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Neurons in the early visual cortex are finely tuned to different
low-level visual features, forming a multi-channel system
analysing the visual image formed on the retina in a
parallel manner. However, little is known about the potential
‘cross-talk’ among these channels. Here, we systematically
investigated whether stereoacuity, over a large range of target
spatial frequencies, can be enhanced by perceptual learning.
Using narrow-band visual stimuli, we found that practice with
coarse (low spatial frequency) targets substantially improves
performance, and that the improvement spreads from coarse
to fine (high spatial frequency) three-dimensional perception,
generalizing broadly across untrained spatial frequencies
and orientations. Notably, we observed an asymmetric
transfer of learning across the spatial frequency spectrum.
The bandwidth of transfer was broader when training was
at a high spatial frequency than at a low spatial frequency.
Stereoacuity training is most beneficial when trained with fine
targets. This broad transfer of stereoacuity learning contrasts
with the highly specific learning reported for other basic
visual functions. We also revealed strategies to boost learning
outcomes ‘beyond-the-plateau’. Our investigations contribute
to understanding the functional properties of the network
subserving stereovision. The ability to generalize may provide
a key principle for restoring impaired binocular vision in
clinical situations.

1. Introduction
Stereopsis, resulting from the horizontal displacement of the two
eyes (i.e. binocular disparity), adds a rich third dimension to

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
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use, provided the original author and source are credited.
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the visual world, enabling the observer to discern the relative distances of objects with extraordinary
accuracy. Under ideal conditions, stereo thresholds are much finer than the spatial grain of the retinal
mosaic and are considered a hyperacuity [1], as small as a few arc seconds of visual angle. The neural
computations involved in extracting the binocular disparity information from the two monocular images
are largely based on cortical processing at multiple levels [2,3]. It appears that the neuronal mechanisms
supporting stereoscopic vision are not hard-wired, but may be modifiable through experience [2,4,5].
There is earlier evidence demonstrating that perceptual learning can enhance stereoacuity in human
adults [6], beyond the critical period for visual development [7,8]. Perceptual learning is the long-
term improvement in visual function that results from repeated practice of a challenging visual task.
Perceptual learning has attracted a great deal of attention in the past several decades, in large part
because it has been shown to be highly specific to the orientation and spatial frequency of the trained
visual stimuli [9–14]. There is still much debate about the mechanisms of perceptual learning for
stereopsis and where the alternations may occur in the visual brain [15–21].

Neurons in the primary visual cortex are tuned to encode low-level visual information such as
spatial frequency, orientation, retinotopic location, etc. [22]. Thus, a neuron in early visual cortex
responds to a limited range of stimulus spatial frequencies, orientations and locations, forming the
basis of a multi-channel system analysing the visual image formed on the retina. The properties of
visual plasticity in the individual spatial frequency channels [23,24] are not yet clearly understood.
We are particularly interested in whether there is ‘cross-talk’ between these putative channels. Here
we ask whether perceptual learning of stereoscopic depth perception generalizes broadly across
spatial frequency and orientation. This has important ramifications for clinical applications, because
such vision training exercises would not be useful in everyday life if the learning effects do not
transfer to other untrained stimuli. We are also interested in making the learning as efficient as
possible. In order to determine the most efficient strategy, we compare the transfer of learning from
high spatial frequency to low and vice versa. In this study, we systematically quantified the effects
of perceptual learning using narrow-band visual stimuli, spanning a large spatial frequency range.
Using a multi-stage training protocol, we characterized the magnitude and specificity of learning
with respect to low-level, basic visual features, providing new insights into the mechanisms of
neural plasticity and importantly, the strategies to optimize visual performance. Our investigations
contribute to understanding the hierarchical architecture and functional properties of the network
subserving stereovision.

