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1 Abstract: Nowadays, the growing energy consumption and the need to face pollution due to its
2 generation concern from consumers to providers. Energy consumption in residential buildings and
3 houses is about 22% of total energy production. Cutting-edge energy managers aim to optimize
4 electrical devices in homes, taking into account users’ patterns, goals, and needs, by creating
5 energy consumption awareness and helping current change habits. In this way, energy manager
6 systems (EMSs) monitor and manage electrical appliances, automate and schedule actions, and make
7 suggestions on electrical consumption. Furthermore, Gamification strategies may change energy
8 consumption patterns through energy managers, which are seen as an option to save energy and
9 money. Therefore, this paper proposes a personalized gamification strategy for an EMS through

10 an Adaptive Neuro-Fuzzy Inference Systems (ANFIS) decision-making engine to classify the level
11 of electrical consumption and persuade the end-user to reduce and modify consumption patterns,
12 saving energy and money with gamified motivations. These strategies have proven to be effective
13 in changing consumer behavior with intrinsic and extrinsic motivations. The interfaces consider
14 three cases for summer and winter periods to calculate the saving-energy potentials: (1) for a type of
15 user that is interested in home-improvements effort while help saving energy; (2) for a type of user
16 that is advocate to save energy; (3) for a type of user that is not interested in saving energy. Hence
17 each interface considers the end-users current consumption and possible availability to modify their
18 consumption habits using their current electrical devices. Finally, an interface displaying the electrical
19 consumption for each case exemplifies its linkage with EMSs.

20 Keywords:  Energy Management System, Gamification, Smart Home, HMI, ANFIS, HVAC,
21 Thermostat, Tailored Products

22 1. Introduction

23 Nowadays, the quality of life depends mainly on electrical devices, shaping how people dwell,
24 work, recreate, and transport. According to [1], the energy consumed worldwide by residential
25  buildings represent 21.69%, commercial sector 18.22%, transportation sector 27.84%, and industrial
26  sector the rest. Nevertheless, the use of energy is compromised by how this energy comes mostly,
27  which is from thermoelectric plants that generate carbon dioxide emissions that threaten the quality
28  of life from a global perspective. Therefore, it is essential to use energy efficiently and include
29  renewable energy sources, which cannot replace the energy from thermoelectric plants. The level
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30  of technology reached today allows monitoring, measuring, controlling and scheduling electrical
31  appliances or devices in real time at home, work, and public places [2]. At home, modern 
electrical
32  devices allow people to have the comfort level demanded today, facilitating domestic tasks, home
33  office, homeschooling, recreational activities, entertainment, and the involvement with the community
34  to which they belong [3].
35 Currently, Energy Manager Systems (EMSs) allow handling the energy consumed by a group of
36  people in a household and provide specific tools to make it as efficient as possible [4]. Nevertheless,
37  the variety of electrical devices and their complexity make their integration, programming, or effective
38  use within the EMS difficult, especially for those not related to cutting-edge technology, like senior
39  users or digital illiterate users [5]. Moreover, people develop energy consumption patterns that usually
40  are related to cultural or psychological outcomes that are difficult to change [6]. Usually, residential
41  consumers do not have tools to measure and alter their energy consumption or control electrical devices
42  when energy consumption is metered only monthly [7]. New tools and methodologies to improve
43   the estimation accuracy of residential energy consumption are necessary to improve energy-saving
44  potential calculations [8]. In this way, modifying habits or the creation of new ones may be possible,
45  overlooking energy demand in the market and price variations, or understand their environmental
46  impact related to electricity consumption.
47 Gamification strategies allow people to change their consumption and social involvement through
48  incentives, environmental awareness, and possible competition and cooperation with other community
49  members in similar conditions [9]. Gamification techniques applied to EMS make it possible to
50  stimulate users to diminish their energy consumption and save money on billing [10], which entails
51  reducing greenhouse gas emissions produced by the primary electricity grid. Besides, these techniques
52  may favor renewable energies, exchange information in real-time with suppliers and consumers for
53  energy resilience and security. They provide valuable tools for the energy market to better distributor
54  system operators (DSOs) and demand response (DR) programs while creating or increasing the
55  community’s sense of belonging [11].
56 Current approaches for gamified saving-energy strategies try to positively influence the behavior
57  of the users towards efficient consumption by socio-technical systems, which proved that managing
58  the consumers‘ demand gives a more sustainable consumption [12]. Some of these application
59  are Wattsup [13], that display energy consumption and CO2 emission data through a social media
60  application, giving users the ability to share and compare household data with their friend. This
61  app uses an energy monitoring device which transmit the data to a server for a a social media
62  gamified application. Another interesting project is enCOMPASS [14] which develops a gamified
63  web application accessible via PC and cell phone enabling an interaction visualization of energy
64  consumption patterns.
65 Using current technologies in artificial intelligence as an adaptive neuro-fuzzy inference
66  system (ANFIS), fuzzy logic, or neural network decision systems, gives insights regarding the type of
67  gamification elements that can be displayed within the human-machine interface (HMI) environment
68  to promote electrical energy reduction [15]. The relevance of these artificial techniques’ adaption is
69  that they emulate human making decisions so that reliable proposals can promote energy reduction.
70  In this way, it is possible to think of an integral and complex system for efficient energy management,
71  favoring renewable energies, awareness of consumption and energy savings, analysis tools to improve
72  techniques and algorithms related to forecasting consumption patterns. This project uses AI and fuzzy
73  inference to recognize consumption patterns and calculate potential changes in users' behavior to
74  achieve energy efficiency, while offering an uncomplicated and custom interface to the user. Current
75  gamified approaches do not offer a tailored interface for user engagement.
76 Therefore, this paper presents three types of users based on their user’s preferences and goals.
77  Then, it analyzes the energy usage impact for each home located at Concord, California, with a focus on
78  the heater/furnace and air conditioner. Finally, this proposal presents a tailored gamified application
79  linked to an EMS for each case and the proposal of flexible loads required during on-peak periods
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80  and the time of use (ToU). This gamified application uses an ANFIS decision system where the inputs
81  consider the electrical consumption and the set point during the summer or winter seasons to deliver
82  the type of gamified motivation needed to promote household appliances’ flexible usage.
83 This paper’s structure is as follows: Section 2 presents the State of Art regarding the EMS,
84  gamification, ANFIS, and thermal comfort. Section 3 presents the three-step methodology used for this
85  paper. Section 4 describes the results by step of the previous section and the three tailored gamified
86  interfaces for each case. Section 5 presents a discussion regarding the current EMS and the gamification
87  approach with the advantages and disadvantages of the present proposal. Finally, section 6 gives
88  conclusions and future work.

