those for
shear are proportional to the thickness. By performing the eigen-analysis for
a wide range of thicknesses (we normally scale the modulus so that the bend-
ing stiffness remains constant), the number of modes for bending and shear
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may be determined. In Section 7.3 we discuss this aspect in more detail for
the elements evaluated in this study.

THIRD TEST: This part of the patch test assesses consistency of results.
In the plate problem we need to ensure that constant curvature states
are exactly recovered. Since the element is formulated in cartesian coor-
dinates the metric is independent of units and thus this strong satisfac-
tion is needed [4]. Moreover, states for constant transverse shear in the
absence of bending effects must also be included (since other cases would
require a linear varying curvature field).

The third test is merely the classical patch requirement originally pro-
posed by Bazeley et al. in their classical paper [71.
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6. PROPOSED FINITE ELEMENTS FOR THE THICK PLATE PROB-

LEM
As pointed out in the introduction, some of the purposes of the present

paper are to:

s show that smooth interpolating function can be used for the shear strain
and stress fields as well as for the displacement fields,

e discuss an existing element and introduce some new simple triangular
elements,

+ illustrate the performance of these elements on some standard test prob-
lems.

The first two purposes are presented in this section, the last one in the next

section.

6.1 General features and degrees-of-freedom

The finite elements described here are all based on the mixed approach
to the plate proolem discussed previously.

The elements are triangular and the shape functions are expressed in
terms of area coordinates, L, with i=1,2,3 [4]. Thus, the region occupied by
each element may be expressed as

X = LL' ii (61)

where 0<L;<1, Ly+Ly+Ly=1, x={x,y}7 and &,=(%,,y;)" with i=1,2,3
are the nodal coordinates.

Each element has three external (global) displacement degrees-of-
freedom at each vertex of the triangle: the transverse displacement w; and
the two rotations 6, and §;,. In addition, to correct some deficiency in meeting
mixed patch test requirements or to increase overall order of interpolation,
the elements have been provided with internal degrees-of-freedom for the dis-
placements. Internal degrees-of-freedom are preferred to external ones since
they can be easily eliminated (by static condensation) at the element level.

In addition to differences in the internal degree-of-freedom structure, the
elements considered below also differ in the interpolating functions adopted
for shear strain and forces. In general, as simple interpolation functions as
possible are introduced for the part of the problem governing the bending
behavior, while special attention is devoted to the shear contribution since it
is the source of locking effects.

6.2 Element EL1

In addition to the three vertex degrees-of-freedom, this element has two
internal rotational degrees-of-freedom associated with a cubic bubble func-
tion, for a total of eleven displacement degrees-of-freedom. For the rotational
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field, the interpolation is linear plus the bubble function and in terms of area
coordinates it is written as:

3
OZZLi éi + 27 Ll LQ L3 Aé (62)
=1

.16 . | A8
6,=¢ 7%, A6 = N (6.3)
6,y A8,

The transverse displacement interpolation is taken as a simple linear
function, enhanced by quadratic terms expressed in terms of the normal com-
ponents of the nodal rotations for each side of the element. Accordingly,

gjn = Bin
21,

where

3
w:iLi w;, - >, L;L; (6.4)
i=1 =1

where the indices i, j, k are a cyclic permutation which may be written com-
pactly as: j=mod (i,3)+1 and k=mod(j,3)+1 (1 In the following when-
ever an index i, j, or k is referred to a side of an element instead of a node, 1t
indicates the side opposite to a vertex. Therefore, in (6.4) with [, we denote
the length of the k-side, i.e. the length of the side between the i and j nodes
and opposite to the £ node.

The shear strain and the shear stress are assumed constant over each
element, i.e. unit interpolating functions for N, and N; are adopted:

7:N7f27‘=7={f} (6.5)

Ty

S:NSQ:":S:{%} (6.6)
S)’

where a bar in (6.5) and (6.6) represents the fact that they are constant over
the element. This element was originally introduced and partially analyzed
in [31].

6.3 Element EL2

This element has the usual three vertex displacement degrees-of-freedom
plus six internal rotational degrees-of-freedom, where we associate two with
each k-side and denote them as Aé: and Aé; . Therefore the element has a
total of fifteen displacement degrees-of-freedom. The choice of the internal

(1) The mod(i,j) is a standard programming remainder function equal to i-(i/j)*j where integer arithmetic
is used to compute i /.
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degrees-of-freedom is the main difference between this element and the previ-
ous one, difference which is also reflected in the choice of the interpolating
functions.