2. Material and methods
2.1. Subject
A total of 31 healthy young adults, ages 20–40 years, participated in three groups. All had normal or
corrected-to-normal visual acuity of 20/16−2 or better in each eye; the interocular acuity difference
was two letters or less on a standard LogMAR letter chart (National Vision Research Institute of
Australia, 1978). Inclusion criteria were spherical refractive error in the range of +2D to −5D and
astigmatism in the range of 0–0.50D. None of the participants had anisometropia of greater than 1D
spherical equivalent difference between the two eyes. They had neither strabismus nor amblyopia. All
participants had normal stereoacuity of 40 arcsec or better (Randot� stereotest, Stereo Optical Co., Inc.,
Chicago, IL, USA) and the heterophoria, if any, was within the normal range at distance and near as
examined by alternate cover test. All testing and training was done with the observer wearing best
optical correction.

2.2. Visual stimulus
The visual stimulus consisted of two horizontally separated black squares. At the centre of each square
was a target Gabor patch surrounded by four reference Gabor patches with the same spatial frequency
and orientation as the target (figure 1a). A custom-built 4-mirror stereoscope was used to present a half
monitor screen to each eye (i.e. the left square for the left eye and vice versa). Binocular disparity was
introduced by shifting the two target Gabor patches (one in each square) in opposite directions. The
position and phase of each Gabor patch, both target and reference, were randomly jittered based on a
uniform distribution (vertical and horizontal position range, ±20 screen pixels—more than an order of
magnitude larger than the observers’ stereo thresholds; phase range, 0–360◦) to minimize any possible
monocular cues, for example, Vernier and bisection cues. The following abbreviations are adopted to
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Figure 1. Stereo stimulus. (a) The stereogramconsistedof two slightly different pictures—one to each eye. At the centre each squarewas
a target Gabor patch surrounded by four reference Gabor patches. To eliminate any possible monocular cues, the vertical and horizontal
coordinates of each Gabor patch and also the patch features, the carrier phase,were randomly jittered according to a uniformdistribution.
A custom-builtmirror stereoscopewas used to view the stereo pairs, so that the left eyewould see the left square and the right eyewould
see the right one. Binocular disparity was generated by shifting the two target Gabor patches, one on each side, horizontally in opposite
directions (uncrossed disparity, both shifted temporally; crossed disparity, both shifted nasally). (b) Binocular fusion of the twomonocular
images creates a cyclopean image. The visual task was to determine the stereoscopic depth of the target Gabor (in front/behind) relative
to the four adjacent references. This schematic diagram illustrates crossed disparity—the target Gabor patch appeared in front of the
reference patches.

describe the Gabor patch parameters: V1, V5, V10, V20 and H5, where the letter describes the carrier
orientation (V, vertical; H, horizontal) and the number specifies the carrier spatial frequency expressed
in cycles per degree.

2.3. Cyclopean view
Figure 1b illustrates the cyclopean percept of the visual targets in binocular viewing. The outer square
served as a fusion lock to ensure proper alignment of the two eyes. The two letter Es at the top right
and bottom left corners served as an accommodation lock for stimulating accommodation to bring the
visual stimulus in focus. The E at the top left corner and the other E at the bottom right corner served
as a binocular indicator ensuring the absence of monocular suppression during testing, and proper
alignment (when perceived to be one above the other). Observers were given careful instructions for
adjusting the haploscope mirrors in order to avoid stimulating excessive convergence, which could
trigger convergence-accommodation and result in blurred vision. The visual task was to determine the
stereoscopic depth of the target Gabor (in front or behind) relative to the four reference Gabor patches.
Trial-by-trial audio feedback was provided for each response.