89 2. State of Art

90 Today’s technologies aim to inter-connectivity, automation, and high performance of the electrical
91  grid using the Internet of Things (IoT) and Artificial Intelligence (AI) technologies, as Big Data (BD)
92  and Machine Learning (ML) [16,17]. The smart new paradigm in the electrical grid allows the energy
93  provider and end-user to track the energy consumption in real time and known how energy is
94  being consumed in each electrical device, known as energy disaggregation usually done through
95  Non-Intrusive Load Monitoring (NILM) techniques [18,19]. This provides the opportunity to solve
96  particular problems as energy efficiency through the existing tools (e.g., smart metering infrastructure,
97  smart electrical devices, smart plugs and sensors, internet, programming tools, and user interfaces) in
98  order to build the smart grid and control the electrical devices involved [20,21]. A well known tool to
99  deal with energy efficiency is EMS [22], where the information related to the energy consumption, the

100   electrical market, the user preferences and consumption patterns, as well as indoor thermal comfort and
101  outdoors or environmental conditions can be merged into a decision-making process for optimizing
102  energy usage.

103  2.1. Energy Management System

104 EMS is a computer-aided system to monitor, control, and optimize the generation, distribution,
105  and consumption of the electricity within the grid, keeping the balance between supplied and
106  demanded energy at any given time, managing the available DERs, the loads’ scheme, and energy
107  exchange with the primary grid [23].  EMS presents information about the electrical network
108  status (e.g., energy stored, forecast energy production by distributed generators (DG), appliances
109  scheduling), enabling the decision-making about its safe and cost-effective operation [24]. Likewise,
110  EMS would collect generation, consumption, and storage information of past and current performance
111  to improve the decision-making process, optimal manipulation of controllable devices, consumption
112  and generation forecasting, and finally, network management recommendations. It would also provide
113  relevant information on the weather, the energy market, and billing user status [2]. In this way, EMS
114  would manage controllable loads using communication technologies, sensors, and actuator devices,
115   nowadays usually included in electric devices or modern appliances. Thus, enhancing the cost-effective
116  and reliable operation of the user electrical grid, a smart home in this case, by actively participation in
117  the electricity market [25].
118 The current trend favors individualized and private monitoring of energy resources, facilitating
119  the inclusion of distributed energy resources (DER) such as low voltage generators from renewable
120  sources, electric vehicles (EV), and optimal managing of programmable and controllable devices such
121  as thermostats HVAC systems [26–28]. In [27], uncertainty and load demand variability in a smart
122  home are analyzed without the user’s preferences nor goals, and in [29], is assumed a certain level of
123  comfort. Simulation frameworks [30,31] control electrical devices into a dynamic price scheme but do
124  not consider human behavior as a part of the equation to achieve energy efficiency. In this way, the
125  social part needs to be seen, so the end-users can adopt the EMS without negatively affecting their
126  social behavior, where consumption patterns and DR programs allow to reach energy efficiency and
127  then achieve a smart and sustainable electrical grid that requires the society [32].
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128 Nowadays, people can reduce and manage the electricity consumption in homes by installing
129  home energy management systems (HEMS). Information and Communication Technologies (ICT)
130  will enable two-way communication among the customers and distributors, providing real-time
131  rates and billing status [2]. The EMS requires a user-friendly interface, display energy consumption,
132  auto-configuration, or easy set-up to enhance user interaction with its energy distributor. Users will
133  be able to optimize consumption when the price is high, and distributors will be able to shift and
134  shape demand, providing statistical data to predict energy consumption. In this way, EMS allows to
135  generation data bases of consumption patterns used in algorithms to optimize energy consumption 
[33].
136  Consumption patterns are essential to predict energy consumption, shape the energy demand, and
137  favor renewable sources. Energy consumption patterns of a household contain the load scheme of
138  appliances and electrical devices as EVs. The historical performance of DERs, as photo-voltaic panels,
139  wind turbines, and batteries, are used to propose to the user changing its consumption habits by
140  scheduling appliances and suggestion strategies. [34].
141 Therefore, the human factor must be included in the electrical simulators using probability
142  functions based on actual data. Besides, one way to emulate the users’ response on DR programs and
143  their interaction with DSOs, gamification strategies can be used to study consumption patterns and
144  how to change them to achieve energy efficiency. This is possible modeling electrical cases through a
145  network of interconnected agents, in order to test stochastic behaviors. Figure 1 shows energy entities
146  connected and the interaction among the load scheme, end-user, and the energy provider.

Neighborhood

Smart House

c

c c

c
c

User Interface

Information flow

Multimedia 
Application

Figure 1. EMS and gamification strategy diagram.

147 2.2. Gamification and Serious Games

148 Gamification uses game elements and game-design techniques in a real-life context [9]. Some
149   gamification strategies propose to modify the demand taking advantage of the energy generated by
150  DERs, that usually work when demand is much lower than during peak hours [35]. Moreover, the
151  users compete in shared spaces to save energy in real-time, using challenges, social sharing, rewards,
152  leader-boards, points, tips, levels, rankings, avatars, badges to promote environmental education,
153  consumer awareness and users engagement [36]. Therefore, gamification’s primary goal is to motivate
154  users by using game-like techniques in the real world to shape individuals’ behavior and improve
155  their skills [12].
156 In [37], they analyzed Fit for Green, PowerAgent, Greenify, and PowerHouse gamified
157  applications to suggest three best practices for sustainable applications: Make sustainability, fun,
158  and rewarding experience, create positive peer pressure sustainability issues, and use gamification to
159  promote meaningful action. Regarding the gamification elements, these applications considered:

160 • Fit for Green: uses feedback and rewards by employing cardio machine workouts to promote
161 environmental awareness through two impact workouts. The first by promoting exercise and

Demand-side
operator



162 feeding that energy back into the grid. The second, by generating funds for charities that protect
163 the environment.
164 • Greenify: Focuses on motivating senior users to become aware of climate change by enhancing
165 social sharing and tips between them to address this problem.
166 • PowerHouse: Uses avatars and archetypal characters to promote the sense of belonging of
167 the end-user, so the users accept exploring the cause and effect relationships of daily activities
168 regarding electrical consumption and receive instant feedback.
169 • PowerAgent: Uses appealing computer games and mobile applications to promote changes in
170 household users’ energy consumption patterns.

