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Abstract

In this work, we introduce an analytical method to solve the diffusion equation in a cylindrical 

geometry. This method is based on an integral approach to derive the Green’s function for specific 

boundary conditions. Using our approach, we obtain comprehensive analytical solutions with the 

Robin boundary condition for diffuse optical imaging in both two and three dimensions. The 

solutions are expressed in terms of the optical properties of tissue and the amplitude and position 

of the light source. Our method not only works well inside the tissue but provides very accurate 

results near the tissue boundaries as well. The results obtained by our method are first compared 

with those obtained by a conventional analytical method then validated using numerical 

simulations. Our new analytical method allows not only implementation of any boundary 

condition for a specific problem but also fast simulation of light propagation making it very 

suitable for iterative image reconstruction algorithms.
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1. Introduction

Diffuse Optical Imaging (DOI) uses near-infrared (NIR) light to determine optical properties 

of tissue and has a wide range of diagnostic applications from breast cancer to brain imaging 

[1–6]. In DOI, three dimensional images are obtained using the boundary measurements of 

NIR light [7–17]. To accomplish this, sources and detectors are placed around tissue and 

measurements are recorded in reflection or transmission mode. While light propagates, its 

interaction with biological tissue occurs due to absorption and elastic scattering. Modelling 

of light propagation in tissue can be achieved accurately by radiative transport equation 

(RTE) [18]. However, photon transport in turbid medium is generally approximated by the 

diffusion equation because the RTE is very hard to solve and scattering in tissue is 

remarkably larger compared to the absorption [19–27]. Photon density throughout the region 

can be obtained by utilizing analytical, Monte Carlo and numerical methods (such as the 

Finite Element Method and the Finite Difference Method) [21, 28, 29]. Analytical and 
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Monte Carlo methods yield considerably accurate results compared to numerical methods. 

Furthermore, analytic methods provide the fastest computational time.

Solving diffusion equation analytically is generally a challenging task. Nevertheless, 

analytical solutions have been presented for some definite geometries such as spherical or 

cylindrical as well as sufficiently large or infinite slabs [20–27, 30–39]. In addition, photon 

propagation, which is obtained by solving the diffusion equation, has also been widely 

studied for homogeneous sub-layers since some imaging techniques model tissue as a 

layered structure [24, 34, 36, 40–52]. However, since analytical solutions for irregular 

geometries have not been obtained, numerical approximation methods such as the Finite 

Element Method (FEM) and the Finite Difference Method (FDM) are used [21, 22].

Up to date, the Green’s function approach has been mainly used to solve the diffusion 

equation in regular geometries [23, 25]. For example, Arridge et al [25] obtained solutions 

for an infinite cylinder in which an infinitely long line source is placed. They also derived 

solutions of the diffusion equation for a point source utilizing the Green’s function technique 

in various regular geometries. Furthermore, Sikora et al [43] used a series expansion 

approach to solve the diffusion equation for concentric spheres. In another work, Kienle et al 
[44] obtained continuous wave (cw), frequency and time domain solutions for the diffusion 

equation via the Green’s function method with the extrapolated boundary conditions for a 

multiple layered finite cylinder. Moreover, Zhang et al [38] presented a cw solution for a 

point source utilizing the extrapolated boundary conditions in cylindrical coordinates. In 

addition to those, Liemert and Kienle obtained detailed solutions for the diffusion equation 

in a homogeneous turbid medium with a point source using various integral transformations 

[37].

In this paper, we obtain both two and three dimensional solutions for the diffusion equation 

analytically considering steady state (cw) case in a cylindrical medium. Here the light source 

is modeled by the Dirac δ function with a given strength. We present an integral approach to 

derive the Green’s function for the Robin boundary condition. Our method is indeed very 

flexible allowing implementation of any boundary condition (i.e. not limited with the Robin 

boundary condition). Our approach can also be applied to other regular geometries such as 

spherical. The main motivation of our study is to obtain solutions for the diffusion equation 

at the boundary making our method very suitable for DOI of homogeneous or nearly 

homogeneous media. To be able to validate our method, we first compare it with the 

analytical method presented by Arridge et al [25]. Since Arridge et al [25] utilize known 

Green’s function of the infinite medium with the zero boundary condition, it corresponds to 

a special case for our solution. In addition, we compare our results with the solutions 

obtained by the finite element method in both two and three dimensions.