For the transverse displacement the same shape functions as for EL1
have been selected, 1.e.:

gjn —6in

3 3
w=}:LiuA}i—ZL,~LJ (67)
=1 =1 21
while the rotational fields are now approximated by:
3 3
0= L6, +Y L?L; L, By A6, (6.8)
i=1 =1
where:
xg, = 2% (6.9)
kE Aé: .
Note that:

e  the modification of the @ field is made by fourth order polynomials of
type L? L ; Ly, that are zero along all boundaries of the element and thus
maintains compatibility a priori;

e  different choices have been selected for the f, matrix in (6.8) and these
are classified as follow:

k
version A B, =10, 17 = { Zi} [1 1] (6.10a)
y
r_|4]
version B B,=t1 = lt;J [1 1] (6.10b)
y
. s |10
version C B,=11" = 0 1 =1 (6.10¢)

where n, and t, are respectively the outward normal and the tangential vec-
tor along the k-side.

Due to the particular expression for f§,, in version A and B the sum of
the internal degrees-of-freedom along each side is used and therefore it is
possible to introduce it directly as the only unknown, say A8y, such that
these elements have only twelve displacement degrees-of-freedom. Therefore,
as a result of (6.10a) and (6.10b), Ad, can be interpreted as a hierarchical
rotation associated with the k-side, respectively normal to it in version A and
tangential in version B. Version C is instead a truly fifteen degree-of-freedom
element and there is no clear physical meaning for the internal unknowns.
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The strain shear field is interpolated linearly:

3
r=2L.7 (6.11a)

i=1
while in the previous element it is assumed constant. The y; parameters are
associated with the nodes of the element; however, these parameters may
also be expressed in terms of local components of the shear along the perime-
ter of the element (two on each side). It is then possible to constrain the tan-
gential shear to be constant along each side, therefore reducing the number
of independent shear parameters to three [29,30]. The reason for this type of
constraint is the necessity to satisfy the algebraic inequalities on the number
of degrees-of-freedom required by the mixed patch test. This constraint is

expressed by:
1 n;, ""”ii?, fk
;o= — . ~ 611b
yl Ai { "ni n_l: :H 7_/.1 ( )

where A;=n* nfy——nﬁ n! and 7;,7, are the constant shear strain along the j
and the £ side.
The shear stress field is still assumed constant:

S=NSS=Q=S:{-} (6.12)

The use of interpolations (6.11a) or (6.11b) and (6.12) satisfies the mixed
patch test requirements given in Section 5. In the numerical experiments
reported below we use (6.11b).

6.5 Element EL3

This element has the same internal degrees-of-freedom as EL2. It also
has the same interpolating functions for the displacements:

3 3 6. -6
szLiwimzLiLj 2 : (613)
=1 -1 21
3 3 )
6= L, 6,+3 L?L; L, B, A6, (6.14)
=1 =1
and for the shear strain field:
3
ry=>L;¥ (6.15)
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where 7, is again computed from (6.11b). The shear stress field is modified to
a form identical to that of the shear strain and a linear interpolation has
been chosen:

3 S
=1

where the parameters S, are computed from (6.11b) with y replace by S. Also
for this element the versions A, B and C described in the previous sub-section
have been considered.

6.6 Stiffness matrix and load vector

The procedure for the construction of the stiffness matrix has been split
into two steps, the reason of which is clear by looking at (3.7) and (4.10). In
the first step the part due to the bending, K’ is computed while in the second
one the part due to the shear, K°,is computed. The two matrices are summed
in order to obtain the total stiffness matrix:

K=K’ +K° (6.17)
From (4.10) we get that:
K’ = jA(LNg)TDb(LNg)dA (6.18)
_ T .
K = jA B’ D'B’dA (6.19)

where a general approach for the construction of B’ is given in Section 4.

It is noted that, due to particular choices for the shape functions, simpli-
fications can occur. For example, in EL1, the shape functions for the shear

strain and stress fields are constant in each element, hence, the B’ matrix is
also constant and may be computed directly in terms of the displacement
parameters. It is noted that evaluation of F and G in (4.6a,b) for EL1 and
EL2 may be performed using 1-point quadrature; however, exact evaluation
of (4.6¢) requires more than 3-points (e.g., either a 4-point or 7-point formula
as described in [4]). Inexact integration (i.e., reduced quadrature) may also
be used, and the results in [31] are equivalent to EL1 based on a 1-point
quadrature for this term as well (we call this element EL1R). We note this
reduced quadrature is associated only with the specification of the strain dis-
placement equation and thus do not preclude using this element with non-
linear constitutive models. This is in contrast with the use of reduced quadra-
ture in displacements models. In EL3 it is necessary to perform all the steps
in equations (4.5)-(4.8) in order to construct B°. Numerical evaluation of the
integrals requires multi-point quadrature to obtain correct rank in the
results. Except as noted for EL1R, all integrals are computed exactly using a
sufficiently high order quadrature.
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For the results reported in the next section, the finite element load vector
for distributed transverse loads ¢ is computed consistently using the shape
functions in the interpolation for the transverse displacement, w.