171 Besides, an energy gamified application must be environmentally goal-oriented with game-like
172  features [38]. In [36], they analyzed nineteen gamified projects from Europe to propose these game
173  design elements to engage end-users in energy applications: statistics, messages, tips, discounts
174  in electricity bill, virtual currency, prizes, offers and coupons, competition, collaboration, energy
175  community, dashboard, leader-board, progress bar, message box, notifications, degree of control,
176  points, badges, and levels.
177 Table 1 shows the extrinsic and intrinsic motivations used in this paper [32,38]:

178 • Extrinsic motivation: People are motivated because they want something they cannot get, and
179 earning it infers outer recognition or even monetary prizes. Include factors of external control,
180 identification, and integration
181 • Intrinsic motivation: The activity is rewarding on its own without a particular purpose to 
succeed.
182 This motivation considers autonomy, competence, and relatedness

Table 1. Gamification elements for extrinsic and intrinsic motivations.

Extrinsic motivations Intrinsic motivations

Offers, coupons Notifications
Bill discounts Messages

Challenges Tips
Levels Energy community

Dashboard Collaboration
Statistics Control over peers

Degree of control Social comparison
Points, badges, leader-board Competition

183 As described in [36], a gamified energy application framework can be compound of technical of
184  technical, behavioral, and economic systems. Technical component has the smart metering system,
185  EMS, web/mobile applications, network and software, which are necessary to monitoring and control
186  the energy consumption and users response. The game design elements for the behavioral aspect are
187  information provisioned, rewarding system, social connection, user interface, and performance status.
188  For the economic aspect or value proposition, the components are the residential customers, suppliers,
189  and society, which bring significant value streams to users while driving positive and measurable
190  business outcomes for energy providers and society.
191 Previous research includes the use of AI for residential EMS with no prior linkage to a gaming
192  strategy that engages the end-user in the process of energy reduction [39–41]. In addition, the
193  previous gamified strategies did not consider personalizing interfaces for energy reduction [42–
46]
194  or only proposed frameworks with no interface proposals [47,48]. Hence, some proposals include
195  incorporating tailored gamified interfaces through a three-step framework that continuously runs
196  through the HMIs to receive updates, feedback and adjust the gamified interface to engage, teach,
197  and motivate end-users to save energy in connected thermostats [49–52], smart homes [53,54], smart
198  communities, and smart cities [55].



199  2.3. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for gamified interfaces

200 A fuzzy inference system is a fuzzy-rule-based system consisting of linguistic rules or conditional
201  states expressed in the form IF A - Then B, where A and B are labels of fuzzy sets. Fuzzy systems are
202  used to capture human thinking or the reasoning of human ability to make decisions in an 
environment
203  of uncertainty and imprecision [56]. On the other hand, an adaptive network is a structure consisting
204  of nodes and directional links through which the nodes are connected, their outputs depend on the
205  parameters about these nodes, and the learning rule specifies how these parameters should be changed
206  to minimize a prescribed error measure [57]. In that regard, several proposals have been made, such
207  as the combination of artificial neural networks with fuzzy systems. Artificial neural networks can
208  learn and adapt from experience, thus complementing fuzzy systems. Among the most important
209  techniques is the ANFIS, an adaptive neuro-fuzzy inference system proposed by Jang [58] in 
1993,
210  which generates fuzzy IF-THEN rule bases and fuzzy membership functions automatically. ANFIS is
211  based on adaptive networks, a super set of feed-forward artificial neural networks with supervised
212  learning capabilities as stated by Jang in [58] and [59]. The basic learning rule of adaptive networks
213  is based on the gradient descent and the chain rule; however, this method is usually slow and likely
214  to become trapped in local minimal. Thus, Jang proposed a hybrid learning rule that combines the
215  gradient method and the least-squares estimate to identify parameters.
216 In [54], they proposed the inclusion of Alexa and cameras to track the senior people and
217  monitor their daily mood to improve their quality of life by promoting social inclusion and physical
218  exercise. The multi-sensor system is used within a smart home environment to identify the physical
219  characteristics of older people. Thus, the voice and face detection are evaluated on an ANFIS system
220  to propose the personalized gamified elements that run in an HMI needed for each type of user.
221 In [55], based on the type of environmental home and the amount of electrical energy usage,
222  they used the ANFIS decision system to propose a gamified interface based on intrinsic or extrinsic
223  motivations.

224 2.4. Thermal Comfort

225 Thermal comfort is essential in a built environment for energy saving, where data-driven thermal
226  comfort models enhance the prediction accuracy to maintain optimal the human comfort reaction and
227  its interaction with the environment. The existing thermal comfort models are applied in different
228  environments like sleeping environments, indoor and outdoor environments. These models consider
229  features such as group type of people, such as elderly and different races, gender, age, weight,
230  the amount of activity, clothing thermal resistance, air temperature, radiation, relative humidity,
231  wind speed, activity intensity, metabolic rate, and other factors [60]. Besides physiological aspects,
232  weather conditions, and level of activity and occupancy in the house, psychological aspects and users’
233  preferences are important to set up thermal comfort [60].
234 The Universal Thermal Climate Index (UTCI) considers a reference environment with 50 percent
235  relative humidity, vapor pressure below 20 hPa, air temperature, wind speed of 0.5 m/s at 10 m height
236  or 0.3 m/s at 1.1 m. Besides, the thermal stress is categorized within the ten ranges of different values
237  of the UTCI [61]:

238 • Extreme heat stress: above 46 ºC
239 • Very strong heat stress: +38ºC to +46ºC
240 • Strong heat stress: +32ºC to +38ºC
241 • Moderate heat stress: +26ºC to +32ºC
242 • No thermal stress: +9ºC to +26ºC
243 • Slight cold stress: 0ºC to +9ºC
244 • Moderate cold stress: 0ºC to -13ºC
245 • Strong cold stress: -13 ºC too -27ºC
246 • Very strong cold stress: -27ºC to -40ºC
247 • Extreme cold stress: below -40ºC



248 Thermostats stand for managing thermal comfort and energy consumption, whether temperature
249  is good enough in home, and how much comfort users are willing to concede to save energy and
250  money. Because thermal comfort has to do with human psychology, there are many fuzzy elements in
251  the modeling of these systems, where technologies such as machine learning and big data help create
252  adequate and functional models [62]. ANFIS is widely used in thermal comfort models to calculate
253  building energy needs by controlling humidity and temperature in HVAC systems, and thermostats
254  [15,63,64]. In this study, the buildings’ construction material is taken into account to calculate the
255  indoor temperature with the outdoor one. This information is important when thermal comfort is
256  delimited form users preferences to calculate the energy-saving potential.

