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Sequence analysis
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Abstract

Motivation: Not only sequence data continue to outpace annotation information, but also the prob-

lem is further exacerbated when organisms are underrepresented in the annotation databases.

This is the case with non-human-pathogenic viruses which occur frequently in metagenomic pro-

jects. Thus, there is a need for tools capable of detecting and classifying viral sequences.

Results: We describe VIRALpro a new effective tool for identifying capsid and tail protein

sequences, which are the cornerstones toward viral sequence annotation and viral genome

classification.

Availability and implementation: The data, software and corresponding web server are available

from http://scratch.proteomics.ics.uci.edu as part of the SCRATCH suite.

Contact: clovis.galiez@inria.fr or pfbaldi@uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As of April 2015, 77% of the protein sequences referenced in

UniProtKB/TrEMBL (Magrane and Consortium, 2011) are pre-

dicted protein sequences. For the non-predicted sequences, only 2%

have been confirmed through biological evidence while the remain-

ing 21% is inferred by homology and this imbalance will continue

to worsen in the foreseeable future. The situation is even worse for

specific classes of important organisms, in particular viruses the ma-

jority of which lack proper annotation. For instance, it is typical to

encounter only 10% of annotated sequences in marine viral samples

(Holmfeldt et al., 2013; Hurwitz and Sullivan, 2013; Suttle, 2007),

although these viruses play key roles in the ecosystem. It is for in-

stance estimated that marine viruses kill up to 20% of the living bio-

mass in the oceans daily, and this organism turnover may play a

major role in the global carbon cycle (Lehahn et al., 2014). In short,

new computational tools are needed to help identify and annotate

unknown viral sequences.

One criterion for virus classification is the genomic organization

and sequence of the genes coding for structural proteins—i.e. the

proteins that compose the virion, in particular capsid and tail pro-

teins. Capsid proteins in particular are present in all viral genomes

and, as suggested in Seguritan et al. (2012), the capsid genes may be

used as an equivalent of 16S rRNA for prokaryote identification in

genomes and metagenomes.

Previously, a tool called iVireons (Seguritan et al., 2012) has been

introduced to detect structural proteins in phages—i.e. viruses that in-

fect bacteria. The tool uses a single input—the average amino acid

composition of the query sequence—which is fed into three classifica-

tion neural networks: one for all structural proteins, one for tail pro-

teins and one for capsid proteins. As stated by the authors, the tool

performs well at detecting phage capsids, but its performance de-

grades when used to detect capsids in other viruses. The structural

protein predictor has a reasonable sensitivity to all capsids, but its spe-

cificity is too low. To address these problems we develop VIRALpro
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using Support Vector Machines (SVM) and extended set of features to

identify capsid (CAPSIDpro) and tail (TAILpro) sequences.

2 Methods

Data
We built a dataset of, respectively, 2648 and 483 non-redundant

capsid and nucleocapsid sequences. The non-capsid sequences were

randomly chosen from the phage non-structural sequences

(Seguritan et al., 2012) and from the NCBI protein database by

querying for non-phage, non-structural, proteins (see Supplementary

materials). When merging this set of sequences with the training set

of iVireons MCP1:1 denoted by iVcapsid, we obtained 3888 positive

and 4071 negative sequences. We refer to the resulting dataset as

Cprotrain. Using the same process, we built a dataset of 1719 posi-

tives tail sequences and when merged with the training set of

iVireons tail 1:1 ANN, we obtained 2574 positive and 4095 nega-

tive tail sequences. We refer to the resulting dataset as Tprotrain. We

denote by iVtest the test set of phage protein sequences described in

Seguritan et al. (2012). We used 10-fold cross validation on the

training sets to assess performance. For each training set, one of the

folds is used as the validation set to produce the plots in Figure 1.

Features
To identify capsid or tail protein sequences, we use the average

amino acid composition (20 features) as well the average secondary

structure composition (three features), as predicted by SSpro

(Magnan and Baldi, 2014). In addition, we built 3380 Profile

Hidden Markov Models (HMMs) to locally probe the sequences.