7.1 NUMERICAL PERFORMANCE

Several tests have been performed in order to evaluate the numerical
performance of the elements discussed in the previous section. The elements
have been implemented into the Finite Element Analysis Program (FEAP)
and this environment has been used for all the computations [4,5].

For the cases where no analytical or series solution of a problem is avail-
able, the numerical solution has been compared with those obtained using
the DRM3 element {30]. This is a triangular element endowed with an exter-
nal rotational degree-of-freedom for each edge; it uses quadra’ - interpolating
functions for the rotations, cubic for the transverse displacement, linear for
the transverse shear strain and Dirac delta functions for the tangential com-
ponent of the transverse shear stress at the center of each edge.

The test problems are organized in the following order:
+  First patch test: Algebraic constraint count requirement
o  Second patch test: Eigenvalue evaluation for rank and locking

» Third patch test: Consistency tests for pure bending, pure twist, pure
shear

o  Square plate with simply supported and clamped boundaries
o Circular plate with simply supported and clamped boundaries
¢ Skew cantilever plate

o  Simply supported skew plate

Only uniform loading is considered since it is well known that the trans-
verse displacement for a concentrated load is infinite for a theory which
includes the effects of shear deformation.

7.1 First patch test: Algebraic constraint count requirement

For all the elements discussed in the previous section the algebraic
requirements in (5.1) have been checked for single elements with all bound-
aries fixed and also with a minimum number restrained to prevent rigid body
modes. In addition, the counts have been constructed for regular square
meshes (of the type shown below for the square plates). For the cases in
which S is a constant in each element, the count condition reduces to the
evaluation of n, compared to n, for all meshes. The other conditions are
always satisfied since by construction (5.1;) has n, greater or equal to n, and
the @ has two internal bubble modes which exactly balances n, thus satisfy-
ing (5.15). For the case where S is linear in each element it is necessary to
check both (5.15) and (5.13).

For the types of meshes considered, all the elements described in this
work pass the first patch test.
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7.2 Second patch test: Eigenvalue evaluation for rank and locking

The first part of the second patch test consists in checking that the stiff-
ness matrix of a single element has no zero eigenvalues in excess of the num-
ber of rigid body modes, as described in Section 5.

The second part is based on a set of problems which approach the limit-
ing case of a thin plate. For a one-element mesh the ratio between thickness,
¢, and side length, L, is varied between the values 10 and 1E-5; Young’s mod-
ulus is also varied in order to maintain a constant value of the bending stiff-
ness D. In this way, the modes in the element associated with bending effects
remain approximately constant, while those influenced by shear increase by
L/t squared. This test is very useful to check the tendency of an element to
lock. It also indicates whether all modes included in each interpolation are
available in the actual solution process. Finally, this part of the test can
assess whether any of the eigenvalues tends to zero in the limiting case of
thin plates.

Both EL1 and EL2 (and EL1R) do not pass the first part of this patch
test since they show an extra zero-energy mode. Conversely, EL3 passes the
first part. All the elements behave properly in the second part of this test.
We noted that in repeating the above process using a 2-element mesh all
aspects of the eigen-analysis are satisfied.

7.3 Third patch test: Consistency test for pure bending, pure twist

and pure shear
The third patch test was conducted on a square plate of arbitrary trian-

gles as in [30] and the following boundary conditions in terms of load and dis-
placement have been considered:

e pure bending - distributed constant edge moment along one edge, the
opposite edge is clamped and all lateral boundary tangential rotations
are fixed;

e pure twist - distributed constant edge twisting moments along all four
sides, three corner nodes are restrained to prevent rigid body motion.

o pure shear - distributed constant edge forces on one edge, the opposite
edge is clamped, and all rotations fixed in order to prevent bending;

All elements pass the third patch test.

7.4 Square plate with simply supported and clamped boundaries

A square plate is modeled using meshes that differ in the orientation of
the elements (the two mesh types are labeled A and B in Fig. 7.1). Three
boundary conditions are considered: soft simply supported, hard simply
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supported and clamped. For the soft simply supported boundary condition
only nodal w are restrained.’ A discussion of the soft and hard simply sup-
ported boundary condition is given in [2,5].
The material properties of the plate are:
E=10.92, v=0.3

the side length is L = 10, the uniform load ¢ = 1.0 and the thickness ¢ =0.1.
Since ¢t/L = 0.01 the plate is quite thin and the analytical solutions from thin
plate theory are reported. In order to check the tendency to lock, also a
clamped square plate of thickness t =0.01 is considered (/L =0.001). For
comparison purposes to indicate the importance of shear deformation, a sec-
ond solution obtained from the thick plate theory is reported whenever it was
computed.