257 3. Methodology proposed for EMS using a gamified strategy

258 Simulation allows recreating different scenarios with different conditions and users’ responses,
259  using databases of previous performances and suitable models for recreating the process, in order
260  to analyze the viability before implementation [65]. As explained in [66], the simulation experiment
261  process has the following states.

262 3.1. Problem formulation

263 Problem formulation: matching users’ patterns and preferences with a customized EMS for
264  households to propose changes in the user behavior when predicting energy efficiency consumption,
265  using a gamification strategy and prioritization scheme. In this step, the metrics, measures, and
266  parameters are defined. Metrics are the kilowatts per hour (kWh) consumed and supplied, the 
US$
267  billing and dynamic rates, and carbon emission footprint in kilograms (kg). Measures will be the
268  historical energy consumption by the smart home’s electrical grid at different rates by different types
269  of users. Parameters are the simulation lapse-time, power units, and delimitation of human variables
270  (such as comfort level, environmental commitment, and savings goals).
271 Inputs of the system:

272 • Available electrical consumption/generation data and home energy profile: power features of
273 loads and DERs
274 • Billing rates: currency and energy rates by hour, weekday, weekend, and season
275 • Temperature and season: outdoor temperature, indoor temperature, summer or winter season
276 • User preferences, goals, and patterns: environmental commitment, energy saving goals, thermal
277 comfort and other home comfort, level of activity, schedules

278 Outputs of the system :

279 • Proposed energy consumption scheme for a particular user preferences and conditions
280 • Energy comparison with actual consumption patterns and proposal energy consumption: energy
281 saving, billing status, and carbon emission indicators
282 • Gamification strategy to achieve energy efficiency goals: combination of intrinsic and extrinsic
283 motivations, and interface proposal

284  3.2. Experiment design

285 The general framework is shown in Figure 2. User preferences and goals are delimited based
286  on four categories: environmental commitment, tech field knowledge, desired comfort, and saving
287  money interest. House energy profile gives the power consumption of each appliance and electrical
288  device and the consumption patterns based on the schedule and level of activity for that group of 
users.
289  Then, the decision-making process classifies and prioritizes electrical devices, where the algorithm
290   activates the automatic and controllable devices and proposes the gamification strategy for users. EMS
291  and gamification strategy are shown in the energy consumption scheme for validation and usability
292  evaluation of the proposed HMI. Each step is described below.
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Fuzzy logic scheme for user type delimita on

Figure 2. EMS diagram flow.

293 • Step 1: Figure 3 shows the user’s preferences goals regarding saving-money, comfort level,
294 environmental commitment, and technology knowledge.  The four goals reach the same
295 destination through different routes: saving energy. Saving-money goal refers not only to
296 saving energy reducing consumption, but also to shift consumption to cheaper energy rates
297 during the day, consuming same energy but paying less. Environmental commitment means
298 saving energy and the possibility to choose the technology of the energy source, when is 
feasible.
299 Comfort goal is related to the thermal comfort and the usage of appliances when the user wants
300 to do it without caring about other goals. Finally, the technology knowledge point is related to
301 the level of skills the user has to use their appliances, either user interfaces, smart appliances,
302 schedule devices. It is essential to understand and profile the users better so flexible loads can be
303 proposed based on their needs and expectations during this step.

304 In [35,67], they segmented the users into five categories: green advocate, traditionalist
305 cost-focused energy saver, home-focused energy saver, non-green selective energy saver, and
306 disengaged energy saver. These categories arise from a trade-off of the possible preferences
307 that users may have when using electrical energy in energy-efficiency programs for utilities
308 in US residential markets. A fuzzy logic scheme is proposed to develop a tool to use users’
309 predisposition to participate in DR programs and the uncertainty when using their electrical
310 devices. This fuzzy logic scheme emulates how flexible the user may be when consuming energy.

Step 1

User 
inputs

Saving-money

goal Comfort level

Environmetal

commitment

Tech 
knowlege

Outpu
t

Figure 3. Diagram of Step 1.

Type 1: Green advocate

Type 2: Cost-focused energy 
saver

Type 3: Home-focused energy 
saver

Type 4: Non-green energy saver

Type 5: Disengaged energy saver
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311 Fuzzy logic systems allow representing, manipulating, interpreting, and utilizing data and
312 information that are vague and lack certainty [56]. Within these systems, the sugeno fuzzy
313 inference method uses singleton output membership functions that are either constant or a linear
314 function of the input variables, allowing cover all the possible input combinations, since it uses a
315 weighted average or weighted sum of a few data points [68]. Each type of user is described in
316 Table 2. Inputs are environmental commitment, tech field knowledge, desired comfort, and save
317 money interest. Each input of the system is ranked between 0 and 1; therefore, the fuzzification
318 step gives a linguistic value according to the membership functions (see Figure 4). If-Then rules
319 determine the output related to the type of user and its wiliness to participate in DR programs.

Table 2. Classification user scheme.

Environ- Tech Save-
Type of user Description

Show the most positive overall energy

mental 
commit-
ment

know-
ledge

Desired
comfort money 

interest

Green 
advocate

Traditionalist
cost-focused 
energy saver

Home-focused 
selective 
energy saver

Non-green 
selective 
energy saver

Disengaged 
energy saver

saving behavior, have the strongest positive
environmental sense and high interest in
new technologies.

Their  energy-saving  behavior  is
motivated by cost savings rather than
the environmental impact. Limited interest
in new technologies.

They are concerned about saving energy
and  interested  in  home-improvements
efforts.

Selective energy saving behavior focused on
"set and forget" type of interventions.
They  are  not  concerned  about
environmental considerations.

Less motivated to  save energy through
energy savings. They are not concerned
about environment nor new
technologies.

High High Low High

Medium Low Low High

Medium High Medium High

Low Medium High Medium

Low Low Medium Low

320 The user flexibility is related to the wiliness of the user to participate in DR programs to change
321 consumption patterns, depending on the equipment and infrastructure to monitor and control the
322 appliances. Then more flexible less total energy consumed is expected, changing consumption
323 patterns depending on the equipment and infrastructure to monitor and control the appliances;
324 the less flexible the total energy consumption does not have noteworthy changes. The uncertainty
325 in the user behavior leads to stochastic use of appliances, and EMS tries to minimize this
326 uncertainty when autonomously manages appliance scheduling or suggesting the user turn
327 on/off when necessary.  The fuzzy logic type II scheme uses linguistic inputs and rules to
328 assess the inherent uncertainty when using automatic, controllable devices. Upper and lower
329 membership functions used in the fuzzy logic type II can represent more suitable the inputs and
330 the output of the human behavior [69,70].
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Figure 4. Fuzzy logic type II membership
functions.