2.4. Stimulus scaling
The stimulus spatial scale was manipulated by changing the physical stimulus size on the screen and
varying the viewing distance, 50 cm (V1) or 2 m (V5, V10, V20 and H5). As for V5 stimuli viewed at
2 m, the s.d. of the Gaussian envelope was 7 arcmin, Gabor centre-to-centre distance was 48 arcmin when
positional jittering was off, the letter ‘E’ size was 25 arcmin and the square was 197.3 arcmin. The carrier
spatial frequency and Gaussian envelope s.d. covaried, keeping a constant number of cycles/s.d. All
visual stimuli were displayed on a 21-in Sony F520 flat monitor screen at 1800 × 1440 resolution and
90 Hz refresh rate. The mean luminance of the stimuli was 55 cd m−2 and the contrast of each Gabor
patch was 99%. Light shielding was used to block stray light from the monitor screen. The inter-pixel
distance was 20 arcsec at a viewing distance of 2 m (50 cm, 80 arcsec); sub-pixel accuracy was achieved
by contrast manipulation.
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2.5. Psychophysical methods
For each trial, the amount of binocular disparity was controlled by two interleaved adaptive staircases
to track the stereo threshold: one for crossed disparity (target patch in front of the adjacent reference
patches) and the other for uncrossed disparity (target patch behind the references). The trials were
divided into triplets: three correct responses decreased the disparity magnitude by one unit step,
two correct responses left the disparity unchanged and only one or zero correct response increased
the disparity by two unit steps. Stereo threshold was estimated as the disparity at the 84% correct
response rate (d′ = 1), obtained by fitting a Probit function. The threshold reported for each observer
is the average threshold estimate from two blocks of measurements (training session: 275 trials/block;
pre- and post-training sessions: 160 trials/block).

2.6. General experimental design
The experiment generally consisted of three segments: pre-training measures, training and post-training
measures. In the pre-training segment, observers were tested with 3 (Experiment 1) or 4 (Experiment 2)
different stimulus conditions, including different spatial frequencies (from 1.25 to 20 cpd) and carrier
orientations (horizontal and vertical). In the training segment, observers were trained with a specific
stimulus condition for 13 sessions. The post-training segment was identical to the pre-training segment.
Each training session consisted of a total of 550 response trials (crossed disparity, 250 trials; uncrossed
disparity, 250 trials; catch trials or zero disparity, 50 trials) in about 45 min. The experiment was self-
paced, and a break was given whenever the subject requested one. The participants were naive to the
purposes of the experiments and none of them had any prior experience in psychophysical experiments.
It should be noted that our visual task is easy to comprehend, much like the standard stereopsis screening
tests used in clinical settings, and participants were given practice trials (roughly 50 trials) to familiarize
them with the stimuli and methods prior to the baseline measurements.

3. Results
3.1. Learning to improve three-dimensional vision
In the first experiment, we asked whether practicing a stereoscopic depth detection task enhances
stereoacuity in adults with normal vision and whether the learning effects, if any, transfer across different
stimulus configurations. Ten adults with corrected-to-normal vision participated. The training protocol
consisted of three stages, each of 13 sessions (figure 2a). In stage 1, participants were trained with targets
with a vertical carrier of five cycles per degree (V5: vertical, 5 cpd). In stage 2, they continued to train with
the same spatial frequency, but with an orthogonal carrier orientation (H5: horizontal, 5 cpd). They were
subsequently required to practice with targets with a vertical carrier at a higher spatial frequency (V10:
vertical, 10 cpd) in stage 3. Thresholds for each of the three stimulus configurations were measured before
and after each training stage. Each training session consisted of about 500 trials.

We found that practice significantly enhances stereovision. On average, our observers showed almost
a factor of three improvement (post/pre, 64%) in mean stereoacuity (red circles, from 27.3 (session 1,
s1) to 9.9 arcsec (session 15, s15); paired-t = 6.510, p < 0.001) after practicing with V5 stimuli in stage 1.
A 3-parameter exponential function, Th = Thi × e(−bx) + Thp, was used to quantify the learning profile,
where Th is stereo threshold, Thi is the initial threshold, Thp is the plateau threshold and x is the training
session. Asymptotic performance was obtained in roughly ten sessions (approx. 5000 responses). The pre-
and post-training data of individual observers are displayed in figure 2b. The top left panel illustrates
the threshold data for V5 direct training (s1 versus s15). Note that the area below the grey 1 : 1 reference
line represents improvement in stereoacuity. For clarity, the error bars for all individual training sessions
were omitted.