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
2x2 4.25559 | 3.80303 | 3.78490 | 3.73507 | 3.82509 | 3.44894 | 3.57813 | 3.65168
4x4 4.16761 | 4.01023 | 4.00549 | 3.99577 | 4.01650 | 3.75596 | 3.88395 | 3.92582
8x8 4.11947 | 4.06053 | 4.05904 | 4.05638 | 4.06262 | 4.01332 | 4.02984 | 4.06683

16x16 | 4.09766 | 4.07375 | 4.07316 | 4.07215 | 4.07458 | 4.06828 | 4.06823 | 4.07059

ser.sol. | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235

Table 7.1: Simply supported square plate ¢/L =0.01

ment at the center (x 107*)

- soft boundary, mesh A - : displace-

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
2x2 4.36249 | 3.89112 | 3.87954 | 3.86496 | 3.90801 | 1.84893 | 2.96230 | 3.28394
4x4 4.18201 | 4.02767 | 4.02407 | 4.01834 | 4.03291 | 3.39095 | 3.76413 | 3.86085
8x8 4.12165 | 4.07434 | 4.06218 | 4.05984 | 4.06561 | 3.98758 | 4.01635 | 4.03095

16x16 | 4.09797 | 4.06742 | 4.07376 | 4.07280 | 4.07517 | 4.06712 | 4.06742 | 4.06989

ser.sol. | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235

Table 7.2: Simply supported square plate

ment at the center (x 107*)

t/L =0.01 - soft boundary, mesh B - : displace-

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
2x2 4.13885 | 3.78197 | 3.76580 | 3.71603 | 3.80036 | 3.40554 | 3.55409 | 3.61583
4x4 4.08829 | 3.99457 | 3.99086 | 3.98073 | 3.99893 | 3.74116 | 3.87180 | 3.90786
8x8 4.07080 | 4.04930 | 4.04868 | 4.04729 | 4.05011 | 4.00436 | 4.02170 | 4.02831

16x16 4.06607 | 4.06098 | 4.06086 | 4.06065 | 4.06116 | 4.05731 | 4.05785 | 4.05823

ser.thin | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235
ser.thick | 4.06446 | 4.06446 | 4.06446 | 4.06446 | 4.06446 | 4.06446 | 4.06446 | 4.06446

Table 7.3: Simply supported square plate t/L = 0.01 - hard boundary, mesh A - : displace-
ment at the center (x 107*)

(1) We note that the presence of & in the interpolation for W, (4.1a), will produce non-zero boundary
displacements. A work is in progress to evaluate the implications of this error.
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Mesh EL1R EL1 EL2-A ElL2-B EL2-C EL3-A EL3-B EL3-C
2x2 4.07687 | 3.53107 | 3.50953 | 3.41852 | 3.55041 | 1.63264 | 2.74932 | 2.96013
4x4 4.06692 | 3.95148 | 3.94779 | 3.93387 | 3.95505 | 3.31893 | 3.70239 | 3.77628
8x8 4.06513 | 4.03897 | 4.03831 | 4.03595 | 4.03963 | 3.96521 | 3.99532 | 4.00435

16x16 4.06464 | 4.05839 | 4.05825 | 4.05778 | 4.05854 | 4.05289 | 4.05366 | 4.05416

serthin | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235 | 4.06235
serthick | 4.06446 | 4.06446 | 4.06446 | 4.06446 | 4.06446 | 4.06446 | 4.06446 | 4.06446

Table 7.4: Simply supported square plate ¢/L =0.01 -

ment at the center (x 107™%)

hard boundary, mesh B - : displace-

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
2x2 1.20690 | 0.83401 | 0.81729 | 0.73867 | 0.84951 | 0.32629 | 0.58247 0.64096
4x4 1.26026 | 1.14267 | 1.13795 | 1.12044 | 1.14751 | 0.86492 | 1.02366 1.05397
8x8 1.26625 | 1.23808 | 1.23727 | 1.23480 | 1.23900 | 1.19813 1.21368 | 1.21889