• Step 2. The consumption load profile of households. This is identified with the available historical
databases of electrical consumption patterns, identifying the load scheme of the household and
defining the average time of use and the expected initial and final times of use of each
electrical  device (see Figure  5). For this, machine learning techniques are used to discover the
consumption curve and identify the loads.

Figure 5. Diagram of Step 2.

First, fit a Gaussian process (GP) regression model training the data to predict the energy
consumption and quantify the uncertainty in the model. A Gaussian process is a
probability distribution over random functions, or infinite collection of variables (functions),
such that any subset of finite random variables has a multivariate Gaussian distribution [71].
The Gaussian process provided a predictive posterior distribution of the output with full
information of the prediction, including its confidence level and predicted mean [72]. Then,
GP allows correlating  the  energy consumption  as  the  dependent  variable (output) with
other  known,  measured  independent parameters (inputs), as the time of the day and
weather.

Let be the consumption data function a vector X in D, as the domain h has m elements, the
_h = [h(x1), h(x2), ..., h(xm)]T has the probability density for each h function and making a
correspondence between the function and its vector _h, _h = N(_µ ,  σ2), then:
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Decision Making process (diagram tree,
gami ca on strategy )
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m 1 1 2
P(h) = ∏ √

2πσ
exp(− 

2σ2 (h(xi) − µi) )

347 where σ and µ are the covariances and means of the variables in the process, or the
348 hiperparameters to be determined in a gradient-based process (non-convex optimization
349 problem).

For the Kernel function, it was used squared exponential:

h(·) ∼ GP (0, σ(·, ·))

(σ)SE(x, x1) = exp(        1     
− 

2r2I
x − x1I2)

350 due h(x) and h(x1 ) has high covariance when x and x1 are closed in input space and low
351 covariance when they are separated in the input space.

352 For this experimentation, consumption patterns were obtained from California Energy
353 Consumption databases [73] and the characterization of the power consumption and the
354 uncertainty of user behavior follows Gaussian distribution [74], obtained from consumption
355 patterns in a lapse time of a household, or consumption patterns of different households with
356 certain similarities if the community consumption is desired. In this way, an energy consumption
357 curve is calculated in order to predict consumption under certain conditions.
358 • Step 3. Decision-making process. Statistical analysis is made using Gaussian distributions based
359 on consumption databases to calculate the expected consumption (see Figure 6). Considering
360 the defined characteristics of the loads and the house’s consumption curve, the load flexibility
361 identification is analyzed and determined. Loads are classified into flexible and non-flexible
362 according to consumption patterns and loads’ features, as described in [74,75].

Step 
3

User type

 Consump on

curve 

Loads exibility

 Loads

features 

Output

kwh

t

Power [kw] TOU [h] ton/to

Appliance 1

Appliance 2

Appliance n

Weather condi ons and rates

Gami ca on techniques

Figure 6. Diagram of Step 3.

Power consump on curve

363 The tree diagram, shown in Figure 7, shows the decision-making process of the EMS related to
364 the electrical devices, taking into account the load features and user’s preferences and goals [76].
365 Then, the automation and control actions will be decided for smart, controllable appliances and
366 devices, and a proposed gamification strategy for those conventional, non-controllable loads is
367 proposed, along with an interface to control them and to monitor the energy consumption, the
368 state of the grid, and electricity rates.



output
input inputmf rule outputmf INTRINSIC MOTIVATION

Electrical
consumption

Notifications
Messages Tips

Energy community Collaboration Control over peers Social comparison Competition

Both

f
Gamified motivation

Setpoint

Logical Operations and

Offers
Coupons Bill discounts Challenges

Levels Dashboard Statistics
Degree of control Points Badges
Leaderboard EXTRINSIC MOTIVATION
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369 • Step 4. Automated, control actions and gamification strategy. Appliances actions are determined
370 for the EMS for both controllable and non-controllable devices, and the suggested actions for
371 each type of user-determined for the gamification strategy.

372 Figure 8 depicts the ANFIS model structure. The input values are the end-user’s electrical
373 consumption and, depending on the season, the heater’s setpoint or the AC. The output value is
374 the gamified motivation described in Table 1.

Figure 8. ANFIS Model Structure.

375 Once the decision-making process is taken for each electrical device based on the EMS decision
376 tree (Figure 7) and the gamification strategy (Figure 8), a probability function stands for the
377 use of the electrical device, changing the consumption pattern based on the DR program, and
378 controlling the load scheme proposed.

379 The controllability of an appliance is based on the loads’ features and user behavior.  The
380 appliance controllability is determined by turn-on control (ton) and turn-off control (to f f ). (ton)
381 stands for an appliance’s time is a schedule, either to advance or retard in time.

382 For example, an HVAC system and exterior lighting system can be automatically controlled by
383 the EMS, water heater, and water pump are sensor devices activate by their use. The washer
384 machine and clothes dryer can be used when suggested to the user because the electrical energy
385 is cheap or when PV panels are supplying enough energy.
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386  3.3. Experiment Development

387 For the experimentation, the Residential Energy Consumption Survey (RECS) database was
388  selected. RECS is a periodic survey conducted by the U.S. Energy Information Administration and
389  provides detailed information regarding homes’ energy usage. The recent version of the database
390  was released in May 2017 and reflected the 2015 RECS household characteristics [73]. For the weather
391  conditions in Concord, California, the data were selected for the meteorological database which
392  derived weather data hourly from 2004 to 2018 [77]. Using software like EnergyPlus through interfaces
393  as Ladybug through Grasshopper [78], it is feasible to look up for different periods of the year.
394  Grasshopper is a visual programming tool that allows designing a 3D model of the home and includes
395  the construction materials, occupants, schedules and loads. The model was uploaded with the TMYx
396  data file (EPW) and the occupants’ characteristics to have multiple scenarios.
397 RECS database. The IECC Climate Code [73] classified the country into eleven zones (see Figure 9).
398  The mean kWh in the U.S. in 2015 was 11,028.93 kWh, with a standard deviation of 7,049.728 kWh.
399  Figure 9 depicts the box-plots for each IECC Climate Zone and their site electricity usage in kWh. The
400  present work focused on the IECC climate zone 3C and in the Pacific Census Division. This zone 3C
401  has a mean of 5,684.16 kWh with a standard deviation of 3,170.798 kWh. Figure 9 displays different
402  box-plots for each zone and their total site electricity usage in kWh; the gray dashed line represents 
the
403  average annual electricity consumption U.S. residential utility customer.

Figure 9. Box-plot for each IECC Climate Zone and their site electricity usage in kWh.