3.2. Specificity to stimulus configurations
We examined the specificity of visual learning; i.e. whether improvement transfers to a different
orientation or a different spatial frequency, in order to further explore the possible mechanisms for the
plasticity. To test whether the visual learning effects transfer to the untrained stimulus orientation, we
compared pre- and post-training measurements of thresholds with horizontal carriers (H5, figure 2a
inset). To examine the specificity of the visual learning to the trained stimulus spatial frequency, we
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Figure 2. Experiment 1. Perceptual learning of stereoacuity: specificity for carrier orientation and spatial frequency. (a) The training
protocol consisted of three training stages: stage 1, V5 (vertical carrier: 5 cpd); stage 2, H5 (horizontal carrier: 5 cpd); stage 3, V10 (vertical
carrier: 10 cpd). A 3-parameter exponential function was used to quantify the learning profile. Mean thresholds (n= 10) for each of the
three stimulus configurations were measured before and after each training stage. Error bars indicate the standard error of the mean
unless stated otherwise. (b) The pre- and post-training threshold data of individual observers (n= 10) are illustrated in the nine figure
panels: 1st row, s15 versus s1; 2nd row, s29 versus s15; 3rd row, s43 versus s29. Arrows indicate the sequence of direct training from stage 1
to 3. White panel area denotes statistically significant. Grey panel area, not statistically significant. Note that the abscissa label for each
row is displayed at the right-hand end of all the panels highlighted in dark blue.
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performed pre- and post-training measurements of thresholds with carriers of higher spatial frequency,
by a factor of 2 (V10, figure 2a inset).

Learning generalized substantially to the untrained stimuli. Practicing with V5 stimuli resulted
in improvements of 46% for H5 (blue squares, from 169.1 to 91.0 arcsec; s1 versus s15: paired-t =
3.322, p = 0.009) and 56% for V10 (green circles, from 19.1 to 8.5 arcsec; s1 versus s15: paired-t =
6.042, p < 0.001). The raw training data for individuals are shown in figure 2b (first row, middle and
right panels).

3.3. Transfer: complete or incomplete?
To quantify the transfer of learning, we calculated a Transfer Index (T = PIuntrained/PItrained) for
individual observers, where PI is the per cent improvement, T = 1 indicates complete transfer and T = 0
indicates no transfer. Mean T = 0.67 ± s.e. 0.11 and 0.88 ± s.e. 0.09 for the orthogonal orientation (H5) and
higher spatial frequency (V10), respectively. These values suggest nearly complete transfer of learning;
however, it is not entirely clear whether the performance on the trained stimulus had reached the
respective plateau levels or whether additional direct training could further boost the already sharpened
stereoacuity induced by indirect learning.

To answer that question, the participants were asked to engage in subsequent direct training
with the two previously untrained stimuli. In stage 2, they continued to train with H5 stimuli for
another 13 sessions and interestingly, they continued to improve substantially with practice. The mean
improvement relative to session 15 was 29% (s15 versus s29: paired-t = 2.653, p = 0.026), resulting in
a total improvement (from s1) of 63%. Individual data can be found in figure 2b (second row, middle
panel). However, no significant change in stereoacuity was observed for V5 or V10 stimuli (second row,
left and right panels; s15 versus s29: paired-t < 0.481, p > 0.642).

In stage 3, the participants were trained with V10 stimuli for 13 sessions. Similar to the
results of stage 2, the enhanced performance resulting from indirect learning was further improved
following subsequent direct training, with mean acuity improvement of 19% (figure 2b, third row,
right panel; s29 versus s43: paired-t = 3.017, p = 0.015), resulting in a total improvement (from s1)
of 64%.