2. Theoretical method

The photon propagation in tissue is described by the time dependent diffusion equation in 

time domain [19, 53]
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(1)

where Φ, c, D, μa, and S represent the photon density, the speed of light, the diffusion 

coefficient, the absorption coefficient and the source term, respectively. Here, the diffusion 

coefficient is given as  where  is the reduced scattering 

coefficient. The light source can be considered a point source since it is very small. Hence, 

the source term can be approximated by the Dirac delta function. As a result of this, we 

define  where r′ is the position of the light source and Λ is a dimensionless 

parameter determining the source strength. For calculational simplicity, we define .

For a steady state case (continuous wave), the diffusion equation takes the following form

(2)

where D is taken as constant.

2.1. Two dimensional case

In two dimensional cylindrical coordinates, except for the source position r ≠ ri, the solution 

of the diffusion equation is

(3)

where  and i is the complex number, Jm and Ym are the first and second kind Bessel 

functions, respectively. Here am, bm, cm, and dm are the differentiation constants. If the 

source is placed along the x axis (θ = 0), the photon density is symmetric with respect to this 

axis. In other words, the constant dm in equation (3) becomes zero so that the angular 

dependency of the solution comes from cos(mθ) term leading to

(4)

Now we solve the diffusion equation for a point source using the properties of the Dirac δ 

function (figure 1). Firstly, we divide the region into two sub-regions according to the 

position of the source. If r ≤ ri, the solution of the radial part consists of only the first kind 

Bessel function Jm(kr) since the second kind Bessel function goes to infinity at r = 0. Hence, 

the solution reduces to

(5)
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for r ≤ ri.

On the other hand, if R ≥ r ≥ ri, the solution has both of the two radial solutions since the 

solution is finite in this region. Therefore, the photon density is

(6)

r ≥ ri. To relate constants bm and cm, we apply the following Robin boundary condition at 

the boundary surface, r = R:

(7)

where ξ is a constant corresponding to refractive index mismatched between tissue and its 

surrounding medium [9, 54, 55].

Now we utilize the properties of the Dirac delta function. The first property is that the 

solutions of the two regions are equal to each other at the source position. In other words, 

the expression for the equality of the photon density at r = ri is

(8)

To represent the sudden change in the derivative of photon density at the source position, let 

us write solutions into the diffusion equation

(9)

where Gm(kr) is the following set of Bessel function solutions, Gm(kr) = {Jm(kr), Ym(kr)}. 

Multiplying equation (9) with r cos(m′θ) and then integrating between (r = ri − ε, θ = 0) and 

(r = ri + ε, θ = 2π) yields

(10)

Here notice that except from the first term on the left hand side of equation (9), all the terms 

go to zero due to the fact that Φ itself is continuous. Next we consider ε → 0+ and use the 

equality of the photon density at the source position given by equation (8). Writing

(11)

and the orthogonality of cosine functions
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(12)

(if m, n = 0, equation(12) is 2π) into equation (10) as ε → 0+ and using the equality relation 

of Φ gives the expression for the abrupt change of :

(13)

Writing the Robin boundary condition for Φ> and substituting Φ>(r, θ) and Φ<(r, θ) into 

equations (8) and (13) gives

(14)

(15)

and

(16)

Solving equations (14)–(16) for the differentiation constants am, bm and cm yields the photon 

density

(17)

where ,

(18)

(19)

and

(20)
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These two dimensional results can be used for obtaining the photon density around the 

center when length of the cylindrical volume under investigation is very large.

A special case corresponding to the zero boundary condition can be obtained by setting ξ = 0 

in the Robin boundary condition. Since this solution has been already presented in detail by 

Arridge et al [25], this approach will allow us to validate our new method. In this case, am, 

bm and cm reduce to

(21)

(22)

and

(23)

respectively. Now let us use the following relations between the Bessel functions (Jm and 

Ym) and the modified Bessel functions (Im and Km):

(24)

and

(25)

Defining  and then substituting

(26)

and

(27)

into equations (21)–(23) yields the photon density for r > ri given by equation (17)

(28)

by placing the source along the x axis (θi = 0). A comprehensive comparison with the 

solution given by Arridge et al [25], can be obtained by transforming the differentiation 
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constants am, bm and cm to  and  and by using these new constants in equation 

(17), respectively. The new differentiation constants are 

and , respectively. In other words, we take the scaled photon density 

.