16x16 1.26748 | 1.26068 | 1.26053 | 1.26010 | 1.26088 | 1.25755 | 1.25785 1.25837

ser.thin 1.260 1.260 1.260 1.260 1.260 1.260 1.260 1.260
ser.thick 1.262 1.262 1.262 1.262 1.262 1.262 1.262 1.262
Table 7.5: Clamped square plate /L = 0. 01 - mesh A - : displacement at the center (x 107*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
2x2 144839 | 0.93615 | 0.91508 | 0.84510 | 0.95945 | 0.37724 | 0.65819 0.74898
4x4 1.31030 | 1.18511 | 1.18043 | 1.17030 | 1.19094 | 0.92596 | 1.07568 | 1.114 12
8x8 1.27825 | 1.24991 | 1.24911 | 1.24751 | 1.25095 | 1.21711 | 1.22933 1.23589

16x16 1.27046 | 1.26377 | 1.26362 | 1.26327 | 1.26398 | 1.26130 | 1.26141 1.26217

ser.thin 1.260 1.260 1.260 1.260 1.260 1.260 1.260 1.260
ser.thick 1.262 1.262 1.262 1.262 1.262 1.262 1.262 1.262
Table 7.6: Clamped square plate ¢/L = 0. 01 - mesh B - : displacement at the center (x 107*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
2x2 1.20509 | 0.83024 | 0.81315 | 0.73205 | 0.84599 | 0.27526 | 0.57110 0.63208
4x4 1.25797 | 1.13803 | 1.13282 | 1.11301 | 1.14328 | 0.65730 | 0.99698 1.03791
8x8 1.26381 | 1.23452 | 1.23349 | 1.23020 | 1.23565 | 1.03491 | 1.18921 1.20485

16x16 1.26500 | 1.25790 | 1.25770 | 1.25709 | 1.25814 | 1.20498 | 1.24607 1.25039

ser.thin 1.260 1.260 1.260 1.260 1.260 1.260 1.260 1.260
ser.thick 1.262 1.262 1.262 1.262 1.262 1.262 1.262 1.262
Table 7.7: Clamped square plate /L = 0.001 - mesh A - : displacement at the center (x 1077)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
2x2 144588 | 0.93098 | 0.90941 | 0.83780 | 0.95474 | 0.32088 | 0.64443 | 0.73897
4x4 1.30768 | 1.18006 | 1.17488 | 1.16351 | 1.18639 | 0.71867 | 1.04882 | 1.09960
8x8 127567 | 1.24616 | 1.24515 | 1.24315 | 1.24745 | 1.07257 | 1.20731 | 1.22419

16x16 1.26792 | 1.26092 | 1.26071 | 1.26030 | 1.26118 | 1.21804 | 1.25109 | 1.25553

ser.thin 1.260 1.260 1.260 1.260 1.260 1.260 1.260 1.260
ser.thick 1.262 1.262 1.262 1.262 1.262 1.262 1.262 1.262

Table 7.8: Clamped square plate ¢/ L = 0.001 - mesh B - : displacement at the center (x1077)
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7.5 Circular plate with simply supported and clamped boundaries

A circular plate under uniform load is a case in which an analytical solu-
tion can be computed in closed form. Both the case of simply supported and
clamped boundaries have been considered. The radius R is set equal to 5.0

XY

and tw

o values of the thickness (£ =0.1 and ¢ = 1.0) have been analyzed, in

order to consider a thin plate and a thick plate case. The properties of the
material are:

E=10.92, v=0.3
and the load is ¢ = 1.0 (Fig. 7.2).

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
6 42215.8 | 39431.8 | 39370.1 | 39143.5 | 39535.5 | 37026.4 38176.4 | 38519.5

24 404609 | 39657.6 | 39640.1 | 39578.6 | 39688.8 | 38432.7 39009.8 | 39166.5
96 39943.4 | 39732.6 | 39727.4 | 39714.3 | 39741.0 39411.6 | 39537.1 | 39580.9
384 39802.6 | 39744.3 | 39742.8 | 39739.4 | 39746.5 39707.5 | 39711.9 | 39718.3
1536 39764.4 | 39747.5 | 39746.9 | 39746.0 | 39748.0 39743.1 | 39742.5 | 39744.1
ex.s0l. | 398315 | 39831.5 | 39831.5 | 39831.5 | 398315 39831.5 | 39831.5 | 398315

Table 7.9: Simply supported circular plate - thicknes

s = 0.1 - : displacemen

t at the center

Mesh EL1R ElL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
6 43.9037 | 41.1626 | 41.1024 | 40.9740 | 41.2653 | 40.8041 40.7360 | 40.9389
24 42.9235 | 41.4296 | 41.4131 | 41.3696 | 41.4588 | 41.3589 41.3225 | 41.3949
96 41.7139 | 41.5103 | 41.5060 | 41.4947 | 41.5177 | 41.5014 41.4906 | 41.5120
384 41.5797 | 415286 | 41.5276 | 41.5247 | 41.5305 | 41.5273 41.5244 | 41.5301