404 Zone 3C is below the national average; hence, this paper aims to propose a strategy that promotes
405  more household reduction if possible. Based on the data analysis, Table 3 shows the classification for
406  the types of home in the United States and the IECC CLIMATE PUB = "3C" as follows:

Table 3. Five types of home based on the electric consumption from the RECS data
analysis.

Electric consumption in
homes

United States Average
Consumption [kWh]

3C IECC Climate Zone Consumption 
[kWh] (California Pacific Region)

Low Below 3,979.3 Below 2,513.36
Average Low 3,979.3 2,513.36

Average 11,028.93 5,684.16
Average High 18,078.65 8,855.14

High Above 18,078.65 Above 8,855.14

407  4. Results

408 This section presents the results from the proposed methodology, describes each step’s results, and
409  presents the tailored gamified interfaces based on the type of energy user based on their preferences
410   regarding saving-money, comfort level, environmental commitment, and technology knowledge. Thus,



411  three cases are presented: a user who has a green attitude, a user who does not care about saving
412  energy, and a user who wants to make home improvements while saving energy.

413 4.1. Step 1

414 Figure 3 shows the user’s preferences goals regarding saving-money, comfort level, environmental
415  commitment, and technology knowledge. It is essential to understand and profile the users better so
416  flexible loads can be proposed based on their needs and expectations during this step.
417 Using EMS framework simulation, it is possible to study the consumption patterns of an average
418  household, considering the family characteristics as the number of people and level of activity using
419  their appliances. The level of comfort can be determined by factors like environmental conditions,
420  house infrastructure, users’ willingness to modify consumption patterns to save money and 
energy,
421  and environmental commitment.
422 For the purpose of this paper, three types of user were selected based on their energy awareness
423  and motivation to modify their energy consumption by changing the time of use of the household
424  appliances:

425 • Case 1 - Home-focused energy saver: They are concerned about saving energy and interested in
426 home-improvements efforts.
427 • Case 2 - Green advocate: Show the most positive overall energy-saving behavior, have the most
428 robust positive environmental sense, and high interest in new technologies.
429 • Case 3 - Disengaged energy saver: Less motivated to save energy through energy savings. They
430 are not concerned about the environment nor new technologies.

431 4.2. Step 2

432 July 1st for the summer period and December 16th for the winter period were selected for this
433  analysis. The outdoor temperature was obtained from the Statistic Report of the annual weather file
434  (stat file) [79].
435 A typical year for this place is from April through October, the cooling system, and from November
436  to March, the heating system. Table 4 describes the selected scenarios that emulated the energy
437  consumption with different thermal conditions in different seasonal times.

Table 4. Heating and cooling designs with different setpoints.

Case 1: Home-focused selective Summer(AC): Jul. 01 Winter (Heater): Dec. 16
Daily Average Consumption 15.6 kWh 6.9 kWh

Unoccupied / rest setpoint (23 to 6 hours) 27 ºC 12 ºC
Occupied comfort setpoint (6 to 23

hours)
23 ºC 18 ºC

Case 2: Green advocate Summer(AC): Jul. 01 Winter (Heater): Dec. 16
Daily Average Consumption 14.2 kWh 3.65 kWh

Unoccupied / rest setpoint (23 to 6 hours) 27 ºC 12 ºC
Occupied comfort setpoint (6 to 23

hours)
26 ºC 15 ºC

Case 3: Disengaged energy saver Summer(AC): Jul. 01 Winter (Heater): Dec. 16
Daily Average Consumption 16.7 kWh 9.4 kWh

Unoccupied / rest setpoint (23 to 6 hours) 27 ºC 12 ºC
Occupied comfort setpoint (6 to 23

hours)
20 ºC 20 ºC

438 Figure 10 (a) shows the graphic for the summer period considering the indoor temperature and
439  the set-point for each case; the same in Figure 10 (b) for winter season. Case 3 is consistent for an
440  energy waster user as they prefer lower temperatures during summer and higher temperatures during
441  winter. Case 1 is for a home-focused selective energy saver, which compared with case 2 and case 3 is
442  between the home-focused selective energy saver and the disengaged energy saver. This graph shows
443  that, although the home-focused energy saver (case 2) is oriented in saving energy while improving



444  their home. During winter periods, this user can be motivated to change their consumption patterns by
445  reducing the thermostat set-point at least 1ºC and therefore saving energy without affecting the thermal
446  comfort at home. For the disengaged energy saver user, as they are not interested in saving 
energy,
447  the efforts need to be oriented to saving money strategies and into a rewarding system. The 
indoor
448  temperatures during summer require air conditioners; however, the strategy needs to be oriented
449  more in increasing the set-point at least 1ºC. UTCI scale demonstrates that the user could be without
450  thermal stress from 9ºC to 26ºC [61]; the lower temperatures assume that the user is wearing warmer
451  clothes; the higher temperatures they are using less o not heavy clothes. Besides, by increasing 1ºC the
452  set-point during summer periods, it could save at least 6% of the electrical bill [80].

Figure 10. Indoor temperature in Summer and Winter and the set-point for each case; (a) displays
the indoor temperature for December, 16 and the set-points for each case, and (b) displays the
indoor temperature for July, 01 and the set-points for each case.

453 Table 5 depicts the average daily electrical consumption profile for all the household appliances
454  in the home in the summer and winter period. Therefore considering the summer period and the kWh
455  of the weekday times 365 days, the results for a year in each case is:

456 • Case 1: 24.33 kWh/day x 365 days = 8,881 kWh
457 • Case 2: 22.93 kWh/day x 365 days = 8,370 kWh
458 • Case 3: 25.43 kWh/day x 365 days = 9,282 kWh

459 This was calculated this way due to the summer period consumes more kWh than the winter
460  period. The weekday was selected as the weekends have atypical consumption, and not every weekend
461  the end-user is spending that electrical energy. Energy consumption have not worthy changes during
462  weekdays since users shared common zones as living room and kitchen, but increasing the domestic
463  task as laundry on weekends and the usage of appliances as refrigerator increase a little bit. The
464  lighting system is for a big house without EMS supervision or sensor care. Figures 11 and 12 show the
465  consumption patterns during weekdays and the weekend in summer and winter periods respectively,
466  with the load scheme conformed by AC or heater, lighting system, stove, dishwasher, refrigerator,
467  washer machine, dryer, and water pump.
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Figure 11. Daily average energy consumption in summer season for Case 1, Case 2, and Case 3 during 
weekday and weekend.