Therefore, we obtain the exact solution as the Arridge et al’s solution [25]:

(29)

for r > ri. By interchanging r → ri, we can also obtain

(30)

for r < ri.

2.2. Three dimensional case

We also present three dimensional results following the similar steps as follows (figure 2). In 

three dimensional cylindrical coordinates, except for the source position r ≠ ri, the solution 

of the diffusion equation is

(31)

If the source position is in the x axis (θ = 0, z = 0), the photon density is symmetric with 

respect to the x axis. As a result of this, setting the constants dm,n and fm,n in equation (31) 

to zero provides that the angular and z dependencies of the solution come from cos(mθ) and 

cosh(nz) terms, respectively. So the solution can be taken as

(32)

Now we solve the diffusion equation for a point source using the properties of the Dirac 

delta function like the two dimensional case. When r ≤ ri and R ≥ r ≥ ri, the corresponding 

solutions are

(33)

and
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(34)

respectively.

To relate the constants am,n, bm,n and cm,n in equations (33) and (34), we apply the following 

boundary conditions:

i. the Robin boundary condition at the boundary surface, r = R:

(35)

ii. at the ends of the tissue with a length of 2L, z = ±L:

(36)

It is important that the second boundary condition implies that cosh(nL) = 0 or

(37)

where l = 0, ±1, ±2, …. In this case, the solution becomes as a function of 

 instead of cosine hyperbolic function of z.

Now we use the properties of the Dirac delta function at r = ri in the expressions for photon 

density, Φ<(r, θ, z) |r=ri= Φ>(r, θ, z) |r=ri, and its derivative. To obtain the expression for the 

derivative of the photon density, we substitute the radial, angular and z dependent solutions 

into the three dimensional diffusion equation

(38)

where Gm, l(kr) is the following set of Bessel function solutions, 

. Multiplying equation (38) 

with  and then integrating between (r = ri −ε, θ = 0, z = −L) and (r = 

ri + ε, θ = 2π, z = L) leads to

Erkol et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2016 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(39)

Here since Φ is continuous, all the terms go to zero except from the first term on the left 

hand side of equation (38). Next we consider ε → 0+ and use

(40)

Substituting  and

(41)

as ε → 0+ with the equality relation of Φ yields the expression for the :

(42)

Writing the Robin boundary condition for Φ> and substituting Φ>(r, θ, z) and Φ<(r, θ, z) into 

equations (40) and (42) gives

(43)

(44)

and

(45)

where ′ stands for the differentiation with respect to r.

Solving equations (43)–(45) for am, l, bm, l and cm, l yields the photon density
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(46)

where  for the calculational simplicity and

(47)

(48)

and

(49)

Similar to the two dimensional case, we also obtain a solution corresponding to the zero 

boundary condition for the three dimensional case to be able to compare our method with 

Arridge et al’s method and validate it. Setting ξ = 0 in the Robin boundary condition, the 

differentiation constants reduce to

(50)

(51)

and

(52)

respectively. Now we define  for the calculational simplicity. We 

substitute

(53)

and
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(54)

into equations (50)–(52). Next we transform the differentiation constants am,l, bm,l and cm,l 

to  and , or equivalently, we take the scaled solution . 

Therefore, the solutions are

(55)

and

(56)

for r > ri and r < ri , respectively. Therefore, we obtain a similar solution to the Arridge et 
al’s solution apart from the different boundary condition that Arridge et al used [25].

3. Numerical application and validation

To validate our theoretical method in two and three dimensions, we perform numerical 

calculations and simulations using other methods. For 2D case, our results are compared 

with another analytical method while simulations obtained by using Finite Element Method 

are used to validate both 2D and 3D cases. These simulations are obtained by solving the 

diffusion equation numerically with the Comsol Multiphysics solver [12, 56– 58].

For all calculations, we set the absorbtion coefficient (μa), the reduced scattering coefficient 

( ) and the refractive index (n) to 0.0132 mm−1, 0.5 mm−1 and 1.4, respectively. The 

diameter and length of the cylindrical tissue are R = 25 mm and 2L = 100 mm, respectively.