1536 | 41.5459 | 41.5331 | 41.5329 | 41.5322 | 41.5336 415329 | 41.5321 | 41.5336

oxsol | 41.5994 | 415994 | 41.5994 | 41.5994 | 41.5994 | 41.5994 41.5994 | 41.5994

Table 7.10: Simply

supported circular pla

te - thickness = 1.0 -

- displacement at the center

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
6 9119.24 | 6049.46 | 5946.39 | 5301.04 | 6135.52 2397.05 | 4032.29 | 4614.38
24 9640.34 | 8774.99 | 8748.73 | 8642.32 | 8802.90 | 6545.31 | 7821.20 8082.37
96 9738.15 | 9523.66 | 9518.14 | 9499.78 | 9531.27 9148.89 | 9682.22 | 9357.07
384 9760.75 | 9708.70 | 9707.56 | 9704.22 | 9710.57 | 9677.57 | 9311.25 9686.12
1536 | 9766.35 | 9753.53 | 9753.26 | 9752.52 | 9753.99 | 9751.27 9750.82 | 9751.85
ox.sol. | 9783.48 | 9783.48 | 9783.48 | 9783.48 | 9783.48 | 9783.48 9783.48 | 9783.48
Table 7.11: Clamped circular plate - thickness = 0.1 - : displacement at the center

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
6 10.8377 8.0392 7.9699 7.8099 | 8.1240 7.5160 7.4412 7.6672
24 11.4059 | 10.6006 | 10.5834 | 10.5359 | 10.6287 | 10.5202 | 10.4805 | 10.5554
96 11.5066 | 11.3022 | 11.2980 | 11.2864 | 11.3096 | 11.2932 | 11.2820 | 11.3037
384 115285 | 11.4774 | 11.4764 | 11.4735 | 11.4793 | 11.4761 | 11.4732 | 11.4789
1536 | 11.5334 | 11.5207 | 11.5204 | 11.5197 | 11.5211 | 115204 | 11.5197 11.5211
ex.sol. | 11.5513 | 11.5513 | 11.5513 | 11.5513 11.5513 | 11.5513 | 11.5513 | 11.5513

Table 7.12: Clamped circular plate - thickness = 1.0 - : displacement at the center




7.6 Skew cantilever plates

Three skew cantilever plates have been analyzed using different values
of the skew angle, f. The 8 x 8 mesh with f= 40° is represented in Fig. 7.3.
The material properties are:

E =100 ,
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v=0.3

the thickness is 4.0, the side length 100 and the load 1.0

Since no closed solution is known, the numerical results are compared
with those found in [30] (labeled DRM3).

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRM3
2x2 1.34410 | 1.17926 | 1.17501 | 1.16114 | 1.18402 1.10184 | 1.12820 | 1.15132 | 1.3557
4x4 1.39932 | 1.35210 | 1.35088 | 1.34672 | 1.35361 1.31290 | 1.32341 | 1.33383 | 1.4024
8x8 1.42034 | 1.40800 | 1.40772 | 1.40699 | 1.40832 1.40185 | 1.40219 | 1.40387 | 1.4204

16x16 | 1.42727 | 1.42377 | 1.42370 | 1.42353 | 142386 | 1.42284 | 1.42273 | 142301 | 14269

Table 7.13: Skew cantilever plate - angle 20° mesh A - : displacement at node 1 (xEt3/gL*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRM3
2x2 1.06379 | 0.96769 | 0.96515 | 0.95999 | 0.97035 0.96693 | 0.95842 | 0.96613 | 1.0704
4x4 1.04963 | 1.02099 | 1.02023 | 1.01861 | 1.02187 1.00889 | 1.01099 | 1.01543 | 1.0489
8x8 1.04592 | 1.03740 | 1.03717 | 1.03681 | 1.03765 1.03455 | 1.03467 | 1.03573 | 1.0440

16x16 | 1.04463 | 1.04207 | 1.04200 | 1.04192 1.04214 | 1.04151 | 1.04146 | 1.04170 | 1.0436

Table 7.14: Skew cantilever plate - angle 20° mesh A - : displacement at node 2 (xEt3/qL*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRM3
2x2 1.38237 | 1.27495 | 1.26600 | 1.27996 | 1.28146 1.18858 | 1.20579 | 1.25187 | 1.5438
4x4 1.39792 | 1.36850 | 1.36655 | 1.36736 | 1.37012 1.33896 | 1.34409 | 1.35763 | 1.4446
8x8 1.41655 | 1.40902 | 1.40881 | 1.40839 | 1.40932 1.40537 | 1.40482 | 1.40700 | 1.4285