It is worth noting that all participants completed training with V5 stimuli over a large number of
sessions and had already given a total of approximately 7000 responses in stage 1, and their performance
levels appeared to be very stable at the end of the training course. Surprisingly, practicing V10 stimuli
slightly, but significantly boosted the previously ‘plateaued’ V5 performance, with mean improvement of
18% from 10.2 to 8.4 arcsec (figure 2b, third row, left panel; s29 versus s43: paired-t = 3.928, p = 0.003). No
further significant change was found for the orthogonal H5 stimuli (figure 2b, third row, middle panel;
s29 versus s43: paired-t = 0.587, p = 0.572).

In brief, additional significant improvements obtained with subsequent direct training in stages 2 and
3 evidently suggesting that the transfer of learning observed in stage 1 may not have been complete.
Those extra improvements were specific to the difference in stimulus characteristics. We speculate that
practice with feedback fine-tunes the internal template to better sample, or learn, the visual stimulus [25],
allowing more precise processing of stereoscopic depth information.

3.4. Bandwidth of learning
Here our findings reveal that stereoacuity learning can transfer across the spatial frequency spectrum,
from the trained spatial frequency to the untrained ‘neighbour’ spatial frequency. When trained at a
medium spatial frequency (5 cpd), substantial acuity improvement was recorded at one octave higher
(10 cpd). However, these two spatial frequencies likely fall within the same spatial frequency selective
mechanisms, as these putative channels have a bandwidth of one to two octaves [26–29]. How broad is
the bandwidth of transfer?

To quantify the bandwidth of generalization of learning across spatial frequency, another set of 21
adult participants with normal vision were randomly assigned into two groups (LH, n = 10; HL, n = 11).
In stage 1, group LH was trained at a low spatial frequency (L, 1.25 cpd) and group HL was trained at a
high spatial frequency (H, 20 cpd). In stage 2, observers crossed over and trained at the untrained spatial
frequency (group LH, 20 cpd; group HL, 1.25 cpd). Thresholds were measured at each of four spatial
frequencies (1.25, 5, 10 and 20 cpd) before and after each training stage. Observers practiced for 16 000
trials over 29 sessions. Trial-by-trial feedback to response was provided.
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Figure 3. Experiment 2. Bandwidth of generalization across the spatial frequency spectrum. (a) Mean stereoacuity as a function of
session. In stage 1, group LH (first row, n= 10) was trained with V1 stimuli and group HL (second row, n= 11) was trained with V20
stimuli. In stage 2, observers crossed over and trained at the untrained spatial frequency: group LH, V20; group HL, V1. A 3-parameter
exponential functionwas used to quantify the learning profile. (b)Mean stereoacuity across spatial frequencies. (c) Per cent improvement
in mean stereoacuity (I) as a function of spatial frequency (f ). A 3-parameter Gaussian function, I = It × e−(1/2)(f−ft/σ )2 , was used to
quantify the generalization of stereoacuity learning across spatial frequencies, where It is the per cent improvement occurring at the
trained spatial frequency (ft) andσ denotes standard deviation.

3.5. ‘Coarse-to-fine’ spatial frequencies
We found that the relatively coarse stereopsis evident at low spatial frequencies can be substantially
enhanced with repetitive practice. The observers in group LH showed a more than threefold (70%)
improvement in mean stereoacuity (red circles, from 77.0 to 23.3 arcsec; s1 versus s15: paired-t = 5.526,
p < 0.001) after practicing with V1 stimuli in stage 1 (figure 3a, top panel); asymptotic performance
was achieved in roughly 10 sessions. Interestingly, all three untrained higher spatial frequencies also
improved substantially (figure 3b, top panel; V5, V10 and V20: paired-t > 3.712, p < 0.005). The threshold
data are replotted as percentage improvement in figure 3c. It is important to note that the transfer
was progressively reduced as spatial frequency increased (blue symbols); however, a 44% improvement
(a T of approx. 0.63) was still obtained for V20 stimuli, 4.3 octaves from the trained spatial frequency and
quite close to the visual acuity limit.