In 2D case, we first compare our approach with the analytic method presented by Arridge et 
al [25]. We obtain the photon density distribution along the xy plane and its profile in terms 

of the radial position for a tissue domain with a radius of R = 12.5 mm. In this case, we take 

the source position and its strength ri = (ri = R/2, θi = 0) along the x axis and γ = 100 s/mm, 

respectively. Figures 3 and 4 exhibit the photon density distribution and its profile along the 

x-axis, respectively. In figure 4, we use the Arridge et al’s [25] results which are normalized 

according to ours. Figure 4 also shows that the results differ slightly in the vicinity of the 

boundary, which arises from the utilization of the different boundary conditions. In fact, 

Arridge et al [25] use the Dirichlet boundary condition (Φ(R, θ) = 0) whereas we use the 

Robin boundary condition. The results for these two methods are in good agreement inside 

the medium. To demonstrate the validation of our method in the whole tissue domain, we 

next locate the source near the tissue center. We obtain the photon density distribution in the 

xy plane and present it in figure 5 by locating the source at ri = (ri = 0.1R, θi = 0) with a 

strength of γ = 100 s/mm. The photon density profile is obtained along the x axis (θ = 0) 
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both analytically and numerically based on the finite element method in figure 6. The 

profiles for these methods are in good agrement. The only slight difference between them is 

that the photon density obtained by our approach is a little bit higher than the one obtained 

by the finite element method. This small difference results from the approximation that the 

finite element method uses and its lack of accuracy near the source position. Secondly, we 

place the source near the tissue boundary and perform similar calculations. For this case, we 

take the strength and position of the source γ = 100 s/mm and , 

respectively. We obtain the photon density distribution in the xy plane as shown in figure 7. 

Figure 8 shows the photon density profiles along the x direction for both methods. We 

observe that these profiles obtained by our analytical and numerical methods match closely, 

like the former case. These results confirm that our method works well for both near the 

center and in the vicinity of the boundary.

For practical DOI applications, we also extend the method in three dimensions for a finitely 

long cylindrical geometry. Figure 9 shows the schematic of this case in which photon density 

distribution is obtained by the finite element method and superimposed for illustration 

purpose. Similar to the two dimensional case, we again solve the diffusion equation 

analytically using our approach and numerically with the FEM method. In practice, sources 

and detectors are placed at the boundary for DOI. However, the source is placed at one 

scattering path length under the surface due to the diffusion equation approximation. For this 

reason, we place the source at ( , θi = 0, zi = 0). Here the diameter and the length 

of the cylindrical tissue are chosen as R=25 mm and 2L = 100 mm, respectively. In the 

calculations, 16 detectors are equispatially placed around the tissue boundary (figure 9). In 

other words, each detector makes an angle 2dπ/360° with the x axis where d is the detector 

number ranging from 1 to 16. The photon flux, Λ = Φ/(2ξ) is calculated both analytically 

using our approach and numerically based on the synthetic detector measurements. We 

obtain the logarithm of the photon flux at various z positions (z = 0, 3, 6 mm) and present 

our results in figure 10. The comparison of these two methods shows that the results are in 

very good agrement.

4. Discussion and conclusion

In this contribution, we present an analytical approach to solve the diffusion equation using 

an integral method and the Dirac δ light source with a given strength in two and three 

dimensions. These solutions are expressed for a homogeneous cylindrical geometry. Liemert 

and Kienle [37] also solved the diffusion equation for a homogeneous turbid cylinder with a 

point source using various integral transformations (Hankel, Laplace, Fourier, sine and 

cosine integral transforms) with an extrapolated boundary condition. Different from Liemert 

and Kienle’s work, we use an integral method to solve the diffusion equation by obtaining a 

particular Green’s function. It is also important to notice that we utilize the Robin boundary 

condition. Although we utilize the Robin boundary condition, which is adequate for imaging 

of biological tissue, our approach is indeed flexible allowing for implementation of any 

boundary condition. In fact, our method takes advantage of the mathematical properties of 

the Dirac δ source and the symmetry of the geometry.
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Our results mainly consist of comprehensive series solutions. In our approach, it is not 

necessary to calculate infinite number of roots for the Bessel functions arising from the 