468 4.3. Step 3 and 4

469 The household’s load scheme obtained from the database has the following appliances: Air
470  Conditioner (AC), furnace/heater, dryer, stove, lighting system, dishwasher, refrigerator, clothes
471  washer, and water pump. The study focuses on thermal comfort and energy savings, and the HVAC
472  system is the most flexible and suitable to modify user consumption behavior. According to the
473  decision tree diagram in Figure 7, the AC system in summer and the electric furnace or heater in 
winter
474  have the most flexible range situated in the Auto-reduction and Auto-reschedule, according to the
475  time of the day and level of occupancy.
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Figure 12. Daily average energy consumption in winter season for Case 1, Case 2, and Case 3 during 
weekday and weekend.

476 The ANFIS system has two inputs, the daily electrical consumption in kilowatts [kWh] and the
477  set point temperature. To obtain the daily consumption for a year, the Average High 3C IECC Climate
478  Zone Consumption was selected from Table 3. Then, considering the standard deviation and the mean,
479  365 values were created, giving an annual consumption of 8,894.7 kWh, similar to Case 1. The 
set
480  point temperature uses the occupied values from the energy saver user; it goes from 15 ºC to 26 
ºC.
481  The output is related to the type of gamified motivation, intrinsic, extrinsic, or both, and considers the
482  following:

483 • A home that consumes more energy with a set point below 21ºC for cooling and above 20 ºC for
484 heating requires extrinsic motivation for outer recognition and external rewards. A home that
485 consumes less energy with a set point above 23ºC for cooling and below 18ºC for heating can be
486 related to intrinsic motivation. The house uses less kWh than the other in similar conditions. On
487 the other hand, the average home and set point below 23ºC and above 21ºC for cooling and set
488 point below 20 ºC and above 18 ºC have both motivations. This type of home may be motivated
489 by external recognition or autonomy, competence, and relatedness elements.
490 • Some of the benefits of local motivation inside the home are that the end-user finds rewarding
491 performing activities or changes if they receive outer recognition from the energy community or
492 achieve the reduction with no outer recognition. Additionally, this user can help the community
493 by sharing tips on modifying their habits without affecting, for instance, thermal comfort. Hence,
494 the energy community motivation relies on social sharing and social belonging; the more the
495 user is involved in social sharing and social activities, the more they want to improve and help
496 the others [37,49].



Table 5. Average daily weekday and weekend day electrical consumption profile in winter and summer 
with different thermal comfort (TC)

Week type Electrical device Energy consumption (kWh)
Weekday Stove 2.9

for all Lighting 3.7
cases Dishwasher 1.33

Refrigerator 0.8
Subtotal energy consumption on weekday (A) 8.73

Weekend day Stove 6.3
for all Lighting 3.7
cases Dishwasher 2.0

Refrigerator 1.2
Washing machine 0.4

Dryer 5.32
Water pump 8

Subtotal energy consumption on weekend (B) 26.92

Case Energy consumption in summer
(kWh)

Energy consumption in winter
(kWh)

1: Home-focused Air Conditioner (AC): 15.6 Heater: 6.9
Weekday Total kWh (A) + AC: 24.33 Total kWh (A) + Heater: 15.63
Weekend Total kWh (B) + AC: 42.52 Total kWh (B) + Heater: 33.82

2: Green advocate Air Conditioner (AC): 14.2 Heater: 3.65
Weekday Total kWh (A) + AC: 22.93 Total kWh (A) + Heater: 12.38
Weekend Total kWh (B) + AC: 41.12 Total kWh (B) + Heater: 30.57

3: Disengaged Air Conditioner(AC): 16.7 Heater: 9.4
Weekday Total kWh (A) + AC: 25.43 Total kWh (A) + Heater: 18.13
Weekend Total kWh (B) + AC: 43.62 Total kWh (B) + Heater: 36.32

497 Table 6 and Table 7 show the Neuro-fuzzy logic inference rules from the ANFIS system for the
498  summer and winter seasons.The gamification motivation depends on the level of the kWh and setpoint
499  of the house. Figure 13 shows the summer season rules during weekdays and weekends, and Figure 
14
500  for the winter season. For case 1, an interface oriented more into the intrinsic motivation is required
501  with a bit of extrinsic motivation during weekends (See Figure 13 (a) and (b)). Case 2 requires an
502  interface oriented to the intrinsic motivations(See Figure 13 (c) and (d)); on the opposite, case 3 requires
503  an interface oriented to the extrinsic motivation (See Figure 13 (e) and (f)). For the winter periods the
504  Case 1 requires an interface more oriented to extrinsic motivations and a few elements of the intrinsic
505  motivation (See Figure 14 (a) and (b)), case 2 remains with the intrinsic motivation as well as case 3 for
506  the extrinsic motivations(See Figure 14 (c) to (f)).

Table 6. Fuzzy Logic Inference Rules for Summer period.

Rule IF AND THEN

kWh Setpoint Gamified Motivation
1 Low Low Med Extrinsic
2 Low Med Both
3 Low High Med Intrinsic
4 Med Low Very High Extrinsic
5 Med Med Low Intrinsic
6 Med High High Intrinsic
7 High Low High Extrinsic
8 High Med Low Extrinsic
9 High High Very High Intrinsic



Table 7. Fuzzy Logic Inference Rules for Winter Period.

Rule IF AND THEN

kWh Setpoint Gamified Motivation
1 Low Low Low Intrinsic
2 Low Med Low Extrinsic
3 Low High High Extrinsic
4 Med Low High Intrinsic
5 Med Med Both
6 Med High Med Extrinsic
7 High Low Very High Intrinsic
8 High Med Med Intrinsic
9 High High Very High Extrinsic

507 Based on the Neuro-Fuzzy rules for both periods, Figure 15 shows the interfaces for each case.
508  The three types of user were selected based on their energy awareness and motivation to modify their
509  energy consumption by changing the time of use of the household appliances:

510 • Case 1- Home-focused: This user is interested in home-improvements effort while help saving
511 energy
512 • Case 2- Green-advocate: This user is concerned about saving energy as most as possible.
513 • Case 3- Disengaged energy saver: This user is not interested in saving energy

514 Following, the description of gamification elements based on the extrinsic and intrinsic motivation
515  are described:

516 • Case 1 - Home-focused energy saver: The intrinsic elements used in Figure 15(a) are the
517 notifications, tips, energy community, collaboration, control over pears through competition and
518 social comparison, and the extrinsic elements consider challenges, bill discounts, the levels, and
519 rewards. Besides, Case 1 is fascinating as this type of user requires a more dynamic interface
520 that changes toward the season and promotes this energy reduction; in that sense, an EMS is
521 ideal for this user type. Figure 15(b) displays an interface that emphasizes more in Rewards and
522 leader-board elements.
523 • Case 2 - Green advocate (Figure 15(c) and (d)): This interface is oriented more to intrinsic
524 elements, as the social comparison, notifications, tips, energy community, collaboration, control
525 over peers, social comparison, and competition.
526 • Case 3 - Disengaged energy saver (Figure 15(e) and (f)): On the contrary, this interface is oriented
527 to the extrinsic elements as the coupons, bill discounts, challenges.  Besides, a message is
528 displayed as an intrinsic motivator, and this message is focused on showing the end-user the
529 benefits of reducing energy.