We fitted the threshold versus spatial frequency data with a 3-parameter Gaussian function of which
the centroid position (mean) was constrained to be at the trained spatial frequency. The bandwidth
of transfer, which was defined as the half-width at half height (B = √

2 ln 2 · σ , where σ denotes
standard deviation) from low frequency (1.25 cpd, approx. Snellen 20/480) to high frequency (20 cpd,
approx. Snellen 20/30) was calculated as 23.2 cpd. In other words, the effect of transfer decreased by
approximately 40% at 1 s.d. away from the trained spatial frequency. In short, these findings show that
practicing with low spatial frequency stimuli enhanced coarse stereopsis and importantly, the learning
effects extend broadly towards the high spatial frequency range.

To address the question of whether the transfer was complete or not at high spatial frequencies, the
participants continued to train with V20 stimuli in stage 2 (figure 3a). A further significant improvement
of as much as 63% was observed with subsequent direct training (figure 3b, top panel; s15 versus
s29: paired-t = 2.882, p = 0.018), pointing to an incomplete transfer. Similar to the first experiment, we
observed some smaller indirect learning effects for lower spatial frequency stimuli (figure 3c, top panel,
green symbols)—the improvement was significant for V10 stimuli (s15 versus s29: paired-t = 2.833,
p = 0.020). Surprisingly, there was also a small improvement for V1 stimuli, 10% beyond the ceiling,
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although this was not statistically significant (s15 versus s29: paired-t = 1.610, p = 0.142). Note the
performance appeared to have reached a fairly stable ‘plateau’ level after a large number of training
trials in stage 1.

It is worth pointing out that the transfer of learning in stage 2 (figure 3c, blue curve, with the peak at
the trained frequency) was in the opposite direction from what we found in stage 1 (green curve) in which
the transfer was induced from low to high spatial frequency. Those participants were first trained with
V1, leaving little room for improvement, and that is probably why the bandwidth of transfer obtained in
stage 2 (11 cpd) was much narrower than that obtained in stage 1 (23.2 cpd).

3.6. ‘Fine-to-coarse’ spatial frequencies: asymmetric transfer
In order to quantify the characteristics of transfer from high to low spatial frequency, another group of
participants (group HL) was first trained with V20 stimuli in stage 1. Direct training resulted in a more
than threefold (78%) improvement in mean stereoacuity (figure 3a, bottom panel; s1 versus s15: paired-
t = 3.727, p = 0.004) and the learning effect transferred to all three untrained lower spatial frequencies as
well (figure 3b, bottom panel; s1 versus s15: paired-t > 2.804, p < 0.019).

Interestingly, we observed an asymmetric transfer of learning across the spatial frequency spectrum.
The bandwidth of transfer induced by training with V20 stimuli appeared to be broader than that
induced with V1 stimuli (figure 3c, top panel versus bottom panel, blue curve; approximately 35%,
31.1 versus 23.2 cpd), meaning that larger improvements were obtained for the other three untrained
spatial frequencies. There was a 59% acuity improvement four octaves away from the trained spatial
frequency. By contrast, at the same octave distance the improvement was smaller (44%) for group LH.
An additional improvement of 26% was obtained with subsequent direct training with V1 stimuli (s15
versus s29: paired-t = 4.092, p = 0.002), with no further significant change observed for the other three
higher spatial frequencies. Note that the effect of direct training observed here was substantially weaker
when compared with group LH in stage 2 (figure 3c, top panel versus bottom panel, grey dashed
curve; HLV1,s29/HLV1,s15 versus LHV20,s29/LHV20,s15: unpaired-t = 3.267, p = 0.004), as a consequence of
a stronger transfer effect in stage 1. All these findings clearly indicate that the transfer of learning was
stronger when going from high to low spatial frequency than going in the opposite direction.