16x16 | 142447 | 1.42230 | 1.42226 | 142210 | 1.42238 | 142184 | 1.42164 | 1.42202 | 14275

Table 7.15: Skew cantilever plate - angle 20° mesh B - : displacement at node 1 (xEt3/qL*)

Mesh EL1IR EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRM3
2x2 1.00047 | 0.94085 | 0.94241 | 0.92947 | 0.94277 0.95441 | 0.94060 | 0.94780 | 1.0782
4x4 102043 | 1.00367 | 1.00392 | 1.00065 | 1.00421 | 1.00827 | 1.00474 1.00656 | 1.0388
8x8 1.03450 | 1.02888 | 1.02884 | 1.02808 | 1.02909 | 1.02884 | 1.02824 1.02893 | 1.0386

16x16 | 1.04041 | 1.03869 | 1.03869 | 1.03849 | 1.03876 | 1.03842 1.03825 | 1.03849 | 1.0413

Table 7.16: Skew cantilever plate - angle 20° mesh B - : displacement at node 2 (xEt3/gL*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRM3
2x2 103872 | 0.88110 | 0.87672 | 0.86517 | 0.88764 | 0.77614 | 0.80836 0.85333 | 1.0637
4x4 111324 | 1.06333 | 1.06189 | 1.05848 | 1.06542 | 1.01776 | 1.02705 1.04477 | 1.1266
8x8 115618 | 1.14222 | 1.14191 | 1.14119 | 1.14271 | 1.13417 | 1.13430 1.13714 | 1.1619

16x16 | 1.17613 | 1.17215 | 1.17207 | 1.17188 | 1.17227 | 1.17072 1.17058 | 1.17104 | 1.1789

Table 7.17: Skew cantilever plate - angle 40° mesh A - . displacement at node 1 (xEt3/qL*)
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Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRMS3

2x2 503820 | 452927 | .451596 | .448117 | .454940 | 427867 | .432092 | .443428 5329
4x4 530757 | .516100 | 515720 | 514750 | .516686 | .499688 | .503182 | .508605 5381
8x8 541662 | .537132 | 535705 | .536768 | .537285 | .534328 | .534377 | .535235 .5426

16x16 | 545684 | 544102 | .544079 | 543976 | .544149 | 543499 | .543421 543607 5456

Table 7.18: Skew cantilever plate - angle 40° mesh A - : displacement at node 2 (xEt/qL*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C DRM3
2x2 0.90890 | 0.81149 | 0.79301 | 0.80416 | 0.81842 | 0.63153 | 0.67846 | 0.09629 | 1.2955
4x4 1.02576 | 0.98925 | 0.98413 | 0.98374 | 0.99163 | 0.88491 | 0.90982 | 091707 | 1.1777
8x8 1.11333 | 1.10507 | 1.10434 | 1.10432 | 1.10548 | 1.08240 | 1.08455 | 1.08582 1.1646

16x16 | 1.15622 | 1.15488 | 1.15479 | 1.15474 | 1.15495 | 1.15196 | 1.15197 1.15222 | 1.1720

Table 7.19: Skew cantilever plate - angle 40° mesh B - : displacement at node 1 (xEt3/qL*)

Mesh EL1IR EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRM3
2x2 474172 | 453228 | 452710 | .452275 | .454026 | 455788 | .454529 | .460198 6182
4x4 503837 | .500239 | 500357 | .500049 | .500326 | .503462 | .502432 | .503633 5435
8x8 527918 | 526734 | 526774 | 526609 | .526770 | .529236 | .528862 | .529080 B35

16x16 | .538730 | .538197 | .538194 | 538136 | .538218 | 538550 | .538484 | 538563 | 5411

Table 7.20: Skew cantilever plate - angle 40° mesh B - : displacement at node 2 (xEt3/qL*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRM3
2x2 678039 | .581632 | .578428 | .572782 | 587447 | 527953 | .536139 | .563838 L7416
4x4 747229 | 707712 | 706311 | .703916 | .710449 | .673499 | .675213 | .688740 L7814
8x8 802835 | 791187 | .790819 | .790376 | .791804 | .783209 | .782968 | .785495 L8192

16x16 | .834565 | .831366 | .831276 | .831180 | .831522 | .829753 | .829661 | .830095 .8435

Table 7.21: Skew cantilever plate - angle 60° mesh A - : displacement at node 1 (xEt*/qL*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C DRM3
2x2 107921 | .100257 | .099939 | .097700 | .101116 | .086046 | .089227 | .096504 | .1259
4x4 134221 | .130870 | .130666 | .130585 | .131142 | .123669 | .124438 | .127179 L1411
8x8 146709 | .146650 | .146613 | .146590 | .146734 | .145060 | .145087 | .145636 | .1501