530 In addition to this, Figure 16 (a) to (f) shows the electrical consumption available in the section of
531  statistics. This electrical consumption allows the user to know how much energy they are using and
532  how they can save energy if they want to do it. Figure 16 (g) and (h) display case 1 for the heater and
533  AC. The interface displays a message connected with the EMS, so several strategies can be used based
534  on the decision tree from Figure 7.
535  The EMS automatizes flexible electrical appliances to perform at low or mid electric rates, reduces
536  energy consumption, and guides the user to reduce non-flexible appliances. For example, the water
537  pump, washing machine, and dryer can be used when a low electrical tariff is current in early and late
538  hours to save money. Moreover, the EMS may reduce lighting consumption by sensing user activity in
539  rooms.
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Figure 15. Gamified HMI for each case



(a) Case 1: Electrical consumption (Summer) (b) Case 1: Electrical consumption (Winter)

(c) Case 2: Electrical consumption (Summer) (d) Case 2: Electrical consumption (Winter)

(e) Case 3: Electrical consumption (Summer) (f) Case 3: Electrical consumption (Winter)

(g) Case 1: Furnace Electrical Consumption (h) Case 1: AC Electrical Consumption

Figure 16. HMI for Daily Electrical Consumption for each case during weekdays



540 5. Discussion

541 State of Art reflects the need to combine an EMS with gamification techniques to promote
542  energy reduction. Current frameworks assume a certain level of comfort without considering the
543  user’s preferences and thermal comfort. Besides, a friend EMS that displays energy consumption,
544  auto-configuration, or easy set-up is needed to engage the user and optimize consumption when the
545  price is high; in the end, this can help users to reduce electrical consumption [26–32]. Thus, considering
546  the human factor while designing EMS is crucial.
547 Gamification techniques could help by knowing the types of end-user and proposing specific
548  targets so the users could be engaged. A manner of classifying the type of user has been proposed
549  in [49], where based on the type of user, tailored gamified interfaces are proposed. Moreover, this
550  paper proposes five users’ classification based on the user’s targets as the saving-money goal, comfort
551  level, environmental commitment, and technology knowledge.
552 One of the great advantages of AI is the possibility of considering sensors and monitor the
553  end-user to analyze the level of engagement and determine if, for instance, the gamification elements
554  in the interface are accurate or if it requires changes [54]. Mainly, this proposal uses the ANFIS decision
555  system to determine which type of gamified motivation is needed to engage the end-user and promote
556  flexible loads during the day.
557 Although this paper does not consider the inclusion of multi-sensor systems, this could be
558  included in further research for monitoring and tracking the end-user to determine their level of
559  comfort and promote load flexibility based on the users’ daily tasks.
560 One of the disadvantages of this proposal is the numerous steps required for determining the type
561  of interfaces based on the user; an optimized interface could tackle this disadvantage by providing a
562  previous survey to the user so that the interface could be updated based on their requirements. 
The
563  simulation could also include more than one-year historical consumption to better determine the 
users’
564  patterns and their thermal comfort depending on the seasons.
565 Not all the houses or buildings can be used for deploying this technology. The conditions and
566  limits that require a smart home for being benefited of this proposal are connectivity scheme among
567  electrical devices and the monitoring system, besides certain level of control of the flexible ones. The
568  system runs on a smart device as a cellphone, but it is not the only device that can receive and transmit
569  energy information. On the other hand, energy companies can use the data generated for improving
570  services or facilitate the green energy inclusion and stability of the electric grid.
571 However, this proposal’s advantage is the inclusion of EMS with a gamification structure to
572  provide goal-oriented ludic interfaces, in this case, is the reduction of electrical consumption during
573  peak hours and promote flexible usage.

574 6. Conclusions

575 A gamification strategy and EMS help improve energy efficiency, save energy and money, avoid
576  peak rates, and reduce energy consumption. As a result, this proposal studies energy scenarios with the
577  same energy loads’ scheme (flexible schedule loads and non-flexible loads). Still, different types of users
578  (user willing to change its consumption patterns without restrictions, user partially willing to modify
579  patterns, and user not flexible), the simulation showed an approximate 10% energy consumption
580  reduction. Besides the AI techniques, fuzzy logic and the decision tree for the decision-making process,
581  which matched the load scheme and user preferences, compound a tailored interface with the required
582  gamification elements to save energy according to users’ personalities. According to the decision
583  tree system, the fuzzy logic scheme delimits the user preferences to manage the flexible loads (an
584  HVAC system for this case study). Thus, the ANFIS system reaches the tailored interface compound of
585  gamification elements for the rest of the load scheme management for energy efficiency.
586 Moreover, simulation allows a better decision-making process and forecasting, saving energy and
587  money by making proper use of electrical devices and achieving user goals and preferences. Although
588  this simulation is for consumption per hour and monthly rate. The algorithm allows test different



589  custom load schemes, dynamic price schemes, and different user behavior. In addition, classifying
590  the type of consumer allows a more accurate profile that helps make decisions required for proposing
591  changes in household appliances. For instance, disengaged energy saver users are not interested in
592  saving energy, so the interface displays gamified extrinsic motivations that motivate them to perform
593  activities to receive rewards. Those activities include the change of thermostat set-point or the change
594  in household appliances usage during off-peak periods.
595 On the other hand, green-advocate users require interfaces with intrinsic motivations that allow
596  these consumers’ interaction with another type of consumers as the disengaged or the home-focused,
597  promoting social commitment and social sharing. Therefore, these users can feel part of the community
598  as they help other users reduce energy or promote flexible loads. Further work is to feedback and
599  adjust the model based on the energy consumption to evaluate the overall performance and
adapt  600 the interface and the gamification elements.  Another aspect to include in evaluating
usability and 601  heuristics to optimize the interface and make it more appealing. Also, it can be
included in the 602  classification of the user type, their personality traits, and type of gamified user to
improve the game 603  dynamics during the application usage.
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