4. Discussion
We investigated the spatial frequency selectively of perceptual learning of stereopsis, finding
approximately 60–70% improvement in stereoacuity across a broad range of frequencies, from as low
as 1 cycle per degree to near the resolution acuity limit (figure 4). The spatial frequency bandwidth of
stereo perceptual learning (≈4 octaves) is very much broader than the ≈1.4 octave bandwidth of contrast
sensitivity learning in normal observers [30].

Surprisingly, the improvement also generalized to the orthogonal orientation. With Gabor stimuli,
such as those used here, stereoacuity with vertical carrier gratings is highly precise, since the
vertical contours provide the necessary horizontal disparity information for making fine stereoscopic
judgements. By contrast, with horizontal carrier gratings stereoacuity is coarse—almost a log unit worse
than with vertical carriers—because the observer must use the Gaussian envelope to make the depth
judgement. Thus, it is remarkable that the learning generalizes across orientations.

This broad transfer of depth discrimination learning contrasts with the highly specific learning
that is found in other basic visual functions such as discrimination of contrast, orientation, spatial
frequency, direction, depth, Vernier and texture segmentation [31]. The broad transfer reported here is
also at odds with the highly orientation-specific learning [15] that has been reported with random dot
stereograms. We have no ready explanation for this discrepancy; however, methodological issues are
important in perceptual learning [32]. Random-dot stereograms may represent a much more difficult
task compared with our contour stereoacuity test, because many observers have difficulties seeing these
type of stereograms [19]. As task difficulty increases, learning can become more specific to stimulus
features [13]. However, one possible explanation is that our contour stereoacuity test provides two
sources of depth information (i.e. envelope and carrier cues), whereas random-dot stereograms provide
only a single source of depth information.

Broad transfer occurred even when the visual stimuli differed in appearance from the previously
trained ones (for example, see the three stimulus conditions displayed in figure 2). However, the nature
of the task remained essentially the same: to determine the stereoscopic depth of the target, relative to
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Figure 4. Enhancing coarse-to-fine stereoacuity with perceptual learning. Mean per cent improvement in stereoacuity resulting from
direct training as a function of spatial frequency (stage 1 of the two experiments; V5 from the first experiment; V1 and V20 from the
second experiment). Therewas no significant difference in per cent improvement among the three frequency groups (ANOVA: F = 0.795,
p= 0.461).

the surround. This broad generalization suggests that the learning occurred in the higher level cortical
areas, beyond the point of binocular convergence [33].

A close look at the learning curves in figures 2 and 3 reveals that the session-by-session improvements
were smooth and gradual, requiring more than a total of 5000 response trials to reach a plateau,
suggesting that this was genuine perceptual learning rather than the result of instrumental or cognitive
learning (i.e. learning to do the task). Similar learning profiles have been reported for learning contour [6]
and random dot stereograms [34,35], with considerable inter-observer variability of learning [36].
Although we cannot completely rule out the possibility that in part the improved stereoacuity might
reflect improved vergence, and thus reduced vergence noise, previous work has demonstrated that
stereopsis is robust to disjunctive eye movements [37]. We believe that the enhanced visual performance
reflects the effects of genuine neural plasticity triggered by perceptual learning.

The issue of specificity/generalization has attracted wide attention in the field of perceptual
learning [38], both for theoretical and practical reasons. Perceptual learning would not be practical for
clinical use [39–42] if the learning effects were very specific to the trained stimulus features. In that
case, it would be necessary to perform training with a large number of visual targets of different sizes,
spatial frequencies, orientations, shapes, etc., in order to reap the benefits of improved stereopsis in the
real world.