Robin boundary condition. Actually, we use the Robin boundary condition to relate 

differentiation constants to each other to obtain the solution. The results obtained by our 

method and those obtained by the analytical method given by Arridge et al [25] turn out to 

be in good agreement inside the medium. On the other hand, the results differ slightly when 

approaching the tissue boundary because Arridge et al [25] use the zero boundary condition 

while we use the Robin boundary condition. This explains why the solution of Arridge et al 
becomes zero and our solution tends to a finite value at the boundary. We also show that 

setting parameter ξ in the Robin boundary condition to zero (corresponding to the zero 

boundary condition), our normalized results reduce to the Arridge et al’s results [25]. To 

further validate our method, we also solve the diffusion equation numerically using the finite 

element method. Indeed, the results obtained by these two methods are in good agreement. 

Moreover, our method gives more accurate solution at the medium boundary as well as near 

the source position. In fact, this is important since the DOI measurements are performed at 

the surface.

Another advantage of our method is that it reduces computational time compared to 

numerical methods such as the finite element method and the finite difference method. 

Actually, our method does not require any complex calculations and the solutions are simply 

given by equation (17) and equation (46) for two and three dimensions, respectively. At first, 

it seems like we have to compute two summations with infinite number of terms. As a matter 

of fact, when we expand the solution, we see that after some limit, the contribution coming 

from the higher order terms approaches to zero. In fact, we observe that the first 50 terms for 

l and m are sufficient for an accurate solution. Modeling of photon transport in tissue is 

important for imaging applications. Image reconstruction in DOI is a very long iterative 

process since the forward problem has to be solved at each iteration during the image 

reconstruction. This is one of the barriers that hinders translation of DOI to clinical settings. 

Thus, combining our technique with a conventional numerical method would accelerate the 

image reconstruction process. In fact, the reconstruction process can be considerably 

accelerated by implementing our analytical solution to the weight matrices [59] when 

imaging highly homogeneous organs such as breast.
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Figure 1. 
The schematic showing the geometry of a homogeneous medium with a δ function source in 

two dimensions.
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Figure 2. 
The schematic showing the geometry of a homogeneous medium with a δ function source in 

three dimensions.
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Figure 3. 
Photon density Φ (in units of s.mm−2) vs. x (mm) and y (mm) for a source of a strength γ = 

100 s/mm and located at ri = (xi = R/2, yi = 0).
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Figure 4. 
Photon density Φ (in units of s.mm−2) vs. radial distance r (mm) at θ = 0 for a point source 

of a strength γ = 100 s/mm described by δ(ri = R/2, θi = 0). Here a (circle) shows our work 

with the Robin boundary condition and b (square) shows the Arridge’s work with the 

Dirichlet boundary condition for a circular domain of radius R = 12.5mm.
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Figure 5. 
Photon density Φ (in units of s.mm−2) vs. x (mm) and y (mm) for a source of a strength γ = 

100 s/mm near the center, ri = (xi = 0.1R, yi = 0).
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Figure 6. 
The normalized photon density profile Φ (in units of s.mm−2) vs. x (mm) for a source near 

the center. The dash line (blue) shows the analytical approach while the solid line (red) 

shows the finite element method.
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Figure 7. 
Photon density Φ (in units of s.mm−2) vs. x (mm) and y (mm) for a source of a strength γ = 

100 s/mm near the boundary, .
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Figure 8. 
The normalized photon density profile Φ (in units of s.mm−2) vs. x (mm) for a source near 

the boundary. The dash line (blue) shows the analytical approach while the solid line (red) 

shows the finite element method.
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Figure 9. 
The schematic of the three dimensional case where numbers and S represent the detectors 

and the source, respectively. The photon density distribution is obtained by the finite element 

method and superimposed for illustration purpose.

Erkol et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2016 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Logarithm of the photon flux log(Λ) vs. detector number at various z = 0, 3, 6 mm positions 

for a source near the boundary, . Here ai and bi represent the 

analytical results and the numerical results obtained by our approach and the finite element 

method, respectively. Subindex i = 1, 2, 3 corresponds to z = 0, 3, 6 mm, respectively.
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