These HMMs are built using HMMER (Eddy, 2009) from multiple

sequence alignment of contact fragments of capsid proteins—which

are essentially pairs of fragments that are close in the tertiary struc-

ture (see Supplementary materials) and whose structure has been

shown to be well conserved even for distantly related homologs

(Galiez and Coste, 2015). The e-values of the different HMMs are

linearly combined using coefficients that are obtained using the

RankBoost algorithm (Freund et al., 2003). Finally, the HMMs yield

three features: the boosted linear combination of HMM e-values,

the e-value of the best HMM hit and the number of HMM hits

(e-value of 10 or better). Finally, we train an SVM (Chang and Lin,

2011) with these 26 features.

3 Results

Figure 1 shows the receiver operating characteristic (ROC) curves of

VIRALpro and iVireons on various validation sets. VIRALpro pro-

vides a significant detection improvement in all cases, even when re-

stricted to phage proteins only. The improvement is particularly

pronounced in the case of difficult sequences with no homology to

the training sets (e-value �0.001) where the performance of BLAST

or iVireons degrades to levels close to random—the area under the

curve (AUC) of the ROC curve is 54.9 and 61.5%, respectively.

These results are further confirmed using various performance met-

rics given in Table 1 for CAPSIDpro. Similar results are obtained for

TAILpro (see Supplementary materials).

Finally, we tested VIRALpro on the unannotated portion of

three metagenomic sequence datasets: (1) RNA viruses from coastal

seawater in British Columbia (Culley et al., 2006; RnaCoastal); (2)

marine phages from Baltic seawater (Oresund); and (3) marine

phages sequenced by the Broad Institute under the Gordon and

Betty Moore Foundation’s ‘Marine Phage, Virus and Virome

Sequencing’ project (Moore) (see Supplementary materials).

RnaCoastal and Oresund-Struct have 0% of their sequences that

share any homology with our positive training set. Oresund-Hypo,

Oresund-NonStruct and Moore have, respectively, 0.2, 1.3 and

1.8% of their sequences that share some homology (e-value �0.001)

with our positive training set. Table 2 provides the recall obtained

using VIRALpro. Interestingly, TAILpro detects some sequences in

RnaCoastal, suggesting that these may be fiber proteins that may

confirm the presence of rotaviruses in the sample, as suggested in

Culley et al. (2006). In short, VIRALpro clearly outperforms

Fig. 1. ROC curves on the validation sets of (A) CAPSIDpro; (B) TAILpro; (C)

CAPSIDpro when removing all non-phage sequences from the positive set;

and (D) CAPSIDpro when keeping only sequences that have no homology to

the training set

Table 1. Performance metrics for iVireons and CAPSIDpro

Test Measure iVireons MCP 1:1 iVireons Structural CAPSIDpro

iVtest Accur. 90% 80% 97.3%*

10-fold iVcapsid Accur. 91.3% – 96.8* 6 2.5%

10-fold Cprotrain AUC 73.9 6 2.4% 85.1 6 2.1% 95.9 6 0.8%

F-Meas. 51.1 6 2.6% 77.9 6 2.5% 89.5 6 1.5%

Validation Set AUC 76% 87.1% 96.8%†

F-Meas. 51.7% 79.5% 91.3%†

Since the fold distribution for iVireons is not publicly available, a * indicates that CAPSIDpro was trained with iVcapsid to be as close as possible to the training

of iVireons MCP1:1. Tests on the validation set, where CAPSIDpro has been trained only on the remaining 90% of the training data, are indicated by a †. Best

results are shown in bold.
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existing tools for predicting capsid and tail proteins and can be used

as a screening tool in metagenomic and other projects.
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Table 2. Recall on the metagenomic sequences annotated as

unknown

Dataset Recall CAPSIDpro (%) Recall TAILpro (%)

RnaCoastal (86) 40.7 22.1

Oresund-Struct (85) 36.5 47.1

Oresund-Hypo (524) 22.0 10.1

Oresund-NonStruct (156) 12.8 8.3

Moore (1172) 33.8 27.4

The total number of sequences is given in parentheses
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