How can we optimize perceptual learning in order to maximize visual performance? Our findings
provide some hints. One surprising finding is that the apparently stable ‘learning plateau’ for lower
frequency stimuli (V5 (figure 2, stage 1) and V1 (figure 3, stage 1)) can be further stretched by subsequent
training with higher frequency stimuli (V10 (figure 2, stage 3) and V20 (figure 3, stage 2), respectively).
One simple explanation is that the observers had not yet reached a performance plateau in stage 1, but
we believe that was not the case. First, in a preliminary study adopting an extended training protocol
consisting of 25–30 sessions, we found that 10–12 sessions were sufficient to reach a performance plateau
for stereoacuity; therefore, we decided to do 15 sessions in the present experiments. Second, regression
analysis (V5: 16 sessions, s1–15 and s29) with an additional plateau parameter (r2 = 0.925) provides
a better fit than a 2-parameter model with no plateau parameter (r2 = 0.891), further supporting the
occurrence of the performance plateau during the course of learning. Third, we note that it is not simply
the extra number of sessions that matter. When the orientation of the carrier gratings was orthogonal in
the subsequent training (H5 (figure 2, stage 2)), no further enhancement beyond the ceiling was obtained
for V5.

This ‘beyond-the-plateau’ learning appears to be specific to stimulus orientation. As shown in figure 2,
the subsequent training with finer stimuli (i.e. V10) actually transferred back only to those previously
learned coarser gratings with the same carrier orientation (i.e. V5), but not to the orthogonally oriented
ones (i.e. H5). Similar orientation-specific ‘relearning’ was observed for horizontally oriented stimuli
(i.e. H5) following generalization from practicing with vertically oriented stimuli (i.e. V5). We also found
that despite substantial transfer from low to high spatial frequencies (i.e. figure 2a, V5; figure 3a top
panel, V1), subsequent direct training resulted in a small further improvement in stereoacuity for higher
spatial frequencies.

Thus, while there is broad transfer of stereo learning in the first phase, it appears that supplementary
direct training may be necessary when optimizing perceptual learning across orientations. Interestingly
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in most cases, the time needed to achieve plateau performance was quicker than the initial learning
(figures 2a and 3a, stage 1). Similarly, earlier studies have reported that considerable practice is necessary
when learning new stereo stimuli with different shapes [17,19,20].

We found asymmetric transfer of stereo learning. The bandwidth of transfer was broader when
training was at a high spatial frequency than at a low spatial frequency (figure 3b). Task difficulty [13,43]
and task precision [44] can strongly influence the generalization of learning. Perhaps the higher
frequency task with lower thresholds represents an easier task compared with the lower frequency one,
thereby facilitating the transfer.

The specificity of perceptual learning for low-level stimulus features has often been taken as reflecting
neural alterations at the early stages of cortical processing [33]. Alternatively, with more knowledge
about the stimulus configuration acquired during practice, observers can construct a more efficient,
better-matched template [25] at the higher cortical levels to more accurately localize the visual target
presented to each eye and compute binocular disparity. Previous studies have shown that selective
spatial attention mechanisms can explain the learning generalization to untrained retinal locations [18,
21]. Notably, a double training technique has been demonstrated to be useful in enabling transfer of
learning across retinal locations or orientations through top-down processes [45,46]. In agreement with
our results, recent research suggests that perceptual learning can arise from different levels of visual
processing: decision rules, attentional learning and physiological changes [32]. Changes in training
procedures can cause a preference shift from one of those mechanisms to another.

5. Conclusion
In short, both coarse and fine stereopsis can be enhanced by perceptual learning. Using narrow-
band luminance spatial frequency stimuli, we were able to systematically characterize the time-course,
magnitude and specificity of stereoacuity learning over a large range of spatial scales, and revealed useful
strategies to boost the learning outcomes. The multi-stage training protocol allowed different levels of
visual processing to be isolated, providing new insights into the learning mechanisms of stereopsis. For
practical purposes, one of the most important findings is the asymmetric transfer of learning across the
spatial frequency spectrum. Learning transfers more efficiently from high to low spatial frequencies than
from low to high. The ability to generalize efficiently may provide a key principle for triggering neural
plasticity and restoring impaired binocular vision in clinical situations.
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