16x16 | .154149 | .153775 | .163765 | .153752 | .153801 | .153419 | .153406 | .153478 | .1553

Table 7.22: Skew cantilever plate - angle 60° mesh A - : displacement at node 2 (xEt3/qL*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRM3
2x2 367631 | .290474 | .283826 | .249687 | .296106 | .155748 | .170417 | .171538 | .8523
4x4 518690 | .477796 | .474420 | .462367 | .480350 | .310635 | .323113 | .324108 | .7936
8x8 662627 | 652909 | .652109 | .651030 | .653369 | .574435 | .577596 | .578088 | .7935

16x16 | .763424 | 761997 | .761859 | 761874 | .762053 | .745315 | .745581 | .745681 | .8128

Table 7.23: Skew cantilever plate - angle 60° mesh B - : displacement of node 1 (xEt3/qL*)

Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C | DRM3
2x2 102517 | .099400 | .098642 | .100262 | .099487 | .096536 | .098428 | .098972 | .2133
4x4 119029 | .119028 | .118866 | .119611 | .118998 | .120757 | .121090 | .121201 .1551
8x8 134256 | .134310 | .134289 | .134402 | .134303 | .137780 | .137696 | .137722 | .1437

16x16 | 144779 | .144725 | .144722 | .144721 | .144727 | .145721 | .145705 | .145715 .1471

Table 7.24: Skew cantilever plate - angle 60° mesh B - : displacement at node 2 (xEt*/qL*)




7.7 Simply supported skew plate
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This example is a highly skewed simply supported plate (4 =60°). Two
different thickness are considered. The plate properties are
E=30E7, v=0.3
with side length 100 and load 1.0.
Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
3 2 87037 | 2.46210 | 2.39802 | 2.50654 | 2.47837 2.41092 | 2.46684 | 2.49180
5 338456 | 3.23114 | 3.18778 | 3.25044 | 3.23833 3.12517 | 3.20955 | 3.22440
9 3.71601 | 3.67143 | 3.65815 | 3.68645 3.67250 | 3.68221 | 3.71345 | 3.71970
17 4.01209 | 3.98147 | 3.97822 | 3.97702 | 3.98293 4.02540 | 4.02589 | 4.02870
33 493750 | 4.22402 | 4.22302 | 4.22226 | 4.22461 4.20739 | 4.20806 | 4.20921
Ref.[33] | 4.455 4.455 4.455 4.455 4.455 4.455 4.455 4.455
Table 7.25: Simply supported skew plate - thickness t=1.0 - : displacement at the center
(x10%)
Mesh EL1R EL1 EL2-A EL2-B EL2-C EL3-A EL3-B EL3-C
3 28 6480 | 24.5647 | 23.9207 | 25.0081 247267 | 24.0534 | 24.5914 | 24.8652
5 33.7681 | 32.1938 | 31.7060 | 32.2747 32.2718 | 30.0651 | 31.8535 | 32.0609
9 37.0388 | 36.6026 | 36.4167 | 36.6184 36.6088 | 33.7331 | 36.6316 | 36.7617
17 39.9055 | 39.5692 | 39.5538 | 39.2315 | 39.5797 37.4445 | 39.6949 | 39.7900
33 41.9923 | 41.6196 | 41.6147 | 41.2320 | 41.6474 40.6170 | 41.3902 | 41.4333
Ref.[33]) | 44.55 44.55 44.55 44 .55 44 .55 44.55 44 .55 44.55
Table 7.26: Simply supported skew plate - thickness t=0.1 - displacement at the center




CLOSURE

A set of three-node triangular elements for analysis of thick and thin
plate bending problems has been presented. Each element has three external
degrees-of-freedom at each vertex: a transverse displacement, w, and two
rotations, 6, and 6,. Each element has been carefully analyzed with respect
to the mixed patch test, as well as, on several test problems. While two of the
elements are deficient in meeting proper rank conditions (on a single element
only) one, EL1, is among the best for all numerical problems considered -
especially when reduced quadrature is used to evaluate the transverse shear

B, (EL1R).

In closing we note that all the elements considered may be easily
extended to include non-linear constitutive or large displacement effects.
They may also be incorporated into an adaptive mesh strategy using trian-
gles as proposed by Zienkiewicz and Zhu [34,35]. Thus the elements provide a
viable basis for general applications in plates and, when combined with a
membrane element, to general shells.
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Fig.7.1A Square plate mesh: 8x8 elements, mesh type A
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Fig.7.1B Square plate mesh: 8x8 elements, mesh type B
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